Commit 9219cec5f235240654a4887caff4589d1c536212

Authored by Linus Torvalds

Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Ingo Molnar:
 "Two fixlets:

   - fix a (rare-config) build bug
   - fix a next-gen SGI/UV hw/firmware enumeration bug"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86: Update UV3 hub revision ID
  x86/microcode: Correct Kconfig dependencies

Showing 2 changed files Inline Diff

1 # Select 32 or 64 bit 1 # Select 32 or 64 bit
2 config 64BIT 2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86" 3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386" 4 default ARCH != "i386"
5 ---help--- 5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64 6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386 7 Say no to build a 32-bit kernel - formerly known as i386
8 8
9 config X86_32 9 config X86_32
10 def_bool y 10 def_bool y
11 depends on !64BIT 11 depends on !64BIT
12 select CLKSRC_I8253 12 select CLKSRC_I8253
13 select HAVE_UID16 13 select HAVE_UID16
14 14
15 config X86_64 15 config X86_64
16 def_bool y 16 def_bool y
17 depends on 64BIT 17 depends on 64BIT
18 select X86_DEV_DMA_OPS 18 select X86_DEV_DMA_OPS
19 select ARCH_USE_CMPXCHG_LOCKREF 19 select ARCH_USE_CMPXCHG_LOCKREF
20 20
21 ### Arch settings 21 ### Arch settings
22 config X86 22 config X86
23 def_bool y 23 def_bool y
24 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS 24 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
25 select HAVE_AOUT if X86_32 25 select HAVE_AOUT if X86_32
26 select HAVE_UNSTABLE_SCHED_CLOCK 26 select HAVE_UNSTABLE_SCHED_CLOCK
27 select ARCH_SUPPORTS_NUMA_BALANCING 27 select ARCH_SUPPORTS_NUMA_BALANCING
28 select ARCH_WANTS_PROT_NUMA_PROT_NONE 28 select ARCH_WANTS_PROT_NUMA_PROT_NONE
29 select HAVE_IDE 29 select HAVE_IDE
30 select HAVE_OPROFILE 30 select HAVE_OPROFILE
31 select HAVE_PCSPKR_PLATFORM 31 select HAVE_PCSPKR_PLATFORM
32 select HAVE_PERF_EVENTS 32 select HAVE_PERF_EVENTS
33 select HAVE_IOREMAP_PROT 33 select HAVE_IOREMAP_PROT
34 select HAVE_KPROBES 34 select HAVE_KPROBES
35 select HAVE_MEMBLOCK 35 select HAVE_MEMBLOCK
36 select HAVE_MEMBLOCK_NODE_MAP 36 select HAVE_MEMBLOCK_NODE_MAP
37 select ARCH_DISCARD_MEMBLOCK 37 select ARCH_DISCARD_MEMBLOCK
38 select ARCH_WANT_OPTIONAL_GPIOLIB 38 select ARCH_WANT_OPTIONAL_GPIOLIB
39 select ARCH_WANT_FRAME_POINTERS 39 select ARCH_WANT_FRAME_POINTERS
40 select HAVE_DMA_ATTRS 40 select HAVE_DMA_ATTRS
41 select HAVE_DMA_CONTIGUOUS if !SWIOTLB 41 select HAVE_DMA_CONTIGUOUS if !SWIOTLB
42 select HAVE_KRETPROBES 42 select HAVE_KRETPROBES
43 select HAVE_OPTPROBES 43 select HAVE_OPTPROBES
44 select HAVE_KPROBES_ON_FTRACE 44 select HAVE_KPROBES_ON_FTRACE
45 select HAVE_FTRACE_MCOUNT_RECORD 45 select HAVE_FTRACE_MCOUNT_RECORD
46 select HAVE_FENTRY if X86_64 46 select HAVE_FENTRY if X86_64
47 select HAVE_C_RECORDMCOUNT 47 select HAVE_C_RECORDMCOUNT
48 select HAVE_DYNAMIC_FTRACE 48 select HAVE_DYNAMIC_FTRACE
49 select HAVE_DYNAMIC_FTRACE_WITH_REGS 49 select HAVE_DYNAMIC_FTRACE_WITH_REGS
50 select HAVE_FUNCTION_TRACER 50 select HAVE_FUNCTION_TRACER
51 select HAVE_FUNCTION_GRAPH_TRACER 51 select HAVE_FUNCTION_GRAPH_TRACER
52 select HAVE_FUNCTION_GRAPH_FP_TEST 52 select HAVE_FUNCTION_GRAPH_FP_TEST
53 select HAVE_FUNCTION_TRACE_MCOUNT_TEST 53 select HAVE_FUNCTION_TRACE_MCOUNT_TEST
54 select HAVE_SYSCALL_TRACEPOINTS 54 select HAVE_SYSCALL_TRACEPOINTS
55 select SYSCTL_EXCEPTION_TRACE 55 select SYSCTL_EXCEPTION_TRACE
56 select HAVE_KVM 56 select HAVE_KVM
57 select HAVE_ARCH_KGDB 57 select HAVE_ARCH_KGDB
58 select HAVE_ARCH_TRACEHOOK 58 select HAVE_ARCH_TRACEHOOK
59 select HAVE_GENERIC_DMA_COHERENT if X86_32 59 select HAVE_GENERIC_DMA_COHERENT if X86_32
60 select HAVE_EFFICIENT_UNALIGNED_ACCESS 60 select HAVE_EFFICIENT_UNALIGNED_ACCESS
61 select USER_STACKTRACE_SUPPORT 61 select USER_STACKTRACE_SUPPORT
62 select HAVE_REGS_AND_STACK_ACCESS_API 62 select HAVE_REGS_AND_STACK_ACCESS_API
63 select HAVE_DMA_API_DEBUG 63 select HAVE_DMA_API_DEBUG
64 select HAVE_KERNEL_GZIP 64 select HAVE_KERNEL_GZIP
65 select HAVE_KERNEL_BZIP2 65 select HAVE_KERNEL_BZIP2
66 select HAVE_KERNEL_LZMA 66 select HAVE_KERNEL_LZMA
67 select HAVE_KERNEL_XZ 67 select HAVE_KERNEL_XZ
68 select HAVE_KERNEL_LZO 68 select HAVE_KERNEL_LZO
69 select HAVE_KERNEL_LZ4 69 select HAVE_KERNEL_LZ4
70 select HAVE_HW_BREAKPOINT 70 select HAVE_HW_BREAKPOINT
71 select HAVE_MIXED_BREAKPOINTS_REGS 71 select HAVE_MIXED_BREAKPOINTS_REGS
72 select PERF_EVENTS 72 select PERF_EVENTS
73 select HAVE_PERF_EVENTS_NMI 73 select HAVE_PERF_EVENTS_NMI
74 select HAVE_PERF_REGS 74 select HAVE_PERF_REGS
75 select HAVE_PERF_USER_STACK_DUMP 75 select HAVE_PERF_USER_STACK_DUMP
76 select HAVE_DEBUG_KMEMLEAK 76 select HAVE_DEBUG_KMEMLEAK
77 select ANON_INODES 77 select ANON_INODES
78 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 78 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
79 select HAVE_CMPXCHG_LOCAL 79 select HAVE_CMPXCHG_LOCAL
80 select HAVE_CMPXCHG_DOUBLE 80 select HAVE_CMPXCHG_DOUBLE
81 select HAVE_ARCH_KMEMCHECK 81 select HAVE_ARCH_KMEMCHECK
82 select HAVE_USER_RETURN_NOTIFIER 82 select HAVE_USER_RETURN_NOTIFIER
83 select ARCH_BINFMT_ELF_RANDOMIZE_PIE 83 select ARCH_BINFMT_ELF_RANDOMIZE_PIE
84 select HAVE_ARCH_JUMP_LABEL 84 select HAVE_ARCH_JUMP_LABEL
85 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE 85 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
86 select SPARSE_IRQ 86 select SPARSE_IRQ
87 select GENERIC_FIND_FIRST_BIT 87 select GENERIC_FIND_FIRST_BIT
88 select GENERIC_IRQ_PROBE 88 select GENERIC_IRQ_PROBE
89 select GENERIC_PENDING_IRQ if SMP 89 select GENERIC_PENDING_IRQ if SMP
90 select GENERIC_IRQ_SHOW 90 select GENERIC_IRQ_SHOW
91 select GENERIC_CLOCKEVENTS_MIN_ADJUST 91 select GENERIC_CLOCKEVENTS_MIN_ADJUST
92 select IRQ_FORCED_THREADING 92 select IRQ_FORCED_THREADING
93 select USE_GENERIC_SMP_HELPERS if SMP 93 select USE_GENERIC_SMP_HELPERS if SMP
94 select HAVE_BPF_JIT if X86_64 94 select HAVE_BPF_JIT if X86_64
95 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 95 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
96 select CLKEVT_I8253 96 select CLKEVT_I8253
97 select ARCH_HAVE_NMI_SAFE_CMPXCHG 97 select ARCH_HAVE_NMI_SAFE_CMPXCHG
98 select GENERIC_IOMAP 98 select GENERIC_IOMAP
99 select DCACHE_WORD_ACCESS 99 select DCACHE_WORD_ACCESS
100 select GENERIC_SMP_IDLE_THREAD 100 select GENERIC_SMP_IDLE_THREAD
101 select ARCH_WANT_IPC_PARSE_VERSION if X86_32 101 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
102 select HAVE_ARCH_SECCOMP_FILTER 102 select HAVE_ARCH_SECCOMP_FILTER
103 select BUILDTIME_EXTABLE_SORT 103 select BUILDTIME_EXTABLE_SORT
104 select GENERIC_CMOS_UPDATE 104 select GENERIC_CMOS_UPDATE
105 select HAVE_ARCH_SOFT_DIRTY 105 select HAVE_ARCH_SOFT_DIRTY
106 select CLOCKSOURCE_WATCHDOG 106 select CLOCKSOURCE_WATCHDOG
107 select GENERIC_CLOCKEVENTS 107 select GENERIC_CLOCKEVENTS
108 select ARCH_CLOCKSOURCE_DATA if X86_64 108 select ARCH_CLOCKSOURCE_DATA if X86_64
109 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC) 109 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
110 select GENERIC_TIME_VSYSCALL if X86_64 110 select GENERIC_TIME_VSYSCALL if X86_64
111 select KTIME_SCALAR if X86_32 111 select KTIME_SCALAR if X86_32
112 select GENERIC_STRNCPY_FROM_USER 112 select GENERIC_STRNCPY_FROM_USER
113 select GENERIC_STRNLEN_USER 113 select GENERIC_STRNLEN_USER
114 select HAVE_CONTEXT_TRACKING if X86_64 114 select HAVE_CONTEXT_TRACKING if X86_64
115 select HAVE_IRQ_TIME_ACCOUNTING 115 select HAVE_IRQ_TIME_ACCOUNTING
116 select VIRT_TO_BUS 116 select VIRT_TO_BUS
117 select MODULES_USE_ELF_REL if X86_32 117 select MODULES_USE_ELF_REL if X86_32
118 select MODULES_USE_ELF_RELA if X86_64 118 select MODULES_USE_ELF_RELA if X86_64
119 select CLONE_BACKWARDS if X86_32 119 select CLONE_BACKWARDS if X86_32
120 select ARCH_USE_BUILTIN_BSWAP 120 select ARCH_USE_BUILTIN_BSWAP
121 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION 121 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
122 select OLD_SIGACTION if X86_32 122 select OLD_SIGACTION if X86_32
123 select COMPAT_OLD_SIGACTION if IA32_EMULATION 123 select COMPAT_OLD_SIGACTION if IA32_EMULATION
124 select RTC_LIB 124 select RTC_LIB
125 select HAVE_DEBUG_STACKOVERFLOW 125 select HAVE_DEBUG_STACKOVERFLOW
126 126
127 config INSTRUCTION_DECODER 127 config INSTRUCTION_DECODER
128 def_bool y 128 def_bool y
129 depends on KPROBES || PERF_EVENTS || UPROBES 129 depends on KPROBES || PERF_EVENTS || UPROBES
130 130
131 config OUTPUT_FORMAT 131 config OUTPUT_FORMAT
132 string 132 string
133 default "elf32-i386" if X86_32 133 default "elf32-i386" if X86_32
134 default "elf64-x86-64" if X86_64 134 default "elf64-x86-64" if X86_64
135 135
136 config ARCH_DEFCONFIG 136 config ARCH_DEFCONFIG
137 string 137 string
138 default "arch/x86/configs/i386_defconfig" if X86_32 138 default "arch/x86/configs/i386_defconfig" if X86_32
139 default "arch/x86/configs/x86_64_defconfig" if X86_64 139 default "arch/x86/configs/x86_64_defconfig" if X86_64
140 140
141 config LOCKDEP_SUPPORT 141 config LOCKDEP_SUPPORT
142 def_bool y 142 def_bool y
143 143
144 config STACKTRACE_SUPPORT 144 config STACKTRACE_SUPPORT
145 def_bool y 145 def_bool y
146 146
147 config HAVE_LATENCYTOP_SUPPORT 147 config HAVE_LATENCYTOP_SUPPORT
148 def_bool y 148 def_bool y
149 149
150 config MMU 150 config MMU
151 def_bool y 151 def_bool y
152 152
153 config SBUS 153 config SBUS
154 bool 154 bool
155 155
156 config NEED_DMA_MAP_STATE 156 config NEED_DMA_MAP_STATE
157 def_bool y 157 def_bool y
158 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG 158 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
159 159
160 config NEED_SG_DMA_LENGTH 160 config NEED_SG_DMA_LENGTH
161 def_bool y 161 def_bool y
162 162
163 config GENERIC_ISA_DMA 163 config GENERIC_ISA_DMA
164 def_bool y 164 def_bool y
165 depends on ISA_DMA_API 165 depends on ISA_DMA_API
166 166
167 config GENERIC_BUG 167 config GENERIC_BUG
168 def_bool y 168 def_bool y
169 depends on BUG 169 depends on BUG
170 select GENERIC_BUG_RELATIVE_POINTERS if X86_64 170 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
171 171
172 config GENERIC_BUG_RELATIVE_POINTERS 172 config GENERIC_BUG_RELATIVE_POINTERS
173 bool 173 bool
174 174
175 config GENERIC_HWEIGHT 175 config GENERIC_HWEIGHT
176 def_bool y 176 def_bool y
177 177
178 config ARCH_MAY_HAVE_PC_FDC 178 config ARCH_MAY_HAVE_PC_FDC
179 def_bool y 179 def_bool y
180 depends on ISA_DMA_API 180 depends on ISA_DMA_API
181 181
182 config RWSEM_XCHGADD_ALGORITHM 182 config RWSEM_XCHGADD_ALGORITHM
183 def_bool y 183 def_bool y
184 184
185 config GENERIC_CALIBRATE_DELAY 185 config GENERIC_CALIBRATE_DELAY
186 def_bool y 186 def_bool y
187 187
188 config ARCH_HAS_CPU_RELAX 188 config ARCH_HAS_CPU_RELAX
189 def_bool y 189 def_bool y
190 190
191 config ARCH_HAS_CACHE_LINE_SIZE 191 config ARCH_HAS_CACHE_LINE_SIZE
192 def_bool y 192 def_bool y
193 193
194 config ARCH_HAS_CPU_AUTOPROBE 194 config ARCH_HAS_CPU_AUTOPROBE
195 def_bool y 195 def_bool y
196 196
197 config HAVE_SETUP_PER_CPU_AREA 197 config HAVE_SETUP_PER_CPU_AREA
198 def_bool y 198 def_bool y
199 199
200 config NEED_PER_CPU_EMBED_FIRST_CHUNK 200 config NEED_PER_CPU_EMBED_FIRST_CHUNK
201 def_bool y 201 def_bool y
202 202
203 config NEED_PER_CPU_PAGE_FIRST_CHUNK 203 config NEED_PER_CPU_PAGE_FIRST_CHUNK
204 def_bool y 204 def_bool y
205 205
206 config ARCH_HIBERNATION_POSSIBLE 206 config ARCH_HIBERNATION_POSSIBLE
207 def_bool y 207 def_bool y
208 208
209 config ARCH_SUSPEND_POSSIBLE 209 config ARCH_SUSPEND_POSSIBLE
210 def_bool y 210 def_bool y
211 211
212 config ARCH_WANT_HUGE_PMD_SHARE 212 config ARCH_WANT_HUGE_PMD_SHARE
213 def_bool y 213 def_bool y
214 214
215 config ARCH_WANT_GENERAL_HUGETLB 215 config ARCH_WANT_GENERAL_HUGETLB
216 def_bool y 216 def_bool y
217 217
218 config ZONE_DMA32 218 config ZONE_DMA32
219 bool 219 bool
220 default X86_64 220 default X86_64
221 221
222 config AUDIT_ARCH 222 config AUDIT_ARCH
223 bool 223 bool
224 default X86_64 224 default X86_64
225 225
226 config ARCH_SUPPORTS_OPTIMIZED_INLINING 226 config ARCH_SUPPORTS_OPTIMIZED_INLINING
227 def_bool y 227 def_bool y
228 228
229 config ARCH_SUPPORTS_DEBUG_PAGEALLOC 229 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
230 def_bool y 230 def_bool y
231 231
232 config HAVE_INTEL_TXT 232 config HAVE_INTEL_TXT
233 def_bool y 233 def_bool y
234 depends on INTEL_IOMMU && ACPI 234 depends on INTEL_IOMMU && ACPI
235 235
236 config X86_32_SMP 236 config X86_32_SMP
237 def_bool y 237 def_bool y
238 depends on X86_32 && SMP 238 depends on X86_32 && SMP
239 239
240 config X86_64_SMP 240 config X86_64_SMP
241 def_bool y 241 def_bool y
242 depends on X86_64 && SMP 242 depends on X86_64 && SMP
243 243
244 config X86_HT 244 config X86_HT
245 def_bool y 245 def_bool y
246 depends on SMP 246 depends on SMP
247 247
248 config X86_32_LAZY_GS 248 config X86_32_LAZY_GS
249 def_bool y 249 def_bool y
250 depends on X86_32 && !CC_STACKPROTECTOR 250 depends on X86_32 && !CC_STACKPROTECTOR
251 251
252 config ARCH_HWEIGHT_CFLAGS 252 config ARCH_HWEIGHT_CFLAGS
253 string 253 string
254 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32 254 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
255 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64 255 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
256 256
257 config ARCH_CPU_PROBE_RELEASE 257 config ARCH_CPU_PROBE_RELEASE
258 def_bool y 258 def_bool y
259 depends on HOTPLUG_CPU 259 depends on HOTPLUG_CPU
260 260
261 config ARCH_SUPPORTS_UPROBES 261 config ARCH_SUPPORTS_UPROBES
262 def_bool y 262 def_bool y
263 263
264 source "init/Kconfig" 264 source "init/Kconfig"
265 source "kernel/Kconfig.freezer" 265 source "kernel/Kconfig.freezer"
266 266
267 menu "Processor type and features" 267 menu "Processor type and features"
268 268
269 config ZONE_DMA 269 config ZONE_DMA
270 bool "DMA memory allocation support" if EXPERT 270 bool "DMA memory allocation support" if EXPERT
271 default y 271 default y
272 help 272 help
273 DMA memory allocation support allows devices with less than 32-bit 273 DMA memory allocation support allows devices with less than 32-bit
274 addressing to allocate within the first 16MB of address space. 274 addressing to allocate within the first 16MB of address space.
275 Disable if no such devices will be used. 275 Disable if no such devices will be used.
276 276
277 If unsure, say Y. 277 If unsure, say Y.
278 278
279 config SMP 279 config SMP
280 bool "Symmetric multi-processing support" 280 bool "Symmetric multi-processing support"
281 ---help--- 281 ---help---
282 This enables support for systems with more than one CPU. If you have 282 This enables support for systems with more than one CPU. If you have
283 a system with only one CPU, like most personal computers, say N. If 283 a system with only one CPU, like most personal computers, say N. If
284 you have a system with more than one CPU, say Y. 284 you have a system with more than one CPU, say Y.
285 285
286 If you say N here, the kernel will run on single and multiprocessor 286 If you say N here, the kernel will run on single and multiprocessor
287 machines, but will use only one CPU of a multiprocessor machine. If 287 machines, but will use only one CPU of a multiprocessor machine. If
288 you say Y here, the kernel will run on many, but not all, 288 you say Y here, the kernel will run on many, but not all,
289 singleprocessor machines. On a singleprocessor machine, the kernel 289 singleprocessor machines. On a singleprocessor machine, the kernel
290 will run faster if you say N here. 290 will run faster if you say N here.
291 291
292 Note that if you say Y here and choose architecture "586" or 292 Note that if you say Y here and choose architecture "586" or
293 "Pentium" under "Processor family", the kernel will not work on 486 293 "Pentium" under "Processor family", the kernel will not work on 486
294 architectures. Similarly, multiprocessor kernels for the "PPro" 294 architectures. Similarly, multiprocessor kernels for the "PPro"
295 architecture may not work on all Pentium based boards. 295 architecture may not work on all Pentium based boards.
296 296
297 People using multiprocessor machines who say Y here should also say 297 People using multiprocessor machines who say Y here should also say
298 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power 298 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
299 Management" code will be disabled if you say Y here. 299 Management" code will be disabled if you say Y here.
300 300
301 See also <file:Documentation/x86/i386/IO-APIC.txt>, 301 See also <file:Documentation/x86/i386/IO-APIC.txt>,
302 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at 302 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
303 <http://www.tldp.org/docs.html#howto>. 303 <http://www.tldp.org/docs.html#howto>.
304 304
305 If you don't know what to do here, say N. 305 If you don't know what to do here, say N.
306 306
307 config X86_X2APIC 307 config X86_X2APIC
308 bool "Support x2apic" 308 bool "Support x2apic"
309 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP 309 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
310 ---help--- 310 ---help---
311 This enables x2apic support on CPUs that have this feature. 311 This enables x2apic support on CPUs that have this feature.
312 312
313 This allows 32-bit apic IDs (so it can support very large systems), 313 This allows 32-bit apic IDs (so it can support very large systems),
314 and accesses the local apic via MSRs not via mmio. 314 and accesses the local apic via MSRs not via mmio.
315 315
316 If you don't know what to do here, say N. 316 If you don't know what to do here, say N.
317 317
318 config X86_MPPARSE 318 config X86_MPPARSE
319 bool "Enable MPS table" if ACPI || SFI 319 bool "Enable MPS table" if ACPI || SFI
320 default y 320 default y
321 depends on X86_LOCAL_APIC 321 depends on X86_LOCAL_APIC
322 ---help--- 322 ---help---
323 For old smp systems that do not have proper acpi support. Newer systems 323 For old smp systems that do not have proper acpi support. Newer systems
324 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it 324 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
325 325
326 config X86_BIGSMP 326 config X86_BIGSMP
327 bool "Support for big SMP systems with more than 8 CPUs" 327 bool "Support for big SMP systems with more than 8 CPUs"
328 depends on X86_32 && SMP 328 depends on X86_32 && SMP
329 ---help--- 329 ---help---
330 This option is needed for the systems that have more than 8 CPUs 330 This option is needed for the systems that have more than 8 CPUs
331 331
332 config GOLDFISH 332 config GOLDFISH
333 def_bool y 333 def_bool y
334 depends on X86_GOLDFISH 334 depends on X86_GOLDFISH
335 335
336 if X86_32 336 if X86_32
337 config X86_EXTENDED_PLATFORM 337 config X86_EXTENDED_PLATFORM
338 bool "Support for extended (non-PC) x86 platforms" 338 bool "Support for extended (non-PC) x86 platforms"
339 default y 339 default y
340 ---help--- 340 ---help---
341 If you disable this option then the kernel will only support 341 If you disable this option then the kernel will only support
342 standard PC platforms. (which covers the vast majority of 342 standard PC platforms. (which covers the vast majority of
343 systems out there.) 343 systems out there.)
344 344
345 If you enable this option then you'll be able to select support 345 If you enable this option then you'll be able to select support
346 for the following (non-PC) 32 bit x86 platforms: 346 for the following (non-PC) 32 bit x86 platforms:
347 Goldfish (Android emulator) 347 Goldfish (Android emulator)
348 AMD Elan 348 AMD Elan
349 NUMAQ (IBM/Sequent) 349 NUMAQ (IBM/Sequent)
350 RDC R-321x SoC 350 RDC R-321x SoC
351 SGI 320/540 (Visual Workstation) 351 SGI 320/540 (Visual Workstation)
352 STA2X11-based (e.g. Northville) 352 STA2X11-based (e.g. Northville)
353 Summit/EXA (IBM x440) 353 Summit/EXA (IBM x440)
354 Unisys ES7000 IA32 series 354 Unisys ES7000 IA32 series
355 Moorestown MID devices 355 Moorestown MID devices
356 356
357 If you have one of these systems, or if you want to build a 357 If you have one of these systems, or if you want to build a
358 generic distribution kernel, say Y here - otherwise say N. 358 generic distribution kernel, say Y here - otherwise say N.
359 endif 359 endif
360 360
361 if X86_64 361 if X86_64
362 config X86_EXTENDED_PLATFORM 362 config X86_EXTENDED_PLATFORM
363 bool "Support for extended (non-PC) x86 platforms" 363 bool "Support for extended (non-PC) x86 platforms"
364 default y 364 default y
365 ---help--- 365 ---help---
366 If you disable this option then the kernel will only support 366 If you disable this option then the kernel will only support
367 standard PC platforms. (which covers the vast majority of 367 standard PC platforms. (which covers the vast majority of
368 systems out there.) 368 systems out there.)
369 369
370 If you enable this option then you'll be able to select support 370 If you enable this option then you'll be able to select support
371 for the following (non-PC) 64 bit x86 platforms: 371 for the following (non-PC) 64 bit x86 platforms:
372 Numascale NumaChip 372 Numascale NumaChip
373 ScaleMP vSMP 373 ScaleMP vSMP
374 SGI Ultraviolet 374 SGI Ultraviolet
375 375
376 If you have one of these systems, or if you want to build a 376 If you have one of these systems, or if you want to build a
377 generic distribution kernel, say Y here - otherwise say N. 377 generic distribution kernel, say Y here - otherwise say N.
378 endif 378 endif
379 # This is an alphabetically sorted list of 64 bit extended platforms 379 # This is an alphabetically sorted list of 64 bit extended platforms
380 # Please maintain the alphabetic order if and when there are additions 380 # Please maintain the alphabetic order if and when there are additions
381 config X86_NUMACHIP 381 config X86_NUMACHIP
382 bool "Numascale NumaChip" 382 bool "Numascale NumaChip"
383 depends on X86_64 383 depends on X86_64
384 depends on X86_EXTENDED_PLATFORM 384 depends on X86_EXTENDED_PLATFORM
385 depends on NUMA 385 depends on NUMA
386 depends on SMP 386 depends on SMP
387 depends on X86_X2APIC 387 depends on X86_X2APIC
388 depends on PCI_MMCONFIG 388 depends on PCI_MMCONFIG
389 ---help--- 389 ---help---
390 Adds support for Numascale NumaChip large-SMP systems. Needed to 390 Adds support for Numascale NumaChip large-SMP systems. Needed to
391 enable more than ~168 cores. 391 enable more than ~168 cores.
392 If you don't have one of these, you should say N here. 392 If you don't have one of these, you should say N here.
393 393
394 config X86_VSMP 394 config X86_VSMP
395 bool "ScaleMP vSMP" 395 bool "ScaleMP vSMP"
396 select HYPERVISOR_GUEST 396 select HYPERVISOR_GUEST
397 select PARAVIRT 397 select PARAVIRT
398 depends on X86_64 && PCI 398 depends on X86_64 && PCI
399 depends on X86_EXTENDED_PLATFORM 399 depends on X86_EXTENDED_PLATFORM
400 depends on SMP 400 depends on SMP
401 ---help--- 401 ---help---
402 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is 402 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
403 supposed to run on these EM64T-based machines. Only choose this option 403 supposed to run on these EM64T-based machines. Only choose this option
404 if you have one of these machines. 404 if you have one of these machines.
405 405
406 config X86_UV 406 config X86_UV
407 bool "SGI Ultraviolet" 407 bool "SGI Ultraviolet"
408 depends on X86_64 408 depends on X86_64
409 depends on X86_EXTENDED_PLATFORM 409 depends on X86_EXTENDED_PLATFORM
410 depends on NUMA 410 depends on NUMA
411 depends on X86_X2APIC 411 depends on X86_X2APIC
412 ---help--- 412 ---help---
413 This option is needed in order to support SGI Ultraviolet systems. 413 This option is needed in order to support SGI Ultraviolet systems.
414 If you don't have one of these, you should say N here. 414 If you don't have one of these, you should say N here.
415 415
416 # Following is an alphabetically sorted list of 32 bit extended platforms 416 # Following is an alphabetically sorted list of 32 bit extended platforms
417 # Please maintain the alphabetic order if and when there are additions 417 # Please maintain the alphabetic order if and when there are additions
418 418
419 config X86_GOLDFISH 419 config X86_GOLDFISH
420 bool "Goldfish (Virtual Platform)" 420 bool "Goldfish (Virtual Platform)"
421 depends on X86_32 421 depends on X86_32
422 depends on X86_EXTENDED_PLATFORM 422 depends on X86_EXTENDED_PLATFORM
423 ---help--- 423 ---help---
424 Enable support for the Goldfish virtual platform used primarily 424 Enable support for the Goldfish virtual platform used primarily
425 for Android development. Unless you are building for the Android 425 for Android development. Unless you are building for the Android
426 Goldfish emulator say N here. 426 Goldfish emulator say N here.
427 427
428 config X86_INTEL_CE 428 config X86_INTEL_CE
429 bool "CE4100 TV platform" 429 bool "CE4100 TV platform"
430 depends on PCI 430 depends on PCI
431 depends on PCI_GODIRECT 431 depends on PCI_GODIRECT
432 depends on X86_32 432 depends on X86_32
433 depends on X86_EXTENDED_PLATFORM 433 depends on X86_EXTENDED_PLATFORM
434 select X86_REBOOTFIXUPS 434 select X86_REBOOTFIXUPS
435 select OF 435 select OF
436 select OF_EARLY_FLATTREE 436 select OF_EARLY_FLATTREE
437 select IRQ_DOMAIN 437 select IRQ_DOMAIN
438 ---help--- 438 ---help---
439 Select for the Intel CE media processor (CE4100) SOC. 439 Select for the Intel CE media processor (CE4100) SOC.
440 This option compiles in support for the CE4100 SOC for settop 440 This option compiles in support for the CE4100 SOC for settop
441 boxes and media devices. 441 boxes and media devices.
442 442
443 config X86_WANT_INTEL_MID 443 config X86_WANT_INTEL_MID
444 bool "Intel MID platform support" 444 bool "Intel MID platform support"
445 depends on X86_32 445 depends on X86_32
446 depends on X86_EXTENDED_PLATFORM 446 depends on X86_EXTENDED_PLATFORM
447 ---help--- 447 ---help---
448 Select to build a kernel capable of supporting Intel MID platform 448 Select to build a kernel capable of supporting Intel MID platform
449 systems which do not have the PCI legacy interfaces (Moorestown, 449 systems which do not have the PCI legacy interfaces (Moorestown,
450 Medfield). If you are building for a PC class system say N here. 450 Medfield). If you are building for a PC class system say N here.
451 451
452 if X86_WANT_INTEL_MID 452 if X86_WANT_INTEL_MID
453 453
454 config X86_INTEL_MID 454 config X86_INTEL_MID
455 bool 455 bool
456 456
457 config X86_MDFLD 457 config X86_MDFLD
458 bool "Medfield MID platform" 458 bool "Medfield MID platform"
459 depends on PCI 459 depends on PCI
460 depends on PCI_GOANY 460 depends on PCI_GOANY
461 depends on X86_IO_APIC 461 depends on X86_IO_APIC
462 select X86_INTEL_MID 462 select X86_INTEL_MID
463 select SFI 463 select SFI
464 select DW_APB_TIMER 464 select DW_APB_TIMER
465 select APB_TIMER 465 select APB_TIMER
466 select I2C 466 select I2C
467 select SPI 467 select SPI
468 select INTEL_SCU_IPC 468 select INTEL_SCU_IPC
469 select X86_PLATFORM_DEVICES 469 select X86_PLATFORM_DEVICES
470 select MFD_INTEL_MSIC 470 select MFD_INTEL_MSIC
471 ---help--- 471 ---help---
472 Medfield is Intel's Low Power Intel Architecture (LPIA) based Moblin 472 Medfield is Intel's Low Power Intel Architecture (LPIA) based Moblin
473 Internet Device(MID) platform. 473 Internet Device(MID) platform.
474 Unlike standard x86 PCs, Medfield does not have many legacy devices 474 Unlike standard x86 PCs, Medfield does not have many legacy devices
475 nor standard legacy replacement devices/features. e.g. Medfield does 475 nor standard legacy replacement devices/features. e.g. Medfield does
476 not contain i8259, i8254, HPET, legacy BIOS, most of the io ports. 476 not contain i8259, i8254, HPET, legacy BIOS, most of the io ports.
477 477
478 endif 478 endif
479 479
480 config X86_INTEL_LPSS 480 config X86_INTEL_LPSS
481 bool "Intel Low Power Subsystem Support" 481 bool "Intel Low Power Subsystem Support"
482 depends on ACPI 482 depends on ACPI
483 select COMMON_CLK 483 select COMMON_CLK
484 select PINCTRL 484 select PINCTRL
485 ---help--- 485 ---help---
486 Select to build support for Intel Low Power Subsystem such as 486 Select to build support for Intel Low Power Subsystem such as
487 found on Intel Lynxpoint PCH. Selecting this option enables 487 found on Intel Lynxpoint PCH. Selecting this option enables
488 things like clock tree (common clock framework) and pincontrol 488 things like clock tree (common clock framework) and pincontrol
489 which are needed by the LPSS peripheral drivers. 489 which are needed by the LPSS peripheral drivers.
490 490
491 config X86_RDC321X 491 config X86_RDC321X
492 bool "RDC R-321x SoC" 492 bool "RDC R-321x SoC"
493 depends on X86_32 493 depends on X86_32
494 depends on X86_EXTENDED_PLATFORM 494 depends on X86_EXTENDED_PLATFORM
495 select M486 495 select M486
496 select X86_REBOOTFIXUPS 496 select X86_REBOOTFIXUPS
497 ---help--- 497 ---help---
498 This option is needed for RDC R-321x system-on-chip, also known 498 This option is needed for RDC R-321x system-on-chip, also known
499 as R-8610-(G). 499 as R-8610-(G).
500 If you don't have one of these chips, you should say N here. 500 If you don't have one of these chips, you should say N here.
501 501
502 config X86_32_NON_STANDARD 502 config X86_32_NON_STANDARD
503 bool "Support non-standard 32-bit SMP architectures" 503 bool "Support non-standard 32-bit SMP architectures"
504 depends on X86_32 && SMP 504 depends on X86_32 && SMP
505 depends on X86_EXTENDED_PLATFORM 505 depends on X86_EXTENDED_PLATFORM
506 ---help--- 506 ---help---
507 This option compiles in the NUMAQ, Summit, bigsmp, ES7000, 507 This option compiles in the NUMAQ, Summit, bigsmp, ES7000,
508 STA2X11, default subarchitectures. It is intended for a generic 508 STA2X11, default subarchitectures. It is intended for a generic
509 binary kernel. If you select them all, kernel will probe it 509 binary kernel. If you select them all, kernel will probe it
510 one by one and will fallback to default. 510 one by one and will fallback to default.
511 511
512 # Alphabetically sorted list of Non standard 32 bit platforms 512 # Alphabetically sorted list of Non standard 32 bit platforms
513 513
514 config X86_NUMAQ 514 config X86_NUMAQ
515 bool "NUMAQ (IBM/Sequent)" 515 bool "NUMAQ (IBM/Sequent)"
516 depends on X86_32_NON_STANDARD 516 depends on X86_32_NON_STANDARD
517 depends on PCI 517 depends on PCI
518 select NUMA 518 select NUMA
519 select X86_MPPARSE 519 select X86_MPPARSE
520 ---help--- 520 ---help---
521 This option is used for getting Linux to run on a NUMAQ (IBM/Sequent) 521 This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
522 NUMA multiquad box. This changes the way that processors are 522 NUMA multiquad box. This changes the way that processors are
523 bootstrapped, and uses Clustered Logical APIC addressing mode instead 523 bootstrapped, and uses Clustered Logical APIC addressing mode instead
524 of Flat Logical. You will need a new lynxer.elf file to flash your 524 of Flat Logical. You will need a new lynxer.elf file to flash your
525 firmware with - send email to <Martin.Bligh@us.ibm.com>. 525 firmware with - send email to <Martin.Bligh@us.ibm.com>.
526 526
527 config X86_SUPPORTS_MEMORY_FAILURE 527 config X86_SUPPORTS_MEMORY_FAILURE
528 def_bool y 528 def_bool y
529 # MCE code calls memory_failure(): 529 # MCE code calls memory_failure():
530 depends on X86_MCE 530 depends on X86_MCE
531 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags: 531 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
532 depends on !X86_NUMAQ 532 depends on !X86_NUMAQ
533 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH: 533 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
534 depends on X86_64 || !SPARSEMEM 534 depends on X86_64 || !SPARSEMEM
535 select ARCH_SUPPORTS_MEMORY_FAILURE 535 select ARCH_SUPPORTS_MEMORY_FAILURE
536 536
537 config X86_VISWS 537 config X86_VISWS
538 bool "SGI 320/540 (Visual Workstation)" 538 bool "SGI 320/540 (Visual Workstation)"
539 depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT 539 depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT
540 depends on X86_32_NON_STANDARD 540 depends on X86_32_NON_STANDARD
541 ---help--- 541 ---help---
542 The SGI Visual Workstation series is an IA32-based workstation 542 The SGI Visual Workstation series is an IA32-based workstation
543 based on SGI systems chips with some legacy PC hardware attached. 543 based on SGI systems chips with some legacy PC hardware attached.
544 544
545 Say Y here to create a kernel to run on the SGI 320 or 540. 545 Say Y here to create a kernel to run on the SGI 320 or 540.
546 546
547 A kernel compiled for the Visual Workstation will run on general 547 A kernel compiled for the Visual Workstation will run on general
548 PCs as well. See <file:Documentation/sgi-visws.txt> for details. 548 PCs as well. See <file:Documentation/sgi-visws.txt> for details.
549 549
550 config STA2X11 550 config STA2X11
551 bool "STA2X11 Companion Chip Support" 551 bool "STA2X11 Companion Chip Support"
552 depends on X86_32_NON_STANDARD && PCI 552 depends on X86_32_NON_STANDARD && PCI
553 select X86_DEV_DMA_OPS 553 select X86_DEV_DMA_OPS
554 select X86_DMA_REMAP 554 select X86_DMA_REMAP
555 select SWIOTLB 555 select SWIOTLB
556 select MFD_STA2X11 556 select MFD_STA2X11
557 select ARCH_REQUIRE_GPIOLIB 557 select ARCH_REQUIRE_GPIOLIB
558 default n 558 default n
559 ---help--- 559 ---help---
560 This adds support for boards based on the STA2X11 IO-Hub, 560 This adds support for boards based on the STA2X11 IO-Hub,
561 a.k.a. "ConneXt". The chip is used in place of the standard 561 a.k.a. "ConneXt". The chip is used in place of the standard
562 PC chipset, so all "standard" peripherals are missing. If this 562 PC chipset, so all "standard" peripherals are missing. If this
563 option is selected the kernel will still be able to boot on 563 option is selected the kernel will still be able to boot on
564 standard PC machines. 564 standard PC machines.
565 565
566 config X86_SUMMIT 566 config X86_SUMMIT
567 bool "Summit/EXA (IBM x440)" 567 bool "Summit/EXA (IBM x440)"
568 depends on X86_32_NON_STANDARD 568 depends on X86_32_NON_STANDARD
569 ---help--- 569 ---help---
570 This option is needed for IBM systems that use the Summit/EXA chipset. 570 This option is needed for IBM systems that use the Summit/EXA chipset.
571 In particular, it is needed for the x440. 571 In particular, it is needed for the x440.
572 572
573 config X86_ES7000 573 config X86_ES7000
574 bool "Unisys ES7000 IA32 series" 574 bool "Unisys ES7000 IA32 series"
575 depends on X86_32_NON_STANDARD && X86_BIGSMP 575 depends on X86_32_NON_STANDARD && X86_BIGSMP
576 ---help--- 576 ---help---
577 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is 577 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
578 supposed to run on an IA32-based Unisys ES7000 system. 578 supposed to run on an IA32-based Unisys ES7000 system.
579 579
580 config X86_32_IRIS 580 config X86_32_IRIS
581 tristate "Eurobraille/Iris poweroff module" 581 tristate "Eurobraille/Iris poweroff module"
582 depends on X86_32 582 depends on X86_32
583 ---help--- 583 ---help---
584 The Iris machines from EuroBraille do not have APM or ACPI support 584 The Iris machines from EuroBraille do not have APM or ACPI support
585 to shut themselves down properly. A special I/O sequence is 585 to shut themselves down properly. A special I/O sequence is
586 needed to do so, which is what this module does at 586 needed to do so, which is what this module does at
587 kernel shutdown. 587 kernel shutdown.
588 588
589 This is only for Iris machines from EuroBraille. 589 This is only for Iris machines from EuroBraille.
590 590
591 If unused, say N. 591 If unused, say N.
592 592
593 config SCHED_OMIT_FRAME_POINTER 593 config SCHED_OMIT_FRAME_POINTER
594 def_bool y 594 def_bool y
595 prompt "Single-depth WCHAN output" 595 prompt "Single-depth WCHAN output"
596 depends on X86 596 depends on X86
597 ---help--- 597 ---help---
598 Calculate simpler /proc/<PID>/wchan values. If this option 598 Calculate simpler /proc/<PID>/wchan values. If this option
599 is disabled then wchan values will recurse back to the 599 is disabled then wchan values will recurse back to the
600 caller function. This provides more accurate wchan values, 600 caller function. This provides more accurate wchan values,
601 at the expense of slightly more scheduling overhead. 601 at the expense of slightly more scheduling overhead.
602 602
603 If in doubt, say "Y". 603 If in doubt, say "Y".
604 604
605 menuconfig HYPERVISOR_GUEST 605 menuconfig HYPERVISOR_GUEST
606 bool "Linux guest support" 606 bool "Linux guest support"
607 ---help--- 607 ---help---
608 Say Y here to enable options for running Linux under various hyper- 608 Say Y here to enable options for running Linux under various hyper-
609 visors. This option enables basic hypervisor detection and platform 609 visors. This option enables basic hypervisor detection and platform
610 setup. 610 setup.
611 611
612 If you say N, all options in this submenu will be skipped and 612 If you say N, all options in this submenu will be skipped and
613 disabled, and Linux guest support won't be built in. 613 disabled, and Linux guest support won't be built in.
614 614
615 if HYPERVISOR_GUEST 615 if HYPERVISOR_GUEST
616 616
617 config PARAVIRT 617 config PARAVIRT
618 bool "Enable paravirtualization code" 618 bool "Enable paravirtualization code"
619 ---help--- 619 ---help---
620 This changes the kernel so it can modify itself when it is run 620 This changes the kernel so it can modify itself when it is run
621 under a hypervisor, potentially improving performance significantly 621 under a hypervisor, potentially improving performance significantly
622 over full virtualization. However, when run without a hypervisor 622 over full virtualization. However, when run without a hypervisor
623 the kernel is theoretically slower and slightly larger. 623 the kernel is theoretically slower and slightly larger.
624 624
625 config PARAVIRT_DEBUG 625 config PARAVIRT_DEBUG
626 bool "paravirt-ops debugging" 626 bool "paravirt-ops debugging"
627 depends on PARAVIRT && DEBUG_KERNEL 627 depends on PARAVIRT && DEBUG_KERNEL
628 ---help--- 628 ---help---
629 Enable to debug paravirt_ops internals. Specifically, BUG if 629 Enable to debug paravirt_ops internals. Specifically, BUG if
630 a paravirt_op is missing when it is called. 630 a paravirt_op is missing when it is called.
631 631
632 config PARAVIRT_SPINLOCKS 632 config PARAVIRT_SPINLOCKS
633 bool "Paravirtualization layer for spinlocks" 633 bool "Paravirtualization layer for spinlocks"
634 depends on PARAVIRT && SMP 634 depends on PARAVIRT && SMP
635 select UNINLINE_SPIN_UNLOCK 635 select UNINLINE_SPIN_UNLOCK
636 ---help--- 636 ---help---
637 Paravirtualized spinlocks allow a pvops backend to replace the 637 Paravirtualized spinlocks allow a pvops backend to replace the
638 spinlock implementation with something virtualization-friendly 638 spinlock implementation with something virtualization-friendly
639 (for example, block the virtual CPU rather than spinning). 639 (for example, block the virtual CPU rather than spinning).
640 640
641 Unfortunately the downside is an up to 5% performance hit on 641 Unfortunately the downside is an up to 5% performance hit on
642 native kernels, with various workloads. 642 native kernels, with various workloads.
643 643
644 If you are unsure how to answer this question, answer N. 644 If you are unsure how to answer this question, answer N.
645 645
646 source "arch/x86/xen/Kconfig" 646 source "arch/x86/xen/Kconfig"
647 647
648 config KVM_GUEST 648 config KVM_GUEST
649 bool "KVM Guest support (including kvmclock)" 649 bool "KVM Guest support (including kvmclock)"
650 depends on PARAVIRT 650 depends on PARAVIRT
651 select PARAVIRT_CLOCK 651 select PARAVIRT_CLOCK
652 default y 652 default y
653 ---help--- 653 ---help---
654 This option enables various optimizations for running under the KVM 654 This option enables various optimizations for running under the KVM
655 hypervisor. It includes a paravirtualized clock, so that instead 655 hypervisor. It includes a paravirtualized clock, so that instead
656 of relying on a PIT (or probably other) emulation by the 656 of relying on a PIT (or probably other) emulation by the
657 underlying device model, the host provides the guest with 657 underlying device model, the host provides the guest with
658 timing infrastructure such as time of day, and system time 658 timing infrastructure such as time of day, and system time
659 659
660 config KVM_DEBUG_FS 660 config KVM_DEBUG_FS
661 bool "Enable debug information for KVM Guests in debugfs" 661 bool "Enable debug information for KVM Guests in debugfs"
662 depends on KVM_GUEST && DEBUG_FS 662 depends on KVM_GUEST && DEBUG_FS
663 default n 663 default n
664 ---help--- 664 ---help---
665 This option enables collection of various statistics for KVM guest. 665 This option enables collection of various statistics for KVM guest.
666 Statistics are displayed in debugfs filesystem. Enabling this option 666 Statistics are displayed in debugfs filesystem. Enabling this option
667 may incur significant overhead. 667 may incur significant overhead.
668 668
669 source "arch/x86/lguest/Kconfig" 669 source "arch/x86/lguest/Kconfig"
670 670
671 config PARAVIRT_TIME_ACCOUNTING 671 config PARAVIRT_TIME_ACCOUNTING
672 bool "Paravirtual steal time accounting" 672 bool "Paravirtual steal time accounting"
673 depends on PARAVIRT 673 depends on PARAVIRT
674 default n 674 default n
675 ---help--- 675 ---help---
676 Select this option to enable fine granularity task steal time 676 Select this option to enable fine granularity task steal time
677 accounting. Time spent executing other tasks in parallel with 677 accounting. Time spent executing other tasks in parallel with
678 the current vCPU is discounted from the vCPU power. To account for 678 the current vCPU is discounted from the vCPU power. To account for
679 that, there can be a small performance impact. 679 that, there can be a small performance impact.
680 680
681 If in doubt, say N here. 681 If in doubt, say N here.
682 682
683 config PARAVIRT_CLOCK 683 config PARAVIRT_CLOCK
684 bool 684 bool
685 685
686 endif #HYPERVISOR_GUEST 686 endif #HYPERVISOR_GUEST
687 687
688 config NO_BOOTMEM 688 config NO_BOOTMEM
689 def_bool y 689 def_bool y
690 690
691 config MEMTEST 691 config MEMTEST
692 bool "Memtest" 692 bool "Memtest"
693 ---help--- 693 ---help---
694 This option adds a kernel parameter 'memtest', which allows memtest 694 This option adds a kernel parameter 'memtest', which allows memtest
695 to be set. 695 to be set.
696 memtest=0, mean disabled; -- default 696 memtest=0, mean disabled; -- default
697 memtest=1, mean do 1 test pattern; 697 memtest=1, mean do 1 test pattern;
698 ... 698 ...
699 memtest=4, mean do 4 test patterns. 699 memtest=4, mean do 4 test patterns.
700 If you are unsure how to answer this question, answer N. 700 If you are unsure how to answer this question, answer N.
701 701
702 config X86_SUMMIT_NUMA 702 config X86_SUMMIT_NUMA
703 def_bool y 703 def_bool y
704 depends on X86_32 && NUMA && X86_32_NON_STANDARD 704 depends on X86_32 && NUMA && X86_32_NON_STANDARD
705 705
706 config X86_CYCLONE_TIMER 706 config X86_CYCLONE_TIMER
707 def_bool y 707 def_bool y
708 depends on X86_SUMMIT 708 depends on X86_SUMMIT
709 709
710 source "arch/x86/Kconfig.cpu" 710 source "arch/x86/Kconfig.cpu"
711 711
712 config HPET_TIMER 712 config HPET_TIMER
713 def_bool X86_64 713 def_bool X86_64
714 prompt "HPET Timer Support" if X86_32 714 prompt "HPET Timer Support" if X86_32
715 ---help--- 715 ---help---
716 Use the IA-PC HPET (High Precision Event Timer) to manage 716 Use the IA-PC HPET (High Precision Event Timer) to manage
717 time in preference to the PIT and RTC, if a HPET is 717 time in preference to the PIT and RTC, if a HPET is
718 present. 718 present.
719 HPET is the next generation timer replacing legacy 8254s. 719 HPET is the next generation timer replacing legacy 8254s.
720 The HPET provides a stable time base on SMP 720 The HPET provides a stable time base on SMP
721 systems, unlike the TSC, but it is more expensive to access, 721 systems, unlike the TSC, but it is more expensive to access,
722 as it is off-chip. You can find the HPET spec at 722 as it is off-chip. You can find the HPET spec at
723 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>. 723 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
724 724
725 You can safely choose Y here. However, HPET will only be 725 You can safely choose Y here. However, HPET will only be
726 activated if the platform and the BIOS support this feature. 726 activated if the platform and the BIOS support this feature.
727 Otherwise the 8254 will be used for timing services. 727 Otherwise the 8254 will be used for timing services.
728 728
729 Choose N to continue using the legacy 8254 timer. 729 Choose N to continue using the legacy 8254 timer.
730 730
731 config HPET_EMULATE_RTC 731 config HPET_EMULATE_RTC
732 def_bool y 732 def_bool y
733 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) 733 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
734 734
735 config APB_TIMER 735 config APB_TIMER
736 def_bool y if X86_INTEL_MID 736 def_bool y if X86_INTEL_MID
737 prompt "Intel MID APB Timer Support" if X86_INTEL_MID 737 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
738 select DW_APB_TIMER 738 select DW_APB_TIMER
739 depends on X86_INTEL_MID && SFI 739 depends on X86_INTEL_MID && SFI
740 help 740 help
741 APB timer is the replacement for 8254, HPET on X86 MID platforms. 741 APB timer is the replacement for 8254, HPET on X86 MID platforms.
742 The APBT provides a stable time base on SMP 742 The APBT provides a stable time base on SMP
743 systems, unlike the TSC, but it is more expensive to access, 743 systems, unlike the TSC, but it is more expensive to access,
744 as it is off-chip. APB timers are always running regardless of CPU 744 as it is off-chip. APB timers are always running regardless of CPU
745 C states, they are used as per CPU clockevent device when possible. 745 C states, they are used as per CPU clockevent device when possible.
746 746
747 # Mark as expert because too many people got it wrong. 747 # Mark as expert because too many people got it wrong.
748 # The code disables itself when not needed. 748 # The code disables itself when not needed.
749 config DMI 749 config DMI
750 default y 750 default y
751 bool "Enable DMI scanning" if EXPERT 751 bool "Enable DMI scanning" if EXPERT
752 ---help--- 752 ---help---
753 Enabled scanning of DMI to identify machine quirks. Say Y 753 Enabled scanning of DMI to identify machine quirks. Say Y
754 here unless you have verified that your setup is not 754 here unless you have verified that your setup is not
755 affected by entries in the DMI blacklist. Required by PNP 755 affected by entries in the DMI blacklist. Required by PNP
756 BIOS code. 756 BIOS code.
757 757
758 config GART_IOMMU 758 config GART_IOMMU
759 bool "GART IOMMU support" if EXPERT 759 bool "GART IOMMU support" if EXPERT
760 default y 760 default y
761 select SWIOTLB 761 select SWIOTLB
762 depends on X86_64 && PCI && AMD_NB 762 depends on X86_64 && PCI && AMD_NB
763 ---help--- 763 ---help---
764 Support for full DMA access of devices with 32bit memory access only 764 Support for full DMA access of devices with 32bit memory access only
765 on systems with more than 3GB. This is usually needed for USB, 765 on systems with more than 3GB. This is usually needed for USB,
766 sound, many IDE/SATA chipsets and some other devices. 766 sound, many IDE/SATA chipsets and some other devices.
767 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART 767 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
768 based hardware IOMMU and a software bounce buffer based IOMMU used 768 based hardware IOMMU and a software bounce buffer based IOMMU used
769 on Intel systems and as fallback. 769 on Intel systems and as fallback.
770 The code is only active when needed (enough memory and limited 770 The code is only active when needed (enough memory and limited
771 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified 771 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
772 too. 772 too.
773 773
774 config CALGARY_IOMMU 774 config CALGARY_IOMMU
775 bool "IBM Calgary IOMMU support" 775 bool "IBM Calgary IOMMU support"
776 select SWIOTLB 776 select SWIOTLB
777 depends on X86_64 && PCI 777 depends on X86_64 && PCI
778 ---help--- 778 ---help---
779 Support for hardware IOMMUs in IBM's xSeries x366 and x460 779 Support for hardware IOMMUs in IBM's xSeries x366 and x460
780 systems. Needed to run systems with more than 3GB of memory 780 systems. Needed to run systems with more than 3GB of memory
781 properly with 32-bit PCI devices that do not support DAC 781 properly with 32-bit PCI devices that do not support DAC
782 (Double Address Cycle). Calgary also supports bus level 782 (Double Address Cycle). Calgary also supports bus level
783 isolation, where all DMAs pass through the IOMMU. This 783 isolation, where all DMAs pass through the IOMMU. This
784 prevents them from going anywhere except their intended 784 prevents them from going anywhere except their intended
785 destination. This catches hard-to-find kernel bugs and 785 destination. This catches hard-to-find kernel bugs and
786 mis-behaving drivers and devices that do not use the DMA-API 786 mis-behaving drivers and devices that do not use the DMA-API
787 properly to set up their DMA buffers. The IOMMU can be 787 properly to set up their DMA buffers. The IOMMU can be
788 turned off at boot time with the iommu=off parameter. 788 turned off at boot time with the iommu=off parameter.
789 Normally the kernel will make the right choice by itself. 789 Normally the kernel will make the right choice by itself.
790 If unsure, say Y. 790 If unsure, say Y.
791 791
792 config CALGARY_IOMMU_ENABLED_BY_DEFAULT 792 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
793 def_bool y 793 def_bool y
794 prompt "Should Calgary be enabled by default?" 794 prompt "Should Calgary be enabled by default?"
795 depends on CALGARY_IOMMU 795 depends on CALGARY_IOMMU
796 ---help--- 796 ---help---
797 Should Calgary be enabled by default? if you choose 'y', Calgary 797 Should Calgary be enabled by default? if you choose 'y', Calgary
798 will be used (if it exists). If you choose 'n', Calgary will not be 798 will be used (if it exists). If you choose 'n', Calgary will not be
799 used even if it exists. If you choose 'n' and would like to use 799 used even if it exists. If you choose 'n' and would like to use
800 Calgary anyway, pass 'iommu=calgary' on the kernel command line. 800 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
801 If unsure, say Y. 801 If unsure, say Y.
802 802
803 # need this always selected by IOMMU for the VIA workaround 803 # need this always selected by IOMMU for the VIA workaround
804 config SWIOTLB 804 config SWIOTLB
805 def_bool y if X86_64 805 def_bool y if X86_64
806 ---help--- 806 ---help---
807 Support for software bounce buffers used on x86-64 systems 807 Support for software bounce buffers used on x86-64 systems
808 which don't have a hardware IOMMU. Using this PCI devices 808 which don't have a hardware IOMMU. Using this PCI devices
809 which can only access 32-bits of memory can be used on systems 809 which can only access 32-bits of memory can be used on systems
810 with more than 3 GB of memory. 810 with more than 3 GB of memory.
811 If unsure, say Y. 811 If unsure, say Y.
812 812
813 config IOMMU_HELPER 813 config IOMMU_HELPER
814 def_bool y 814 def_bool y
815 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU 815 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
816 816
817 config MAXSMP 817 config MAXSMP
818 bool "Enable Maximum number of SMP Processors and NUMA Nodes" 818 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
819 depends on X86_64 && SMP && DEBUG_KERNEL 819 depends on X86_64 && SMP && DEBUG_KERNEL
820 select CPUMASK_OFFSTACK 820 select CPUMASK_OFFSTACK
821 ---help--- 821 ---help---
822 Enable maximum number of CPUS and NUMA Nodes for this architecture. 822 Enable maximum number of CPUS and NUMA Nodes for this architecture.
823 If unsure, say N. 823 If unsure, say N.
824 824
825 config NR_CPUS 825 config NR_CPUS
826 int "Maximum number of CPUs" if SMP && !MAXSMP 826 int "Maximum number of CPUs" if SMP && !MAXSMP
827 range 2 8 if SMP && X86_32 && !X86_BIGSMP 827 range 2 8 if SMP && X86_32 && !X86_BIGSMP
828 range 2 512 if SMP && !MAXSMP 828 range 2 512 if SMP && !MAXSMP
829 default "1" if !SMP 829 default "1" if !SMP
830 default "4096" if MAXSMP 830 default "4096" if MAXSMP
831 default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000) 831 default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
832 default "8" if SMP 832 default "8" if SMP
833 ---help--- 833 ---help---
834 This allows you to specify the maximum number of CPUs which this 834 This allows you to specify the maximum number of CPUs which this
835 kernel will support. The maximum supported value is 512 and the 835 kernel will support. The maximum supported value is 512 and the
836 minimum value which makes sense is 2. 836 minimum value which makes sense is 2.
837 837
838 This is purely to save memory - each supported CPU adds 838 This is purely to save memory - each supported CPU adds
839 approximately eight kilobytes to the kernel image. 839 approximately eight kilobytes to the kernel image.
840 840
841 config SCHED_SMT 841 config SCHED_SMT
842 bool "SMT (Hyperthreading) scheduler support" 842 bool "SMT (Hyperthreading) scheduler support"
843 depends on X86_HT 843 depends on X86_HT
844 ---help--- 844 ---help---
845 SMT scheduler support improves the CPU scheduler's decision making 845 SMT scheduler support improves the CPU scheduler's decision making
846 when dealing with Intel Pentium 4 chips with HyperThreading at a 846 when dealing with Intel Pentium 4 chips with HyperThreading at a
847 cost of slightly increased overhead in some places. If unsure say 847 cost of slightly increased overhead in some places. If unsure say
848 N here. 848 N here.
849 849
850 config SCHED_MC 850 config SCHED_MC
851 def_bool y 851 def_bool y
852 prompt "Multi-core scheduler support" 852 prompt "Multi-core scheduler support"
853 depends on X86_HT 853 depends on X86_HT
854 ---help--- 854 ---help---
855 Multi-core scheduler support improves the CPU scheduler's decision 855 Multi-core scheduler support improves the CPU scheduler's decision
856 making when dealing with multi-core CPU chips at a cost of slightly 856 making when dealing with multi-core CPU chips at a cost of slightly
857 increased overhead in some places. If unsure say N here. 857 increased overhead in some places. If unsure say N here.
858 858
859 source "kernel/Kconfig.preempt" 859 source "kernel/Kconfig.preempt"
860 860
861 config X86_UP_APIC 861 config X86_UP_APIC
862 bool "Local APIC support on uniprocessors" 862 bool "Local APIC support on uniprocessors"
863 depends on X86_32 && !SMP && !X86_32_NON_STANDARD && !PCI_MSI 863 depends on X86_32 && !SMP && !X86_32_NON_STANDARD && !PCI_MSI
864 ---help--- 864 ---help---
865 A local APIC (Advanced Programmable Interrupt Controller) is an 865 A local APIC (Advanced Programmable Interrupt Controller) is an
866 integrated interrupt controller in the CPU. If you have a single-CPU 866 integrated interrupt controller in the CPU. If you have a single-CPU
867 system which has a processor with a local APIC, you can say Y here to 867 system which has a processor with a local APIC, you can say Y here to
868 enable and use it. If you say Y here even though your machine doesn't 868 enable and use it. If you say Y here even though your machine doesn't
869 have a local APIC, then the kernel will still run with no slowdown at 869 have a local APIC, then the kernel will still run with no slowdown at
870 all. The local APIC supports CPU-generated self-interrupts (timer, 870 all. The local APIC supports CPU-generated self-interrupts (timer,
871 performance counters), and the NMI watchdog which detects hard 871 performance counters), and the NMI watchdog which detects hard
872 lockups. 872 lockups.
873 873
874 config X86_UP_IOAPIC 874 config X86_UP_IOAPIC
875 bool "IO-APIC support on uniprocessors" 875 bool "IO-APIC support on uniprocessors"
876 depends on X86_UP_APIC 876 depends on X86_UP_APIC
877 ---help--- 877 ---help---
878 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an 878 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
879 SMP-capable replacement for PC-style interrupt controllers. Most 879 SMP-capable replacement for PC-style interrupt controllers. Most
880 SMP systems and many recent uniprocessor systems have one. 880 SMP systems and many recent uniprocessor systems have one.
881 881
882 If you have a single-CPU system with an IO-APIC, you can say Y here 882 If you have a single-CPU system with an IO-APIC, you can say Y here
883 to use it. If you say Y here even though your machine doesn't have 883 to use it. If you say Y here even though your machine doesn't have
884 an IO-APIC, then the kernel will still run with no slowdown at all. 884 an IO-APIC, then the kernel will still run with no slowdown at all.
885 885
886 config X86_LOCAL_APIC 886 config X86_LOCAL_APIC
887 def_bool y 887 def_bool y
888 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI 888 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
889 889
890 config X86_IO_APIC 890 config X86_IO_APIC
891 def_bool y 891 def_bool y
892 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC || PCI_MSI 892 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC || PCI_MSI
893 893
894 config X86_VISWS_APIC 894 config X86_VISWS_APIC
895 def_bool y 895 def_bool y
896 depends on X86_32 && X86_VISWS 896 depends on X86_32 && X86_VISWS
897 897
898 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS 898 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
899 bool "Reroute for broken boot IRQs" 899 bool "Reroute for broken boot IRQs"
900 depends on X86_IO_APIC 900 depends on X86_IO_APIC
901 ---help--- 901 ---help---
902 This option enables a workaround that fixes a source of 902 This option enables a workaround that fixes a source of
903 spurious interrupts. This is recommended when threaded 903 spurious interrupts. This is recommended when threaded
904 interrupt handling is used on systems where the generation of 904 interrupt handling is used on systems where the generation of
905 superfluous "boot interrupts" cannot be disabled. 905 superfluous "boot interrupts" cannot be disabled.
906 906
907 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ 907 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
908 entry in the chipset's IO-APIC is masked (as, e.g. the RT 908 entry in the chipset's IO-APIC is masked (as, e.g. the RT
909 kernel does during interrupt handling). On chipsets where this 909 kernel does during interrupt handling). On chipsets where this
910 boot IRQ generation cannot be disabled, this workaround keeps 910 boot IRQ generation cannot be disabled, this workaround keeps
911 the original IRQ line masked so that only the equivalent "boot 911 the original IRQ line masked so that only the equivalent "boot
912 IRQ" is delivered to the CPUs. The workaround also tells the 912 IRQ" is delivered to the CPUs. The workaround also tells the
913 kernel to set up the IRQ handler on the boot IRQ line. In this 913 kernel to set up the IRQ handler on the boot IRQ line. In this
914 way only one interrupt is delivered to the kernel. Otherwise 914 way only one interrupt is delivered to the kernel. Otherwise
915 the spurious second interrupt may cause the kernel to bring 915 the spurious second interrupt may cause the kernel to bring
916 down (vital) interrupt lines. 916 down (vital) interrupt lines.
917 917
918 Only affects "broken" chipsets. Interrupt sharing may be 918 Only affects "broken" chipsets. Interrupt sharing may be
919 increased on these systems. 919 increased on these systems.
920 920
921 config X86_MCE 921 config X86_MCE
922 bool "Machine Check / overheating reporting" 922 bool "Machine Check / overheating reporting"
923 default y 923 default y
924 ---help--- 924 ---help---
925 Machine Check support allows the processor to notify the 925 Machine Check support allows the processor to notify the
926 kernel if it detects a problem (e.g. overheating, data corruption). 926 kernel if it detects a problem (e.g. overheating, data corruption).
927 The action the kernel takes depends on the severity of the problem, 927 The action the kernel takes depends on the severity of the problem,
928 ranging from warning messages to halting the machine. 928 ranging from warning messages to halting the machine.
929 929
930 config X86_MCE_INTEL 930 config X86_MCE_INTEL
931 def_bool y 931 def_bool y
932 prompt "Intel MCE features" 932 prompt "Intel MCE features"
933 depends on X86_MCE && X86_LOCAL_APIC 933 depends on X86_MCE && X86_LOCAL_APIC
934 ---help--- 934 ---help---
935 Additional support for intel specific MCE features such as 935 Additional support for intel specific MCE features such as
936 the thermal monitor. 936 the thermal monitor.
937 937
938 config X86_MCE_AMD 938 config X86_MCE_AMD
939 def_bool y 939 def_bool y
940 prompt "AMD MCE features" 940 prompt "AMD MCE features"
941 depends on X86_MCE && X86_LOCAL_APIC 941 depends on X86_MCE && X86_LOCAL_APIC
942 ---help--- 942 ---help---
943 Additional support for AMD specific MCE features such as 943 Additional support for AMD specific MCE features such as
944 the DRAM Error Threshold. 944 the DRAM Error Threshold.
945 945
946 config X86_ANCIENT_MCE 946 config X86_ANCIENT_MCE
947 bool "Support for old Pentium 5 / WinChip machine checks" 947 bool "Support for old Pentium 5 / WinChip machine checks"
948 depends on X86_32 && X86_MCE 948 depends on X86_32 && X86_MCE
949 ---help--- 949 ---help---
950 Include support for machine check handling on old Pentium 5 or WinChip 950 Include support for machine check handling on old Pentium 5 or WinChip
951 systems. These typically need to be enabled explicitely on the command 951 systems. These typically need to be enabled explicitely on the command
952 line. 952 line.
953 953
954 config X86_MCE_THRESHOLD 954 config X86_MCE_THRESHOLD
955 depends on X86_MCE_AMD || X86_MCE_INTEL 955 depends on X86_MCE_AMD || X86_MCE_INTEL
956 def_bool y 956 def_bool y
957 957
958 config X86_MCE_INJECT 958 config X86_MCE_INJECT
959 depends on X86_MCE 959 depends on X86_MCE
960 tristate "Machine check injector support" 960 tristate "Machine check injector support"
961 ---help--- 961 ---help---
962 Provide support for injecting machine checks for testing purposes. 962 Provide support for injecting machine checks for testing purposes.
963 If you don't know what a machine check is and you don't do kernel 963 If you don't know what a machine check is and you don't do kernel
964 QA it is safe to say n. 964 QA it is safe to say n.
965 965
966 config X86_THERMAL_VECTOR 966 config X86_THERMAL_VECTOR
967 def_bool y 967 def_bool y
968 depends on X86_MCE_INTEL 968 depends on X86_MCE_INTEL
969 969
970 config VM86 970 config VM86
971 bool "Enable VM86 support" if EXPERT 971 bool "Enable VM86 support" if EXPERT
972 default y 972 default y
973 depends on X86_32 973 depends on X86_32
974 ---help--- 974 ---help---
975 This option is required by programs like DOSEMU to run 16-bit legacy 975 This option is required by programs like DOSEMU to run 16-bit legacy
976 code on X86 processors. It also may be needed by software like 976 code on X86 processors. It also may be needed by software like
977 XFree86 to initialize some video cards via BIOS. Disabling this 977 XFree86 to initialize some video cards via BIOS. Disabling this
978 option saves about 6k. 978 option saves about 6k.
979 979
980 config TOSHIBA 980 config TOSHIBA
981 tristate "Toshiba Laptop support" 981 tristate "Toshiba Laptop support"
982 depends on X86_32 982 depends on X86_32
983 ---help--- 983 ---help---
984 This adds a driver to safely access the System Management Mode of 984 This adds a driver to safely access the System Management Mode of
985 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does 985 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
986 not work on models with a Phoenix BIOS. The System Management Mode 986 not work on models with a Phoenix BIOS. The System Management Mode
987 is used to set the BIOS and power saving options on Toshiba portables. 987 is used to set the BIOS and power saving options on Toshiba portables.
988 988
989 For information on utilities to make use of this driver see the 989 For information on utilities to make use of this driver see the
990 Toshiba Linux utilities web site at: 990 Toshiba Linux utilities web site at:
991 <http://www.buzzard.org.uk/toshiba/>. 991 <http://www.buzzard.org.uk/toshiba/>.
992 992
993 Say Y if you intend to run this kernel on a Toshiba portable. 993 Say Y if you intend to run this kernel on a Toshiba portable.
994 Say N otherwise. 994 Say N otherwise.
995 995
996 config I8K 996 config I8K
997 tristate "Dell laptop support" 997 tristate "Dell laptop support"
998 select HWMON 998 select HWMON
999 ---help--- 999 ---help---
1000 This adds a driver to safely access the System Management Mode 1000 This adds a driver to safely access the System Management Mode
1001 of the CPU on the Dell Inspiron 8000. The System Management Mode 1001 of the CPU on the Dell Inspiron 8000. The System Management Mode
1002 is used to read cpu temperature and cooling fan status and to 1002 is used to read cpu temperature and cooling fan status and to
1003 control the fans on the I8K portables. 1003 control the fans on the I8K portables.
1004 1004
1005 This driver has been tested only on the Inspiron 8000 but it may 1005 This driver has been tested only on the Inspiron 8000 but it may
1006 also work with other Dell laptops. You can force loading on other 1006 also work with other Dell laptops. You can force loading on other
1007 models by passing the parameter `force=1' to the module. Use at 1007 models by passing the parameter `force=1' to the module. Use at
1008 your own risk. 1008 your own risk.
1009 1009
1010 For information on utilities to make use of this driver see the 1010 For information on utilities to make use of this driver see the
1011 I8K Linux utilities web site at: 1011 I8K Linux utilities web site at:
1012 <http://people.debian.org/~dz/i8k/> 1012 <http://people.debian.org/~dz/i8k/>
1013 1013
1014 Say Y if you intend to run this kernel on a Dell Inspiron 8000. 1014 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
1015 Say N otherwise. 1015 Say N otherwise.
1016 1016
1017 config X86_REBOOTFIXUPS 1017 config X86_REBOOTFIXUPS
1018 bool "Enable X86 board specific fixups for reboot" 1018 bool "Enable X86 board specific fixups for reboot"
1019 depends on X86_32 1019 depends on X86_32
1020 ---help--- 1020 ---help---
1021 This enables chipset and/or board specific fixups to be done 1021 This enables chipset and/or board specific fixups to be done
1022 in order to get reboot to work correctly. This is only needed on 1022 in order to get reboot to work correctly. This is only needed on
1023 some combinations of hardware and BIOS. The symptom, for which 1023 some combinations of hardware and BIOS. The symptom, for which
1024 this config is intended, is when reboot ends with a stalled/hung 1024 this config is intended, is when reboot ends with a stalled/hung
1025 system. 1025 system.
1026 1026
1027 Currently, the only fixup is for the Geode machines using 1027 Currently, the only fixup is for the Geode machines using
1028 CS5530A and CS5536 chipsets and the RDC R-321x SoC. 1028 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1029 1029
1030 Say Y if you want to enable the fixup. Currently, it's safe to 1030 Say Y if you want to enable the fixup. Currently, it's safe to
1031 enable this option even if you don't need it. 1031 enable this option even if you don't need it.
1032 Say N otherwise. 1032 Say N otherwise.
1033 1033
1034 config MICROCODE 1034 config MICROCODE
1035 tristate "CPU microcode loading support" 1035 tristate "CPU microcode loading support"
1036 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1036 select FW_LOADER 1037 select FW_LOADER
1037 ---help--- 1038 ---help---
1038 1039
1039 If you say Y here, you will be able to update the microcode on 1040 If you say Y here, you will be able to update the microcode on
1040 certain Intel and AMD processors. The Intel support is for the 1041 certain Intel and AMD processors. The Intel support is for the
1041 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, 1042 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1042 Xeon etc. The AMD support is for families 0x10 and later. You will 1043 Xeon etc. The AMD support is for families 0x10 and later. You will
1043 obviously need the actual microcode binary data itself which is not 1044 obviously need the actual microcode binary data itself which is not
1044 shipped with the Linux kernel. 1045 shipped with the Linux kernel.
1045 1046
1046 This option selects the general module only, you need to select 1047 This option selects the general module only, you need to select
1047 at least one vendor specific module as well. 1048 at least one vendor specific module as well.
1048 1049
1049 To compile this driver as a module, choose M here: the module 1050 To compile this driver as a module, choose M here: the module
1050 will be called microcode. 1051 will be called microcode.
1051 1052
1052 config MICROCODE_INTEL 1053 config MICROCODE_INTEL
1053 bool "Intel microcode loading support" 1054 bool "Intel microcode loading support"
1054 depends on MICROCODE 1055 depends on MICROCODE
1055 default MICROCODE 1056 default MICROCODE
1056 select FW_LOADER 1057 select FW_LOADER
1057 ---help--- 1058 ---help---
1058 This options enables microcode patch loading support for Intel 1059 This options enables microcode patch loading support for Intel
1059 processors. 1060 processors.
1060 1061
1061 For latest news and information on obtaining all the required 1062 For latest news and information on obtaining all the required
1062 Intel ingredients for this driver, check: 1063 Intel ingredients for this driver, check:
1063 <http://www.urbanmyth.org/microcode/>. 1064 <http://www.urbanmyth.org/microcode/>.
1064 1065
1065 config MICROCODE_AMD 1066 config MICROCODE_AMD
1066 bool "AMD microcode loading support" 1067 bool "AMD microcode loading support"
1067 depends on MICROCODE 1068 depends on MICROCODE
1068 select FW_LOADER 1069 select FW_LOADER
1069 ---help--- 1070 ---help---
1070 If you select this option, microcode patch loading support for AMD 1071 If you select this option, microcode patch loading support for AMD
1071 processors will be enabled. 1072 processors will be enabled.
1072 1073
1073 config MICROCODE_OLD_INTERFACE 1074 config MICROCODE_OLD_INTERFACE
1074 def_bool y 1075 def_bool y
1075 depends on MICROCODE 1076 depends on MICROCODE
1076 1077
1077 config MICROCODE_INTEL_LIB 1078 config MICROCODE_INTEL_LIB
1078 def_bool y 1079 def_bool y
1079 depends on MICROCODE_INTEL 1080 depends on MICROCODE_INTEL
1080 1081
1081 config MICROCODE_INTEL_EARLY 1082 config MICROCODE_INTEL_EARLY
1082 def_bool n 1083 def_bool n
1083 1084
1084 config MICROCODE_AMD_EARLY 1085 config MICROCODE_AMD_EARLY
1085 def_bool n 1086 def_bool n
1086 1087
1087 config MICROCODE_EARLY 1088 config MICROCODE_EARLY
1088 bool "Early load microcode" 1089 bool "Early load microcode"
1089 depends on MICROCODE=y && BLK_DEV_INITRD 1090 depends on MICROCODE=y && BLK_DEV_INITRD
1090 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL 1091 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
1091 select MICROCODE_AMD_EARLY if MICROCODE_AMD 1092 select MICROCODE_AMD_EARLY if MICROCODE_AMD
1092 default y 1093 default y
1093 help 1094 help
1094 This option provides functionality to read additional microcode data 1095 This option provides functionality to read additional microcode data
1095 at the beginning of initrd image. The data tells kernel to load 1096 at the beginning of initrd image. The data tells kernel to load
1096 microcode to CPU's as early as possible. No functional change if no 1097 microcode to CPU's as early as possible. No functional change if no
1097 microcode data is glued to the initrd, therefore it's safe to say Y. 1098 microcode data is glued to the initrd, therefore it's safe to say Y.
1098 1099
1099 config X86_MSR 1100 config X86_MSR
1100 tristate "/dev/cpu/*/msr - Model-specific register support" 1101 tristate "/dev/cpu/*/msr - Model-specific register support"
1101 ---help--- 1102 ---help---
1102 This device gives privileged processes access to the x86 1103 This device gives privileged processes access to the x86
1103 Model-Specific Registers (MSRs). It is a character device with 1104 Model-Specific Registers (MSRs). It is a character device with
1104 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr. 1105 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1105 MSR accesses are directed to a specific CPU on multi-processor 1106 MSR accesses are directed to a specific CPU on multi-processor
1106 systems. 1107 systems.
1107 1108
1108 config X86_CPUID 1109 config X86_CPUID
1109 tristate "/dev/cpu/*/cpuid - CPU information support" 1110 tristate "/dev/cpu/*/cpuid - CPU information support"
1110 ---help--- 1111 ---help---
1111 This device gives processes access to the x86 CPUID instruction to 1112 This device gives processes access to the x86 CPUID instruction to
1112 be executed on a specific processor. It is a character device 1113 be executed on a specific processor. It is a character device
1113 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to 1114 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1114 /dev/cpu/31/cpuid. 1115 /dev/cpu/31/cpuid.
1115 1116
1116 choice 1117 choice
1117 prompt "High Memory Support" 1118 prompt "High Memory Support"
1118 default HIGHMEM64G if X86_NUMAQ 1119 default HIGHMEM64G if X86_NUMAQ
1119 default HIGHMEM4G 1120 default HIGHMEM4G
1120 depends on X86_32 1121 depends on X86_32
1121 1122
1122 config NOHIGHMEM 1123 config NOHIGHMEM
1123 bool "off" 1124 bool "off"
1124 depends on !X86_NUMAQ 1125 depends on !X86_NUMAQ
1125 ---help--- 1126 ---help---
1126 Linux can use up to 64 Gigabytes of physical memory on x86 systems. 1127 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1127 However, the address space of 32-bit x86 processors is only 4 1128 However, the address space of 32-bit x86 processors is only 4
1128 Gigabytes large. That means that, if you have a large amount of 1129 Gigabytes large. That means that, if you have a large amount of
1129 physical memory, not all of it can be "permanently mapped" by the 1130 physical memory, not all of it can be "permanently mapped" by the
1130 kernel. The physical memory that's not permanently mapped is called 1131 kernel. The physical memory that's not permanently mapped is called
1131 "high memory". 1132 "high memory".
1132 1133
1133 If you are compiling a kernel which will never run on a machine with 1134 If you are compiling a kernel which will never run on a machine with
1134 more than 1 Gigabyte total physical RAM, answer "off" here (default 1135 more than 1 Gigabyte total physical RAM, answer "off" here (default
1135 choice and suitable for most users). This will result in a "3GB/1GB" 1136 choice and suitable for most users). This will result in a "3GB/1GB"
1136 split: 3GB are mapped so that each process sees a 3GB virtual memory 1137 split: 3GB are mapped so that each process sees a 3GB virtual memory
1137 space and the remaining part of the 4GB virtual memory space is used 1138 space and the remaining part of the 4GB virtual memory space is used
1138 by the kernel to permanently map as much physical memory as 1139 by the kernel to permanently map as much physical memory as
1139 possible. 1140 possible.
1140 1141
1141 If the machine has between 1 and 4 Gigabytes physical RAM, then 1142 If the machine has between 1 and 4 Gigabytes physical RAM, then
1142 answer "4GB" here. 1143 answer "4GB" here.
1143 1144
1144 If more than 4 Gigabytes is used then answer "64GB" here. This 1145 If more than 4 Gigabytes is used then answer "64GB" here. This
1145 selection turns Intel PAE (Physical Address Extension) mode on. 1146 selection turns Intel PAE (Physical Address Extension) mode on.
1146 PAE implements 3-level paging on IA32 processors. PAE is fully 1147 PAE implements 3-level paging on IA32 processors. PAE is fully
1147 supported by Linux, PAE mode is implemented on all recent Intel 1148 supported by Linux, PAE mode is implemented on all recent Intel
1148 processors (Pentium Pro and better). NOTE: If you say "64GB" here, 1149 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1149 then the kernel will not boot on CPUs that don't support PAE! 1150 then the kernel will not boot on CPUs that don't support PAE!
1150 1151
1151 The actual amount of total physical memory will either be 1152 The actual amount of total physical memory will either be
1152 auto detected or can be forced by using a kernel command line option 1153 auto detected or can be forced by using a kernel command line option
1153 such as "mem=256M". (Try "man bootparam" or see the documentation of 1154 such as "mem=256M". (Try "man bootparam" or see the documentation of
1154 your boot loader (lilo or loadlin) about how to pass options to the 1155 your boot loader (lilo or loadlin) about how to pass options to the
1155 kernel at boot time.) 1156 kernel at boot time.)
1156 1157
1157 If unsure, say "off". 1158 If unsure, say "off".
1158 1159
1159 config HIGHMEM4G 1160 config HIGHMEM4G
1160 bool "4GB" 1161 bool "4GB"
1161 depends on !X86_NUMAQ 1162 depends on !X86_NUMAQ
1162 ---help--- 1163 ---help---
1163 Select this if you have a 32-bit processor and between 1 and 4 1164 Select this if you have a 32-bit processor and between 1 and 4
1164 gigabytes of physical RAM. 1165 gigabytes of physical RAM.
1165 1166
1166 config HIGHMEM64G 1167 config HIGHMEM64G
1167 bool "64GB" 1168 bool "64GB"
1168 depends on !M486 1169 depends on !M486
1169 select X86_PAE 1170 select X86_PAE
1170 ---help--- 1171 ---help---
1171 Select this if you have a 32-bit processor and more than 4 1172 Select this if you have a 32-bit processor and more than 4
1172 gigabytes of physical RAM. 1173 gigabytes of physical RAM.
1173 1174
1174 endchoice 1175 endchoice
1175 1176
1176 choice 1177 choice
1177 prompt "Memory split" if EXPERT 1178 prompt "Memory split" if EXPERT
1178 default VMSPLIT_3G 1179 default VMSPLIT_3G
1179 depends on X86_32 1180 depends on X86_32
1180 ---help--- 1181 ---help---
1181 Select the desired split between kernel and user memory. 1182 Select the desired split between kernel and user memory.
1182 1183
1183 If the address range available to the kernel is less than the 1184 If the address range available to the kernel is less than the
1184 physical memory installed, the remaining memory will be available 1185 physical memory installed, the remaining memory will be available
1185 as "high memory". Accessing high memory is a little more costly 1186 as "high memory". Accessing high memory is a little more costly
1186 than low memory, as it needs to be mapped into the kernel first. 1187 than low memory, as it needs to be mapped into the kernel first.
1187 Note that increasing the kernel address space limits the range 1188 Note that increasing the kernel address space limits the range
1188 available to user programs, making the address space there 1189 available to user programs, making the address space there
1189 tighter. Selecting anything other than the default 3G/1G split 1190 tighter. Selecting anything other than the default 3G/1G split
1190 will also likely make your kernel incompatible with binary-only 1191 will also likely make your kernel incompatible with binary-only
1191 kernel modules. 1192 kernel modules.
1192 1193
1193 If you are not absolutely sure what you are doing, leave this 1194 If you are not absolutely sure what you are doing, leave this
1194 option alone! 1195 option alone!
1195 1196
1196 config VMSPLIT_3G 1197 config VMSPLIT_3G
1197 bool "3G/1G user/kernel split" 1198 bool "3G/1G user/kernel split"
1198 config VMSPLIT_3G_OPT 1199 config VMSPLIT_3G_OPT
1199 depends on !X86_PAE 1200 depends on !X86_PAE
1200 bool "3G/1G user/kernel split (for full 1G low memory)" 1201 bool "3G/1G user/kernel split (for full 1G low memory)"
1201 config VMSPLIT_2G 1202 config VMSPLIT_2G
1202 bool "2G/2G user/kernel split" 1203 bool "2G/2G user/kernel split"
1203 config VMSPLIT_2G_OPT 1204 config VMSPLIT_2G_OPT
1204 depends on !X86_PAE 1205 depends on !X86_PAE
1205 bool "2G/2G user/kernel split (for full 2G low memory)" 1206 bool "2G/2G user/kernel split (for full 2G low memory)"
1206 config VMSPLIT_1G 1207 config VMSPLIT_1G
1207 bool "1G/3G user/kernel split" 1208 bool "1G/3G user/kernel split"
1208 endchoice 1209 endchoice
1209 1210
1210 config PAGE_OFFSET 1211 config PAGE_OFFSET
1211 hex 1212 hex
1212 default 0xB0000000 if VMSPLIT_3G_OPT 1213 default 0xB0000000 if VMSPLIT_3G_OPT
1213 default 0x80000000 if VMSPLIT_2G 1214 default 0x80000000 if VMSPLIT_2G
1214 default 0x78000000 if VMSPLIT_2G_OPT 1215 default 0x78000000 if VMSPLIT_2G_OPT
1215 default 0x40000000 if VMSPLIT_1G 1216 default 0x40000000 if VMSPLIT_1G
1216 default 0xC0000000 1217 default 0xC0000000
1217 depends on X86_32 1218 depends on X86_32
1218 1219
1219 config HIGHMEM 1220 config HIGHMEM
1220 def_bool y 1221 def_bool y
1221 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G) 1222 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1222 1223
1223 config X86_PAE 1224 config X86_PAE
1224 bool "PAE (Physical Address Extension) Support" 1225 bool "PAE (Physical Address Extension) Support"
1225 depends on X86_32 && !HIGHMEM4G 1226 depends on X86_32 && !HIGHMEM4G
1226 ---help--- 1227 ---help---
1227 PAE is required for NX support, and furthermore enables 1228 PAE is required for NX support, and furthermore enables
1228 larger swapspace support for non-overcommit purposes. It 1229 larger swapspace support for non-overcommit purposes. It
1229 has the cost of more pagetable lookup overhead, and also 1230 has the cost of more pagetable lookup overhead, and also
1230 consumes more pagetable space per process. 1231 consumes more pagetable space per process.
1231 1232
1232 config ARCH_PHYS_ADDR_T_64BIT 1233 config ARCH_PHYS_ADDR_T_64BIT
1233 def_bool y 1234 def_bool y
1234 depends on X86_64 || X86_PAE 1235 depends on X86_64 || X86_PAE
1235 1236
1236 config ARCH_DMA_ADDR_T_64BIT 1237 config ARCH_DMA_ADDR_T_64BIT
1237 def_bool y 1238 def_bool y
1238 depends on X86_64 || HIGHMEM64G 1239 depends on X86_64 || HIGHMEM64G
1239 1240
1240 config DIRECT_GBPAGES 1241 config DIRECT_GBPAGES
1241 bool "Enable 1GB pages for kernel pagetables" if EXPERT 1242 bool "Enable 1GB pages for kernel pagetables" if EXPERT
1242 default y 1243 default y
1243 depends on X86_64 1244 depends on X86_64
1244 ---help--- 1245 ---help---
1245 Allow the kernel linear mapping to use 1GB pages on CPUs that 1246 Allow the kernel linear mapping to use 1GB pages on CPUs that
1246 support it. This can improve the kernel's performance a tiny bit by 1247 support it. This can improve the kernel's performance a tiny bit by
1247 reducing TLB pressure. If in doubt, say "Y". 1248 reducing TLB pressure. If in doubt, say "Y".
1248 1249
1249 # Common NUMA Features 1250 # Common NUMA Features
1250 config NUMA 1251 config NUMA
1251 bool "Numa Memory Allocation and Scheduler Support" 1252 bool "Numa Memory Allocation and Scheduler Support"
1252 depends on SMP 1253 depends on SMP
1253 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI)) 1254 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI))
1254 default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP) 1255 default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
1255 ---help--- 1256 ---help---
1256 Enable NUMA (Non Uniform Memory Access) support. 1257 Enable NUMA (Non Uniform Memory Access) support.
1257 1258
1258 The kernel will try to allocate memory used by a CPU on the 1259 The kernel will try to allocate memory used by a CPU on the
1259 local memory controller of the CPU and add some more 1260 local memory controller of the CPU and add some more
1260 NUMA awareness to the kernel. 1261 NUMA awareness to the kernel.
1261 1262
1262 For 64-bit this is recommended if the system is Intel Core i7 1263 For 64-bit this is recommended if the system is Intel Core i7
1263 (or later), AMD Opteron, or EM64T NUMA. 1264 (or later), AMD Opteron, or EM64T NUMA.
1264 1265
1265 For 32-bit this is only needed on (rare) 32-bit-only platforms 1266 For 32-bit this is only needed on (rare) 32-bit-only platforms
1266 that support NUMA topologies, such as NUMAQ / Summit, or if you 1267 that support NUMA topologies, such as NUMAQ / Summit, or if you
1267 boot a 32-bit kernel on a 64-bit NUMA platform. 1268 boot a 32-bit kernel on a 64-bit NUMA platform.
1268 1269
1269 Otherwise, you should say N. 1270 Otherwise, you should say N.
1270 1271
1271 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI" 1272 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
1272 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI) 1273 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
1273 1274
1274 config AMD_NUMA 1275 config AMD_NUMA
1275 def_bool y 1276 def_bool y
1276 prompt "Old style AMD Opteron NUMA detection" 1277 prompt "Old style AMD Opteron NUMA detection"
1277 depends on X86_64 && NUMA && PCI 1278 depends on X86_64 && NUMA && PCI
1278 ---help--- 1279 ---help---
1279 Enable AMD NUMA node topology detection. You should say Y here if 1280 Enable AMD NUMA node topology detection. You should say Y here if
1280 you have a multi processor AMD system. This uses an old method to 1281 you have a multi processor AMD system. This uses an old method to
1281 read the NUMA configuration directly from the builtin Northbridge 1282 read the NUMA configuration directly from the builtin Northbridge
1282 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead, 1283 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1283 which also takes priority if both are compiled in. 1284 which also takes priority if both are compiled in.
1284 1285
1285 config X86_64_ACPI_NUMA 1286 config X86_64_ACPI_NUMA
1286 def_bool y 1287 def_bool y
1287 prompt "ACPI NUMA detection" 1288 prompt "ACPI NUMA detection"
1288 depends on X86_64 && NUMA && ACPI && PCI 1289 depends on X86_64 && NUMA && ACPI && PCI
1289 select ACPI_NUMA 1290 select ACPI_NUMA
1290 ---help--- 1291 ---help---
1291 Enable ACPI SRAT based node topology detection. 1292 Enable ACPI SRAT based node topology detection.
1292 1293
1293 # Some NUMA nodes have memory ranges that span 1294 # Some NUMA nodes have memory ranges that span
1294 # other nodes. Even though a pfn is valid and 1295 # other nodes. Even though a pfn is valid and
1295 # between a node's start and end pfns, it may not 1296 # between a node's start and end pfns, it may not
1296 # reside on that node. See memmap_init_zone() 1297 # reside on that node. See memmap_init_zone()
1297 # for details. 1298 # for details.
1298 config NODES_SPAN_OTHER_NODES 1299 config NODES_SPAN_OTHER_NODES
1299 def_bool y 1300 def_bool y
1300 depends on X86_64_ACPI_NUMA 1301 depends on X86_64_ACPI_NUMA
1301 1302
1302 config NUMA_EMU 1303 config NUMA_EMU
1303 bool "NUMA emulation" 1304 bool "NUMA emulation"
1304 depends on NUMA 1305 depends on NUMA
1305 ---help--- 1306 ---help---
1306 Enable NUMA emulation. A flat machine will be split 1307 Enable NUMA emulation. A flat machine will be split
1307 into virtual nodes when booted with "numa=fake=N", where N is the 1308 into virtual nodes when booted with "numa=fake=N", where N is the
1308 number of nodes. This is only useful for debugging. 1309 number of nodes. This is only useful for debugging.
1309 1310
1310 config NODES_SHIFT 1311 config NODES_SHIFT
1311 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP 1312 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1312 range 1 10 1313 range 1 10
1313 default "10" if MAXSMP 1314 default "10" if MAXSMP
1314 default "6" if X86_64 1315 default "6" if X86_64
1315 default "4" if X86_NUMAQ 1316 default "4" if X86_NUMAQ
1316 default "3" 1317 default "3"
1317 depends on NEED_MULTIPLE_NODES 1318 depends on NEED_MULTIPLE_NODES
1318 ---help--- 1319 ---help---
1319 Specify the maximum number of NUMA Nodes available on the target 1320 Specify the maximum number of NUMA Nodes available on the target
1320 system. Increases memory reserved to accommodate various tables. 1321 system. Increases memory reserved to accommodate various tables.
1321 1322
1322 config ARCH_HAVE_MEMORY_PRESENT 1323 config ARCH_HAVE_MEMORY_PRESENT
1323 def_bool y 1324 def_bool y
1324 depends on X86_32 && DISCONTIGMEM 1325 depends on X86_32 && DISCONTIGMEM
1325 1326
1326 config NEED_NODE_MEMMAP_SIZE 1327 config NEED_NODE_MEMMAP_SIZE
1327 def_bool y 1328 def_bool y
1328 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM) 1329 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1329 1330
1330 config ARCH_FLATMEM_ENABLE 1331 config ARCH_FLATMEM_ENABLE
1331 def_bool y 1332 def_bool y
1332 depends on X86_32 && !NUMA 1333 depends on X86_32 && !NUMA
1333 1334
1334 config ARCH_DISCONTIGMEM_ENABLE 1335 config ARCH_DISCONTIGMEM_ENABLE
1335 def_bool y 1336 def_bool y
1336 depends on NUMA && X86_32 1337 depends on NUMA && X86_32
1337 1338
1338 config ARCH_DISCONTIGMEM_DEFAULT 1339 config ARCH_DISCONTIGMEM_DEFAULT
1339 def_bool y 1340 def_bool y
1340 depends on NUMA && X86_32 1341 depends on NUMA && X86_32
1341 1342
1342 config ARCH_SPARSEMEM_ENABLE 1343 config ARCH_SPARSEMEM_ENABLE
1343 def_bool y 1344 def_bool y
1344 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD 1345 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1345 select SPARSEMEM_STATIC if X86_32 1346 select SPARSEMEM_STATIC if X86_32
1346 select SPARSEMEM_VMEMMAP_ENABLE if X86_64 1347 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1347 1348
1348 config ARCH_SPARSEMEM_DEFAULT 1349 config ARCH_SPARSEMEM_DEFAULT
1349 def_bool y 1350 def_bool y
1350 depends on X86_64 1351 depends on X86_64
1351 1352
1352 config ARCH_SELECT_MEMORY_MODEL 1353 config ARCH_SELECT_MEMORY_MODEL
1353 def_bool y 1354 def_bool y
1354 depends on ARCH_SPARSEMEM_ENABLE 1355 depends on ARCH_SPARSEMEM_ENABLE
1355 1356
1356 config ARCH_MEMORY_PROBE 1357 config ARCH_MEMORY_PROBE
1357 bool "Enable sysfs memory/probe interface" 1358 bool "Enable sysfs memory/probe interface"
1358 depends on X86_64 && MEMORY_HOTPLUG 1359 depends on X86_64 && MEMORY_HOTPLUG
1359 help 1360 help
1360 This option enables a sysfs memory/probe interface for testing. 1361 This option enables a sysfs memory/probe interface for testing.
1361 See Documentation/memory-hotplug.txt for more information. 1362 See Documentation/memory-hotplug.txt for more information.
1362 If you are unsure how to answer this question, answer N. 1363 If you are unsure how to answer this question, answer N.
1363 1364
1364 config ARCH_PROC_KCORE_TEXT 1365 config ARCH_PROC_KCORE_TEXT
1365 def_bool y 1366 def_bool y
1366 depends on X86_64 && PROC_KCORE 1367 depends on X86_64 && PROC_KCORE
1367 1368
1368 config ILLEGAL_POINTER_VALUE 1369 config ILLEGAL_POINTER_VALUE
1369 hex 1370 hex
1370 default 0 if X86_32 1371 default 0 if X86_32
1371 default 0xdead000000000000 if X86_64 1372 default 0xdead000000000000 if X86_64
1372 1373
1373 source "mm/Kconfig" 1374 source "mm/Kconfig"
1374 1375
1375 config HIGHPTE 1376 config HIGHPTE
1376 bool "Allocate 3rd-level pagetables from highmem" 1377 bool "Allocate 3rd-level pagetables from highmem"
1377 depends on HIGHMEM 1378 depends on HIGHMEM
1378 ---help--- 1379 ---help---
1379 The VM uses one page table entry for each page of physical memory. 1380 The VM uses one page table entry for each page of physical memory.
1380 For systems with a lot of RAM, this can be wasteful of precious 1381 For systems with a lot of RAM, this can be wasteful of precious
1381 low memory. Setting this option will put user-space page table 1382 low memory. Setting this option will put user-space page table
1382 entries in high memory. 1383 entries in high memory.
1383 1384
1384 config X86_CHECK_BIOS_CORRUPTION 1385 config X86_CHECK_BIOS_CORRUPTION
1385 bool "Check for low memory corruption" 1386 bool "Check for low memory corruption"
1386 ---help--- 1387 ---help---
1387 Periodically check for memory corruption in low memory, which 1388 Periodically check for memory corruption in low memory, which
1388 is suspected to be caused by BIOS. Even when enabled in the 1389 is suspected to be caused by BIOS. Even when enabled in the
1389 configuration, it is disabled at runtime. Enable it by 1390 configuration, it is disabled at runtime. Enable it by
1390 setting "memory_corruption_check=1" on the kernel command 1391 setting "memory_corruption_check=1" on the kernel command
1391 line. By default it scans the low 64k of memory every 60 1392 line. By default it scans the low 64k of memory every 60
1392 seconds; see the memory_corruption_check_size and 1393 seconds; see the memory_corruption_check_size and
1393 memory_corruption_check_period parameters in 1394 memory_corruption_check_period parameters in
1394 Documentation/kernel-parameters.txt to adjust this. 1395 Documentation/kernel-parameters.txt to adjust this.
1395 1396
1396 When enabled with the default parameters, this option has 1397 When enabled with the default parameters, this option has
1397 almost no overhead, as it reserves a relatively small amount 1398 almost no overhead, as it reserves a relatively small amount
1398 of memory and scans it infrequently. It both detects corruption 1399 of memory and scans it infrequently. It both detects corruption
1399 and prevents it from affecting the running system. 1400 and prevents it from affecting the running system.
1400 1401
1401 It is, however, intended as a diagnostic tool; if repeatable 1402 It is, however, intended as a diagnostic tool; if repeatable
1402 BIOS-originated corruption always affects the same memory, 1403 BIOS-originated corruption always affects the same memory,
1403 you can use memmap= to prevent the kernel from using that 1404 you can use memmap= to prevent the kernel from using that
1404 memory. 1405 memory.
1405 1406
1406 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK 1407 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1407 bool "Set the default setting of memory_corruption_check" 1408 bool "Set the default setting of memory_corruption_check"
1408 depends on X86_CHECK_BIOS_CORRUPTION 1409 depends on X86_CHECK_BIOS_CORRUPTION
1409 default y 1410 default y
1410 ---help--- 1411 ---help---
1411 Set whether the default state of memory_corruption_check is 1412 Set whether the default state of memory_corruption_check is
1412 on or off. 1413 on or off.
1413 1414
1414 config X86_RESERVE_LOW 1415 config X86_RESERVE_LOW
1415 int "Amount of low memory, in kilobytes, to reserve for the BIOS" 1416 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1416 default 64 1417 default 64
1417 range 4 640 1418 range 4 640
1418 ---help--- 1419 ---help---
1419 Specify the amount of low memory to reserve for the BIOS. 1420 Specify the amount of low memory to reserve for the BIOS.
1420 1421
1421 The first page contains BIOS data structures that the kernel 1422 The first page contains BIOS data structures that the kernel
1422 must not use, so that page must always be reserved. 1423 must not use, so that page must always be reserved.
1423 1424
1424 By default we reserve the first 64K of physical RAM, as a 1425 By default we reserve the first 64K of physical RAM, as a
1425 number of BIOSes are known to corrupt that memory range 1426 number of BIOSes are known to corrupt that memory range
1426 during events such as suspend/resume or monitor cable 1427 during events such as suspend/resume or monitor cable
1427 insertion, so it must not be used by the kernel. 1428 insertion, so it must not be used by the kernel.
1428 1429
1429 You can set this to 4 if you are absolutely sure that you 1430 You can set this to 4 if you are absolutely sure that you
1430 trust the BIOS to get all its memory reservations and usages 1431 trust the BIOS to get all its memory reservations and usages
1431 right. If you know your BIOS have problems beyond the 1432 right. If you know your BIOS have problems beyond the
1432 default 64K area, you can set this to 640 to avoid using the 1433 default 64K area, you can set this to 640 to avoid using the
1433 entire low memory range. 1434 entire low memory range.
1434 1435
1435 If you have doubts about the BIOS (e.g. suspend/resume does 1436 If you have doubts about the BIOS (e.g. suspend/resume does
1436 not work or there's kernel crashes after certain hardware 1437 not work or there's kernel crashes after certain hardware
1437 hotplug events) then you might want to enable 1438 hotplug events) then you might want to enable
1438 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check 1439 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1439 typical corruption patterns. 1440 typical corruption patterns.
1440 1441
1441 Leave this to the default value of 64 if you are unsure. 1442 Leave this to the default value of 64 if you are unsure.
1442 1443
1443 config MATH_EMULATION 1444 config MATH_EMULATION
1444 bool 1445 bool
1445 prompt "Math emulation" if X86_32 1446 prompt "Math emulation" if X86_32
1446 ---help--- 1447 ---help---
1447 Linux can emulate a math coprocessor (used for floating point 1448 Linux can emulate a math coprocessor (used for floating point
1448 operations) if you don't have one. 486DX and Pentium processors have 1449 operations) if you don't have one. 486DX and Pentium processors have
1449 a math coprocessor built in, 486SX and 386 do not, unless you added 1450 a math coprocessor built in, 486SX and 386 do not, unless you added
1450 a 487DX or 387, respectively. (The messages during boot time can 1451 a 487DX or 387, respectively. (The messages during boot time can
1451 give you some hints here ["man dmesg"].) Everyone needs either a 1452 give you some hints here ["man dmesg"].) Everyone needs either a
1452 coprocessor or this emulation. 1453 coprocessor or this emulation.
1453 1454
1454 If you don't have a math coprocessor, you need to say Y here; if you 1455 If you don't have a math coprocessor, you need to say Y here; if you
1455 say Y here even though you have a coprocessor, the coprocessor will 1456 say Y here even though you have a coprocessor, the coprocessor will
1456 be used nevertheless. (This behavior can be changed with the kernel 1457 be used nevertheless. (This behavior can be changed with the kernel
1457 command line option "no387", which comes handy if your coprocessor 1458 command line option "no387", which comes handy if your coprocessor
1458 is broken. Try "man bootparam" or see the documentation of your boot 1459 is broken. Try "man bootparam" or see the documentation of your boot
1459 loader (lilo or loadlin) about how to pass options to the kernel at 1460 loader (lilo or loadlin) about how to pass options to the kernel at
1460 boot time.) This means that it is a good idea to say Y here if you 1461 boot time.) This means that it is a good idea to say Y here if you
1461 intend to use this kernel on different machines. 1462 intend to use this kernel on different machines.
1462 1463
1463 More information about the internals of the Linux math coprocessor 1464 More information about the internals of the Linux math coprocessor
1464 emulation can be found in <file:arch/x86/math-emu/README>. 1465 emulation can be found in <file:arch/x86/math-emu/README>.
1465 1466
1466 If you are not sure, say Y; apart from resulting in a 66 KB bigger 1467 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1467 kernel, it won't hurt. 1468 kernel, it won't hurt.
1468 1469
1469 config MTRR 1470 config MTRR
1470 def_bool y 1471 def_bool y
1471 prompt "MTRR (Memory Type Range Register) support" if EXPERT 1472 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1472 ---help--- 1473 ---help---
1473 On Intel P6 family processors (Pentium Pro, Pentium II and later) 1474 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1474 the Memory Type Range Registers (MTRRs) may be used to control 1475 the Memory Type Range Registers (MTRRs) may be used to control
1475 processor access to memory ranges. This is most useful if you have 1476 processor access to memory ranges. This is most useful if you have
1476 a video (VGA) card on a PCI or AGP bus. Enabling write-combining 1477 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1477 allows bus write transfers to be combined into a larger transfer 1478 allows bus write transfers to be combined into a larger transfer
1478 before bursting over the PCI/AGP bus. This can increase performance 1479 before bursting over the PCI/AGP bus. This can increase performance
1479 of image write operations 2.5 times or more. Saying Y here creates a 1480 of image write operations 2.5 times or more. Saying Y here creates a
1480 /proc/mtrr file which may be used to manipulate your processor's 1481 /proc/mtrr file which may be used to manipulate your processor's
1481 MTRRs. Typically the X server should use this. 1482 MTRRs. Typically the X server should use this.
1482 1483
1483 This code has a reasonably generic interface so that similar 1484 This code has a reasonably generic interface so that similar
1484 control registers on other processors can be easily supported 1485 control registers on other processors can be easily supported
1485 as well: 1486 as well:
1486 1487
1487 The Cyrix 6x86, 6x86MX and M II processors have Address Range 1488 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1488 Registers (ARRs) which provide a similar functionality to MTRRs. For 1489 Registers (ARRs) which provide a similar functionality to MTRRs. For
1489 these, the ARRs are used to emulate the MTRRs. 1490 these, the ARRs are used to emulate the MTRRs.
1490 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two 1491 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1491 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing 1492 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1492 write-combining. All of these processors are supported by this code 1493 write-combining. All of these processors are supported by this code
1493 and it makes sense to say Y here if you have one of them. 1494 and it makes sense to say Y here if you have one of them.
1494 1495
1495 Saying Y here also fixes a problem with buggy SMP BIOSes which only 1496 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1496 set the MTRRs for the boot CPU and not for the secondary CPUs. This 1497 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1497 can lead to all sorts of problems, so it's good to say Y here. 1498 can lead to all sorts of problems, so it's good to say Y here.
1498 1499
1499 You can safely say Y even if your machine doesn't have MTRRs, you'll 1500 You can safely say Y even if your machine doesn't have MTRRs, you'll
1500 just add about 9 KB to your kernel. 1501 just add about 9 KB to your kernel.
1501 1502
1502 See <file:Documentation/x86/mtrr.txt> for more information. 1503 See <file:Documentation/x86/mtrr.txt> for more information.
1503 1504
1504 config MTRR_SANITIZER 1505 config MTRR_SANITIZER
1505 def_bool y 1506 def_bool y
1506 prompt "MTRR cleanup support" 1507 prompt "MTRR cleanup support"
1507 depends on MTRR 1508 depends on MTRR
1508 ---help--- 1509 ---help---
1509 Convert MTRR layout from continuous to discrete, so X drivers can 1510 Convert MTRR layout from continuous to discrete, so X drivers can
1510 add writeback entries. 1511 add writeback entries.
1511 1512
1512 Can be disabled with disable_mtrr_cleanup on the kernel command line. 1513 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1513 The largest mtrr entry size for a continuous block can be set with 1514 The largest mtrr entry size for a continuous block can be set with
1514 mtrr_chunk_size. 1515 mtrr_chunk_size.
1515 1516
1516 If unsure, say Y. 1517 If unsure, say Y.
1517 1518
1518 config MTRR_SANITIZER_ENABLE_DEFAULT 1519 config MTRR_SANITIZER_ENABLE_DEFAULT
1519 int "MTRR cleanup enable value (0-1)" 1520 int "MTRR cleanup enable value (0-1)"
1520 range 0 1 1521 range 0 1
1521 default "0" 1522 default "0"
1522 depends on MTRR_SANITIZER 1523 depends on MTRR_SANITIZER
1523 ---help--- 1524 ---help---
1524 Enable mtrr cleanup default value 1525 Enable mtrr cleanup default value
1525 1526
1526 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT 1527 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1527 int "MTRR cleanup spare reg num (0-7)" 1528 int "MTRR cleanup spare reg num (0-7)"
1528 range 0 7 1529 range 0 7
1529 default "1" 1530 default "1"
1530 depends on MTRR_SANITIZER 1531 depends on MTRR_SANITIZER
1531 ---help--- 1532 ---help---
1532 mtrr cleanup spare entries default, it can be changed via 1533 mtrr cleanup spare entries default, it can be changed via
1533 mtrr_spare_reg_nr=N on the kernel command line. 1534 mtrr_spare_reg_nr=N on the kernel command line.
1534 1535
1535 config X86_PAT 1536 config X86_PAT
1536 def_bool y 1537 def_bool y
1537 prompt "x86 PAT support" if EXPERT 1538 prompt "x86 PAT support" if EXPERT
1538 depends on MTRR 1539 depends on MTRR
1539 ---help--- 1540 ---help---
1540 Use PAT attributes to setup page level cache control. 1541 Use PAT attributes to setup page level cache control.
1541 1542
1542 PATs are the modern equivalents of MTRRs and are much more 1543 PATs are the modern equivalents of MTRRs and are much more
1543 flexible than MTRRs. 1544 flexible than MTRRs.
1544 1545
1545 Say N here if you see bootup problems (boot crash, boot hang, 1546 Say N here if you see bootup problems (boot crash, boot hang,
1546 spontaneous reboots) or a non-working video driver. 1547 spontaneous reboots) or a non-working video driver.
1547 1548
1548 If unsure, say Y. 1549 If unsure, say Y.
1549 1550
1550 config ARCH_USES_PG_UNCACHED 1551 config ARCH_USES_PG_UNCACHED
1551 def_bool y 1552 def_bool y
1552 depends on X86_PAT 1553 depends on X86_PAT
1553 1554
1554 config ARCH_RANDOM 1555 config ARCH_RANDOM
1555 def_bool y 1556 def_bool y
1556 prompt "x86 architectural random number generator" if EXPERT 1557 prompt "x86 architectural random number generator" if EXPERT
1557 ---help--- 1558 ---help---
1558 Enable the x86 architectural RDRAND instruction 1559 Enable the x86 architectural RDRAND instruction
1559 (Intel Bull Mountain technology) to generate random numbers. 1560 (Intel Bull Mountain technology) to generate random numbers.
1560 If supported, this is a high bandwidth, cryptographically 1561 If supported, this is a high bandwidth, cryptographically
1561 secure hardware random number generator. 1562 secure hardware random number generator.
1562 1563
1563 config X86_SMAP 1564 config X86_SMAP
1564 def_bool y 1565 def_bool y
1565 prompt "Supervisor Mode Access Prevention" if EXPERT 1566 prompt "Supervisor Mode Access Prevention" if EXPERT
1566 ---help--- 1567 ---help---
1567 Supervisor Mode Access Prevention (SMAP) is a security 1568 Supervisor Mode Access Prevention (SMAP) is a security
1568 feature in newer Intel processors. There is a small 1569 feature in newer Intel processors. There is a small
1569 performance cost if this enabled and turned on; there is 1570 performance cost if this enabled and turned on; there is
1570 also a small increase in the kernel size if this is enabled. 1571 also a small increase in the kernel size if this is enabled.
1571 1572
1572 If unsure, say Y. 1573 If unsure, say Y.
1573 1574
1574 config EFI 1575 config EFI
1575 bool "EFI runtime service support" 1576 bool "EFI runtime service support"
1576 depends on ACPI 1577 depends on ACPI
1577 select UCS2_STRING 1578 select UCS2_STRING
1578 ---help--- 1579 ---help---
1579 This enables the kernel to use EFI runtime services that are 1580 This enables the kernel to use EFI runtime services that are
1580 available (such as the EFI variable services). 1581 available (such as the EFI variable services).
1581 1582
1582 This option is only useful on systems that have EFI firmware. 1583 This option is only useful on systems that have EFI firmware.
1583 In addition, you should use the latest ELILO loader available 1584 In addition, you should use the latest ELILO loader available
1584 at <http://elilo.sourceforge.net> in order to take advantage 1585 at <http://elilo.sourceforge.net> in order to take advantage
1585 of EFI runtime services. However, even with this option, the 1586 of EFI runtime services. However, even with this option, the
1586 resultant kernel should continue to boot on existing non-EFI 1587 resultant kernel should continue to boot on existing non-EFI
1587 platforms. 1588 platforms.
1588 1589
1589 config EFI_STUB 1590 config EFI_STUB
1590 bool "EFI stub support" 1591 bool "EFI stub support"
1591 depends on EFI 1592 depends on EFI
1592 ---help--- 1593 ---help---
1593 This kernel feature allows a bzImage to be loaded directly 1594 This kernel feature allows a bzImage to be loaded directly
1594 by EFI firmware without the use of a bootloader. 1595 by EFI firmware without the use of a bootloader.
1595 1596
1596 See Documentation/x86/efi-stub.txt for more information. 1597 See Documentation/x86/efi-stub.txt for more information.
1597 1598
1598 config SECCOMP 1599 config SECCOMP
1599 def_bool y 1600 def_bool y
1600 prompt "Enable seccomp to safely compute untrusted bytecode" 1601 prompt "Enable seccomp to safely compute untrusted bytecode"
1601 ---help--- 1602 ---help---
1602 This kernel feature is useful for number crunching applications 1603 This kernel feature is useful for number crunching applications
1603 that may need to compute untrusted bytecode during their 1604 that may need to compute untrusted bytecode during their
1604 execution. By using pipes or other transports made available to 1605 execution. By using pipes or other transports made available to
1605 the process as file descriptors supporting the read/write 1606 the process as file descriptors supporting the read/write
1606 syscalls, it's possible to isolate those applications in 1607 syscalls, it's possible to isolate those applications in
1607 their own address space using seccomp. Once seccomp is 1608 their own address space using seccomp. Once seccomp is
1608 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled 1609 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1609 and the task is only allowed to execute a few safe syscalls 1610 and the task is only allowed to execute a few safe syscalls
1610 defined by each seccomp mode. 1611 defined by each seccomp mode.
1611 1612
1612 If unsure, say Y. Only embedded should say N here. 1613 If unsure, say Y. Only embedded should say N here.
1613 1614
1614 config CC_STACKPROTECTOR 1615 config CC_STACKPROTECTOR
1615 bool "Enable -fstack-protector buffer overflow detection" 1616 bool "Enable -fstack-protector buffer overflow detection"
1616 ---help--- 1617 ---help---
1617 This option turns on the -fstack-protector GCC feature. This 1618 This option turns on the -fstack-protector GCC feature. This
1618 feature puts, at the beginning of functions, a canary value on 1619 feature puts, at the beginning of functions, a canary value on
1619 the stack just before the return address, and validates 1620 the stack just before the return address, and validates
1620 the value just before actually returning. Stack based buffer 1621 the value just before actually returning. Stack based buffer
1621 overflows (that need to overwrite this return address) now also 1622 overflows (that need to overwrite this return address) now also
1622 overwrite the canary, which gets detected and the attack is then 1623 overwrite the canary, which gets detected and the attack is then
1623 neutralized via a kernel panic. 1624 neutralized via a kernel panic.
1624 1625
1625 This feature requires gcc version 4.2 or above, or a distribution 1626 This feature requires gcc version 4.2 or above, or a distribution
1626 gcc with the feature backported. Older versions are automatically 1627 gcc with the feature backported. Older versions are automatically
1627 detected and for those versions, this configuration option is 1628 detected and for those versions, this configuration option is
1628 ignored. (and a warning is printed during bootup) 1629 ignored. (and a warning is printed during bootup)
1629 1630
1630 source kernel/Kconfig.hz 1631 source kernel/Kconfig.hz
1631 1632
1632 config KEXEC 1633 config KEXEC
1633 bool "kexec system call" 1634 bool "kexec system call"
1634 ---help--- 1635 ---help---
1635 kexec is a system call that implements the ability to shutdown your 1636 kexec is a system call that implements the ability to shutdown your
1636 current kernel, and to start another kernel. It is like a reboot 1637 current kernel, and to start another kernel. It is like a reboot
1637 but it is independent of the system firmware. And like a reboot 1638 but it is independent of the system firmware. And like a reboot
1638 you can start any kernel with it, not just Linux. 1639 you can start any kernel with it, not just Linux.
1639 1640
1640 The name comes from the similarity to the exec system call. 1641 The name comes from the similarity to the exec system call.
1641 1642
1642 It is an ongoing process to be certain the hardware in a machine 1643 It is an ongoing process to be certain the hardware in a machine
1643 is properly shutdown, so do not be surprised if this code does not 1644 is properly shutdown, so do not be surprised if this code does not
1644 initially work for you. As of this writing the exact hardware 1645 initially work for you. As of this writing the exact hardware
1645 interface is strongly in flux, so no good recommendation can be 1646 interface is strongly in flux, so no good recommendation can be
1646 made. 1647 made.
1647 1648
1648 config CRASH_DUMP 1649 config CRASH_DUMP
1649 bool "kernel crash dumps" 1650 bool "kernel crash dumps"
1650 depends on X86_64 || (X86_32 && HIGHMEM) 1651 depends on X86_64 || (X86_32 && HIGHMEM)
1651 ---help--- 1652 ---help---
1652 Generate crash dump after being started by kexec. 1653 Generate crash dump after being started by kexec.
1653 This should be normally only set in special crash dump kernels 1654 This should be normally only set in special crash dump kernels
1654 which are loaded in the main kernel with kexec-tools into 1655 which are loaded in the main kernel with kexec-tools into
1655 a specially reserved region and then later executed after 1656 a specially reserved region and then later executed after
1656 a crash by kdump/kexec. The crash dump kernel must be compiled 1657 a crash by kdump/kexec. The crash dump kernel must be compiled
1657 to a memory address not used by the main kernel or BIOS using 1658 to a memory address not used by the main kernel or BIOS using
1658 PHYSICAL_START, or it must be built as a relocatable image 1659 PHYSICAL_START, or it must be built as a relocatable image
1659 (CONFIG_RELOCATABLE=y). 1660 (CONFIG_RELOCATABLE=y).
1660 For more details see Documentation/kdump/kdump.txt 1661 For more details see Documentation/kdump/kdump.txt
1661 1662
1662 config KEXEC_JUMP 1663 config KEXEC_JUMP
1663 bool "kexec jump" 1664 bool "kexec jump"
1664 depends on KEXEC && HIBERNATION 1665 depends on KEXEC && HIBERNATION
1665 ---help--- 1666 ---help---
1666 Jump between original kernel and kexeced kernel and invoke 1667 Jump between original kernel and kexeced kernel and invoke
1667 code in physical address mode via KEXEC 1668 code in physical address mode via KEXEC
1668 1669
1669 config PHYSICAL_START 1670 config PHYSICAL_START
1670 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP) 1671 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1671 default "0x1000000" 1672 default "0x1000000"
1672 ---help--- 1673 ---help---
1673 This gives the physical address where the kernel is loaded. 1674 This gives the physical address where the kernel is loaded.
1674 1675
1675 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then 1676 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1676 bzImage will decompress itself to above physical address and 1677 bzImage will decompress itself to above physical address and
1677 run from there. Otherwise, bzImage will run from the address where 1678 run from there. Otherwise, bzImage will run from the address where
1678 it has been loaded by the boot loader and will ignore above physical 1679 it has been loaded by the boot loader and will ignore above physical
1679 address. 1680 address.
1680 1681
1681 In normal kdump cases one does not have to set/change this option 1682 In normal kdump cases one does not have to set/change this option
1682 as now bzImage can be compiled as a completely relocatable image 1683 as now bzImage can be compiled as a completely relocatable image
1683 (CONFIG_RELOCATABLE=y) and be used to load and run from a different 1684 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1684 address. This option is mainly useful for the folks who don't want 1685 address. This option is mainly useful for the folks who don't want
1685 to use a bzImage for capturing the crash dump and want to use a 1686 to use a bzImage for capturing the crash dump and want to use a
1686 vmlinux instead. vmlinux is not relocatable hence a kernel needs 1687 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1687 to be specifically compiled to run from a specific memory area 1688 to be specifically compiled to run from a specific memory area
1688 (normally a reserved region) and this option comes handy. 1689 (normally a reserved region) and this option comes handy.
1689 1690
1690 So if you are using bzImage for capturing the crash dump, 1691 So if you are using bzImage for capturing the crash dump,
1691 leave the value here unchanged to 0x1000000 and set 1692 leave the value here unchanged to 0x1000000 and set
1692 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux 1693 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1693 for capturing the crash dump change this value to start of 1694 for capturing the crash dump change this value to start of
1694 the reserved region. In other words, it can be set based on 1695 the reserved region. In other words, it can be set based on
1695 the "X" value as specified in the "crashkernel=YM@XM" 1696 the "X" value as specified in the "crashkernel=YM@XM"
1696 command line boot parameter passed to the panic-ed 1697 command line boot parameter passed to the panic-ed
1697 kernel. Please take a look at Documentation/kdump/kdump.txt 1698 kernel. Please take a look at Documentation/kdump/kdump.txt
1698 for more details about crash dumps. 1699 for more details about crash dumps.
1699 1700
1700 Usage of bzImage for capturing the crash dump is recommended as 1701 Usage of bzImage for capturing the crash dump is recommended as
1701 one does not have to build two kernels. Same kernel can be used 1702 one does not have to build two kernels. Same kernel can be used
1702 as production kernel and capture kernel. Above option should have 1703 as production kernel and capture kernel. Above option should have
1703 gone away after relocatable bzImage support is introduced. But it 1704 gone away after relocatable bzImage support is introduced. But it
1704 is present because there are users out there who continue to use 1705 is present because there are users out there who continue to use
1705 vmlinux for dump capture. This option should go away down the 1706 vmlinux for dump capture. This option should go away down the
1706 line. 1707 line.
1707 1708
1708 Don't change this unless you know what you are doing. 1709 Don't change this unless you know what you are doing.
1709 1710
1710 config RELOCATABLE 1711 config RELOCATABLE
1711 bool "Build a relocatable kernel" 1712 bool "Build a relocatable kernel"
1712 default y 1713 default y
1713 ---help--- 1714 ---help---
1714 This builds a kernel image that retains relocation information 1715 This builds a kernel image that retains relocation information
1715 so it can be loaded someplace besides the default 1MB. 1716 so it can be loaded someplace besides the default 1MB.
1716 The relocations tend to make the kernel binary about 10% larger, 1717 The relocations tend to make the kernel binary about 10% larger,
1717 but are discarded at runtime. 1718 but are discarded at runtime.
1718 1719
1719 One use is for the kexec on panic case where the recovery kernel 1720 One use is for the kexec on panic case where the recovery kernel
1720 must live at a different physical address than the primary 1721 must live at a different physical address than the primary
1721 kernel. 1722 kernel.
1722 1723
1723 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address 1724 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1724 it has been loaded at and the compile time physical address 1725 it has been loaded at and the compile time physical address
1725 (CONFIG_PHYSICAL_START) is ignored. 1726 (CONFIG_PHYSICAL_START) is ignored.
1726 1727
1727 # Relocation on x86-32 needs some additional build support 1728 # Relocation on x86-32 needs some additional build support
1728 config X86_NEED_RELOCS 1729 config X86_NEED_RELOCS
1729 def_bool y 1730 def_bool y
1730 depends on X86_32 && RELOCATABLE 1731 depends on X86_32 && RELOCATABLE
1731 1732
1732 config PHYSICAL_ALIGN 1733 config PHYSICAL_ALIGN
1733 hex "Alignment value to which kernel should be aligned" 1734 hex "Alignment value to which kernel should be aligned"
1734 default "0x1000000" 1735 default "0x1000000"
1735 range 0x2000 0x1000000 if X86_32 1736 range 0x2000 0x1000000 if X86_32
1736 range 0x200000 0x1000000 if X86_64 1737 range 0x200000 0x1000000 if X86_64
1737 ---help--- 1738 ---help---
1738 This value puts the alignment restrictions on physical address 1739 This value puts the alignment restrictions on physical address
1739 where kernel is loaded and run from. Kernel is compiled for an 1740 where kernel is loaded and run from. Kernel is compiled for an
1740 address which meets above alignment restriction. 1741 address which meets above alignment restriction.
1741 1742
1742 If bootloader loads the kernel at a non-aligned address and 1743 If bootloader loads the kernel at a non-aligned address and
1743 CONFIG_RELOCATABLE is set, kernel will move itself to nearest 1744 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1744 address aligned to above value and run from there. 1745 address aligned to above value and run from there.
1745 1746
1746 If bootloader loads the kernel at a non-aligned address and 1747 If bootloader loads the kernel at a non-aligned address and
1747 CONFIG_RELOCATABLE is not set, kernel will ignore the run time 1748 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1748 load address and decompress itself to the address it has been 1749 load address and decompress itself to the address it has been
1749 compiled for and run from there. The address for which kernel is 1750 compiled for and run from there. The address for which kernel is
1750 compiled already meets above alignment restrictions. Hence the 1751 compiled already meets above alignment restrictions. Hence the
1751 end result is that kernel runs from a physical address meeting 1752 end result is that kernel runs from a physical address meeting
1752 above alignment restrictions. 1753 above alignment restrictions.
1753 1754
1754 On 32-bit this value must be a multiple of 0x2000. On 64-bit 1755 On 32-bit this value must be a multiple of 0x2000. On 64-bit
1755 this value must be a multiple of 0x200000. 1756 this value must be a multiple of 0x200000.
1756 1757
1757 Don't change this unless you know what you are doing. 1758 Don't change this unless you know what you are doing.
1758 1759
1759 config HOTPLUG_CPU 1760 config HOTPLUG_CPU
1760 bool "Support for hot-pluggable CPUs" 1761 bool "Support for hot-pluggable CPUs"
1761 depends on SMP 1762 depends on SMP
1762 ---help--- 1763 ---help---
1763 Say Y here to allow turning CPUs off and on. CPUs can be 1764 Say Y here to allow turning CPUs off and on. CPUs can be
1764 controlled through /sys/devices/system/cpu. 1765 controlled through /sys/devices/system/cpu.
1765 ( Note: power management support will enable this option 1766 ( Note: power management support will enable this option
1766 automatically on SMP systems. ) 1767 automatically on SMP systems. )
1767 Say N if you want to disable CPU hotplug. 1768 Say N if you want to disable CPU hotplug.
1768 1769
1769 config BOOTPARAM_HOTPLUG_CPU0 1770 config BOOTPARAM_HOTPLUG_CPU0
1770 bool "Set default setting of cpu0_hotpluggable" 1771 bool "Set default setting of cpu0_hotpluggable"
1771 default n 1772 default n
1772 depends on HOTPLUG_CPU 1773 depends on HOTPLUG_CPU
1773 ---help--- 1774 ---help---
1774 Set whether default state of cpu0_hotpluggable is on or off. 1775 Set whether default state of cpu0_hotpluggable is on or off.
1775 1776
1776 Say Y here to enable CPU0 hotplug by default. If this switch 1777 Say Y here to enable CPU0 hotplug by default. If this switch
1777 is turned on, there is no need to give cpu0_hotplug kernel 1778 is turned on, there is no need to give cpu0_hotplug kernel
1778 parameter and the CPU0 hotplug feature is enabled by default. 1779 parameter and the CPU0 hotplug feature is enabled by default.
1779 1780
1780 Please note: there are two known CPU0 dependencies if you want 1781 Please note: there are two known CPU0 dependencies if you want
1781 to enable the CPU0 hotplug feature either by this switch or by 1782 to enable the CPU0 hotplug feature either by this switch or by
1782 cpu0_hotplug kernel parameter. 1783 cpu0_hotplug kernel parameter.
1783 1784
1784 First, resume from hibernate or suspend always starts from CPU0. 1785 First, resume from hibernate or suspend always starts from CPU0.
1785 So hibernate and suspend are prevented if CPU0 is offline. 1786 So hibernate and suspend are prevented if CPU0 is offline.
1786 1787
1787 Second dependency is PIC interrupts always go to CPU0. CPU0 can not 1788 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1788 offline if any interrupt can not migrate out of CPU0. There may 1789 offline if any interrupt can not migrate out of CPU0. There may
1789 be other CPU0 dependencies. 1790 be other CPU0 dependencies.
1790 1791
1791 Please make sure the dependencies are under your control before 1792 Please make sure the dependencies are under your control before
1792 you enable this feature. 1793 you enable this feature.
1793 1794
1794 Say N if you don't want to enable CPU0 hotplug feature by default. 1795 Say N if you don't want to enable CPU0 hotplug feature by default.
1795 You still can enable the CPU0 hotplug feature at boot by kernel 1796 You still can enable the CPU0 hotplug feature at boot by kernel
1796 parameter cpu0_hotplug. 1797 parameter cpu0_hotplug.
1797 1798
1798 config DEBUG_HOTPLUG_CPU0 1799 config DEBUG_HOTPLUG_CPU0
1799 def_bool n 1800 def_bool n
1800 prompt "Debug CPU0 hotplug" 1801 prompt "Debug CPU0 hotplug"
1801 depends on HOTPLUG_CPU 1802 depends on HOTPLUG_CPU
1802 ---help--- 1803 ---help---
1803 Enabling this option offlines CPU0 (if CPU0 can be offlined) as 1804 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1804 soon as possible and boots up userspace with CPU0 offlined. User 1805 soon as possible and boots up userspace with CPU0 offlined. User
1805 can online CPU0 back after boot time. 1806 can online CPU0 back after boot time.
1806 1807
1807 To debug CPU0 hotplug, you need to enable CPU0 offline/online 1808 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1808 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during 1809 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1809 compilation or giving cpu0_hotplug kernel parameter at boot. 1810 compilation or giving cpu0_hotplug kernel parameter at boot.
1810 1811
1811 If unsure, say N. 1812 If unsure, say N.
1812 1813
1813 config COMPAT_VDSO 1814 config COMPAT_VDSO
1814 def_bool y 1815 def_bool y
1815 prompt "Compat VDSO support" 1816 prompt "Compat VDSO support"
1816 depends on X86_32 || IA32_EMULATION 1817 depends on X86_32 || IA32_EMULATION
1817 ---help--- 1818 ---help---
1818 Map the 32-bit VDSO to the predictable old-style address too. 1819 Map the 32-bit VDSO to the predictable old-style address too.
1819 1820
1820 Say N here if you are running a sufficiently recent glibc 1821 Say N here if you are running a sufficiently recent glibc
1821 version (2.3.3 or later), to remove the high-mapped 1822 version (2.3.3 or later), to remove the high-mapped
1822 VDSO mapping and to exclusively use the randomized VDSO. 1823 VDSO mapping and to exclusively use the randomized VDSO.
1823 1824
1824 If unsure, say Y. 1825 If unsure, say Y.
1825 1826
1826 config CMDLINE_BOOL 1827 config CMDLINE_BOOL
1827 bool "Built-in kernel command line" 1828 bool "Built-in kernel command line"
1828 ---help--- 1829 ---help---
1829 Allow for specifying boot arguments to the kernel at 1830 Allow for specifying boot arguments to the kernel at
1830 build time. On some systems (e.g. embedded ones), it is 1831 build time. On some systems (e.g. embedded ones), it is
1831 necessary or convenient to provide some or all of the 1832 necessary or convenient to provide some or all of the
1832 kernel boot arguments with the kernel itself (that is, 1833 kernel boot arguments with the kernel itself (that is,
1833 to not rely on the boot loader to provide them.) 1834 to not rely on the boot loader to provide them.)
1834 1835
1835 To compile command line arguments into the kernel, 1836 To compile command line arguments into the kernel,
1836 set this option to 'Y', then fill in the 1837 set this option to 'Y', then fill in the
1837 the boot arguments in CONFIG_CMDLINE. 1838 the boot arguments in CONFIG_CMDLINE.
1838 1839
1839 Systems with fully functional boot loaders (i.e. non-embedded) 1840 Systems with fully functional boot loaders (i.e. non-embedded)
1840 should leave this option set to 'N'. 1841 should leave this option set to 'N'.
1841 1842
1842 config CMDLINE 1843 config CMDLINE
1843 string "Built-in kernel command string" 1844 string "Built-in kernel command string"
1844 depends on CMDLINE_BOOL 1845 depends on CMDLINE_BOOL
1845 default "" 1846 default ""
1846 ---help--- 1847 ---help---
1847 Enter arguments here that should be compiled into the kernel 1848 Enter arguments here that should be compiled into the kernel
1848 image and used at boot time. If the boot loader provides a 1849 image and used at boot time. If the boot loader provides a
1849 command line at boot time, it is appended to this string to 1850 command line at boot time, it is appended to this string to
1850 form the full kernel command line, when the system boots. 1851 form the full kernel command line, when the system boots.
1851 1852
1852 However, you can use the CONFIG_CMDLINE_OVERRIDE option to 1853 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
1853 change this behavior. 1854 change this behavior.
1854 1855
1855 In most cases, the command line (whether built-in or provided 1856 In most cases, the command line (whether built-in or provided
1856 by the boot loader) should specify the device for the root 1857 by the boot loader) should specify the device for the root
1857 file system. 1858 file system.
1858 1859
1859 config CMDLINE_OVERRIDE 1860 config CMDLINE_OVERRIDE
1860 bool "Built-in command line overrides boot loader arguments" 1861 bool "Built-in command line overrides boot loader arguments"
1861 depends on CMDLINE_BOOL 1862 depends on CMDLINE_BOOL
1862 ---help--- 1863 ---help---
1863 Set this option to 'Y' to have the kernel ignore the boot loader 1864 Set this option to 'Y' to have the kernel ignore the boot loader
1864 command line, and use ONLY the built-in command line. 1865 command line, and use ONLY the built-in command line.
1865 1866
1866 This is used to work around broken boot loaders. This should 1867 This is used to work around broken boot loaders. This should
1867 be set to 'N' under normal conditions. 1868 be set to 'N' under normal conditions.
1868 1869
1869 endmenu 1870 endmenu
1870 1871
1871 config ARCH_ENABLE_MEMORY_HOTPLUG 1872 config ARCH_ENABLE_MEMORY_HOTPLUG
1872 def_bool y 1873 def_bool y
1873 depends on X86_64 || (X86_32 && HIGHMEM) 1874 depends on X86_64 || (X86_32 && HIGHMEM)
1874 1875
1875 config ARCH_ENABLE_MEMORY_HOTREMOVE 1876 config ARCH_ENABLE_MEMORY_HOTREMOVE
1876 def_bool y 1877 def_bool y
1877 depends on MEMORY_HOTPLUG 1878 depends on MEMORY_HOTPLUG
1878 1879
1879 config USE_PERCPU_NUMA_NODE_ID 1880 config USE_PERCPU_NUMA_NODE_ID
1880 def_bool y 1881 def_bool y
1881 depends on NUMA 1882 depends on NUMA
1882 1883
1883 menu "Power management and ACPI options" 1884 menu "Power management and ACPI options"
1884 1885
1885 config ARCH_HIBERNATION_HEADER 1886 config ARCH_HIBERNATION_HEADER
1886 def_bool y 1887 def_bool y
1887 depends on X86_64 && HIBERNATION 1888 depends on X86_64 && HIBERNATION
1888 1889
1889 source "kernel/power/Kconfig" 1890 source "kernel/power/Kconfig"
1890 1891
1891 source "drivers/acpi/Kconfig" 1892 source "drivers/acpi/Kconfig"
1892 1893
1893 source "drivers/sfi/Kconfig" 1894 source "drivers/sfi/Kconfig"
1894 1895
1895 config X86_APM_BOOT 1896 config X86_APM_BOOT
1896 def_bool y 1897 def_bool y
1897 depends on APM 1898 depends on APM
1898 1899
1899 menuconfig APM 1900 menuconfig APM
1900 tristate "APM (Advanced Power Management) BIOS support" 1901 tristate "APM (Advanced Power Management) BIOS support"
1901 depends on X86_32 && PM_SLEEP 1902 depends on X86_32 && PM_SLEEP
1902 ---help--- 1903 ---help---
1903 APM is a BIOS specification for saving power using several different 1904 APM is a BIOS specification for saving power using several different
1904 techniques. This is mostly useful for battery powered laptops with 1905 techniques. This is mostly useful for battery powered laptops with
1905 APM compliant BIOSes. If you say Y here, the system time will be 1906 APM compliant BIOSes. If you say Y here, the system time will be
1906 reset after a RESUME operation, the /proc/apm device will provide 1907 reset after a RESUME operation, the /proc/apm device will provide
1907 battery status information, and user-space programs will receive 1908 battery status information, and user-space programs will receive
1908 notification of APM "events" (e.g. battery status change). 1909 notification of APM "events" (e.g. battery status change).
1909 1910
1910 If you select "Y" here, you can disable actual use of the APM 1911 If you select "Y" here, you can disable actual use of the APM
1911 BIOS by passing the "apm=off" option to the kernel at boot time. 1912 BIOS by passing the "apm=off" option to the kernel at boot time.
1912 1913
1913 Note that the APM support is almost completely disabled for 1914 Note that the APM support is almost completely disabled for
1914 machines with more than one CPU. 1915 machines with more than one CPU.
1915 1916
1916 In order to use APM, you will need supporting software. For location 1917 In order to use APM, you will need supporting software. For location
1917 and more information, read <file:Documentation/power/apm-acpi.txt> 1918 and more information, read <file:Documentation/power/apm-acpi.txt>
1918 and the Battery Powered Linux mini-HOWTO, available from 1919 and the Battery Powered Linux mini-HOWTO, available from
1919 <http://www.tldp.org/docs.html#howto>. 1920 <http://www.tldp.org/docs.html#howto>.
1920 1921
1921 This driver does not spin down disk drives (see the hdparm(8) 1922 This driver does not spin down disk drives (see the hdparm(8)
1922 manpage ("man 8 hdparm") for that), and it doesn't turn off 1923 manpage ("man 8 hdparm") for that), and it doesn't turn off
1923 VESA-compliant "green" monitors. 1924 VESA-compliant "green" monitors.
1924 1925
1925 This driver does not support the TI 4000M TravelMate and the ACER 1926 This driver does not support the TI 4000M TravelMate and the ACER
1926 486/DX4/75 because they don't have compliant BIOSes. Many "green" 1927 486/DX4/75 because they don't have compliant BIOSes. Many "green"
1927 desktop machines also don't have compliant BIOSes, and this driver 1928 desktop machines also don't have compliant BIOSes, and this driver
1928 may cause those machines to panic during the boot phase. 1929 may cause those machines to panic during the boot phase.
1929 1930
1930 Generally, if you don't have a battery in your machine, there isn't 1931 Generally, if you don't have a battery in your machine, there isn't
1931 much point in using this driver and you should say N. If you get 1932 much point in using this driver and you should say N. If you get
1932 random kernel OOPSes or reboots that don't seem to be related to 1933 random kernel OOPSes or reboots that don't seem to be related to
1933 anything, try disabling/enabling this option (or disabling/enabling 1934 anything, try disabling/enabling this option (or disabling/enabling
1934 APM in your BIOS). 1935 APM in your BIOS).
1935 1936
1936 Some other things you should try when experiencing seemingly random, 1937 Some other things you should try when experiencing seemingly random,
1937 "weird" problems: 1938 "weird" problems:
1938 1939
1939 1) make sure that you have enough swap space and that it is 1940 1) make sure that you have enough swap space and that it is
1940 enabled. 1941 enabled.
1941 2) pass the "no-hlt" option to the kernel 1942 2) pass the "no-hlt" option to the kernel
1942 3) switch on floating point emulation in the kernel and pass 1943 3) switch on floating point emulation in the kernel and pass
1943 the "no387" option to the kernel 1944 the "no387" option to the kernel
1944 4) pass the "floppy=nodma" option to the kernel 1945 4) pass the "floppy=nodma" option to the kernel
1945 5) pass the "mem=4M" option to the kernel (thereby disabling 1946 5) pass the "mem=4M" option to the kernel (thereby disabling
1946 all but the first 4 MB of RAM) 1947 all but the first 4 MB of RAM)
1947 6) make sure that the CPU is not over clocked. 1948 6) make sure that the CPU is not over clocked.
1948 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/> 1949 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
1949 8) disable the cache from your BIOS settings 1950 8) disable the cache from your BIOS settings
1950 9) install a fan for the video card or exchange video RAM 1951 9) install a fan for the video card or exchange video RAM
1951 10) install a better fan for the CPU 1952 10) install a better fan for the CPU
1952 11) exchange RAM chips 1953 11) exchange RAM chips
1953 12) exchange the motherboard. 1954 12) exchange the motherboard.
1954 1955
1955 To compile this driver as a module, choose M here: the 1956 To compile this driver as a module, choose M here: the
1956 module will be called apm. 1957 module will be called apm.
1957 1958
1958 if APM 1959 if APM
1959 1960
1960 config APM_IGNORE_USER_SUSPEND 1961 config APM_IGNORE_USER_SUSPEND
1961 bool "Ignore USER SUSPEND" 1962 bool "Ignore USER SUSPEND"
1962 ---help--- 1963 ---help---
1963 This option will ignore USER SUSPEND requests. On machines with a 1964 This option will ignore USER SUSPEND requests. On machines with a
1964 compliant APM BIOS, you want to say N. However, on the NEC Versa M 1965 compliant APM BIOS, you want to say N. However, on the NEC Versa M
1965 series notebooks, it is necessary to say Y because of a BIOS bug. 1966 series notebooks, it is necessary to say Y because of a BIOS bug.
1966 1967
1967 config APM_DO_ENABLE 1968 config APM_DO_ENABLE
1968 bool "Enable PM at boot time" 1969 bool "Enable PM at boot time"
1969 ---help--- 1970 ---help---
1970 Enable APM features at boot time. From page 36 of the APM BIOS 1971 Enable APM features at boot time. From page 36 of the APM BIOS
1971 specification: "When disabled, the APM BIOS does not automatically 1972 specification: "When disabled, the APM BIOS does not automatically
1972 power manage devices, enter the Standby State, enter the Suspend 1973 power manage devices, enter the Standby State, enter the Suspend
1973 State, or take power saving steps in response to CPU Idle calls." 1974 State, or take power saving steps in response to CPU Idle calls."
1974 This driver will make CPU Idle calls when Linux is idle (unless this 1975 This driver will make CPU Idle calls when Linux is idle (unless this
1975 feature is turned off -- see "Do CPU IDLE calls", below). This 1976 feature is turned off -- see "Do CPU IDLE calls", below). This
1976 should always save battery power, but more complicated APM features 1977 should always save battery power, but more complicated APM features
1977 will be dependent on your BIOS implementation. You may need to turn 1978 will be dependent on your BIOS implementation. You may need to turn
1978 this option off if your computer hangs at boot time when using APM 1979 this option off if your computer hangs at boot time when using APM
1979 support, or if it beeps continuously instead of suspending. Turn 1980 support, or if it beeps continuously instead of suspending. Turn
1980 this off if you have a NEC UltraLite Versa 33/C or a Toshiba 1981 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
1981 T400CDT. This is off by default since most machines do fine without 1982 T400CDT. This is off by default since most machines do fine without
1982 this feature. 1983 this feature.
1983 1984
1984 config APM_CPU_IDLE 1985 config APM_CPU_IDLE
1985 depends on CPU_IDLE 1986 depends on CPU_IDLE
1986 bool "Make CPU Idle calls when idle" 1987 bool "Make CPU Idle calls when idle"
1987 ---help--- 1988 ---help---
1988 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop. 1989 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
1989 On some machines, this can activate improved power savings, such as 1990 On some machines, this can activate improved power savings, such as
1990 a slowed CPU clock rate, when the machine is idle. These idle calls 1991 a slowed CPU clock rate, when the machine is idle. These idle calls
1991 are made after the idle loop has run for some length of time (e.g., 1992 are made after the idle loop has run for some length of time (e.g.,
1992 333 mS). On some machines, this will cause a hang at boot time or 1993 333 mS). On some machines, this will cause a hang at boot time or
1993 whenever the CPU becomes idle. (On machines with more than one CPU, 1994 whenever the CPU becomes idle. (On machines with more than one CPU,
1994 this option does nothing.) 1995 this option does nothing.)
1995 1996
1996 config APM_DISPLAY_BLANK 1997 config APM_DISPLAY_BLANK
1997 bool "Enable console blanking using APM" 1998 bool "Enable console blanking using APM"
1998 ---help--- 1999 ---help---
1999 Enable console blanking using the APM. Some laptops can use this to 2000 Enable console blanking using the APM. Some laptops can use this to
2000 turn off the LCD backlight when the screen blanker of the Linux 2001 turn off the LCD backlight when the screen blanker of the Linux
2001 virtual console blanks the screen. Note that this is only used by 2002 virtual console blanks the screen. Note that this is only used by
2002 the virtual console screen blanker, and won't turn off the backlight 2003 the virtual console screen blanker, and won't turn off the backlight
2003 when using the X Window system. This also doesn't have anything to 2004 when using the X Window system. This also doesn't have anything to
2004 do with your VESA-compliant power-saving monitor. Further, this 2005 do with your VESA-compliant power-saving monitor. Further, this
2005 option doesn't work for all laptops -- it might not turn off your 2006 option doesn't work for all laptops -- it might not turn off your
2006 backlight at all, or it might print a lot of errors to the console, 2007 backlight at all, or it might print a lot of errors to the console,
2007 especially if you are using gpm. 2008 especially if you are using gpm.
2008 2009
2009 config APM_ALLOW_INTS 2010 config APM_ALLOW_INTS
2010 bool "Allow interrupts during APM BIOS calls" 2011 bool "Allow interrupts during APM BIOS calls"
2011 ---help--- 2012 ---help---
2012 Normally we disable external interrupts while we are making calls to 2013 Normally we disable external interrupts while we are making calls to
2013 the APM BIOS as a measure to lessen the effects of a badly behaving 2014 the APM BIOS as a measure to lessen the effects of a badly behaving
2014 BIOS implementation. The BIOS should reenable interrupts if it 2015 BIOS implementation. The BIOS should reenable interrupts if it
2015 needs to. Unfortunately, some BIOSes do not -- especially those in 2016 needs to. Unfortunately, some BIOSes do not -- especially those in
2016 many of the newer IBM Thinkpads. If you experience hangs when you 2017 many of the newer IBM Thinkpads. If you experience hangs when you
2017 suspend, try setting this to Y. Otherwise, say N. 2018 suspend, try setting this to Y. Otherwise, say N.
2018 2019
2019 endif # APM 2020 endif # APM
2020 2021
2021 source "drivers/cpufreq/Kconfig" 2022 source "drivers/cpufreq/Kconfig"
2022 2023
2023 source "drivers/cpuidle/Kconfig" 2024 source "drivers/cpuidle/Kconfig"
2024 2025
2025 source "drivers/idle/Kconfig" 2026 source "drivers/idle/Kconfig"
2026 2027
2027 endmenu 2028 endmenu
2028 2029
2029 2030
2030 menu "Bus options (PCI etc.)" 2031 menu "Bus options (PCI etc.)"
2031 2032
2032 config PCI 2033 config PCI
2033 bool "PCI support" 2034 bool "PCI support"
2034 default y 2035 default y
2035 ---help--- 2036 ---help---
2036 Find out whether you have a PCI motherboard. PCI is the name of a 2037 Find out whether you have a PCI motherboard. PCI is the name of a
2037 bus system, i.e. the way the CPU talks to the other stuff inside 2038 bus system, i.e. the way the CPU talks to the other stuff inside
2038 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or 2039 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2039 VESA. If you have PCI, say Y, otherwise N. 2040 VESA. If you have PCI, say Y, otherwise N.
2040 2041
2041 choice 2042 choice
2042 prompt "PCI access mode" 2043 prompt "PCI access mode"
2043 depends on X86_32 && PCI 2044 depends on X86_32 && PCI
2044 default PCI_GOANY 2045 default PCI_GOANY
2045 ---help--- 2046 ---help---
2046 On PCI systems, the BIOS can be used to detect the PCI devices and 2047 On PCI systems, the BIOS can be used to detect the PCI devices and
2047 determine their configuration. However, some old PCI motherboards 2048 determine their configuration. However, some old PCI motherboards
2048 have BIOS bugs and may crash if this is done. Also, some embedded 2049 have BIOS bugs and may crash if this is done. Also, some embedded
2049 PCI-based systems don't have any BIOS at all. Linux can also try to 2050 PCI-based systems don't have any BIOS at all. Linux can also try to
2050 detect the PCI hardware directly without using the BIOS. 2051 detect the PCI hardware directly without using the BIOS.
2051 2052
2052 With this option, you can specify how Linux should detect the 2053 With this option, you can specify how Linux should detect the
2053 PCI devices. If you choose "BIOS", the BIOS will be used, 2054 PCI devices. If you choose "BIOS", the BIOS will be used,
2054 if you choose "Direct", the BIOS won't be used, and if you 2055 if you choose "Direct", the BIOS won't be used, and if you
2055 choose "MMConfig", then PCI Express MMCONFIG will be used. 2056 choose "MMConfig", then PCI Express MMCONFIG will be used.
2056 If you choose "Any", the kernel will try MMCONFIG, then the 2057 If you choose "Any", the kernel will try MMCONFIG, then the
2057 direct access method and falls back to the BIOS if that doesn't 2058 direct access method and falls back to the BIOS if that doesn't
2058 work. If unsure, go with the default, which is "Any". 2059 work. If unsure, go with the default, which is "Any".
2059 2060
2060 config PCI_GOBIOS 2061 config PCI_GOBIOS
2061 bool "BIOS" 2062 bool "BIOS"
2062 2063
2063 config PCI_GOMMCONFIG 2064 config PCI_GOMMCONFIG
2064 bool "MMConfig" 2065 bool "MMConfig"
2065 2066
2066 config PCI_GODIRECT 2067 config PCI_GODIRECT
2067 bool "Direct" 2068 bool "Direct"
2068 2069
2069 config PCI_GOOLPC 2070 config PCI_GOOLPC
2070 bool "OLPC XO-1" 2071 bool "OLPC XO-1"
2071 depends on OLPC 2072 depends on OLPC
2072 2073
2073 config PCI_GOANY 2074 config PCI_GOANY
2074 bool "Any" 2075 bool "Any"
2075 2076
2076 endchoice 2077 endchoice
2077 2078
2078 config PCI_BIOS 2079 config PCI_BIOS
2079 def_bool y 2080 def_bool y
2080 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY) 2081 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2081 2082
2082 # x86-64 doesn't support PCI BIOS access from long mode so always go direct. 2083 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2083 config PCI_DIRECT 2084 config PCI_DIRECT
2084 def_bool y 2085 def_bool y
2085 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG)) 2086 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2086 2087
2087 config PCI_MMCONFIG 2088 config PCI_MMCONFIG
2088 def_bool y 2089 def_bool y
2089 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY) 2090 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2090 2091
2091 config PCI_OLPC 2092 config PCI_OLPC
2092 def_bool y 2093 def_bool y
2093 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY) 2094 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2094 2095
2095 config PCI_XEN 2096 config PCI_XEN
2096 def_bool y 2097 def_bool y
2097 depends on PCI && XEN 2098 depends on PCI && XEN
2098 select SWIOTLB_XEN 2099 select SWIOTLB_XEN
2099 2100
2100 config PCI_DOMAINS 2101 config PCI_DOMAINS
2101 def_bool y 2102 def_bool y
2102 depends on PCI 2103 depends on PCI
2103 2104
2104 config PCI_MMCONFIG 2105 config PCI_MMCONFIG
2105 bool "Support mmconfig PCI config space access" 2106 bool "Support mmconfig PCI config space access"
2106 depends on X86_64 && PCI && ACPI 2107 depends on X86_64 && PCI && ACPI
2107 2108
2108 config PCI_CNB20LE_QUIRK 2109 config PCI_CNB20LE_QUIRK
2109 bool "Read CNB20LE Host Bridge Windows" if EXPERT 2110 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2110 depends on PCI 2111 depends on PCI
2111 help 2112 help
2112 Read the PCI windows out of the CNB20LE host bridge. This allows 2113 Read the PCI windows out of the CNB20LE host bridge. This allows
2113 PCI hotplug to work on systems with the CNB20LE chipset which do 2114 PCI hotplug to work on systems with the CNB20LE chipset which do
2114 not have ACPI. 2115 not have ACPI.
2115 2116
2116 There's no public spec for this chipset, and this functionality 2117 There's no public spec for this chipset, and this functionality
2117 is known to be incomplete. 2118 is known to be incomplete.
2118 2119
2119 You should say N unless you know you need this. 2120 You should say N unless you know you need this.
2120 2121
2121 source "drivers/pci/pcie/Kconfig" 2122 source "drivers/pci/pcie/Kconfig"
2122 2123
2123 source "drivers/pci/Kconfig" 2124 source "drivers/pci/Kconfig"
2124 2125
2125 # x86_64 have no ISA slots, but can have ISA-style DMA. 2126 # x86_64 have no ISA slots, but can have ISA-style DMA.
2126 config ISA_DMA_API 2127 config ISA_DMA_API
2127 bool "ISA-style DMA support" if (X86_64 && EXPERT) 2128 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2128 default y 2129 default y
2129 help 2130 help
2130 Enables ISA-style DMA support for devices requiring such controllers. 2131 Enables ISA-style DMA support for devices requiring such controllers.
2131 If unsure, say Y. 2132 If unsure, say Y.
2132 2133
2133 if X86_32 2134 if X86_32
2134 2135
2135 config ISA 2136 config ISA
2136 bool "ISA support" 2137 bool "ISA support"
2137 ---help--- 2138 ---help---
2138 Find out whether you have ISA slots on your motherboard. ISA is the 2139 Find out whether you have ISA slots on your motherboard. ISA is the
2139 name of a bus system, i.e. the way the CPU talks to the other stuff 2140 name of a bus system, i.e. the way the CPU talks to the other stuff
2140 inside your box. Other bus systems are PCI, EISA, MicroChannel 2141 inside your box. Other bus systems are PCI, EISA, MicroChannel
2141 (MCA) or VESA. ISA is an older system, now being displaced by PCI; 2142 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2142 newer boards don't support it. If you have ISA, say Y, otherwise N. 2143 newer boards don't support it. If you have ISA, say Y, otherwise N.
2143 2144
2144 config EISA 2145 config EISA
2145 bool "EISA support" 2146 bool "EISA support"
2146 depends on ISA 2147 depends on ISA
2147 ---help--- 2148 ---help---
2148 The Extended Industry Standard Architecture (EISA) bus was 2149 The Extended Industry Standard Architecture (EISA) bus was
2149 developed as an open alternative to the IBM MicroChannel bus. 2150 developed as an open alternative to the IBM MicroChannel bus.
2150 2151
2151 The EISA bus provided some of the features of the IBM MicroChannel 2152 The EISA bus provided some of the features of the IBM MicroChannel
2152 bus while maintaining backward compatibility with cards made for 2153 bus while maintaining backward compatibility with cards made for
2153 the older ISA bus. The EISA bus saw limited use between 1988 and 2154 the older ISA bus. The EISA bus saw limited use between 1988 and
2154 1995 when it was made obsolete by the PCI bus. 2155 1995 when it was made obsolete by the PCI bus.
2155 2156
2156 Say Y here if you are building a kernel for an EISA-based machine. 2157 Say Y here if you are building a kernel for an EISA-based machine.
2157 2158
2158 Otherwise, say N. 2159 Otherwise, say N.
2159 2160
2160 source "drivers/eisa/Kconfig" 2161 source "drivers/eisa/Kconfig"
2161 2162
2162 config SCx200 2163 config SCx200
2163 tristate "NatSemi SCx200 support" 2164 tristate "NatSemi SCx200 support"
2164 ---help--- 2165 ---help---
2165 This provides basic support for National Semiconductor's 2166 This provides basic support for National Semiconductor's
2166 (now AMD's) Geode processors. The driver probes for the 2167 (now AMD's) Geode processors. The driver probes for the
2167 PCI-IDs of several on-chip devices, so its a good dependency 2168 PCI-IDs of several on-chip devices, so its a good dependency
2168 for other scx200_* drivers. 2169 for other scx200_* drivers.
2169 2170
2170 If compiled as a module, the driver is named scx200. 2171 If compiled as a module, the driver is named scx200.
2171 2172
2172 config SCx200HR_TIMER 2173 config SCx200HR_TIMER
2173 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support" 2174 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2174 depends on SCx200 2175 depends on SCx200
2175 default y 2176 default y
2176 ---help--- 2177 ---help---
2177 This driver provides a clocksource built upon the on-chip 2178 This driver provides a clocksource built upon the on-chip
2178 27MHz high-resolution timer. Its also a workaround for 2179 27MHz high-resolution timer. Its also a workaround for
2179 NSC Geode SC-1100's buggy TSC, which loses time when the 2180 NSC Geode SC-1100's buggy TSC, which loses time when the
2180 processor goes idle (as is done by the scheduler). The 2181 processor goes idle (as is done by the scheduler). The
2181 other workaround is idle=poll boot option. 2182 other workaround is idle=poll boot option.
2182 2183
2183 config OLPC 2184 config OLPC
2184 bool "One Laptop Per Child support" 2185 bool "One Laptop Per Child support"
2185 depends on !X86_PAE 2186 depends on !X86_PAE
2186 select GPIOLIB 2187 select GPIOLIB
2187 select OF 2188 select OF
2188 select OF_PROMTREE 2189 select OF_PROMTREE
2189 select IRQ_DOMAIN 2190 select IRQ_DOMAIN
2190 ---help--- 2191 ---help---
2191 Add support for detecting the unique features of the OLPC 2192 Add support for detecting the unique features of the OLPC
2192 XO hardware. 2193 XO hardware.
2193 2194
2194 config OLPC_XO1_PM 2195 config OLPC_XO1_PM
2195 bool "OLPC XO-1 Power Management" 2196 bool "OLPC XO-1 Power Management"
2196 depends on OLPC && MFD_CS5535 && PM_SLEEP 2197 depends on OLPC && MFD_CS5535 && PM_SLEEP
2197 select MFD_CORE 2198 select MFD_CORE
2198 ---help--- 2199 ---help---
2199 Add support for poweroff and suspend of the OLPC XO-1 laptop. 2200 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2200 2201
2201 config OLPC_XO1_RTC 2202 config OLPC_XO1_RTC
2202 bool "OLPC XO-1 Real Time Clock" 2203 bool "OLPC XO-1 Real Time Clock"
2203 depends on OLPC_XO1_PM && RTC_DRV_CMOS 2204 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2204 ---help--- 2205 ---help---
2205 Add support for the XO-1 real time clock, which can be used as a 2206 Add support for the XO-1 real time clock, which can be used as a
2206 programmable wakeup source. 2207 programmable wakeup source.
2207 2208
2208 config OLPC_XO1_SCI 2209 config OLPC_XO1_SCI
2209 bool "OLPC XO-1 SCI extras" 2210 bool "OLPC XO-1 SCI extras"
2210 depends on OLPC && OLPC_XO1_PM 2211 depends on OLPC && OLPC_XO1_PM
2211 depends on INPUT=y 2212 depends on INPUT=y
2212 select POWER_SUPPLY 2213 select POWER_SUPPLY
2213 select GPIO_CS5535 2214 select GPIO_CS5535
2214 select MFD_CORE 2215 select MFD_CORE
2215 ---help--- 2216 ---help---
2216 Add support for SCI-based features of the OLPC XO-1 laptop: 2217 Add support for SCI-based features of the OLPC XO-1 laptop:
2217 - EC-driven system wakeups 2218 - EC-driven system wakeups
2218 - Power button 2219 - Power button
2219 - Ebook switch 2220 - Ebook switch
2220 - Lid switch 2221 - Lid switch
2221 - AC adapter status updates 2222 - AC adapter status updates
2222 - Battery status updates 2223 - Battery status updates
2223 2224
2224 config OLPC_XO15_SCI 2225 config OLPC_XO15_SCI
2225 bool "OLPC XO-1.5 SCI extras" 2226 bool "OLPC XO-1.5 SCI extras"
2226 depends on OLPC && ACPI 2227 depends on OLPC && ACPI
2227 select POWER_SUPPLY 2228 select POWER_SUPPLY
2228 ---help--- 2229 ---help---
2229 Add support for SCI-based features of the OLPC XO-1.5 laptop: 2230 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2230 - EC-driven system wakeups 2231 - EC-driven system wakeups
2231 - AC adapter status updates 2232 - AC adapter status updates
2232 - Battery status updates 2233 - Battery status updates
2233 2234
2234 config ALIX 2235 config ALIX
2235 bool "PCEngines ALIX System Support (LED setup)" 2236 bool "PCEngines ALIX System Support (LED setup)"
2236 select GPIOLIB 2237 select GPIOLIB
2237 ---help--- 2238 ---help---
2238 This option enables system support for the PCEngines ALIX. 2239 This option enables system support for the PCEngines ALIX.
2239 At present this just sets up LEDs for GPIO control on 2240 At present this just sets up LEDs for GPIO control on
2240 ALIX2/3/6 boards. However, other system specific setup should 2241 ALIX2/3/6 boards. However, other system specific setup should
2241 get added here. 2242 get added here.
2242 2243
2243 Note: You must still enable the drivers for GPIO and LED support 2244 Note: You must still enable the drivers for GPIO and LED support
2244 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs 2245 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2245 2246
2246 Note: You have to set alix.force=1 for boards with Award BIOS. 2247 Note: You have to set alix.force=1 for boards with Award BIOS.
2247 2248
2248 config NET5501 2249 config NET5501
2249 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)" 2250 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2250 select GPIOLIB 2251 select GPIOLIB
2251 ---help--- 2252 ---help---
2252 This option enables system support for the Soekris Engineering net5501. 2253 This option enables system support for the Soekris Engineering net5501.
2253 2254
2254 config GEOS 2255 config GEOS
2255 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)" 2256 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2256 select GPIOLIB 2257 select GPIOLIB
2257 depends on DMI 2258 depends on DMI
2258 ---help--- 2259 ---help---
2259 This option enables system support for the Traverse Technologies GEOS. 2260 This option enables system support for the Traverse Technologies GEOS.
2260 2261
2261 config TS5500 2262 config TS5500
2262 bool "Technologic Systems TS-5500 platform support" 2263 bool "Technologic Systems TS-5500 platform support"
2263 depends on MELAN 2264 depends on MELAN
2264 select CHECK_SIGNATURE 2265 select CHECK_SIGNATURE
2265 select NEW_LEDS 2266 select NEW_LEDS
2266 select LEDS_CLASS 2267 select LEDS_CLASS
2267 ---help--- 2268 ---help---
2268 This option enables system support for the Technologic Systems TS-5500. 2269 This option enables system support for the Technologic Systems TS-5500.
2269 2270
2270 endif # X86_32 2271 endif # X86_32
2271 2272
2272 config AMD_NB 2273 config AMD_NB
2273 def_bool y 2274 def_bool y
2274 depends on CPU_SUP_AMD && PCI 2275 depends on CPU_SUP_AMD && PCI
2275 2276
2276 source "drivers/pcmcia/Kconfig" 2277 source "drivers/pcmcia/Kconfig"
2277 2278
2278 source "drivers/pci/hotplug/Kconfig" 2279 source "drivers/pci/hotplug/Kconfig"
2279 2280
2280 config RAPIDIO 2281 config RAPIDIO
2281 tristate "RapidIO support" 2282 tristate "RapidIO support"
2282 depends on PCI 2283 depends on PCI
2283 default n 2284 default n
2284 help 2285 help
2285 If enabled this option will include drivers and the core 2286 If enabled this option will include drivers and the core
2286 infrastructure code to support RapidIO interconnect devices. 2287 infrastructure code to support RapidIO interconnect devices.
2287 2288
2288 source "drivers/rapidio/Kconfig" 2289 source "drivers/rapidio/Kconfig"
2289 2290
2290 config X86_SYSFB 2291 config X86_SYSFB
2291 bool "Mark VGA/VBE/EFI FB as generic system framebuffer" 2292 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2292 help 2293 help
2293 Firmwares often provide initial graphics framebuffers so the BIOS, 2294 Firmwares often provide initial graphics framebuffers so the BIOS,
2294 bootloader or kernel can show basic video-output during boot for 2295 bootloader or kernel can show basic video-output during boot for
2295 user-guidance and debugging. Historically, x86 used the VESA BIOS 2296 user-guidance and debugging. Historically, x86 used the VESA BIOS
2296 Extensions and EFI-framebuffers for this, which are mostly limited 2297 Extensions and EFI-framebuffers for this, which are mostly limited
2297 to x86. 2298 to x86.
2298 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic 2299 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2299 framebuffers so the new generic system-framebuffer drivers can be 2300 framebuffers so the new generic system-framebuffer drivers can be
2300 used on x86. If the framebuffer is not compatible with the generic 2301 used on x86. If the framebuffer is not compatible with the generic
2301 modes, it is adverticed as fallback platform framebuffer so legacy 2302 modes, it is adverticed as fallback platform framebuffer so legacy
2302 drivers like efifb, vesafb and uvesafb can pick it up. 2303 drivers like efifb, vesafb and uvesafb can pick it up.
2303 If this option is not selected, all system framebuffers are always 2304 If this option is not selected, all system framebuffers are always
2304 marked as fallback platform framebuffers as usual. 2305 marked as fallback platform framebuffers as usual.
2305 2306
2306 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will 2307 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2307 not be able to pick up generic system framebuffers if this option 2308 not be able to pick up generic system framebuffers if this option
2308 is selected. You are highly encouraged to enable simplefb as 2309 is selected. You are highly encouraged to enable simplefb as
2309 replacement if you select this option. simplefb can correctly deal 2310 replacement if you select this option. simplefb can correctly deal
2310 with generic system framebuffers. But you should still keep vesafb 2311 with generic system framebuffers. But you should still keep vesafb
2311 and others enabled as fallback if a system framebuffer is 2312 and others enabled as fallback if a system framebuffer is
2312 incompatible with simplefb. 2313 incompatible with simplefb.
2313 2314
2314 If unsure, say Y. 2315 If unsure, say Y.
2315 2316
2316 endmenu 2317 endmenu
2317 2318
2318 2319
2319 menu "Executable file formats / Emulations" 2320 menu "Executable file formats / Emulations"
2320 2321
2321 source "fs/Kconfig.binfmt" 2322 source "fs/Kconfig.binfmt"
2322 2323
2323 config IA32_EMULATION 2324 config IA32_EMULATION
2324 bool "IA32 Emulation" 2325 bool "IA32 Emulation"
2325 depends on X86_64 2326 depends on X86_64
2326 select BINFMT_ELF 2327 select BINFMT_ELF
2327 select COMPAT_BINFMT_ELF 2328 select COMPAT_BINFMT_ELF
2328 select HAVE_UID16 2329 select HAVE_UID16
2329 ---help--- 2330 ---help---
2330 Include code to run legacy 32-bit programs under a 2331 Include code to run legacy 32-bit programs under a
2331 64-bit kernel. You should likely turn this on, unless you're 2332 64-bit kernel. You should likely turn this on, unless you're
2332 100% sure that you don't have any 32-bit programs left. 2333 100% sure that you don't have any 32-bit programs left.
2333 2334
2334 config IA32_AOUT 2335 config IA32_AOUT
2335 tristate "IA32 a.out support" 2336 tristate "IA32 a.out support"
2336 depends on IA32_EMULATION 2337 depends on IA32_EMULATION
2337 ---help--- 2338 ---help---
2338 Support old a.out binaries in the 32bit emulation. 2339 Support old a.out binaries in the 32bit emulation.
2339 2340
2340 config X86_X32 2341 config X86_X32
2341 bool "x32 ABI for 64-bit mode" 2342 bool "x32 ABI for 64-bit mode"
2342 depends on X86_64 && IA32_EMULATION 2343 depends on X86_64 && IA32_EMULATION
2343 ---help--- 2344 ---help---
2344 Include code to run binaries for the x32 native 32-bit ABI 2345 Include code to run binaries for the x32 native 32-bit ABI
2345 for 64-bit processors. An x32 process gets access to the 2346 for 64-bit processors. An x32 process gets access to the
2346 full 64-bit register file and wide data path while leaving 2347 full 64-bit register file and wide data path while leaving
2347 pointers at 32 bits for smaller memory footprint. 2348 pointers at 32 bits for smaller memory footprint.
2348 2349
2349 You will need a recent binutils (2.22 or later) with 2350 You will need a recent binutils (2.22 or later) with
2350 elf32_x86_64 support enabled to compile a kernel with this 2351 elf32_x86_64 support enabled to compile a kernel with this
2351 option set. 2352 option set.
2352 2353
2353 config COMPAT 2354 config COMPAT
2354 def_bool y 2355 def_bool y
2355 depends on IA32_EMULATION || X86_X32 2356 depends on IA32_EMULATION || X86_X32
2356 select ARCH_WANT_OLD_COMPAT_IPC 2357 select ARCH_WANT_OLD_COMPAT_IPC
2357 2358
2358 if COMPAT 2359 if COMPAT
2359 config COMPAT_FOR_U64_ALIGNMENT 2360 config COMPAT_FOR_U64_ALIGNMENT
2360 def_bool y 2361 def_bool y
2361 2362
2362 config SYSVIPC_COMPAT 2363 config SYSVIPC_COMPAT
2363 def_bool y 2364 def_bool y
2364 depends on SYSVIPC 2365 depends on SYSVIPC
2365 2366
2366 config KEYS_COMPAT 2367 config KEYS_COMPAT
2367 def_bool y 2368 def_bool y
2368 depends on KEYS 2369 depends on KEYS
2369 endif 2370 endif
2370 2371
2371 endmenu 2372 endmenu
2372 2373
2373 2374
2374 config HAVE_ATOMIC_IOMAP 2375 config HAVE_ATOMIC_IOMAP
2375 def_bool y 2376 def_bool y
2376 depends on X86_32 2377 depends on X86_32
2377 2378
2378 config X86_DEV_DMA_OPS 2379 config X86_DEV_DMA_OPS
2379 bool 2380 bool
2380 depends on X86_64 || STA2X11 2381 depends on X86_64 || STA2X11
2381 2382
2382 config X86_DMA_REMAP 2383 config X86_DMA_REMAP
2383 bool 2384 bool
2384 depends on STA2X11 2385 depends on STA2X11
2385 2386
2386 source "net/Kconfig" 2387 source "net/Kconfig"
2387 2388
2388 source "drivers/Kconfig" 2389 source "drivers/Kconfig"
2389 2390
2390 source "drivers/firmware/Kconfig" 2391 source "drivers/firmware/Kconfig"
2391 2392
2392 source "fs/Kconfig" 2393 source "fs/Kconfig"
2393 2394
2394 source "arch/x86/Kconfig.debug" 2395 source "arch/x86/Kconfig.debug"
2395 2396
2396 source "security/Kconfig" 2397 source "security/Kconfig"
2397 2398
2398 source "crypto/Kconfig" 2399 source "crypto/Kconfig"
2399 2400
2400 source "arch/x86/kvm/Kconfig" 2401 source "arch/x86/kvm/Kconfig"
2401 2402
2402 source "lib/Kconfig" 2403 source "lib/Kconfig"
2403 2404
arch/x86/kernel/apic/x2apic_uv_x.c
1 /* 1 /*
2 * This file is subject to the terms and conditions of the GNU General Public 2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive 3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details. 4 * for more details.
5 * 5 *
6 * SGI UV APIC functions (note: not an Intel compatible APIC) 6 * SGI UV APIC functions (note: not an Intel compatible APIC)
7 * 7 *
8 * Copyright (C) 2007-2013 Silicon Graphics, Inc. All rights reserved. 8 * Copyright (C) 2007-2013 Silicon Graphics, Inc. All rights reserved.
9 */ 9 */
10 #include <linux/cpumask.h> 10 #include <linux/cpumask.h>
11 #include <linux/hardirq.h> 11 #include <linux/hardirq.h>
12 #include <linux/proc_fs.h> 12 #include <linux/proc_fs.h>
13 #include <linux/threads.h> 13 #include <linux/threads.h>
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/module.h> 15 #include <linux/module.h>
16 #include <linux/string.h> 16 #include <linux/string.h>
17 #include <linux/ctype.h> 17 #include <linux/ctype.h>
18 #include <linux/sched.h> 18 #include <linux/sched.h>
19 #include <linux/timer.h> 19 #include <linux/timer.h>
20 #include <linux/slab.h> 20 #include <linux/slab.h>
21 #include <linux/cpu.h> 21 #include <linux/cpu.h>
22 #include <linux/init.h> 22 #include <linux/init.h>
23 #include <linux/io.h> 23 #include <linux/io.h>
24 #include <linux/pci.h> 24 #include <linux/pci.h>
25 #include <linux/kdebug.h> 25 #include <linux/kdebug.h>
26 #include <linux/delay.h> 26 #include <linux/delay.h>
27 #include <linux/crash_dump.h> 27 #include <linux/crash_dump.h>
28 #include <linux/reboot.h> 28 #include <linux/reboot.h>
29 29
30 #include <asm/uv/uv_mmrs.h> 30 #include <asm/uv/uv_mmrs.h>
31 #include <asm/uv/uv_hub.h> 31 #include <asm/uv/uv_hub.h>
32 #include <asm/current.h> 32 #include <asm/current.h>
33 #include <asm/pgtable.h> 33 #include <asm/pgtable.h>
34 #include <asm/uv/bios.h> 34 #include <asm/uv/bios.h>
35 #include <asm/uv/uv.h> 35 #include <asm/uv/uv.h>
36 #include <asm/apic.h> 36 #include <asm/apic.h>
37 #include <asm/ipi.h> 37 #include <asm/ipi.h>
38 #include <asm/smp.h> 38 #include <asm/smp.h>
39 #include <asm/x86_init.h> 39 #include <asm/x86_init.h>
40 #include <asm/nmi.h> 40 #include <asm/nmi.h>
41 41
42 /* BMC sets a bit this MMR non-zero before sending an NMI */ 42 /* BMC sets a bit this MMR non-zero before sending an NMI */
43 #define UVH_NMI_MMR UVH_SCRATCH5 43 #define UVH_NMI_MMR UVH_SCRATCH5
44 #define UVH_NMI_MMR_CLEAR (UVH_NMI_MMR + 8) 44 #define UVH_NMI_MMR_CLEAR (UVH_NMI_MMR + 8)
45 #define UV_NMI_PENDING_MASK (1UL << 63) 45 #define UV_NMI_PENDING_MASK (1UL << 63)
46 DEFINE_PER_CPU(unsigned long, cpu_last_nmi_count); 46 DEFINE_PER_CPU(unsigned long, cpu_last_nmi_count);
47 47
48 DEFINE_PER_CPU(int, x2apic_extra_bits); 48 DEFINE_PER_CPU(int, x2apic_extra_bits);
49 49
50 #define PR_DEVEL(fmt, args...) pr_devel("%s: " fmt, __func__, args) 50 #define PR_DEVEL(fmt, args...) pr_devel("%s: " fmt, __func__, args)
51 51
52 static enum uv_system_type uv_system_type; 52 static enum uv_system_type uv_system_type;
53 static u64 gru_start_paddr, gru_end_paddr; 53 static u64 gru_start_paddr, gru_end_paddr;
54 static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr; 54 static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr;
55 static u64 gru_dist_lmask, gru_dist_umask; 55 static u64 gru_dist_lmask, gru_dist_umask;
56 static union uvh_apicid uvh_apicid; 56 static union uvh_apicid uvh_apicid;
57 int uv_min_hub_revision_id; 57 int uv_min_hub_revision_id;
58 EXPORT_SYMBOL_GPL(uv_min_hub_revision_id); 58 EXPORT_SYMBOL_GPL(uv_min_hub_revision_id);
59 unsigned int uv_apicid_hibits; 59 unsigned int uv_apicid_hibits;
60 EXPORT_SYMBOL_GPL(uv_apicid_hibits); 60 EXPORT_SYMBOL_GPL(uv_apicid_hibits);
61 static DEFINE_SPINLOCK(uv_nmi_lock); 61 static DEFINE_SPINLOCK(uv_nmi_lock);
62 62
63 static struct apic apic_x2apic_uv_x; 63 static struct apic apic_x2apic_uv_x;
64 64
65 static unsigned long __init uv_early_read_mmr(unsigned long addr) 65 static unsigned long __init uv_early_read_mmr(unsigned long addr)
66 { 66 {
67 unsigned long val, *mmr; 67 unsigned long val, *mmr;
68 68
69 mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); 69 mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr));
70 val = *mmr; 70 val = *mmr;
71 early_iounmap(mmr, sizeof(*mmr)); 71 early_iounmap(mmr, sizeof(*mmr));
72 return val; 72 return val;
73 } 73 }
74 74
75 static inline bool is_GRU_range(u64 start, u64 end) 75 static inline bool is_GRU_range(u64 start, u64 end)
76 { 76 {
77 if (gru_dist_base) { 77 if (gru_dist_base) {
78 u64 su = start & gru_dist_umask; /* upper (incl pnode) bits */ 78 u64 su = start & gru_dist_umask; /* upper (incl pnode) bits */
79 u64 sl = start & gru_dist_lmask; /* base offset bits */ 79 u64 sl = start & gru_dist_lmask; /* base offset bits */
80 u64 eu = end & gru_dist_umask; 80 u64 eu = end & gru_dist_umask;
81 u64 el = end & gru_dist_lmask; 81 u64 el = end & gru_dist_lmask;
82 82
83 /* Must reside completely within a single GRU range */ 83 /* Must reside completely within a single GRU range */
84 return (sl == gru_dist_base && el == gru_dist_base && 84 return (sl == gru_dist_base && el == gru_dist_base &&
85 su >= gru_first_node_paddr && 85 su >= gru_first_node_paddr &&
86 su <= gru_last_node_paddr && 86 su <= gru_last_node_paddr &&
87 eu == su); 87 eu == su);
88 } else { 88 } else {
89 return start >= gru_start_paddr && end <= gru_end_paddr; 89 return start >= gru_start_paddr && end <= gru_end_paddr;
90 } 90 }
91 } 91 }
92 92
93 static bool uv_is_untracked_pat_range(u64 start, u64 end) 93 static bool uv_is_untracked_pat_range(u64 start, u64 end)
94 { 94 {
95 return is_ISA_range(start, end) || is_GRU_range(start, end); 95 return is_ISA_range(start, end) || is_GRU_range(start, end);
96 } 96 }
97 97
98 static int __init early_get_pnodeid(void) 98 static int __init early_get_pnodeid(void)
99 { 99 {
100 union uvh_node_id_u node_id; 100 union uvh_node_id_u node_id;
101 union uvh_rh_gam_config_mmr_u m_n_config; 101 union uvh_rh_gam_config_mmr_u m_n_config;
102 int pnode; 102 int pnode;
103 103
104 /* Currently, all blades have same revision number */ 104 /* Currently, all blades have same revision number */
105 node_id.v = uv_early_read_mmr(UVH_NODE_ID); 105 node_id.v = uv_early_read_mmr(UVH_NODE_ID);
106 m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR); 106 m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR);
107 uv_min_hub_revision_id = node_id.s.revision; 107 uv_min_hub_revision_id = node_id.s.revision;
108 108
109 switch (node_id.s.part_number) { 109 switch (node_id.s.part_number) {
110 case UV2_HUB_PART_NUMBER: 110 case UV2_HUB_PART_NUMBER:
111 case UV2_HUB_PART_NUMBER_X: 111 case UV2_HUB_PART_NUMBER_X:
112 uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; 112 uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1;
113 break; 113 break;
114 case UV3_HUB_PART_NUMBER: 114 case UV3_HUB_PART_NUMBER:
115 case UV3_HUB_PART_NUMBER_X: 115 case UV3_HUB_PART_NUMBER_X:
116 uv_min_hub_revision_id += UV3_HUB_REVISION_BASE - 1; 116 uv_min_hub_revision_id += UV3_HUB_REVISION_BASE;
117 break; 117 break;
118 } 118 }
119 119
120 uv_hub_info->hub_revision = uv_min_hub_revision_id; 120 uv_hub_info->hub_revision = uv_min_hub_revision_id;
121 pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1); 121 pnode = (node_id.s.node_id >> 1) & ((1 << m_n_config.s.n_skt) - 1);
122 return pnode; 122 return pnode;
123 } 123 }
124 124
125 static void __init early_get_apic_pnode_shift(void) 125 static void __init early_get_apic_pnode_shift(void)
126 { 126 {
127 uvh_apicid.v = uv_early_read_mmr(UVH_APICID); 127 uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
128 if (!uvh_apicid.v) 128 if (!uvh_apicid.v)
129 /* 129 /*
130 * Old bios, use default value 130 * Old bios, use default value
131 */ 131 */
132 uvh_apicid.s.pnode_shift = UV_APIC_PNODE_SHIFT; 132 uvh_apicid.s.pnode_shift = UV_APIC_PNODE_SHIFT;
133 } 133 }
134 134
135 /* 135 /*
136 * Add an extra bit as dictated by bios to the destination apicid of 136 * Add an extra bit as dictated by bios to the destination apicid of
137 * interrupts potentially passing through the UV HUB. This prevents 137 * interrupts potentially passing through the UV HUB. This prevents
138 * a deadlock between interrupts and IO port operations. 138 * a deadlock between interrupts and IO port operations.
139 */ 139 */
140 static void __init uv_set_apicid_hibit(void) 140 static void __init uv_set_apicid_hibit(void)
141 { 141 {
142 union uv1h_lb_target_physical_apic_id_mask_u apicid_mask; 142 union uv1h_lb_target_physical_apic_id_mask_u apicid_mask;
143 143
144 if (is_uv1_hub()) { 144 if (is_uv1_hub()) {
145 apicid_mask.v = 145 apicid_mask.v =
146 uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK); 146 uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK);
147 uv_apicid_hibits = 147 uv_apicid_hibits =
148 apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK; 148 apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK;
149 } 149 }
150 } 150 }
151 151
152 static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) 152 static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
153 { 153 {
154 int pnodeid, is_uv1, is_uv2, is_uv3; 154 int pnodeid, is_uv1, is_uv2, is_uv3;
155 155
156 is_uv1 = !strcmp(oem_id, "SGI"); 156 is_uv1 = !strcmp(oem_id, "SGI");
157 is_uv2 = !strcmp(oem_id, "SGI2"); 157 is_uv2 = !strcmp(oem_id, "SGI2");
158 is_uv3 = !strncmp(oem_id, "SGI3", 4); /* there are varieties of UV3 */ 158 is_uv3 = !strncmp(oem_id, "SGI3", 4); /* there are varieties of UV3 */
159 if (is_uv1 || is_uv2 || is_uv3) { 159 if (is_uv1 || is_uv2 || is_uv3) {
160 uv_hub_info->hub_revision = 160 uv_hub_info->hub_revision =
161 (is_uv1 ? UV1_HUB_REVISION_BASE : 161 (is_uv1 ? UV1_HUB_REVISION_BASE :
162 (is_uv2 ? UV2_HUB_REVISION_BASE : 162 (is_uv2 ? UV2_HUB_REVISION_BASE :
163 UV3_HUB_REVISION_BASE)); 163 UV3_HUB_REVISION_BASE));
164 pnodeid = early_get_pnodeid(); 164 pnodeid = early_get_pnodeid();
165 early_get_apic_pnode_shift(); 165 early_get_apic_pnode_shift();
166 x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; 166 x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
167 x86_platform.nmi_init = uv_nmi_init; 167 x86_platform.nmi_init = uv_nmi_init;
168 if (!strcmp(oem_table_id, "UVL")) 168 if (!strcmp(oem_table_id, "UVL"))
169 uv_system_type = UV_LEGACY_APIC; 169 uv_system_type = UV_LEGACY_APIC;
170 else if (!strcmp(oem_table_id, "UVX")) 170 else if (!strcmp(oem_table_id, "UVX"))
171 uv_system_type = UV_X2APIC; 171 uv_system_type = UV_X2APIC;
172 else if (!strcmp(oem_table_id, "UVH")) { 172 else if (!strcmp(oem_table_id, "UVH")) {
173 __this_cpu_write(x2apic_extra_bits, 173 __this_cpu_write(x2apic_extra_bits,
174 pnodeid << uvh_apicid.s.pnode_shift); 174 pnodeid << uvh_apicid.s.pnode_shift);
175 uv_system_type = UV_NON_UNIQUE_APIC; 175 uv_system_type = UV_NON_UNIQUE_APIC;
176 uv_set_apicid_hibit(); 176 uv_set_apicid_hibit();
177 return 1; 177 return 1;
178 } 178 }
179 } 179 }
180 return 0; 180 return 0;
181 } 181 }
182 182
183 enum uv_system_type get_uv_system_type(void) 183 enum uv_system_type get_uv_system_type(void)
184 { 184 {
185 return uv_system_type; 185 return uv_system_type;
186 } 186 }
187 187
188 int is_uv_system(void) 188 int is_uv_system(void)
189 { 189 {
190 return uv_system_type != UV_NONE; 190 return uv_system_type != UV_NONE;
191 } 191 }
192 EXPORT_SYMBOL_GPL(is_uv_system); 192 EXPORT_SYMBOL_GPL(is_uv_system);
193 193
194 DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); 194 DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
195 EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info); 195 EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
196 196
197 struct uv_blade_info *uv_blade_info; 197 struct uv_blade_info *uv_blade_info;
198 EXPORT_SYMBOL_GPL(uv_blade_info); 198 EXPORT_SYMBOL_GPL(uv_blade_info);
199 199
200 short *uv_node_to_blade; 200 short *uv_node_to_blade;
201 EXPORT_SYMBOL_GPL(uv_node_to_blade); 201 EXPORT_SYMBOL_GPL(uv_node_to_blade);
202 202
203 short *uv_cpu_to_blade; 203 short *uv_cpu_to_blade;
204 EXPORT_SYMBOL_GPL(uv_cpu_to_blade); 204 EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
205 205
206 short uv_possible_blades; 206 short uv_possible_blades;
207 EXPORT_SYMBOL_GPL(uv_possible_blades); 207 EXPORT_SYMBOL_GPL(uv_possible_blades);
208 208
209 unsigned long sn_rtc_cycles_per_second; 209 unsigned long sn_rtc_cycles_per_second;
210 EXPORT_SYMBOL(sn_rtc_cycles_per_second); 210 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
211 211
212 static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip) 212 static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip)
213 { 213 {
214 #ifdef CONFIG_SMP 214 #ifdef CONFIG_SMP
215 unsigned long val; 215 unsigned long val;
216 int pnode; 216 int pnode;
217 217
218 pnode = uv_apicid_to_pnode(phys_apicid); 218 pnode = uv_apicid_to_pnode(phys_apicid);
219 phys_apicid |= uv_apicid_hibits; 219 phys_apicid |= uv_apicid_hibits;
220 val = (1UL << UVH_IPI_INT_SEND_SHFT) | 220 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
221 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | 221 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
222 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | 222 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
223 APIC_DM_INIT; 223 APIC_DM_INIT;
224 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 224 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
225 225
226 val = (1UL << UVH_IPI_INT_SEND_SHFT) | 226 val = (1UL << UVH_IPI_INT_SEND_SHFT) |
227 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | 227 (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
228 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | 228 ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
229 APIC_DM_STARTUP; 229 APIC_DM_STARTUP;
230 uv_write_global_mmr64(pnode, UVH_IPI_INT, val); 230 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
231 231
232 atomic_set(&init_deasserted, 1); 232 atomic_set(&init_deasserted, 1);
233 #endif 233 #endif
234 return 0; 234 return 0;
235 } 235 }
236 236
237 static void uv_send_IPI_one(int cpu, int vector) 237 static void uv_send_IPI_one(int cpu, int vector)
238 { 238 {
239 unsigned long apicid; 239 unsigned long apicid;
240 int pnode; 240 int pnode;
241 241
242 apicid = per_cpu(x86_cpu_to_apicid, cpu); 242 apicid = per_cpu(x86_cpu_to_apicid, cpu);
243 pnode = uv_apicid_to_pnode(apicid); 243 pnode = uv_apicid_to_pnode(apicid);
244 uv_hub_send_ipi(pnode, apicid, vector); 244 uv_hub_send_ipi(pnode, apicid, vector);
245 } 245 }
246 246
247 static void uv_send_IPI_mask(const struct cpumask *mask, int vector) 247 static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
248 { 248 {
249 unsigned int cpu; 249 unsigned int cpu;
250 250
251 for_each_cpu(cpu, mask) 251 for_each_cpu(cpu, mask)
252 uv_send_IPI_one(cpu, vector); 252 uv_send_IPI_one(cpu, vector);
253 } 253 }
254 254
255 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) 255 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
256 { 256 {
257 unsigned int this_cpu = smp_processor_id(); 257 unsigned int this_cpu = smp_processor_id();
258 unsigned int cpu; 258 unsigned int cpu;
259 259
260 for_each_cpu(cpu, mask) { 260 for_each_cpu(cpu, mask) {
261 if (cpu != this_cpu) 261 if (cpu != this_cpu)
262 uv_send_IPI_one(cpu, vector); 262 uv_send_IPI_one(cpu, vector);
263 } 263 }
264 } 264 }
265 265
266 static void uv_send_IPI_allbutself(int vector) 266 static void uv_send_IPI_allbutself(int vector)
267 { 267 {
268 unsigned int this_cpu = smp_processor_id(); 268 unsigned int this_cpu = smp_processor_id();
269 unsigned int cpu; 269 unsigned int cpu;
270 270
271 for_each_online_cpu(cpu) { 271 for_each_online_cpu(cpu) {
272 if (cpu != this_cpu) 272 if (cpu != this_cpu)
273 uv_send_IPI_one(cpu, vector); 273 uv_send_IPI_one(cpu, vector);
274 } 274 }
275 } 275 }
276 276
277 static void uv_send_IPI_all(int vector) 277 static void uv_send_IPI_all(int vector)
278 { 278 {
279 uv_send_IPI_mask(cpu_online_mask, vector); 279 uv_send_IPI_mask(cpu_online_mask, vector);
280 } 280 }
281 281
282 static int uv_apic_id_valid(int apicid) 282 static int uv_apic_id_valid(int apicid)
283 { 283 {
284 return 1; 284 return 1;
285 } 285 }
286 286
287 static int uv_apic_id_registered(void) 287 static int uv_apic_id_registered(void)
288 { 288 {
289 return 1; 289 return 1;
290 } 290 }
291 291
292 static void uv_init_apic_ldr(void) 292 static void uv_init_apic_ldr(void)
293 { 293 {
294 } 294 }
295 295
296 static int 296 static int
297 uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask, 297 uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask,
298 const struct cpumask *andmask, 298 const struct cpumask *andmask,
299 unsigned int *apicid) 299 unsigned int *apicid)
300 { 300 {
301 int unsigned cpu; 301 int unsigned cpu;
302 302
303 /* 303 /*
304 * We're using fixed IRQ delivery, can only return one phys APIC ID. 304 * We're using fixed IRQ delivery, can only return one phys APIC ID.
305 * May as well be the first. 305 * May as well be the first.
306 */ 306 */
307 for_each_cpu_and(cpu, cpumask, andmask) { 307 for_each_cpu_and(cpu, cpumask, andmask) {
308 if (cpumask_test_cpu(cpu, cpu_online_mask)) 308 if (cpumask_test_cpu(cpu, cpu_online_mask))
309 break; 309 break;
310 } 310 }
311 311
312 if (likely(cpu < nr_cpu_ids)) { 312 if (likely(cpu < nr_cpu_ids)) {
313 *apicid = per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits; 313 *apicid = per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits;
314 return 0; 314 return 0;
315 } 315 }
316 316
317 return -EINVAL; 317 return -EINVAL;
318 } 318 }
319 319
320 static unsigned int x2apic_get_apic_id(unsigned long x) 320 static unsigned int x2apic_get_apic_id(unsigned long x)
321 { 321 {
322 unsigned int id; 322 unsigned int id;
323 323
324 WARN_ON(preemptible() && num_online_cpus() > 1); 324 WARN_ON(preemptible() && num_online_cpus() > 1);
325 id = x | __this_cpu_read(x2apic_extra_bits); 325 id = x | __this_cpu_read(x2apic_extra_bits);
326 326
327 return id; 327 return id;
328 } 328 }
329 329
330 static unsigned long set_apic_id(unsigned int id) 330 static unsigned long set_apic_id(unsigned int id)
331 { 331 {
332 unsigned long x; 332 unsigned long x;
333 333
334 /* maskout x2apic_extra_bits ? */ 334 /* maskout x2apic_extra_bits ? */
335 x = id; 335 x = id;
336 return x; 336 return x;
337 } 337 }
338 338
339 static unsigned int uv_read_apic_id(void) 339 static unsigned int uv_read_apic_id(void)
340 { 340 {
341 341
342 return x2apic_get_apic_id(apic_read(APIC_ID)); 342 return x2apic_get_apic_id(apic_read(APIC_ID));
343 } 343 }
344 344
345 static int uv_phys_pkg_id(int initial_apicid, int index_msb) 345 static int uv_phys_pkg_id(int initial_apicid, int index_msb)
346 { 346 {
347 return uv_read_apic_id() >> index_msb; 347 return uv_read_apic_id() >> index_msb;
348 } 348 }
349 349
350 static void uv_send_IPI_self(int vector) 350 static void uv_send_IPI_self(int vector)
351 { 351 {
352 apic_write(APIC_SELF_IPI, vector); 352 apic_write(APIC_SELF_IPI, vector);
353 } 353 }
354 354
355 static int uv_probe(void) 355 static int uv_probe(void)
356 { 356 {
357 return apic == &apic_x2apic_uv_x; 357 return apic == &apic_x2apic_uv_x;
358 } 358 }
359 359
360 static struct apic __refdata apic_x2apic_uv_x = { 360 static struct apic __refdata apic_x2apic_uv_x = {
361 361
362 .name = "UV large system", 362 .name = "UV large system",
363 .probe = uv_probe, 363 .probe = uv_probe,
364 .acpi_madt_oem_check = uv_acpi_madt_oem_check, 364 .acpi_madt_oem_check = uv_acpi_madt_oem_check,
365 .apic_id_valid = uv_apic_id_valid, 365 .apic_id_valid = uv_apic_id_valid,
366 .apic_id_registered = uv_apic_id_registered, 366 .apic_id_registered = uv_apic_id_registered,
367 367
368 .irq_delivery_mode = dest_Fixed, 368 .irq_delivery_mode = dest_Fixed,
369 .irq_dest_mode = 0, /* physical */ 369 .irq_dest_mode = 0, /* physical */
370 370
371 .target_cpus = online_target_cpus, 371 .target_cpus = online_target_cpus,
372 .disable_esr = 0, 372 .disable_esr = 0,
373 .dest_logical = APIC_DEST_LOGICAL, 373 .dest_logical = APIC_DEST_LOGICAL,
374 .check_apicid_used = NULL, 374 .check_apicid_used = NULL,
375 .check_apicid_present = NULL, 375 .check_apicid_present = NULL,
376 376
377 .vector_allocation_domain = default_vector_allocation_domain, 377 .vector_allocation_domain = default_vector_allocation_domain,
378 .init_apic_ldr = uv_init_apic_ldr, 378 .init_apic_ldr = uv_init_apic_ldr,
379 379
380 .ioapic_phys_id_map = NULL, 380 .ioapic_phys_id_map = NULL,
381 .setup_apic_routing = NULL, 381 .setup_apic_routing = NULL,
382 .multi_timer_check = NULL, 382 .multi_timer_check = NULL,
383 .cpu_present_to_apicid = default_cpu_present_to_apicid, 383 .cpu_present_to_apicid = default_cpu_present_to_apicid,
384 .apicid_to_cpu_present = NULL, 384 .apicid_to_cpu_present = NULL,
385 .setup_portio_remap = NULL, 385 .setup_portio_remap = NULL,
386 .check_phys_apicid_present = default_check_phys_apicid_present, 386 .check_phys_apicid_present = default_check_phys_apicid_present,
387 .enable_apic_mode = NULL, 387 .enable_apic_mode = NULL,
388 .phys_pkg_id = uv_phys_pkg_id, 388 .phys_pkg_id = uv_phys_pkg_id,
389 .mps_oem_check = NULL, 389 .mps_oem_check = NULL,
390 390
391 .get_apic_id = x2apic_get_apic_id, 391 .get_apic_id = x2apic_get_apic_id,
392 .set_apic_id = set_apic_id, 392 .set_apic_id = set_apic_id,
393 .apic_id_mask = 0xFFFFFFFFu, 393 .apic_id_mask = 0xFFFFFFFFu,
394 394
395 .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and, 395 .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and,
396 396
397 .send_IPI_mask = uv_send_IPI_mask, 397 .send_IPI_mask = uv_send_IPI_mask,
398 .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, 398 .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself,
399 .send_IPI_allbutself = uv_send_IPI_allbutself, 399 .send_IPI_allbutself = uv_send_IPI_allbutself,
400 .send_IPI_all = uv_send_IPI_all, 400 .send_IPI_all = uv_send_IPI_all,
401 .send_IPI_self = uv_send_IPI_self, 401 .send_IPI_self = uv_send_IPI_self,
402 402
403 .wakeup_secondary_cpu = uv_wakeup_secondary, 403 .wakeup_secondary_cpu = uv_wakeup_secondary,
404 .trampoline_phys_low = DEFAULT_TRAMPOLINE_PHYS_LOW, 404 .trampoline_phys_low = DEFAULT_TRAMPOLINE_PHYS_LOW,
405 .trampoline_phys_high = DEFAULT_TRAMPOLINE_PHYS_HIGH, 405 .trampoline_phys_high = DEFAULT_TRAMPOLINE_PHYS_HIGH,
406 .wait_for_init_deassert = NULL, 406 .wait_for_init_deassert = NULL,
407 .smp_callin_clear_local_apic = NULL, 407 .smp_callin_clear_local_apic = NULL,
408 .inquire_remote_apic = NULL, 408 .inquire_remote_apic = NULL,
409 409
410 .read = native_apic_msr_read, 410 .read = native_apic_msr_read,
411 .write = native_apic_msr_write, 411 .write = native_apic_msr_write,
412 .eoi_write = native_apic_msr_eoi_write, 412 .eoi_write = native_apic_msr_eoi_write,
413 .icr_read = native_x2apic_icr_read, 413 .icr_read = native_x2apic_icr_read,
414 .icr_write = native_x2apic_icr_write, 414 .icr_write = native_x2apic_icr_write,
415 .wait_icr_idle = native_x2apic_wait_icr_idle, 415 .wait_icr_idle = native_x2apic_wait_icr_idle,
416 .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle, 416 .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle,
417 }; 417 };
418 418
419 static void set_x2apic_extra_bits(int pnode) 419 static void set_x2apic_extra_bits(int pnode)
420 { 420 {
421 __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift); 421 __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift);
422 } 422 }
423 423
424 /* 424 /*
425 * Called on boot cpu. 425 * Called on boot cpu.
426 */ 426 */
427 static __init int boot_pnode_to_blade(int pnode) 427 static __init int boot_pnode_to_blade(int pnode)
428 { 428 {
429 int blade; 429 int blade;
430 430
431 for (blade = 0; blade < uv_num_possible_blades(); blade++) 431 for (blade = 0; blade < uv_num_possible_blades(); blade++)
432 if (pnode == uv_blade_info[blade].pnode) 432 if (pnode == uv_blade_info[blade].pnode)
433 return blade; 433 return blade;
434 BUG(); 434 BUG();
435 } 435 }
436 436
437 struct redir_addr { 437 struct redir_addr {
438 unsigned long redirect; 438 unsigned long redirect;
439 unsigned long alias; 439 unsigned long alias;
440 }; 440 };
441 441
442 #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT 442 #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
443 443
444 static __initdata struct redir_addr redir_addrs[] = { 444 static __initdata struct redir_addr redir_addrs[] = {
445 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR}, 445 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR},
446 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR}, 446 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR},
447 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR}, 447 {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR},
448 }; 448 };
449 449
450 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) 450 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
451 { 451 {
452 union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; 452 union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias;
453 union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; 453 union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
454 int i; 454 int i;
455 455
456 for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) { 456 for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
457 alias.v = uv_read_local_mmr(redir_addrs[i].alias); 457 alias.v = uv_read_local_mmr(redir_addrs[i].alias);
458 if (alias.s.enable && alias.s.base == 0) { 458 if (alias.s.enable && alias.s.base == 0) {
459 *size = (1UL << alias.s.m_alias); 459 *size = (1UL << alias.s.m_alias);
460 redirect.v = uv_read_local_mmr(redir_addrs[i].redirect); 460 redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
461 *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; 461 *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
462 return; 462 return;
463 } 463 }
464 } 464 }
465 *base = *size = 0; 465 *base = *size = 0;
466 } 466 }
467 467
468 enum map_type {map_wb, map_uc}; 468 enum map_type {map_wb, map_uc};
469 469
470 static __init void map_high(char *id, unsigned long base, int pshift, 470 static __init void map_high(char *id, unsigned long base, int pshift,
471 int bshift, int max_pnode, enum map_type map_type) 471 int bshift, int max_pnode, enum map_type map_type)
472 { 472 {
473 unsigned long bytes, paddr; 473 unsigned long bytes, paddr;
474 474
475 paddr = base << pshift; 475 paddr = base << pshift;
476 bytes = (1UL << bshift) * (max_pnode + 1); 476 bytes = (1UL << bshift) * (max_pnode + 1);
477 if (!paddr) { 477 if (!paddr) {
478 pr_info("UV: Map %s_HI base address NULL\n", id); 478 pr_info("UV: Map %s_HI base address NULL\n", id);
479 return; 479 return;
480 } 480 }
481 pr_debug("UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes); 481 pr_debug("UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes);
482 if (map_type == map_uc) 482 if (map_type == map_uc)
483 init_extra_mapping_uc(paddr, bytes); 483 init_extra_mapping_uc(paddr, bytes);
484 else 484 else
485 init_extra_mapping_wb(paddr, bytes); 485 init_extra_mapping_wb(paddr, bytes);
486 } 486 }
487 487
488 static __init void map_gru_distributed(unsigned long c) 488 static __init void map_gru_distributed(unsigned long c)
489 { 489 {
490 union uvh_rh_gam_gru_overlay_config_mmr_u gru; 490 union uvh_rh_gam_gru_overlay_config_mmr_u gru;
491 u64 paddr; 491 u64 paddr;
492 unsigned long bytes; 492 unsigned long bytes;
493 int nid; 493 int nid;
494 494
495 gru.v = c; 495 gru.v = c;
496 /* only base bits 42:28 relevant in dist mode */ 496 /* only base bits 42:28 relevant in dist mode */
497 gru_dist_base = gru.v & 0x000007fff0000000UL; 497 gru_dist_base = gru.v & 0x000007fff0000000UL;
498 if (!gru_dist_base) { 498 if (!gru_dist_base) {
499 pr_info("UV: Map GRU_DIST base address NULL\n"); 499 pr_info("UV: Map GRU_DIST base address NULL\n");
500 return; 500 return;
501 } 501 }
502 bytes = 1UL << UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; 502 bytes = 1UL << UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
503 gru_dist_lmask = ((1UL << uv_hub_info->m_val) - 1) & ~(bytes - 1); 503 gru_dist_lmask = ((1UL << uv_hub_info->m_val) - 1) & ~(bytes - 1);
504 gru_dist_umask = ~((1UL << uv_hub_info->m_val) - 1); 504 gru_dist_umask = ~((1UL << uv_hub_info->m_val) - 1);
505 gru_dist_base &= gru_dist_lmask; /* Clear bits above M */ 505 gru_dist_base &= gru_dist_lmask; /* Clear bits above M */
506 for_each_online_node(nid) { 506 for_each_online_node(nid) {
507 paddr = ((u64)uv_node_to_pnode(nid) << uv_hub_info->m_val) | 507 paddr = ((u64)uv_node_to_pnode(nid) << uv_hub_info->m_val) |
508 gru_dist_base; 508 gru_dist_base;
509 init_extra_mapping_wb(paddr, bytes); 509 init_extra_mapping_wb(paddr, bytes);
510 gru_first_node_paddr = min(paddr, gru_first_node_paddr); 510 gru_first_node_paddr = min(paddr, gru_first_node_paddr);
511 gru_last_node_paddr = max(paddr, gru_last_node_paddr); 511 gru_last_node_paddr = max(paddr, gru_last_node_paddr);
512 } 512 }
513 /* Save upper (63:M) bits of address only for is_GRU_range */ 513 /* Save upper (63:M) bits of address only for is_GRU_range */
514 gru_first_node_paddr &= gru_dist_umask; 514 gru_first_node_paddr &= gru_dist_umask;
515 gru_last_node_paddr &= gru_dist_umask; 515 gru_last_node_paddr &= gru_dist_umask;
516 pr_debug("UV: Map GRU_DIST base 0x%016llx 0x%016llx - 0x%016llx\n", 516 pr_debug("UV: Map GRU_DIST base 0x%016llx 0x%016llx - 0x%016llx\n",
517 gru_dist_base, gru_first_node_paddr, gru_last_node_paddr); 517 gru_dist_base, gru_first_node_paddr, gru_last_node_paddr);
518 } 518 }
519 519
520 static __init void map_gru_high(int max_pnode) 520 static __init void map_gru_high(int max_pnode)
521 { 521 {
522 union uvh_rh_gam_gru_overlay_config_mmr_u gru; 522 union uvh_rh_gam_gru_overlay_config_mmr_u gru;
523 int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; 523 int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
524 524
525 gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR); 525 gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
526 if (!gru.s.enable) { 526 if (!gru.s.enable) {
527 pr_info("UV: GRU disabled\n"); 527 pr_info("UV: GRU disabled\n");
528 return; 528 return;
529 } 529 }
530 530
531 if (is_uv3_hub() && gru.s3.mode) { 531 if (is_uv3_hub() && gru.s3.mode) {
532 map_gru_distributed(gru.v); 532 map_gru_distributed(gru.v);
533 return; 533 return;
534 } 534 }
535 map_high("GRU", gru.s.base, shift, shift, max_pnode, map_wb); 535 map_high("GRU", gru.s.base, shift, shift, max_pnode, map_wb);
536 gru_start_paddr = ((u64)gru.s.base << shift); 536 gru_start_paddr = ((u64)gru.s.base << shift);
537 gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); 537 gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
538 } 538 }
539 539
540 static __init void map_mmr_high(int max_pnode) 540 static __init void map_mmr_high(int max_pnode)
541 { 541 {
542 union uvh_rh_gam_mmr_overlay_config_mmr_u mmr; 542 union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
543 int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT; 543 int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
544 544
545 mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR); 545 mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
546 if (mmr.s.enable) 546 if (mmr.s.enable)
547 map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc); 547 map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc);
548 else 548 else
549 pr_info("UV: MMR disabled\n"); 549 pr_info("UV: MMR disabled\n");
550 } 550 }
551 551
552 /* 552 /*
553 * This commonality works because both 0 & 1 versions of the MMIOH OVERLAY 553 * This commonality works because both 0 & 1 versions of the MMIOH OVERLAY
554 * and REDIRECT MMR regs are exactly the same on UV3. 554 * and REDIRECT MMR regs are exactly the same on UV3.
555 */ 555 */
556 struct mmioh_config { 556 struct mmioh_config {
557 unsigned long overlay; 557 unsigned long overlay;
558 unsigned long redirect; 558 unsigned long redirect;
559 char *id; 559 char *id;
560 }; 560 };
561 561
562 static __initdata struct mmioh_config mmiohs[] = { 562 static __initdata struct mmioh_config mmiohs[] = {
563 { 563 {
564 UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR, 564 UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR,
565 UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR, 565 UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR,
566 "MMIOH0" 566 "MMIOH0"
567 }, 567 },
568 { 568 {
569 UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR, 569 UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR,
570 UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR, 570 UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR,
571 "MMIOH1" 571 "MMIOH1"
572 }, 572 },
573 }; 573 };
574 574
575 static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode) 575 static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode)
576 { 576 {
577 union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay; 577 union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay;
578 unsigned long mmr; 578 unsigned long mmr;
579 unsigned long base; 579 unsigned long base;
580 int i, n, shift, m_io, max_io; 580 int i, n, shift, m_io, max_io;
581 int nasid, lnasid, fi, li; 581 int nasid, lnasid, fi, li;
582 char *id; 582 char *id;
583 583
584 id = mmiohs[index].id; 584 id = mmiohs[index].id;
585 overlay.v = uv_read_local_mmr(mmiohs[index].overlay); 585 overlay.v = uv_read_local_mmr(mmiohs[index].overlay);
586 pr_info("UV: %s overlay 0x%lx base:0x%x m_io:%d\n", 586 pr_info("UV: %s overlay 0x%lx base:0x%x m_io:%d\n",
587 id, overlay.v, overlay.s3.base, overlay.s3.m_io); 587 id, overlay.v, overlay.s3.base, overlay.s3.m_io);
588 if (!overlay.s3.enable) { 588 if (!overlay.s3.enable) {
589 pr_info("UV: %s disabled\n", id); 589 pr_info("UV: %s disabled\n", id);
590 return; 590 return;
591 } 591 }
592 592
593 shift = UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_BASE_SHFT; 593 shift = UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_BASE_SHFT;
594 base = (unsigned long)overlay.s3.base; 594 base = (unsigned long)overlay.s3.base;
595 m_io = overlay.s3.m_io; 595 m_io = overlay.s3.m_io;
596 mmr = mmiohs[index].redirect; 596 mmr = mmiohs[index].redirect;
597 n = UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_DEPTH; 597 n = UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_DEPTH;
598 min_pnode *= 2; /* convert to NASID */ 598 min_pnode *= 2; /* convert to NASID */
599 max_pnode *= 2; 599 max_pnode *= 2;
600 max_io = lnasid = fi = li = -1; 600 max_io = lnasid = fi = li = -1;
601 601
602 for (i = 0; i < n; i++) { 602 for (i = 0; i < n; i++) {
603 union uv3h_rh_gam_mmioh_redirect_config0_mmr_u redirect; 603 union uv3h_rh_gam_mmioh_redirect_config0_mmr_u redirect;
604 604
605 redirect.v = uv_read_local_mmr(mmr + i * 8); 605 redirect.v = uv_read_local_mmr(mmr + i * 8);
606 nasid = redirect.s3.nasid; 606 nasid = redirect.s3.nasid;
607 if (nasid < min_pnode || max_pnode < nasid) 607 if (nasid < min_pnode || max_pnode < nasid)
608 nasid = -1; /* invalid NASID */ 608 nasid = -1; /* invalid NASID */
609 609
610 if (nasid == lnasid) { 610 if (nasid == lnasid) {
611 li = i; 611 li = i;
612 if (i != n-1) /* last entry check */ 612 if (i != n-1) /* last entry check */
613 continue; 613 continue;
614 } 614 }
615 615
616 /* check if we have a cached (or last) redirect to print */ 616 /* check if we have a cached (or last) redirect to print */
617 if (lnasid != -1 || (i == n-1 && nasid != -1)) { 617 if (lnasid != -1 || (i == n-1 && nasid != -1)) {
618 unsigned long addr1, addr2; 618 unsigned long addr1, addr2;
619 int f, l; 619 int f, l;
620 620
621 if (lnasid == -1) { 621 if (lnasid == -1) {
622 f = l = i; 622 f = l = i;
623 lnasid = nasid; 623 lnasid = nasid;
624 } else { 624 } else {
625 f = fi; 625 f = fi;
626 l = li; 626 l = li;
627 } 627 }
628 addr1 = (base << shift) + 628 addr1 = (base << shift) +
629 f * (unsigned long)(1 << m_io); 629 f * (unsigned long)(1 << m_io);
630 addr2 = (base << shift) + 630 addr2 = (base << shift) +
631 (l + 1) * (unsigned long)(1 << m_io); 631 (l + 1) * (unsigned long)(1 << m_io);
632 pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", 632 pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
633 id, fi, li, lnasid, addr1, addr2); 633 id, fi, li, lnasid, addr1, addr2);
634 if (max_io < l) 634 if (max_io < l)
635 max_io = l; 635 max_io = l;
636 } 636 }
637 fi = li = i; 637 fi = li = i;
638 lnasid = nasid; 638 lnasid = nasid;
639 } 639 }
640 640
641 pr_info("UV: %s base:0x%lx shift:%d M_IO:%d MAX_IO:%d\n", 641 pr_info("UV: %s base:0x%lx shift:%d M_IO:%d MAX_IO:%d\n",
642 id, base, shift, m_io, max_io); 642 id, base, shift, m_io, max_io);
643 643
644 if (max_io >= 0) 644 if (max_io >= 0)
645 map_high(id, base, shift, m_io, max_io, map_uc); 645 map_high(id, base, shift, m_io, max_io, map_uc);
646 } 646 }
647 647
648 static __init void map_mmioh_high(int min_pnode, int max_pnode) 648 static __init void map_mmioh_high(int min_pnode, int max_pnode)
649 { 649 {
650 union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; 650 union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
651 unsigned long mmr, base; 651 unsigned long mmr, base;
652 int shift, enable, m_io, n_io; 652 int shift, enable, m_io, n_io;
653 653
654 if (is_uv3_hub()) { 654 if (is_uv3_hub()) {
655 /* Map both MMIOH Regions */ 655 /* Map both MMIOH Regions */
656 map_mmioh_high_uv3(0, min_pnode, max_pnode); 656 map_mmioh_high_uv3(0, min_pnode, max_pnode);
657 map_mmioh_high_uv3(1, min_pnode, max_pnode); 657 map_mmioh_high_uv3(1, min_pnode, max_pnode);
658 return; 658 return;
659 } 659 }
660 660
661 if (is_uv1_hub()) { 661 if (is_uv1_hub()) {
662 mmr = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; 662 mmr = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR;
663 shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; 663 shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
664 mmioh.v = uv_read_local_mmr(mmr); 664 mmioh.v = uv_read_local_mmr(mmr);
665 enable = !!mmioh.s1.enable; 665 enable = !!mmioh.s1.enable;
666 base = mmioh.s1.base; 666 base = mmioh.s1.base;
667 m_io = mmioh.s1.m_io; 667 m_io = mmioh.s1.m_io;
668 n_io = mmioh.s1.n_io; 668 n_io = mmioh.s1.n_io;
669 } else if (is_uv2_hub()) { 669 } else if (is_uv2_hub()) {
670 mmr = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; 670 mmr = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR;
671 shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; 671 shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
672 mmioh.v = uv_read_local_mmr(mmr); 672 mmioh.v = uv_read_local_mmr(mmr);
673 enable = !!mmioh.s2.enable; 673 enable = !!mmioh.s2.enable;
674 base = mmioh.s2.base; 674 base = mmioh.s2.base;
675 m_io = mmioh.s2.m_io; 675 m_io = mmioh.s2.m_io;
676 n_io = mmioh.s2.n_io; 676 n_io = mmioh.s2.n_io;
677 } else 677 } else
678 return; 678 return;
679 679
680 if (enable) { 680 if (enable) {
681 max_pnode &= (1 << n_io) - 1; 681 max_pnode &= (1 << n_io) - 1;
682 pr_info( 682 pr_info(
683 "UV: base:0x%lx shift:%d N_IO:%d M_IO:%d max_pnode:0x%x\n", 683 "UV: base:0x%lx shift:%d N_IO:%d M_IO:%d max_pnode:0x%x\n",
684 base, shift, m_io, n_io, max_pnode); 684 base, shift, m_io, n_io, max_pnode);
685 map_high("MMIOH", base, shift, m_io, max_pnode, map_uc); 685 map_high("MMIOH", base, shift, m_io, max_pnode, map_uc);
686 } else { 686 } else {
687 pr_info("UV: MMIOH disabled\n"); 687 pr_info("UV: MMIOH disabled\n");
688 } 688 }
689 } 689 }
690 690
691 static __init void map_low_mmrs(void) 691 static __init void map_low_mmrs(void)
692 { 692 {
693 init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); 693 init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
694 init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); 694 init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
695 } 695 }
696 696
697 static __init void uv_rtc_init(void) 697 static __init void uv_rtc_init(void)
698 { 698 {
699 long status; 699 long status;
700 u64 ticks_per_sec; 700 u64 ticks_per_sec;
701 701
702 status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, 702 status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK,
703 &ticks_per_sec); 703 &ticks_per_sec);
704 if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { 704 if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
705 printk(KERN_WARNING 705 printk(KERN_WARNING
706 "unable to determine platform RTC clock frequency, " 706 "unable to determine platform RTC clock frequency, "
707 "guessing.\n"); 707 "guessing.\n");
708 /* BIOS gives wrong value for clock freq. so guess */ 708 /* BIOS gives wrong value for clock freq. so guess */
709 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; 709 sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
710 } else 710 } else
711 sn_rtc_cycles_per_second = ticks_per_sec; 711 sn_rtc_cycles_per_second = ticks_per_sec;
712 } 712 }
713 713
714 /* 714 /*
715 * percpu heartbeat timer 715 * percpu heartbeat timer
716 */ 716 */
717 static void uv_heartbeat(unsigned long ignored) 717 static void uv_heartbeat(unsigned long ignored)
718 { 718 {
719 struct timer_list *timer = &uv_hub_info->scir.timer; 719 struct timer_list *timer = &uv_hub_info->scir.timer;
720 unsigned char bits = uv_hub_info->scir.state; 720 unsigned char bits = uv_hub_info->scir.state;
721 721
722 /* flip heartbeat bit */ 722 /* flip heartbeat bit */
723 bits ^= SCIR_CPU_HEARTBEAT; 723 bits ^= SCIR_CPU_HEARTBEAT;
724 724
725 /* is this cpu idle? */ 725 /* is this cpu idle? */
726 if (idle_cpu(raw_smp_processor_id())) 726 if (idle_cpu(raw_smp_processor_id()))
727 bits &= ~SCIR_CPU_ACTIVITY; 727 bits &= ~SCIR_CPU_ACTIVITY;
728 else 728 else
729 bits |= SCIR_CPU_ACTIVITY; 729 bits |= SCIR_CPU_ACTIVITY;
730 730
731 /* update system controller interface reg */ 731 /* update system controller interface reg */
732 uv_set_scir_bits(bits); 732 uv_set_scir_bits(bits);
733 733
734 /* enable next timer period */ 734 /* enable next timer period */
735 mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL); 735 mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL);
736 } 736 }
737 737
738 static void uv_heartbeat_enable(int cpu) 738 static void uv_heartbeat_enable(int cpu)
739 { 739 {
740 while (!uv_cpu_hub_info(cpu)->scir.enabled) { 740 while (!uv_cpu_hub_info(cpu)->scir.enabled) {
741 struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer; 741 struct timer_list *timer = &uv_cpu_hub_info(cpu)->scir.timer;
742 742
743 uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY); 743 uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
744 setup_timer(timer, uv_heartbeat, cpu); 744 setup_timer(timer, uv_heartbeat, cpu);
745 timer->expires = jiffies + SCIR_CPU_HB_INTERVAL; 745 timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
746 add_timer_on(timer, cpu); 746 add_timer_on(timer, cpu);
747 uv_cpu_hub_info(cpu)->scir.enabled = 1; 747 uv_cpu_hub_info(cpu)->scir.enabled = 1;
748 748
749 /* also ensure that boot cpu is enabled */ 749 /* also ensure that boot cpu is enabled */
750 cpu = 0; 750 cpu = 0;
751 } 751 }
752 } 752 }
753 753
754 #ifdef CONFIG_HOTPLUG_CPU 754 #ifdef CONFIG_HOTPLUG_CPU
755 static void uv_heartbeat_disable(int cpu) 755 static void uv_heartbeat_disable(int cpu)
756 { 756 {
757 if (uv_cpu_hub_info(cpu)->scir.enabled) { 757 if (uv_cpu_hub_info(cpu)->scir.enabled) {
758 uv_cpu_hub_info(cpu)->scir.enabled = 0; 758 uv_cpu_hub_info(cpu)->scir.enabled = 0;
759 del_timer(&uv_cpu_hub_info(cpu)->scir.timer); 759 del_timer(&uv_cpu_hub_info(cpu)->scir.timer);
760 } 760 }
761 uv_set_cpu_scir_bits(cpu, 0xff); 761 uv_set_cpu_scir_bits(cpu, 0xff);
762 } 762 }
763 763
764 /* 764 /*
765 * cpu hotplug notifier 765 * cpu hotplug notifier
766 */ 766 */
767 static int uv_scir_cpu_notify(struct notifier_block *self, unsigned long action, 767 static int uv_scir_cpu_notify(struct notifier_block *self, unsigned long action,
768 void *hcpu) 768 void *hcpu)
769 { 769 {
770 long cpu = (long)hcpu; 770 long cpu = (long)hcpu;
771 771
772 switch (action) { 772 switch (action) {
773 case CPU_ONLINE: 773 case CPU_ONLINE:
774 uv_heartbeat_enable(cpu); 774 uv_heartbeat_enable(cpu);
775 break; 775 break;
776 case CPU_DOWN_PREPARE: 776 case CPU_DOWN_PREPARE:
777 uv_heartbeat_disable(cpu); 777 uv_heartbeat_disable(cpu);
778 break; 778 break;
779 default: 779 default:
780 break; 780 break;
781 } 781 }
782 return NOTIFY_OK; 782 return NOTIFY_OK;
783 } 783 }
784 784
785 static __init void uv_scir_register_cpu_notifier(void) 785 static __init void uv_scir_register_cpu_notifier(void)
786 { 786 {
787 hotcpu_notifier(uv_scir_cpu_notify, 0); 787 hotcpu_notifier(uv_scir_cpu_notify, 0);
788 } 788 }
789 789
790 #else /* !CONFIG_HOTPLUG_CPU */ 790 #else /* !CONFIG_HOTPLUG_CPU */
791 791
792 static __init void uv_scir_register_cpu_notifier(void) 792 static __init void uv_scir_register_cpu_notifier(void)
793 { 793 {
794 } 794 }
795 795
796 static __init int uv_init_heartbeat(void) 796 static __init int uv_init_heartbeat(void)
797 { 797 {
798 int cpu; 798 int cpu;
799 799
800 if (is_uv_system()) 800 if (is_uv_system())
801 for_each_online_cpu(cpu) 801 for_each_online_cpu(cpu)
802 uv_heartbeat_enable(cpu); 802 uv_heartbeat_enable(cpu);
803 return 0; 803 return 0;
804 } 804 }
805 805
806 late_initcall(uv_init_heartbeat); 806 late_initcall(uv_init_heartbeat);
807 807
808 #endif /* !CONFIG_HOTPLUG_CPU */ 808 #endif /* !CONFIG_HOTPLUG_CPU */
809 809
810 /* Direct Legacy VGA I/O traffic to designated IOH */ 810 /* Direct Legacy VGA I/O traffic to designated IOH */
811 int uv_set_vga_state(struct pci_dev *pdev, bool decode, 811 int uv_set_vga_state(struct pci_dev *pdev, bool decode,
812 unsigned int command_bits, u32 flags) 812 unsigned int command_bits, u32 flags)
813 { 813 {
814 int domain, bus, rc; 814 int domain, bus, rc;
815 815
816 PR_DEVEL("devfn %x decode %d cmd %x flags %d\n", 816 PR_DEVEL("devfn %x decode %d cmd %x flags %d\n",
817 pdev->devfn, decode, command_bits, flags); 817 pdev->devfn, decode, command_bits, flags);
818 818
819 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 819 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
820 return 0; 820 return 0;
821 821
822 if ((command_bits & PCI_COMMAND_IO) == 0) 822 if ((command_bits & PCI_COMMAND_IO) == 0)
823 return 0; 823 return 0;
824 824
825 domain = pci_domain_nr(pdev->bus); 825 domain = pci_domain_nr(pdev->bus);
826 bus = pdev->bus->number; 826 bus = pdev->bus->number;
827 827
828 rc = uv_bios_set_legacy_vga_target(decode, domain, bus); 828 rc = uv_bios_set_legacy_vga_target(decode, domain, bus);
829 PR_DEVEL("vga decode %d %x:%x, rc: %d\n", decode, domain, bus, rc); 829 PR_DEVEL("vga decode %d %x:%x, rc: %d\n", decode, domain, bus, rc);
830 830
831 return rc; 831 return rc;
832 } 832 }
833 833
834 /* 834 /*
835 * Called on each cpu to initialize the per_cpu UV data area. 835 * Called on each cpu to initialize the per_cpu UV data area.
836 * FIXME: hotplug not supported yet 836 * FIXME: hotplug not supported yet
837 */ 837 */
838 void uv_cpu_init(void) 838 void uv_cpu_init(void)
839 { 839 {
840 /* CPU 0 initilization will be done via uv_system_init. */ 840 /* CPU 0 initilization will be done via uv_system_init. */
841 if (!uv_blade_info) 841 if (!uv_blade_info)
842 return; 842 return;
843 843
844 uv_blade_info[uv_numa_blade_id()].nr_online_cpus++; 844 uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
845 845
846 if (get_uv_system_type() == UV_NON_UNIQUE_APIC) 846 if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
847 set_x2apic_extra_bits(uv_hub_info->pnode); 847 set_x2apic_extra_bits(uv_hub_info->pnode);
848 } 848 }
849 849
850 /* 850 /*
851 * When NMI is received, print a stack trace. 851 * When NMI is received, print a stack trace.
852 */ 852 */
853 int uv_handle_nmi(unsigned int reason, struct pt_regs *regs) 853 int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
854 { 854 {
855 unsigned long real_uv_nmi; 855 unsigned long real_uv_nmi;
856 int bid; 856 int bid;
857 857
858 /* 858 /*
859 * Each blade has an MMR that indicates when an NMI has been sent 859 * Each blade has an MMR that indicates when an NMI has been sent
860 * to cpus on the blade. If an NMI is detected, atomically 860 * to cpus on the blade. If an NMI is detected, atomically
861 * clear the MMR and update a per-blade NMI count used to 861 * clear the MMR and update a per-blade NMI count used to
862 * cause each cpu on the blade to notice a new NMI. 862 * cause each cpu on the blade to notice a new NMI.
863 */ 863 */
864 bid = uv_numa_blade_id(); 864 bid = uv_numa_blade_id();
865 real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK); 865 real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK);
866 866
867 if (unlikely(real_uv_nmi)) { 867 if (unlikely(real_uv_nmi)) {
868 spin_lock(&uv_blade_info[bid].nmi_lock); 868 spin_lock(&uv_blade_info[bid].nmi_lock);
869 real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK); 869 real_uv_nmi = (uv_read_local_mmr(UVH_NMI_MMR) & UV_NMI_PENDING_MASK);
870 if (real_uv_nmi) { 870 if (real_uv_nmi) {
871 uv_blade_info[bid].nmi_count++; 871 uv_blade_info[bid].nmi_count++;
872 uv_write_local_mmr(UVH_NMI_MMR_CLEAR, UV_NMI_PENDING_MASK); 872 uv_write_local_mmr(UVH_NMI_MMR_CLEAR, UV_NMI_PENDING_MASK);
873 } 873 }
874 spin_unlock(&uv_blade_info[bid].nmi_lock); 874 spin_unlock(&uv_blade_info[bid].nmi_lock);
875 } 875 }
876 876
877 if (likely(__get_cpu_var(cpu_last_nmi_count) == uv_blade_info[bid].nmi_count)) 877 if (likely(__get_cpu_var(cpu_last_nmi_count) == uv_blade_info[bid].nmi_count))
878 return NMI_DONE; 878 return NMI_DONE;
879 879
880 __get_cpu_var(cpu_last_nmi_count) = uv_blade_info[bid].nmi_count; 880 __get_cpu_var(cpu_last_nmi_count) = uv_blade_info[bid].nmi_count;
881 881
882 /* 882 /*
883 * Use a lock so only one cpu prints at a time. 883 * Use a lock so only one cpu prints at a time.
884 * This prevents intermixed output. 884 * This prevents intermixed output.
885 */ 885 */
886 spin_lock(&uv_nmi_lock); 886 spin_lock(&uv_nmi_lock);
887 pr_info("UV NMI stack dump cpu %u:\n", smp_processor_id()); 887 pr_info("UV NMI stack dump cpu %u:\n", smp_processor_id());
888 dump_stack(); 888 dump_stack();
889 spin_unlock(&uv_nmi_lock); 889 spin_unlock(&uv_nmi_lock);
890 890
891 return NMI_HANDLED; 891 return NMI_HANDLED;
892 } 892 }
893 893
894 void uv_register_nmi_notifier(void) 894 void uv_register_nmi_notifier(void)
895 { 895 {
896 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv")) 896 if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
897 printk(KERN_WARNING "UV NMI handler failed to register\n"); 897 printk(KERN_WARNING "UV NMI handler failed to register\n");
898 } 898 }
899 899
900 void uv_nmi_init(void) 900 void uv_nmi_init(void)
901 { 901 {
902 unsigned int value; 902 unsigned int value;
903 903
904 /* 904 /*
905 * Unmask NMI on all cpus 905 * Unmask NMI on all cpus
906 */ 906 */
907 value = apic_read(APIC_LVT1) | APIC_DM_NMI; 907 value = apic_read(APIC_LVT1) | APIC_DM_NMI;
908 value &= ~APIC_LVT_MASKED; 908 value &= ~APIC_LVT_MASKED;
909 apic_write(APIC_LVT1, value); 909 apic_write(APIC_LVT1, value);
910 } 910 }
911 911
912 void __init uv_system_init(void) 912 void __init uv_system_init(void)
913 { 913 {
914 union uvh_rh_gam_config_mmr_u m_n_config; 914 union uvh_rh_gam_config_mmr_u m_n_config;
915 union uvh_node_id_u node_id; 915 union uvh_node_id_u node_id;
916 unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size; 916 unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
917 int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val; 917 int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
918 int gnode_extra, min_pnode = 999999, max_pnode = -1; 918 int gnode_extra, min_pnode = 999999, max_pnode = -1;
919 unsigned long mmr_base, present, paddr; 919 unsigned long mmr_base, present, paddr;
920 unsigned short pnode_mask; 920 unsigned short pnode_mask;
921 char *hub = (is_uv1_hub() ? "UV1" : 921 char *hub = (is_uv1_hub() ? "UV1" :
922 (is_uv2_hub() ? "UV2" : 922 (is_uv2_hub() ? "UV2" :
923 "UV3")); 923 "UV3"));
924 924
925 pr_info("UV: Found %s hub\n", hub); 925 pr_info("UV: Found %s hub\n", hub);
926 map_low_mmrs(); 926 map_low_mmrs();
927 927
928 m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR ); 928 m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR );
929 m_val = m_n_config.s.m_skt; 929 m_val = m_n_config.s.m_skt;
930 n_val = m_n_config.s.n_skt; 930 n_val = m_n_config.s.n_skt;
931 pnode_mask = (1 << n_val) - 1; 931 pnode_mask = (1 << n_val) - 1;
932 mmr_base = 932 mmr_base =
933 uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & 933 uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
934 ~UV_MMR_ENABLE; 934 ~UV_MMR_ENABLE;
935 935
936 node_id.v = uv_read_local_mmr(UVH_NODE_ID); 936 node_id.v = uv_read_local_mmr(UVH_NODE_ID);
937 gnode_extra = (node_id.s.node_id & ~((1 << n_val) - 1)) >> 1; 937 gnode_extra = (node_id.s.node_id & ~((1 << n_val) - 1)) >> 1;
938 gnode_upper = ((unsigned long)gnode_extra << m_val); 938 gnode_upper = ((unsigned long)gnode_extra << m_val);
939 pr_info("UV: N:%d M:%d pnode_mask:0x%x gnode_upper/extra:0x%lx/0x%x\n", 939 pr_info("UV: N:%d M:%d pnode_mask:0x%x gnode_upper/extra:0x%lx/0x%x\n",
940 n_val, m_val, pnode_mask, gnode_upper, gnode_extra); 940 n_val, m_val, pnode_mask, gnode_upper, gnode_extra);
941 941
942 pr_info("UV: global MMR base 0x%lx\n", mmr_base); 942 pr_info("UV: global MMR base 0x%lx\n", mmr_base);
943 943
944 for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) 944 for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
945 uv_possible_blades += 945 uv_possible_blades +=
946 hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8)); 946 hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
947 947
948 /* uv_num_possible_blades() is really the hub count */ 948 /* uv_num_possible_blades() is really the hub count */
949 pr_info("UV: Found %d blades, %d hubs\n", 949 pr_info("UV: Found %d blades, %d hubs\n",
950 is_uv1_hub() ? uv_num_possible_blades() : 950 is_uv1_hub() ? uv_num_possible_blades() :
951 (uv_num_possible_blades() + 1) / 2, 951 (uv_num_possible_blades() + 1) / 2,
952 uv_num_possible_blades()); 952 uv_num_possible_blades());
953 953
954 bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades(); 954 bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
955 uv_blade_info = kzalloc(bytes, GFP_KERNEL); 955 uv_blade_info = kzalloc(bytes, GFP_KERNEL);
956 BUG_ON(!uv_blade_info); 956 BUG_ON(!uv_blade_info);
957 957
958 for (blade = 0; blade < uv_num_possible_blades(); blade++) 958 for (blade = 0; blade < uv_num_possible_blades(); blade++)
959 uv_blade_info[blade].memory_nid = -1; 959 uv_blade_info[blade].memory_nid = -1;
960 960
961 get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size); 961 get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
962 962
963 bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes(); 963 bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
964 uv_node_to_blade = kmalloc(bytes, GFP_KERNEL); 964 uv_node_to_blade = kmalloc(bytes, GFP_KERNEL);
965 BUG_ON(!uv_node_to_blade); 965 BUG_ON(!uv_node_to_blade);
966 memset(uv_node_to_blade, 255, bytes); 966 memset(uv_node_to_blade, 255, bytes);
967 967
968 bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus(); 968 bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
969 uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL); 969 uv_cpu_to_blade = kmalloc(bytes, GFP_KERNEL);
970 BUG_ON(!uv_cpu_to_blade); 970 BUG_ON(!uv_cpu_to_blade);
971 memset(uv_cpu_to_blade, 255, bytes); 971 memset(uv_cpu_to_blade, 255, bytes);
972 972
973 blade = 0; 973 blade = 0;
974 for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { 974 for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
975 present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); 975 present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
976 for (j = 0; j < 64; j++) { 976 for (j = 0; j < 64; j++) {
977 if (!test_bit(j, &present)) 977 if (!test_bit(j, &present))
978 continue; 978 continue;
979 pnode = (i * 64 + j) & pnode_mask; 979 pnode = (i * 64 + j) & pnode_mask;
980 uv_blade_info[blade].pnode = pnode; 980 uv_blade_info[blade].pnode = pnode;
981 uv_blade_info[blade].nr_possible_cpus = 0; 981 uv_blade_info[blade].nr_possible_cpus = 0;
982 uv_blade_info[blade].nr_online_cpus = 0; 982 uv_blade_info[blade].nr_online_cpus = 0;
983 spin_lock_init(&uv_blade_info[blade].nmi_lock); 983 spin_lock_init(&uv_blade_info[blade].nmi_lock);
984 min_pnode = min(pnode, min_pnode); 984 min_pnode = min(pnode, min_pnode);
985 max_pnode = max(pnode, max_pnode); 985 max_pnode = max(pnode, max_pnode);
986 blade++; 986 blade++;
987 } 987 }
988 } 988 }
989 989
990 uv_bios_init(); 990 uv_bios_init();
991 uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, 991 uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id,
992 &sn_region_size, &system_serial_number); 992 &sn_region_size, &system_serial_number);
993 uv_rtc_init(); 993 uv_rtc_init();
994 994
995 for_each_present_cpu(cpu) { 995 for_each_present_cpu(cpu) {
996 int apicid = per_cpu(x86_cpu_to_apicid, cpu); 996 int apicid = per_cpu(x86_cpu_to_apicid, cpu);
997 997
998 nid = cpu_to_node(cpu); 998 nid = cpu_to_node(cpu);
999 /* 999 /*
1000 * apic_pnode_shift must be set before calling uv_apicid_to_pnode(); 1000 * apic_pnode_shift must be set before calling uv_apicid_to_pnode();
1001 */ 1001 */
1002 uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask; 1002 uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask;
1003 uv_cpu_hub_info(cpu)->apic_pnode_shift = uvh_apicid.s.pnode_shift; 1003 uv_cpu_hub_info(cpu)->apic_pnode_shift = uvh_apicid.s.pnode_shift;
1004 uv_cpu_hub_info(cpu)->hub_revision = uv_hub_info->hub_revision; 1004 uv_cpu_hub_info(cpu)->hub_revision = uv_hub_info->hub_revision;
1005 1005
1006 uv_cpu_hub_info(cpu)->m_shift = 64 - m_val; 1006 uv_cpu_hub_info(cpu)->m_shift = 64 - m_val;
1007 uv_cpu_hub_info(cpu)->n_lshift = is_uv2_1_hub() ? 1007 uv_cpu_hub_info(cpu)->n_lshift = is_uv2_1_hub() ?
1008 (m_val == 40 ? 40 : 39) : m_val; 1008 (m_val == 40 ? 40 : 39) : m_val;
1009 1009
1010 pnode = uv_apicid_to_pnode(apicid); 1010 pnode = uv_apicid_to_pnode(apicid);
1011 blade = boot_pnode_to_blade(pnode); 1011 blade = boot_pnode_to_blade(pnode);
1012 lcpu = uv_blade_info[blade].nr_possible_cpus; 1012 lcpu = uv_blade_info[blade].nr_possible_cpus;
1013 uv_blade_info[blade].nr_possible_cpus++; 1013 uv_blade_info[blade].nr_possible_cpus++;
1014 1014
1015 /* Any node on the blade, else will contain -1. */ 1015 /* Any node on the blade, else will contain -1. */
1016 uv_blade_info[blade].memory_nid = nid; 1016 uv_blade_info[blade].memory_nid = nid;
1017 1017
1018 uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base; 1018 uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
1019 uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size; 1019 uv_cpu_hub_info(cpu)->lowmem_remap_top = lowmem_redir_size;
1020 uv_cpu_hub_info(cpu)->m_val = m_val; 1020 uv_cpu_hub_info(cpu)->m_val = m_val;
1021 uv_cpu_hub_info(cpu)->n_val = n_val; 1021 uv_cpu_hub_info(cpu)->n_val = n_val;
1022 uv_cpu_hub_info(cpu)->numa_blade_id = blade; 1022 uv_cpu_hub_info(cpu)->numa_blade_id = blade;
1023 uv_cpu_hub_info(cpu)->blade_processor_id = lcpu; 1023 uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
1024 uv_cpu_hub_info(cpu)->pnode = pnode; 1024 uv_cpu_hub_info(cpu)->pnode = pnode;
1025 uv_cpu_hub_info(cpu)->gpa_mask = (1UL << (m_val + n_val)) - 1; 1025 uv_cpu_hub_info(cpu)->gpa_mask = (1UL << (m_val + n_val)) - 1;
1026 uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper; 1026 uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
1027 uv_cpu_hub_info(cpu)->gnode_extra = gnode_extra; 1027 uv_cpu_hub_info(cpu)->gnode_extra = gnode_extra;
1028 uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base; 1028 uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
1029 uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id; 1029 uv_cpu_hub_info(cpu)->coherency_domain_number = sn_coherency_id;
1030 uv_cpu_hub_info(cpu)->scir.offset = uv_scir_offset(apicid); 1030 uv_cpu_hub_info(cpu)->scir.offset = uv_scir_offset(apicid);
1031 uv_node_to_blade[nid] = blade; 1031 uv_node_to_blade[nid] = blade;
1032 uv_cpu_to_blade[cpu] = blade; 1032 uv_cpu_to_blade[cpu] = blade;
1033 } 1033 }
1034 1034
1035 /* Add blade/pnode info for nodes without cpus */ 1035 /* Add blade/pnode info for nodes without cpus */
1036 for_each_online_node(nid) { 1036 for_each_online_node(nid) {
1037 if (uv_node_to_blade[nid] >= 0) 1037 if (uv_node_to_blade[nid] >= 0)
1038 continue; 1038 continue;
1039 paddr = node_start_pfn(nid) << PAGE_SHIFT; 1039 paddr = node_start_pfn(nid) << PAGE_SHIFT;
1040 pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr)); 1040 pnode = uv_gpa_to_pnode(uv_soc_phys_ram_to_gpa(paddr));
1041 blade = boot_pnode_to_blade(pnode); 1041 blade = boot_pnode_to_blade(pnode);
1042 uv_node_to_blade[nid] = blade; 1042 uv_node_to_blade[nid] = blade;
1043 } 1043 }
1044 1044
1045 map_gru_high(max_pnode); 1045 map_gru_high(max_pnode);
1046 map_mmr_high(max_pnode); 1046 map_mmr_high(max_pnode);
1047 map_mmioh_high(min_pnode, max_pnode); 1047 map_mmioh_high(min_pnode, max_pnode);
1048 1048
1049 uv_cpu_init(); 1049 uv_cpu_init();
1050 uv_scir_register_cpu_notifier(); 1050 uv_scir_register_cpu_notifier();
1051 uv_register_nmi_notifier(); 1051 uv_register_nmi_notifier();
1052 proc_mkdir("sgi_uv", NULL); 1052 proc_mkdir("sgi_uv", NULL);
1053 1053
1054 /* register Legacy VGA I/O redirection handler */ 1054 /* register Legacy VGA I/O redirection handler */
1055 pci_register_set_vga_state(uv_set_vga_state); 1055 pci_register_set_vga_state(uv_set_vga_state);
1056 1056
1057 /* 1057 /*
1058 * For a kdump kernel the reset must be BOOT_ACPI, not BOOT_EFI, as 1058 * For a kdump kernel the reset must be BOOT_ACPI, not BOOT_EFI, as
1059 * EFI is not enabled in the kdump kernel. 1059 * EFI is not enabled in the kdump kernel.
1060 */ 1060 */
1061 if (is_kdump_kernel()) 1061 if (is_kdump_kernel())
1062 reboot_type = BOOT_ACPI; 1062 reboot_type = BOOT_ACPI;
1063 } 1063 }
1064 1064
1065 apic_driver(apic_x2apic_uv_x); 1065 apic_driver(apic_x2apic_uv_x);
1066 1066