Commit 896ddd600ba4a3426aeb11710ae9c28dd7ce68ce

Authored by Abhilash Kesavan
Committed by Olof Johansson
1 parent 6fda93b95e

drivers: bus: check cci device tree node status

The arm-cci driver completes the probe sequence even if the cci node is
marked as disabled. Add a check in the driver to honour the cci status
in the device tree.

Signed-off-by: Abhilash Kesavan <a.kesavan@samsung.com>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Olof Johansson <olof@lixom.net>

Showing 1 changed file with 3 additions and 0 deletions Inline Diff

drivers/bus/arm-cci.c
1 /* 1 /*
2 * CCI cache coherent interconnect driver 2 * CCI cache coherent interconnect driver
3 * 3 *
4 * Copyright (C) 2013 ARM Ltd. 4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> 5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 * 6 *
7 * This program is free software; you can redistribute it and/or modify 7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as 8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation. 9 * published by the Free Software Foundation.
10 * 10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty 12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 */ 15 */
16 16
17 #include <linux/arm-cci.h> 17 #include <linux/arm-cci.h>
18 #include <linux/io.h> 18 #include <linux/io.h>
19 #include <linux/interrupt.h> 19 #include <linux/interrupt.h>
20 #include <linux/module.h> 20 #include <linux/module.h>
21 #include <linux/of_address.h> 21 #include <linux/of_address.h>
22 #include <linux/of_irq.h> 22 #include <linux/of_irq.h>
23 #include <linux/of_platform.h> 23 #include <linux/of_platform.h>
24 #include <linux/perf_event.h> 24 #include <linux/perf_event.h>
25 #include <linux/platform_device.h> 25 #include <linux/platform_device.h>
26 #include <linux/slab.h> 26 #include <linux/slab.h>
27 #include <linux/spinlock.h> 27 #include <linux/spinlock.h>
28 28
29 #include <asm/cacheflush.h> 29 #include <asm/cacheflush.h>
30 #include <asm/smp_plat.h> 30 #include <asm/smp_plat.h>
31 31
32 #define DRIVER_NAME "CCI-400" 32 #define DRIVER_NAME "CCI-400"
33 #define DRIVER_NAME_PMU DRIVER_NAME " PMU" 33 #define DRIVER_NAME_PMU DRIVER_NAME " PMU"
34 34
35 #define CCI_PORT_CTRL 0x0 35 #define CCI_PORT_CTRL 0x0
36 #define CCI_CTRL_STATUS 0xc 36 #define CCI_CTRL_STATUS 0xc
37 37
38 #define CCI_ENABLE_SNOOP_REQ 0x1 38 #define CCI_ENABLE_SNOOP_REQ 0x1
39 #define CCI_ENABLE_DVM_REQ 0x2 39 #define CCI_ENABLE_DVM_REQ 0x2
40 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ) 40 #define CCI_ENABLE_REQ (CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
41 41
42 struct cci_nb_ports { 42 struct cci_nb_ports {
43 unsigned int nb_ace; 43 unsigned int nb_ace;
44 unsigned int nb_ace_lite; 44 unsigned int nb_ace_lite;
45 }; 45 };
46 46
47 enum cci_ace_port_type { 47 enum cci_ace_port_type {
48 ACE_INVALID_PORT = 0x0, 48 ACE_INVALID_PORT = 0x0,
49 ACE_PORT, 49 ACE_PORT,
50 ACE_LITE_PORT, 50 ACE_LITE_PORT,
51 }; 51 };
52 52
53 struct cci_ace_port { 53 struct cci_ace_port {
54 void __iomem *base; 54 void __iomem *base;
55 unsigned long phys; 55 unsigned long phys;
56 enum cci_ace_port_type type; 56 enum cci_ace_port_type type;
57 struct device_node *dn; 57 struct device_node *dn;
58 }; 58 };
59 59
60 static struct cci_ace_port *ports; 60 static struct cci_ace_port *ports;
61 static unsigned int nb_cci_ports; 61 static unsigned int nb_cci_ports;
62 62
63 static void __iomem *cci_ctrl_base; 63 static void __iomem *cci_ctrl_base;
64 static unsigned long cci_ctrl_phys; 64 static unsigned long cci_ctrl_phys;
65 65
66 #ifdef CONFIG_HW_PERF_EVENTS 66 #ifdef CONFIG_HW_PERF_EVENTS
67 67
68 #define CCI_PMCR 0x0100 68 #define CCI_PMCR 0x0100
69 #define CCI_PID2 0x0fe8 69 #define CCI_PID2 0x0fe8
70 70
71 #define CCI_PMCR_CEN 0x00000001 71 #define CCI_PMCR_CEN 0x00000001
72 #define CCI_PMCR_NCNT_MASK 0x0000f800 72 #define CCI_PMCR_NCNT_MASK 0x0000f800
73 #define CCI_PMCR_NCNT_SHIFT 11 73 #define CCI_PMCR_NCNT_SHIFT 11
74 74
75 #define CCI_PID2_REV_MASK 0xf0 75 #define CCI_PID2_REV_MASK 0xf0
76 #define CCI_PID2_REV_SHIFT 4 76 #define CCI_PID2_REV_SHIFT 4
77 77
78 /* Port ids */ 78 /* Port ids */
79 #define CCI_PORT_S0 0 79 #define CCI_PORT_S0 0
80 #define CCI_PORT_S1 1 80 #define CCI_PORT_S1 1
81 #define CCI_PORT_S2 2 81 #define CCI_PORT_S2 2
82 #define CCI_PORT_S3 3 82 #define CCI_PORT_S3 3
83 #define CCI_PORT_S4 4 83 #define CCI_PORT_S4 4
84 #define CCI_PORT_M0 5 84 #define CCI_PORT_M0 5
85 #define CCI_PORT_M1 6 85 #define CCI_PORT_M1 6
86 #define CCI_PORT_M2 7 86 #define CCI_PORT_M2 7
87 87
88 #define CCI_REV_R0 0 88 #define CCI_REV_R0 0
89 #define CCI_REV_R1 1 89 #define CCI_REV_R1 1
90 #define CCI_REV_R1_PX 5 90 #define CCI_REV_R1_PX 5
91 91
92 #define CCI_PMU_EVT_SEL 0x000 92 #define CCI_PMU_EVT_SEL 0x000
93 #define CCI_PMU_CNTR 0x004 93 #define CCI_PMU_CNTR 0x004
94 #define CCI_PMU_CNTR_CTRL 0x008 94 #define CCI_PMU_CNTR_CTRL 0x008
95 #define CCI_PMU_OVRFLW 0x00c 95 #define CCI_PMU_OVRFLW 0x00c
96 96
97 #define CCI_PMU_OVRFLW_FLAG 1 97 #define CCI_PMU_OVRFLW_FLAG 1
98 98
99 #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K) 99 #define CCI_PMU_CNTR_BASE(idx) ((idx) * SZ_4K)
100 100
101 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1) 101 #define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
102 102
103 /* 103 /*
104 * Instead of an event id to monitor CCI cycles, a dedicated counter is 104 * Instead of an event id to monitor CCI cycles, a dedicated counter is
105 * provided. Use 0xff to represent CCI cycles and hope that no future revisions 105 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
106 * make use of this event in hardware. 106 * make use of this event in hardware.
107 */ 107 */
108 enum cci400_perf_events { 108 enum cci400_perf_events {
109 CCI_PMU_CYCLES = 0xff 109 CCI_PMU_CYCLES = 0xff
110 }; 110 };
111 111
112 #define CCI_PMU_EVENT_MASK 0xff 112 #define CCI_PMU_EVENT_MASK 0xff
113 #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7) 113 #define CCI_PMU_EVENT_SOURCE(event) ((event >> 5) & 0x7)
114 #define CCI_PMU_EVENT_CODE(event) (event & 0x1f) 114 #define CCI_PMU_EVENT_CODE(event) (event & 0x1f)
115 115
116 #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */ 116 #define CCI_PMU_MAX_HW_EVENTS 5 /* CCI PMU has 4 counters + 1 cycle counter */
117 117
118 #define CCI_PMU_CYCLE_CNTR_IDX 0 118 #define CCI_PMU_CYCLE_CNTR_IDX 0
119 #define CCI_PMU_CNTR0_IDX 1 119 #define CCI_PMU_CNTR0_IDX 1
120 #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1) 120 #define CCI_PMU_CNTR_LAST(cci_pmu) (CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
121 121
122 /* 122 /*
123 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8 123 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
124 * ports and bits 4:0 are event codes. There are different event codes 124 * ports and bits 4:0 are event codes. There are different event codes
125 * associated with each port type. 125 * associated with each port type.
126 * 126 *
127 * Additionally, the range of events associated with the port types changed 127 * Additionally, the range of events associated with the port types changed
128 * between Rev0 and Rev1. 128 * between Rev0 and Rev1.
129 * 129 *
130 * The constants below define the range of valid codes for each port type for 130 * The constants below define the range of valid codes for each port type for
131 * the different revisions and are used to validate the event to be monitored. 131 * the different revisions and are used to validate the event to be monitored.
132 */ 132 */
133 133
134 #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00 134 #define CCI_REV_R0_SLAVE_PORT_MIN_EV 0x00
135 #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13 135 #define CCI_REV_R0_SLAVE_PORT_MAX_EV 0x13
136 #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14 136 #define CCI_REV_R0_MASTER_PORT_MIN_EV 0x14
137 #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a 137 #define CCI_REV_R0_MASTER_PORT_MAX_EV 0x1a
138 138
139 #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00 139 #define CCI_REV_R1_SLAVE_PORT_MIN_EV 0x00
140 #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14 140 #define CCI_REV_R1_SLAVE_PORT_MAX_EV 0x14
141 #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00 141 #define CCI_REV_R1_MASTER_PORT_MIN_EV 0x00
142 #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11 142 #define CCI_REV_R1_MASTER_PORT_MAX_EV 0x11
143 143
144 struct pmu_port_event_ranges { 144 struct pmu_port_event_ranges {
145 u8 slave_min; 145 u8 slave_min;
146 u8 slave_max; 146 u8 slave_max;
147 u8 master_min; 147 u8 master_min;
148 u8 master_max; 148 u8 master_max;
149 }; 149 };
150 150
151 static struct pmu_port_event_ranges port_event_range[] = { 151 static struct pmu_port_event_ranges port_event_range[] = {
152 [CCI_REV_R0] = { 152 [CCI_REV_R0] = {
153 .slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV, 153 .slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
154 .slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV, 154 .slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
155 .master_min = CCI_REV_R0_MASTER_PORT_MIN_EV, 155 .master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
156 .master_max = CCI_REV_R0_MASTER_PORT_MAX_EV, 156 .master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
157 }, 157 },
158 [CCI_REV_R1] = { 158 [CCI_REV_R1] = {
159 .slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV, 159 .slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
160 .slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV, 160 .slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
161 .master_min = CCI_REV_R1_MASTER_PORT_MIN_EV, 161 .master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
162 .master_max = CCI_REV_R1_MASTER_PORT_MAX_EV, 162 .master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
163 }, 163 },
164 }; 164 };
165 165
166 /* 166 /*
167 * Export different PMU names for the different revisions so userspace knows 167 * Export different PMU names for the different revisions so userspace knows
168 * because the event ids are different 168 * because the event ids are different
169 */ 169 */
170 static char *const pmu_names[] = { 170 static char *const pmu_names[] = {
171 [CCI_REV_R0] = "CCI_400", 171 [CCI_REV_R0] = "CCI_400",
172 [CCI_REV_R1] = "CCI_400_r1", 172 [CCI_REV_R1] = "CCI_400_r1",
173 }; 173 };
174 174
175 struct cci_pmu_hw_events { 175 struct cci_pmu_hw_events {
176 struct perf_event *events[CCI_PMU_MAX_HW_EVENTS]; 176 struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
177 unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)]; 177 unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
178 raw_spinlock_t pmu_lock; 178 raw_spinlock_t pmu_lock;
179 }; 179 };
180 180
181 struct cci_pmu { 181 struct cci_pmu {
182 void __iomem *base; 182 void __iomem *base;
183 struct pmu pmu; 183 struct pmu pmu;
184 int nr_irqs; 184 int nr_irqs;
185 int irqs[CCI_PMU_MAX_HW_EVENTS]; 185 int irqs[CCI_PMU_MAX_HW_EVENTS];
186 unsigned long active_irqs; 186 unsigned long active_irqs;
187 struct pmu_port_event_ranges *port_ranges; 187 struct pmu_port_event_ranges *port_ranges;
188 struct cci_pmu_hw_events hw_events; 188 struct cci_pmu_hw_events hw_events;
189 struct platform_device *plat_device; 189 struct platform_device *plat_device;
190 int num_events; 190 int num_events;
191 atomic_t active_events; 191 atomic_t active_events;
192 struct mutex reserve_mutex; 192 struct mutex reserve_mutex;
193 cpumask_t cpus; 193 cpumask_t cpus;
194 }; 194 };
195 static struct cci_pmu *pmu; 195 static struct cci_pmu *pmu;
196 196
197 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu)) 197 #define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
198 198
199 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs) 199 static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
200 { 200 {
201 int i; 201 int i;
202 202
203 for (i = 0; i < nr_irqs; i++) 203 for (i = 0; i < nr_irqs; i++)
204 if (irq == irqs[i]) 204 if (irq == irqs[i])
205 return true; 205 return true;
206 206
207 return false; 207 return false;
208 } 208 }
209 209
210 static int probe_cci_revision(void) 210 static int probe_cci_revision(void)
211 { 211 {
212 int rev; 212 int rev;
213 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK; 213 rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
214 rev >>= CCI_PID2_REV_SHIFT; 214 rev >>= CCI_PID2_REV_SHIFT;
215 215
216 if (rev < CCI_REV_R1_PX) 216 if (rev < CCI_REV_R1_PX)
217 return CCI_REV_R0; 217 return CCI_REV_R0;
218 else 218 else
219 return CCI_REV_R1; 219 return CCI_REV_R1;
220 } 220 }
221 221
222 static struct pmu_port_event_ranges *port_range_by_rev(void) 222 static struct pmu_port_event_ranges *port_range_by_rev(void)
223 { 223 {
224 int rev = probe_cci_revision(); 224 int rev = probe_cci_revision();
225 225
226 return &port_event_range[rev]; 226 return &port_event_range[rev];
227 } 227 }
228 228
229 static int pmu_is_valid_slave_event(u8 ev_code) 229 static int pmu_is_valid_slave_event(u8 ev_code)
230 { 230 {
231 return pmu->port_ranges->slave_min <= ev_code && 231 return pmu->port_ranges->slave_min <= ev_code &&
232 ev_code <= pmu->port_ranges->slave_max; 232 ev_code <= pmu->port_ranges->slave_max;
233 } 233 }
234 234
235 static int pmu_is_valid_master_event(u8 ev_code) 235 static int pmu_is_valid_master_event(u8 ev_code)
236 { 236 {
237 return pmu->port_ranges->master_min <= ev_code && 237 return pmu->port_ranges->master_min <= ev_code &&
238 ev_code <= pmu->port_ranges->master_max; 238 ev_code <= pmu->port_ranges->master_max;
239 } 239 }
240 240
241 static int pmu_validate_hw_event(u8 hw_event) 241 static int pmu_validate_hw_event(u8 hw_event)
242 { 242 {
243 u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event); 243 u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
244 u8 ev_code = CCI_PMU_EVENT_CODE(hw_event); 244 u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
245 245
246 switch (ev_source) { 246 switch (ev_source) {
247 case CCI_PORT_S0: 247 case CCI_PORT_S0:
248 case CCI_PORT_S1: 248 case CCI_PORT_S1:
249 case CCI_PORT_S2: 249 case CCI_PORT_S2:
250 case CCI_PORT_S3: 250 case CCI_PORT_S3:
251 case CCI_PORT_S4: 251 case CCI_PORT_S4:
252 /* Slave Interface */ 252 /* Slave Interface */
253 if (pmu_is_valid_slave_event(ev_code)) 253 if (pmu_is_valid_slave_event(ev_code))
254 return hw_event; 254 return hw_event;
255 break; 255 break;
256 case CCI_PORT_M0: 256 case CCI_PORT_M0:
257 case CCI_PORT_M1: 257 case CCI_PORT_M1:
258 case CCI_PORT_M2: 258 case CCI_PORT_M2:
259 /* Master Interface */ 259 /* Master Interface */
260 if (pmu_is_valid_master_event(ev_code)) 260 if (pmu_is_valid_master_event(ev_code))
261 return hw_event; 261 return hw_event;
262 break; 262 break;
263 } 263 }
264 264
265 return -ENOENT; 265 return -ENOENT;
266 } 266 }
267 267
268 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx) 268 static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
269 { 269 {
270 return CCI_PMU_CYCLE_CNTR_IDX <= idx && 270 return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
271 idx <= CCI_PMU_CNTR_LAST(cci_pmu); 271 idx <= CCI_PMU_CNTR_LAST(cci_pmu);
272 } 272 }
273 273
274 static u32 pmu_read_register(int idx, unsigned int offset) 274 static u32 pmu_read_register(int idx, unsigned int offset)
275 { 275 {
276 return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); 276 return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
277 } 277 }
278 278
279 static void pmu_write_register(u32 value, int idx, unsigned int offset) 279 static void pmu_write_register(u32 value, int idx, unsigned int offset)
280 { 280 {
281 return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset); 281 return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
282 } 282 }
283 283
284 static void pmu_disable_counter(int idx) 284 static void pmu_disable_counter(int idx)
285 { 285 {
286 pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL); 286 pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
287 } 287 }
288 288
289 static void pmu_enable_counter(int idx) 289 static void pmu_enable_counter(int idx)
290 { 290 {
291 pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL); 291 pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
292 } 292 }
293 293
294 static void pmu_set_event(int idx, unsigned long event) 294 static void pmu_set_event(int idx, unsigned long event)
295 { 295 {
296 event &= CCI_PMU_EVENT_MASK; 296 event &= CCI_PMU_EVENT_MASK;
297 pmu_write_register(event, idx, CCI_PMU_EVT_SEL); 297 pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
298 } 298 }
299 299
300 static u32 pmu_get_max_counters(void) 300 static u32 pmu_get_max_counters(void)
301 { 301 {
302 u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) & 302 u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
303 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT; 303 CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
304 304
305 /* add 1 for cycle counter */ 305 /* add 1 for cycle counter */
306 return n_cnts + 1; 306 return n_cnts + 1;
307 } 307 }
308 308
309 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event) 309 static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
310 { 310 {
311 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 311 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
312 struct hw_perf_event *hw_event = &event->hw; 312 struct hw_perf_event *hw_event = &event->hw;
313 unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK; 313 unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
314 int idx; 314 int idx;
315 315
316 if (cci_event == CCI_PMU_CYCLES) { 316 if (cci_event == CCI_PMU_CYCLES) {
317 if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask)) 317 if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
318 return -EAGAIN; 318 return -EAGAIN;
319 319
320 return CCI_PMU_CYCLE_CNTR_IDX; 320 return CCI_PMU_CYCLE_CNTR_IDX;
321 } 321 }
322 322
323 for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx) 323 for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
324 if (!test_and_set_bit(idx, hw->used_mask)) 324 if (!test_and_set_bit(idx, hw->used_mask))
325 return idx; 325 return idx;
326 326
327 /* No counters available */ 327 /* No counters available */
328 return -EAGAIN; 328 return -EAGAIN;
329 } 329 }
330 330
331 static int pmu_map_event(struct perf_event *event) 331 static int pmu_map_event(struct perf_event *event)
332 { 332 {
333 int mapping; 333 int mapping;
334 u8 config = event->attr.config & CCI_PMU_EVENT_MASK; 334 u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
335 335
336 if (event->attr.type < PERF_TYPE_MAX) 336 if (event->attr.type < PERF_TYPE_MAX)
337 return -ENOENT; 337 return -ENOENT;
338 338
339 if (config == CCI_PMU_CYCLES) 339 if (config == CCI_PMU_CYCLES)
340 mapping = config; 340 mapping = config;
341 else 341 else
342 mapping = pmu_validate_hw_event(config); 342 mapping = pmu_validate_hw_event(config);
343 343
344 return mapping; 344 return mapping;
345 } 345 }
346 346
347 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler) 347 static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
348 { 348 {
349 int i; 349 int i;
350 struct platform_device *pmu_device = cci_pmu->plat_device; 350 struct platform_device *pmu_device = cci_pmu->plat_device;
351 351
352 if (unlikely(!pmu_device)) 352 if (unlikely(!pmu_device))
353 return -ENODEV; 353 return -ENODEV;
354 354
355 if (pmu->nr_irqs < 1) { 355 if (pmu->nr_irqs < 1) {
356 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n"); 356 dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
357 return -ENODEV; 357 return -ENODEV;
358 } 358 }
359 359
360 /* 360 /*
361 * Register all available CCI PMU interrupts. In the interrupt handler 361 * Register all available CCI PMU interrupts. In the interrupt handler
362 * we iterate over the counters checking for interrupt source (the 362 * we iterate over the counters checking for interrupt source (the
363 * overflowing counter) and clear it. 363 * overflowing counter) and clear it.
364 * 364 *
365 * This should allow handling of non-unique interrupt for the counters. 365 * This should allow handling of non-unique interrupt for the counters.
366 */ 366 */
367 for (i = 0; i < pmu->nr_irqs; i++) { 367 for (i = 0; i < pmu->nr_irqs; i++) {
368 int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED, 368 int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
369 "arm-cci-pmu", cci_pmu); 369 "arm-cci-pmu", cci_pmu);
370 if (err) { 370 if (err) {
371 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n", 371 dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
372 pmu->irqs[i]); 372 pmu->irqs[i]);
373 return err; 373 return err;
374 } 374 }
375 375
376 set_bit(i, &pmu->active_irqs); 376 set_bit(i, &pmu->active_irqs);
377 } 377 }
378 378
379 return 0; 379 return 0;
380 } 380 }
381 381
382 static void pmu_free_irq(struct cci_pmu *cci_pmu) 382 static void pmu_free_irq(struct cci_pmu *cci_pmu)
383 { 383 {
384 int i; 384 int i;
385 385
386 for (i = 0; i < pmu->nr_irqs; i++) { 386 for (i = 0; i < pmu->nr_irqs; i++) {
387 if (!test_and_clear_bit(i, &pmu->active_irqs)) 387 if (!test_and_clear_bit(i, &pmu->active_irqs))
388 continue; 388 continue;
389 389
390 free_irq(pmu->irqs[i], cci_pmu); 390 free_irq(pmu->irqs[i], cci_pmu);
391 } 391 }
392 } 392 }
393 393
394 static u32 pmu_read_counter(struct perf_event *event) 394 static u32 pmu_read_counter(struct perf_event *event)
395 { 395 {
396 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 396 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
397 struct hw_perf_event *hw_counter = &event->hw; 397 struct hw_perf_event *hw_counter = &event->hw;
398 int idx = hw_counter->idx; 398 int idx = hw_counter->idx;
399 u32 value; 399 u32 value;
400 400
401 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 401 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
402 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 402 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
403 return 0; 403 return 0;
404 } 404 }
405 value = pmu_read_register(idx, CCI_PMU_CNTR); 405 value = pmu_read_register(idx, CCI_PMU_CNTR);
406 406
407 return value; 407 return value;
408 } 408 }
409 409
410 static void pmu_write_counter(struct perf_event *event, u32 value) 410 static void pmu_write_counter(struct perf_event *event, u32 value)
411 { 411 {
412 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 412 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
413 struct hw_perf_event *hw_counter = &event->hw; 413 struct hw_perf_event *hw_counter = &event->hw;
414 int idx = hw_counter->idx; 414 int idx = hw_counter->idx;
415 415
416 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) 416 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
417 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 417 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
418 else 418 else
419 pmu_write_register(value, idx, CCI_PMU_CNTR); 419 pmu_write_register(value, idx, CCI_PMU_CNTR);
420 } 420 }
421 421
422 static u64 pmu_event_update(struct perf_event *event) 422 static u64 pmu_event_update(struct perf_event *event)
423 { 423 {
424 struct hw_perf_event *hwc = &event->hw; 424 struct hw_perf_event *hwc = &event->hw;
425 u64 delta, prev_raw_count, new_raw_count; 425 u64 delta, prev_raw_count, new_raw_count;
426 426
427 do { 427 do {
428 prev_raw_count = local64_read(&hwc->prev_count); 428 prev_raw_count = local64_read(&hwc->prev_count);
429 new_raw_count = pmu_read_counter(event); 429 new_raw_count = pmu_read_counter(event);
430 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 430 } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
431 new_raw_count) != prev_raw_count); 431 new_raw_count) != prev_raw_count);
432 432
433 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK; 433 delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
434 434
435 local64_add(delta, &event->count); 435 local64_add(delta, &event->count);
436 436
437 return new_raw_count; 437 return new_raw_count;
438 } 438 }
439 439
440 static void pmu_read(struct perf_event *event) 440 static void pmu_read(struct perf_event *event)
441 { 441 {
442 pmu_event_update(event); 442 pmu_event_update(event);
443 } 443 }
444 444
445 void pmu_event_set_period(struct perf_event *event) 445 void pmu_event_set_period(struct perf_event *event)
446 { 446 {
447 struct hw_perf_event *hwc = &event->hw; 447 struct hw_perf_event *hwc = &event->hw;
448 /* 448 /*
449 * The CCI PMU counters have a period of 2^32. To account for the 449 * The CCI PMU counters have a period of 2^32. To account for the
450 * possiblity of extreme interrupt latency we program for a period of 450 * possiblity of extreme interrupt latency we program for a period of
451 * half that. Hopefully we can handle the interrupt before another 2^31 451 * half that. Hopefully we can handle the interrupt before another 2^31
452 * events occur and the counter overtakes its previous value. 452 * events occur and the counter overtakes its previous value.
453 */ 453 */
454 u64 val = 1ULL << 31; 454 u64 val = 1ULL << 31;
455 local64_set(&hwc->prev_count, val); 455 local64_set(&hwc->prev_count, val);
456 pmu_write_counter(event, val); 456 pmu_write_counter(event, val);
457 } 457 }
458 458
459 static irqreturn_t pmu_handle_irq(int irq_num, void *dev) 459 static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
460 { 460 {
461 unsigned long flags; 461 unsigned long flags;
462 struct cci_pmu *cci_pmu = dev; 462 struct cci_pmu *cci_pmu = dev;
463 struct cci_pmu_hw_events *events = &pmu->hw_events; 463 struct cci_pmu_hw_events *events = &pmu->hw_events;
464 int idx, handled = IRQ_NONE; 464 int idx, handled = IRQ_NONE;
465 465
466 raw_spin_lock_irqsave(&events->pmu_lock, flags); 466 raw_spin_lock_irqsave(&events->pmu_lock, flags);
467 /* 467 /*
468 * Iterate over counters and update the corresponding perf events. 468 * Iterate over counters and update the corresponding perf events.
469 * This should work regardless of whether we have per-counter overflow 469 * This should work regardless of whether we have per-counter overflow
470 * interrupt or a combined overflow interrupt. 470 * interrupt or a combined overflow interrupt.
471 */ 471 */
472 for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) { 472 for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
473 struct perf_event *event = events->events[idx]; 473 struct perf_event *event = events->events[idx];
474 struct hw_perf_event *hw_counter; 474 struct hw_perf_event *hw_counter;
475 475
476 if (!event) 476 if (!event)
477 continue; 477 continue;
478 478
479 hw_counter = &event->hw; 479 hw_counter = &event->hw;
480 480
481 /* Did this counter overflow? */ 481 /* Did this counter overflow? */
482 if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) & 482 if (!(pmu_read_register(idx, CCI_PMU_OVRFLW) &
483 CCI_PMU_OVRFLW_FLAG)) 483 CCI_PMU_OVRFLW_FLAG))
484 continue; 484 continue;
485 485
486 pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW); 486 pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
487 487
488 pmu_event_update(event); 488 pmu_event_update(event);
489 pmu_event_set_period(event); 489 pmu_event_set_period(event);
490 handled = IRQ_HANDLED; 490 handled = IRQ_HANDLED;
491 } 491 }
492 raw_spin_unlock_irqrestore(&events->pmu_lock, flags); 492 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
493 493
494 return IRQ_RETVAL(handled); 494 return IRQ_RETVAL(handled);
495 } 495 }
496 496
497 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu) 497 static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
498 { 498 {
499 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq); 499 int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
500 if (ret) { 500 if (ret) {
501 pmu_free_irq(cci_pmu); 501 pmu_free_irq(cci_pmu);
502 return ret; 502 return ret;
503 } 503 }
504 return 0; 504 return 0;
505 } 505 }
506 506
507 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu) 507 static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
508 { 508 {
509 pmu_free_irq(cci_pmu); 509 pmu_free_irq(cci_pmu);
510 } 510 }
511 511
512 static void hw_perf_event_destroy(struct perf_event *event) 512 static void hw_perf_event_destroy(struct perf_event *event)
513 { 513 {
514 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 514 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
515 atomic_t *active_events = &cci_pmu->active_events; 515 atomic_t *active_events = &cci_pmu->active_events;
516 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex; 516 struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
517 517
518 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) { 518 if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
519 cci_pmu_put_hw(cci_pmu); 519 cci_pmu_put_hw(cci_pmu);
520 mutex_unlock(reserve_mutex); 520 mutex_unlock(reserve_mutex);
521 } 521 }
522 } 522 }
523 523
524 static void cci_pmu_enable(struct pmu *pmu) 524 static void cci_pmu_enable(struct pmu *pmu)
525 { 525 {
526 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 526 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
527 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 527 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
528 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events); 528 int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_events);
529 unsigned long flags; 529 unsigned long flags;
530 u32 val; 530 u32 val;
531 531
532 if (!enabled) 532 if (!enabled)
533 return; 533 return;
534 534
535 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 535 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
536 536
537 /* Enable all the PMU counters. */ 537 /* Enable all the PMU counters. */
538 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN; 538 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
539 writel(val, cci_ctrl_base + CCI_PMCR); 539 writel(val, cci_ctrl_base + CCI_PMCR);
540 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 540 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
541 541
542 } 542 }
543 543
544 static void cci_pmu_disable(struct pmu *pmu) 544 static void cci_pmu_disable(struct pmu *pmu)
545 { 545 {
546 struct cci_pmu *cci_pmu = to_cci_pmu(pmu); 546 struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
547 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 547 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
548 unsigned long flags; 548 unsigned long flags;
549 u32 val; 549 u32 val;
550 550
551 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 551 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
552 552
553 /* Disable all the PMU counters. */ 553 /* Disable all the PMU counters. */
554 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN; 554 val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
555 writel(val, cci_ctrl_base + CCI_PMCR); 555 writel(val, cci_ctrl_base + CCI_PMCR);
556 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 556 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
557 } 557 }
558 558
559 static void cci_pmu_start(struct perf_event *event, int pmu_flags) 559 static void cci_pmu_start(struct perf_event *event, int pmu_flags)
560 { 560 {
561 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 561 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
562 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 562 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
563 struct hw_perf_event *hwc = &event->hw; 563 struct hw_perf_event *hwc = &event->hw;
564 int idx = hwc->idx; 564 int idx = hwc->idx;
565 unsigned long flags; 565 unsigned long flags;
566 566
567 /* 567 /*
568 * To handle interrupt latency, we always reprogram the period 568 * To handle interrupt latency, we always reprogram the period
569 * regardlesss of PERF_EF_RELOAD. 569 * regardlesss of PERF_EF_RELOAD.
570 */ 570 */
571 if (pmu_flags & PERF_EF_RELOAD) 571 if (pmu_flags & PERF_EF_RELOAD)
572 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 572 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
573 573
574 hwc->state = 0; 574 hwc->state = 0;
575 575
576 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 576 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
577 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 577 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
578 return; 578 return;
579 } 579 }
580 580
581 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags); 581 raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
582 582
583 /* Configure the event to count, unless you are counting cycles */ 583 /* Configure the event to count, unless you are counting cycles */
584 if (idx != CCI_PMU_CYCLE_CNTR_IDX) 584 if (idx != CCI_PMU_CYCLE_CNTR_IDX)
585 pmu_set_event(idx, hwc->config_base); 585 pmu_set_event(idx, hwc->config_base);
586 586
587 pmu_event_set_period(event); 587 pmu_event_set_period(event);
588 pmu_enable_counter(idx); 588 pmu_enable_counter(idx);
589 589
590 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags); 590 raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
591 } 591 }
592 592
593 static void cci_pmu_stop(struct perf_event *event, int pmu_flags) 593 static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
594 { 594 {
595 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 595 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
596 struct hw_perf_event *hwc = &event->hw; 596 struct hw_perf_event *hwc = &event->hw;
597 int idx = hwc->idx; 597 int idx = hwc->idx;
598 598
599 if (hwc->state & PERF_HES_STOPPED) 599 if (hwc->state & PERF_HES_STOPPED)
600 return; 600 return;
601 601
602 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) { 602 if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
603 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx); 603 dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
604 return; 604 return;
605 } 605 }
606 606
607 /* 607 /*
608 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See 608 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
609 * cci_pmu_start() 609 * cci_pmu_start()
610 */ 610 */
611 pmu_disable_counter(idx); 611 pmu_disable_counter(idx);
612 pmu_event_update(event); 612 pmu_event_update(event);
613 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 613 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
614 } 614 }
615 615
616 static int cci_pmu_add(struct perf_event *event, int flags) 616 static int cci_pmu_add(struct perf_event *event, int flags)
617 { 617 {
618 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 618 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
619 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 619 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
620 struct hw_perf_event *hwc = &event->hw; 620 struct hw_perf_event *hwc = &event->hw;
621 int idx; 621 int idx;
622 int err = 0; 622 int err = 0;
623 623
624 perf_pmu_disable(event->pmu); 624 perf_pmu_disable(event->pmu);
625 625
626 /* If we don't have a space for the counter then finish early. */ 626 /* If we don't have a space for the counter then finish early. */
627 idx = pmu_get_event_idx(hw_events, event); 627 idx = pmu_get_event_idx(hw_events, event);
628 if (idx < 0) { 628 if (idx < 0) {
629 err = idx; 629 err = idx;
630 goto out; 630 goto out;
631 } 631 }
632 632
633 event->hw.idx = idx; 633 event->hw.idx = idx;
634 hw_events->events[idx] = event; 634 hw_events->events[idx] = event;
635 635
636 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 636 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
637 if (flags & PERF_EF_START) 637 if (flags & PERF_EF_START)
638 cci_pmu_start(event, PERF_EF_RELOAD); 638 cci_pmu_start(event, PERF_EF_RELOAD);
639 639
640 /* Propagate our changes to the userspace mapping. */ 640 /* Propagate our changes to the userspace mapping. */
641 perf_event_update_userpage(event); 641 perf_event_update_userpage(event);
642 642
643 out: 643 out:
644 perf_pmu_enable(event->pmu); 644 perf_pmu_enable(event->pmu);
645 return err; 645 return err;
646 } 646 }
647 647
648 static void cci_pmu_del(struct perf_event *event, int flags) 648 static void cci_pmu_del(struct perf_event *event, int flags)
649 { 649 {
650 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 650 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
651 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events; 651 struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
652 struct hw_perf_event *hwc = &event->hw; 652 struct hw_perf_event *hwc = &event->hw;
653 int idx = hwc->idx; 653 int idx = hwc->idx;
654 654
655 cci_pmu_stop(event, PERF_EF_UPDATE); 655 cci_pmu_stop(event, PERF_EF_UPDATE);
656 hw_events->events[idx] = NULL; 656 hw_events->events[idx] = NULL;
657 clear_bit(idx, hw_events->used_mask); 657 clear_bit(idx, hw_events->used_mask);
658 658
659 perf_event_update_userpage(event); 659 perf_event_update_userpage(event);
660 } 660 }
661 661
662 static int 662 static int
663 validate_event(struct cci_pmu_hw_events *hw_events, 663 validate_event(struct cci_pmu_hw_events *hw_events,
664 struct perf_event *event) 664 struct perf_event *event)
665 { 665 {
666 if (is_software_event(event)) 666 if (is_software_event(event))
667 return 1; 667 return 1;
668 668
669 if (event->state < PERF_EVENT_STATE_OFF) 669 if (event->state < PERF_EVENT_STATE_OFF)
670 return 1; 670 return 1;
671 671
672 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 672 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
673 return 1; 673 return 1;
674 674
675 return pmu_get_event_idx(hw_events, event) >= 0; 675 return pmu_get_event_idx(hw_events, event) >= 0;
676 } 676 }
677 677
678 static int 678 static int
679 validate_group(struct perf_event *event) 679 validate_group(struct perf_event *event)
680 { 680 {
681 struct perf_event *sibling, *leader = event->group_leader; 681 struct perf_event *sibling, *leader = event->group_leader;
682 struct cci_pmu_hw_events fake_pmu = { 682 struct cci_pmu_hw_events fake_pmu = {
683 /* 683 /*
684 * Initialise the fake PMU. We only need to populate the 684 * Initialise the fake PMU. We only need to populate the
685 * used_mask for the purposes of validation. 685 * used_mask for the purposes of validation.
686 */ 686 */
687 .used_mask = CPU_BITS_NONE, 687 .used_mask = CPU_BITS_NONE,
688 }; 688 };
689 689
690 if (!validate_event(&fake_pmu, leader)) 690 if (!validate_event(&fake_pmu, leader))
691 return -EINVAL; 691 return -EINVAL;
692 692
693 list_for_each_entry(sibling, &leader->sibling_list, group_entry) { 693 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
694 if (!validate_event(&fake_pmu, sibling)) 694 if (!validate_event(&fake_pmu, sibling))
695 return -EINVAL; 695 return -EINVAL;
696 } 696 }
697 697
698 if (!validate_event(&fake_pmu, event)) 698 if (!validate_event(&fake_pmu, event))
699 return -EINVAL; 699 return -EINVAL;
700 700
701 return 0; 701 return 0;
702 } 702 }
703 703
704 static int 704 static int
705 __hw_perf_event_init(struct perf_event *event) 705 __hw_perf_event_init(struct perf_event *event)
706 { 706 {
707 struct hw_perf_event *hwc = &event->hw; 707 struct hw_perf_event *hwc = &event->hw;
708 int mapping; 708 int mapping;
709 709
710 mapping = pmu_map_event(event); 710 mapping = pmu_map_event(event);
711 711
712 if (mapping < 0) { 712 if (mapping < 0) {
713 pr_debug("event %x:%llx not supported\n", event->attr.type, 713 pr_debug("event %x:%llx not supported\n", event->attr.type,
714 event->attr.config); 714 event->attr.config);
715 return mapping; 715 return mapping;
716 } 716 }
717 717
718 /* 718 /*
719 * We don't assign an index until we actually place the event onto 719 * We don't assign an index until we actually place the event onto
720 * hardware. Use -1 to signify that we haven't decided where to put it 720 * hardware. Use -1 to signify that we haven't decided where to put it
721 * yet. 721 * yet.
722 */ 722 */
723 hwc->idx = -1; 723 hwc->idx = -1;
724 hwc->config_base = 0; 724 hwc->config_base = 0;
725 hwc->config = 0; 725 hwc->config = 0;
726 hwc->event_base = 0; 726 hwc->event_base = 0;
727 727
728 /* 728 /*
729 * Store the event encoding into the config_base field. 729 * Store the event encoding into the config_base field.
730 */ 730 */
731 hwc->config_base |= (unsigned long)mapping; 731 hwc->config_base |= (unsigned long)mapping;
732 732
733 /* 733 /*
734 * Limit the sample_period to half of the counter width. That way, the 734 * Limit the sample_period to half of the counter width. That way, the
735 * new counter value is far less likely to overtake the previous one 735 * new counter value is far less likely to overtake the previous one
736 * unless you have some serious IRQ latency issues. 736 * unless you have some serious IRQ latency issues.
737 */ 737 */
738 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1; 738 hwc->sample_period = CCI_PMU_CNTR_MASK >> 1;
739 hwc->last_period = hwc->sample_period; 739 hwc->last_period = hwc->sample_period;
740 local64_set(&hwc->period_left, hwc->sample_period); 740 local64_set(&hwc->period_left, hwc->sample_period);
741 741
742 if (event->group_leader != event) { 742 if (event->group_leader != event) {
743 if (validate_group(event) != 0) 743 if (validate_group(event) != 0)
744 return -EINVAL; 744 return -EINVAL;
745 } 745 }
746 746
747 return 0; 747 return 0;
748 } 748 }
749 749
750 static int cci_pmu_event_init(struct perf_event *event) 750 static int cci_pmu_event_init(struct perf_event *event)
751 { 751 {
752 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu); 752 struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
753 atomic_t *active_events = &cci_pmu->active_events; 753 atomic_t *active_events = &cci_pmu->active_events;
754 int err = 0; 754 int err = 0;
755 int cpu; 755 int cpu;
756 756
757 if (event->attr.type != event->pmu->type) 757 if (event->attr.type != event->pmu->type)
758 return -ENOENT; 758 return -ENOENT;
759 759
760 /* Shared by all CPUs, no meaningful state to sample */ 760 /* Shared by all CPUs, no meaningful state to sample */
761 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) 761 if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
762 return -EOPNOTSUPP; 762 return -EOPNOTSUPP;
763 763
764 /* We have no filtering of any kind */ 764 /* We have no filtering of any kind */
765 if (event->attr.exclude_user || 765 if (event->attr.exclude_user ||
766 event->attr.exclude_kernel || 766 event->attr.exclude_kernel ||
767 event->attr.exclude_hv || 767 event->attr.exclude_hv ||
768 event->attr.exclude_idle || 768 event->attr.exclude_idle ||
769 event->attr.exclude_host || 769 event->attr.exclude_host ||
770 event->attr.exclude_guest) 770 event->attr.exclude_guest)
771 return -EINVAL; 771 return -EINVAL;
772 772
773 /* 773 /*
774 * Following the example set by other "uncore" PMUs, we accept any CPU 774 * Following the example set by other "uncore" PMUs, we accept any CPU
775 * and rewrite its affinity dynamically rather than having perf core 775 * and rewrite its affinity dynamically rather than having perf core
776 * handle cpu == -1 and pid == -1 for this case. 776 * handle cpu == -1 and pid == -1 for this case.
777 * 777 *
778 * The perf core will pin online CPUs for the duration of this call and 778 * The perf core will pin online CPUs for the duration of this call and
779 * the event being installed into its context, so the PMU's CPU can't 779 * the event being installed into its context, so the PMU's CPU can't
780 * change under our feet. 780 * change under our feet.
781 */ 781 */
782 cpu = cpumask_first(&cci_pmu->cpus); 782 cpu = cpumask_first(&cci_pmu->cpus);
783 if (event->cpu < 0 || cpu < 0) 783 if (event->cpu < 0 || cpu < 0)
784 return -EINVAL; 784 return -EINVAL;
785 event->cpu = cpu; 785 event->cpu = cpu;
786 786
787 event->destroy = hw_perf_event_destroy; 787 event->destroy = hw_perf_event_destroy;
788 if (!atomic_inc_not_zero(active_events)) { 788 if (!atomic_inc_not_zero(active_events)) {
789 mutex_lock(&cci_pmu->reserve_mutex); 789 mutex_lock(&cci_pmu->reserve_mutex);
790 if (atomic_read(active_events) == 0) 790 if (atomic_read(active_events) == 0)
791 err = cci_pmu_get_hw(cci_pmu); 791 err = cci_pmu_get_hw(cci_pmu);
792 if (!err) 792 if (!err)
793 atomic_inc(active_events); 793 atomic_inc(active_events);
794 mutex_unlock(&cci_pmu->reserve_mutex); 794 mutex_unlock(&cci_pmu->reserve_mutex);
795 } 795 }
796 if (err) 796 if (err)
797 return err; 797 return err;
798 798
799 err = __hw_perf_event_init(event); 799 err = __hw_perf_event_init(event);
800 if (err) 800 if (err)
801 hw_perf_event_destroy(event); 801 hw_perf_event_destroy(event);
802 802
803 return err; 803 return err;
804 } 804 }
805 805
806 static ssize_t pmu_attr_cpumask_show(struct device *dev, 806 static ssize_t pmu_attr_cpumask_show(struct device *dev,
807 struct device_attribute *attr, char *buf) 807 struct device_attribute *attr, char *buf)
808 { 808 {
809 int n = cpulist_scnprintf(buf, PAGE_SIZE - 2, &pmu->cpus); 809 int n = cpulist_scnprintf(buf, PAGE_SIZE - 2, &pmu->cpus);
810 810
811 buf[n++] = '\n'; 811 buf[n++] = '\n';
812 buf[n] = '\0'; 812 buf[n] = '\0';
813 return n; 813 return n;
814 } 814 }
815 815
816 static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL); 816 static DEVICE_ATTR(cpumask, S_IRUGO, pmu_attr_cpumask_show, NULL);
817 817
818 static struct attribute *pmu_attrs[] = { 818 static struct attribute *pmu_attrs[] = {
819 &dev_attr_cpumask.attr, 819 &dev_attr_cpumask.attr,
820 NULL, 820 NULL,
821 }; 821 };
822 822
823 static struct attribute_group pmu_attr_group = { 823 static struct attribute_group pmu_attr_group = {
824 .attrs = pmu_attrs, 824 .attrs = pmu_attrs,
825 }; 825 };
826 826
827 static const struct attribute_group *pmu_attr_groups[] = { 827 static const struct attribute_group *pmu_attr_groups[] = {
828 &pmu_attr_group, 828 &pmu_attr_group,
829 NULL 829 NULL
830 }; 830 };
831 831
832 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev) 832 static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
833 { 833 {
834 char *name = pmu_names[probe_cci_revision()]; 834 char *name = pmu_names[probe_cci_revision()];
835 cci_pmu->pmu = (struct pmu) { 835 cci_pmu->pmu = (struct pmu) {
836 .name = pmu_names[probe_cci_revision()], 836 .name = pmu_names[probe_cci_revision()],
837 .task_ctx_nr = perf_invalid_context, 837 .task_ctx_nr = perf_invalid_context,
838 .pmu_enable = cci_pmu_enable, 838 .pmu_enable = cci_pmu_enable,
839 .pmu_disable = cci_pmu_disable, 839 .pmu_disable = cci_pmu_disable,
840 .event_init = cci_pmu_event_init, 840 .event_init = cci_pmu_event_init,
841 .add = cci_pmu_add, 841 .add = cci_pmu_add,
842 .del = cci_pmu_del, 842 .del = cci_pmu_del,
843 .start = cci_pmu_start, 843 .start = cci_pmu_start,
844 .stop = cci_pmu_stop, 844 .stop = cci_pmu_stop,
845 .read = pmu_read, 845 .read = pmu_read,
846 .attr_groups = pmu_attr_groups, 846 .attr_groups = pmu_attr_groups,
847 }; 847 };
848 848
849 cci_pmu->plat_device = pdev; 849 cci_pmu->plat_device = pdev;
850 cci_pmu->num_events = pmu_get_max_counters(); 850 cci_pmu->num_events = pmu_get_max_counters();
851 851
852 return perf_pmu_register(&cci_pmu->pmu, name, -1); 852 return perf_pmu_register(&cci_pmu->pmu, name, -1);
853 } 853 }
854 854
855 static int cci_pmu_cpu_notifier(struct notifier_block *self, 855 static int cci_pmu_cpu_notifier(struct notifier_block *self,
856 unsigned long action, void *hcpu) 856 unsigned long action, void *hcpu)
857 { 857 {
858 unsigned int cpu = (long)hcpu; 858 unsigned int cpu = (long)hcpu;
859 unsigned int target; 859 unsigned int target;
860 860
861 switch (action & ~CPU_TASKS_FROZEN) { 861 switch (action & ~CPU_TASKS_FROZEN) {
862 case CPU_DOWN_PREPARE: 862 case CPU_DOWN_PREPARE:
863 if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus)) 863 if (!cpumask_test_and_clear_cpu(cpu, &pmu->cpus))
864 break; 864 break;
865 target = cpumask_any_but(cpu_online_mask, cpu); 865 target = cpumask_any_but(cpu_online_mask, cpu);
866 if (target < 0) // UP, last CPU 866 if (target < 0) // UP, last CPU
867 break; 867 break;
868 /* 868 /*
869 * TODO: migrate context once core races on event->ctx have 869 * TODO: migrate context once core races on event->ctx have
870 * been fixed. 870 * been fixed.
871 */ 871 */
872 cpumask_set_cpu(target, &pmu->cpus); 872 cpumask_set_cpu(target, &pmu->cpus);
873 default: 873 default:
874 break; 874 break;
875 } 875 }
876 876
877 return NOTIFY_OK; 877 return NOTIFY_OK;
878 } 878 }
879 879
880 static struct notifier_block cci_pmu_cpu_nb = { 880 static struct notifier_block cci_pmu_cpu_nb = {
881 .notifier_call = cci_pmu_cpu_notifier, 881 .notifier_call = cci_pmu_cpu_notifier,
882 /* 882 /*
883 * to migrate uncore events, our notifier should be executed 883 * to migrate uncore events, our notifier should be executed
884 * before perf core's notifier. 884 * before perf core's notifier.
885 */ 885 */
886 .priority = CPU_PRI_PERF + 1, 886 .priority = CPU_PRI_PERF + 1,
887 }; 887 };
888 888
889 static const struct of_device_id arm_cci_pmu_matches[] = { 889 static const struct of_device_id arm_cci_pmu_matches[] = {
890 { 890 {
891 .compatible = "arm,cci-400-pmu", 891 .compatible = "arm,cci-400-pmu",
892 }, 892 },
893 {}, 893 {},
894 }; 894 };
895 895
896 static int cci_pmu_probe(struct platform_device *pdev) 896 static int cci_pmu_probe(struct platform_device *pdev)
897 { 897 {
898 struct resource *res; 898 struct resource *res;
899 int i, ret, irq; 899 int i, ret, irq;
900 900
901 pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); 901 pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
902 if (!pmu) 902 if (!pmu)
903 return -ENOMEM; 903 return -ENOMEM;
904 904
905 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 905 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
906 pmu->base = devm_ioremap_resource(&pdev->dev, res); 906 pmu->base = devm_ioremap_resource(&pdev->dev, res);
907 if (IS_ERR(pmu->base)) 907 if (IS_ERR(pmu->base))
908 return -ENOMEM; 908 return -ENOMEM;
909 909
910 /* 910 /*
911 * CCI PMU has 5 overflow signals - one per counter; but some may be tied 911 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
912 * together to a common interrupt. 912 * together to a common interrupt.
913 */ 913 */
914 pmu->nr_irqs = 0; 914 pmu->nr_irqs = 0;
915 for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) { 915 for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
916 irq = platform_get_irq(pdev, i); 916 irq = platform_get_irq(pdev, i);
917 if (irq < 0) 917 if (irq < 0)
918 break; 918 break;
919 919
920 if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs)) 920 if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
921 continue; 921 continue;
922 922
923 pmu->irqs[pmu->nr_irqs++] = irq; 923 pmu->irqs[pmu->nr_irqs++] = irq;
924 } 924 }
925 925
926 /* 926 /*
927 * Ensure that the device tree has as many interrupts as the number 927 * Ensure that the device tree has as many interrupts as the number
928 * of counters. 928 * of counters.
929 */ 929 */
930 if (i < CCI_PMU_MAX_HW_EVENTS) { 930 if (i < CCI_PMU_MAX_HW_EVENTS) {
931 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n", 931 dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
932 i, CCI_PMU_MAX_HW_EVENTS); 932 i, CCI_PMU_MAX_HW_EVENTS);
933 return -EINVAL; 933 return -EINVAL;
934 } 934 }
935 935
936 pmu->port_ranges = port_range_by_rev(); 936 pmu->port_ranges = port_range_by_rev();
937 if (!pmu->port_ranges) { 937 if (!pmu->port_ranges) {
938 dev_warn(&pdev->dev, "CCI PMU version not supported\n"); 938 dev_warn(&pdev->dev, "CCI PMU version not supported\n");
939 return -EINVAL; 939 return -EINVAL;
940 } 940 }
941 941
942 raw_spin_lock_init(&pmu->hw_events.pmu_lock); 942 raw_spin_lock_init(&pmu->hw_events.pmu_lock);
943 mutex_init(&pmu->reserve_mutex); 943 mutex_init(&pmu->reserve_mutex);
944 atomic_set(&pmu->active_events, 0); 944 atomic_set(&pmu->active_events, 0);
945 cpumask_set_cpu(smp_processor_id(), &pmu->cpus); 945 cpumask_set_cpu(smp_processor_id(), &pmu->cpus);
946 946
947 ret = register_cpu_notifier(&cci_pmu_cpu_nb); 947 ret = register_cpu_notifier(&cci_pmu_cpu_nb);
948 if (ret) 948 if (ret)
949 return ret; 949 return ret;
950 950
951 ret = cci_pmu_init(pmu, pdev); 951 ret = cci_pmu_init(pmu, pdev);
952 if (ret) 952 if (ret)
953 return ret; 953 return ret;
954 954
955 return 0; 955 return 0;
956 } 956 }
957 957
958 static int cci_platform_probe(struct platform_device *pdev) 958 static int cci_platform_probe(struct platform_device *pdev)
959 { 959 {
960 if (!cci_probed()) 960 if (!cci_probed())
961 return -ENODEV; 961 return -ENODEV;
962 962
963 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); 963 return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
964 } 964 }
965 965
966 #endif /* CONFIG_HW_PERF_EVENTS */ 966 #endif /* CONFIG_HW_PERF_EVENTS */
967 967
968 struct cpu_port { 968 struct cpu_port {
969 u64 mpidr; 969 u64 mpidr;
970 u32 port; 970 u32 port;
971 }; 971 };
972 972
973 /* 973 /*
974 * Use the port MSB as valid flag, shift can be made dynamic 974 * Use the port MSB as valid flag, shift can be made dynamic
975 * by computing number of bits required for port indexes. 975 * by computing number of bits required for port indexes.
976 * Code disabling CCI cpu ports runs with D-cache invalidated 976 * Code disabling CCI cpu ports runs with D-cache invalidated
977 * and SCTLR bit clear so data accesses must be kept to a minimum 977 * and SCTLR bit clear so data accesses must be kept to a minimum
978 * to improve performance; for now shift is left static to 978 * to improve performance; for now shift is left static to
979 * avoid one more data access while disabling the CCI port. 979 * avoid one more data access while disabling the CCI port.
980 */ 980 */
981 #define PORT_VALID_SHIFT 31 981 #define PORT_VALID_SHIFT 31
982 #define PORT_VALID (0x1 << PORT_VALID_SHIFT) 982 #define PORT_VALID (0x1 << PORT_VALID_SHIFT)
983 983
984 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr) 984 static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
985 { 985 {
986 port->port = PORT_VALID | index; 986 port->port = PORT_VALID | index;
987 port->mpidr = mpidr; 987 port->mpidr = mpidr;
988 } 988 }
989 989
990 static inline bool cpu_port_is_valid(struct cpu_port *port) 990 static inline bool cpu_port_is_valid(struct cpu_port *port)
991 { 991 {
992 return !!(port->port & PORT_VALID); 992 return !!(port->port & PORT_VALID);
993 } 993 }
994 994
995 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr) 995 static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
996 { 996 {
997 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK); 997 return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
998 } 998 }
999 999
1000 static struct cpu_port cpu_port[NR_CPUS]; 1000 static struct cpu_port cpu_port[NR_CPUS];
1001 1001
1002 /** 1002 /**
1003 * __cci_ace_get_port - Function to retrieve the port index connected to 1003 * __cci_ace_get_port - Function to retrieve the port index connected to
1004 * a cpu or device. 1004 * a cpu or device.
1005 * 1005 *
1006 * @dn: device node of the device to look-up 1006 * @dn: device node of the device to look-up
1007 * @type: port type 1007 * @type: port type
1008 * 1008 *
1009 * Return value: 1009 * Return value:
1010 * - CCI port index if success 1010 * - CCI port index if success
1011 * - -ENODEV if failure 1011 * - -ENODEV if failure
1012 */ 1012 */
1013 static int __cci_ace_get_port(struct device_node *dn, int type) 1013 static int __cci_ace_get_port(struct device_node *dn, int type)
1014 { 1014 {
1015 int i; 1015 int i;
1016 bool ace_match; 1016 bool ace_match;
1017 struct device_node *cci_portn; 1017 struct device_node *cci_portn;
1018 1018
1019 cci_portn = of_parse_phandle(dn, "cci-control-port", 0); 1019 cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1020 for (i = 0; i < nb_cci_ports; i++) { 1020 for (i = 0; i < nb_cci_ports; i++) {
1021 ace_match = ports[i].type == type; 1021 ace_match = ports[i].type == type;
1022 if (ace_match && cci_portn == ports[i].dn) 1022 if (ace_match && cci_portn == ports[i].dn)
1023 return i; 1023 return i;
1024 } 1024 }
1025 return -ENODEV; 1025 return -ENODEV;
1026 } 1026 }
1027 1027
1028 int cci_ace_get_port(struct device_node *dn) 1028 int cci_ace_get_port(struct device_node *dn)
1029 { 1029 {
1030 return __cci_ace_get_port(dn, ACE_LITE_PORT); 1030 return __cci_ace_get_port(dn, ACE_LITE_PORT);
1031 } 1031 }
1032 EXPORT_SYMBOL_GPL(cci_ace_get_port); 1032 EXPORT_SYMBOL_GPL(cci_ace_get_port);
1033 1033
1034 static void cci_ace_init_ports(void) 1034 static void cci_ace_init_ports(void)
1035 { 1035 {
1036 int port, cpu; 1036 int port, cpu;
1037 struct device_node *cpun; 1037 struct device_node *cpun;
1038 1038
1039 /* 1039 /*
1040 * Port index look-up speeds up the function disabling ports by CPU, 1040 * Port index look-up speeds up the function disabling ports by CPU,
1041 * since the logical to port index mapping is done once and does 1041 * since the logical to port index mapping is done once and does
1042 * not change after system boot. 1042 * not change after system boot.
1043 * The stashed index array is initialized for all possible CPUs 1043 * The stashed index array is initialized for all possible CPUs
1044 * at probe time. 1044 * at probe time.
1045 */ 1045 */
1046 for_each_possible_cpu(cpu) { 1046 for_each_possible_cpu(cpu) {
1047 /* too early to use cpu->of_node */ 1047 /* too early to use cpu->of_node */
1048 cpun = of_get_cpu_node(cpu, NULL); 1048 cpun = of_get_cpu_node(cpu, NULL);
1049 1049
1050 if (WARN(!cpun, "Missing cpu device node\n")) 1050 if (WARN(!cpun, "Missing cpu device node\n"))
1051 continue; 1051 continue;
1052 1052
1053 port = __cci_ace_get_port(cpun, ACE_PORT); 1053 port = __cci_ace_get_port(cpun, ACE_PORT);
1054 if (port < 0) 1054 if (port < 0)
1055 continue; 1055 continue;
1056 1056
1057 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu)); 1057 init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1058 } 1058 }
1059 1059
1060 for_each_possible_cpu(cpu) { 1060 for_each_possible_cpu(cpu) {
1061 WARN(!cpu_port_is_valid(&cpu_port[cpu]), 1061 WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1062 "CPU %u does not have an associated CCI port\n", 1062 "CPU %u does not have an associated CCI port\n",
1063 cpu); 1063 cpu);
1064 } 1064 }
1065 } 1065 }
1066 /* 1066 /*
1067 * Functions to enable/disable a CCI interconnect slave port 1067 * Functions to enable/disable a CCI interconnect slave port
1068 * 1068 *
1069 * They are called by low-level power management code to disable slave 1069 * They are called by low-level power management code to disable slave
1070 * interfaces snoops and DVM broadcast. 1070 * interfaces snoops and DVM broadcast.
1071 * Since they may execute with cache data allocation disabled and 1071 * Since they may execute with cache data allocation disabled and
1072 * after the caches have been cleaned and invalidated the functions provide 1072 * after the caches have been cleaned and invalidated the functions provide
1073 * no explicit locking since they may run with D-cache disabled, so normal 1073 * no explicit locking since they may run with D-cache disabled, so normal
1074 * cacheable kernel locks based on ldrex/strex may not work. 1074 * cacheable kernel locks based on ldrex/strex may not work.
1075 * Locking has to be provided by BSP implementations to ensure proper 1075 * Locking has to be provided by BSP implementations to ensure proper
1076 * operations. 1076 * operations.
1077 */ 1077 */
1078 1078
1079 /** 1079 /**
1080 * cci_port_control() - function to control a CCI port 1080 * cci_port_control() - function to control a CCI port
1081 * 1081 *
1082 * @port: index of the port to setup 1082 * @port: index of the port to setup
1083 * @enable: if true enables the port, if false disables it 1083 * @enable: if true enables the port, if false disables it
1084 */ 1084 */
1085 static void notrace cci_port_control(unsigned int port, bool enable) 1085 static void notrace cci_port_control(unsigned int port, bool enable)
1086 { 1086 {
1087 void __iomem *base = ports[port].base; 1087 void __iomem *base = ports[port].base;
1088 1088
1089 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL); 1089 writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1090 /* 1090 /*
1091 * This function is called from power down procedures 1091 * This function is called from power down procedures
1092 * and must not execute any instruction that might 1092 * and must not execute any instruction that might
1093 * cause the processor to be put in a quiescent state 1093 * cause the processor to be put in a quiescent state
1094 * (eg wfi). Hence, cpu_relax() can not be added to this 1094 * (eg wfi). Hence, cpu_relax() can not be added to this
1095 * read loop to optimize power, since it might hide possibly 1095 * read loop to optimize power, since it might hide possibly
1096 * disruptive operations. 1096 * disruptive operations.
1097 */ 1097 */
1098 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1) 1098 while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1099 ; 1099 ;
1100 } 1100 }
1101 1101
1102 /** 1102 /**
1103 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU 1103 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1104 * reference 1104 * reference
1105 * 1105 *
1106 * @mpidr: mpidr of the CPU whose CCI port should be disabled 1106 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1107 * 1107 *
1108 * Disabling a CCI port for a CPU implies disabling the CCI port 1108 * Disabling a CCI port for a CPU implies disabling the CCI port
1109 * controlling that CPU cluster. Code disabling CPU CCI ports 1109 * controlling that CPU cluster. Code disabling CPU CCI ports
1110 * must make sure that the CPU running the code is the last active CPU 1110 * must make sure that the CPU running the code is the last active CPU
1111 * in the cluster ie all other CPUs are quiescent in a low power state. 1111 * in the cluster ie all other CPUs are quiescent in a low power state.
1112 * 1112 *
1113 * Return: 1113 * Return:
1114 * 0 on success 1114 * 0 on success
1115 * -ENODEV on port look-up failure 1115 * -ENODEV on port look-up failure
1116 */ 1116 */
1117 int notrace cci_disable_port_by_cpu(u64 mpidr) 1117 int notrace cci_disable_port_by_cpu(u64 mpidr)
1118 { 1118 {
1119 int cpu; 1119 int cpu;
1120 bool is_valid; 1120 bool is_valid;
1121 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1121 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1122 is_valid = cpu_port_is_valid(&cpu_port[cpu]); 1122 is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1123 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) { 1123 if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1124 cci_port_control(cpu_port[cpu].port, false); 1124 cci_port_control(cpu_port[cpu].port, false);
1125 return 0; 1125 return 0;
1126 } 1126 }
1127 } 1127 }
1128 return -ENODEV; 1128 return -ENODEV;
1129 } 1129 }
1130 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu); 1130 EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1131 1131
1132 /** 1132 /**
1133 * cci_enable_port_for_self() - enable a CCI port for calling CPU 1133 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1134 * 1134 *
1135 * Enabling a CCI port for the calling CPU implies enabling the CCI 1135 * Enabling a CCI port for the calling CPU implies enabling the CCI
1136 * port controlling that CPU's cluster. Caller must make sure that the 1136 * port controlling that CPU's cluster. Caller must make sure that the
1137 * CPU running the code is the first active CPU in the cluster and all 1137 * CPU running the code is the first active CPU in the cluster and all
1138 * other CPUs are quiescent in a low power state or waiting for this CPU 1138 * other CPUs are quiescent in a low power state or waiting for this CPU
1139 * to complete the CCI initialization. 1139 * to complete the CCI initialization.
1140 * 1140 *
1141 * Because this is called when the MMU is still off and with no stack, 1141 * Because this is called when the MMU is still off and with no stack,
1142 * the code must be position independent and ideally rely on callee 1142 * the code must be position independent and ideally rely on callee
1143 * clobbered registers only. To achieve this we must code this function 1143 * clobbered registers only. To achieve this we must code this function
1144 * entirely in assembler. 1144 * entirely in assembler.
1145 * 1145 *
1146 * On success this returns with the proper CCI port enabled. In case of 1146 * On success this returns with the proper CCI port enabled. In case of
1147 * any failure this never returns as the inability to enable the CCI is 1147 * any failure this never returns as the inability to enable the CCI is
1148 * fatal and there is no possible recovery at this stage. 1148 * fatal and there is no possible recovery at this stage.
1149 */ 1149 */
1150 asmlinkage void __naked cci_enable_port_for_self(void) 1150 asmlinkage void __naked cci_enable_port_for_self(void)
1151 { 1151 {
1152 asm volatile ("\n" 1152 asm volatile ("\n"
1153 " .arch armv7-a\n" 1153 " .arch armv7-a\n"
1154 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n" 1154 " mrc p15, 0, r0, c0, c0, 5 @ get MPIDR value \n"
1155 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n" 1155 " and r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1156 " adr r1, 5f \n" 1156 " adr r1, 5f \n"
1157 " ldr r2, [r1] \n" 1157 " ldr r2, [r1] \n"
1158 " add r1, r1, r2 @ &cpu_port \n" 1158 " add r1, r1, r2 @ &cpu_port \n"
1159 " add ip, r1, %[sizeof_cpu_port] \n" 1159 " add ip, r1, %[sizeof_cpu_port] \n"
1160 1160
1161 /* Loop over the cpu_port array looking for a matching MPIDR */ 1161 /* Loop over the cpu_port array looking for a matching MPIDR */
1162 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n" 1162 "1: ldr r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1163 " cmp r2, r0 @ compare MPIDR \n" 1163 " cmp r2, r0 @ compare MPIDR \n"
1164 " bne 2f \n" 1164 " bne 2f \n"
1165 1165
1166 /* Found a match, now test port validity */ 1166 /* Found a match, now test port validity */
1167 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n" 1167 " ldr r3, [r1, %[offsetof_cpu_port_port]] \n"
1168 " tst r3, #"__stringify(PORT_VALID)" \n" 1168 " tst r3, #"__stringify(PORT_VALID)" \n"
1169 " bne 3f \n" 1169 " bne 3f \n"
1170 1170
1171 /* no match, loop with the next cpu_port entry */ 1171 /* no match, loop with the next cpu_port entry */
1172 "2: add r1, r1, %[sizeof_struct_cpu_port] \n" 1172 "2: add r1, r1, %[sizeof_struct_cpu_port] \n"
1173 " cmp r1, ip @ done? \n" 1173 " cmp r1, ip @ done? \n"
1174 " blo 1b \n" 1174 " blo 1b \n"
1175 1175
1176 /* CCI port not found -- cheaply try to stall this CPU */ 1176 /* CCI port not found -- cheaply try to stall this CPU */
1177 "cci_port_not_found: \n" 1177 "cci_port_not_found: \n"
1178 " wfi \n" 1178 " wfi \n"
1179 " wfe \n" 1179 " wfe \n"
1180 " b cci_port_not_found \n" 1180 " b cci_port_not_found \n"
1181 1181
1182 /* Use matched port index to look up the corresponding ports entry */ 1182 /* Use matched port index to look up the corresponding ports entry */
1183 "3: bic r3, r3, #"__stringify(PORT_VALID)" \n" 1183 "3: bic r3, r3, #"__stringify(PORT_VALID)" \n"
1184 " adr r0, 6f \n" 1184 " adr r0, 6f \n"
1185 " ldmia r0, {r1, r2} \n" 1185 " ldmia r0, {r1, r2} \n"
1186 " sub r1, r1, r0 @ virt - phys \n" 1186 " sub r1, r1, r0 @ virt - phys \n"
1187 " ldr r0, [r0, r2] @ *(&ports) \n" 1187 " ldr r0, [r0, r2] @ *(&ports) \n"
1188 " mov r2, %[sizeof_struct_ace_port] \n" 1188 " mov r2, %[sizeof_struct_ace_port] \n"
1189 " mla r0, r2, r3, r0 @ &ports[index] \n" 1189 " mla r0, r2, r3, r0 @ &ports[index] \n"
1190 " sub r0, r0, r1 @ virt_to_phys() \n" 1190 " sub r0, r0, r1 @ virt_to_phys() \n"
1191 1191
1192 /* Enable the CCI port */ 1192 /* Enable the CCI port */
1193 " ldr r0, [r0, %[offsetof_port_phys]] \n" 1193 " ldr r0, [r0, %[offsetof_port_phys]] \n"
1194 " mov r3, %[cci_enable_req]\n" 1194 " mov r3, %[cci_enable_req]\n"
1195 " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n" 1195 " str r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1196 1196
1197 /* poll the status reg for completion */ 1197 /* poll the status reg for completion */
1198 " adr r1, 7f \n" 1198 " adr r1, 7f \n"
1199 " ldr r0, [r1] \n" 1199 " ldr r0, [r1] \n"
1200 " ldr r0, [r0, r1] @ cci_ctrl_base \n" 1200 " ldr r0, [r0, r1] @ cci_ctrl_base \n"
1201 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n" 1201 "4: ldr r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1202 " tst r1, %[cci_control_status_bits] \n" 1202 " tst r1, %[cci_control_status_bits] \n"
1203 " bne 4b \n" 1203 " bne 4b \n"
1204 1204
1205 " mov r0, #0 \n" 1205 " mov r0, #0 \n"
1206 " bx lr \n" 1206 " bx lr \n"
1207 1207
1208 " .align 2 \n" 1208 " .align 2 \n"
1209 "5: .word cpu_port - . \n" 1209 "5: .word cpu_port - . \n"
1210 "6: .word . \n" 1210 "6: .word . \n"
1211 " .word ports - 6b \n" 1211 " .word ports - 6b \n"
1212 "7: .word cci_ctrl_phys - . \n" 1212 "7: .word cci_ctrl_phys - . \n"
1213 : : 1213 : :
1214 [sizeof_cpu_port] "i" (sizeof(cpu_port)), 1214 [sizeof_cpu_port] "i" (sizeof(cpu_port)),
1215 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ), 1215 [cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1216 [cci_control_status_bits] "i" cpu_to_le32(1), 1216 [cci_control_status_bits] "i" cpu_to_le32(1),
1217 #ifndef __ARMEB__ 1217 #ifndef __ARMEB__
1218 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)), 1218 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1219 #else 1219 #else
1220 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4), 1220 [offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1221 #endif 1221 #endif
1222 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)), 1222 [offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1223 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)), 1223 [sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1224 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)), 1224 [sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1225 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) ); 1225 [offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1226 1226
1227 unreachable(); 1227 unreachable();
1228 } 1228 }
1229 1229
1230 /** 1230 /**
1231 * __cci_control_port_by_device() - function to control a CCI port by device 1231 * __cci_control_port_by_device() - function to control a CCI port by device
1232 * reference 1232 * reference
1233 * 1233 *
1234 * @dn: device node pointer of the device whose CCI port should be 1234 * @dn: device node pointer of the device whose CCI port should be
1235 * controlled 1235 * controlled
1236 * @enable: if true enables the port, if false disables it 1236 * @enable: if true enables the port, if false disables it
1237 * 1237 *
1238 * Return: 1238 * Return:
1239 * 0 on success 1239 * 0 on success
1240 * -ENODEV on port look-up failure 1240 * -ENODEV on port look-up failure
1241 */ 1241 */
1242 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable) 1242 int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1243 { 1243 {
1244 int port; 1244 int port;
1245 1245
1246 if (!dn) 1246 if (!dn)
1247 return -ENODEV; 1247 return -ENODEV;
1248 1248
1249 port = __cci_ace_get_port(dn, ACE_LITE_PORT); 1249 port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1250 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n", 1250 if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1251 dn->full_name)) 1251 dn->full_name))
1252 return -ENODEV; 1252 return -ENODEV;
1253 cci_port_control(port, enable); 1253 cci_port_control(port, enable);
1254 return 0; 1254 return 0;
1255 } 1255 }
1256 EXPORT_SYMBOL_GPL(__cci_control_port_by_device); 1256 EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1257 1257
1258 /** 1258 /**
1259 * __cci_control_port_by_index() - function to control a CCI port by port index 1259 * __cci_control_port_by_index() - function to control a CCI port by port index
1260 * 1260 *
1261 * @port: port index previously retrieved with cci_ace_get_port() 1261 * @port: port index previously retrieved with cci_ace_get_port()
1262 * @enable: if true enables the port, if false disables it 1262 * @enable: if true enables the port, if false disables it
1263 * 1263 *
1264 * Return: 1264 * Return:
1265 * 0 on success 1265 * 0 on success
1266 * -ENODEV on port index out of range 1266 * -ENODEV on port index out of range
1267 * -EPERM if operation carried out on an ACE PORT 1267 * -EPERM if operation carried out on an ACE PORT
1268 */ 1268 */
1269 int notrace __cci_control_port_by_index(u32 port, bool enable) 1269 int notrace __cci_control_port_by_index(u32 port, bool enable)
1270 { 1270 {
1271 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT) 1271 if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1272 return -ENODEV; 1272 return -ENODEV;
1273 /* 1273 /*
1274 * CCI control for ports connected to CPUS is extremely fragile 1274 * CCI control for ports connected to CPUS is extremely fragile
1275 * and must be made to go through a specific and controlled 1275 * and must be made to go through a specific and controlled
1276 * interface (ie cci_disable_port_by_cpu(); control by general purpose 1276 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1277 * indexing is therefore disabled for ACE ports. 1277 * indexing is therefore disabled for ACE ports.
1278 */ 1278 */
1279 if (ports[port].type == ACE_PORT) 1279 if (ports[port].type == ACE_PORT)
1280 return -EPERM; 1280 return -EPERM;
1281 1281
1282 cci_port_control(port, enable); 1282 cci_port_control(port, enable);
1283 return 0; 1283 return 0;
1284 } 1284 }
1285 EXPORT_SYMBOL_GPL(__cci_control_port_by_index); 1285 EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1286 1286
1287 static const struct cci_nb_ports cci400_ports = { 1287 static const struct cci_nb_ports cci400_ports = {
1288 .nb_ace = 2, 1288 .nb_ace = 2,
1289 .nb_ace_lite = 3 1289 .nb_ace_lite = 3
1290 }; 1290 };
1291 1291
1292 static const struct of_device_id arm_cci_matches[] = { 1292 static const struct of_device_id arm_cci_matches[] = {
1293 {.compatible = "arm,cci-400", .data = &cci400_ports }, 1293 {.compatible = "arm,cci-400", .data = &cci400_ports },
1294 {}, 1294 {},
1295 }; 1295 };
1296 1296
1297 static const struct of_device_id arm_cci_ctrl_if_matches[] = { 1297 static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1298 {.compatible = "arm,cci-400-ctrl-if", }, 1298 {.compatible = "arm,cci-400-ctrl-if", },
1299 {}, 1299 {},
1300 }; 1300 };
1301 1301
1302 static int cci_probe(void) 1302 static int cci_probe(void)
1303 { 1303 {
1304 struct cci_nb_ports const *cci_config; 1304 struct cci_nb_ports const *cci_config;
1305 int ret, i, nb_ace = 0, nb_ace_lite = 0; 1305 int ret, i, nb_ace = 0, nb_ace_lite = 0;
1306 struct device_node *np, *cp; 1306 struct device_node *np, *cp;
1307 struct resource res; 1307 struct resource res;
1308 const char *match_str; 1308 const char *match_str;
1309 bool is_ace; 1309 bool is_ace;
1310 1310
1311 np = of_find_matching_node(NULL, arm_cci_matches); 1311 np = of_find_matching_node(NULL, arm_cci_matches);
1312 if (!np) 1312 if (!np)
1313 return -ENODEV; 1313 return -ENODEV;
1314 1314
1315 if (!of_device_is_available(np))
1316 return -ENODEV;
1317
1315 cci_config = of_match_node(arm_cci_matches, np)->data; 1318 cci_config = of_match_node(arm_cci_matches, np)->data;
1316 if (!cci_config) 1319 if (!cci_config)
1317 return -ENODEV; 1320 return -ENODEV;
1318 1321
1319 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite; 1322 nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1320 1323
1321 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL); 1324 ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1322 if (!ports) 1325 if (!ports)
1323 return -ENOMEM; 1326 return -ENOMEM;
1324 1327
1325 ret = of_address_to_resource(np, 0, &res); 1328 ret = of_address_to_resource(np, 0, &res);
1326 if (!ret) { 1329 if (!ret) {
1327 cci_ctrl_base = ioremap(res.start, resource_size(&res)); 1330 cci_ctrl_base = ioremap(res.start, resource_size(&res));
1328 cci_ctrl_phys = res.start; 1331 cci_ctrl_phys = res.start;
1329 } 1332 }
1330 if (ret || !cci_ctrl_base) { 1333 if (ret || !cci_ctrl_base) {
1331 WARN(1, "unable to ioremap CCI ctrl\n"); 1334 WARN(1, "unable to ioremap CCI ctrl\n");
1332 ret = -ENXIO; 1335 ret = -ENXIO;
1333 goto memalloc_err; 1336 goto memalloc_err;
1334 } 1337 }
1335 1338
1336 for_each_child_of_node(np, cp) { 1339 for_each_child_of_node(np, cp) {
1337 if (!of_match_node(arm_cci_ctrl_if_matches, cp)) 1340 if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1338 continue; 1341 continue;
1339 1342
1340 i = nb_ace + nb_ace_lite; 1343 i = nb_ace + nb_ace_lite;
1341 1344
1342 if (i >= nb_cci_ports) 1345 if (i >= nb_cci_ports)
1343 break; 1346 break;
1344 1347
1345 if (of_property_read_string(cp, "interface-type", 1348 if (of_property_read_string(cp, "interface-type",
1346 &match_str)) { 1349 &match_str)) {
1347 WARN(1, "node %s missing interface-type property\n", 1350 WARN(1, "node %s missing interface-type property\n",
1348 cp->full_name); 1351 cp->full_name);
1349 continue; 1352 continue;
1350 } 1353 }
1351 is_ace = strcmp(match_str, "ace") == 0; 1354 is_ace = strcmp(match_str, "ace") == 0;
1352 if (!is_ace && strcmp(match_str, "ace-lite")) { 1355 if (!is_ace && strcmp(match_str, "ace-lite")) {
1353 WARN(1, "node %s containing invalid interface-type property, skipping it\n", 1356 WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1354 cp->full_name); 1357 cp->full_name);
1355 continue; 1358 continue;
1356 } 1359 }
1357 1360
1358 ret = of_address_to_resource(cp, 0, &res); 1361 ret = of_address_to_resource(cp, 0, &res);
1359 if (!ret) { 1362 if (!ret) {
1360 ports[i].base = ioremap(res.start, resource_size(&res)); 1363 ports[i].base = ioremap(res.start, resource_size(&res));
1361 ports[i].phys = res.start; 1364 ports[i].phys = res.start;
1362 } 1365 }
1363 if (ret || !ports[i].base) { 1366 if (ret || !ports[i].base) {
1364 WARN(1, "unable to ioremap CCI port %d\n", i); 1367 WARN(1, "unable to ioremap CCI port %d\n", i);
1365 continue; 1368 continue;
1366 } 1369 }
1367 1370
1368 if (is_ace) { 1371 if (is_ace) {
1369 if (WARN_ON(nb_ace >= cci_config->nb_ace)) 1372 if (WARN_ON(nb_ace >= cci_config->nb_ace))
1370 continue; 1373 continue;
1371 ports[i].type = ACE_PORT; 1374 ports[i].type = ACE_PORT;
1372 ++nb_ace; 1375 ++nb_ace;
1373 } else { 1376 } else {
1374 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite)) 1377 if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1375 continue; 1378 continue;
1376 ports[i].type = ACE_LITE_PORT; 1379 ports[i].type = ACE_LITE_PORT;
1377 ++nb_ace_lite; 1380 ++nb_ace_lite;
1378 } 1381 }
1379 ports[i].dn = cp; 1382 ports[i].dn = cp;
1380 } 1383 }
1381 1384
1382 /* initialize a stashed array of ACE ports to speed-up look-up */ 1385 /* initialize a stashed array of ACE ports to speed-up look-up */
1383 cci_ace_init_ports(); 1386 cci_ace_init_ports();
1384 1387
1385 /* 1388 /*
1386 * Multi-cluster systems may need this data when non-coherent, during 1389 * Multi-cluster systems may need this data when non-coherent, during
1387 * cluster power-up/power-down. Make sure it reaches main memory. 1390 * cluster power-up/power-down. Make sure it reaches main memory.
1388 */ 1391 */
1389 sync_cache_w(&cci_ctrl_base); 1392 sync_cache_w(&cci_ctrl_base);
1390 sync_cache_w(&cci_ctrl_phys); 1393 sync_cache_w(&cci_ctrl_phys);
1391 sync_cache_w(&ports); 1394 sync_cache_w(&ports);
1392 sync_cache_w(&cpu_port); 1395 sync_cache_w(&cpu_port);
1393 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports); 1396 __sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1394 pr_info("ARM CCI driver probed\n"); 1397 pr_info("ARM CCI driver probed\n");
1395 return 0; 1398 return 0;
1396 1399
1397 memalloc_err: 1400 memalloc_err:
1398 1401
1399 kfree(ports); 1402 kfree(ports);
1400 return ret; 1403 return ret;
1401 } 1404 }
1402 1405
1403 static int cci_init_status = -EAGAIN; 1406 static int cci_init_status = -EAGAIN;
1404 static DEFINE_MUTEX(cci_probing); 1407 static DEFINE_MUTEX(cci_probing);
1405 1408
1406 static int cci_init(void) 1409 static int cci_init(void)
1407 { 1410 {
1408 if (cci_init_status != -EAGAIN) 1411 if (cci_init_status != -EAGAIN)
1409 return cci_init_status; 1412 return cci_init_status;
1410 1413
1411 mutex_lock(&cci_probing); 1414 mutex_lock(&cci_probing);
1412 if (cci_init_status == -EAGAIN) 1415 if (cci_init_status == -EAGAIN)
1413 cci_init_status = cci_probe(); 1416 cci_init_status = cci_probe();
1414 mutex_unlock(&cci_probing); 1417 mutex_unlock(&cci_probing);
1415 return cci_init_status; 1418 return cci_init_status;
1416 } 1419 }
1417 1420
1418 #ifdef CONFIG_HW_PERF_EVENTS 1421 #ifdef CONFIG_HW_PERF_EVENTS
1419 static struct platform_driver cci_pmu_driver = { 1422 static struct platform_driver cci_pmu_driver = {
1420 .driver = { 1423 .driver = {
1421 .name = DRIVER_NAME_PMU, 1424 .name = DRIVER_NAME_PMU,
1422 .of_match_table = arm_cci_pmu_matches, 1425 .of_match_table = arm_cci_pmu_matches,
1423 }, 1426 },
1424 .probe = cci_pmu_probe, 1427 .probe = cci_pmu_probe,
1425 }; 1428 };
1426 1429
1427 static struct platform_driver cci_platform_driver = { 1430 static struct platform_driver cci_platform_driver = {
1428 .driver = { 1431 .driver = {
1429 .name = DRIVER_NAME, 1432 .name = DRIVER_NAME,
1430 .of_match_table = arm_cci_matches, 1433 .of_match_table = arm_cci_matches,
1431 }, 1434 },
1432 .probe = cci_platform_probe, 1435 .probe = cci_platform_probe,
1433 }; 1436 };
1434 1437
1435 static int __init cci_platform_init(void) 1438 static int __init cci_platform_init(void)
1436 { 1439 {
1437 int ret; 1440 int ret;
1438 1441
1439 ret = platform_driver_register(&cci_pmu_driver); 1442 ret = platform_driver_register(&cci_pmu_driver);
1440 if (ret) 1443 if (ret)
1441 return ret; 1444 return ret;
1442 1445
1443 return platform_driver_register(&cci_platform_driver); 1446 return platform_driver_register(&cci_platform_driver);
1444 } 1447 }
1445 1448
1446 #else 1449 #else
1447 1450
1448 static int __init cci_platform_init(void) 1451 static int __init cci_platform_init(void)
1449 { 1452 {
1450 return 0; 1453 return 0;
1451 } 1454 }
1452 1455
1453 #endif 1456 #endif
1454 /* 1457 /*
1455 * To sort out early init calls ordering a helper function is provided to 1458 * To sort out early init calls ordering a helper function is provided to
1456 * check if the CCI driver has beed initialized. Function check if the driver 1459 * check if the CCI driver has beed initialized. Function check if the driver
1457 * has been initialized, if not it calls the init function that probes 1460 * has been initialized, if not it calls the init function that probes
1458 * the driver and updates the return value. 1461 * the driver and updates the return value.
1459 */ 1462 */
1460 bool cci_probed(void) 1463 bool cci_probed(void)
1461 { 1464 {
1462 return cci_init() == 0; 1465 return cci_init() == 0;
1463 } 1466 }
1464 EXPORT_SYMBOL_GPL(cci_probed); 1467 EXPORT_SYMBOL_GPL(cci_probed);
1465 1468
1466 early_initcall(cci_init); 1469 early_initcall(cci_init);
1467 core_initcall(cci_platform_init); 1470 core_initcall(cci_platform_init);
1468 MODULE_LICENSE("GPL"); 1471 MODULE_LICENSE("GPL");
1469 MODULE_DESCRIPTION("ARM CCI support"); 1472 MODULE_DESCRIPTION("ARM CCI support");
1470 1473