Commit 5ef814753eb810d900fbd77af7c87f6d04f0e551

Authored by Angelo P. Castellani
Committed by David S. Miller
1 parent 127af0c44f

[TCP] YeAH-TCP: algorithm implementation

YeAH-TCP is a sender-side high-speed enabled TCP congestion control
algorithm, which uses a mixed loss/delay approach to compute the
congestion window. It's design goals target high efficiency, internal,
RTT and Reno fairness, resilience to link loss while keeping network
elements load as low as possible.

For further details look here:
    http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf

Signed-off-by: Angelo P. Castellani <angelo.castellani@gmail.con>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 4 changed files with 437 additions and 0 deletions Side-by-side Diff

... ... @@ -574,6 +574,20 @@
574 574 loss packets.
575 575 See http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf
576 576  
  577 +config TCP_CONG_YEAH
  578 + tristate "YeAH TCP"
  579 + depends on EXPERIMENTAL
  580 + default n
  581 + ---help---
  582 + YeAH-TCP is a sender-side high-speed enabled TCP congestion control
  583 + algorithm, which uses a mixed loss/delay approach to compute the
  584 + congestion window. It's design goals target high efficiency,
  585 + internal, RTT and Reno fairness, resilience to link loss while
  586 + keeping network elements load as low as possible.
  587 +
  588 + For further details look here:
  589 + http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
  590 +
577 591 choice
578 592 prompt "Default TCP congestion control"
579 593 default DEFAULT_CUBIC
... ... @@ -49,6 +49,7 @@
49 49 obj-$(CONFIG_TCP_CONG_VENO) += tcp_veno.o
50 50 obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o
51 51 obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o
  52 +obj-$(CONFIG_TCP_CONG_YEAH) += tcp_yeah.o
52 53 obj-$(CONFIG_NETLABEL) += cipso_ipv4.o
53 54  
54 55 obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \
  1 +/*
  2 + *
  3 + * YeAH TCP
  4 + *
  5 + * For further details look at:
  6 + * http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
  7 + *
  8 + */
  9 +
  10 +#include "tcp_yeah.h"
  11 +
  12 +/* Default values of the Vegas variables, in fixed-point representation
  13 + * with V_PARAM_SHIFT bits to the right of the binary point.
  14 + */
  15 +#define V_PARAM_SHIFT 1
  16 +
  17 +#define TCP_YEAH_ALPHA 80 //lin number of packets queued at the bottleneck
  18 +#define TCP_YEAH_GAMMA 1 //lin fraction of queue to be removed per rtt
  19 +#define TCP_YEAH_DELTA 3 //log minimum fraction of cwnd to be removed on loss
  20 +#define TCP_YEAH_EPSILON 1 //log maximum fraction to be removed on early decongestion
  21 +#define TCP_YEAH_PHY 8 //lin maximum delta from base
  22 +#define TCP_YEAH_RHO 16 //lin minumum number of consecutive rtt to consider competition on loss
  23 +#define TCP_YEAH_ZETA 50 //lin minimum number of state switchs to reset reno_count
  24 +
  25 +#define TCP_SCALABLE_AI_CNT 100U
  26 +
  27 +/* YeAH variables */
  28 +struct yeah {
  29 + /* Vegas */
  30 + u32 beg_snd_nxt; /* right edge during last RTT */
  31 + u32 beg_snd_una; /* left edge during last RTT */
  32 + u32 beg_snd_cwnd; /* saves the size of the cwnd */
  33 + u8 doing_vegas_now;/* if true, do vegas for this RTT */
  34 + u16 cntRTT; /* # of RTTs measured within last RTT */
  35 + u32 minRTT; /* min of RTTs measured within last RTT (in usec) */
  36 + u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */
  37 +
  38 + /* YeAH */
  39 + u32 lastQ;
  40 + u32 doing_reno_now;
  41 +
  42 + u32 reno_count;
  43 + u32 fast_count;
  44 +
  45 + u32 pkts_acked;
  46 +};
  47 +
  48 +static void tcp_yeah_init(struct sock *sk)
  49 +{
  50 + struct tcp_sock *tp = tcp_sk(sk);
  51 + struct yeah *yeah = inet_csk_ca(sk);
  52 +
  53 + tcp_vegas_init(sk);
  54 +
  55 + yeah->doing_reno_now = 0;
  56 + yeah->lastQ = 0;
  57 +
  58 + yeah->reno_count = 2;
  59 +
  60 + /* Ensure the MD arithmetic works. This is somewhat pedantic,
  61 + * since I don't think we will see a cwnd this large. :) */
  62 + tp->snd_cwnd_clamp = min_t(u32, tp->snd_cwnd_clamp, 0xffffffff/128);
  63 +
  64 +}
  65 +
  66 +
  67 +static void tcp_yeah_pkts_acked(struct sock *sk, u32 pkts_acked)
  68 +{
  69 + const struct inet_connection_sock *icsk = inet_csk(sk);
  70 + struct yeah *yeah = inet_csk_ca(sk);
  71 +
  72 + if (icsk->icsk_ca_state == TCP_CA_Open)
  73 + yeah->pkts_acked = pkts_acked;
  74 +}
  75 +
  76 +/* 64bit divisor, dividend and result. dynamic precision */
  77 +static inline u64 div64_64(u64 dividend, u64 divisor)
  78 +{
  79 + u32 d = divisor;
  80 +
  81 + if (divisor > 0xffffffffULL) {
  82 + unsigned int shift = fls(divisor >> 32);
  83 +
  84 + d = divisor >> shift;
  85 + dividend >>= shift;
  86 + }
  87 +
  88 + /* avoid 64 bit division if possible */
  89 + if (dividend >> 32)
  90 + do_div(dividend, d);
  91 + else
  92 + dividend = (u32) dividend / d;
  93 +
  94 + return dividend;
  95 +}
  96 +
  97 +static void tcp_yeah_cong_avoid(struct sock *sk, u32 ack,
  98 + u32 seq_rtt, u32 in_flight, int flag)
  99 +{
  100 + struct tcp_sock *tp = tcp_sk(sk);
  101 + struct yeah *yeah = inet_csk_ca(sk);
  102 +
  103 + if (!tcp_is_cwnd_limited(sk, in_flight))
  104 + return;
  105 +
  106 + if (tp->snd_cwnd <= tp->snd_ssthresh) {
  107 + tcp_slow_start(tp);
  108 + } else if (!yeah->doing_reno_now) {
  109 + /* Scalable */
  110 +
  111 + tp->snd_cwnd_cnt+=yeah->pkts_acked;
  112 + if (tp->snd_cwnd_cnt > min(tp->snd_cwnd, TCP_SCALABLE_AI_CNT)){
  113 + if (tp->snd_cwnd < tp->snd_cwnd_clamp)
  114 + tp->snd_cwnd++;
  115 + tp->snd_cwnd_cnt = 0;
  116 + }
  117 +
  118 + yeah->pkts_acked = 1;
  119 +
  120 + } else {
  121 + /* Reno */
  122 +
  123 + if (tp->snd_cwnd_cnt < tp->snd_cwnd)
  124 + tp->snd_cwnd_cnt++;
  125 +
  126 + if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
  127 + tp->snd_cwnd++;
  128 + tp->snd_cwnd_cnt = 0;
  129 + }
  130 + }
  131 +
  132 + /* The key players are v_beg_snd_una and v_beg_snd_nxt.
  133 + *
  134 + * These are so named because they represent the approximate values
  135 + * of snd_una and snd_nxt at the beginning of the current RTT. More
  136 + * precisely, they represent the amount of data sent during the RTT.
  137 + * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
  138 + * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
  139 + * bytes of data have been ACKed during the course of the RTT, giving
  140 + * an "actual" rate of:
  141 + *
  142 + * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
  143 + *
  144 + * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
  145 + * because delayed ACKs can cover more than one segment, so they
  146 + * don't line up yeahly with the boundaries of RTTs.
  147 + *
  148 + * Another unfortunate fact of life is that delayed ACKs delay the
  149 + * advance of the left edge of our send window, so that the number
  150 + * of bytes we send in an RTT is often less than our cwnd will allow.
  151 + * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
  152 + */
  153 +
  154 + if (after(ack, yeah->beg_snd_nxt)) {
  155 +
  156 + /* We do the Vegas calculations only if we got enough RTT
  157 + * samples that we can be reasonably sure that we got
  158 + * at least one RTT sample that wasn't from a delayed ACK.
  159 + * If we only had 2 samples total,
  160 + * then that means we're getting only 1 ACK per RTT, which
  161 + * means they're almost certainly delayed ACKs.
  162 + * If we have 3 samples, we should be OK.
  163 + */
  164 +
  165 + if (yeah->cntRTT > 2) {
  166 + u32 rtt;
  167 + u32 queue, maxqueue;
  168 +
  169 + /* We have enough RTT samples, so, using the Vegas
  170 + * algorithm, we determine if we should increase or
  171 + * decrease cwnd, and by how much.
  172 + */
  173 +
  174 + /* Pluck out the RTT we are using for the Vegas
  175 + * calculations. This is the min RTT seen during the
  176 + * last RTT. Taking the min filters out the effects
  177 + * of delayed ACKs, at the cost of noticing congestion
  178 + * a bit later.
  179 + */
  180 + rtt = yeah->minRTT;
  181 +
  182 + queue = (u32)div64_64((u64)tp->snd_cwnd * (rtt - yeah->baseRTT), rtt);
  183 +
  184 + maxqueue = TCP_YEAH_ALPHA;
  185 +
  186 + if (queue > maxqueue ||
  187 + rtt - yeah->baseRTT > (yeah->baseRTT / TCP_YEAH_PHY)) {
  188 +
  189 + if (queue > maxqueue && tp->snd_cwnd > yeah->reno_count) {
  190 + u32 reduction = min( queue / TCP_YEAH_GAMMA ,
  191 + tp->snd_cwnd >> TCP_YEAH_EPSILON );
  192 +
  193 + tp->snd_cwnd -= reduction;
  194 +
  195 + tp->snd_cwnd = max( tp->snd_cwnd, yeah->reno_count);
  196 +
  197 + tp->snd_ssthresh = tp->snd_cwnd;
  198 + }
  199 +
  200 + if (yeah->reno_count <= 2)
  201 + yeah->reno_count = max( tp->snd_cwnd>>1, 2U);
  202 + else
  203 + yeah->reno_count++;
  204 +
  205 + yeah->doing_reno_now =
  206 + min_t( u32, yeah->doing_reno_now + 1 , 0xffffff);
  207 +
  208 + } else {
  209 + yeah->fast_count++;
  210 +
  211 + if (yeah->fast_count > TCP_YEAH_ZETA) {
  212 + yeah->reno_count = 2;
  213 + yeah->fast_count = 0;
  214 + }
  215 +
  216 + yeah->doing_reno_now = 0;
  217 + }
  218 +
  219 + yeah->lastQ = queue;
  220 +
  221 + }
  222 +
  223 + /* Save the extent of the current window so we can use this
  224 + * at the end of the next RTT.
  225 + */
  226 + yeah->beg_snd_una = yeah->beg_snd_nxt;
  227 + yeah->beg_snd_nxt = tp->snd_nxt;
  228 + yeah->beg_snd_cwnd = tp->snd_cwnd;
  229 +
  230 + /* Wipe the slate clean for the next RTT. */
  231 + yeah->cntRTT = 0;
  232 + yeah->minRTT = 0x7fffffff;
  233 + }
  234 +}
  235 +
  236 +static u32 tcp_yeah_ssthresh(struct sock *sk) {
  237 + const struct tcp_sock *tp = tcp_sk(sk);
  238 + struct yeah *yeah = inet_csk_ca(sk);
  239 + u32 reduction;
  240 +
  241 + if (yeah->doing_reno_now < TCP_YEAH_RHO) {
  242 + reduction = yeah->lastQ;
  243 +
  244 + reduction = min( reduction, max(tp->snd_cwnd>>1, 2U) );
  245 +
  246 + reduction = max( reduction, tp->snd_cwnd >> TCP_YEAH_DELTA);
  247 + } else
  248 + reduction = max(tp->snd_cwnd>>1,2U);
  249 +
  250 + yeah->fast_count = 0;
  251 + yeah->reno_count = max(yeah->reno_count>>1, 2U);
  252 +
  253 + return tp->snd_cwnd - reduction;
  254 +}
  255 +
  256 +static struct tcp_congestion_ops tcp_yeah = {
  257 + .init = tcp_yeah_init,
  258 + .ssthresh = tcp_yeah_ssthresh,
  259 + .cong_avoid = tcp_yeah_cong_avoid,
  260 + .min_cwnd = tcp_reno_min_cwnd,
  261 + .rtt_sample = tcp_vegas_rtt_calc,
  262 + .set_state = tcp_vegas_state,
  263 + .cwnd_event = tcp_vegas_cwnd_event,
  264 + .get_info = tcp_vegas_get_info,
  265 + .pkts_acked = tcp_yeah_pkts_acked,
  266 +
  267 + .owner = THIS_MODULE,
  268 + .name = "yeah",
  269 +};
  270 +
  271 +static int __init tcp_yeah_register(void)
  272 +{
  273 + BUG_ON(sizeof(struct yeah) > ICSK_CA_PRIV_SIZE);
  274 + tcp_register_congestion_control(&tcp_yeah);
  275 + return 0;
  276 +}
  277 +
  278 +static void __exit tcp_yeah_unregister(void)
  279 +{
  280 + tcp_unregister_congestion_control(&tcp_yeah);
  281 +}
  282 +
  283 +module_init(tcp_yeah_register);
  284 +module_exit(tcp_yeah_unregister);
  285 +
  286 +MODULE_AUTHOR("Angelo P. Castellani");
  287 +MODULE_LICENSE("GPL");
  288 +MODULE_DESCRIPTION("YeAH TCP");
  1 +#include <linux/mm.h>
  2 +#include <linux/module.h>
  3 +#include <linux/skbuff.h>
  4 +#include <linux/inet_diag.h>
  5 +
  6 +#include <net/tcp.h>
  7 +
  8 +/* Vegas variables */
  9 +struct vegas {
  10 + u32 beg_snd_nxt; /* right edge during last RTT */
  11 + u32 beg_snd_una; /* left edge during last RTT */
  12 + u32 beg_snd_cwnd; /* saves the size of the cwnd */
  13 + u8 doing_vegas_now;/* if true, do vegas for this RTT */
  14 + u16 cntRTT; /* # of RTTs measured within last RTT */
  15 + u32 minRTT; /* min of RTTs measured within last RTT (in usec) */
  16 + u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */
  17 +};
  18 +
  19 +/* There are several situations when we must "re-start" Vegas:
  20 + *
  21 + * o when a connection is established
  22 + * o after an RTO
  23 + * o after fast recovery
  24 + * o when we send a packet and there is no outstanding
  25 + * unacknowledged data (restarting an idle connection)
  26 + *
  27 + * In these circumstances we cannot do a Vegas calculation at the
  28 + * end of the first RTT, because any calculation we do is using
  29 + * stale info -- both the saved cwnd and congestion feedback are
  30 + * stale.
  31 + *
  32 + * Instead we must wait until the completion of an RTT during
  33 + * which we actually receive ACKs.
  34 + */
  35 +static inline void vegas_enable(struct sock *sk)
  36 +{
  37 + const struct tcp_sock *tp = tcp_sk(sk);
  38 + struct vegas *vegas = inet_csk_ca(sk);
  39 +
  40 + /* Begin taking Vegas samples next time we send something. */
  41 + vegas->doing_vegas_now = 1;
  42 +
  43 + /* Set the beginning of the next send window. */
  44 + vegas->beg_snd_nxt = tp->snd_nxt;
  45 +
  46 + vegas->cntRTT = 0;
  47 + vegas->minRTT = 0x7fffffff;
  48 +}
  49 +
  50 +/* Stop taking Vegas samples for now. */
  51 +static inline void vegas_disable(struct sock *sk)
  52 +{
  53 + struct vegas *vegas = inet_csk_ca(sk);
  54 +
  55 + vegas->doing_vegas_now = 0;
  56 +}
  57 +
  58 +static void tcp_vegas_init(struct sock *sk)
  59 +{
  60 + struct vegas *vegas = inet_csk_ca(sk);
  61 +
  62 + vegas->baseRTT = 0x7fffffff;
  63 + vegas_enable(sk);
  64 +}
  65 +
  66 +static void tcp_vegas_state(struct sock *sk, u8 ca_state)
  67 +{
  68 +
  69 + if (ca_state == TCP_CA_Open)
  70 + vegas_enable(sk);
  71 + else
  72 + vegas_disable(sk);
  73 +}
  74 +
  75 +/* Do RTT sampling needed for Vegas.
  76 + * Basically we:
  77 + * o min-filter RTT samples from within an RTT to get the current
  78 + * propagation delay + queuing delay (we are min-filtering to try to
  79 + * avoid the effects of delayed ACKs)
  80 + * o min-filter RTT samples from a much longer window (forever for now)
  81 + * to find the propagation delay (baseRTT)
  82 + */
  83 +static void tcp_vegas_rtt_calc(struct sock *sk, u32 usrtt)
  84 +{
  85 + struct vegas *vegas = inet_csk_ca(sk);
  86 + u32 vrtt = usrtt + 1; /* Never allow zero rtt or baseRTT */
  87 +
  88 + /* Filter to find propagation delay: */
  89 + if (vrtt < vegas->baseRTT)
  90 + vegas->baseRTT = vrtt;
  91 +
  92 + /* Find the min RTT during the last RTT to find
  93 + * the current prop. delay + queuing delay:
  94 + */
  95 + vegas->minRTT = min(vegas->minRTT, vrtt);
  96 + vegas->cntRTT++;
  97 +}
  98 +
  99 +/*
  100 + * If the connection is idle and we are restarting,
  101 + * then we don't want to do any Vegas calculations
  102 + * until we get fresh RTT samples. So when we
  103 + * restart, we reset our Vegas state to a clean
  104 + * slate. After we get acks for this flight of
  105 + * packets, _then_ we can make Vegas calculations
  106 + * again.
  107 + */
  108 +static void tcp_vegas_cwnd_event(struct sock *sk, enum tcp_ca_event event)
  109 +{
  110 + if (event == CA_EVENT_CWND_RESTART ||
  111 + event == CA_EVENT_TX_START)
  112 + tcp_vegas_init(sk);
  113 +}
  114 +
  115 +/* Extract info for Tcp socket info provided via netlink. */
  116 +static void tcp_vegas_get_info(struct sock *sk, u32 ext,
  117 + struct sk_buff *skb)
  118 +{
  119 + const struct vegas *ca = inet_csk_ca(sk);
  120 + if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
  121 + struct tcpvegas_info *info;
  122 +
  123 + info = RTA_DATA(__RTA_PUT(skb, INET_DIAG_VEGASINFO,
  124 + sizeof(*info)));
  125 +
  126 + info->tcpv_enabled = ca->doing_vegas_now;
  127 + info->tcpv_rttcnt = ca->cntRTT;
  128 + info->tcpv_rtt = ca->baseRTT;
  129 + info->tcpv_minrtt = ca->minRTT;
  130 + rtattr_failure: ;
  131 + }
  132 +}