Commit 84a6c7694aad1e1fe41ee7f66b9142e6c6b0347d

Authored by Jerome Marchand
Committed by Jiri Slaby
1 parent 6a01f8dd25

mm: make copy_pte_range static again

commit 21bda264f4243f61dfcc485174055f12ad0530b4 upstream.

Commit 71e3aac0724f ("thp: transparent hugepage core") adds
copy_pte_range prototype to huge_mm.h.  I'm not sure why (or if) this
function have been used outside of memory.c, but it currently isn't.
This patch makes copy_pte_range() static again.

Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>

Showing 2 changed files with 1 additions and 5 deletions Inline Diff

include/linux/huge_mm.h
1 #ifndef _LINUX_HUGE_MM_H 1 #ifndef _LINUX_HUGE_MM_H
2 #define _LINUX_HUGE_MM_H 2 #define _LINUX_HUGE_MM_H
3 3
4 extern int do_huge_pmd_anonymous_page(struct mm_struct *mm, 4 extern int do_huge_pmd_anonymous_page(struct mm_struct *mm,
5 struct vm_area_struct *vma, 5 struct vm_area_struct *vma,
6 unsigned long address, pmd_t *pmd, 6 unsigned long address, pmd_t *pmd,
7 unsigned int flags); 7 unsigned int flags);
8 extern int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 8 extern int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
9 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 9 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
10 struct vm_area_struct *vma); 10 struct vm_area_struct *vma);
11 extern void huge_pmd_set_accessed(struct mm_struct *mm, 11 extern void huge_pmd_set_accessed(struct mm_struct *mm,
12 struct vm_area_struct *vma, 12 struct vm_area_struct *vma,
13 unsigned long address, pmd_t *pmd, 13 unsigned long address, pmd_t *pmd,
14 pmd_t orig_pmd, int dirty); 14 pmd_t orig_pmd, int dirty);
15 extern int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 15 extern int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
16 unsigned long address, pmd_t *pmd, 16 unsigned long address, pmd_t *pmd,
17 pmd_t orig_pmd); 17 pmd_t orig_pmd);
18 extern struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 18 extern struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
19 unsigned long addr, 19 unsigned long addr,
20 pmd_t *pmd, 20 pmd_t *pmd,
21 unsigned int flags); 21 unsigned int flags);
22 extern int zap_huge_pmd(struct mmu_gather *tlb, 22 extern int zap_huge_pmd(struct mmu_gather *tlb,
23 struct vm_area_struct *vma, 23 struct vm_area_struct *vma,
24 pmd_t *pmd, unsigned long addr); 24 pmd_t *pmd, unsigned long addr);
25 extern int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 25 extern int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
26 unsigned long addr, unsigned long end, 26 unsigned long addr, unsigned long end,
27 unsigned char *vec); 27 unsigned char *vec);
28 extern int move_huge_pmd(struct vm_area_struct *vma, 28 extern int move_huge_pmd(struct vm_area_struct *vma,
29 struct vm_area_struct *new_vma, 29 struct vm_area_struct *new_vma,
30 unsigned long old_addr, 30 unsigned long old_addr,
31 unsigned long new_addr, unsigned long old_end, 31 unsigned long new_addr, unsigned long old_end,
32 pmd_t *old_pmd, pmd_t *new_pmd); 32 pmd_t *old_pmd, pmd_t *new_pmd);
33 extern int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 33 extern int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
34 unsigned long addr, pgprot_t newprot, 34 unsigned long addr, pgprot_t newprot,
35 int prot_numa); 35 int prot_numa);
36 36
37 enum transparent_hugepage_flag { 37 enum transparent_hugepage_flag {
38 TRANSPARENT_HUGEPAGE_FLAG, 38 TRANSPARENT_HUGEPAGE_FLAG,
39 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 39 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
40 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 40 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
41 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 41 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
42 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG, 42 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
43 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG, 43 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
44 #ifdef CONFIG_DEBUG_VM 44 #ifdef CONFIG_DEBUG_VM
45 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG, 45 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG,
46 #endif 46 #endif
47 }; 47 };
48 48
49 enum page_check_address_pmd_flag { 49 enum page_check_address_pmd_flag {
50 PAGE_CHECK_ADDRESS_PMD_FLAG, 50 PAGE_CHECK_ADDRESS_PMD_FLAG,
51 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, 51 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG,
52 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, 52 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG,
53 }; 53 };
54 extern pmd_t *page_check_address_pmd(struct page *page, 54 extern pmd_t *page_check_address_pmd(struct page *page,
55 struct mm_struct *mm, 55 struct mm_struct *mm,
56 unsigned long address, 56 unsigned long address,
57 enum page_check_address_pmd_flag flag); 57 enum page_check_address_pmd_flag flag);
58 58
59 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT) 59 #define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
60 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER) 60 #define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
61 61
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
63 #define HPAGE_PMD_SHIFT PMD_SHIFT 63 #define HPAGE_PMD_SHIFT PMD_SHIFT
64 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT) 64 #define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
65 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1)) 65 #define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
66 66
67 extern bool is_vma_temporary_stack(struct vm_area_struct *vma); 67 extern bool is_vma_temporary_stack(struct vm_area_struct *vma);
68 68
69 #define transparent_hugepage_enabled(__vma) \ 69 #define transparent_hugepage_enabled(__vma) \
70 ((transparent_hugepage_flags & \ 70 ((transparent_hugepage_flags & \
71 (1<<TRANSPARENT_HUGEPAGE_FLAG) || \ 71 (1<<TRANSPARENT_HUGEPAGE_FLAG) || \
72 (transparent_hugepage_flags & \ 72 (transparent_hugepage_flags & \
73 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG) && \ 73 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG) && \
74 ((__vma)->vm_flags & VM_HUGEPAGE))) && \ 74 ((__vma)->vm_flags & VM_HUGEPAGE))) && \
75 !((__vma)->vm_flags & VM_NOHUGEPAGE) && \ 75 !((__vma)->vm_flags & VM_NOHUGEPAGE) && \
76 !is_vma_temporary_stack(__vma)) 76 !is_vma_temporary_stack(__vma))
77 #define transparent_hugepage_defrag(__vma) \ 77 #define transparent_hugepage_defrag(__vma) \
78 ((transparent_hugepage_flags & \ 78 ((transparent_hugepage_flags & \
79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)) || \ 79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)) || \
80 (transparent_hugepage_flags & \ 80 (transparent_hugepage_flags & \
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG) && \ 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG) && \
82 (__vma)->vm_flags & VM_HUGEPAGE)) 82 (__vma)->vm_flags & VM_HUGEPAGE))
83 #define transparent_hugepage_use_zero_page() \ 83 #define transparent_hugepage_use_zero_page() \
84 (transparent_hugepage_flags & \ 84 (transparent_hugepage_flags & \
85 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)) 85 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
86 #ifdef CONFIG_DEBUG_VM 86 #ifdef CONFIG_DEBUG_VM
87 #define transparent_hugepage_debug_cow() \ 87 #define transparent_hugepage_debug_cow() \
88 (transparent_hugepage_flags & \ 88 (transparent_hugepage_flags & \
89 (1<<TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG)) 89 (1<<TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG))
90 #else /* CONFIG_DEBUG_VM */ 90 #else /* CONFIG_DEBUG_VM */
91 #define transparent_hugepage_debug_cow() 0 91 #define transparent_hugepage_debug_cow() 0
92 #endif /* CONFIG_DEBUG_VM */ 92 #endif /* CONFIG_DEBUG_VM */
93 93
94 extern unsigned long transparent_hugepage_flags; 94 extern unsigned long transparent_hugepage_flags;
95 extern int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
96 pmd_t *dst_pmd, pmd_t *src_pmd,
97 struct vm_area_struct *vma,
98 unsigned long addr, unsigned long end);
99 extern int split_huge_page_to_list(struct page *page, struct list_head *list); 95 extern int split_huge_page_to_list(struct page *page, struct list_head *list);
100 static inline int split_huge_page(struct page *page) 96 static inline int split_huge_page(struct page *page)
101 { 97 {
102 return split_huge_page_to_list(page, NULL); 98 return split_huge_page_to_list(page, NULL);
103 } 99 }
104 extern void __split_huge_page_pmd(struct vm_area_struct *vma, 100 extern void __split_huge_page_pmd(struct vm_area_struct *vma,
105 unsigned long address, pmd_t *pmd); 101 unsigned long address, pmd_t *pmd);
106 #define split_huge_page_pmd(__vma, __address, __pmd) \ 102 #define split_huge_page_pmd(__vma, __address, __pmd) \
107 do { \ 103 do { \
108 pmd_t *____pmd = (__pmd); \ 104 pmd_t *____pmd = (__pmd); \
109 if (unlikely(pmd_trans_huge(*____pmd))) \ 105 if (unlikely(pmd_trans_huge(*____pmd))) \
110 __split_huge_page_pmd(__vma, __address, \ 106 __split_huge_page_pmd(__vma, __address, \
111 ____pmd); \ 107 ____pmd); \
112 } while (0) 108 } while (0)
113 #define wait_split_huge_page(__anon_vma, __pmd) \ 109 #define wait_split_huge_page(__anon_vma, __pmd) \
114 do { \ 110 do { \
115 pmd_t *____pmd = (__pmd); \ 111 pmd_t *____pmd = (__pmd); \
116 anon_vma_lock_write(__anon_vma); \ 112 anon_vma_lock_write(__anon_vma); \
117 anon_vma_unlock_write(__anon_vma); \ 113 anon_vma_unlock_write(__anon_vma); \
118 BUG_ON(pmd_trans_splitting(*____pmd) || \ 114 BUG_ON(pmd_trans_splitting(*____pmd) || \
119 pmd_trans_huge(*____pmd)); \ 115 pmd_trans_huge(*____pmd)); \
120 } while (0) 116 } while (0)
121 extern void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 117 extern void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
122 pmd_t *pmd); 118 pmd_t *pmd);
123 #if HPAGE_PMD_ORDER >= MAX_ORDER 119 #if HPAGE_PMD_ORDER >= MAX_ORDER
124 #error "hugepages can't be allocated by the buddy allocator" 120 #error "hugepages can't be allocated by the buddy allocator"
125 #endif 121 #endif
126 extern int hugepage_madvise(struct vm_area_struct *vma, 122 extern int hugepage_madvise(struct vm_area_struct *vma,
127 unsigned long *vm_flags, int advice); 123 unsigned long *vm_flags, int advice);
128 extern void __vma_adjust_trans_huge(struct vm_area_struct *vma, 124 extern void __vma_adjust_trans_huge(struct vm_area_struct *vma,
129 unsigned long start, 125 unsigned long start,
130 unsigned long end, 126 unsigned long end,
131 long adjust_next); 127 long adjust_next);
132 extern int __pmd_trans_huge_lock(pmd_t *pmd, 128 extern int __pmd_trans_huge_lock(pmd_t *pmd,
133 struct vm_area_struct *vma); 129 struct vm_area_struct *vma);
134 /* mmap_sem must be held on entry */ 130 /* mmap_sem must be held on entry */
135 static inline int pmd_trans_huge_lock(pmd_t *pmd, 131 static inline int pmd_trans_huge_lock(pmd_t *pmd,
136 struct vm_area_struct *vma) 132 struct vm_area_struct *vma)
137 { 133 {
138 VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem)); 134 VM_BUG_ON(!rwsem_is_locked(&vma->vm_mm->mmap_sem));
139 if (pmd_trans_huge(*pmd)) 135 if (pmd_trans_huge(*pmd))
140 return __pmd_trans_huge_lock(pmd, vma); 136 return __pmd_trans_huge_lock(pmd, vma);
141 else 137 else
142 return 0; 138 return 0;
143 } 139 }
144 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 140 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
145 unsigned long start, 141 unsigned long start,
146 unsigned long end, 142 unsigned long end,
147 long adjust_next) 143 long adjust_next)
148 { 144 {
149 if (!vma->anon_vma || vma->vm_ops) 145 if (!vma->anon_vma || vma->vm_ops)
150 return; 146 return;
151 __vma_adjust_trans_huge(vma, start, end, adjust_next); 147 __vma_adjust_trans_huge(vma, start, end, adjust_next);
152 } 148 }
153 static inline int hpage_nr_pages(struct page *page) 149 static inline int hpage_nr_pages(struct page *page)
154 { 150 {
155 if (unlikely(PageTransHuge(page))) 151 if (unlikely(PageTransHuge(page)))
156 return HPAGE_PMD_NR; 152 return HPAGE_PMD_NR;
157 return 1; 153 return 1;
158 } 154 }
159 155
160 extern int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 156 extern int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
161 unsigned long addr, pmd_t pmd, pmd_t *pmdp); 157 unsigned long addr, pmd_t pmd, pmd_t *pmdp);
162 158
163 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 159 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
164 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; }) 160 #define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
165 #define HPAGE_PMD_MASK ({ BUILD_BUG(); 0; }) 161 #define HPAGE_PMD_MASK ({ BUILD_BUG(); 0; })
166 #define HPAGE_PMD_SIZE ({ BUILD_BUG(); 0; }) 162 #define HPAGE_PMD_SIZE ({ BUILD_BUG(); 0; })
167 163
168 #define hpage_nr_pages(x) 1 164 #define hpage_nr_pages(x) 1
169 165
170 #define transparent_hugepage_enabled(__vma) 0 166 #define transparent_hugepage_enabled(__vma) 0
171 167
172 #define transparent_hugepage_flags 0UL 168 #define transparent_hugepage_flags 0UL
173 static inline int 169 static inline int
174 split_huge_page_to_list(struct page *page, struct list_head *list) 170 split_huge_page_to_list(struct page *page, struct list_head *list)
175 { 171 {
176 return 0; 172 return 0;
177 } 173 }
178 static inline int split_huge_page(struct page *page) 174 static inline int split_huge_page(struct page *page)
179 { 175 {
180 return 0; 176 return 0;
181 } 177 }
182 #define split_huge_page_pmd(__vma, __address, __pmd) \ 178 #define split_huge_page_pmd(__vma, __address, __pmd) \
183 do { } while (0) 179 do { } while (0)
184 #define wait_split_huge_page(__anon_vma, __pmd) \ 180 #define wait_split_huge_page(__anon_vma, __pmd) \
185 do { } while (0) 181 do { } while (0)
186 #define split_huge_page_pmd_mm(__mm, __address, __pmd) \ 182 #define split_huge_page_pmd_mm(__mm, __address, __pmd) \
187 do { } while (0) 183 do { } while (0)
188 static inline int hugepage_madvise(struct vm_area_struct *vma, 184 static inline int hugepage_madvise(struct vm_area_struct *vma,
189 unsigned long *vm_flags, int advice) 185 unsigned long *vm_flags, int advice)
190 { 186 {
191 BUG(); 187 BUG();
192 return 0; 188 return 0;
193 } 189 }
194 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma, 190 static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
195 unsigned long start, 191 unsigned long start,
196 unsigned long end, 192 unsigned long end,
197 long adjust_next) 193 long adjust_next)
198 { 194 {
199 } 195 }
200 static inline int pmd_trans_huge_lock(pmd_t *pmd, 196 static inline int pmd_trans_huge_lock(pmd_t *pmd,
201 struct vm_area_struct *vma) 197 struct vm_area_struct *vma)
202 { 198 {
203 return 0; 199 return 0;
204 } 200 }
205 201
206 static inline int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 202 static inline int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
207 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 203 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
208 { 204 {
209 return 0; 205 return 0;
210 } 206 }
211 207
212 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
213 209
214 #endif /* _LINUX_HUGE_MM_H */ 210 #endif /* _LINUX_HUGE_MM_H */
215 211
1 /* 1 /*
2 * linux/mm/memory.c 2 * linux/mm/memory.c
3 * 3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */ 5 */
6 6
7 /* 7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of 8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus 9 * things wanted, and it should be easy to implement. - Linus
10 */ 10 */
11 11
12 /* 12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus. 14 * pages started 02.12.91, seems to work. - Linus.
15 * 15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as 17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see. 18 * far as I could see.
19 * 19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */ 21 */
22 22
23 /* 23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well.. 25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now. 27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root. 28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */ 29 */
30 30
31 /* 31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1. 32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 * 34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de) 36 * (Gerhard.Wichert@pdb.siemens.de)
37 * 37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */ 39 */
40 40
41 #include <linux/kernel_stat.h> 41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h> 42 #include <linux/mm.h>
43 #include <linux/hugetlb.h> 43 #include <linux/hugetlb.h>
44 #include <linux/mman.h> 44 #include <linux/mman.h>
45 #include <linux/swap.h> 45 #include <linux/swap.h>
46 #include <linux/highmem.h> 46 #include <linux/highmem.h>
47 #include <linux/pagemap.h> 47 #include <linux/pagemap.h>
48 #include <linux/ksm.h> 48 #include <linux/ksm.h>
49 #include <linux/rmap.h> 49 #include <linux/rmap.h>
50 #include <linux/export.h> 50 #include <linux/export.h>
51 #include <linux/delayacct.h> 51 #include <linux/delayacct.h>
52 #include <linux/init.h> 52 #include <linux/init.h>
53 #include <linux/writeback.h> 53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h> 54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h> 55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h> 56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h> 57 #include <linux/swapops.h>
58 #include <linux/elf.h> 58 #include <linux/elf.h>
59 #include <linux/gfp.h> 59 #include <linux/gfp.h>
60 #include <linux/migrate.h> 60 #include <linux/migrate.h>
61 #include <linux/string.h> 61 #include <linux/string.h>
62 62
63 #include <asm/io.h> 63 #include <asm/io.h>
64 #include <asm/pgalloc.h> 64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h> 65 #include <asm/uaccess.h>
66 #include <asm/tlb.h> 66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h> 67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h> 68 #include <asm/pgtable.h>
69 69
70 #include "internal.h" 70 #include "internal.h"
71 71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid. 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif 74 #endif
75 75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES 76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */ 77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr; 78 unsigned long max_mapnr;
79 struct page *mem_map; 79 struct page *mem_map;
80 80
81 EXPORT_SYMBOL(max_mapnr); 81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map); 82 EXPORT_SYMBOL(mem_map);
83 #endif 83 #endif
84 84
85 /* 85 /*
86 * A number of key systems in x86 including ioremap() rely on the assumption 86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end 87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM. 90 * and ZONE_HIGHMEM.
91 */ 91 */
92 void * high_memory; 92 void * high_memory;
93 93
94 EXPORT_SYMBOL(high_memory); 94 EXPORT_SYMBOL(high_memory);
95 95
96 /* 96 /*
97 * Randomize the address space (stacks, mmaps, brk, etc.). 97 * Randomize the address space (stacks, mmaps, brk, etc.).
98 * 98 *
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. ) 100 * as ancient (libc5 based) binaries can segfault. )
101 */ 101 */
102 int randomize_va_space __read_mostly = 102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK 103 #ifdef CONFIG_COMPAT_BRK
104 1; 104 1;
105 #else 105 #else
106 2; 106 2;
107 #endif 107 #endif
108 108
109 static int __init disable_randmaps(char *s) 109 static int __init disable_randmaps(char *s)
110 { 110 {
111 randomize_va_space = 0; 111 randomize_va_space = 0;
112 return 1; 112 return 1;
113 } 113 }
114 __setup("norandmaps", disable_randmaps); 114 __setup("norandmaps", disable_randmaps);
115 115
116 unsigned long zero_pfn __read_mostly; 116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly; 117 unsigned long highest_memmap_pfn __read_mostly;
118 118
119 /* 119 /*
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121 */ 121 */
122 static int __init init_zero_pfn(void) 122 static int __init init_zero_pfn(void)
123 { 123 {
124 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 124 zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 return 0; 125 return 0;
126 } 126 }
127 core_initcall(init_zero_pfn); 127 core_initcall(init_zero_pfn);
128 128
129 129
130 #if defined(SPLIT_RSS_COUNTING) 130 #if defined(SPLIT_RSS_COUNTING)
131 131
132 void sync_mm_rss(struct mm_struct *mm) 132 void sync_mm_rss(struct mm_struct *mm)
133 { 133 {
134 int i; 134 int i;
135 135
136 for (i = 0; i < NR_MM_COUNTERS; i++) { 136 for (i = 0; i < NR_MM_COUNTERS; i++) {
137 if (current->rss_stat.count[i]) { 137 if (current->rss_stat.count[i]) {
138 add_mm_counter(mm, i, current->rss_stat.count[i]); 138 add_mm_counter(mm, i, current->rss_stat.count[i]);
139 current->rss_stat.count[i] = 0; 139 current->rss_stat.count[i] = 0;
140 } 140 }
141 } 141 }
142 current->rss_stat.events = 0; 142 current->rss_stat.events = 0;
143 } 143 }
144 144
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 { 146 {
147 struct task_struct *task = current; 147 struct task_struct *task = current;
148 148
149 if (likely(task->mm == mm)) 149 if (likely(task->mm == mm))
150 task->rss_stat.count[member] += val; 150 task->rss_stat.count[member] += val;
151 else 151 else
152 add_mm_counter(mm, member, val); 152 add_mm_counter(mm, member, val);
153 } 153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156 156
157 /* sync counter once per 64 page faults */ 157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH (64) 158 #define TASK_RSS_EVENTS_THRESH (64)
159 static void check_sync_rss_stat(struct task_struct *task) 159 static void check_sync_rss_stat(struct task_struct *task)
160 { 160 {
161 if (unlikely(task != current)) 161 if (unlikely(task != current))
162 return; 162 return;
163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 sync_mm_rss(task->mm); 164 sync_mm_rss(task->mm);
165 } 165 }
166 #else /* SPLIT_RSS_COUNTING */ 166 #else /* SPLIT_RSS_COUNTING */
167 167
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170 170
171 static void check_sync_rss_stat(struct task_struct *task) 171 static void check_sync_rss_stat(struct task_struct *task)
172 { 172 {
173 } 173 }
174 174
175 #endif /* SPLIT_RSS_COUNTING */ 175 #endif /* SPLIT_RSS_COUNTING */
176 176
177 #ifdef HAVE_GENERIC_MMU_GATHER 177 #ifdef HAVE_GENERIC_MMU_GATHER
178 178
179 static int tlb_next_batch(struct mmu_gather *tlb) 179 static int tlb_next_batch(struct mmu_gather *tlb)
180 { 180 {
181 struct mmu_gather_batch *batch; 181 struct mmu_gather_batch *batch;
182 182
183 batch = tlb->active; 183 batch = tlb->active;
184 if (batch->next) { 184 if (batch->next) {
185 tlb->active = batch->next; 185 tlb->active = batch->next;
186 return 1; 186 return 1;
187 } 187 }
188 188
189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 return 0; 190 return 0;
191 191
192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 if (!batch) 193 if (!batch)
194 return 0; 194 return 0;
195 195
196 tlb->batch_count++; 196 tlb->batch_count++;
197 batch->next = NULL; 197 batch->next = NULL;
198 batch->nr = 0; 198 batch->nr = 0;
199 batch->max = MAX_GATHER_BATCH; 199 batch->max = MAX_GATHER_BATCH;
200 200
201 tlb->active->next = batch; 201 tlb->active->next = batch;
202 tlb->active = batch; 202 tlb->active = batch;
203 203
204 return 1; 204 return 1;
205 } 205 }
206 206
207 /* tlb_gather_mmu 207 /* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table 208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without 209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve). 210 * users and we're going to destroy the full address space (exit/execve).
211 */ 211 */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 { 213 {
214 tlb->mm = mm; 214 tlb->mm = mm;
215 215
216 /* Is it from 0 to ~0? */ 216 /* Is it from 0 to ~0? */
217 tlb->fullmm = !(start | (end+1)); 217 tlb->fullmm = !(start | (end+1));
218 tlb->need_flush_all = 0; 218 tlb->need_flush_all = 0;
219 tlb->start = start; 219 tlb->start = start;
220 tlb->end = end; 220 tlb->end = end;
221 tlb->need_flush = 0; 221 tlb->need_flush = 0;
222 tlb->local.next = NULL; 222 tlb->local.next = NULL;
223 tlb->local.nr = 0; 223 tlb->local.nr = 0;
224 tlb->local.max = ARRAY_SIZE(tlb->__pages); 224 tlb->local.max = ARRAY_SIZE(tlb->__pages);
225 tlb->active = &tlb->local; 225 tlb->active = &tlb->local;
226 tlb->batch_count = 0; 226 tlb->batch_count = 0;
227 227
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 tlb->batch = NULL; 229 tlb->batch = NULL;
230 #endif 230 #endif
231 } 231 }
232 232
233 void tlb_flush_mmu(struct mmu_gather *tlb) 233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 { 234 {
235 struct mmu_gather_batch *batch; 235 struct mmu_gather_batch *batch;
236 236
237 if (!tlb->need_flush) 237 if (!tlb->need_flush)
238 return; 238 return;
239 tlb->need_flush = 0; 239 tlb->need_flush = 0;
240 tlb_flush(tlb); 240 tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb); 242 tlb_table_flush(tlb);
243 #endif 243 #endif
244 244
245 for (batch = &tlb->local; batch; batch = batch->next) { 245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr); 246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0; 247 batch->nr = 0;
248 } 248 }
249 tlb->active = &tlb->local; 249 tlb->active = &tlb->local;
250 } 250 }
251 251
252 /* tlb_finish_mmu 252 /* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources 253 * Called at the end of the shootdown operation to free up any resources
254 * that were required. 254 * that were required.
255 */ 255 */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 { 257 {
258 struct mmu_gather_batch *batch, *next; 258 struct mmu_gather_batch *batch, *next;
259 259
260 tlb_flush_mmu(tlb); 260 tlb_flush_mmu(tlb);
261 261
262 /* keep the page table cache within bounds */ 262 /* keep the page table cache within bounds */
263 check_pgt_cache(); 263 check_pgt_cache();
264 264
265 for (batch = tlb->local.next; batch; batch = next) { 265 for (batch = tlb->local.next; batch; batch = next) {
266 next = batch->next; 266 next = batch->next;
267 free_pages((unsigned long)batch, 0); 267 free_pages((unsigned long)batch, 0);
268 } 268 }
269 tlb->local.next = NULL; 269 tlb->local.next = NULL;
270 } 270 }
271 271
272 /* __tlb_remove_page 272 /* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid 274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left. 275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu(). 276 * When out of page slots we must call tlb_flush_mmu().
277 */ 277 */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 { 279 {
280 struct mmu_gather_batch *batch; 280 struct mmu_gather_batch *batch;
281 281
282 VM_BUG_ON(!tlb->need_flush); 282 VM_BUG_ON(!tlb->need_flush);
283 283
284 batch = tlb->active; 284 batch = tlb->active;
285 batch->pages[batch->nr++] = page; 285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) { 286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb)) 287 if (!tlb_next_batch(tlb))
288 return 0; 288 return 0;
289 batch = tlb->active; 289 batch = tlb->active;
290 } 290 }
291 VM_BUG_ON(batch->nr > batch->max); 291 VM_BUG_ON(batch->nr > batch->max);
292 292
293 return batch->max - batch->nr; 293 return batch->max - batch->nr;
294 } 294 }
295 295
296 #endif /* HAVE_GENERIC_MMU_GATHER */ 296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 299
300 /* 300 /*
301 * See the comment near struct mmu_table_batch. 301 * See the comment near struct mmu_table_batch.
302 */ 302 */
303 303
304 static void tlb_remove_table_smp_sync(void *arg) 304 static void tlb_remove_table_smp_sync(void *arg)
305 { 305 {
306 /* Simply deliver the interrupt */ 306 /* Simply deliver the interrupt */
307 } 307 }
308 308
309 static void tlb_remove_table_one(void *table) 309 static void tlb_remove_table_one(void *table)
310 { 310 {
311 /* 311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be 312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed. 313 * assumed to be actually RCU-freed.
314 * 314 *
315 * It is however sufficient for software page-table walkers that rely on 315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch. 316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */ 317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table); 319 __tlb_remove_table(table);
320 } 320 }
321 321
322 static void tlb_remove_table_rcu(struct rcu_head *head) 322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 { 323 {
324 struct mmu_table_batch *batch; 324 struct mmu_table_batch *batch;
325 int i; 325 int i;
326 326
327 batch = container_of(head, struct mmu_table_batch, rcu); 327 batch = container_of(head, struct mmu_table_batch, rcu);
328 328
329 for (i = 0; i < batch->nr; i++) 329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]); 330 __tlb_remove_table(batch->tables[i]);
331 331
332 free_page((unsigned long)batch); 332 free_page((unsigned long)batch);
333 } 333 }
334 334
335 void tlb_table_flush(struct mmu_gather *tlb) 335 void tlb_table_flush(struct mmu_gather *tlb)
336 { 336 {
337 struct mmu_table_batch **batch = &tlb->batch; 337 struct mmu_table_batch **batch = &tlb->batch;
338 338
339 if (*batch) { 339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL; 341 *batch = NULL;
342 } 342 }
343 } 343 }
344 344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 { 346 {
347 struct mmu_table_batch **batch = &tlb->batch; 347 struct mmu_table_batch **batch = &tlb->batch;
348 348
349 tlb->need_flush = 1; 349 tlb->need_flush = 1;
350 350
351 /* 351 /*
352 * When there's less then two users of this mm there cannot be a 352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk. 353 * concurrent page-table walk.
354 */ 354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) { 355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table); 356 __tlb_remove_table(table);
357 return; 357 return;
358 } 358 }
359 359
360 if (*batch == NULL) { 360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) { 362 if (*batch == NULL) {
363 tlb_remove_table_one(table); 363 tlb_remove_table_one(table);
364 return; 364 return;
365 } 365 }
366 (*batch)->nr = 0; 366 (*batch)->nr = 0;
367 } 367 }
368 (*batch)->tables[(*batch)->nr++] = table; 368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH) 369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb); 370 tlb_table_flush(tlb);
371 } 371 }
372 372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 374
375 /* 375 /*
376 * Note: this doesn't free the actual pages themselves. That 376 * Note: this doesn't free the actual pages themselves. That
377 * has been handled earlier when unmapping all the memory regions. 377 * has been handled earlier when unmapping all the memory regions.
378 */ 378 */
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 unsigned long addr) 380 unsigned long addr)
381 { 381 {
382 pgtable_t token = pmd_pgtable(*pmd); 382 pgtable_t token = pmd_pgtable(*pmd);
383 pmd_clear(pmd); 383 pmd_clear(pmd);
384 pte_free_tlb(tlb, token, addr); 384 pte_free_tlb(tlb, token, addr);
385 tlb->mm->nr_ptes--; 385 tlb->mm->nr_ptes--;
386 } 386 }
387 387
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 unsigned long addr, unsigned long end, 389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling) 390 unsigned long floor, unsigned long ceiling)
391 { 391 {
392 pmd_t *pmd; 392 pmd_t *pmd;
393 unsigned long next; 393 unsigned long next;
394 unsigned long start; 394 unsigned long start;
395 395
396 start = addr; 396 start = addr;
397 pmd = pmd_offset(pud, addr); 397 pmd = pmd_offset(pud, addr);
398 do { 398 do {
399 next = pmd_addr_end(addr, end); 399 next = pmd_addr_end(addr, end);
400 if (pmd_none_or_clear_bad(pmd)) 400 if (pmd_none_or_clear_bad(pmd))
401 continue; 401 continue;
402 free_pte_range(tlb, pmd, addr); 402 free_pte_range(tlb, pmd, addr);
403 } while (pmd++, addr = next, addr != end); 403 } while (pmd++, addr = next, addr != end);
404 404
405 start &= PUD_MASK; 405 start &= PUD_MASK;
406 if (start < floor) 406 if (start < floor)
407 return; 407 return;
408 if (ceiling) { 408 if (ceiling) {
409 ceiling &= PUD_MASK; 409 ceiling &= PUD_MASK;
410 if (!ceiling) 410 if (!ceiling)
411 return; 411 return;
412 } 412 }
413 if (end - 1 > ceiling - 1) 413 if (end - 1 > ceiling - 1)
414 return; 414 return;
415 415
416 pmd = pmd_offset(pud, start); 416 pmd = pmd_offset(pud, start);
417 pud_clear(pud); 417 pud_clear(pud);
418 pmd_free_tlb(tlb, pmd, start); 418 pmd_free_tlb(tlb, pmd, start);
419 } 419 }
420 420
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 unsigned long addr, unsigned long end, 422 unsigned long addr, unsigned long end,
423 unsigned long floor, unsigned long ceiling) 423 unsigned long floor, unsigned long ceiling)
424 { 424 {
425 pud_t *pud; 425 pud_t *pud;
426 unsigned long next; 426 unsigned long next;
427 unsigned long start; 427 unsigned long start;
428 428
429 start = addr; 429 start = addr;
430 pud = pud_offset(pgd, addr); 430 pud = pud_offset(pgd, addr);
431 do { 431 do {
432 next = pud_addr_end(addr, end); 432 next = pud_addr_end(addr, end);
433 if (pud_none_or_clear_bad(pud)) 433 if (pud_none_or_clear_bad(pud))
434 continue; 434 continue;
435 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436 } while (pud++, addr = next, addr != end); 436 } while (pud++, addr = next, addr != end);
437 437
438 start &= PGDIR_MASK; 438 start &= PGDIR_MASK;
439 if (start < floor) 439 if (start < floor)
440 return; 440 return;
441 if (ceiling) { 441 if (ceiling) {
442 ceiling &= PGDIR_MASK; 442 ceiling &= PGDIR_MASK;
443 if (!ceiling) 443 if (!ceiling)
444 return; 444 return;
445 } 445 }
446 if (end - 1 > ceiling - 1) 446 if (end - 1 > ceiling - 1)
447 return; 447 return;
448 448
449 pud = pud_offset(pgd, start); 449 pud = pud_offset(pgd, start);
450 pgd_clear(pgd); 450 pgd_clear(pgd);
451 pud_free_tlb(tlb, pud, start); 451 pud_free_tlb(tlb, pud, start);
452 } 452 }
453 453
454 /* 454 /*
455 * This function frees user-level page tables of a process. 455 * This function frees user-level page tables of a process.
456 * 456 *
457 * Must be called with pagetable lock held. 457 * Must be called with pagetable lock held.
458 */ 458 */
459 void free_pgd_range(struct mmu_gather *tlb, 459 void free_pgd_range(struct mmu_gather *tlb,
460 unsigned long addr, unsigned long end, 460 unsigned long addr, unsigned long end,
461 unsigned long floor, unsigned long ceiling) 461 unsigned long floor, unsigned long ceiling)
462 { 462 {
463 pgd_t *pgd; 463 pgd_t *pgd;
464 unsigned long next; 464 unsigned long next;
465 465
466 /* 466 /*
467 * The next few lines have given us lots of grief... 467 * The next few lines have given us lots of grief...
468 * 468 *
469 * Why are we testing PMD* at this top level? Because often 469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to 470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that. 471 * go all the way down to the bottom just to discover that.
472 * 472 *
473 * Why all these "- 1"s? Because 0 represents both the bottom 473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the 474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing). 475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of 476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top 477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though 478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical). 479 * that end 0 case should be mythical).
480 * 480 *
481 * Wherever addr is brought up or ceiling brought down, we must 481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the 482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down 483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there. 484 * by PMD_SIZE below? no, end can't go down to 0 there.
485 * 485 *
486 * Whereas we round start (addr) and ceiling down, by different 486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table 487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't 488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that. 489 * bother to round floor or end up - the tests don't need that.
490 */ 490 */
491 491
492 addr &= PMD_MASK; 492 addr &= PMD_MASK;
493 if (addr < floor) { 493 if (addr < floor) {
494 addr += PMD_SIZE; 494 addr += PMD_SIZE;
495 if (!addr) 495 if (!addr)
496 return; 496 return;
497 } 497 }
498 if (ceiling) { 498 if (ceiling) {
499 ceiling &= PMD_MASK; 499 ceiling &= PMD_MASK;
500 if (!ceiling) 500 if (!ceiling)
501 return; 501 return;
502 } 502 }
503 if (end - 1 > ceiling - 1) 503 if (end - 1 > ceiling - 1)
504 end -= PMD_SIZE; 504 end -= PMD_SIZE;
505 if (addr > end - 1) 505 if (addr > end - 1)
506 return; 506 return;
507 507
508 pgd = pgd_offset(tlb->mm, addr); 508 pgd = pgd_offset(tlb->mm, addr);
509 do { 509 do {
510 next = pgd_addr_end(addr, end); 510 next = pgd_addr_end(addr, end);
511 if (pgd_none_or_clear_bad(pgd)) 511 if (pgd_none_or_clear_bad(pgd))
512 continue; 512 continue;
513 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 513 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514 } while (pgd++, addr = next, addr != end); 514 } while (pgd++, addr = next, addr != end);
515 } 515 }
516 516
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518 unsigned long floor, unsigned long ceiling) 518 unsigned long floor, unsigned long ceiling)
519 { 519 {
520 while (vma) { 520 while (vma) {
521 struct vm_area_struct *next = vma->vm_next; 521 struct vm_area_struct *next = vma->vm_next;
522 unsigned long addr = vma->vm_start; 522 unsigned long addr = vma->vm_start;
523 523
524 /* 524 /*
525 * Hide vma from rmap and truncate_pagecache before freeing 525 * Hide vma from rmap and truncate_pagecache before freeing
526 * pgtables 526 * pgtables
527 */ 527 */
528 unlink_anon_vmas(vma); 528 unlink_anon_vmas(vma);
529 unlink_file_vma(vma); 529 unlink_file_vma(vma);
530 530
531 if (is_vm_hugetlb_page(vma)) { 531 if (is_vm_hugetlb_page(vma)) {
532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533 floor, next? next->vm_start: ceiling); 533 floor, next? next->vm_start: ceiling);
534 } else { 534 } else {
535 /* 535 /*
536 * Optimization: gather nearby vmas into one call down 536 * Optimization: gather nearby vmas into one call down
537 */ 537 */
538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539 && !is_vm_hugetlb_page(next)) { 539 && !is_vm_hugetlb_page(next)) {
540 vma = next; 540 vma = next;
541 next = vma->vm_next; 541 next = vma->vm_next;
542 unlink_anon_vmas(vma); 542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma); 543 unlink_file_vma(vma);
544 } 544 }
545 free_pgd_range(tlb, addr, vma->vm_end, 545 free_pgd_range(tlb, addr, vma->vm_end,
546 floor, next? next->vm_start: ceiling); 546 floor, next? next->vm_start: ceiling);
547 } 547 }
548 vma = next; 548 vma = next;
549 } 549 }
550 } 550 }
551 551
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553 pmd_t *pmd, unsigned long address) 553 pmd_t *pmd, unsigned long address)
554 { 554 {
555 pgtable_t new = pte_alloc_one(mm, address); 555 pgtable_t new = pte_alloc_one(mm, address);
556 int wait_split_huge_page; 556 int wait_split_huge_page;
557 if (!new) 557 if (!new)
558 return -ENOMEM; 558 return -ENOMEM;
559 559
560 /* 560 /*
561 * Ensure all pte setup (eg. pte page lock and page clearing) are 561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being 562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables. 563 * put into page tables.
564 * 564 *
565 * The other side of the story is the pointer chasing in the page 565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking; 566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist 567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha 568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are 569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the 570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code. 571 * smp_read_barrier_depends() barriers in page table walking code.
572 */ 572 */
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574 574
575 spin_lock(&mm->page_table_lock); 575 spin_lock(&mm->page_table_lock);
576 wait_split_huge_page = 0; 576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
578 mm->nr_ptes++; 578 mm->nr_ptes++;
579 pmd_populate(mm, pmd, new); 579 pmd_populate(mm, pmd, new);
580 new = NULL; 580 new = NULL;
581 } else if (unlikely(pmd_trans_splitting(*pmd))) 581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1; 582 wait_split_huge_page = 1;
583 spin_unlock(&mm->page_table_lock); 583 spin_unlock(&mm->page_table_lock);
584 if (new) 584 if (new)
585 pte_free(mm, new); 585 pte_free(mm, new);
586 if (wait_split_huge_page) 586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd); 587 wait_split_huge_page(vma->anon_vma, pmd);
588 return 0; 588 return 0;
589 } 589 }
590 590
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592 { 592 {
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new) 594 if (!new)
595 return -ENOMEM; 595 return -ENOMEM;
596 596
597 smp_wmb(); /* See comment in __pte_alloc */ 597 smp_wmb(); /* See comment in __pte_alloc */
598 598
599 spin_lock(&init_mm.page_table_lock); 599 spin_lock(&init_mm.page_table_lock);
600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
601 pmd_populate_kernel(&init_mm, pmd, new); 601 pmd_populate_kernel(&init_mm, pmd, new);
602 new = NULL; 602 new = NULL;
603 } else 603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd)); 604 VM_BUG_ON(pmd_trans_splitting(*pmd));
605 spin_unlock(&init_mm.page_table_lock); 605 spin_unlock(&init_mm.page_table_lock);
606 if (new) 606 if (new)
607 pte_free_kernel(&init_mm, new); 607 pte_free_kernel(&init_mm, new);
608 return 0; 608 return 0;
609 } 609 }
610 610
611 static inline void init_rss_vec(int *rss) 611 static inline void init_rss_vec(int *rss)
612 { 612 {
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614 } 614 }
615 615
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617 { 617 {
618 int i; 618 int i;
619 619
620 if (current->mm == mm) 620 if (current->mm == mm)
621 sync_mm_rss(mm); 621 sync_mm_rss(mm);
622 for (i = 0; i < NR_MM_COUNTERS; i++) 622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i]) 623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]); 624 add_mm_counter(mm, i, rss[i]);
625 } 625 }
626 626
627 /* 627 /*
628 * This function is called to print an error when a bad pte 628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in 629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it. 630 * a region that doesn't allow it.
631 * 631 *
632 * The calling function must still handle the error. 632 * The calling function must still handle the error.
633 */ 633 */
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page) 635 pte_t pte, struct page *page)
636 { 636 {
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr); 638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr); 639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping; 640 struct address_space *mapping;
641 pgoff_t index; 641 pgoff_t index;
642 static unsigned long resume; 642 static unsigned long resume;
643 static unsigned long nr_shown; 643 static unsigned long nr_shown;
644 static unsigned long nr_unshown; 644 static unsigned long nr_unshown;
645 645
646 /* 646 /*
647 * Allow a burst of 60 reports, then keep quiet for that minute; 647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second. 648 * or allow a steady drip of one report per second.
649 */ 649 */
650 if (nr_shown == 60) { 650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) { 651 if (time_before(jiffies, resume)) {
652 nr_unshown++; 652 nr_unshown++;
653 return; 653 return;
654 } 654 }
655 if (nr_unshown) { 655 if (nr_unshown) {
656 printk(KERN_ALERT 656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n", 657 "BUG: Bad page map: %lu messages suppressed\n",
658 nr_unshown); 658 nr_unshown);
659 nr_unshown = 0; 659 nr_unshown = 0;
660 } 660 }
661 nr_shown = 0; 661 nr_shown = 0;
662 } 662 }
663 if (nr_shown++ == 0) 663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ; 664 resume = jiffies + 60 * HZ;
665 665
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr); 667 index = linear_page_index(vma, addr);
668 668
669 printk(KERN_ALERT 669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
671 current->comm, 671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
673 if (page) 673 if (page)
674 dump_page(page); 674 dump_page(page);
675 printk(KERN_ALERT 675 printk(KERN_ALERT
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 /* 678 /*
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 */ 680 */
681 if (vma->vm_ops) 681 if (vma->vm_ops)
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault); 683 vma->vm_ops->fault);
684 if (vma->vm_file && vma->vm_file->f_op) 684 if (vma->vm_file && vma->vm_file->f_op)
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap); 686 vma->vm_file->f_op->mmap);
687 dump_stack(); 687 dump_stack();
688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689 } 689 }
690 690
691 static inline bool is_cow_mapping(vm_flags_t flags) 691 static inline bool is_cow_mapping(vm_flags_t flags)
692 { 692 {
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694 } 694 }
695 695
696 /* 696 /*
697 * vm_normal_page -- This function gets the "struct page" associated with a pte. 697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 * 698 *
699 * "Special" mappings do not wish to be associated with a "struct page" (either 699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this 700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page. 701 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 * 702 *
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture 704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme, 705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below. 706 * described below.
707 * 707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages"). 709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal. 710 * COWed pages of a VM_PFNMAP are always normal.
711 * 711 *
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule 715 * mapping will always honor the rule
716 * 716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 * 718 *
719 * And for normal mappings this is false. 719 * And for normal mappings this is false.
720 * 720 *
721 * This restricts such mappings to be a linear translation from virtual address 721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long 722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are 723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed). 724 * special (because none can have been COWed).
725 * 725 *
726 * 726 *
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 * 728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct 730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered 731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted 732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The 733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of 734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings. 735 * PFNMAP mappings in order to support COWable mappings.
736 * 736 *
737 */ 737 */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL 738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1 739 # define HAVE_PTE_SPECIAL 1
740 #else 740 #else
741 # define HAVE_PTE_SPECIAL 0 741 # define HAVE_PTE_SPECIAL 0
742 #endif 742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte) 744 pte_t pte)
745 { 745 {
746 unsigned long pfn = pte_pfn(pte); 746 unsigned long pfn = pte_pfn(pte);
747 747
748 if (HAVE_PTE_SPECIAL) { 748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte))) 749 if (likely(!pte_special(pte)))
750 goto check_pfn; 750 goto check_pfn;
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL; 752 return NULL;
753 if (!is_zero_pfn(pfn)) 753 if (!is_zero_pfn(pfn))
754 print_bad_pte(vma, addr, pte, NULL); 754 print_bad_pte(vma, addr, pte, NULL);
755 return NULL; 755 return NULL;
756 } 756 }
757 757
758 /* !HAVE_PTE_SPECIAL case follows: */ 758 /* !HAVE_PTE_SPECIAL case follows: */
759 759
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) { 761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn)) 762 if (!pfn_valid(pfn))
763 return NULL; 763 return NULL;
764 goto out; 764 goto out;
765 } else { 765 } else {
766 unsigned long off; 766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT; 767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 if (pfn == vma->vm_pgoff + off) 768 if (pfn == vma->vm_pgoff + off)
769 return NULL; 769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags)) 770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL; 771 return NULL;
772 } 772 }
773 } 773 }
774 774
775 if (is_zero_pfn(pfn)) 775 if (is_zero_pfn(pfn))
776 return NULL; 776 return NULL;
777 check_pfn: 777 check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) { 778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL); 779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL; 780 return NULL;
781 } 781 }
782 782
783 /* 783 /*
784 * NOTE! We still have PageReserved() pages in the page tables. 784 * NOTE! We still have PageReserved() pages in the page tables.
785 * eg. VDSO mappings can cause them to exist. 785 * eg. VDSO mappings can cause them to exist.
786 */ 786 */
787 out: 787 out:
788 return pfn_to_page(pfn); 788 return pfn_to_page(pfn);
789 } 789 }
790 790
791 /* 791 /*
792 * copy one vm_area from one task to the other. Assumes the page tables 792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range 793 * already present in the new task to be cleared in the whole range
794 * covered by this vma. 794 * covered by this vma.
795 */ 795 */
796 796
797 static inline unsigned long 797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 unsigned long addr, int *rss) 800 unsigned long addr, int *rss)
801 { 801 {
802 unsigned long vm_flags = vma->vm_flags; 802 unsigned long vm_flags = vma->vm_flags;
803 pte_t pte = *src_pte; 803 pte_t pte = *src_pte;
804 struct page *page; 804 struct page *page;
805 805
806 /* pte contains position in swap or file, so copy. */ 806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) { 807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) { 808 if (!pte_file(pte)) {
809 swp_entry_t entry = pte_to_swp_entry(pte); 809 swp_entry_t entry = pte_to_swp_entry(pte);
810 810
811 if (swap_duplicate(entry) < 0) 811 if (swap_duplicate(entry) < 0)
812 return entry.val; 812 return entry.val;
813 813
814 /* make sure dst_mm is on swapoff's mmlist. */ 814 /* make sure dst_mm is on swapoff's mmlist. */
815 if (unlikely(list_empty(&dst_mm->mmlist))) { 815 if (unlikely(list_empty(&dst_mm->mmlist))) {
816 spin_lock(&mmlist_lock); 816 spin_lock(&mmlist_lock);
817 if (list_empty(&dst_mm->mmlist)) 817 if (list_empty(&dst_mm->mmlist))
818 list_add(&dst_mm->mmlist, 818 list_add(&dst_mm->mmlist,
819 &src_mm->mmlist); 819 &src_mm->mmlist);
820 spin_unlock(&mmlist_lock); 820 spin_unlock(&mmlist_lock);
821 } 821 }
822 if (likely(!non_swap_entry(entry))) 822 if (likely(!non_swap_entry(entry)))
823 rss[MM_SWAPENTS]++; 823 rss[MM_SWAPENTS]++;
824 else if (is_migration_entry(entry)) { 824 else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry); 825 page = migration_entry_to_page(entry);
826 826
827 if (PageAnon(page)) 827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++; 828 rss[MM_ANONPAGES]++;
829 else 829 else
830 rss[MM_FILEPAGES]++; 830 rss[MM_FILEPAGES]++;
831 831
832 if (is_write_migration_entry(entry) && 832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) { 833 is_cow_mapping(vm_flags)) {
834 /* 834 /*
835 * COW mappings require pages in both 835 * COW mappings require pages in both
836 * parent and child to be set to read. 836 * parent and child to be set to read.
837 */ 837 */
838 make_migration_entry_read(&entry); 838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry); 839 pte = swp_entry_to_pte(entry);
840 if (pte_swp_soft_dirty(*src_pte)) 840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte); 841 pte = pte_swp_mksoft_dirty(pte);
842 set_pte_at(src_mm, addr, src_pte, pte); 842 set_pte_at(src_mm, addr, src_pte, pte);
843 } 843 }
844 } 844 }
845 } 845 }
846 goto out_set_pte; 846 goto out_set_pte;
847 } 847 }
848 848
849 /* 849 /*
850 * If it's a COW mapping, write protect it both 850 * If it's a COW mapping, write protect it both
851 * in the parent and the child 851 * in the parent and the child
852 */ 852 */
853 if (is_cow_mapping(vm_flags)) { 853 if (is_cow_mapping(vm_flags)) {
854 ptep_set_wrprotect(src_mm, addr, src_pte); 854 ptep_set_wrprotect(src_mm, addr, src_pte);
855 pte = pte_wrprotect(pte); 855 pte = pte_wrprotect(pte);
856 } 856 }
857 857
858 /* 858 /*
859 * If it's a shared mapping, mark it clean in 859 * If it's a shared mapping, mark it clean in
860 * the child 860 * the child
861 */ 861 */
862 if (vm_flags & VM_SHARED) 862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte); 863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte); 864 pte = pte_mkold(pte);
865 865
866 page = vm_normal_page(vma, addr, pte); 866 page = vm_normal_page(vma, addr, pte);
867 if (page) { 867 if (page) {
868 get_page(page); 868 get_page(page);
869 page_dup_rmap(page); 869 page_dup_rmap(page);
870 if (PageAnon(page)) 870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++; 871 rss[MM_ANONPAGES]++;
872 else 872 else
873 rss[MM_FILEPAGES]++; 873 rss[MM_FILEPAGES]++;
874 } 874 }
875 875
876 out_set_pte: 876 out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte); 877 set_pte_at(dst_mm, addr, dst_pte, pte);
878 return 0; 878 return 0;
879 } 879 }
880 880
881 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end) 883 unsigned long addr, unsigned long end)
884 { 884 {
885 pte_t *orig_src_pte, *orig_dst_pte; 885 pte_t *orig_src_pte, *orig_dst_pte;
886 pte_t *src_pte, *dst_pte; 886 pte_t *src_pte, *dst_pte;
887 spinlock_t *src_ptl, *dst_ptl; 887 spinlock_t *src_ptl, *dst_ptl;
888 int progress = 0; 888 int progress = 0;
889 int rss[NR_MM_COUNTERS]; 889 int rss[NR_MM_COUNTERS];
890 swp_entry_t entry = (swp_entry_t){0}; 890 swp_entry_t entry = (swp_entry_t){0};
891 891
892 again: 892 again:
893 init_rss_vec(rss); 893 init_rss_vec(rss);
894 894
895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896 if (!dst_pte) 896 if (!dst_pte)
897 return -ENOMEM; 897 return -ENOMEM;
898 src_pte = pte_offset_map(src_pmd, addr); 898 src_pte = pte_offset_map(src_pmd, addr);
899 src_ptl = pte_lockptr(src_mm, src_pmd); 899 src_ptl = pte_lockptr(src_mm, src_pmd);
900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901 orig_src_pte = src_pte; 901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte; 902 orig_dst_pte = dst_pte;
903 arch_enter_lazy_mmu_mode(); 903 arch_enter_lazy_mmu_mode();
904 904
905 do { 905 do {
906 /* 906 /*
907 * We are holding two locks at this point - either of them 907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU. 908 * could generate latencies in another task on another CPU.
909 */ 909 */
910 if (progress >= 32) { 910 if (progress >= 32) {
911 progress = 0; 911 progress = 0;
912 if (need_resched() || 912 if (need_resched() ||
913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914 break; 914 break;
915 } 915 }
916 if (pte_none(*src_pte)) { 916 if (pte_none(*src_pte)) {
917 progress++; 917 progress++;
918 continue; 918 continue;
919 } 919 }
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss); 921 vma, addr, rss);
922 if (entry.val) 922 if (entry.val)
923 break; 923 break;
924 progress += 8; 924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
926 926
927 arch_leave_lazy_mmu_mode(); 927 arch_leave_lazy_mmu_mode();
928 spin_unlock(src_ptl); 928 spin_unlock(src_ptl);
929 pte_unmap(orig_src_pte); 929 pte_unmap(orig_src_pte);
930 add_mm_rss_vec(dst_mm, rss); 930 add_mm_rss_vec(dst_mm, rss);
931 pte_unmap_unlock(orig_dst_pte, dst_ptl); 931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
932 cond_resched(); 932 cond_resched();
933 933
934 if (entry.val) { 934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM; 936 return -ENOMEM;
937 progress = 0; 937 progress = 0;
938 } 938 }
939 if (addr != end) 939 if (addr != end)
940 goto again; 940 goto again;
941 return 0; 941 return 0;
942 } 942 }
943 943
944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end) 946 unsigned long addr, unsigned long end)
947 { 947 {
948 pmd_t *src_pmd, *dst_pmd; 948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next; 949 unsigned long next;
950 950
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd) 952 if (!dst_pmd)
953 return -ENOMEM; 953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr); 954 src_pmd = pmd_offset(src_pud, addr);
955 do { 955 do {
956 next = pmd_addr_end(addr, end); 956 next = pmd_addr_end(addr, end);
957 if (pmd_trans_huge(*src_pmd)) { 957 if (pmd_trans_huge(*src_pmd)) {
958 int err; 958 int err;
959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960 err = copy_huge_pmd(dst_mm, src_mm, 960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma); 961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM) 962 if (err == -ENOMEM)
963 return -ENOMEM; 963 return -ENOMEM;
964 if (!err) 964 if (!err)
965 continue; 965 continue;
966 /* fall through */ 966 /* fall through */
967 } 967 }
968 if (pmd_none_or_clear_bad(src_pmd)) 968 if (pmd_none_or_clear_bad(src_pmd))
969 continue; 969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next)) 971 vma, addr, next))
972 return -ENOMEM; 972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0; 974 return 0;
975 } 975 }
976 976
977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end) 979 unsigned long addr, unsigned long end)
980 { 980 {
981 pud_t *src_pud, *dst_pud; 981 pud_t *src_pud, *dst_pud;
982 unsigned long next; 982 unsigned long next;
983 983
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud) 985 if (!dst_pud)
986 return -ENOMEM; 986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr); 987 src_pud = pud_offset(src_pgd, addr);
988 do { 988 do {
989 next = pud_addr_end(addr, end); 989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud)) 990 if (pud_none_or_clear_bad(src_pud))
991 continue; 991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next)) 993 vma, addr, next))
994 return -ENOMEM; 994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end); 995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0; 996 return 0;
997 } 997 }
998 998
999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma) 1000 struct vm_area_struct *vma)
1001 { 1001 {
1002 pgd_t *src_pgd, *dst_pgd; 1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next; 1003 unsigned long next;
1004 unsigned long addr = vma->vm_start; 1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end; 1005 unsigned long end = vma->vm_end;
1006 unsigned long mmun_start; /* For mmu_notifiers */ 1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */ 1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow; 1008 bool is_cow;
1009 int ret; 1009 int ret;
1010 1010
1011 /* 1011 /*
1012 * Don't copy ptes where a page fault will fill them correctly. 1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private 1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more 1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting. 1015 * efficient than faulting.
1016 */ 1016 */
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) { 1018 VM_PFNMAP | VM_MIXEDMAP))) {
1019 if (!vma->anon_vma) 1019 if (!vma->anon_vma)
1020 return 0; 1020 return 0;
1021 } 1021 }
1022 1022
1023 if (is_vm_hugetlb_page(vma)) 1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025 1025
1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1027 /* 1027 /*
1028 * We do not free on error cases below as remove_vma 1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine 1029 * gets called on error from higher level routine
1030 */ 1030 */
1031 ret = track_pfn_copy(vma); 1031 ret = track_pfn_copy(vma);
1032 if (ret) 1032 if (ret)
1033 return ret; 1033 return ret;
1034 } 1034 }
1035 1035
1036 /* 1036 /*
1037 * We need to invalidate the secondary MMU mappings only when 1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the 1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if 1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true. 1040 * is_cow_mapping() returns true.
1041 */ 1041 */
1042 is_cow = is_cow_mapping(vma->vm_flags); 1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr; 1043 mmun_start = addr;
1044 mmun_end = end; 1044 mmun_end = end;
1045 if (is_cow) 1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end); 1047 mmun_end);
1048 1048
1049 ret = 0; 1049 ret = 0;
1050 dst_pgd = pgd_offset(dst_mm, addr); 1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr); 1051 src_pgd = pgd_offset(src_mm, addr);
1052 do { 1052 do {
1053 next = pgd_addr_end(addr, end); 1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd)) 1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue; 1055 continue;
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) { 1057 vma, addr, next))) {
1058 ret = -ENOMEM; 1058 ret = -ENOMEM;
1059 break; 1059 break;
1060 } 1060 }
1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1062 1062
1063 if (is_cow) 1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065 return ret; 1065 return ret;
1066 } 1066 }
1067 1067
1068 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1068 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069 struct vm_area_struct *vma, pmd_t *pmd, 1069 struct vm_area_struct *vma, pmd_t *pmd,
1070 unsigned long addr, unsigned long end, 1070 unsigned long addr, unsigned long end,
1071 struct zap_details *details) 1071 struct zap_details *details)
1072 { 1072 {
1073 struct mm_struct *mm = tlb->mm; 1073 struct mm_struct *mm = tlb->mm;
1074 int force_flush = 0; 1074 int force_flush = 0;
1075 int rss[NR_MM_COUNTERS]; 1075 int rss[NR_MM_COUNTERS];
1076 spinlock_t *ptl; 1076 spinlock_t *ptl;
1077 pte_t *start_pte; 1077 pte_t *start_pte;
1078 pte_t *pte; 1078 pte_t *pte;
1079 1079
1080 again: 1080 again:
1081 init_rss_vec(rss); 1081 init_rss_vec(rss);
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte; 1083 pte = start_pte;
1084 arch_enter_lazy_mmu_mode(); 1084 arch_enter_lazy_mmu_mode();
1085 do { 1085 do {
1086 pte_t ptent = *pte; 1086 pte_t ptent = *pte;
1087 if (pte_none(ptent)) { 1087 if (pte_none(ptent)) {
1088 continue; 1088 continue;
1089 } 1089 }
1090 1090
1091 if (pte_present(ptent)) { 1091 if (pte_present(ptent)) {
1092 struct page *page; 1092 struct page *page;
1093 1093
1094 page = vm_normal_page(vma, addr, ptent); 1094 page = vm_normal_page(vma, addr, ptent);
1095 if (unlikely(details) && page) { 1095 if (unlikely(details) && page) {
1096 /* 1096 /*
1097 * unmap_shared_mapping_pages() wants to 1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating: 1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages. 1099 * unmap shared but keep private pages.
1100 */ 1100 */
1101 if (details->check_mapping && 1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping) 1102 details->check_mapping != page->mapping)
1103 continue; 1103 continue;
1104 /* 1104 /*
1105 * Each page->index must be checked when 1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear. 1106 * invalidating or truncating nonlinear.
1107 */ 1107 */
1108 if (details->nonlinear_vma && 1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index || 1109 (page->index < details->first_index ||
1110 page->index > details->last_index)) 1110 page->index > details->last_index))
1111 continue; 1111 continue;
1112 } 1112 }
1113 ptent = ptep_get_and_clear_full(mm, addr, pte, 1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
1114 tlb->fullmm); 1114 tlb->fullmm);
1115 tlb_remove_tlb_entry(tlb, pte, addr); 1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page)) 1116 if (unlikely(!page))
1117 continue; 1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma 1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma, 1119 && linear_page_index(details->nonlinear_vma,
1120 addr) != page->index) { 1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index); 1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent)) 1122 if (pte_soft_dirty(ptent))
1123 pte_file_mksoft_dirty(ptfile); 1123 pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile); 1124 set_pte_at(mm, addr, pte, ptfile);
1125 } 1125 }
1126 if (PageAnon(page)) 1126 if (PageAnon(page))
1127 rss[MM_ANONPAGES]--; 1127 rss[MM_ANONPAGES]--;
1128 else { 1128 else {
1129 if (pte_dirty(ptent)) 1129 if (pte_dirty(ptent))
1130 set_page_dirty(page); 1130 set_page_dirty(page);
1131 if (pte_young(ptent) && 1131 if (pte_young(ptent) &&
1132 likely(!(vma->vm_flags & VM_SEQ_READ))) 1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
1133 mark_page_accessed(page); 1133 mark_page_accessed(page);
1134 rss[MM_FILEPAGES]--; 1134 rss[MM_FILEPAGES]--;
1135 } 1135 }
1136 page_remove_rmap(page); 1136 page_remove_rmap(page);
1137 if (unlikely(page_mapcount(page) < 0)) 1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page); 1138 print_bad_pte(vma, addr, ptent, page);
1139 force_flush = !__tlb_remove_page(tlb, page); 1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush) 1140 if (force_flush)
1141 break; 1141 break;
1142 continue; 1142 continue;
1143 } 1143 }
1144 /* 1144 /*
1145 * If details->check_mapping, we leave swap entries; 1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries. 1146 * if details->nonlinear_vma, we leave file entries.
1147 */ 1147 */
1148 if (unlikely(details)) 1148 if (unlikely(details))
1149 continue; 1149 continue;
1150 if (pte_file(ptent)) { 1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL); 1152 print_bad_pte(vma, addr, ptent, NULL);
1153 } else { 1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent); 1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1155 1155
1156 if (!non_swap_entry(entry)) 1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--; 1157 rss[MM_SWAPENTS]--;
1158 else if (is_migration_entry(entry)) { 1158 else if (is_migration_entry(entry)) {
1159 struct page *page; 1159 struct page *page;
1160 1160
1161 page = migration_entry_to_page(entry); 1161 page = migration_entry_to_page(entry);
1162 1162
1163 if (PageAnon(page)) 1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--; 1164 rss[MM_ANONPAGES]--;
1165 else 1165 else
1166 rss[MM_FILEPAGES]--; 1166 rss[MM_FILEPAGES]--;
1167 } 1167 }
1168 if (unlikely(!free_swap_and_cache(entry))) 1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL); 1169 print_bad_pte(vma, addr, ptent, NULL);
1170 } 1170 }
1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172 } while (pte++, addr += PAGE_SIZE, addr != end); 1172 } while (pte++, addr += PAGE_SIZE, addr != end);
1173 1173
1174 add_mm_rss_vec(mm, rss); 1174 add_mm_rss_vec(mm, rss);
1175 arch_leave_lazy_mmu_mode(); 1175 arch_leave_lazy_mmu_mode();
1176 pte_unmap_unlock(start_pte, ptl); 1176 pte_unmap_unlock(start_pte, ptl);
1177 1177
1178 /* 1178 /*
1179 * mmu_gather ran out of room to batch pages, we break out of 1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate 1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it. 1181 * and page-free while holding it.
1182 */ 1182 */
1183 if (force_flush) { 1183 if (force_flush) {
1184 unsigned long old_end; 1184 unsigned long old_end;
1185 1185
1186 force_flush = 0; 1186 force_flush = 0;
1187 1187
1188 /* 1188 /*
1189 * Flush the TLB just for the previous segment, 1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining 1190 * then update the range to be the remaining
1191 * TLB range. 1191 * TLB range.
1192 */ 1192 */
1193 old_end = tlb->end; 1193 old_end = tlb->end;
1194 tlb->end = addr; 1194 tlb->end = addr;
1195 1195
1196 tlb_flush_mmu(tlb); 1196 tlb_flush_mmu(tlb);
1197 1197
1198 tlb->start = addr; 1198 tlb->start = addr;
1199 tlb->end = old_end; 1199 tlb->end = old_end;
1200 1200
1201 if (addr != end) 1201 if (addr != end)
1202 goto again; 1202 goto again;
1203 } 1203 }
1204 1204
1205 return addr; 1205 return addr;
1206 } 1206 }
1207 1207
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 struct vm_area_struct *vma, pud_t *pud, 1209 struct vm_area_struct *vma, pud_t *pud,
1210 unsigned long addr, unsigned long end, 1210 unsigned long addr, unsigned long end,
1211 struct zap_details *details) 1211 struct zap_details *details)
1212 { 1212 {
1213 pmd_t *pmd; 1213 pmd_t *pmd;
1214 unsigned long next; 1214 unsigned long next;
1215 1215
1216 pmd = pmd_offset(pud, addr); 1216 pmd = pmd_offset(pud, addr);
1217 do { 1217 do {
1218 next = pmd_addr_end(addr, end); 1218 next = pmd_addr_end(addr, end);
1219 if (pmd_trans_huge(*pmd)) { 1219 if (pmd_trans_huge(*pmd)) {
1220 if (next - addr != HPAGE_PMD_SIZE) { 1220 if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM 1221 #ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end, 1224 __func__, addr, end,
1225 vma->vm_start, 1225 vma->vm_start,
1226 vma->vm_end); 1226 vma->vm_end);
1227 BUG(); 1227 BUG();
1228 } 1228 }
1229 #endif 1229 #endif
1230 split_huge_page_pmd(vma, addr, pmd); 1230 split_huge_page_pmd(vma, addr, pmd);
1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 goto next; 1232 goto next;
1233 /* fall through */ 1233 /* fall through */
1234 } 1234 }
1235 /* 1235 /*
1236 * Here there can be other concurrent MADV_DONTNEED or 1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is 1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is 1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read 1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode. 1240 * mode.
1241 */ 1241 */
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next; 1243 goto next;
1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next: 1245 next:
1246 cond_resched(); 1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end); 1247 } while (pmd++, addr = next, addr != end);
1248 1248
1249 return addr; 1249 return addr;
1250 } 1250 }
1251 1251
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma, pgd_t *pgd, 1253 struct vm_area_struct *vma, pgd_t *pgd,
1254 unsigned long addr, unsigned long end, 1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details) 1255 struct zap_details *details)
1256 { 1256 {
1257 pud_t *pud; 1257 pud_t *pud;
1258 unsigned long next; 1258 unsigned long next;
1259 1259
1260 pud = pud_offset(pgd, addr); 1260 pud = pud_offset(pgd, addr);
1261 do { 1261 do {
1262 next = pud_addr_end(addr, end); 1262 next = pud_addr_end(addr, end);
1263 if (pud_none_or_clear_bad(pud)) 1263 if (pud_none_or_clear_bad(pud))
1264 continue; 1264 continue;
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end); 1266 } while (pud++, addr = next, addr != end);
1267 1267
1268 return addr; 1268 return addr;
1269 } 1269 }
1270 1270
1271 static void unmap_page_range(struct mmu_gather *tlb, 1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, 1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end, 1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details) 1274 struct zap_details *details)
1275 { 1275 {
1276 pgd_t *pgd; 1276 pgd_t *pgd;
1277 unsigned long next; 1277 unsigned long next;
1278 1278
1279 if (details && !details->check_mapping && !details->nonlinear_vma) 1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL; 1280 details = NULL;
1281 1281
1282 BUG_ON(addr >= end); 1282 BUG_ON(addr >= end);
1283 mem_cgroup_uncharge_start(); 1283 mem_cgroup_uncharge_start();
1284 tlb_start_vma(tlb, vma); 1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr); 1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do { 1286 do {
1287 next = pgd_addr_end(addr, end); 1287 next = pgd_addr_end(addr, end);
1288 if (pgd_none_or_clear_bad(pgd)) 1288 if (pgd_none_or_clear_bad(pgd))
1289 continue; 1289 continue;
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end); 1291 } while (pgd++, addr = next, addr != end);
1292 tlb_end_vma(tlb, vma); 1292 tlb_end_vma(tlb, vma);
1293 mem_cgroup_uncharge_end(); 1293 mem_cgroup_uncharge_end();
1294 } 1294 }
1295 1295
1296 1296
1297 static void unmap_single_vma(struct mmu_gather *tlb, 1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr, 1298 struct vm_area_struct *vma, unsigned long start_addr,
1299 unsigned long end_addr, 1299 unsigned long end_addr,
1300 struct zap_details *details) 1300 struct zap_details *details)
1301 { 1301 {
1302 unsigned long start = max(vma->vm_start, start_addr); 1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end; 1303 unsigned long end;
1304 1304
1305 if (start >= vma->vm_end) 1305 if (start >= vma->vm_end)
1306 return; 1306 return;
1307 end = min(vma->vm_end, end_addr); 1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start) 1308 if (end <= vma->vm_start)
1309 return; 1309 return;
1310 1310
1311 if (vma->vm_file) 1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end); 1312 uprobe_munmap(vma, start, end);
1313 1313
1314 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 untrack_pfn(vma, 0, 0); 1315 untrack_pfn(vma, 0, 0);
1316 1316
1317 if (start != end) { 1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) { 1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 /* 1319 /*
1320 * It is undesirable to test vma->vm_file as it 1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area. 1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error 1322 * However, vm_file will be NULL in the error
1323 * cleanup path of do_mmap_pgoff. When 1323 * cleanup path of do_mmap_pgoff. When
1324 * hugetlbfs ->mmap method fails, 1324 * hugetlbfs ->mmap method fails,
1325 * do_mmap_pgoff() nullifies vma->vm_file 1325 * do_mmap_pgoff() nullifies vma->vm_file
1326 * before calling this function to clean up. 1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is 1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case. 1328 * safe to do nothing in this case.
1329 */ 1329 */
1330 if (vma->vm_file) { 1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334 } 1334 }
1335 } else 1335 } else
1336 unmap_page_range(tlb, vma, start, end, details); 1336 unmap_page_range(tlb, vma, start, end, details);
1337 } 1337 }
1338 } 1338 }
1339 1339
1340 /** 1340 /**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's 1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather 1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma 1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping 1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping 1345 * @end_addr: virtual address at which to end unmapping
1346 * 1346 *
1347 * Unmap all pages in the vma list. 1347 * Unmap all pages in the vma list.
1348 * 1348 *
1349 * Only addresses between `start' and `end' will be unmapped. 1349 * Only addresses between `start' and `end' will be unmapped.
1350 * 1350 *
1351 * The VMA list must be sorted in ascending virtual address order. 1351 * The VMA list must be sorted in ascending virtual address order.
1352 * 1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to 1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules. 1356 * drops the lock and schedules.
1357 */ 1357 */
1358 void unmap_vmas(struct mmu_gather *tlb, 1358 void unmap_vmas(struct mmu_gather *tlb,
1359 struct vm_area_struct *vma, unsigned long start_addr, 1359 struct vm_area_struct *vma, unsigned long start_addr,
1360 unsigned long end_addr) 1360 unsigned long end_addr)
1361 { 1361 {
1362 struct mm_struct *mm = vma->vm_mm; 1362 struct mm_struct *mm = vma->vm_mm;
1363 1363
1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1368 } 1368 }
1369 1369
1370 /** 1370 /**
1371 * zap_page_range - remove user pages in a given range 1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages 1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap 1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap 1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation 1375 * @details: details of nonlinear truncation or shared cache invalidation
1376 * 1376 *
1377 * Caller must protect the VMA list 1377 * Caller must protect the VMA list
1378 */ 1378 */
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long size, struct zap_details *details) 1380 unsigned long size, struct zap_details *details)
1381 { 1381 {
1382 struct mm_struct *mm = vma->vm_mm; 1382 struct mm_struct *mm = vma->vm_mm;
1383 struct mmu_gather tlb; 1383 struct mmu_gather tlb;
1384 unsigned long end = start + size; 1384 unsigned long end = start + size;
1385 1385
1386 lru_add_drain(); 1386 lru_add_drain();
1387 tlb_gather_mmu(&tlb, mm, start, end); 1387 tlb_gather_mmu(&tlb, mm, start, end);
1388 update_hiwater_rss(mm); 1388 update_hiwater_rss(mm);
1389 mmu_notifier_invalidate_range_start(mm, start, end); 1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 unmap_single_vma(&tlb, vma, start, end, details); 1391 unmap_single_vma(&tlb, vma, start, end, details);
1392 mmu_notifier_invalidate_range_end(mm, start, end); 1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end); 1393 tlb_finish_mmu(&tlb, start, end);
1394 } 1394 }
1395 1395
1396 /** 1396 /**
1397 * zap_page_range_single - remove user pages in a given range 1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages 1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap 1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap 1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation 1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 * 1402 *
1403 * The range must fit into one VMA. 1403 * The range must fit into one VMA.
1404 */ 1404 */
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 unsigned long size, struct zap_details *details) 1406 unsigned long size, struct zap_details *details)
1407 { 1407 {
1408 struct mm_struct *mm = vma->vm_mm; 1408 struct mm_struct *mm = vma->vm_mm;
1409 struct mmu_gather tlb; 1409 struct mmu_gather tlb;
1410 unsigned long end = address + size; 1410 unsigned long end = address + size;
1411 1411
1412 lru_add_drain(); 1412 lru_add_drain();
1413 tlb_gather_mmu(&tlb, mm, address, end); 1413 tlb_gather_mmu(&tlb, mm, address, end);
1414 update_hiwater_rss(mm); 1414 update_hiwater_rss(mm);
1415 mmu_notifier_invalidate_range_start(mm, address, end); 1415 mmu_notifier_invalidate_range_start(mm, address, end);
1416 unmap_single_vma(&tlb, vma, address, end, details); 1416 unmap_single_vma(&tlb, vma, address, end, details);
1417 mmu_notifier_invalidate_range_end(mm, address, end); 1417 mmu_notifier_invalidate_range_end(mm, address, end);
1418 tlb_finish_mmu(&tlb, address, end); 1418 tlb_finish_mmu(&tlb, address, end);
1419 } 1419 }
1420 1420
1421 /** 1421 /**
1422 * zap_vma_ptes - remove ptes mapping the vma 1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped 1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap 1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap 1425 * @size: number of bytes to zap
1426 * 1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 * 1428 *
1429 * The entire address range must be fully contained within the vma. 1429 * The entire address range must be fully contained within the vma.
1430 * 1430 *
1431 * Returns 0 if successful. 1431 * Returns 0 if successful.
1432 */ 1432 */
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size) 1434 unsigned long size)
1435 { 1435 {
1436 if (address < vma->vm_start || address + size > vma->vm_end || 1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP)) 1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1; 1438 return -1;
1439 zap_page_range_single(vma, address, size, NULL); 1439 zap_page_range_single(vma, address, size, NULL);
1440 return 0; 1440 return 0;
1441 } 1441 }
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443 1443
1444 /** 1444 /**
1445 * follow_page_mask - look up a page descriptor from a user-virtual address 1445 * follow_page_mask - look up a page descriptor from a user-virtual address
1446 * @vma: vm_area_struct mapping @address 1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up 1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour 1448 * @flags: flags modifying lookup behaviour
1449 * @page_mask: on output, *page_mask is set according to the size of the page 1449 * @page_mask: on output, *page_mask is set according to the size of the page
1450 * 1450 *
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452 * 1452 *
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented 1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()). 1455 * by a page descriptor (see also vm_normal_page()).
1456 */ 1456 */
1457 struct page *follow_page_mask(struct vm_area_struct *vma, 1457 struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags, 1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask) 1459 unsigned int *page_mask)
1460 { 1460 {
1461 pgd_t *pgd; 1461 pgd_t *pgd;
1462 pud_t *pud; 1462 pud_t *pud;
1463 pmd_t *pmd; 1463 pmd_t *pmd;
1464 pte_t *ptep, pte; 1464 pte_t *ptep, pte;
1465 spinlock_t *ptl; 1465 spinlock_t *ptl;
1466 struct page *page; 1466 struct page *page;
1467 struct mm_struct *mm = vma->vm_mm; 1467 struct mm_struct *mm = vma->vm_mm;
1468 1468
1469 *page_mask = 0; 1469 *page_mask = 0;
1470 1470
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) { 1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET); 1473 BUG_ON(flags & FOLL_GET);
1474 goto out; 1474 goto out;
1475 } 1475 }
1476 1476
1477 page = NULL; 1477 page = NULL;
1478 pgd = pgd_offset(mm, address); 1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table; 1480 goto no_page_table;
1481 1481
1482 pud = pud_offset(pgd, address); 1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud)) 1483 if (pud_none(*pud))
1484 goto no_page_table; 1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 if (flags & FOLL_GET) 1486 if (flags & FOLL_GET)
1487 goto out; 1487 goto out;
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out; 1489 goto out;
1490 } 1490 }
1491 if (unlikely(pud_bad(*pud))) 1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table; 1492 goto no_page_table;
1493 1493
1494 pmd = pmd_offset(pud, address); 1494 pmd = pmd_offset(pud, address);
1495 if (pmd_none(*pmd)) 1495 if (pmd_none(*pmd))
1496 goto no_page_table; 1496 goto no_page_table;
1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 if (flags & FOLL_GET) { 1499 if (flags & FOLL_GET) {
1500 /* 1500 /*
1501 * Refcount on tail pages are not well-defined and 1501 * Refcount on tail pages are not well-defined and
1502 * shouldn't be taken. The caller should handle a NULL 1502 * shouldn't be taken. The caller should handle a NULL
1503 * return when trying to follow tail pages. 1503 * return when trying to follow tail pages.
1504 */ 1504 */
1505 if (PageHead(page)) 1505 if (PageHead(page))
1506 get_page(page); 1506 get_page(page);
1507 else { 1507 else {
1508 page = NULL; 1508 page = NULL;
1509 goto out; 1509 goto out;
1510 } 1510 }
1511 } 1511 }
1512 goto out; 1512 goto out;
1513 } 1513 }
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table; 1515 goto no_page_table;
1516 if (pmd_trans_huge(*pmd)) { 1516 if (pmd_trans_huge(*pmd)) {
1517 if (flags & FOLL_SPLIT) { 1517 if (flags & FOLL_SPLIT) {
1518 split_huge_page_pmd(vma, address, pmd); 1518 split_huge_page_pmd(vma, address, pmd);
1519 goto split_fallthrough; 1519 goto split_fallthrough;
1520 } 1520 }
1521 spin_lock(&mm->page_table_lock); 1521 spin_lock(&mm->page_table_lock);
1522 if (likely(pmd_trans_huge(*pmd))) { 1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) { 1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(&mm->page_table_lock); 1524 spin_unlock(&mm->page_table_lock);
1525 wait_split_huge_page(vma->anon_vma, pmd); 1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else { 1526 } else {
1527 page = follow_trans_huge_pmd(vma, address, 1527 page = follow_trans_huge_pmd(vma, address,
1528 pmd, flags); 1528 pmd, flags);
1529 spin_unlock(&mm->page_table_lock); 1529 spin_unlock(&mm->page_table_lock);
1530 *page_mask = HPAGE_PMD_NR - 1; 1530 *page_mask = HPAGE_PMD_NR - 1;
1531 goto out; 1531 goto out;
1532 } 1532 }
1533 } else 1533 } else
1534 spin_unlock(&mm->page_table_lock); 1534 spin_unlock(&mm->page_table_lock);
1535 /* fall through */ 1535 /* fall through */
1536 } 1536 }
1537 split_fallthrough: 1537 split_fallthrough:
1538 if (unlikely(pmd_bad(*pmd))) 1538 if (unlikely(pmd_bad(*pmd)))
1539 goto no_page_table; 1539 goto no_page_table;
1540 1540
1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542 1542
1543 pte = *ptep; 1543 pte = *ptep;
1544 if (!pte_present(pte)) { 1544 if (!pte_present(pte)) {
1545 swp_entry_t entry; 1545 swp_entry_t entry;
1546 /* 1546 /*
1547 * KSM's break_ksm() relies upon recognizing a ksm page 1547 * KSM's break_ksm() relies upon recognizing a ksm page
1548 * even while it is being migrated, so for that case we 1548 * even while it is being migrated, so for that case we
1549 * need migration_entry_wait(). 1549 * need migration_entry_wait().
1550 */ 1550 */
1551 if (likely(!(flags & FOLL_MIGRATION))) 1551 if (likely(!(flags & FOLL_MIGRATION)))
1552 goto no_page; 1552 goto no_page;
1553 if (pte_none(pte) || pte_file(pte)) 1553 if (pte_none(pte) || pte_file(pte))
1554 goto no_page; 1554 goto no_page;
1555 entry = pte_to_swp_entry(pte); 1555 entry = pte_to_swp_entry(pte);
1556 if (!is_migration_entry(entry)) 1556 if (!is_migration_entry(entry))
1557 goto no_page; 1557 goto no_page;
1558 pte_unmap_unlock(ptep, ptl); 1558 pte_unmap_unlock(ptep, ptl);
1559 migration_entry_wait(mm, pmd, address); 1559 migration_entry_wait(mm, pmd, address);
1560 goto split_fallthrough; 1560 goto split_fallthrough;
1561 } 1561 }
1562 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1562 if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 goto no_page; 1563 goto no_page;
1564 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1564 if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 goto unlock; 1565 goto unlock;
1566 1566
1567 page = vm_normal_page(vma, address, pte); 1567 page = vm_normal_page(vma, address, pte);
1568 if (unlikely(!page)) { 1568 if (unlikely(!page)) {
1569 if ((flags & FOLL_DUMP) || 1569 if ((flags & FOLL_DUMP) ||
1570 !is_zero_pfn(pte_pfn(pte))) 1570 !is_zero_pfn(pte_pfn(pte)))
1571 goto bad_page; 1571 goto bad_page;
1572 page = pte_page(pte); 1572 page = pte_page(pte);
1573 } 1573 }
1574 1574
1575 if (flags & FOLL_GET) 1575 if (flags & FOLL_GET)
1576 get_page_foll(page); 1576 get_page_foll(page);
1577 if (flags & FOLL_TOUCH) { 1577 if (flags & FOLL_TOUCH) {
1578 if ((flags & FOLL_WRITE) && 1578 if ((flags & FOLL_WRITE) &&
1579 !pte_dirty(pte) && !PageDirty(page)) 1579 !pte_dirty(pte) && !PageDirty(page))
1580 set_page_dirty(page); 1580 set_page_dirty(page);
1581 /* 1581 /*
1582 * pte_mkyoung() would be more correct here, but atomic care 1582 * pte_mkyoung() would be more correct here, but atomic care
1583 * is needed to avoid losing the dirty bit: it is easier to use 1583 * is needed to avoid losing the dirty bit: it is easier to use
1584 * mark_page_accessed(). 1584 * mark_page_accessed().
1585 */ 1585 */
1586 mark_page_accessed(page); 1586 mark_page_accessed(page);
1587 } 1587 }
1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1589 /* 1589 /*
1590 * The preliminary mapping check is mainly to avoid the 1590 * The preliminary mapping check is mainly to avoid the
1591 * pointless overhead of lock_page on the ZERO_PAGE 1591 * pointless overhead of lock_page on the ZERO_PAGE
1592 * which might bounce very badly if there is contention. 1592 * which might bounce very badly if there is contention.
1593 * 1593 *
1594 * If the page is already locked, we don't need to 1594 * If the page is already locked, we don't need to
1595 * handle it now - vmscan will handle it later if and 1595 * handle it now - vmscan will handle it later if and
1596 * when it attempts to reclaim the page. 1596 * when it attempts to reclaim the page.
1597 */ 1597 */
1598 if (page->mapping && trylock_page(page)) { 1598 if (page->mapping && trylock_page(page)) {
1599 lru_add_drain(); /* push cached pages to LRU */ 1599 lru_add_drain(); /* push cached pages to LRU */
1600 /* 1600 /*
1601 * Because we lock page here, and migration is 1601 * Because we lock page here, and migration is
1602 * blocked by the pte's page reference, and we 1602 * blocked by the pte's page reference, and we
1603 * know the page is still mapped, we don't even 1603 * know the page is still mapped, we don't even
1604 * need to check for file-cache page truncation. 1604 * need to check for file-cache page truncation.
1605 */ 1605 */
1606 mlock_vma_page(page); 1606 mlock_vma_page(page);
1607 unlock_page(page); 1607 unlock_page(page);
1608 } 1608 }
1609 } 1609 }
1610 unlock: 1610 unlock:
1611 pte_unmap_unlock(ptep, ptl); 1611 pte_unmap_unlock(ptep, ptl);
1612 out: 1612 out:
1613 return page; 1613 return page;
1614 1614
1615 bad_page: 1615 bad_page:
1616 pte_unmap_unlock(ptep, ptl); 1616 pte_unmap_unlock(ptep, ptl);
1617 return ERR_PTR(-EFAULT); 1617 return ERR_PTR(-EFAULT);
1618 1618
1619 no_page: 1619 no_page:
1620 pte_unmap_unlock(ptep, ptl); 1620 pte_unmap_unlock(ptep, ptl);
1621 if (!pte_none(pte)) 1621 if (!pte_none(pte))
1622 return page; 1622 return page;
1623 1623
1624 no_page_table: 1624 no_page_table:
1625 /* 1625 /*
1626 * When core dumping an enormous anonymous area that nobody 1626 * When core dumping an enormous anonymous area that nobody
1627 * has touched so far, we don't want to allocate unnecessary pages or 1627 * has touched so far, we don't want to allocate unnecessary pages or
1628 * page tables. Return error instead of NULL to skip handle_mm_fault, 1628 * page tables. Return error instead of NULL to skip handle_mm_fault,
1629 * then get_dump_page() will return NULL to leave a hole in the dump. 1629 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 * But we can only make this optimization where a hole would surely 1630 * But we can only make this optimization where a hole would surely
1631 * be zero-filled if handle_mm_fault() actually did handle it. 1631 * be zero-filled if handle_mm_fault() actually did handle it.
1632 */ 1632 */
1633 if ((flags & FOLL_DUMP) && 1633 if ((flags & FOLL_DUMP) &&
1634 (!vma->vm_ops || !vma->vm_ops->fault)) 1634 (!vma->vm_ops || !vma->vm_ops->fault))
1635 return ERR_PTR(-EFAULT); 1635 return ERR_PTR(-EFAULT);
1636 return page; 1636 return page;
1637 } 1637 }
1638 1638
1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640 { 1640 {
1641 return stack_guard_page_start(vma, addr) || 1641 return stack_guard_page_start(vma, addr) ||
1642 stack_guard_page_end(vma, addr+PAGE_SIZE); 1642 stack_guard_page_end(vma, addr+PAGE_SIZE);
1643 } 1643 }
1644 1644
1645 /** 1645 /**
1646 * __get_user_pages() - pin user pages in memory 1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task 1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm 1648 * @mm: mm_struct of target mm
1649 * @start: starting user address 1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin 1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour 1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned. 1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller 1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in. 1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page. 1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them. 1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658 * 1658 *
1659 * Returns number of pages pinned. This may be fewer than the number 1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released 1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only 1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held. 1663 * remain valid while mmap_sem is held.
1664 * 1664 *
1665 * Must be called with mmap_sem held for read or write. 1665 * Must be called with mmap_sem held for read or write.
1666 * 1666 *
1667 * __get_user_pages walks a process's page tables and takes a reference to 1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given 1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user 1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant. 1670 * thread accesses the given user virtual address at that instant.
1671 * 1671 *
1672 * This does not guarantee that the page exists in the user mappings when 1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different 1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated 1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page 1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page 1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO 1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because 1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary. 1679 * locks can't be held over the syscall boundary.
1680 * 1680 *
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and 1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called. 1684 * before put_page is called.
1685 * 1685 *
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages, 1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0. 1688 * *@nonblocking will be set to 0.
1689 * 1689 *
1690 * In most cases, get_user_pages or get_user_pages_fast should be used 1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if 1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags. 1692 * you need some special @gup_flags.
1693 */ 1693 */
1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages, 1695 unsigned long start, unsigned long nr_pages,
1696 unsigned int gup_flags, struct page **pages, 1696 unsigned int gup_flags, struct page **pages,
1697 struct vm_area_struct **vmas, int *nonblocking) 1697 struct vm_area_struct **vmas, int *nonblocking)
1698 { 1698 {
1699 long i; 1699 long i;
1700 unsigned long vm_flags; 1700 unsigned long vm_flags;
1701 unsigned int page_mask; 1701 unsigned int page_mask;
1702 1702
1703 if (!nr_pages) 1703 if (!nr_pages)
1704 return 0; 1704 return 0;
1705 1705
1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707 1707
1708 /* 1708 /*
1709 * Require read or write permissions. 1709 * Require read or write permissions.
1710 * If FOLL_FORCE is set, we only require the "MAY" flags. 1710 * If FOLL_FORCE is set, we only require the "MAY" flags.
1711 */ 1711 */
1712 vm_flags = (gup_flags & FOLL_WRITE) ? 1712 vm_flags = (gup_flags & FOLL_WRITE) ?
1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 vm_flags &= (gup_flags & FOLL_FORCE) ? 1714 vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716 1716
1717 /* 1717 /*
1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 * would be called on PROT_NONE ranges. We must never invoke 1719 * would be called on PROT_NONE ranges. We must never invoke
1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 * page faults would unprotect the PROT_NONE ranges if 1721 * page faults would unprotect the PROT_NONE ranges if
1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 * bitflag. So to avoid that, don't set FOLL_NUMA if 1723 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 * FOLL_FORCE is set. 1724 * FOLL_FORCE is set.
1725 */ 1725 */
1726 if (!(gup_flags & FOLL_FORCE)) 1726 if (!(gup_flags & FOLL_FORCE))
1727 gup_flags |= FOLL_NUMA; 1727 gup_flags |= FOLL_NUMA;
1728 1728
1729 i = 0; 1729 i = 0;
1730 1730
1731 do { 1731 do {
1732 struct vm_area_struct *vma; 1732 struct vm_area_struct *vma;
1733 1733
1734 vma = find_extend_vma(mm, start); 1734 vma = find_extend_vma(mm, start);
1735 if (!vma && in_gate_area(mm, start)) { 1735 if (!vma && in_gate_area(mm, start)) {
1736 unsigned long pg = start & PAGE_MASK; 1736 unsigned long pg = start & PAGE_MASK;
1737 pgd_t *pgd; 1737 pgd_t *pgd;
1738 pud_t *pud; 1738 pud_t *pud;
1739 pmd_t *pmd; 1739 pmd_t *pmd;
1740 pte_t *pte; 1740 pte_t *pte;
1741 1741
1742 /* user gate pages are read-only */ 1742 /* user gate pages are read-only */
1743 if (gup_flags & FOLL_WRITE) 1743 if (gup_flags & FOLL_WRITE)
1744 return i ? : -EFAULT; 1744 return i ? : -EFAULT;
1745 if (pg > TASK_SIZE) 1745 if (pg > TASK_SIZE)
1746 pgd = pgd_offset_k(pg); 1746 pgd = pgd_offset_k(pg);
1747 else 1747 else
1748 pgd = pgd_offset_gate(mm, pg); 1748 pgd = pgd_offset_gate(mm, pg);
1749 BUG_ON(pgd_none(*pgd)); 1749 BUG_ON(pgd_none(*pgd));
1750 pud = pud_offset(pgd, pg); 1750 pud = pud_offset(pgd, pg);
1751 BUG_ON(pud_none(*pud)); 1751 BUG_ON(pud_none(*pud));
1752 pmd = pmd_offset(pud, pg); 1752 pmd = pmd_offset(pud, pg);
1753 if (pmd_none(*pmd)) 1753 if (pmd_none(*pmd))
1754 return i ? : -EFAULT; 1754 return i ? : -EFAULT;
1755 VM_BUG_ON(pmd_trans_huge(*pmd)); 1755 VM_BUG_ON(pmd_trans_huge(*pmd));
1756 pte = pte_offset_map(pmd, pg); 1756 pte = pte_offset_map(pmd, pg);
1757 if (pte_none(*pte)) { 1757 if (pte_none(*pte)) {
1758 pte_unmap(pte); 1758 pte_unmap(pte);
1759 return i ? : -EFAULT; 1759 return i ? : -EFAULT;
1760 } 1760 }
1761 vma = get_gate_vma(mm); 1761 vma = get_gate_vma(mm);
1762 if (pages) { 1762 if (pages) {
1763 struct page *page; 1763 struct page *page;
1764 1764
1765 page = vm_normal_page(vma, start, *pte); 1765 page = vm_normal_page(vma, start, *pte);
1766 if (!page) { 1766 if (!page) {
1767 if (!(gup_flags & FOLL_DUMP) && 1767 if (!(gup_flags & FOLL_DUMP) &&
1768 is_zero_pfn(pte_pfn(*pte))) 1768 is_zero_pfn(pte_pfn(*pte)))
1769 page = pte_page(*pte); 1769 page = pte_page(*pte);
1770 else { 1770 else {
1771 pte_unmap(pte); 1771 pte_unmap(pte);
1772 return i ? : -EFAULT; 1772 return i ? : -EFAULT;
1773 } 1773 }
1774 } 1774 }
1775 pages[i] = page; 1775 pages[i] = page;
1776 get_page(page); 1776 get_page(page);
1777 } 1777 }
1778 pte_unmap(pte); 1778 pte_unmap(pte);
1779 page_mask = 0; 1779 page_mask = 0;
1780 goto next_page; 1780 goto next_page;
1781 } 1781 }
1782 1782
1783 if (!vma || 1783 if (!vma ||
1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785 !(vm_flags & vma->vm_flags)) 1785 !(vm_flags & vma->vm_flags))
1786 return i ? : -EFAULT; 1786 return i ? : -EFAULT;
1787 1787
1788 if (is_vm_hugetlb_page(vma)) { 1788 if (is_vm_hugetlb_page(vma)) {
1789 i = follow_hugetlb_page(mm, vma, pages, vmas, 1789 i = follow_hugetlb_page(mm, vma, pages, vmas,
1790 &start, &nr_pages, i, gup_flags); 1790 &start, &nr_pages, i, gup_flags);
1791 continue; 1791 continue;
1792 } 1792 }
1793 1793
1794 do { 1794 do {
1795 struct page *page; 1795 struct page *page;
1796 unsigned int foll_flags = gup_flags; 1796 unsigned int foll_flags = gup_flags;
1797 unsigned int page_increm; 1797 unsigned int page_increm;
1798 1798
1799 /* 1799 /*
1800 * If we have a pending SIGKILL, don't keep faulting 1800 * If we have a pending SIGKILL, don't keep faulting
1801 * pages and potentially allocating memory. 1801 * pages and potentially allocating memory.
1802 */ 1802 */
1803 if (unlikely(fatal_signal_pending(current))) 1803 if (unlikely(fatal_signal_pending(current)))
1804 return i ? i : -ERESTARTSYS; 1804 return i ? i : -ERESTARTSYS;
1805 1805
1806 cond_resched(); 1806 cond_resched();
1807 while (!(page = follow_page_mask(vma, start, 1807 while (!(page = follow_page_mask(vma, start,
1808 foll_flags, &page_mask))) { 1808 foll_flags, &page_mask))) {
1809 int ret; 1809 int ret;
1810 unsigned int fault_flags = 0; 1810 unsigned int fault_flags = 0;
1811 1811
1812 /* For mlock, just skip the stack guard page. */ 1812 /* For mlock, just skip the stack guard page. */
1813 if (foll_flags & FOLL_MLOCK) { 1813 if (foll_flags & FOLL_MLOCK) {
1814 if (stack_guard_page(vma, start)) 1814 if (stack_guard_page(vma, start))
1815 goto next_page; 1815 goto next_page;
1816 } 1816 }
1817 if (foll_flags & FOLL_WRITE) 1817 if (foll_flags & FOLL_WRITE)
1818 fault_flags |= FAULT_FLAG_WRITE; 1818 fault_flags |= FAULT_FLAG_WRITE;
1819 if (nonblocking) 1819 if (nonblocking)
1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821 if (foll_flags & FOLL_NOWAIT) 1821 if (foll_flags & FOLL_NOWAIT)
1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1823 1823
1824 ret = handle_mm_fault(mm, vma, start, 1824 ret = handle_mm_fault(mm, vma, start,
1825 fault_flags); 1825 fault_flags);
1826 1826
1827 if (ret & VM_FAULT_ERROR) { 1827 if (ret & VM_FAULT_ERROR) {
1828 if (ret & VM_FAULT_OOM) 1828 if (ret & VM_FAULT_OOM)
1829 return i ? i : -ENOMEM; 1829 return i ? i : -ENOMEM;
1830 if (ret & (VM_FAULT_HWPOISON | 1830 if (ret & (VM_FAULT_HWPOISON |
1831 VM_FAULT_HWPOISON_LARGE)) { 1831 VM_FAULT_HWPOISON_LARGE)) {
1832 if (i) 1832 if (i)
1833 return i; 1833 return i;
1834 else if (gup_flags & FOLL_HWPOISON) 1834 else if (gup_flags & FOLL_HWPOISON)
1835 return -EHWPOISON; 1835 return -EHWPOISON;
1836 else 1836 else
1837 return -EFAULT; 1837 return -EFAULT;
1838 } 1838 }
1839 if (ret & VM_FAULT_SIGBUS) 1839 if (ret & VM_FAULT_SIGBUS)
1840 return i ? i : -EFAULT; 1840 return i ? i : -EFAULT;
1841 BUG(); 1841 BUG();
1842 } 1842 }
1843 1843
1844 if (tsk) { 1844 if (tsk) {
1845 if (ret & VM_FAULT_MAJOR) 1845 if (ret & VM_FAULT_MAJOR)
1846 tsk->maj_flt++; 1846 tsk->maj_flt++;
1847 else 1847 else
1848 tsk->min_flt++; 1848 tsk->min_flt++;
1849 } 1849 }
1850 1850
1851 if (ret & VM_FAULT_RETRY) { 1851 if (ret & VM_FAULT_RETRY) {
1852 if (nonblocking) 1852 if (nonblocking)
1853 *nonblocking = 0; 1853 *nonblocking = 0;
1854 return i; 1854 return i;
1855 } 1855 }
1856 1856
1857 /* 1857 /*
1858 * The VM_FAULT_WRITE bit tells us that 1858 * The VM_FAULT_WRITE bit tells us that
1859 * do_wp_page has broken COW when necessary, 1859 * do_wp_page has broken COW when necessary,
1860 * even if maybe_mkwrite decided not to set 1860 * even if maybe_mkwrite decided not to set
1861 * pte_write. We can thus safely do subsequent 1861 * pte_write. We can thus safely do subsequent
1862 * page lookups as if they were reads. But only 1862 * page lookups as if they were reads. But only
1863 * do so when looping for pte_write is futile: 1863 * do so when looping for pte_write is futile:
1864 * in some cases userspace may also be wanting 1864 * in some cases userspace may also be wanting
1865 * to write to the gotten user page, which a 1865 * to write to the gotten user page, which a
1866 * read fault here might prevent (a readonly 1866 * read fault here might prevent (a readonly
1867 * page might get reCOWed by userspace write). 1867 * page might get reCOWed by userspace write).
1868 */ 1868 */
1869 if ((ret & VM_FAULT_WRITE) && 1869 if ((ret & VM_FAULT_WRITE) &&
1870 !(vma->vm_flags & VM_WRITE)) 1870 !(vma->vm_flags & VM_WRITE))
1871 foll_flags &= ~FOLL_WRITE; 1871 foll_flags &= ~FOLL_WRITE;
1872 1872
1873 cond_resched(); 1873 cond_resched();
1874 } 1874 }
1875 if (IS_ERR(page)) 1875 if (IS_ERR(page))
1876 return i ? i : PTR_ERR(page); 1876 return i ? i : PTR_ERR(page);
1877 if (pages) { 1877 if (pages) {
1878 pages[i] = page; 1878 pages[i] = page;
1879 1879
1880 flush_anon_page(vma, page, start); 1880 flush_anon_page(vma, page, start);
1881 flush_dcache_page(page); 1881 flush_dcache_page(page);
1882 page_mask = 0; 1882 page_mask = 0;
1883 } 1883 }
1884 next_page: 1884 next_page:
1885 if (vmas) { 1885 if (vmas) {
1886 vmas[i] = vma; 1886 vmas[i] = vma;
1887 page_mask = 0; 1887 page_mask = 0;
1888 } 1888 }
1889 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1889 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890 if (page_increm > nr_pages) 1890 if (page_increm > nr_pages)
1891 page_increm = nr_pages; 1891 page_increm = nr_pages;
1892 i += page_increm; 1892 i += page_increm;
1893 start += page_increm * PAGE_SIZE; 1893 start += page_increm * PAGE_SIZE;
1894 nr_pages -= page_increm; 1894 nr_pages -= page_increm;
1895 } while (nr_pages && start < vma->vm_end); 1895 } while (nr_pages && start < vma->vm_end);
1896 } while (nr_pages); 1896 } while (nr_pages);
1897 return i; 1897 return i;
1898 } 1898 }
1899 EXPORT_SYMBOL(__get_user_pages); 1899 EXPORT_SYMBOL(__get_user_pages);
1900 1900
1901 /* 1901 /*
1902 * fixup_user_fault() - manually resolve a user page fault 1902 * fixup_user_fault() - manually resolve a user page fault
1903 * @tsk: the task_struct to use for page fault accounting, or 1903 * @tsk: the task_struct to use for page fault accounting, or
1904 * NULL if faults are not to be recorded. 1904 * NULL if faults are not to be recorded.
1905 * @mm: mm_struct of target mm 1905 * @mm: mm_struct of target mm
1906 * @address: user address 1906 * @address: user address
1907 * @fault_flags:flags to pass down to handle_mm_fault() 1907 * @fault_flags:flags to pass down to handle_mm_fault()
1908 * 1908 *
1909 * This is meant to be called in the specific scenario where for locking reasons 1909 * This is meant to be called in the specific scenario where for locking reasons
1910 * we try to access user memory in atomic context (within a pagefault_disable() 1910 * we try to access user memory in atomic context (within a pagefault_disable()
1911 * section), this returns -EFAULT, and we want to resolve the user fault before 1911 * section), this returns -EFAULT, and we want to resolve the user fault before
1912 * trying again. 1912 * trying again.
1913 * 1913 *
1914 * Typically this is meant to be used by the futex code. 1914 * Typically this is meant to be used by the futex code.
1915 * 1915 *
1916 * The main difference with get_user_pages() is that this function will 1916 * The main difference with get_user_pages() is that this function will
1917 * unconditionally call handle_mm_fault() which will in turn perform all the 1917 * unconditionally call handle_mm_fault() which will in turn perform all the
1918 * necessary SW fixup of the dirty and young bits in the PTE, while 1918 * necessary SW fixup of the dirty and young bits in the PTE, while
1919 * handle_mm_fault() only guarantees to update these in the struct page. 1919 * handle_mm_fault() only guarantees to update these in the struct page.
1920 * 1920 *
1921 * This is important for some architectures where those bits also gate the 1921 * This is important for some architectures where those bits also gate the
1922 * access permission to the page because they are maintained in software. On 1922 * access permission to the page because they are maintained in software. On
1923 * such architectures, gup() will not be enough to make a subsequent access 1923 * such architectures, gup() will not be enough to make a subsequent access
1924 * succeed. 1924 * succeed.
1925 * 1925 *
1926 * This should be called with the mm_sem held for read. 1926 * This should be called with the mm_sem held for read.
1927 */ 1927 */
1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929 unsigned long address, unsigned int fault_flags) 1929 unsigned long address, unsigned int fault_flags)
1930 { 1930 {
1931 struct vm_area_struct *vma; 1931 struct vm_area_struct *vma;
1932 vm_flags_t vm_flags; 1932 vm_flags_t vm_flags;
1933 int ret; 1933 int ret;
1934 1934
1935 vma = find_extend_vma(mm, address); 1935 vma = find_extend_vma(mm, address);
1936 if (!vma || address < vma->vm_start) 1936 if (!vma || address < vma->vm_start)
1937 return -EFAULT; 1937 return -EFAULT;
1938 1938
1939 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; 1939 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1940 if (!(vm_flags & vma->vm_flags)) 1940 if (!(vm_flags & vma->vm_flags))
1941 return -EFAULT; 1941 return -EFAULT;
1942 1942
1943 ret = handle_mm_fault(mm, vma, address, fault_flags); 1943 ret = handle_mm_fault(mm, vma, address, fault_flags);
1944 if (ret & VM_FAULT_ERROR) { 1944 if (ret & VM_FAULT_ERROR) {
1945 if (ret & VM_FAULT_OOM) 1945 if (ret & VM_FAULT_OOM)
1946 return -ENOMEM; 1946 return -ENOMEM;
1947 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1947 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1948 return -EHWPOISON; 1948 return -EHWPOISON;
1949 if (ret & VM_FAULT_SIGBUS) 1949 if (ret & VM_FAULT_SIGBUS)
1950 return -EFAULT; 1950 return -EFAULT;
1951 BUG(); 1951 BUG();
1952 } 1952 }
1953 if (tsk) { 1953 if (tsk) {
1954 if (ret & VM_FAULT_MAJOR) 1954 if (ret & VM_FAULT_MAJOR)
1955 tsk->maj_flt++; 1955 tsk->maj_flt++;
1956 else 1956 else
1957 tsk->min_flt++; 1957 tsk->min_flt++;
1958 } 1958 }
1959 return 0; 1959 return 0;
1960 } 1960 }
1961 1961
1962 /* 1962 /*
1963 * get_user_pages() - pin user pages in memory 1963 * get_user_pages() - pin user pages in memory
1964 * @tsk: the task_struct to use for page fault accounting, or 1964 * @tsk: the task_struct to use for page fault accounting, or
1965 * NULL if faults are not to be recorded. 1965 * NULL if faults are not to be recorded.
1966 * @mm: mm_struct of target mm 1966 * @mm: mm_struct of target mm
1967 * @start: starting user address 1967 * @start: starting user address
1968 * @nr_pages: number of pages from start to pin 1968 * @nr_pages: number of pages from start to pin
1969 * @write: whether pages will be written to by the caller 1969 * @write: whether pages will be written to by the caller
1970 * @force: whether to force write access even if user mapping is 1970 * @force: whether to force write access even if user mapping is
1971 * readonly. This will result in the page being COWed even 1971 * readonly. This will result in the page being COWed even
1972 * in MAP_SHARED mappings. You do not want this. 1972 * in MAP_SHARED mappings. You do not want this.
1973 * @pages: array that receives pointers to the pages pinned. 1973 * @pages: array that receives pointers to the pages pinned.
1974 * Should be at least nr_pages long. Or NULL, if caller 1974 * Should be at least nr_pages long. Or NULL, if caller
1975 * only intends to ensure the pages are faulted in. 1975 * only intends to ensure the pages are faulted in.
1976 * @vmas: array of pointers to vmas corresponding to each page. 1976 * @vmas: array of pointers to vmas corresponding to each page.
1977 * Or NULL if the caller does not require them. 1977 * Or NULL if the caller does not require them.
1978 * 1978 *
1979 * Returns number of pages pinned. This may be fewer than the number 1979 * Returns number of pages pinned. This may be fewer than the number
1980 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1980 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1981 * were pinned, returns -errno. Each page returned must be released 1981 * were pinned, returns -errno. Each page returned must be released
1982 * with a put_page() call when it is finished with. vmas will only 1982 * with a put_page() call when it is finished with. vmas will only
1983 * remain valid while mmap_sem is held. 1983 * remain valid while mmap_sem is held.
1984 * 1984 *
1985 * Must be called with mmap_sem held for read or write. 1985 * Must be called with mmap_sem held for read or write.
1986 * 1986 *
1987 * get_user_pages walks a process's page tables and takes a reference to 1987 * get_user_pages walks a process's page tables and takes a reference to
1988 * each struct page that each user address corresponds to at a given 1988 * each struct page that each user address corresponds to at a given
1989 * instant. That is, it takes the page that would be accessed if a user 1989 * instant. That is, it takes the page that would be accessed if a user
1990 * thread accesses the given user virtual address at that instant. 1990 * thread accesses the given user virtual address at that instant.
1991 * 1991 *
1992 * This does not guarantee that the page exists in the user mappings when 1992 * This does not guarantee that the page exists in the user mappings when
1993 * get_user_pages returns, and there may even be a completely different 1993 * get_user_pages returns, and there may even be a completely different
1994 * page there in some cases (eg. if mmapped pagecache has been invalidated 1994 * page there in some cases (eg. if mmapped pagecache has been invalidated
1995 * and subsequently re faulted). However it does guarantee that the page 1995 * and subsequently re faulted). However it does guarantee that the page
1996 * won't be freed completely. And mostly callers simply care that the page 1996 * won't be freed completely. And mostly callers simply care that the page
1997 * contains data that was valid *at some point in time*. Typically, an IO 1997 * contains data that was valid *at some point in time*. Typically, an IO
1998 * or similar operation cannot guarantee anything stronger anyway because 1998 * or similar operation cannot guarantee anything stronger anyway because
1999 * locks can't be held over the syscall boundary. 1999 * locks can't be held over the syscall boundary.
2000 * 2000 *
2001 * If write=0, the page must not be written to. If the page is written to, 2001 * If write=0, the page must not be written to. If the page is written to,
2002 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 2002 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2003 * after the page is finished with, and before put_page is called. 2003 * after the page is finished with, and before put_page is called.
2004 * 2004 *
2005 * get_user_pages is typically used for fewer-copy IO operations, to get a 2005 * get_user_pages is typically used for fewer-copy IO operations, to get a
2006 * handle on the memory by some means other than accesses via the user virtual 2006 * handle on the memory by some means other than accesses via the user virtual
2007 * addresses. The pages may be submitted for DMA to devices or accessed via 2007 * addresses. The pages may be submitted for DMA to devices or accessed via
2008 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2008 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2009 * use the correct cache flushing APIs. 2009 * use the correct cache flushing APIs.
2010 * 2010 *
2011 * See also get_user_pages_fast, for performance critical applications. 2011 * See also get_user_pages_fast, for performance critical applications.
2012 */ 2012 */
2013 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2013 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2014 unsigned long start, unsigned long nr_pages, int write, 2014 unsigned long start, unsigned long nr_pages, int write,
2015 int force, struct page **pages, struct vm_area_struct **vmas) 2015 int force, struct page **pages, struct vm_area_struct **vmas)
2016 { 2016 {
2017 int flags = FOLL_TOUCH; 2017 int flags = FOLL_TOUCH;
2018 2018
2019 if (pages) 2019 if (pages)
2020 flags |= FOLL_GET; 2020 flags |= FOLL_GET;
2021 if (write) 2021 if (write)
2022 flags |= FOLL_WRITE; 2022 flags |= FOLL_WRITE;
2023 if (force) 2023 if (force)
2024 flags |= FOLL_FORCE; 2024 flags |= FOLL_FORCE;
2025 2025
2026 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2026 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2027 NULL); 2027 NULL);
2028 } 2028 }
2029 EXPORT_SYMBOL(get_user_pages); 2029 EXPORT_SYMBOL(get_user_pages);
2030 2030
2031 /** 2031 /**
2032 * get_dump_page() - pin user page in memory while writing it to core dump 2032 * get_dump_page() - pin user page in memory while writing it to core dump
2033 * @addr: user address 2033 * @addr: user address
2034 * 2034 *
2035 * Returns struct page pointer of user page pinned for dump, 2035 * Returns struct page pointer of user page pinned for dump,
2036 * to be freed afterwards by page_cache_release() or put_page(). 2036 * to be freed afterwards by page_cache_release() or put_page().
2037 * 2037 *
2038 * Returns NULL on any kind of failure - a hole must then be inserted into 2038 * Returns NULL on any kind of failure - a hole must then be inserted into
2039 * the corefile, to preserve alignment with its headers; and also returns 2039 * the corefile, to preserve alignment with its headers; and also returns
2040 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2040 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2041 * allowing a hole to be left in the corefile to save diskspace. 2041 * allowing a hole to be left in the corefile to save diskspace.
2042 * 2042 *
2043 * Called without mmap_sem, but after all other threads have been killed. 2043 * Called without mmap_sem, but after all other threads have been killed.
2044 */ 2044 */
2045 #ifdef CONFIG_ELF_CORE 2045 #ifdef CONFIG_ELF_CORE
2046 struct page *get_dump_page(unsigned long addr) 2046 struct page *get_dump_page(unsigned long addr)
2047 { 2047 {
2048 struct vm_area_struct *vma; 2048 struct vm_area_struct *vma;
2049 struct page *page; 2049 struct page *page;
2050 2050
2051 if (__get_user_pages(current, current->mm, addr, 1, 2051 if (__get_user_pages(current, current->mm, addr, 1,
2052 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2052 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2053 NULL) < 1) 2053 NULL) < 1)
2054 return NULL; 2054 return NULL;
2055 flush_cache_page(vma, addr, page_to_pfn(page)); 2055 flush_cache_page(vma, addr, page_to_pfn(page));
2056 return page; 2056 return page;
2057 } 2057 }
2058 #endif /* CONFIG_ELF_CORE */ 2058 #endif /* CONFIG_ELF_CORE */
2059 2059
2060 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2060 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2061 spinlock_t **ptl) 2061 spinlock_t **ptl)
2062 { 2062 {
2063 pgd_t * pgd = pgd_offset(mm, addr); 2063 pgd_t * pgd = pgd_offset(mm, addr);
2064 pud_t * pud = pud_alloc(mm, pgd, addr); 2064 pud_t * pud = pud_alloc(mm, pgd, addr);
2065 if (pud) { 2065 if (pud) {
2066 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2066 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2067 if (pmd) { 2067 if (pmd) {
2068 VM_BUG_ON(pmd_trans_huge(*pmd)); 2068 VM_BUG_ON(pmd_trans_huge(*pmd));
2069 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2069 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2070 } 2070 }
2071 } 2071 }
2072 return NULL; 2072 return NULL;
2073 } 2073 }
2074 2074
2075 /* 2075 /*
2076 * This is the old fallback for page remapping. 2076 * This is the old fallback for page remapping.
2077 * 2077 *
2078 * For historical reasons, it only allows reserved pages. Only 2078 * For historical reasons, it only allows reserved pages. Only
2079 * old drivers should use this, and they needed to mark their 2079 * old drivers should use this, and they needed to mark their
2080 * pages reserved for the old functions anyway. 2080 * pages reserved for the old functions anyway.
2081 */ 2081 */
2082 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2082 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2083 struct page *page, pgprot_t prot) 2083 struct page *page, pgprot_t prot)
2084 { 2084 {
2085 struct mm_struct *mm = vma->vm_mm; 2085 struct mm_struct *mm = vma->vm_mm;
2086 int retval; 2086 int retval;
2087 pte_t *pte; 2087 pte_t *pte;
2088 spinlock_t *ptl; 2088 spinlock_t *ptl;
2089 2089
2090 retval = -EINVAL; 2090 retval = -EINVAL;
2091 if (PageAnon(page)) 2091 if (PageAnon(page))
2092 goto out; 2092 goto out;
2093 retval = -ENOMEM; 2093 retval = -ENOMEM;
2094 flush_dcache_page(page); 2094 flush_dcache_page(page);
2095 pte = get_locked_pte(mm, addr, &ptl); 2095 pte = get_locked_pte(mm, addr, &ptl);
2096 if (!pte) 2096 if (!pte)
2097 goto out; 2097 goto out;
2098 retval = -EBUSY; 2098 retval = -EBUSY;
2099 if (!pte_none(*pte)) 2099 if (!pte_none(*pte))
2100 goto out_unlock; 2100 goto out_unlock;
2101 2101
2102 /* Ok, finally just insert the thing.. */ 2102 /* Ok, finally just insert the thing.. */
2103 get_page(page); 2103 get_page(page);
2104 inc_mm_counter_fast(mm, MM_FILEPAGES); 2104 inc_mm_counter_fast(mm, MM_FILEPAGES);
2105 page_add_file_rmap(page); 2105 page_add_file_rmap(page);
2106 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2106 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2107 2107
2108 retval = 0; 2108 retval = 0;
2109 pte_unmap_unlock(pte, ptl); 2109 pte_unmap_unlock(pte, ptl);
2110 return retval; 2110 return retval;
2111 out_unlock: 2111 out_unlock:
2112 pte_unmap_unlock(pte, ptl); 2112 pte_unmap_unlock(pte, ptl);
2113 out: 2113 out:
2114 return retval; 2114 return retval;
2115 } 2115 }
2116 2116
2117 /** 2117 /**
2118 * vm_insert_page - insert single page into user vma 2118 * vm_insert_page - insert single page into user vma
2119 * @vma: user vma to map to 2119 * @vma: user vma to map to
2120 * @addr: target user address of this page 2120 * @addr: target user address of this page
2121 * @page: source kernel page 2121 * @page: source kernel page
2122 * 2122 *
2123 * This allows drivers to insert individual pages they've allocated 2123 * This allows drivers to insert individual pages they've allocated
2124 * into a user vma. 2124 * into a user vma.
2125 * 2125 *
2126 * The page has to be a nice clean _individual_ kernel allocation. 2126 * The page has to be a nice clean _individual_ kernel allocation.
2127 * If you allocate a compound page, you need to have marked it as 2127 * If you allocate a compound page, you need to have marked it as
2128 * such (__GFP_COMP), or manually just split the page up yourself 2128 * such (__GFP_COMP), or manually just split the page up yourself
2129 * (see split_page()). 2129 * (see split_page()).
2130 * 2130 *
2131 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2131 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2132 * took an arbitrary page protection parameter. This doesn't allow 2132 * took an arbitrary page protection parameter. This doesn't allow
2133 * that. Your vma protection will have to be set up correctly, which 2133 * that. Your vma protection will have to be set up correctly, which
2134 * means that if you want a shared writable mapping, you'd better 2134 * means that if you want a shared writable mapping, you'd better
2135 * ask for a shared writable mapping! 2135 * ask for a shared writable mapping!
2136 * 2136 *
2137 * The page does not need to be reserved. 2137 * The page does not need to be reserved.
2138 * 2138 *
2139 * Usually this function is called from f_op->mmap() handler 2139 * Usually this function is called from f_op->mmap() handler
2140 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2140 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2141 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2141 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2142 * function from other places, for example from page-fault handler. 2142 * function from other places, for example from page-fault handler.
2143 */ 2143 */
2144 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2144 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2145 struct page *page) 2145 struct page *page)
2146 { 2146 {
2147 if (addr < vma->vm_start || addr >= vma->vm_end) 2147 if (addr < vma->vm_start || addr >= vma->vm_end)
2148 return -EFAULT; 2148 return -EFAULT;
2149 if (!page_count(page)) 2149 if (!page_count(page))
2150 return -EINVAL; 2150 return -EINVAL;
2151 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2151 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2152 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2152 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2153 BUG_ON(vma->vm_flags & VM_PFNMAP); 2153 BUG_ON(vma->vm_flags & VM_PFNMAP);
2154 vma->vm_flags |= VM_MIXEDMAP; 2154 vma->vm_flags |= VM_MIXEDMAP;
2155 } 2155 }
2156 return insert_page(vma, addr, page, vma->vm_page_prot); 2156 return insert_page(vma, addr, page, vma->vm_page_prot);
2157 } 2157 }
2158 EXPORT_SYMBOL(vm_insert_page); 2158 EXPORT_SYMBOL(vm_insert_page);
2159 2159
2160 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2160 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2161 unsigned long pfn, pgprot_t prot) 2161 unsigned long pfn, pgprot_t prot)
2162 { 2162 {
2163 struct mm_struct *mm = vma->vm_mm; 2163 struct mm_struct *mm = vma->vm_mm;
2164 int retval; 2164 int retval;
2165 pte_t *pte, entry; 2165 pte_t *pte, entry;
2166 spinlock_t *ptl; 2166 spinlock_t *ptl;
2167 2167
2168 retval = -ENOMEM; 2168 retval = -ENOMEM;
2169 pte = get_locked_pte(mm, addr, &ptl); 2169 pte = get_locked_pte(mm, addr, &ptl);
2170 if (!pte) 2170 if (!pte)
2171 goto out; 2171 goto out;
2172 retval = -EBUSY; 2172 retval = -EBUSY;
2173 if (!pte_none(*pte)) 2173 if (!pte_none(*pte))
2174 goto out_unlock; 2174 goto out_unlock;
2175 2175
2176 /* Ok, finally just insert the thing.. */ 2176 /* Ok, finally just insert the thing.. */
2177 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2177 entry = pte_mkspecial(pfn_pte(pfn, prot));
2178 set_pte_at(mm, addr, pte, entry); 2178 set_pte_at(mm, addr, pte, entry);
2179 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2179 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2180 2180
2181 retval = 0; 2181 retval = 0;
2182 out_unlock: 2182 out_unlock:
2183 pte_unmap_unlock(pte, ptl); 2183 pte_unmap_unlock(pte, ptl);
2184 out: 2184 out:
2185 return retval; 2185 return retval;
2186 } 2186 }
2187 2187
2188 /** 2188 /**
2189 * vm_insert_pfn - insert single pfn into user vma 2189 * vm_insert_pfn - insert single pfn into user vma
2190 * @vma: user vma to map to 2190 * @vma: user vma to map to
2191 * @addr: target user address of this page 2191 * @addr: target user address of this page
2192 * @pfn: source kernel pfn 2192 * @pfn: source kernel pfn
2193 * 2193 *
2194 * Similar to vm_insert_page, this allows drivers to insert individual pages 2194 * Similar to vm_insert_page, this allows drivers to insert individual pages
2195 * they've allocated into a user vma. Same comments apply. 2195 * they've allocated into a user vma. Same comments apply.
2196 * 2196 *
2197 * This function should only be called from a vm_ops->fault handler, and 2197 * This function should only be called from a vm_ops->fault handler, and
2198 * in that case the handler should return NULL. 2198 * in that case the handler should return NULL.
2199 * 2199 *
2200 * vma cannot be a COW mapping. 2200 * vma cannot be a COW mapping.
2201 * 2201 *
2202 * As this is called only for pages that do not currently exist, we 2202 * As this is called only for pages that do not currently exist, we
2203 * do not need to flush old virtual caches or the TLB. 2203 * do not need to flush old virtual caches or the TLB.
2204 */ 2204 */
2205 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2205 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2206 unsigned long pfn) 2206 unsigned long pfn)
2207 { 2207 {
2208 int ret; 2208 int ret;
2209 pgprot_t pgprot = vma->vm_page_prot; 2209 pgprot_t pgprot = vma->vm_page_prot;
2210 /* 2210 /*
2211 * Technically, architectures with pte_special can avoid all these 2211 * Technically, architectures with pte_special can avoid all these
2212 * restrictions (same for remap_pfn_range). However we would like 2212 * restrictions (same for remap_pfn_range). However we would like
2213 * consistency in testing and feature parity among all, so we should 2213 * consistency in testing and feature parity among all, so we should
2214 * try to keep these invariants in place for everybody. 2214 * try to keep these invariants in place for everybody.
2215 */ 2215 */
2216 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2216 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2217 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2217 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2218 (VM_PFNMAP|VM_MIXEDMAP)); 2218 (VM_PFNMAP|VM_MIXEDMAP));
2219 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2219 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2220 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2220 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2221 2221
2222 if (addr < vma->vm_start || addr >= vma->vm_end) 2222 if (addr < vma->vm_start || addr >= vma->vm_end)
2223 return -EFAULT; 2223 return -EFAULT;
2224 if (track_pfn_insert(vma, &pgprot, pfn)) 2224 if (track_pfn_insert(vma, &pgprot, pfn))
2225 return -EINVAL; 2225 return -EINVAL;
2226 2226
2227 ret = insert_pfn(vma, addr, pfn, pgprot); 2227 ret = insert_pfn(vma, addr, pfn, pgprot);
2228 2228
2229 return ret; 2229 return ret;
2230 } 2230 }
2231 EXPORT_SYMBOL(vm_insert_pfn); 2231 EXPORT_SYMBOL(vm_insert_pfn);
2232 2232
2233 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2233 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2234 unsigned long pfn) 2234 unsigned long pfn)
2235 { 2235 {
2236 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2236 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2237 2237
2238 if (addr < vma->vm_start || addr >= vma->vm_end) 2238 if (addr < vma->vm_start || addr >= vma->vm_end)
2239 return -EFAULT; 2239 return -EFAULT;
2240 2240
2241 /* 2241 /*
2242 * If we don't have pte special, then we have to use the pfn_valid() 2242 * If we don't have pte special, then we have to use the pfn_valid()
2243 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2243 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2244 * refcount the page if pfn_valid is true (hence insert_page rather 2244 * refcount the page if pfn_valid is true (hence insert_page rather
2245 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2245 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2246 * without pte special, it would there be refcounted as a normal page. 2246 * without pte special, it would there be refcounted as a normal page.
2247 */ 2247 */
2248 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2248 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2249 struct page *page; 2249 struct page *page;
2250 2250
2251 page = pfn_to_page(pfn); 2251 page = pfn_to_page(pfn);
2252 return insert_page(vma, addr, page, vma->vm_page_prot); 2252 return insert_page(vma, addr, page, vma->vm_page_prot);
2253 } 2253 }
2254 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2254 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2255 } 2255 }
2256 EXPORT_SYMBOL(vm_insert_mixed); 2256 EXPORT_SYMBOL(vm_insert_mixed);
2257 2257
2258 /* 2258 /*
2259 * maps a range of physical memory into the requested pages. the old 2259 * maps a range of physical memory into the requested pages. the old
2260 * mappings are removed. any references to nonexistent pages results 2260 * mappings are removed. any references to nonexistent pages results
2261 * in null mappings (currently treated as "copy-on-access") 2261 * in null mappings (currently treated as "copy-on-access")
2262 */ 2262 */
2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2263 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264 unsigned long addr, unsigned long end, 2264 unsigned long addr, unsigned long end,
2265 unsigned long pfn, pgprot_t prot) 2265 unsigned long pfn, pgprot_t prot)
2266 { 2266 {
2267 pte_t *pte; 2267 pte_t *pte;
2268 spinlock_t *ptl; 2268 spinlock_t *ptl;
2269 2269
2270 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2270 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2271 if (!pte) 2271 if (!pte)
2272 return -ENOMEM; 2272 return -ENOMEM;
2273 arch_enter_lazy_mmu_mode(); 2273 arch_enter_lazy_mmu_mode();
2274 do { 2274 do {
2275 BUG_ON(!pte_none(*pte)); 2275 BUG_ON(!pte_none(*pte));
2276 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2276 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2277 pfn++; 2277 pfn++;
2278 } while (pte++, addr += PAGE_SIZE, addr != end); 2278 } while (pte++, addr += PAGE_SIZE, addr != end);
2279 arch_leave_lazy_mmu_mode(); 2279 arch_leave_lazy_mmu_mode();
2280 pte_unmap_unlock(pte - 1, ptl); 2280 pte_unmap_unlock(pte - 1, ptl);
2281 return 0; 2281 return 0;
2282 } 2282 }
2283 2283
2284 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2284 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2285 unsigned long addr, unsigned long end, 2285 unsigned long addr, unsigned long end,
2286 unsigned long pfn, pgprot_t prot) 2286 unsigned long pfn, pgprot_t prot)
2287 { 2287 {
2288 pmd_t *pmd; 2288 pmd_t *pmd;
2289 unsigned long next; 2289 unsigned long next;
2290 2290
2291 pfn -= addr >> PAGE_SHIFT; 2291 pfn -= addr >> PAGE_SHIFT;
2292 pmd = pmd_alloc(mm, pud, addr); 2292 pmd = pmd_alloc(mm, pud, addr);
2293 if (!pmd) 2293 if (!pmd)
2294 return -ENOMEM; 2294 return -ENOMEM;
2295 VM_BUG_ON(pmd_trans_huge(*pmd)); 2295 VM_BUG_ON(pmd_trans_huge(*pmd));
2296 do { 2296 do {
2297 next = pmd_addr_end(addr, end); 2297 next = pmd_addr_end(addr, end);
2298 if (remap_pte_range(mm, pmd, addr, next, 2298 if (remap_pte_range(mm, pmd, addr, next,
2299 pfn + (addr >> PAGE_SHIFT), prot)) 2299 pfn + (addr >> PAGE_SHIFT), prot))
2300 return -ENOMEM; 2300 return -ENOMEM;
2301 } while (pmd++, addr = next, addr != end); 2301 } while (pmd++, addr = next, addr != end);
2302 return 0; 2302 return 0;
2303 } 2303 }
2304 2304
2305 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2305 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2306 unsigned long addr, unsigned long end, 2306 unsigned long addr, unsigned long end,
2307 unsigned long pfn, pgprot_t prot) 2307 unsigned long pfn, pgprot_t prot)
2308 { 2308 {
2309 pud_t *pud; 2309 pud_t *pud;
2310 unsigned long next; 2310 unsigned long next;
2311 2311
2312 pfn -= addr >> PAGE_SHIFT; 2312 pfn -= addr >> PAGE_SHIFT;
2313 pud = pud_alloc(mm, pgd, addr); 2313 pud = pud_alloc(mm, pgd, addr);
2314 if (!pud) 2314 if (!pud)
2315 return -ENOMEM; 2315 return -ENOMEM;
2316 do { 2316 do {
2317 next = pud_addr_end(addr, end); 2317 next = pud_addr_end(addr, end);
2318 if (remap_pmd_range(mm, pud, addr, next, 2318 if (remap_pmd_range(mm, pud, addr, next,
2319 pfn + (addr >> PAGE_SHIFT), prot)) 2319 pfn + (addr >> PAGE_SHIFT), prot))
2320 return -ENOMEM; 2320 return -ENOMEM;
2321 } while (pud++, addr = next, addr != end); 2321 } while (pud++, addr = next, addr != end);
2322 return 0; 2322 return 0;
2323 } 2323 }
2324 2324
2325 /** 2325 /**
2326 * remap_pfn_range - remap kernel memory to userspace 2326 * remap_pfn_range - remap kernel memory to userspace
2327 * @vma: user vma to map to 2327 * @vma: user vma to map to
2328 * @addr: target user address to start at 2328 * @addr: target user address to start at
2329 * @pfn: physical address of kernel memory 2329 * @pfn: physical address of kernel memory
2330 * @size: size of map area 2330 * @size: size of map area
2331 * @prot: page protection flags for this mapping 2331 * @prot: page protection flags for this mapping
2332 * 2332 *
2333 * Note: this is only safe if the mm semaphore is held when called. 2333 * Note: this is only safe if the mm semaphore is held when called.
2334 */ 2334 */
2335 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2335 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2336 unsigned long pfn, unsigned long size, pgprot_t prot) 2336 unsigned long pfn, unsigned long size, pgprot_t prot)
2337 { 2337 {
2338 pgd_t *pgd; 2338 pgd_t *pgd;
2339 unsigned long next; 2339 unsigned long next;
2340 unsigned long end = addr + PAGE_ALIGN(size); 2340 unsigned long end = addr + PAGE_ALIGN(size);
2341 struct mm_struct *mm = vma->vm_mm; 2341 struct mm_struct *mm = vma->vm_mm;
2342 int err; 2342 int err;
2343 2343
2344 /* 2344 /*
2345 * Physically remapped pages are special. Tell the 2345 * Physically remapped pages are special. Tell the
2346 * rest of the world about it: 2346 * rest of the world about it:
2347 * VM_IO tells people not to look at these pages 2347 * VM_IO tells people not to look at these pages
2348 * (accesses can have side effects). 2348 * (accesses can have side effects).
2349 * VM_PFNMAP tells the core MM that the base pages are just 2349 * VM_PFNMAP tells the core MM that the base pages are just
2350 * raw PFN mappings, and do not have a "struct page" associated 2350 * raw PFN mappings, and do not have a "struct page" associated
2351 * with them. 2351 * with them.
2352 * VM_DONTEXPAND 2352 * VM_DONTEXPAND
2353 * Disable vma merging and expanding with mremap(). 2353 * Disable vma merging and expanding with mremap().
2354 * VM_DONTDUMP 2354 * VM_DONTDUMP
2355 * Omit vma from core dump, even when VM_IO turned off. 2355 * Omit vma from core dump, even when VM_IO turned off.
2356 * 2356 *
2357 * There's a horrible special case to handle copy-on-write 2357 * There's a horrible special case to handle copy-on-write
2358 * behaviour that some programs depend on. We mark the "original" 2358 * behaviour that some programs depend on. We mark the "original"
2359 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2359 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2360 * See vm_normal_page() for details. 2360 * See vm_normal_page() for details.
2361 */ 2361 */
2362 if (is_cow_mapping(vma->vm_flags)) { 2362 if (is_cow_mapping(vma->vm_flags)) {
2363 if (addr != vma->vm_start || end != vma->vm_end) 2363 if (addr != vma->vm_start || end != vma->vm_end)
2364 return -EINVAL; 2364 return -EINVAL;
2365 vma->vm_pgoff = pfn; 2365 vma->vm_pgoff = pfn;
2366 } 2366 }
2367 2367
2368 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2368 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2369 if (err) 2369 if (err)
2370 return -EINVAL; 2370 return -EINVAL;
2371 2371
2372 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2372 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2373 2373
2374 BUG_ON(addr >= end); 2374 BUG_ON(addr >= end);
2375 pfn -= addr >> PAGE_SHIFT; 2375 pfn -= addr >> PAGE_SHIFT;
2376 pgd = pgd_offset(mm, addr); 2376 pgd = pgd_offset(mm, addr);
2377 flush_cache_range(vma, addr, end); 2377 flush_cache_range(vma, addr, end);
2378 do { 2378 do {
2379 next = pgd_addr_end(addr, end); 2379 next = pgd_addr_end(addr, end);
2380 err = remap_pud_range(mm, pgd, addr, next, 2380 err = remap_pud_range(mm, pgd, addr, next,
2381 pfn + (addr >> PAGE_SHIFT), prot); 2381 pfn + (addr >> PAGE_SHIFT), prot);
2382 if (err) 2382 if (err)
2383 break; 2383 break;
2384 } while (pgd++, addr = next, addr != end); 2384 } while (pgd++, addr = next, addr != end);
2385 2385
2386 if (err) 2386 if (err)
2387 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2387 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2388 2388
2389 return err; 2389 return err;
2390 } 2390 }
2391 EXPORT_SYMBOL(remap_pfn_range); 2391 EXPORT_SYMBOL(remap_pfn_range);
2392 2392
2393 /** 2393 /**
2394 * vm_iomap_memory - remap memory to userspace 2394 * vm_iomap_memory - remap memory to userspace
2395 * @vma: user vma to map to 2395 * @vma: user vma to map to
2396 * @start: start of area 2396 * @start: start of area
2397 * @len: size of area 2397 * @len: size of area
2398 * 2398 *
2399 * This is a simplified io_remap_pfn_range() for common driver use. The 2399 * This is a simplified io_remap_pfn_range() for common driver use. The
2400 * driver just needs to give us the physical memory range to be mapped, 2400 * driver just needs to give us the physical memory range to be mapped,
2401 * we'll figure out the rest from the vma information. 2401 * we'll figure out the rest from the vma information.
2402 * 2402 *
2403 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2403 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2404 * whatever write-combining details or similar. 2404 * whatever write-combining details or similar.
2405 */ 2405 */
2406 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2406 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2407 { 2407 {
2408 unsigned long vm_len, pfn, pages; 2408 unsigned long vm_len, pfn, pages;
2409 2409
2410 /* Check that the physical memory area passed in looks valid */ 2410 /* Check that the physical memory area passed in looks valid */
2411 if (start + len < start) 2411 if (start + len < start)
2412 return -EINVAL; 2412 return -EINVAL;
2413 /* 2413 /*
2414 * You *really* shouldn't map things that aren't page-aligned, 2414 * You *really* shouldn't map things that aren't page-aligned,
2415 * but we've historically allowed it because IO memory might 2415 * but we've historically allowed it because IO memory might
2416 * just have smaller alignment. 2416 * just have smaller alignment.
2417 */ 2417 */
2418 len += start & ~PAGE_MASK; 2418 len += start & ~PAGE_MASK;
2419 pfn = start >> PAGE_SHIFT; 2419 pfn = start >> PAGE_SHIFT;
2420 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2420 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2421 if (pfn + pages < pfn) 2421 if (pfn + pages < pfn)
2422 return -EINVAL; 2422 return -EINVAL;
2423 2423
2424 /* We start the mapping 'vm_pgoff' pages into the area */ 2424 /* We start the mapping 'vm_pgoff' pages into the area */
2425 if (vma->vm_pgoff > pages) 2425 if (vma->vm_pgoff > pages)
2426 return -EINVAL; 2426 return -EINVAL;
2427 pfn += vma->vm_pgoff; 2427 pfn += vma->vm_pgoff;
2428 pages -= vma->vm_pgoff; 2428 pages -= vma->vm_pgoff;
2429 2429
2430 /* Can we fit all of the mapping? */ 2430 /* Can we fit all of the mapping? */
2431 vm_len = vma->vm_end - vma->vm_start; 2431 vm_len = vma->vm_end - vma->vm_start;
2432 if (vm_len >> PAGE_SHIFT > pages) 2432 if (vm_len >> PAGE_SHIFT > pages)
2433 return -EINVAL; 2433 return -EINVAL;
2434 2434
2435 /* Ok, let it rip */ 2435 /* Ok, let it rip */
2436 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2436 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2437 } 2437 }
2438 EXPORT_SYMBOL(vm_iomap_memory); 2438 EXPORT_SYMBOL(vm_iomap_memory);
2439 2439
2440 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2440 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2441 unsigned long addr, unsigned long end, 2441 unsigned long addr, unsigned long end,
2442 pte_fn_t fn, void *data) 2442 pte_fn_t fn, void *data)
2443 { 2443 {
2444 pte_t *pte; 2444 pte_t *pte;
2445 int err; 2445 int err;
2446 pgtable_t token; 2446 pgtable_t token;
2447 spinlock_t *uninitialized_var(ptl); 2447 spinlock_t *uninitialized_var(ptl);
2448 2448
2449 pte = (mm == &init_mm) ? 2449 pte = (mm == &init_mm) ?
2450 pte_alloc_kernel(pmd, addr) : 2450 pte_alloc_kernel(pmd, addr) :
2451 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2451 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2452 if (!pte) 2452 if (!pte)
2453 return -ENOMEM; 2453 return -ENOMEM;
2454 2454
2455 BUG_ON(pmd_huge(*pmd)); 2455 BUG_ON(pmd_huge(*pmd));
2456 2456
2457 arch_enter_lazy_mmu_mode(); 2457 arch_enter_lazy_mmu_mode();
2458 2458
2459 token = pmd_pgtable(*pmd); 2459 token = pmd_pgtable(*pmd);
2460 2460
2461 do { 2461 do {
2462 err = fn(pte++, token, addr, data); 2462 err = fn(pte++, token, addr, data);
2463 if (err) 2463 if (err)
2464 break; 2464 break;
2465 } while (addr += PAGE_SIZE, addr != end); 2465 } while (addr += PAGE_SIZE, addr != end);
2466 2466
2467 arch_leave_lazy_mmu_mode(); 2467 arch_leave_lazy_mmu_mode();
2468 2468
2469 if (mm != &init_mm) 2469 if (mm != &init_mm)
2470 pte_unmap_unlock(pte-1, ptl); 2470 pte_unmap_unlock(pte-1, ptl);
2471 return err; 2471 return err;
2472 } 2472 }
2473 2473
2474 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2474 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2475 unsigned long addr, unsigned long end, 2475 unsigned long addr, unsigned long end,
2476 pte_fn_t fn, void *data) 2476 pte_fn_t fn, void *data)
2477 { 2477 {
2478 pmd_t *pmd; 2478 pmd_t *pmd;
2479 unsigned long next; 2479 unsigned long next;
2480 int err; 2480 int err;
2481 2481
2482 BUG_ON(pud_huge(*pud)); 2482 BUG_ON(pud_huge(*pud));
2483 2483
2484 pmd = pmd_alloc(mm, pud, addr); 2484 pmd = pmd_alloc(mm, pud, addr);
2485 if (!pmd) 2485 if (!pmd)
2486 return -ENOMEM; 2486 return -ENOMEM;
2487 do { 2487 do {
2488 next = pmd_addr_end(addr, end); 2488 next = pmd_addr_end(addr, end);
2489 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2489 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2490 if (err) 2490 if (err)
2491 break; 2491 break;
2492 } while (pmd++, addr = next, addr != end); 2492 } while (pmd++, addr = next, addr != end);
2493 return err; 2493 return err;
2494 } 2494 }
2495 2495
2496 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2496 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2497 unsigned long addr, unsigned long end, 2497 unsigned long addr, unsigned long end,
2498 pte_fn_t fn, void *data) 2498 pte_fn_t fn, void *data)
2499 { 2499 {
2500 pud_t *pud; 2500 pud_t *pud;
2501 unsigned long next; 2501 unsigned long next;
2502 int err; 2502 int err;
2503 2503
2504 pud = pud_alloc(mm, pgd, addr); 2504 pud = pud_alloc(mm, pgd, addr);
2505 if (!pud) 2505 if (!pud)
2506 return -ENOMEM; 2506 return -ENOMEM;
2507 do { 2507 do {
2508 next = pud_addr_end(addr, end); 2508 next = pud_addr_end(addr, end);
2509 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2509 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2510 if (err) 2510 if (err)
2511 break; 2511 break;
2512 } while (pud++, addr = next, addr != end); 2512 } while (pud++, addr = next, addr != end);
2513 return err; 2513 return err;
2514 } 2514 }
2515 2515
2516 /* 2516 /*
2517 * Scan a region of virtual memory, filling in page tables as necessary 2517 * Scan a region of virtual memory, filling in page tables as necessary
2518 * and calling a provided function on each leaf page table. 2518 * and calling a provided function on each leaf page table.
2519 */ 2519 */
2520 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2520 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2521 unsigned long size, pte_fn_t fn, void *data) 2521 unsigned long size, pte_fn_t fn, void *data)
2522 { 2522 {
2523 pgd_t *pgd; 2523 pgd_t *pgd;
2524 unsigned long next; 2524 unsigned long next;
2525 unsigned long end = addr + size; 2525 unsigned long end = addr + size;
2526 int err; 2526 int err;
2527 2527
2528 BUG_ON(addr >= end); 2528 BUG_ON(addr >= end);
2529 pgd = pgd_offset(mm, addr); 2529 pgd = pgd_offset(mm, addr);
2530 do { 2530 do {
2531 next = pgd_addr_end(addr, end); 2531 next = pgd_addr_end(addr, end);
2532 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2532 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2533 if (err) 2533 if (err)
2534 break; 2534 break;
2535 } while (pgd++, addr = next, addr != end); 2535 } while (pgd++, addr = next, addr != end);
2536 2536
2537 return err; 2537 return err;
2538 } 2538 }
2539 EXPORT_SYMBOL_GPL(apply_to_page_range); 2539 EXPORT_SYMBOL_GPL(apply_to_page_range);
2540 2540
2541 /* 2541 /*
2542 * handle_pte_fault chooses page fault handler according to an entry 2542 * handle_pte_fault chooses page fault handler according to an entry
2543 * which was read non-atomically. Before making any commitment, on 2543 * which was read non-atomically. Before making any commitment, on
2544 * those architectures or configurations (e.g. i386 with PAE) which 2544 * those architectures or configurations (e.g. i386 with PAE) which
2545 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2545 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2546 * must check under lock before unmapping the pte and proceeding 2546 * must check under lock before unmapping the pte and proceeding
2547 * (but do_wp_page is only called after already making such a check; 2547 * (but do_wp_page is only called after already making such a check;
2548 * and do_anonymous_page can safely check later on). 2548 * and do_anonymous_page can safely check later on).
2549 */ 2549 */
2550 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2550 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2551 pte_t *page_table, pte_t orig_pte) 2551 pte_t *page_table, pte_t orig_pte)
2552 { 2552 {
2553 int same = 1; 2553 int same = 1;
2554 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2554 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2555 if (sizeof(pte_t) > sizeof(unsigned long)) { 2555 if (sizeof(pte_t) > sizeof(unsigned long)) {
2556 spinlock_t *ptl = pte_lockptr(mm, pmd); 2556 spinlock_t *ptl = pte_lockptr(mm, pmd);
2557 spin_lock(ptl); 2557 spin_lock(ptl);
2558 same = pte_same(*page_table, orig_pte); 2558 same = pte_same(*page_table, orig_pte);
2559 spin_unlock(ptl); 2559 spin_unlock(ptl);
2560 } 2560 }
2561 #endif 2561 #endif
2562 pte_unmap(page_table); 2562 pte_unmap(page_table);
2563 return same; 2563 return same;
2564 } 2564 }
2565 2565
2566 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2566 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2567 { 2567 {
2568 /* 2568 /*
2569 * If the source page was a PFN mapping, we don't have 2569 * If the source page was a PFN mapping, we don't have
2570 * a "struct page" for it. We do a best-effort copy by 2570 * a "struct page" for it. We do a best-effort copy by
2571 * just copying from the original user address. If that 2571 * just copying from the original user address. If that
2572 * fails, we just zero-fill it. Live with it. 2572 * fails, we just zero-fill it. Live with it.
2573 */ 2573 */
2574 if (unlikely(!src)) { 2574 if (unlikely(!src)) {
2575 void *kaddr = kmap_atomic(dst); 2575 void *kaddr = kmap_atomic(dst);
2576 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2576 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2577 2577
2578 /* 2578 /*
2579 * This really shouldn't fail, because the page is there 2579 * This really shouldn't fail, because the page is there
2580 * in the page tables. But it might just be unreadable, 2580 * in the page tables. But it might just be unreadable,
2581 * in which case we just give up and fill the result with 2581 * in which case we just give up and fill the result with
2582 * zeroes. 2582 * zeroes.
2583 */ 2583 */
2584 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2584 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2585 clear_page(kaddr); 2585 clear_page(kaddr);
2586 kunmap_atomic(kaddr); 2586 kunmap_atomic(kaddr);
2587 flush_dcache_page(dst); 2587 flush_dcache_page(dst);
2588 } else 2588 } else
2589 copy_user_highpage(dst, src, va, vma); 2589 copy_user_highpage(dst, src, va, vma);
2590 } 2590 }
2591 2591
2592 /* 2592 /*
2593 * This routine handles present pages, when users try to write 2593 * This routine handles present pages, when users try to write
2594 * to a shared page. It is done by copying the page to a new address 2594 * to a shared page. It is done by copying the page to a new address
2595 * and decrementing the shared-page counter for the old page. 2595 * and decrementing the shared-page counter for the old page.
2596 * 2596 *
2597 * Note that this routine assumes that the protection checks have been 2597 * Note that this routine assumes that the protection checks have been
2598 * done by the caller (the low-level page fault routine in most cases). 2598 * done by the caller (the low-level page fault routine in most cases).
2599 * Thus we can safely just mark it writable once we've done any necessary 2599 * Thus we can safely just mark it writable once we've done any necessary
2600 * COW. 2600 * COW.
2601 * 2601 *
2602 * We also mark the page dirty at this point even though the page will 2602 * We also mark the page dirty at this point even though the page will
2603 * change only once the write actually happens. This avoids a few races, 2603 * change only once the write actually happens. This avoids a few races,
2604 * and potentially makes it more efficient. 2604 * and potentially makes it more efficient.
2605 * 2605 *
2606 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2606 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2607 * but allow concurrent faults), with pte both mapped and locked. 2607 * but allow concurrent faults), with pte both mapped and locked.
2608 * We return with mmap_sem still held, but pte unmapped and unlocked. 2608 * We return with mmap_sem still held, but pte unmapped and unlocked.
2609 */ 2609 */
2610 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2610 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2611 unsigned long address, pte_t *page_table, pmd_t *pmd, 2611 unsigned long address, pte_t *page_table, pmd_t *pmd,
2612 spinlock_t *ptl, pte_t orig_pte) 2612 spinlock_t *ptl, pte_t orig_pte)
2613 __releases(ptl) 2613 __releases(ptl)
2614 { 2614 {
2615 struct page *old_page, *new_page = NULL; 2615 struct page *old_page, *new_page = NULL;
2616 pte_t entry; 2616 pte_t entry;
2617 int ret = 0; 2617 int ret = 0;
2618 int page_mkwrite = 0; 2618 int page_mkwrite = 0;
2619 struct page *dirty_page = NULL; 2619 struct page *dirty_page = NULL;
2620 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2620 unsigned long mmun_start = 0; /* For mmu_notifiers */
2621 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2621 unsigned long mmun_end = 0; /* For mmu_notifiers */
2622 2622
2623 old_page = vm_normal_page(vma, address, orig_pte); 2623 old_page = vm_normal_page(vma, address, orig_pte);
2624 if (!old_page) { 2624 if (!old_page) {
2625 /* 2625 /*
2626 * VM_MIXEDMAP !pfn_valid() case 2626 * VM_MIXEDMAP !pfn_valid() case
2627 * 2627 *
2628 * We should not cow pages in a shared writeable mapping. 2628 * We should not cow pages in a shared writeable mapping.
2629 * Just mark the pages writable as we can't do any dirty 2629 * Just mark the pages writable as we can't do any dirty
2630 * accounting on raw pfn maps. 2630 * accounting on raw pfn maps.
2631 */ 2631 */
2632 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2632 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2633 (VM_WRITE|VM_SHARED)) 2633 (VM_WRITE|VM_SHARED))
2634 goto reuse; 2634 goto reuse;
2635 goto gotten; 2635 goto gotten;
2636 } 2636 }
2637 2637
2638 /* 2638 /*
2639 * Take out anonymous pages first, anonymous shared vmas are 2639 * Take out anonymous pages first, anonymous shared vmas are
2640 * not dirty accountable. 2640 * not dirty accountable.
2641 */ 2641 */
2642 if (PageAnon(old_page) && !PageKsm(old_page)) { 2642 if (PageAnon(old_page) && !PageKsm(old_page)) {
2643 if (!trylock_page(old_page)) { 2643 if (!trylock_page(old_page)) {
2644 page_cache_get(old_page); 2644 page_cache_get(old_page);
2645 pte_unmap_unlock(page_table, ptl); 2645 pte_unmap_unlock(page_table, ptl);
2646 lock_page(old_page); 2646 lock_page(old_page);
2647 page_table = pte_offset_map_lock(mm, pmd, address, 2647 page_table = pte_offset_map_lock(mm, pmd, address,
2648 &ptl); 2648 &ptl);
2649 if (!pte_same(*page_table, orig_pte)) { 2649 if (!pte_same(*page_table, orig_pte)) {
2650 unlock_page(old_page); 2650 unlock_page(old_page);
2651 goto unlock; 2651 goto unlock;
2652 } 2652 }
2653 page_cache_release(old_page); 2653 page_cache_release(old_page);
2654 } 2654 }
2655 if (reuse_swap_page(old_page)) { 2655 if (reuse_swap_page(old_page)) {
2656 /* 2656 /*
2657 * The page is all ours. Move it to our anon_vma so 2657 * The page is all ours. Move it to our anon_vma so
2658 * the rmap code will not search our parent or siblings. 2658 * the rmap code will not search our parent or siblings.
2659 * Protected against the rmap code by the page lock. 2659 * Protected against the rmap code by the page lock.
2660 */ 2660 */
2661 page_move_anon_rmap(old_page, vma, address); 2661 page_move_anon_rmap(old_page, vma, address);
2662 unlock_page(old_page); 2662 unlock_page(old_page);
2663 goto reuse; 2663 goto reuse;
2664 } 2664 }
2665 unlock_page(old_page); 2665 unlock_page(old_page);
2666 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2666 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2667 (VM_WRITE|VM_SHARED))) { 2667 (VM_WRITE|VM_SHARED))) {
2668 /* 2668 /*
2669 * Only catch write-faults on shared writable pages, 2669 * Only catch write-faults on shared writable pages,
2670 * read-only shared pages can get COWed by 2670 * read-only shared pages can get COWed by
2671 * get_user_pages(.write=1, .force=1). 2671 * get_user_pages(.write=1, .force=1).
2672 */ 2672 */
2673 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2673 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2674 struct vm_fault vmf; 2674 struct vm_fault vmf;
2675 int tmp; 2675 int tmp;
2676 2676
2677 vmf.virtual_address = (void __user *)(address & 2677 vmf.virtual_address = (void __user *)(address &
2678 PAGE_MASK); 2678 PAGE_MASK);
2679 vmf.pgoff = old_page->index; 2679 vmf.pgoff = old_page->index;
2680 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2680 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2681 vmf.page = old_page; 2681 vmf.page = old_page;
2682 2682
2683 /* 2683 /*
2684 * Notify the address space that the page is about to 2684 * Notify the address space that the page is about to
2685 * become writable so that it can prohibit this or wait 2685 * become writable so that it can prohibit this or wait
2686 * for the page to get into an appropriate state. 2686 * for the page to get into an appropriate state.
2687 * 2687 *
2688 * We do this without the lock held, so that it can 2688 * We do this without the lock held, so that it can
2689 * sleep if it needs to. 2689 * sleep if it needs to.
2690 */ 2690 */
2691 page_cache_get(old_page); 2691 page_cache_get(old_page);
2692 pte_unmap_unlock(page_table, ptl); 2692 pte_unmap_unlock(page_table, ptl);
2693 2693
2694 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2694 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2695 if (unlikely(tmp & 2695 if (unlikely(tmp &
2696 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2696 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2697 ret = tmp; 2697 ret = tmp;
2698 goto unwritable_page; 2698 goto unwritable_page;
2699 } 2699 }
2700 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2700 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2701 lock_page(old_page); 2701 lock_page(old_page);
2702 if (!old_page->mapping) { 2702 if (!old_page->mapping) {
2703 ret = 0; /* retry the fault */ 2703 ret = 0; /* retry the fault */
2704 unlock_page(old_page); 2704 unlock_page(old_page);
2705 goto unwritable_page; 2705 goto unwritable_page;
2706 } 2706 }
2707 } else 2707 } else
2708 VM_BUG_ON(!PageLocked(old_page)); 2708 VM_BUG_ON(!PageLocked(old_page));
2709 2709
2710 /* 2710 /*
2711 * Since we dropped the lock we need to revalidate 2711 * Since we dropped the lock we need to revalidate
2712 * the PTE as someone else may have changed it. If 2712 * the PTE as someone else may have changed it. If
2713 * they did, we just return, as we can count on the 2713 * they did, we just return, as we can count on the
2714 * MMU to tell us if they didn't also make it writable. 2714 * MMU to tell us if they didn't also make it writable.
2715 */ 2715 */
2716 page_table = pte_offset_map_lock(mm, pmd, address, 2716 page_table = pte_offset_map_lock(mm, pmd, address,
2717 &ptl); 2717 &ptl);
2718 if (!pte_same(*page_table, orig_pte)) { 2718 if (!pte_same(*page_table, orig_pte)) {
2719 unlock_page(old_page); 2719 unlock_page(old_page);
2720 goto unlock; 2720 goto unlock;
2721 } 2721 }
2722 2722
2723 page_mkwrite = 1; 2723 page_mkwrite = 1;
2724 } 2724 }
2725 dirty_page = old_page; 2725 dirty_page = old_page;
2726 get_page(dirty_page); 2726 get_page(dirty_page);
2727 2727
2728 reuse: 2728 reuse:
2729 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2729 flush_cache_page(vma, address, pte_pfn(orig_pte));
2730 entry = pte_mkyoung(orig_pte); 2730 entry = pte_mkyoung(orig_pte);
2731 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2731 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2732 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2732 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2733 update_mmu_cache(vma, address, page_table); 2733 update_mmu_cache(vma, address, page_table);
2734 pte_unmap_unlock(page_table, ptl); 2734 pte_unmap_unlock(page_table, ptl);
2735 ret |= VM_FAULT_WRITE; 2735 ret |= VM_FAULT_WRITE;
2736 2736
2737 if (!dirty_page) 2737 if (!dirty_page)
2738 return ret; 2738 return ret;
2739 2739
2740 /* 2740 /*
2741 * Yes, Virginia, this is actually required to prevent a race 2741 * Yes, Virginia, this is actually required to prevent a race
2742 * with clear_page_dirty_for_io() from clearing the page dirty 2742 * with clear_page_dirty_for_io() from clearing the page dirty
2743 * bit after it clear all dirty ptes, but before a racing 2743 * bit after it clear all dirty ptes, but before a racing
2744 * do_wp_page installs a dirty pte. 2744 * do_wp_page installs a dirty pte.
2745 * 2745 *
2746 * __do_fault is protected similarly. 2746 * __do_fault is protected similarly.
2747 */ 2747 */
2748 if (!page_mkwrite) { 2748 if (!page_mkwrite) {
2749 wait_on_page_locked(dirty_page); 2749 wait_on_page_locked(dirty_page);
2750 set_page_dirty_balance(dirty_page, page_mkwrite); 2750 set_page_dirty_balance(dirty_page, page_mkwrite);
2751 /* file_update_time outside page_lock */ 2751 /* file_update_time outside page_lock */
2752 if (vma->vm_file) 2752 if (vma->vm_file)
2753 file_update_time(vma->vm_file); 2753 file_update_time(vma->vm_file);
2754 } 2754 }
2755 put_page(dirty_page); 2755 put_page(dirty_page);
2756 if (page_mkwrite) { 2756 if (page_mkwrite) {
2757 struct address_space *mapping = dirty_page->mapping; 2757 struct address_space *mapping = dirty_page->mapping;
2758 2758
2759 set_page_dirty(dirty_page); 2759 set_page_dirty(dirty_page);
2760 unlock_page(dirty_page); 2760 unlock_page(dirty_page);
2761 page_cache_release(dirty_page); 2761 page_cache_release(dirty_page);
2762 if (mapping) { 2762 if (mapping) {
2763 /* 2763 /*
2764 * Some device drivers do not set page.mapping 2764 * Some device drivers do not set page.mapping
2765 * but still dirty their pages 2765 * but still dirty their pages
2766 */ 2766 */
2767 balance_dirty_pages_ratelimited(mapping); 2767 balance_dirty_pages_ratelimited(mapping);
2768 } 2768 }
2769 } 2769 }
2770 2770
2771 return ret; 2771 return ret;
2772 } 2772 }
2773 2773
2774 /* 2774 /*
2775 * Ok, we need to copy. Oh, well.. 2775 * Ok, we need to copy. Oh, well..
2776 */ 2776 */
2777 page_cache_get(old_page); 2777 page_cache_get(old_page);
2778 gotten: 2778 gotten:
2779 pte_unmap_unlock(page_table, ptl); 2779 pte_unmap_unlock(page_table, ptl);
2780 2780
2781 if (unlikely(anon_vma_prepare(vma))) 2781 if (unlikely(anon_vma_prepare(vma)))
2782 goto oom; 2782 goto oom;
2783 2783
2784 if (is_zero_pfn(pte_pfn(orig_pte))) { 2784 if (is_zero_pfn(pte_pfn(orig_pte))) {
2785 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2785 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2786 if (!new_page) 2786 if (!new_page)
2787 goto oom; 2787 goto oom;
2788 } else { 2788 } else {
2789 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2789 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2790 if (!new_page) 2790 if (!new_page)
2791 goto oom; 2791 goto oom;
2792 cow_user_page(new_page, old_page, address, vma); 2792 cow_user_page(new_page, old_page, address, vma);
2793 } 2793 }
2794 __SetPageUptodate(new_page); 2794 __SetPageUptodate(new_page);
2795 2795
2796 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2796 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2797 goto oom_free_new; 2797 goto oom_free_new;
2798 2798
2799 mmun_start = address & PAGE_MASK; 2799 mmun_start = address & PAGE_MASK;
2800 mmun_end = mmun_start + PAGE_SIZE; 2800 mmun_end = mmun_start + PAGE_SIZE;
2801 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2801 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2802 2802
2803 /* 2803 /*
2804 * Re-check the pte - we dropped the lock 2804 * Re-check the pte - we dropped the lock
2805 */ 2805 */
2806 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2806 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2807 if (likely(pte_same(*page_table, orig_pte))) { 2807 if (likely(pte_same(*page_table, orig_pte))) {
2808 if (old_page) { 2808 if (old_page) {
2809 if (!PageAnon(old_page)) { 2809 if (!PageAnon(old_page)) {
2810 dec_mm_counter_fast(mm, MM_FILEPAGES); 2810 dec_mm_counter_fast(mm, MM_FILEPAGES);
2811 inc_mm_counter_fast(mm, MM_ANONPAGES); 2811 inc_mm_counter_fast(mm, MM_ANONPAGES);
2812 } 2812 }
2813 } else 2813 } else
2814 inc_mm_counter_fast(mm, MM_ANONPAGES); 2814 inc_mm_counter_fast(mm, MM_ANONPAGES);
2815 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2815 flush_cache_page(vma, address, pte_pfn(orig_pte));
2816 entry = mk_pte(new_page, vma->vm_page_prot); 2816 entry = mk_pte(new_page, vma->vm_page_prot);
2817 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2817 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2818 /* 2818 /*
2819 * Clear the pte entry and flush it first, before updating the 2819 * Clear the pte entry and flush it first, before updating the
2820 * pte with the new entry. This will avoid a race condition 2820 * pte with the new entry. This will avoid a race condition
2821 * seen in the presence of one thread doing SMC and another 2821 * seen in the presence of one thread doing SMC and another
2822 * thread doing COW. 2822 * thread doing COW.
2823 */ 2823 */
2824 ptep_clear_flush(vma, address, page_table); 2824 ptep_clear_flush(vma, address, page_table);
2825 page_add_new_anon_rmap(new_page, vma, address); 2825 page_add_new_anon_rmap(new_page, vma, address);
2826 /* 2826 /*
2827 * We call the notify macro here because, when using secondary 2827 * We call the notify macro here because, when using secondary
2828 * mmu page tables (such as kvm shadow page tables), we want the 2828 * mmu page tables (such as kvm shadow page tables), we want the
2829 * new page to be mapped directly into the secondary page table. 2829 * new page to be mapped directly into the secondary page table.
2830 */ 2830 */
2831 set_pte_at_notify(mm, address, page_table, entry); 2831 set_pte_at_notify(mm, address, page_table, entry);
2832 update_mmu_cache(vma, address, page_table); 2832 update_mmu_cache(vma, address, page_table);
2833 if (old_page) { 2833 if (old_page) {
2834 /* 2834 /*
2835 * Only after switching the pte to the new page may 2835 * Only after switching the pte to the new page may
2836 * we remove the mapcount here. Otherwise another 2836 * we remove the mapcount here. Otherwise another
2837 * process may come and find the rmap count decremented 2837 * process may come and find the rmap count decremented
2838 * before the pte is switched to the new page, and 2838 * before the pte is switched to the new page, and
2839 * "reuse" the old page writing into it while our pte 2839 * "reuse" the old page writing into it while our pte
2840 * here still points into it and can be read by other 2840 * here still points into it and can be read by other
2841 * threads. 2841 * threads.
2842 * 2842 *
2843 * The critical issue is to order this 2843 * The critical issue is to order this
2844 * page_remove_rmap with the ptp_clear_flush above. 2844 * page_remove_rmap with the ptp_clear_flush above.
2845 * Those stores are ordered by (if nothing else,) 2845 * Those stores are ordered by (if nothing else,)
2846 * the barrier present in the atomic_add_negative 2846 * the barrier present in the atomic_add_negative
2847 * in page_remove_rmap. 2847 * in page_remove_rmap.
2848 * 2848 *
2849 * Then the TLB flush in ptep_clear_flush ensures that 2849 * Then the TLB flush in ptep_clear_flush ensures that
2850 * no process can access the old page before the 2850 * no process can access the old page before the
2851 * decremented mapcount is visible. And the old page 2851 * decremented mapcount is visible. And the old page
2852 * cannot be reused until after the decremented 2852 * cannot be reused until after the decremented
2853 * mapcount is visible. So transitively, TLBs to 2853 * mapcount is visible. So transitively, TLBs to
2854 * old page will be flushed before it can be reused. 2854 * old page will be flushed before it can be reused.
2855 */ 2855 */
2856 page_remove_rmap(old_page); 2856 page_remove_rmap(old_page);
2857 } 2857 }
2858 2858
2859 /* Free the old page.. */ 2859 /* Free the old page.. */
2860 new_page = old_page; 2860 new_page = old_page;
2861 ret |= VM_FAULT_WRITE; 2861 ret |= VM_FAULT_WRITE;
2862 } else 2862 } else
2863 mem_cgroup_uncharge_page(new_page); 2863 mem_cgroup_uncharge_page(new_page);
2864 2864
2865 if (new_page) 2865 if (new_page)
2866 page_cache_release(new_page); 2866 page_cache_release(new_page);
2867 unlock: 2867 unlock:
2868 pte_unmap_unlock(page_table, ptl); 2868 pte_unmap_unlock(page_table, ptl);
2869 if (mmun_end > mmun_start) 2869 if (mmun_end > mmun_start)
2870 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2870 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2871 if (old_page) { 2871 if (old_page) {
2872 /* 2872 /*
2873 * Don't let another task, with possibly unlocked vma, 2873 * Don't let another task, with possibly unlocked vma,
2874 * keep the mlocked page. 2874 * keep the mlocked page.
2875 */ 2875 */
2876 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2876 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2877 lock_page(old_page); /* LRU manipulation */ 2877 lock_page(old_page); /* LRU manipulation */
2878 munlock_vma_page(old_page); 2878 munlock_vma_page(old_page);
2879 unlock_page(old_page); 2879 unlock_page(old_page);
2880 } 2880 }
2881 page_cache_release(old_page); 2881 page_cache_release(old_page);
2882 } 2882 }
2883 return ret; 2883 return ret;
2884 oom_free_new: 2884 oom_free_new:
2885 page_cache_release(new_page); 2885 page_cache_release(new_page);
2886 oom: 2886 oom:
2887 if (old_page) 2887 if (old_page)
2888 page_cache_release(old_page); 2888 page_cache_release(old_page);
2889 return VM_FAULT_OOM; 2889 return VM_FAULT_OOM;
2890 2890
2891 unwritable_page: 2891 unwritable_page:
2892 page_cache_release(old_page); 2892 page_cache_release(old_page);
2893 return ret; 2893 return ret;
2894 } 2894 }
2895 2895
2896 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2896 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2897 unsigned long start_addr, unsigned long end_addr, 2897 unsigned long start_addr, unsigned long end_addr,
2898 struct zap_details *details) 2898 struct zap_details *details)
2899 { 2899 {
2900 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2900 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2901 } 2901 }
2902 2902
2903 static inline void unmap_mapping_range_tree(struct rb_root *root, 2903 static inline void unmap_mapping_range_tree(struct rb_root *root,
2904 struct zap_details *details) 2904 struct zap_details *details)
2905 { 2905 {
2906 struct vm_area_struct *vma; 2906 struct vm_area_struct *vma;
2907 pgoff_t vba, vea, zba, zea; 2907 pgoff_t vba, vea, zba, zea;
2908 2908
2909 vma_interval_tree_foreach(vma, root, 2909 vma_interval_tree_foreach(vma, root,
2910 details->first_index, details->last_index) { 2910 details->first_index, details->last_index) {
2911 2911
2912 vba = vma->vm_pgoff; 2912 vba = vma->vm_pgoff;
2913 vea = vba + vma_pages(vma) - 1; 2913 vea = vba + vma_pages(vma) - 1;
2914 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2914 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2915 zba = details->first_index; 2915 zba = details->first_index;
2916 if (zba < vba) 2916 if (zba < vba)
2917 zba = vba; 2917 zba = vba;
2918 zea = details->last_index; 2918 zea = details->last_index;
2919 if (zea > vea) 2919 if (zea > vea)
2920 zea = vea; 2920 zea = vea;
2921 2921
2922 unmap_mapping_range_vma(vma, 2922 unmap_mapping_range_vma(vma,
2923 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2923 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2924 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2924 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2925 details); 2925 details);
2926 } 2926 }
2927 } 2927 }
2928 2928
2929 static inline void unmap_mapping_range_list(struct list_head *head, 2929 static inline void unmap_mapping_range_list(struct list_head *head,
2930 struct zap_details *details) 2930 struct zap_details *details)
2931 { 2931 {
2932 struct vm_area_struct *vma; 2932 struct vm_area_struct *vma;
2933 2933
2934 /* 2934 /*
2935 * In nonlinear VMAs there is no correspondence between virtual address 2935 * In nonlinear VMAs there is no correspondence between virtual address
2936 * offset and file offset. So we must perform an exhaustive search 2936 * offset and file offset. So we must perform an exhaustive search
2937 * across *all* the pages in each nonlinear VMA, not just the pages 2937 * across *all* the pages in each nonlinear VMA, not just the pages
2938 * whose virtual address lies outside the file truncation point. 2938 * whose virtual address lies outside the file truncation point.
2939 */ 2939 */
2940 list_for_each_entry(vma, head, shared.nonlinear) { 2940 list_for_each_entry(vma, head, shared.nonlinear) {
2941 details->nonlinear_vma = vma; 2941 details->nonlinear_vma = vma;
2942 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2942 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2943 } 2943 }
2944 } 2944 }
2945 2945
2946 /** 2946 /**
2947 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2947 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2948 * @mapping: the address space containing mmaps to be unmapped. 2948 * @mapping: the address space containing mmaps to be unmapped.
2949 * @holebegin: byte in first page to unmap, relative to the start of 2949 * @holebegin: byte in first page to unmap, relative to the start of
2950 * the underlying file. This will be rounded down to a PAGE_SIZE 2950 * the underlying file. This will be rounded down to a PAGE_SIZE
2951 * boundary. Note that this is different from truncate_pagecache(), which 2951 * boundary. Note that this is different from truncate_pagecache(), which
2952 * must keep the partial page. In contrast, we must get rid of 2952 * must keep the partial page. In contrast, we must get rid of
2953 * partial pages. 2953 * partial pages.
2954 * @holelen: size of prospective hole in bytes. This will be rounded 2954 * @holelen: size of prospective hole in bytes. This will be rounded
2955 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2955 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2956 * end of the file. 2956 * end of the file.
2957 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2957 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2958 * but 0 when invalidating pagecache, don't throw away private data. 2958 * but 0 when invalidating pagecache, don't throw away private data.
2959 */ 2959 */
2960 void unmap_mapping_range(struct address_space *mapping, 2960 void unmap_mapping_range(struct address_space *mapping,
2961 loff_t const holebegin, loff_t const holelen, int even_cows) 2961 loff_t const holebegin, loff_t const holelen, int even_cows)
2962 { 2962 {
2963 struct zap_details details; 2963 struct zap_details details;
2964 pgoff_t hba = holebegin >> PAGE_SHIFT; 2964 pgoff_t hba = holebegin >> PAGE_SHIFT;
2965 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2965 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2966 2966
2967 /* Check for overflow. */ 2967 /* Check for overflow. */
2968 if (sizeof(holelen) > sizeof(hlen)) { 2968 if (sizeof(holelen) > sizeof(hlen)) {
2969 long long holeend = 2969 long long holeend =
2970 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2970 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2971 if (holeend & ~(long long)ULONG_MAX) 2971 if (holeend & ~(long long)ULONG_MAX)
2972 hlen = ULONG_MAX - hba + 1; 2972 hlen = ULONG_MAX - hba + 1;
2973 } 2973 }
2974 2974
2975 details.check_mapping = even_cows? NULL: mapping; 2975 details.check_mapping = even_cows? NULL: mapping;
2976 details.nonlinear_vma = NULL; 2976 details.nonlinear_vma = NULL;
2977 details.first_index = hba; 2977 details.first_index = hba;
2978 details.last_index = hba + hlen - 1; 2978 details.last_index = hba + hlen - 1;
2979 if (details.last_index < details.first_index) 2979 if (details.last_index < details.first_index)
2980 details.last_index = ULONG_MAX; 2980 details.last_index = ULONG_MAX;
2981 2981
2982 2982
2983 mutex_lock(&mapping->i_mmap_mutex); 2983 mutex_lock(&mapping->i_mmap_mutex);
2984 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2984 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2985 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2985 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2986 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2986 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2987 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2987 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2988 mutex_unlock(&mapping->i_mmap_mutex); 2988 mutex_unlock(&mapping->i_mmap_mutex);
2989 } 2989 }
2990 EXPORT_SYMBOL(unmap_mapping_range); 2990 EXPORT_SYMBOL(unmap_mapping_range);
2991 2991
2992 /* 2992 /*
2993 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2993 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2994 * but allow concurrent faults), and pte mapped but not yet locked. 2994 * but allow concurrent faults), and pte mapped but not yet locked.
2995 * We return with mmap_sem still held, but pte unmapped and unlocked. 2995 * We return with mmap_sem still held, but pte unmapped and unlocked.
2996 */ 2996 */
2997 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2997 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2998 unsigned long address, pte_t *page_table, pmd_t *pmd, 2998 unsigned long address, pte_t *page_table, pmd_t *pmd,
2999 unsigned int flags, pte_t orig_pte) 2999 unsigned int flags, pte_t orig_pte)
3000 { 3000 {
3001 spinlock_t *ptl; 3001 spinlock_t *ptl;
3002 struct page *page, *swapcache; 3002 struct page *page, *swapcache;
3003 swp_entry_t entry; 3003 swp_entry_t entry;
3004 pte_t pte; 3004 pte_t pte;
3005 int locked; 3005 int locked;
3006 struct mem_cgroup *ptr; 3006 struct mem_cgroup *ptr;
3007 int exclusive = 0; 3007 int exclusive = 0;
3008 int ret = 0; 3008 int ret = 0;
3009 3009
3010 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3010 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3011 goto out; 3011 goto out;
3012 3012
3013 entry = pte_to_swp_entry(orig_pte); 3013 entry = pte_to_swp_entry(orig_pte);
3014 if (unlikely(non_swap_entry(entry))) { 3014 if (unlikely(non_swap_entry(entry))) {
3015 if (is_migration_entry(entry)) { 3015 if (is_migration_entry(entry)) {
3016 migration_entry_wait(mm, pmd, address); 3016 migration_entry_wait(mm, pmd, address);
3017 } else if (is_hwpoison_entry(entry)) { 3017 } else if (is_hwpoison_entry(entry)) {
3018 ret = VM_FAULT_HWPOISON; 3018 ret = VM_FAULT_HWPOISON;
3019 } else { 3019 } else {
3020 print_bad_pte(vma, address, orig_pte, NULL); 3020 print_bad_pte(vma, address, orig_pte, NULL);
3021 ret = VM_FAULT_SIGBUS; 3021 ret = VM_FAULT_SIGBUS;
3022 } 3022 }
3023 goto out; 3023 goto out;
3024 } 3024 }
3025 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3025 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3026 page = lookup_swap_cache(entry); 3026 page = lookup_swap_cache(entry);
3027 if (!page) { 3027 if (!page) {
3028 page = swapin_readahead(entry, 3028 page = swapin_readahead(entry,
3029 GFP_HIGHUSER_MOVABLE, vma, address); 3029 GFP_HIGHUSER_MOVABLE, vma, address);
3030 if (!page) { 3030 if (!page) {
3031 /* 3031 /*
3032 * Back out if somebody else faulted in this pte 3032 * Back out if somebody else faulted in this pte
3033 * while we released the pte lock. 3033 * while we released the pte lock.
3034 */ 3034 */
3035 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3035 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3036 if (likely(pte_same(*page_table, orig_pte))) 3036 if (likely(pte_same(*page_table, orig_pte)))
3037 ret = VM_FAULT_OOM; 3037 ret = VM_FAULT_OOM;
3038 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3038 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3039 goto unlock; 3039 goto unlock;
3040 } 3040 }
3041 3041
3042 /* Had to read the page from swap area: Major fault */ 3042 /* Had to read the page from swap area: Major fault */
3043 ret = VM_FAULT_MAJOR; 3043 ret = VM_FAULT_MAJOR;
3044 count_vm_event(PGMAJFAULT); 3044 count_vm_event(PGMAJFAULT);
3045 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3045 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3046 } else if (PageHWPoison(page)) { 3046 } else if (PageHWPoison(page)) {
3047 /* 3047 /*
3048 * hwpoisoned dirty swapcache pages are kept for killing 3048 * hwpoisoned dirty swapcache pages are kept for killing
3049 * owner processes (which may be unknown at hwpoison time) 3049 * owner processes (which may be unknown at hwpoison time)
3050 */ 3050 */
3051 ret = VM_FAULT_HWPOISON; 3051 ret = VM_FAULT_HWPOISON;
3052 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3052 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3053 swapcache = page; 3053 swapcache = page;
3054 goto out_release; 3054 goto out_release;
3055 } 3055 }
3056 3056
3057 swapcache = page; 3057 swapcache = page;
3058 locked = lock_page_or_retry(page, mm, flags); 3058 locked = lock_page_or_retry(page, mm, flags);
3059 3059
3060 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3060 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3061 if (!locked) { 3061 if (!locked) {
3062 ret |= VM_FAULT_RETRY; 3062 ret |= VM_FAULT_RETRY;
3063 goto out_release; 3063 goto out_release;
3064 } 3064 }
3065 3065
3066 /* 3066 /*
3067 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3067 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3068 * release the swapcache from under us. The page pin, and pte_same 3068 * release the swapcache from under us. The page pin, and pte_same
3069 * test below, are not enough to exclude that. Even if it is still 3069 * test below, are not enough to exclude that. Even if it is still
3070 * swapcache, we need to check that the page's swap has not changed. 3070 * swapcache, we need to check that the page's swap has not changed.
3071 */ 3071 */
3072 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3072 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3073 goto out_page; 3073 goto out_page;
3074 3074
3075 page = ksm_might_need_to_copy(page, vma, address); 3075 page = ksm_might_need_to_copy(page, vma, address);
3076 if (unlikely(!page)) { 3076 if (unlikely(!page)) {
3077 ret = VM_FAULT_OOM; 3077 ret = VM_FAULT_OOM;
3078 page = swapcache; 3078 page = swapcache;
3079 goto out_page; 3079 goto out_page;
3080 } 3080 }
3081 3081
3082 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3082 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3083 ret = VM_FAULT_OOM; 3083 ret = VM_FAULT_OOM;
3084 goto out_page; 3084 goto out_page;
3085 } 3085 }
3086 3086
3087 /* 3087 /*
3088 * Back out if somebody else already faulted in this pte. 3088 * Back out if somebody else already faulted in this pte.
3089 */ 3089 */
3090 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3090 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3091 if (unlikely(!pte_same(*page_table, orig_pte))) 3091 if (unlikely(!pte_same(*page_table, orig_pte)))
3092 goto out_nomap; 3092 goto out_nomap;
3093 3093
3094 if (unlikely(!PageUptodate(page))) { 3094 if (unlikely(!PageUptodate(page))) {
3095 ret = VM_FAULT_SIGBUS; 3095 ret = VM_FAULT_SIGBUS;
3096 goto out_nomap; 3096 goto out_nomap;
3097 } 3097 }
3098 3098
3099 /* 3099 /*
3100 * The page isn't present yet, go ahead with the fault. 3100 * The page isn't present yet, go ahead with the fault.
3101 * 3101 *
3102 * Be careful about the sequence of operations here. 3102 * Be careful about the sequence of operations here.
3103 * To get its accounting right, reuse_swap_page() must be called 3103 * To get its accounting right, reuse_swap_page() must be called
3104 * while the page is counted on swap but not yet in mapcount i.e. 3104 * while the page is counted on swap but not yet in mapcount i.e.
3105 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3105 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3106 * must be called after the swap_free(), or it will never succeed. 3106 * must be called after the swap_free(), or it will never succeed.
3107 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3107 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3108 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3108 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3109 * in page->private. In this case, a record in swap_cgroup is silently 3109 * in page->private. In this case, a record in swap_cgroup is silently
3110 * discarded at swap_free(). 3110 * discarded at swap_free().
3111 */ 3111 */
3112 3112
3113 inc_mm_counter_fast(mm, MM_ANONPAGES); 3113 inc_mm_counter_fast(mm, MM_ANONPAGES);
3114 dec_mm_counter_fast(mm, MM_SWAPENTS); 3114 dec_mm_counter_fast(mm, MM_SWAPENTS);
3115 pte = mk_pte(page, vma->vm_page_prot); 3115 pte = mk_pte(page, vma->vm_page_prot);
3116 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3116 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3117 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3117 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3118 flags &= ~FAULT_FLAG_WRITE; 3118 flags &= ~FAULT_FLAG_WRITE;
3119 ret |= VM_FAULT_WRITE; 3119 ret |= VM_FAULT_WRITE;
3120 exclusive = 1; 3120 exclusive = 1;
3121 } 3121 }
3122 flush_icache_page(vma, page); 3122 flush_icache_page(vma, page);
3123 if (pte_swp_soft_dirty(orig_pte)) 3123 if (pte_swp_soft_dirty(orig_pte))
3124 pte = pte_mksoft_dirty(pte); 3124 pte = pte_mksoft_dirty(pte);
3125 set_pte_at(mm, address, page_table, pte); 3125 set_pte_at(mm, address, page_table, pte);
3126 if (page == swapcache) 3126 if (page == swapcache)
3127 do_page_add_anon_rmap(page, vma, address, exclusive); 3127 do_page_add_anon_rmap(page, vma, address, exclusive);
3128 else /* ksm created a completely new copy */ 3128 else /* ksm created a completely new copy */
3129 page_add_new_anon_rmap(page, vma, address); 3129 page_add_new_anon_rmap(page, vma, address);
3130 /* It's better to call commit-charge after rmap is established */ 3130 /* It's better to call commit-charge after rmap is established */
3131 mem_cgroup_commit_charge_swapin(page, ptr); 3131 mem_cgroup_commit_charge_swapin(page, ptr);
3132 3132
3133 swap_free(entry); 3133 swap_free(entry);
3134 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3134 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3135 try_to_free_swap(page); 3135 try_to_free_swap(page);
3136 unlock_page(page); 3136 unlock_page(page);
3137 if (page != swapcache) { 3137 if (page != swapcache) {
3138 /* 3138 /*
3139 * Hold the lock to avoid the swap entry to be reused 3139 * Hold the lock to avoid the swap entry to be reused
3140 * until we take the PT lock for the pte_same() check 3140 * until we take the PT lock for the pte_same() check
3141 * (to avoid false positives from pte_same). For 3141 * (to avoid false positives from pte_same). For
3142 * further safety release the lock after the swap_free 3142 * further safety release the lock after the swap_free
3143 * so that the swap count won't change under a 3143 * so that the swap count won't change under a
3144 * parallel locked swapcache. 3144 * parallel locked swapcache.
3145 */ 3145 */
3146 unlock_page(swapcache); 3146 unlock_page(swapcache);
3147 page_cache_release(swapcache); 3147 page_cache_release(swapcache);
3148 } 3148 }
3149 3149
3150 if (flags & FAULT_FLAG_WRITE) { 3150 if (flags & FAULT_FLAG_WRITE) {
3151 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3151 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3152 if (ret & VM_FAULT_ERROR) 3152 if (ret & VM_FAULT_ERROR)
3153 ret &= VM_FAULT_ERROR; 3153 ret &= VM_FAULT_ERROR;
3154 goto out; 3154 goto out;
3155 } 3155 }
3156 3156
3157 /* No need to invalidate - it was non-present before */ 3157 /* No need to invalidate - it was non-present before */
3158 update_mmu_cache(vma, address, page_table); 3158 update_mmu_cache(vma, address, page_table);
3159 unlock: 3159 unlock:
3160 pte_unmap_unlock(page_table, ptl); 3160 pte_unmap_unlock(page_table, ptl);
3161 out: 3161 out:
3162 return ret; 3162 return ret;
3163 out_nomap: 3163 out_nomap:
3164 mem_cgroup_cancel_charge_swapin(ptr); 3164 mem_cgroup_cancel_charge_swapin(ptr);
3165 pte_unmap_unlock(page_table, ptl); 3165 pte_unmap_unlock(page_table, ptl);
3166 out_page: 3166 out_page:
3167 unlock_page(page); 3167 unlock_page(page);
3168 out_release: 3168 out_release:
3169 page_cache_release(page); 3169 page_cache_release(page);
3170 if (page != swapcache) { 3170 if (page != swapcache) {
3171 unlock_page(swapcache); 3171 unlock_page(swapcache);
3172 page_cache_release(swapcache); 3172 page_cache_release(swapcache);
3173 } 3173 }
3174 return ret; 3174 return ret;
3175 } 3175 }
3176 3176
3177 /* 3177 /*
3178 * This is like a special single-page "expand_{down|up}wards()", 3178 * This is like a special single-page "expand_{down|up}wards()",
3179 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3179 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3180 * doesn't hit another vma. 3180 * doesn't hit another vma.
3181 */ 3181 */
3182 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3182 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3183 { 3183 {
3184 address &= PAGE_MASK; 3184 address &= PAGE_MASK;
3185 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3185 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3186 struct vm_area_struct *prev = vma->vm_prev; 3186 struct vm_area_struct *prev = vma->vm_prev;
3187 3187
3188 /* 3188 /*
3189 * Is there a mapping abutting this one below? 3189 * Is there a mapping abutting this one below?
3190 * 3190 *
3191 * That's only ok if it's the same stack mapping 3191 * That's only ok if it's the same stack mapping
3192 * that has gotten split.. 3192 * that has gotten split..
3193 */ 3193 */
3194 if (prev && prev->vm_end == address) 3194 if (prev && prev->vm_end == address)
3195 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3195 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3196 3196
3197 expand_downwards(vma, address - PAGE_SIZE); 3197 expand_downwards(vma, address - PAGE_SIZE);
3198 } 3198 }
3199 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3199 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3200 struct vm_area_struct *next = vma->vm_next; 3200 struct vm_area_struct *next = vma->vm_next;
3201 3201
3202 /* As VM_GROWSDOWN but s/below/above/ */ 3202 /* As VM_GROWSDOWN but s/below/above/ */
3203 if (next && next->vm_start == address + PAGE_SIZE) 3203 if (next && next->vm_start == address + PAGE_SIZE)
3204 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3204 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3205 3205
3206 expand_upwards(vma, address + PAGE_SIZE); 3206 expand_upwards(vma, address + PAGE_SIZE);
3207 } 3207 }
3208 return 0; 3208 return 0;
3209 } 3209 }
3210 3210
3211 /* 3211 /*
3212 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3212 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3213 * but allow concurrent faults), and pte mapped but not yet locked. 3213 * but allow concurrent faults), and pte mapped but not yet locked.
3214 * We return with mmap_sem still held, but pte unmapped and unlocked. 3214 * We return with mmap_sem still held, but pte unmapped and unlocked.
3215 */ 3215 */
3216 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3216 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217 unsigned long address, pte_t *page_table, pmd_t *pmd, 3217 unsigned long address, pte_t *page_table, pmd_t *pmd,
3218 unsigned int flags) 3218 unsigned int flags)
3219 { 3219 {
3220 struct page *page; 3220 struct page *page;
3221 spinlock_t *ptl; 3221 spinlock_t *ptl;
3222 pte_t entry; 3222 pte_t entry;
3223 3223
3224 pte_unmap(page_table); 3224 pte_unmap(page_table);
3225 3225
3226 /* Check if we need to add a guard page to the stack */ 3226 /* Check if we need to add a guard page to the stack */
3227 if (check_stack_guard_page(vma, address) < 0) 3227 if (check_stack_guard_page(vma, address) < 0)
3228 return VM_FAULT_SIGBUS; 3228 return VM_FAULT_SIGBUS;
3229 3229
3230 /* Use the zero-page for reads */ 3230 /* Use the zero-page for reads */
3231 if (!(flags & FAULT_FLAG_WRITE)) { 3231 if (!(flags & FAULT_FLAG_WRITE)) {
3232 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3232 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3233 vma->vm_page_prot)); 3233 vma->vm_page_prot));
3234 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3234 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3235 if (!pte_none(*page_table)) 3235 if (!pte_none(*page_table))
3236 goto unlock; 3236 goto unlock;
3237 goto setpte; 3237 goto setpte;
3238 } 3238 }
3239 3239
3240 /* Allocate our own private page. */ 3240 /* Allocate our own private page. */
3241 if (unlikely(anon_vma_prepare(vma))) 3241 if (unlikely(anon_vma_prepare(vma)))
3242 goto oom; 3242 goto oom;
3243 page = alloc_zeroed_user_highpage_movable(vma, address); 3243 page = alloc_zeroed_user_highpage_movable(vma, address);
3244 if (!page) 3244 if (!page)
3245 goto oom; 3245 goto oom;
3246 /* 3246 /*
3247 * The memory barrier inside __SetPageUptodate makes sure that 3247 * The memory barrier inside __SetPageUptodate makes sure that
3248 * preceeding stores to the page contents become visible before 3248 * preceeding stores to the page contents become visible before
3249 * the set_pte_at() write. 3249 * the set_pte_at() write.
3250 */ 3250 */
3251 __SetPageUptodate(page); 3251 __SetPageUptodate(page);
3252 3252
3253 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3253 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3254 goto oom_free_page; 3254 goto oom_free_page;
3255 3255
3256 entry = mk_pte(page, vma->vm_page_prot); 3256 entry = mk_pte(page, vma->vm_page_prot);
3257 if (vma->vm_flags & VM_WRITE) 3257 if (vma->vm_flags & VM_WRITE)
3258 entry = pte_mkwrite(pte_mkdirty(entry)); 3258 entry = pte_mkwrite(pte_mkdirty(entry));
3259 3259
3260 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3260 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3261 if (!pte_none(*page_table)) 3261 if (!pte_none(*page_table))
3262 goto release; 3262 goto release;
3263 3263
3264 inc_mm_counter_fast(mm, MM_ANONPAGES); 3264 inc_mm_counter_fast(mm, MM_ANONPAGES);
3265 page_add_new_anon_rmap(page, vma, address); 3265 page_add_new_anon_rmap(page, vma, address);
3266 setpte: 3266 setpte:
3267 set_pte_at(mm, address, page_table, entry); 3267 set_pte_at(mm, address, page_table, entry);
3268 3268
3269 /* No need to invalidate - it was non-present before */ 3269 /* No need to invalidate - it was non-present before */
3270 update_mmu_cache(vma, address, page_table); 3270 update_mmu_cache(vma, address, page_table);
3271 unlock: 3271 unlock:
3272 pte_unmap_unlock(page_table, ptl); 3272 pte_unmap_unlock(page_table, ptl);
3273 return 0; 3273 return 0;
3274 release: 3274 release:
3275 mem_cgroup_uncharge_page(page); 3275 mem_cgroup_uncharge_page(page);
3276 page_cache_release(page); 3276 page_cache_release(page);
3277 goto unlock; 3277 goto unlock;
3278 oom_free_page: 3278 oom_free_page:
3279 page_cache_release(page); 3279 page_cache_release(page);
3280 oom: 3280 oom:
3281 return VM_FAULT_OOM; 3281 return VM_FAULT_OOM;
3282 } 3282 }
3283 3283
3284 /* 3284 /*
3285 * __do_fault() tries to create a new page mapping. It aggressively 3285 * __do_fault() tries to create a new page mapping. It aggressively
3286 * tries to share with existing pages, but makes a separate copy if 3286 * tries to share with existing pages, but makes a separate copy if
3287 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3287 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3288 * the next page fault. 3288 * the next page fault.
3289 * 3289 *
3290 * As this is called only for pages that do not currently exist, we 3290 * As this is called only for pages that do not currently exist, we
3291 * do not need to flush old virtual caches or the TLB. 3291 * do not need to flush old virtual caches or the TLB.
3292 * 3292 *
3293 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3293 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3294 * but allow concurrent faults), and pte neither mapped nor locked. 3294 * but allow concurrent faults), and pte neither mapped nor locked.
3295 * We return with mmap_sem still held, but pte unmapped and unlocked. 3295 * We return with mmap_sem still held, but pte unmapped and unlocked.
3296 */ 3296 */
3297 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3297 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3298 unsigned long address, pmd_t *pmd, 3298 unsigned long address, pmd_t *pmd,
3299 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3299 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3300 { 3300 {
3301 pte_t *page_table; 3301 pte_t *page_table;
3302 spinlock_t *ptl; 3302 spinlock_t *ptl;
3303 struct page *page; 3303 struct page *page;
3304 struct page *cow_page; 3304 struct page *cow_page;
3305 pte_t entry; 3305 pte_t entry;
3306 int anon = 0; 3306 int anon = 0;
3307 struct page *dirty_page = NULL; 3307 struct page *dirty_page = NULL;
3308 struct vm_fault vmf; 3308 struct vm_fault vmf;
3309 int ret; 3309 int ret;
3310 int page_mkwrite = 0; 3310 int page_mkwrite = 0;
3311 3311
3312 /* 3312 /*
3313 * If we do COW later, allocate page befor taking lock_page() 3313 * If we do COW later, allocate page befor taking lock_page()
3314 * on the file cache page. This will reduce lock holding time. 3314 * on the file cache page. This will reduce lock holding time.
3315 */ 3315 */
3316 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3316 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3317 3317
3318 if (unlikely(anon_vma_prepare(vma))) 3318 if (unlikely(anon_vma_prepare(vma)))
3319 return VM_FAULT_OOM; 3319 return VM_FAULT_OOM;
3320 3320
3321 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3321 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3322 if (!cow_page) 3322 if (!cow_page)
3323 return VM_FAULT_OOM; 3323 return VM_FAULT_OOM;
3324 3324
3325 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3325 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3326 page_cache_release(cow_page); 3326 page_cache_release(cow_page);
3327 return VM_FAULT_OOM; 3327 return VM_FAULT_OOM;
3328 } 3328 }
3329 } else 3329 } else
3330 cow_page = NULL; 3330 cow_page = NULL;
3331 3331
3332 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3332 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3333 vmf.pgoff = pgoff; 3333 vmf.pgoff = pgoff;
3334 vmf.flags = flags; 3334 vmf.flags = flags;
3335 vmf.page = NULL; 3335 vmf.page = NULL;
3336 3336
3337 ret = vma->vm_ops->fault(vma, &vmf); 3337 ret = vma->vm_ops->fault(vma, &vmf);
3338 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3338 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3339 VM_FAULT_RETRY))) 3339 VM_FAULT_RETRY)))
3340 goto uncharge_out; 3340 goto uncharge_out;
3341 3341
3342 if (unlikely(PageHWPoison(vmf.page))) { 3342 if (unlikely(PageHWPoison(vmf.page))) {
3343 if (ret & VM_FAULT_LOCKED) 3343 if (ret & VM_FAULT_LOCKED)
3344 unlock_page(vmf.page); 3344 unlock_page(vmf.page);
3345 ret = VM_FAULT_HWPOISON; 3345 ret = VM_FAULT_HWPOISON;
3346 goto uncharge_out; 3346 goto uncharge_out;
3347 } 3347 }
3348 3348
3349 /* 3349 /*
3350 * For consistency in subsequent calls, make the faulted page always 3350 * For consistency in subsequent calls, make the faulted page always
3351 * locked. 3351 * locked.
3352 */ 3352 */
3353 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3353 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3354 lock_page(vmf.page); 3354 lock_page(vmf.page);
3355 else 3355 else
3356 VM_BUG_ON(!PageLocked(vmf.page)); 3356 VM_BUG_ON(!PageLocked(vmf.page));
3357 3357
3358 /* 3358 /*
3359 * Should we do an early C-O-W break? 3359 * Should we do an early C-O-W break?
3360 */ 3360 */
3361 page = vmf.page; 3361 page = vmf.page;
3362 if (flags & FAULT_FLAG_WRITE) { 3362 if (flags & FAULT_FLAG_WRITE) {
3363 if (!(vma->vm_flags & VM_SHARED)) { 3363 if (!(vma->vm_flags & VM_SHARED)) {
3364 page = cow_page; 3364 page = cow_page;
3365 anon = 1; 3365 anon = 1;
3366 copy_user_highpage(page, vmf.page, address, vma); 3366 copy_user_highpage(page, vmf.page, address, vma);
3367 __SetPageUptodate(page); 3367 __SetPageUptodate(page);
3368 } else { 3368 } else {
3369 /* 3369 /*
3370 * If the page will be shareable, see if the backing 3370 * If the page will be shareable, see if the backing
3371 * address space wants to know that the page is about 3371 * address space wants to know that the page is about
3372 * to become writable 3372 * to become writable
3373 */ 3373 */
3374 if (vma->vm_ops->page_mkwrite) { 3374 if (vma->vm_ops->page_mkwrite) {
3375 int tmp; 3375 int tmp;
3376 3376
3377 unlock_page(page); 3377 unlock_page(page);
3378 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3378 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3379 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3379 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3380 if (unlikely(tmp & 3380 if (unlikely(tmp &
3381 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3381 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3382 ret = tmp; 3382 ret = tmp;
3383 goto unwritable_page; 3383 goto unwritable_page;
3384 } 3384 }
3385 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3385 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3386 lock_page(page); 3386 lock_page(page);
3387 if (!page->mapping) { 3387 if (!page->mapping) {
3388 ret = 0; /* retry the fault */ 3388 ret = 0; /* retry the fault */
3389 unlock_page(page); 3389 unlock_page(page);
3390 goto unwritable_page; 3390 goto unwritable_page;
3391 } 3391 }
3392 } else 3392 } else
3393 VM_BUG_ON(!PageLocked(page)); 3393 VM_BUG_ON(!PageLocked(page));
3394 page_mkwrite = 1; 3394 page_mkwrite = 1;
3395 } 3395 }
3396 } 3396 }
3397 3397
3398 } 3398 }
3399 3399
3400 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3400 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3401 3401
3402 /* 3402 /*
3403 * This silly early PAGE_DIRTY setting removes a race 3403 * This silly early PAGE_DIRTY setting removes a race
3404 * due to the bad i386 page protection. But it's valid 3404 * due to the bad i386 page protection. But it's valid
3405 * for other architectures too. 3405 * for other architectures too.
3406 * 3406 *
3407 * Note that if FAULT_FLAG_WRITE is set, we either now have 3407 * Note that if FAULT_FLAG_WRITE is set, we either now have
3408 * an exclusive copy of the page, or this is a shared mapping, 3408 * an exclusive copy of the page, or this is a shared mapping,
3409 * so we can make it writable and dirty to avoid having to 3409 * so we can make it writable and dirty to avoid having to
3410 * handle that later. 3410 * handle that later.
3411 */ 3411 */
3412 /* Only go through if we didn't race with anybody else... */ 3412 /* Only go through if we didn't race with anybody else... */
3413 if (likely(pte_same(*page_table, orig_pte))) { 3413 if (likely(pte_same(*page_table, orig_pte))) {
3414 flush_icache_page(vma, page); 3414 flush_icache_page(vma, page);
3415 entry = mk_pte(page, vma->vm_page_prot); 3415 entry = mk_pte(page, vma->vm_page_prot);
3416 if (flags & FAULT_FLAG_WRITE) 3416 if (flags & FAULT_FLAG_WRITE)
3417 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3417 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3418 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) 3418 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3419 pte_mksoft_dirty(entry); 3419 pte_mksoft_dirty(entry);
3420 if (anon) { 3420 if (anon) {
3421 inc_mm_counter_fast(mm, MM_ANONPAGES); 3421 inc_mm_counter_fast(mm, MM_ANONPAGES);
3422 page_add_new_anon_rmap(page, vma, address); 3422 page_add_new_anon_rmap(page, vma, address);
3423 } else { 3423 } else {
3424 inc_mm_counter_fast(mm, MM_FILEPAGES); 3424 inc_mm_counter_fast(mm, MM_FILEPAGES);
3425 page_add_file_rmap(page); 3425 page_add_file_rmap(page);
3426 if (flags & FAULT_FLAG_WRITE) { 3426 if (flags & FAULT_FLAG_WRITE) {
3427 dirty_page = page; 3427 dirty_page = page;
3428 get_page(dirty_page); 3428 get_page(dirty_page);
3429 } 3429 }
3430 } 3430 }
3431 set_pte_at(mm, address, page_table, entry); 3431 set_pte_at(mm, address, page_table, entry);
3432 3432
3433 /* no need to invalidate: a not-present page won't be cached */ 3433 /* no need to invalidate: a not-present page won't be cached */
3434 update_mmu_cache(vma, address, page_table); 3434 update_mmu_cache(vma, address, page_table);
3435 } else { 3435 } else {
3436 if (cow_page) 3436 if (cow_page)
3437 mem_cgroup_uncharge_page(cow_page); 3437 mem_cgroup_uncharge_page(cow_page);
3438 if (anon) 3438 if (anon)
3439 page_cache_release(page); 3439 page_cache_release(page);
3440 else 3440 else
3441 anon = 1; /* no anon but release faulted_page */ 3441 anon = 1; /* no anon but release faulted_page */
3442 } 3442 }
3443 3443
3444 pte_unmap_unlock(page_table, ptl); 3444 pte_unmap_unlock(page_table, ptl);
3445 3445
3446 if (dirty_page) { 3446 if (dirty_page) {
3447 struct address_space *mapping = page->mapping; 3447 struct address_space *mapping = page->mapping;
3448 int dirtied = 0; 3448 int dirtied = 0;
3449 3449
3450 if (set_page_dirty(dirty_page)) 3450 if (set_page_dirty(dirty_page))
3451 dirtied = 1; 3451 dirtied = 1;
3452 unlock_page(dirty_page); 3452 unlock_page(dirty_page);
3453 put_page(dirty_page); 3453 put_page(dirty_page);
3454 if ((dirtied || page_mkwrite) && mapping) { 3454 if ((dirtied || page_mkwrite) && mapping) {
3455 /* 3455 /*
3456 * Some device drivers do not set page.mapping but still 3456 * Some device drivers do not set page.mapping but still
3457 * dirty their pages 3457 * dirty their pages
3458 */ 3458 */
3459 balance_dirty_pages_ratelimited(mapping); 3459 balance_dirty_pages_ratelimited(mapping);
3460 } 3460 }
3461 3461
3462 /* file_update_time outside page_lock */ 3462 /* file_update_time outside page_lock */
3463 if (vma->vm_file && !page_mkwrite) 3463 if (vma->vm_file && !page_mkwrite)
3464 file_update_time(vma->vm_file); 3464 file_update_time(vma->vm_file);
3465 } else { 3465 } else {
3466 unlock_page(vmf.page); 3466 unlock_page(vmf.page);
3467 if (anon) 3467 if (anon)
3468 page_cache_release(vmf.page); 3468 page_cache_release(vmf.page);
3469 } 3469 }
3470 3470
3471 return ret; 3471 return ret;
3472 3472
3473 unwritable_page: 3473 unwritable_page:
3474 page_cache_release(page); 3474 page_cache_release(page);
3475 return ret; 3475 return ret;
3476 uncharge_out: 3476 uncharge_out:
3477 /* fs's fault handler get error */ 3477 /* fs's fault handler get error */
3478 if (cow_page) { 3478 if (cow_page) {
3479 mem_cgroup_uncharge_page(cow_page); 3479 mem_cgroup_uncharge_page(cow_page);
3480 page_cache_release(cow_page); 3480 page_cache_release(cow_page);
3481 } 3481 }
3482 return ret; 3482 return ret;
3483 } 3483 }
3484 3484
3485 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3485 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3486 unsigned long address, pte_t *page_table, pmd_t *pmd, 3486 unsigned long address, pte_t *page_table, pmd_t *pmd,
3487 unsigned int flags, pte_t orig_pte) 3487 unsigned int flags, pte_t orig_pte)
3488 { 3488 {
3489 pgoff_t pgoff = (((address & PAGE_MASK) 3489 pgoff_t pgoff = (((address & PAGE_MASK)
3490 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3490 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3491 3491
3492 pte_unmap(page_table); 3492 pte_unmap(page_table);
3493 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3493 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3494 } 3494 }
3495 3495
3496 /* 3496 /*
3497 * Fault of a previously existing named mapping. Repopulate the pte 3497 * Fault of a previously existing named mapping. Repopulate the pte
3498 * from the encoded file_pte if possible. This enables swappable 3498 * from the encoded file_pte if possible. This enables swappable
3499 * nonlinear vmas. 3499 * nonlinear vmas.
3500 * 3500 *
3501 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3501 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3502 * but allow concurrent faults), and pte mapped but not yet locked. 3502 * but allow concurrent faults), and pte mapped but not yet locked.
3503 * We return with mmap_sem still held, but pte unmapped and unlocked. 3503 * We return with mmap_sem still held, but pte unmapped and unlocked.
3504 */ 3504 */
3505 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3505 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3506 unsigned long address, pte_t *page_table, pmd_t *pmd, 3506 unsigned long address, pte_t *page_table, pmd_t *pmd,
3507 unsigned int flags, pte_t orig_pte) 3507 unsigned int flags, pte_t orig_pte)
3508 { 3508 {
3509 pgoff_t pgoff; 3509 pgoff_t pgoff;
3510 3510
3511 flags |= FAULT_FLAG_NONLINEAR; 3511 flags |= FAULT_FLAG_NONLINEAR;
3512 3512
3513 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3513 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3514 return 0; 3514 return 0;
3515 3515
3516 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3516 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3517 /* 3517 /*
3518 * Page table corrupted: show pte and kill process. 3518 * Page table corrupted: show pte and kill process.
3519 */ 3519 */
3520 print_bad_pte(vma, address, orig_pte, NULL); 3520 print_bad_pte(vma, address, orig_pte, NULL);
3521 return VM_FAULT_SIGBUS; 3521 return VM_FAULT_SIGBUS;
3522 } 3522 }
3523 3523
3524 pgoff = pte_to_pgoff(orig_pte); 3524 pgoff = pte_to_pgoff(orig_pte);
3525 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3525 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3526 } 3526 }
3527 3527
3528 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3528 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3529 unsigned long addr, int page_nid) 3529 unsigned long addr, int page_nid)
3530 { 3530 {
3531 get_page(page); 3531 get_page(page);
3532 3532
3533 count_vm_numa_event(NUMA_HINT_FAULTS); 3533 count_vm_numa_event(NUMA_HINT_FAULTS);
3534 if (page_nid == numa_node_id()) 3534 if (page_nid == numa_node_id())
3535 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3535 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3536 3536
3537 return mpol_misplaced(page, vma, addr); 3537 return mpol_misplaced(page, vma, addr);
3538 } 3538 }
3539 3539
3540 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3540 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3541 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3541 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3542 { 3542 {
3543 struct page *page = NULL; 3543 struct page *page = NULL;
3544 spinlock_t *ptl; 3544 spinlock_t *ptl;
3545 int page_nid = -1; 3545 int page_nid = -1;
3546 int target_nid; 3546 int target_nid;
3547 bool migrated = false; 3547 bool migrated = false;
3548 3548
3549 /* 3549 /*
3550 * The "pte" at this point cannot be used safely without 3550 * The "pte" at this point cannot be used safely without
3551 * validation through pte_unmap_same(). It's of NUMA type but 3551 * validation through pte_unmap_same(). It's of NUMA type but
3552 * the pfn may be screwed if the read is non atomic. 3552 * the pfn may be screwed if the read is non atomic.
3553 * 3553 *
3554 * ptep_modify_prot_start is not called as this is clearing 3554 * ptep_modify_prot_start is not called as this is clearing
3555 * the _PAGE_NUMA bit and it is not really expected that there 3555 * the _PAGE_NUMA bit and it is not really expected that there
3556 * would be concurrent hardware modifications to the PTE. 3556 * would be concurrent hardware modifications to the PTE.
3557 */ 3557 */
3558 ptl = pte_lockptr(mm, pmd); 3558 ptl = pte_lockptr(mm, pmd);
3559 spin_lock(ptl); 3559 spin_lock(ptl);
3560 if (unlikely(!pte_same(*ptep, pte))) { 3560 if (unlikely(!pte_same(*ptep, pte))) {
3561 pte_unmap_unlock(ptep, ptl); 3561 pte_unmap_unlock(ptep, ptl);
3562 goto out; 3562 goto out;
3563 } 3563 }
3564 3564
3565 pte = pte_mknonnuma(pte); 3565 pte = pte_mknonnuma(pte);
3566 set_pte_at(mm, addr, ptep, pte); 3566 set_pte_at(mm, addr, ptep, pte);
3567 update_mmu_cache(vma, addr, ptep); 3567 update_mmu_cache(vma, addr, ptep);
3568 3568
3569 page = vm_normal_page(vma, addr, pte); 3569 page = vm_normal_page(vma, addr, pte);
3570 if (!page) { 3570 if (!page) {
3571 pte_unmap_unlock(ptep, ptl); 3571 pte_unmap_unlock(ptep, ptl);
3572 return 0; 3572 return 0;
3573 } 3573 }
3574 3574
3575 page_nid = page_to_nid(page); 3575 page_nid = page_to_nid(page);
3576 target_nid = numa_migrate_prep(page, vma, addr, page_nid); 3576 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3577 pte_unmap_unlock(ptep, ptl); 3577 pte_unmap_unlock(ptep, ptl);
3578 if (target_nid == -1) { 3578 if (target_nid == -1) {
3579 put_page(page); 3579 put_page(page);
3580 goto out; 3580 goto out;
3581 } 3581 }
3582 3582
3583 /* Migrate to the requested node */ 3583 /* Migrate to the requested node */
3584 migrated = migrate_misplaced_page(page, target_nid); 3584 migrated = migrate_misplaced_page(page, target_nid);
3585 if (migrated) 3585 if (migrated)
3586 page_nid = target_nid; 3586 page_nid = target_nid;
3587 3587
3588 out: 3588 out:
3589 if (page_nid != -1) 3589 if (page_nid != -1)
3590 task_numa_fault(page_nid, 1, migrated); 3590 task_numa_fault(page_nid, 1, migrated);
3591 return 0; 3591 return 0;
3592 } 3592 }
3593 3593
3594 /* NUMA hinting page fault entry point for regular pmds */ 3594 /* NUMA hinting page fault entry point for regular pmds */
3595 #ifdef CONFIG_NUMA_BALANCING 3595 #ifdef CONFIG_NUMA_BALANCING
3596 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3596 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3597 unsigned long addr, pmd_t *pmdp) 3597 unsigned long addr, pmd_t *pmdp)
3598 { 3598 {
3599 pmd_t pmd; 3599 pmd_t pmd;
3600 pte_t *pte, *orig_pte; 3600 pte_t *pte, *orig_pte;
3601 unsigned long _addr = addr & PMD_MASK; 3601 unsigned long _addr = addr & PMD_MASK;
3602 unsigned long offset; 3602 unsigned long offset;
3603 spinlock_t *ptl; 3603 spinlock_t *ptl;
3604 bool numa = false; 3604 bool numa = false;
3605 3605
3606 spin_lock(&mm->page_table_lock); 3606 spin_lock(&mm->page_table_lock);
3607 pmd = *pmdp; 3607 pmd = *pmdp;
3608 if (pmd_numa(pmd)) { 3608 if (pmd_numa(pmd)) {
3609 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd)); 3609 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3610 numa = true; 3610 numa = true;
3611 } 3611 }
3612 spin_unlock(&mm->page_table_lock); 3612 spin_unlock(&mm->page_table_lock);
3613 3613
3614 if (!numa) 3614 if (!numa)
3615 return 0; 3615 return 0;
3616 3616
3617 /* we're in a page fault so some vma must be in the range */ 3617 /* we're in a page fault so some vma must be in the range */
3618 BUG_ON(!vma); 3618 BUG_ON(!vma);
3619 BUG_ON(vma->vm_start >= _addr + PMD_SIZE); 3619 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3620 offset = max(_addr, vma->vm_start) & ~PMD_MASK; 3620 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3621 VM_BUG_ON(offset >= PMD_SIZE); 3621 VM_BUG_ON(offset >= PMD_SIZE);
3622 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl); 3622 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3623 pte += offset >> PAGE_SHIFT; 3623 pte += offset >> PAGE_SHIFT;
3624 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) { 3624 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3625 pte_t pteval = *pte; 3625 pte_t pteval = *pte;
3626 struct page *page; 3626 struct page *page;
3627 int page_nid = -1; 3627 int page_nid = -1;
3628 int target_nid; 3628 int target_nid;
3629 bool migrated = false; 3629 bool migrated = false;
3630 3630
3631 if (!pte_present(pteval)) 3631 if (!pte_present(pteval))
3632 continue; 3632 continue;
3633 if (!pte_numa(pteval)) 3633 if (!pte_numa(pteval))
3634 continue; 3634 continue;
3635 if (addr >= vma->vm_end) { 3635 if (addr >= vma->vm_end) {
3636 vma = find_vma(mm, addr); 3636 vma = find_vma(mm, addr);
3637 /* there's a pte present so there must be a vma */ 3637 /* there's a pte present so there must be a vma */
3638 BUG_ON(!vma); 3638 BUG_ON(!vma);
3639 BUG_ON(addr < vma->vm_start); 3639 BUG_ON(addr < vma->vm_start);
3640 } 3640 }
3641 if (pte_numa(pteval)) { 3641 if (pte_numa(pteval)) {
3642 pteval = pte_mknonnuma(pteval); 3642 pteval = pte_mknonnuma(pteval);
3643 set_pte_at(mm, addr, pte, pteval); 3643 set_pte_at(mm, addr, pte, pteval);
3644 } 3644 }
3645 page = vm_normal_page(vma, addr, pteval); 3645 page = vm_normal_page(vma, addr, pteval);
3646 if (unlikely(!page)) 3646 if (unlikely(!page))
3647 continue; 3647 continue;
3648 /* only check non-shared pages */ 3648 /* only check non-shared pages */
3649 if (unlikely(page_mapcount(page) != 1)) 3649 if (unlikely(page_mapcount(page) != 1))
3650 continue; 3650 continue;
3651 3651
3652 page_nid = page_to_nid(page); 3652 page_nid = page_to_nid(page);
3653 target_nid = numa_migrate_prep(page, vma, addr, page_nid); 3653 target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3654 pte_unmap_unlock(pte, ptl); 3654 pte_unmap_unlock(pte, ptl);
3655 if (target_nid != -1) { 3655 if (target_nid != -1) {
3656 migrated = migrate_misplaced_page(page, target_nid); 3656 migrated = migrate_misplaced_page(page, target_nid);
3657 if (migrated) 3657 if (migrated)
3658 page_nid = target_nid; 3658 page_nid = target_nid;
3659 } else { 3659 } else {
3660 put_page(page); 3660 put_page(page);
3661 } 3661 }
3662 3662
3663 if (page_nid != -1) 3663 if (page_nid != -1)
3664 task_numa_fault(page_nid, 1, migrated); 3664 task_numa_fault(page_nid, 1, migrated);
3665 3665
3666 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl); 3666 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3667 } 3667 }
3668 pte_unmap_unlock(orig_pte, ptl); 3668 pte_unmap_unlock(orig_pte, ptl);
3669 3669
3670 return 0; 3670 return 0;
3671 } 3671 }
3672 #else 3672 #else
3673 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3673 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3674 unsigned long addr, pmd_t *pmdp) 3674 unsigned long addr, pmd_t *pmdp)
3675 { 3675 {
3676 BUG(); 3676 BUG();
3677 return 0; 3677 return 0;
3678 } 3678 }
3679 #endif /* CONFIG_NUMA_BALANCING */ 3679 #endif /* CONFIG_NUMA_BALANCING */
3680 3680
3681 /* 3681 /*
3682 * These routines also need to handle stuff like marking pages dirty 3682 * These routines also need to handle stuff like marking pages dirty
3683 * and/or accessed for architectures that don't do it in hardware (most 3683 * and/or accessed for architectures that don't do it in hardware (most
3684 * RISC architectures). The early dirtying is also good on the i386. 3684 * RISC architectures). The early dirtying is also good on the i386.
3685 * 3685 *
3686 * There is also a hook called "update_mmu_cache()" that architectures 3686 * There is also a hook called "update_mmu_cache()" that architectures
3687 * with external mmu caches can use to update those (ie the Sparc or 3687 * with external mmu caches can use to update those (ie the Sparc or
3688 * PowerPC hashed page tables that act as extended TLBs). 3688 * PowerPC hashed page tables that act as extended TLBs).
3689 * 3689 *
3690 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3690 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3691 * but allow concurrent faults), and pte mapped but not yet locked. 3691 * but allow concurrent faults), and pte mapped but not yet locked.
3692 * We return with mmap_sem still held, but pte unmapped and unlocked. 3692 * We return with mmap_sem still held, but pte unmapped and unlocked.
3693 */ 3693 */
3694 static int handle_pte_fault(struct mm_struct *mm, 3694 static int handle_pte_fault(struct mm_struct *mm,
3695 struct vm_area_struct *vma, unsigned long address, 3695 struct vm_area_struct *vma, unsigned long address,
3696 pte_t *pte, pmd_t *pmd, unsigned int flags) 3696 pte_t *pte, pmd_t *pmd, unsigned int flags)
3697 { 3697 {
3698 pte_t entry; 3698 pte_t entry;
3699 spinlock_t *ptl; 3699 spinlock_t *ptl;
3700 3700
3701 entry = ACCESS_ONCE(*pte); 3701 entry = ACCESS_ONCE(*pte);
3702 if (!pte_present(entry)) { 3702 if (!pte_present(entry)) {
3703 if (pte_none(entry)) { 3703 if (pte_none(entry)) {
3704 if (vma->vm_ops) { 3704 if (vma->vm_ops) {
3705 if (likely(vma->vm_ops->fault)) 3705 if (likely(vma->vm_ops->fault))
3706 return do_linear_fault(mm, vma, address, 3706 return do_linear_fault(mm, vma, address,
3707 pte, pmd, flags, entry); 3707 pte, pmd, flags, entry);
3708 } 3708 }
3709 return do_anonymous_page(mm, vma, address, 3709 return do_anonymous_page(mm, vma, address,
3710 pte, pmd, flags); 3710 pte, pmd, flags);
3711 } 3711 }
3712 if (pte_file(entry)) 3712 if (pte_file(entry))
3713 return do_nonlinear_fault(mm, vma, address, 3713 return do_nonlinear_fault(mm, vma, address,
3714 pte, pmd, flags, entry); 3714 pte, pmd, flags, entry);
3715 return do_swap_page(mm, vma, address, 3715 return do_swap_page(mm, vma, address,
3716 pte, pmd, flags, entry); 3716 pte, pmd, flags, entry);
3717 } 3717 }
3718 3718
3719 if (pte_numa(entry)) 3719 if (pte_numa(entry))
3720 return do_numa_page(mm, vma, address, entry, pte, pmd); 3720 return do_numa_page(mm, vma, address, entry, pte, pmd);
3721 3721
3722 ptl = pte_lockptr(mm, pmd); 3722 ptl = pte_lockptr(mm, pmd);
3723 spin_lock(ptl); 3723 spin_lock(ptl);
3724 if (unlikely(!pte_same(*pte, entry))) 3724 if (unlikely(!pte_same(*pte, entry)))
3725 goto unlock; 3725 goto unlock;
3726 if (flags & FAULT_FLAG_WRITE) { 3726 if (flags & FAULT_FLAG_WRITE) {
3727 if (!pte_write(entry)) 3727 if (!pte_write(entry))
3728 return do_wp_page(mm, vma, address, 3728 return do_wp_page(mm, vma, address,
3729 pte, pmd, ptl, entry); 3729 pte, pmd, ptl, entry);
3730 entry = pte_mkdirty(entry); 3730 entry = pte_mkdirty(entry);
3731 } 3731 }
3732 entry = pte_mkyoung(entry); 3732 entry = pte_mkyoung(entry);
3733 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3733 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3734 update_mmu_cache(vma, address, pte); 3734 update_mmu_cache(vma, address, pte);
3735 } else { 3735 } else {
3736 /* 3736 /*
3737 * This is needed only for protection faults but the arch code 3737 * This is needed only for protection faults but the arch code
3738 * is not yet telling us if this is a protection fault or not. 3738 * is not yet telling us if this is a protection fault or not.
3739 * This still avoids useless tlb flushes for .text page faults 3739 * This still avoids useless tlb flushes for .text page faults
3740 * with threads. 3740 * with threads.
3741 */ 3741 */
3742 if (flags & FAULT_FLAG_WRITE) 3742 if (flags & FAULT_FLAG_WRITE)
3743 flush_tlb_fix_spurious_fault(vma, address); 3743 flush_tlb_fix_spurious_fault(vma, address);
3744 } 3744 }
3745 unlock: 3745 unlock:
3746 pte_unmap_unlock(pte, ptl); 3746 pte_unmap_unlock(pte, ptl);
3747 return 0; 3747 return 0;
3748 } 3748 }
3749 3749
3750 /* 3750 /*
3751 * By the time we get here, we already hold the mm semaphore 3751 * By the time we get here, we already hold the mm semaphore
3752 */ 3752 */
3753 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3753 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3754 unsigned long address, unsigned int flags) 3754 unsigned long address, unsigned int flags)
3755 { 3755 {
3756 pgd_t *pgd; 3756 pgd_t *pgd;
3757 pud_t *pud; 3757 pud_t *pud;
3758 pmd_t *pmd; 3758 pmd_t *pmd;
3759 pte_t *pte; 3759 pte_t *pte;
3760 3760
3761 if (unlikely(is_vm_hugetlb_page(vma))) 3761 if (unlikely(is_vm_hugetlb_page(vma)))
3762 return hugetlb_fault(mm, vma, address, flags); 3762 return hugetlb_fault(mm, vma, address, flags);
3763 3763
3764 pgd = pgd_offset(mm, address); 3764 pgd = pgd_offset(mm, address);
3765 pud = pud_alloc(mm, pgd, address); 3765 pud = pud_alloc(mm, pgd, address);
3766 if (!pud) 3766 if (!pud)
3767 return VM_FAULT_OOM; 3767 return VM_FAULT_OOM;
3768 pmd = pmd_alloc(mm, pud, address); 3768 pmd = pmd_alloc(mm, pud, address);
3769 if (!pmd) 3769 if (!pmd)
3770 return VM_FAULT_OOM; 3770 return VM_FAULT_OOM;
3771 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3771 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3772 int ret = VM_FAULT_FALLBACK; 3772 int ret = VM_FAULT_FALLBACK;
3773 if (!vma->vm_ops) 3773 if (!vma->vm_ops)
3774 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3774 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3775 pmd, flags); 3775 pmd, flags);
3776 if (!(ret & VM_FAULT_FALLBACK)) 3776 if (!(ret & VM_FAULT_FALLBACK))
3777 return ret; 3777 return ret;
3778 } else { 3778 } else {
3779 pmd_t orig_pmd = *pmd; 3779 pmd_t orig_pmd = *pmd;
3780 int ret; 3780 int ret;
3781 3781
3782 barrier(); 3782 barrier();
3783 if (pmd_trans_huge(orig_pmd)) { 3783 if (pmd_trans_huge(orig_pmd)) {
3784 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3784 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3785 3785
3786 /* 3786 /*
3787 * If the pmd is splitting, return and retry the 3787 * If the pmd is splitting, return and retry the
3788 * the fault. Alternative: wait until the split 3788 * the fault. Alternative: wait until the split
3789 * is done, and goto retry. 3789 * is done, and goto retry.
3790 */ 3790 */
3791 if (pmd_trans_splitting(orig_pmd)) 3791 if (pmd_trans_splitting(orig_pmd))
3792 return 0; 3792 return 0;
3793 3793
3794 if (pmd_numa(orig_pmd)) 3794 if (pmd_numa(orig_pmd))
3795 return do_huge_pmd_numa_page(mm, vma, address, 3795 return do_huge_pmd_numa_page(mm, vma, address,
3796 orig_pmd, pmd); 3796 orig_pmd, pmd);
3797 3797
3798 if (dirty && !pmd_write(orig_pmd)) { 3798 if (dirty && !pmd_write(orig_pmd)) {
3799 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3799 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3800 orig_pmd); 3800 orig_pmd);
3801 if (!(ret & VM_FAULT_FALLBACK)) 3801 if (!(ret & VM_FAULT_FALLBACK))
3802 return ret; 3802 return ret;
3803 } else { 3803 } else {
3804 huge_pmd_set_accessed(mm, vma, address, pmd, 3804 huge_pmd_set_accessed(mm, vma, address, pmd,
3805 orig_pmd, dirty); 3805 orig_pmd, dirty);
3806 return 0; 3806 return 0;
3807 } 3807 }
3808 } 3808 }
3809 } 3809 }
3810 3810
3811 if (pmd_numa(*pmd)) 3811 if (pmd_numa(*pmd))
3812 return do_pmd_numa_page(mm, vma, address, pmd); 3812 return do_pmd_numa_page(mm, vma, address, pmd);
3813 3813
3814 /* 3814 /*
3815 * Use __pte_alloc instead of pte_alloc_map, because we can't 3815 * Use __pte_alloc instead of pte_alloc_map, because we can't
3816 * run pte_offset_map on the pmd, if an huge pmd could 3816 * run pte_offset_map on the pmd, if an huge pmd could
3817 * materialize from under us from a different thread. 3817 * materialize from under us from a different thread.
3818 */ 3818 */
3819 if (unlikely(pmd_none(*pmd)) && 3819 if (unlikely(pmd_none(*pmd)) &&
3820 unlikely(__pte_alloc(mm, vma, pmd, address))) 3820 unlikely(__pte_alloc(mm, vma, pmd, address)))
3821 return VM_FAULT_OOM; 3821 return VM_FAULT_OOM;
3822 /* if an huge pmd materialized from under us just retry later */ 3822 /* if an huge pmd materialized from under us just retry later */
3823 if (unlikely(pmd_trans_huge(*pmd))) 3823 if (unlikely(pmd_trans_huge(*pmd)))
3824 return 0; 3824 return 0;
3825 /* 3825 /*
3826 * A regular pmd is established and it can't morph into a huge pmd 3826 * A regular pmd is established and it can't morph into a huge pmd
3827 * from under us anymore at this point because we hold the mmap_sem 3827 * from under us anymore at this point because we hold the mmap_sem
3828 * read mode and khugepaged takes it in write mode. So now it's 3828 * read mode and khugepaged takes it in write mode. So now it's
3829 * safe to run pte_offset_map(). 3829 * safe to run pte_offset_map().
3830 */ 3830 */
3831 pte = pte_offset_map(pmd, address); 3831 pte = pte_offset_map(pmd, address);
3832 3832
3833 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3833 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3834 } 3834 }
3835 3835
3836 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3836 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3837 unsigned long address, unsigned int flags) 3837 unsigned long address, unsigned int flags)
3838 { 3838 {
3839 int ret; 3839 int ret;
3840 3840
3841 __set_current_state(TASK_RUNNING); 3841 __set_current_state(TASK_RUNNING);
3842 3842
3843 count_vm_event(PGFAULT); 3843 count_vm_event(PGFAULT);
3844 mem_cgroup_count_vm_event(mm, PGFAULT); 3844 mem_cgroup_count_vm_event(mm, PGFAULT);
3845 3845
3846 /* do counter updates before entering really critical section. */ 3846 /* do counter updates before entering really critical section. */
3847 check_sync_rss_stat(current); 3847 check_sync_rss_stat(current);
3848 3848
3849 /* 3849 /*
3850 * Enable the memcg OOM handling for faults triggered in user 3850 * Enable the memcg OOM handling for faults triggered in user
3851 * space. Kernel faults are handled more gracefully. 3851 * space. Kernel faults are handled more gracefully.
3852 */ 3852 */
3853 if (flags & FAULT_FLAG_USER) 3853 if (flags & FAULT_FLAG_USER)
3854 mem_cgroup_oom_enable(); 3854 mem_cgroup_oom_enable();
3855 3855
3856 ret = __handle_mm_fault(mm, vma, address, flags); 3856 ret = __handle_mm_fault(mm, vma, address, flags);
3857 3857
3858 if (flags & FAULT_FLAG_USER) { 3858 if (flags & FAULT_FLAG_USER) {
3859 mem_cgroup_oom_disable(); 3859 mem_cgroup_oom_disable();
3860 /* 3860 /*
3861 * The task may have entered a memcg OOM situation but 3861 * The task may have entered a memcg OOM situation but
3862 * if the allocation error was handled gracefully (no 3862 * if the allocation error was handled gracefully (no
3863 * VM_FAULT_OOM), there is no need to kill anything. 3863 * VM_FAULT_OOM), there is no need to kill anything.
3864 * Just clean up the OOM state peacefully. 3864 * Just clean up the OOM state peacefully.
3865 */ 3865 */
3866 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3866 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3867 mem_cgroup_oom_synchronize(false); 3867 mem_cgroup_oom_synchronize(false);
3868 } 3868 }
3869 3869
3870 return ret; 3870 return ret;
3871 } 3871 }
3872 3872
3873 #ifndef __PAGETABLE_PUD_FOLDED 3873 #ifndef __PAGETABLE_PUD_FOLDED
3874 /* 3874 /*
3875 * Allocate page upper directory. 3875 * Allocate page upper directory.
3876 * We've already handled the fast-path in-line. 3876 * We've already handled the fast-path in-line.
3877 */ 3877 */
3878 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3878 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3879 { 3879 {
3880 pud_t *new = pud_alloc_one(mm, address); 3880 pud_t *new = pud_alloc_one(mm, address);
3881 if (!new) 3881 if (!new)
3882 return -ENOMEM; 3882 return -ENOMEM;
3883 3883
3884 smp_wmb(); /* See comment in __pte_alloc */ 3884 smp_wmb(); /* See comment in __pte_alloc */
3885 3885
3886 spin_lock(&mm->page_table_lock); 3886 spin_lock(&mm->page_table_lock);
3887 if (pgd_present(*pgd)) /* Another has populated it */ 3887 if (pgd_present(*pgd)) /* Another has populated it */
3888 pud_free(mm, new); 3888 pud_free(mm, new);
3889 else 3889 else
3890 pgd_populate(mm, pgd, new); 3890 pgd_populate(mm, pgd, new);
3891 spin_unlock(&mm->page_table_lock); 3891 spin_unlock(&mm->page_table_lock);
3892 return 0; 3892 return 0;
3893 } 3893 }
3894 #endif /* __PAGETABLE_PUD_FOLDED */ 3894 #endif /* __PAGETABLE_PUD_FOLDED */
3895 3895
3896 #ifndef __PAGETABLE_PMD_FOLDED 3896 #ifndef __PAGETABLE_PMD_FOLDED
3897 /* 3897 /*
3898 * Allocate page middle directory. 3898 * Allocate page middle directory.
3899 * We've already handled the fast-path in-line. 3899 * We've already handled the fast-path in-line.
3900 */ 3900 */
3901 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3901 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3902 { 3902 {
3903 pmd_t *new = pmd_alloc_one(mm, address); 3903 pmd_t *new = pmd_alloc_one(mm, address);
3904 if (!new) 3904 if (!new)
3905 return -ENOMEM; 3905 return -ENOMEM;
3906 3906
3907 smp_wmb(); /* See comment in __pte_alloc */ 3907 smp_wmb(); /* See comment in __pte_alloc */
3908 3908
3909 spin_lock(&mm->page_table_lock); 3909 spin_lock(&mm->page_table_lock);
3910 #ifndef __ARCH_HAS_4LEVEL_HACK 3910 #ifndef __ARCH_HAS_4LEVEL_HACK
3911 if (pud_present(*pud)) /* Another has populated it */ 3911 if (pud_present(*pud)) /* Another has populated it */
3912 pmd_free(mm, new); 3912 pmd_free(mm, new);
3913 else 3913 else
3914 pud_populate(mm, pud, new); 3914 pud_populate(mm, pud, new);
3915 #else 3915 #else
3916 if (pgd_present(*pud)) /* Another has populated it */ 3916 if (pgd_present(*pud)) /* Another has populated it */
3917 pmd_free(mm, new); 3917 pmd_free(mm, new);
3918 else 3918 else
3919 pgd_populate(mm, pud, new); 3919 pgd_populate(mm, pud, new);
3920 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3920 #endif /* __ARCH_HAS_4LEVEL_HACK */
3921 spin_unlock(&mm->page_table_lock); 3921 spin_unlock(&mm->page_table_lock);
3922 return 0; 3922 return 0;
3923 } 3923 }
3924 #endif /* __PAGETABLE_PMD_FOLDED */ 3924 #endif /* __PAGETABLE_PMD_FOLDED */
3925 3925
3926 #if !defined(__HAVE_ARCH_GATE_AREA) 3926 #if !defined(__HAVE_ARCH_GATE_AREA)
3927 3927
3928 #if defined(AT_SYSINFO_EHDR) 3928 #if defined(AT_SYSINFO_EHDR)
3929 static struct vm_area_struct gate_vma; 3929 static struct vm_area_struct gate_vma;
3930 3930
3931 static int __init gate_vma_init(void) 3931 static int __init gate_vma_init(void)
3932 { 3932 {
3933 gate_vma.vm_mm = NULL; 3933 gate_vma.vm_mm = NULL;
3934 gate_vma.vm_start = FIXADDR_USER_START; 3934 gate_vma.vm_start = FIXADDR_USER_START;
3935 gate_vma.vm_end = FIXADDR_USER_END; 3935 gate_vma.vm_end = FIXADDR_USER_END;
3936 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3936 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3937 gate_vma.vm_page_prot = __P101; 3937 gate_vma.vm_page_prot = __P101;
3938 3938
3939 return 0; 3939 return 0;
3940 } 3940 }
3941 __initcall(gate_vma_init); 3941 __initcall(gate_vma_init);
3942 #endif 3942 #endif
3943 3943
3944 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3944 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3945 { 3945 {
3946 #ifdef AT_SYSINFO_EHDR 3946 #ifdef AT_SYSINFO_EHDR
3947 return &gate_vma; 3947 return &gate_vma;
3948 #else 3948 #else
3949 return NULL; 3949 return NULL;
3950 #endif 3950 #endif
3951 } 3951 }
3952 3952
3953 int in_gate_area_no_mm(unsigned long addr) 3953 int in_gate_area_no_mm(unsigned long addr)
3954 { 3954 {
3955 #ifdef AT_SYSINFO_EHDR 3955 #ifdef AT_SYSINFO_EHDR
3956 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3956 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3957 return 1; 3957 return 1;
3958 #endif 3958 #endif
3959 return 0; 3959 return 0;
3960 } 3960 }
3961 3961
3962 #endif /* __HAVE_ARCH_GATE_AREA */ 3962 #endif /* __HAVE_ARCH_GATE_AREA */
3963 3963
3964 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3964 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3965 pte_t **ptepp, spinlock_t **ptlp) 3965 pte_t **ptepp, spinlock_t **ptlp)
3966 { 3966 {
3967 pgd_t *pgd; 3967 pgd_t *pgd;
3968 pud_t *pud; 3968 pud_t *pud;
3969 pmd_t *pmd; 3969 pmd_t *pmd;
3970 pte_t *ptep; 3970 pte_t *ptep;
3971 3971
3972 pgd = pgd_offset(mm, address); 3972 pgd = pgd_offset(mm, address);
3973 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3973 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3974 goto out; 3974 goto out;
3975 3975
3976 pud = pud_offset(pgd, address); 3976 pud = pud_offset(pgd, address);
3977 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3977 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3978 goto out; 3978 goto out;
3979 3979
3980 pmd = pmd_offset(pud, address); 3980 pmd = pmd_offset(pud, address);
3981 VM_BUG_ON(pmd_trans_huge(*pmd)); 3981 VM_BUG_ON(pmd_trans_huge(*pmd));
3982 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3982 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3983 goto out; 3983 goto out;
3984 3984
3985 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3985 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3986 if (pmd_huge(*pmd)) 3986 if (pmd_huge(*pmd))
3987 goto out; 3987 goto out;
3988 3988
3989 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3989 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3990 if (!ptep) 3990 if (!ptep)
3991 goto out; 3991 goto out;
3992 if (!pte_present(*ptep)) 3992 if (!pte_present(*ptep))
3993 goto unlock; 3993 goto unlock;
3994 *ptepp = ptep; 3994 *ptepp = ptep;
3995 return 0; 3995 return 0;
3996 unlock: 3996 unlock:
3997 pte_unmap_unlock(ptep, *ptlp); 3997 pte_unmap_unlock(ptep, *ptlp);
3998 out: 3998 out:
3999 return -EINVAL; 3999 return -EINVAL;
4000 } 4000 }
4001 4001
4002 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4002 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4003 pte_t **ptepp, spinlock_t **ptlp) 4003 pte_t **ptepp, spinlock_t **ptlp)
4004 { 4004 {
4005 int res; 4005 int res;
4006 4006
4007 /* (void) is needed to make gcc happy */ 4007 /* (void) is needed to make gcc happy */
4008 (void) __cond_lock(*ptlp, 4008 (void) __cond_lock(*ptlp,
4009 !(res = __follow_pte(mm, address, ptepp, ptlp))); 4009 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4010 return res; 4010 return res;
4011 } 4011 }
4012 4012
4013 /** 4013 /**
4014 * follow_pfn - look up PFN at a user virtual address 4014 * follow_pfn - look up PFN at a user virtual address
4015 * @vma: memory mapping 4015 * @vma: memory mapping
4016 * @address: user virtual address 4016 * @address: user virtual address
4017 * @pfn: location to store found PFN 4017 * @pfn: location to store found PFN
4018 * 4018 *
4019 * Only IO mappings and raw PFN mappings are allowed. 4019 * Only IO mappings and raw PFN mappings are allowed.
4020 * 4020 *
4021 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4021 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4022 */ 4022 */
4023 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4023 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4024 unsigned long *pfn) 4024 unsigned long *pfn)
4025 { 4025 {
4026 int ret = -EINVAL; 4026 int ret = -EINVAL;
4027 spinlock_t *ptl; 4027 spinlock_t *ptl;
4028 pte_t *ptep; 4028 pte_t *ptep;
4029 4029
4030 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4030 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4031 return ret; 4031 return ret;
4032 4032
4033 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4033 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4034 if (ret) 4034 if (ret)
4035 return ret; 4035 return ret;
4036 *pfn = pte_pfn(*ptep); 4036 *pfn = pte_pfn(*ptep);
4037 pte_unmap_unlock(ptep, ptl); 4037 pte_unmap_unlock(ptep, ptl);
4038 return 0; 4038 return 0;
4039 } 4039 }
4040 EXPORT_SYMBOL(follow_pfn); 4040 EXPORT_SYMBOL(follow_pfn);
4041 4041
4042 #ifdef CONFIG_HAVE_IOREMAP_PROT 4042 #ifdef CONFIG_HAVE_IOREMAP_PROT
4043 int follow_phys(struct vm_area_struct *vma, 4043 int follow_phys(struct vm_area_struct *vma,
4044 unsigned long address, unsigned int flags, 4044 unsigned long address, unsigned int flags,
4045 unsigned long *prot, resource_size_t *phys) 4045 unsigned long *prot, resource_size_t *phys)
4046 { 4046 {
4047 int ret = -EINVAL; 4047 int ret = -EINVAL;
4048 pte_t *ptep, pte; 4048 pte_t *ptep, pte;
4049 spinlock_t *ptl; 4049 spinlock_t *ptl;
4050 4050
4051 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4051 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4052 goto out; 4052 goto out;
4053 4053
4054 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4054 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4055 goto out; 4055 goto out;
4056 pte = *ptep; 4056 pte = *ptep;
4057 4057
4058 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4058 if ((flags & FOLL_WRITE) && !pte_write(pte))
4059 goto unlock; 4059 goto unlock;
4060 4060
4061 *prot = pgprot_val(pte_pgprot(pte)); 4061 *prot = pgprot_val(pte_pgprot(pte));
4062 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4062 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4063 4063
4064 ret = 0; 4064 ret = 0;
4065 unlock: 4065 unlock:
4066 pte_unmap_unlock(ptep, ptl); 4066 pte_unmap_unlock(ptep, ptl);
4067 out: 4067 out:
4068 return ret; 4068 return ret;
4069 } 4069 }
4070 4070
4071 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4071 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4072 void *buf, int len, int write) 4072 void *buf, int len, int write)
4073 { 4073 {
4074 resource_size_t phys_addr; 4074 resource_size_t phys_addr;
4075 unsigned long prot = 0; 4075 unsigned long prot = 0;
4076 void __iomem *maddr; 4076 void __iomem *maddr;
4077 int offset = addr & (PAGE_SIZE-1); 4077 int offset = addr & (PAGE_SIZE-1);
4078 4078
4079 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4079 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4080 return -EINVAL; 4080 return -EINVAL;
4081 4081
4082 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4082 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4083 if (write) 4083 if (write)
4084 memcpy_toio(maddr + offset, buf, len); 4084 memcpy_toio(maddr + offset, buf, len);
4085 else 4085 else
4086 memcpy_fromio(buf, maddr + offset, len); 4086 memcpy_fromio(buf, maddr + offset, len);
4087 iounmap(maddr); 4087 iounmap(maddr);
4088 4088
4089 return len; 4089 return len;
4090 } 4090 }
4091 EXPORT_SYMBOL_GPL(generic_access_phys); 4091 EXPORT_SYMBOL_GPL(generic_access_phys);
4092 #endif 4092 #endif
4093 4093
4094 /* 4094 /*
4095 * Access another process' address space as given in mm. If non-NULL, use the 4095 * Access another process' address space as given in mm. If non-NULL, use the
4096 * given task for page fault accounting. 4096 * given task for page fault accounting.
4097 */ 4097 */
4098 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4098 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4099 unsigned long addr, void *buf, int len, int write) 4099 unsigned long addr, void *buf, int len, int write)
4100 { 4100 {
4101 struct vm_area_struct *vma; 4101 struct vm_area_struct *vma;
4102 void *old_buf = buf; 4102 void *old_buf = buf;
4103 4103
4104 down_read(&mm->mmap_sem); 4104 down_read(&mm->mmap_sem);
4105 /* ignore errors, just check how much was successfully transferred */ 4105 /* ignore errors, just check how much was successfully transferred */
4106 while (len) { 4106 while (len) {
4107 int bytes, ret, offset; 4107 int bytes, ret, offset;
4108 void *maddr; 4108 void *maddr;
4109 struct page *page = NULL; 4109 struct page *page = NULL;
4110 4110
4111 ret = get_user_pages(tsk, mm, addr, 1, 4111 ret = get_user_pages(tsk, mm, addr, 1,
4112 write, 1, &page, &vma); 4112 write, 1, &page, &vma);
4113 if (ret <= 0) { 4113 if (ret <= 0) {
4114 /* 4114 /*
4115 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4115 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4116 * we can access using slightly different code. 4116 * we can access using slightly different code.
4117 */ 4117 */
4118 #ifdef CONFIG_HAVE_IOREMAP_PROT 4118 #ifdef CONFIG_HAVE_IOREMAP_PROT
4119 vma = find_vma(mm, addr); 4119 vma = find_vma(mm, addr);
4120 if (!vma || vma->vm_start > addr) 4120 if (!vma || vma->vm_start > addr)
4121 break; 4121 break;
4122 if (vma->vm_ops && vma->vm_ops->access) 4122 if (vma->vm_ops && vma->vm_ops->access)
4123 ret = vma->vm_ops->access(vma, addr, buf, 4123 ret = vma->vm_ops->access(vma, addr, buf,
4124 len, write); 4124 len, write);
4125 if (ret <= 0) 4125 if (ret <= 0)
4126 #endif 4126 #endif
4127 break; 4127 break;
4128 bytes = ret; 4128 bytes = ret;
4129 } else { 4129 } else {
4130 bytes = len; 4130 bytes = len;
4131 offset = addr & (PAGE_SIZE-1); 4131 offset = addr & (PAGE_SIZE-1);
4132 if (bytes > PAGE_SIZE-offset) 4132 if (bytes > PAGE_SIZE-offset)
4133 bytes = PAGE_SIZE-offset; 4133 bytes = PAGE_SIZE-offset;
4134 4134
4135 maddr = kmap(page); 4135 maddr = kmap(page);
4136 if (write) { 4136 if (write) {
4137 copy_to_user_page(vma, page, addr, 4137 copy_to_user_page(vma, page, addr,
4138 maddr + offset, buf, bytes); 4138 maddr + offset, buf, bytes);
4139 set_page_dirty_lock(page); 4139 set_page_dirty_lock(page);
4140 } else { 4140 } else {
4141 copy_from_user_page(vma, page, addr, 4141 copy_from_user_page(vma, page, addr,
4142 buf, maddr + offset, bytes); 4142 buf, maddr + offset, bytes);
4143 } 4143 }
4144 kunmap(page); 4144 kunmap(page);
4145 page_cache_release(page); 4145 page_cache_release(page);
4146 } 4146 }
4147 len -= bytes; 4147 len -= bytes;
4148 buf += bytes; 4148 buf += bytes;
4149 addr += bytes; 4149 addr += bytes;
4150 } 4150 }
4151 up_read(&mm->mmap_sem); 4151 up_read(&mm->mmap_sem);
4152 4152
4153 return buf - old_buf; 4153 return buf - old_buf;
4154 } 4154 }
4155 4155
4156 /** 4156 /**
4157 * access_remote_vm - access another process' address space 4157 * access_remote_vm - access another process' address space
4158 * @mm: the mm_struct of the target address space 4158 * @mm: the mm_struct of the target address space
4159 * @addr: start address to access 4159 * @addr: start address to access
4160 * @buf: source or destination buffer 4160 * @buf: source or destination buffer
4161 * @len: number of bytes to transfer 4161 * @len: number of bytes to transfer
4162 * @write: whether the access is a write 4162 * @write: whether the access is a write
4163 * 4163 *
4164 * The caller must hold a reference on @mm. 4164 * The caller must hold a reference on @mm.
4165 */ 4165 */
4166 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4166 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4167 void *buf, int len, int write) 4167 void *buf, int len, int write)
4168 { 4168 {
4169 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4169 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4170 } 4170 }
4171 4171
4172 /* 4172 /*
4173 * Access another process' address space. 4173 * Access another process' address space.
4174 * Source/target buffer must be kernel space, 4174 * Source/target buffer must be kernel space,
4175 * Do not walk the page table directly, use get_user_pages 4175 * Do not walk the page table directly, use get_user_pages
4176 */ 4176 */
4177 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4177 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4178 void *buf, int len, int write) 4178 void *buf, int len, int write)
4179 { 4179 {
4180 struct mm_struct *mm; 4180 struct mm_struct *mm;
4181 int ret; 4181 int ret;
4182 4182
4183 mm = get_task_mm(tsk); 4183 mm = get_task_mm(tsk);
4184 if (!mm) 4184 if (!mm)
4185 return 0; 4185 return 0;
4186 4186
4187 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4187 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4188 mmput(mm); 4188 mmput(mm);
4189 4189
4190 return ret; 4190 return ret;
4191 } 4191 }
4192 4192
4193 /* 4193 /*
4194 * Print the name of a VMA. 4194 * Print the name of a VMA.
4195 */ 4195 */
4196 void print_vma_addr(char *prefix, unsigned long ip) 4196 void print_vma_addr(char *prefix, unsigned long ip)
4197 { 4197 {
4198 struct mm_struct *mm = current->mm; 4198 struct mm_struct *mm = current->mm;
4199 struct vm_area_struct *vma; 4199 struct vm_area_struct *vma;
4200 4200
4201 /* 4201 /*
4202 * Do not print if we are in atomic 4202 * Do not print if we are in atomic
4203 * contexts (in exception stacks, etc.): 4203 * contexts (in exception stacks, etc.):
4204 */ 4204 */
4205 if (preempt_count()) 4205 if (preempt_count())
4206 return; 4206 return;
4207 4207
4208 down_read(&mm->mmap_sem); 4208 down_read(&mm->mmap_sem);
4209 vma = find_vma(mm, ip); 4209 vma = find_vma(mm, ip);
4210 if (vma && vma->vm_file) { 4210 if (vma && vma->vm_file) {
4211 struct file *f = vma->vm_file; 4211 struct file *f = vma->vm_file;
4212 char *buf = (char *)__get_free_page(GFP_KERNEL); 4212 char *buf = (char *)__get_free_page(GFP_KERNEL);
4213 if (buf) { 4213 if (buf) {
4214 char *p; 4214 char *p;
4215 4215
4216 p = d_path(&f->f_path, buf, PAGE_SIZE); 4216 p = d_path(&f->f_path, buf, PAGE_SIZE);
4217 if (IS_ERR(p)) 4217 if (IS_ERR(p))
4218 p = "?"; 4218 p = "?";
4219 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4219 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4220 vma->vm_start, 4220 vma->vm_start,
4221 vma->vm_end - vma->vm_start); 4221 vma->vm_end - vma->vm_start);
4222 free_page((unsigned long)buf); 4222 free_page((unsigned long)buf);
4223 } 4223 }
4224 } 4224 }
4225 up_read(&mm->mmap_sem); 4225 up_read(&mm->mmap_sem);
4226 } 4226 }
4227 4227
4228 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4228 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4229 void might_fault(void) 4229 void might_fault(void)
4230 { 4230 {
4231 /* 4231 /*
4232 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4232 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4233 * holding the mmap_sem, this is safe because kernel memory doesn't 4233 * holding the mmap_sem, this is safe because kernel memory doesn't
4234 * get paged out, therefore we'll never actually fault, and the 4234 * get paged out, therefore we'll never actually fault, and the
4235 * below annotations will generate false positives. 4235 * below annotations will generate false positives.
4236 */ 4236 */
4237 if (segment_eq(get_fs(), KERNEL_DS)) 4237 if (segment_eq(get_fs(), KERNEL_DS))
4238 return; 4238 return;
4239 4239
4240 /* 4240 /*
4241 * it would be nicer only to annotate paths which are not under 4241 * it would be nicer only to annotate paths which are not under
4242 * pagefault_disable, however that requires a larger audit and 4242 * pagefault_disable, however that requires a larger audit and
4243 * providing helpers like get_user_atomic. 4243 * providing helpers like get_user_atomic.
4244 */ 4244 */
4245 if (in_atomic()) 4245 if (in_atomic())
4246 return; 4246 return;
4247 4247
4248 __might_sleep(__FILE__, __LINE__, 0); 4248 __might_sleep(__FILE__, __LINE__, 0);
4249 4249
4250 if (current->mm) 4250 if (current->mm)
4251 might_lock_read(&current->mm->mmap_sem); 4251 might_lock_read(&current->mm->mmap_sem);
4252 } 4252 }
4253 EXPORT_SYMBOL(might_fault); 4253 EXPORT_SYMBOL(might_fault);
4254 #endif 4254 #endif
4255 4255
4256 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4256 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4257 static void clear_gigantic_page(struct page *page, 4257 static void clear_gigantic_page(struct page *page,
4258 unsigned long addr, 4258 unsigned long addr,
4259 unsigned int pages_per_huge_page) 4259 unsigned int pages_per_huge_page)
4260 { 4260 {
4261 int i; 4261 int i;
4262 struct page *p = page; 4262 struct page *p = page;
4263 4263
4264 might_sleep(); 4264 might_sleep();
4265 for (i = 0; i < pages_per_huge_page; 4265 for (i = 0; i < pages_per_huge_page;
4266 i++, p = mem_map_next(p, page, i)) { 4266 i++, p = mem_map_next(p, page, i)) {
4267 cond_resched(); 4267 cond_resched();
4268 clear_user_highpage(p, addr + i * PAGE_SIZE); 4268 clear_user_highpage(p, addr + i * PAGE_SIZE);
4269 } 4269 }
4270 } 4270 }
4271 void clear_huge_page(struct page *page, 4271 void clear_huge_page(struct page *page,
4272 unsigned long addr, unsigned int pages_per_huge_page) 4272 unsigned long addr, unsigned int pages_per_huge_page)
4273 { 4273 {
4274 int i; 4274 int i;
4275 4275
4276 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4276 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4277 clear_gigantic_page(page, addr, pages_per_huge_page); 4277 clear_gigantic_page(page, addr, pages_per_huge_page);
4278 return; 4278 return;
4279 } 4279 }
4280 4280
4281 might_sleep(); 4281 might_sleep();
4282 for (i = 0; i < pages_per_huge_page; i++) { 4282 for (i = 0; i < pages_per_huge_page; i++) {
4283 cond_resched(); 4283 cond_resched();
4284 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4284 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4285 } 4285 }
4286 } 4286 }
4287 4287
4288 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4288 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4289 unsigned long addr, 4289 unsigned long addr,
4290 struct vm_area_struct *vma, 4290 struct vm_area_struct *vma,
4291 unsigned int pages_per_huge_page) 4291 unsigned int pages_per_huge_page)
4292 { 4292 {
4293 int i; 4293 int i;
4294 struct page *dst_base = dst; 4294 struct page *dst_base = dst;
4295 struct page *src_base = src; 4295 struct page *src_base = src;
4296 4296
4297 for (i = 0; i < pages_per_huge_page; ) { 4297 for (i = 0; i < pages_per_huge_page; ) {
4298 cond_resched(); 4298 cond_resched();
4299 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4299 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4300 4300
4301 i++; 4301 i++;
4302 dst = mem_map_next(dst, dst_base, i); 4302 dst = mem_map_next(dst, dst_base, i);
4303 src = mem_map_next(src, src_base, i); 4303 src = mem_map_next(src, src_base, i);
4304 } 4304 }
4305 } 4305 }
4306 4306
4307 void copy_user_huge_page(struct page *dst, struct page *src, 4307 void copy_user_huge_page(struct page *dst, struct page *src,
4308 unsigned long addr, struct vm_area_struct *vma, 4308 unsigned long addr, struct vm_area_struct *vma,
4309 unsigned int pages_per_huge_page) 4309 unsigned int pages_per_huge_page)
4310 { 4310 {
4311 int i; 4311 int i;
4312 4312
4313 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4313 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4314 copy_user_gigantic_page(dst, src, addr, vma, 4314 copy_user_gigantic_page(dst, src, addr, vma,
4315 pages_per_huge_page); 4315 pages_per_huge_page);
4316 return; 4316 return;
4317 } 4317 }
4318 4318
4319 might_sleep(); 4319 might_sleep();
4320 for (i = 0; i < pages_per_huge_page; i++) { 4320 for (i = 0; i < pages_per_huge_page; i++) {
4321 cond_resched(); 4321 cond_resched();
4322 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4322 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4323 } 4323 }
4324 } 4324 }
4325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4325 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4326 4326