Commit 989d216f86bbef47059c10aca77be9f56305a7ec

Authored by Linus Torvalds

Merge tag 'iommu-fixes-v3.15-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu

Pull iommu fixes from Joerg Roedel:
 "Three fixes for the AMD IOMMU driver:
   - fix a locking issue around get_user_pages()
   - fix two issues with device aliasing and exclusion range handling"

* tag 'iommu-fixes-v3.15-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu:
  iommu/amd: fix enabling exclusion range for an exact device
  iommu/amd: Take mmap_sem when calling get_user_pages
  iommu/amd: Fix interrupt remapping for aliased devices

Showing 3 changed files Inline Diff

drivers/iommu/amd_iommu.c
1 /* 1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com> 3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com> 4 * Leo Duran <leo.duran@amd.com>
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify it 6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published 7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation. 8 * by the Free Software Foundation.
9 * 9 *
10 * This program is distributed in the hope that it will be useful, 10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details. 13 * GNU General Public License for more details.
14 * 14 *
15 * You should have received a copy of the GNU General Public License 15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software 16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */ 18 */
19 19
20 #include <linux/ratelimit.h> 20 #include <linux/ratelimit.h>
21 #include <linux/pci.h> 21 #include <linux/pci.h>
22 #include <linux/pci-ats.h> 22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h> 23 #include <linux/bitmap.h>
24 #include <linux/slab.h> 24 #include <linux/slab.h>
25 #include <linux/debugfs.h> 25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h> 26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h> 27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h> 28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h> 29 #include <linux/iommu.h>
30 #include <linux/delay.h> 30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h> 31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h> 32 #include <linux/notifier.h>
33 #include <linux/export.h> 33 #include <linux/export.h>
34 #include <linux/irq.h> 34 #include <linux/irq.h>
35 #include <linux/msi.h> 35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h> 36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h> 37 #include <asm/io_apic.h>
38 #include <asm/apic.h> 38 #include <asm/apic.h>
39 #include <asm/hw_irq.h> 39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h> 40 #include <asm/msidef.h>
41 #include <asm/proto.h> 41 #include <asm/proto.h>
42 #include <asm/iommu.h> 42 #include <asm/iommu.h>
43 #include <asm/gart.h> 43 #include <asm/gart.h>
44 #include <asm/dma.h> 44 #include <asm/dma.h>
45 45
46 #include "amd_iommu_proto.h" 46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h" 47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h" 48 #include "irq_remapping.h"
49 #include "pci.h" 49 #include "pci.h"
50 50
51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) 51 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
52 52
53 #define LOOP_TIMEOUT 100000 53 #define LOOP_TIMEOUT 100000
54 54
55 /* 55 /*
56 * This bitmap is used to advertise the page sizes our hardware support 56 * This bitmap is used to advertise the page sizes our hardware support
57 * to the IOMMU core, which will then use this information to split 57 * to the IOMMU core, which will then use this information to split
58 * physically contiguous memory regions it is mapping into page sizes 58 * physically contiguous memory regions it is mapping into page sizes
59 * that we support. 59 * that we support.
60 * 60 *
61 * 512GB Pages are not supported due to a hardware bug 61 * 512GB Pages are not supported due to a hardware bug
62 */ 62 */
63 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38)) 63 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
64 64
65 static DEFINE_RWLOCK(amd_iommu_devtable_lock); 65 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66 66
67 /* A list of preallocated protection domains */ 67 /* A list of preallocated protection domains */
68 static LIST_HEAD(iommu_pd_list); 68 static LIST_HEAD(iommu_pd_list);
69 static DEFINE_SPINLOCK(iommu_pd_list_lock); 69 static DEFINE_SPINLOCK(iommu_pd_list_lock);
70 70
71 /* List of all available dev_data structures */ 71 /* List of all available dev_data structures */
72 static LIST_HEAD(dev_data_list); 72 static LIST_HEAD(dev_data_list);
73 static DEFINE_SPINLOCK(dev_data_list_lock); 73 static DEFINE_SPINLOCK(dev_data_list_lock);
74 74
75 LIST_HEAD(ioapic_map); 75 LIST_HEAD(ioapic_map);
76 LIST_HEAD(hpet_map); 76 LIST_HEAD(hpet_map);
77 77
78 /* 78 /*
79 * Domain for untranslated devices - only allocated 79 * Domain for untranslated devices - only allocated
80 * if iommu=pt passed on kernel cmd line. 80 * if iommu=pt passed on kernel cmd line.
81 */ 81 */
82 static struct protection_domain *pt_domain; 82 static struct protection_domain *pt_domain;
83 83
84 static struct iommu_ops amd_iommu_ops; 84 static struct iommu_ops amd_iommu_ops;
85 85
86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier); 86 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87 int amd_iommu_max_glx_val = -1; 87 int amd_iommu_max_glx_val = -1;
88 88
89 static struct dma_map_ops amd_iommu_dma_ops; 89 static struct dma_map_ops amd_iommu_dma_ops;
90 90
91 /* 91 /*
92 * general struct to manage commands send to an IOMMU 92 * general struct to manage commands send to an IOMMU
93 */ 93 */
94 struct iommu_cmd { 94 struct iommu_cmd {
95 u32 data[4]; 95 u32 data[4];
96 }; 96 };
97 97
98 struct kmem_cache *amd_iommu_irq_cache; 98 struct kmem_cache *amd_iommu_irq_cache;
99 99
100 static void update_domain(struct protection_domain *domain); 100 static void update_domain(struct protection_domain *domain);
101 static int __init alloc_passthrough_domain(void); 101 static int __init alloc_passthrough_domain(void);
102 102
103 /**************************************************************************** 103 /****************************************************************************
104 * 104 *
105 * Helper functions 105 * Helper functions
106 * 106 *
107 ****************************************************************************/ 107 ****************************************************************************/
108 108
109 static struct iommu_dev_data *alloc_dev_data(u16 devid) 109 static struct iommu_dev_data *alloc_dev_data(u16 devid)
110 { 110 {
111 struct iommu_dev_data *dev_data; 111 struct iommu_dev_data *dev_data;
112 unsigned long flags; 112 unsigned long flags;
113 113
114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); 114 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
115 if (!dev_data) 115 if (!dev_data)
116 return NULL; 116 return NULL;
117 117
118 dev_data->devid = devid; 118 dev_data->devid = devid;
119 atomic_set(&dev_data->bind, 0); 119 atomic_set(&dev_data->bind, 0);
120 120
121 spin_lock_irqsave(&dev_data_list_lock, flags); 121 spin_lock_irqsave(&dev_data_list_lock, flags);
122 list_add_tail(&dev_data->dev_data_list, &dev_data_list); 122 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
123 spin_unlock_irqrestore(&dev_data_list_lock, flags); 123 spin_unlock_irqrestore(&dev_data_list_lock, flags);
124 124
125 return dev_data; 125 return dev_data;
126 } 126 }
127 127
128 static void free_dev_data(struct iommu_dev_data *dev_data) 128 static void free_dev_data(struct iommu_dev_data *dev_data)
129 { 129 {
130 unsigned long flags; 130 unsigned long flags;
131 131
132 spin_lock_irqsave(&dev_data_list_lock, flags); 132 spin_lock_irqsave(&dev_data_list_lock, flags);
133 list_del(&dev_data->dev_data_list); 133 list_del(&dev_data->dev_data_list);
134 spin_unlock_irqrestore(&dev_data_list_lock, flags); 134 spin_unlock_irqrestore(&dev_data_list_lock, flags);
135 135
136 if (dev_data->group) 136 if (dev_data->group)
137 iommu_group_put(dev_data->group); 137 iommu_group_put(dev_data->group);
138 138
139 kfree(dev_data); 139 kfree(dev_data);
140 } 140 }
141 141
142 static struct iommu_dev_data *search_dev_data(u16 devid) 142 static struct iommu_dev_data *search_dev_data(u16 devid)
143 { 143 {
144 struct iommu_dev_data *dev_data; 144 struct iommu_dev_data *dev_data;
145 unsigned long flags; 145 unsigned long flags;
146 146
147 spin_lock_irqsave(&dev_data_list_lock, flags); 147 spin_lock_irqsave(&dev_data_list_lock, flags);
148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { 148 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
149 if (dev_data->devid == devid) 149 if (dev_data->devid == devid)
150 goto out_unlock; 150 goto out_unlock;
151 } 151 }
152 152
153 dev_data = NULL; 153 dev_data = NULL;
154 154
155 out_unlock: 155 out_unlock:
156 spin_unlock_irqrestore(&dev_data_list_lock, flags); 156 spin_unlock_irqrestore(&dev_data_list_lock, flags);
157 157
158 return dev_data; 158 return dev_data;
159 } 159 }
160 160
161 static struct iommu_dev_data *find_dev_data(u16 devid) 161 static struct iommu_dev_data *find_dev_data(u16 devid)
162 { 162 {
163 struct iommu_dev_data *dev_data; 163 struct iommu_dev_data *dev_data;
164 164
165 dev_data = search_dev_data(devid); 165 dev_data = search_dev_data(devid);
166 166
167 if (dev_data == NULL) 167 if (dev_data == NULL)
168 dev_data = alloc_dev_data(devid); 168 dev_data = alloc_dev_data(devid);
169 169
170 return dev_data; 170 return dev_data;
171 } 171 }
172 172
173 static inline u16 get_device_id(struct device *dev) 173 static inline u16 get_device_id(struct device *dev)
174 { 174 {
175 struct pci_dev *pdev = to_pci_dev(dev); 175 struct pci_dev *pdev = to_pci_dev(dev);
176 176
177 return PCI_DEVID(pdev->bus->number, pdev->devfn); 177 return PCI_DEVID(pdev->bus->number, pdev->devfn);
178 } 178 }
179 179
180 static struct iommu_dev_data *get_dev_data(struct device *dev) 180 static struct iommu_dev_data *get_dev_data(struct device *dev)
181 { 181 {
182 return dev->archdata.iommu; 182 return dev->archdata.iommu;
183 } 183 }
184 184
185 static bool pci_iommuv2_capable(struct pci_dev *pdev) 185 static bool pci_iommuv2_capable(struct pci_dev *pdev)
186 { 186 {
187 static const int caps[] = { 187 static const int caps[] = {
188 PCI_EXT_CAP_ID_ATS, 188 PCI_EXT_CAP_ID_ATS,
189 PCI_EXT_CAP_ID_PRI, 189 PCI_EXT_CAP_ID_PRI,
190 PCI_EXT_CAP_ID_PASID, 190 PCI_EXT_CAP_ID_PASID,
191 }; 191 };
192 int i, pos; 192 int i, pos;
193 193
194 for (i = 0; i < 3; ++i) { 194 for (i = 0; i < 3; ++i) {
195 pos = pci_find_ext_capability(pdev, caps[i]); 195 pos = pci_find_ext_capability(pdev, caps[i]);
196 if (pos == 0) 196 if (pos == 0)
197 return false; 197 return false;
198 } 198 }
199 199
200 return true; 200 return true;
201 } 201 }
202 202
203 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) 203 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
204 { 204 {
205 struct iommu_dev_data *dev_data; 205 struct iommu_dev_data *dev_data;
206 206
207 dev_data = get_dev_data(&pdev->dev); 207 dev_data = get_dev_data(&pdev->dev);
208 208
209 return dev_data->errata & (1 << erratum) ? true : false; 209 return dev_data->errata & (1 << erratum) ? true : false;
210 } 210 }
211 211
212 /* 212 /*
213 * In this function the list of preallocated protection domains is traversed to 213 * In this function the list of preallocated protection domains is traversed to
214 * find the domain for a specific device 214 * find the domain for a specific device
215 */ 215 */
216 static struct dma_ops_domain *find_protection_domain(u16 devid) 216 static struct dma_ops_domain *find_protection_domain(u16 devid)
217 { 217 {
218 struct dma_ops_domain *entry, *ret = NULL; 218 struct dma_ops_domain *entry, *ret = NULL;
219 unsigned long flags; 219 unsigned long flags;
220 u16 alias = amd_iommu_alias_table[devid]; 220 u16 alias = amd_iommu_alias_table[devid];
221 221
222 if (list_empty(&iommu_pd_list)) 222 if (list_empty(&iommu_pd_list))
223 return NULL; 223 return NULL;
224 224
225 spin_lock_irqsave(&iommu_pd_list_lock, flags); 225 spin_lock_irqsave(&iommu_pd_list_lock, flags);
226 226
227 list_for_each_entry(entry, &iommu_pd_list, list) { 227 list_for_each_entry(entry, &iommu_pd_list, list) {
228 if (entry->target_dev == devid || 228 if (entry->target_dev == devid ||
229 entry->target_dev == alias) { 229 entry->target_dev == alias) {
230 ret = entry; 230 ret = entry;
231 break; 231 break;
232 } 232 }
233 } 233 }
234 234
235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags); 235 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
236 236
237 return ret; 237 return ret;
238 } 238 }
239 239
240 /* 240 /*
241 * This function checks if the driver got a valid device from the caller to 241 * This function checks if the driver got a valid device from the caller to
242 * avoid dereferencing invalid pointers. 242 * avoid dereferencing invalid pointers.
243 */ 243 */
244 static bool check_device(struct device *dev) 244 static bool check_device(struct device *dev)
245 { 245 {
246 u16 devid; 246 u16 devid;
247 247
248 if (!dev || !dev->dma_mask) 248 if (!dev || !dev->dma_mask)
249 return false; 249 return false;
250 250
251 /* No PCI device */ 251 /* No PCI device */
252 if (!dev_is_pci(dev)) 252 if (!dev_is_pci(dev))
253 return false; 253 return false;
254 254
255 devid = get_device_id(dev); 255 devid = get_device_id(dev);
256 256
257 /* Out of our scope? */ 257 /* Out of our scope? */
258 if (devid > amd_iommu_last_bdf) 258 if (devid > amd_iommu_last_bdf)
259 return false; 259 return false;
260 260
261 if (amd_iommu_rlookup_table[devid] == NULL) 261 if (amd_iommu_rlookup_table[devid] == NULL)
262 return false; 262 return false;
263 263
264 return true; 264 return true;
265 } 265 }
266 266
267 static struct pci_bus *find_hosted_bus(struct pci_bus *bus) 267 static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
268 { 268 {
269 while (!bus->self) { 269 while (!bus->self) {
270 if (!pci_is_root_bus(bus)) 270 if (!pci_is_root_bus(bus))
271 bus = bus->parent; 271 bus = bus->parent;
272 else 272 else
273 return ERR_PTR(-ENODEV); 273 return ERR_PTR(-ENODEV);
274 } 274 }
275 275
276 return bus; 276 return bus;
277 } 277 }
278 278
279 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 279 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
280 280
281 static struct pci_dev *get_isolation_root(struct pci_dev *pdev) 281 static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
282 { 282 {
283 struct pci_dev *dma_pdev = pdev; 283 struct pci_dev *dma_pdev = pdev;
284 284
285 /* Account for quirked devices */ 285 /* Account for quirked devices */
286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev)); 286 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
287 287
288 /* 288 /*
289 * If it's a multifunction device that does not support our 289 * If it's a multifunction device that does not support our
290 * required ACS flags, add to the same group as lowest numbered 290 * required ACS flags, add to the same group as lowest numbered
291 * function that also does not suport the required ACS flags. 291 * function that also does not suport the required ACS flags.
292 */ 292 */
293 if (dma_pdev->multifunction && 293 if (dma_pdev->multifunction &&
294 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) { 294 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
295 u8 i, slot = PCI_SLOT(dma_pdev->devfn); 295 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
296 296
297 for (i = 0; i < 8; i++) { 297 for (i = 0; i < 8; i++) {
298 struct pci_dev *tmp; 298 struct pci_dev *tmp;
299 299
300 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i)); 300 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
301 if (!tmp) 301 if (!tmp)
302 continue; 302 continue;
303 303
304 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) { 304 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
305 swap_pci_ref(&dma_pdev, tmp); 305 swap_pci_ref(&dma_pdev, tmp);
306 break; 306 break;
307 } 307 }
308 pci_dev_put(tmp); 308 pci_dev_put(tmp);
309 } 309 }
310 } 310 }
311 311
312 /* 312 /*
313 * Devices on the root bus go through the iommu. If that's not us, 313 * Devices on the root bus go through the iommu. If that's not us,
314 * find the next upstream device and test ACS up to the root bus. 314 * find the next upstream device and test ACS up to the root bus.
315 * Finding the next device may require skipping virtual buses. 315 * Finding the next device may require skipping virtual buses.
316 */ 316 */
317 while (!pci_is_root_bus(dma_pdev->bus)) { 317 while (!pci_is_root_bus(dma_pdev->bus)) {
318 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus); 318 struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
319 if (IS_ERR(bus)) 319 if (IS_ERR(bus))
320 break; 320 break;
321 321
322 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 322 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
323 break; 323 break;
324 324
325 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self)); 325 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
326 } 326 }
327 327
328 return dma_pdev; 328 return dma_pdev;
329 } 329 }
330 330
331 static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev) 331 static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
332 { 332 {
333 struct iommu_group *group = iommu_group_get(&pdev->dev); 333 struct iommu_group *group = iommu_group_get(&pdev->dev);
334 int ret; 334 int ret;
335 335
336 if (!group) { 336 if (!group) {
337 group = iommu_group_alloc(); 337 group = iommu_group_alloc();
338 if (IS_ERR(group)) 338 if (IS_ERR(group))
339 return PTR_ERR(group); 339 return PTR_ERR(group);
340 340
341 WARN_ON(&pdev->dev != dev); 341 WARN_ON(&pdev->dev != dev);
342 } 342 }
343 343
344 ret = iommu_group_add_device(group, dev); 344 ret = iommu_group_add_device(group, dev);
345 iommu_group_put(group); 345 iommu_group_put(group);
346 return ret; 346 return ret;
347 } 347 }
348 348
349 static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data, 349 static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
350 struct device *dev) 350 struct device *dev)
351 { 351 {
352 if (!dev_data->group) { 352 if (!dev_data->group) {
353 struct iommu_group *group = iommu_group_alloc(); 353 struct iommu_group *group = iommu_group_alloc();
354 if (IS_ERR(group)) 354 if (IS_ERR(group))
355 return PTR_ERR(group); 355 return PTR_ERR(group);
356 356
357 dev_data->group = group; 357 dev_data->group = group;
358 } 358 }
359 359
360 return iommu_group_add_device(dev_data->group, dev); 360 return iommu_group_add_device(dev_data->group, dev);
361 } 361 }
362 362
363 static int init_iommu_group(struct device *dev) 363 static int init_iommu_group(struct device *dev)
364 { 364 {
365 struct iommu_dev_data *dev_data; 365 struct iommu_dev_data *dev_data;
366 struct iommu_group *group; 366 struct iommu_group *group;
367 struct pci_dev *dma_pdev; 367 struct pci_dev *dma_pdev;
368 int ret; 368 int ret;
369 369
370 group = iommu_group_get(dev); 370 group = iommu_group_get(dev);
371 if (group) { 371 if (group) {
372 iommu_group_put(group); 372 iommu_group_put(group);
373 return 0; 373 return 0;
374 } 374 }
375 375
376 dev_data = find_dev_data(get_device_id(dev)); 376 dev_data = find_dev_data(get_device_id(dev));
377 if (!dev_data) 377 if (!dev_data)
378 return -ENOMEM; 378 return -ENOMEM;
379 379
380 if (dev_data->alias_data) { 380 if (dev_data->alias_data) {
381 u16 alias; 381 u16 alias;
382 struct pci_bus *bus; 382 struct pci_bus *bus;
383 383
384 if (dev_data->alias_data->group) 384 if (dev_data->alias_data->group)
385 goto use_group; 385 goto use_group;
386 386
387 /* 387 /*
388 * If the alias device exists, it's effectively just a first 388 * If the alias device exists, it's effectively just a first
389 * level quirk for finding the DMA source. 389 * level quirk for finding the DMA source.
390 */ 390 */
391 alias = amd_iommu_alias_table[dev_data->devid]; 391 alias = amd_iommu_alias_table[dev_data->devid];
392 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff); 392 dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
393 if (dma_pdev) { 393 if (dma_pdev) {
394 dma_pdev = get_isolation_root(dma_pdev); 394 dma_pdev = get_isolation_root(dma_pdev);
395 goto use_pdev; 395 goto use_pdev;
396 } 396 }
397 397
398 /* 398 /*
399 * If the alias is virtual, try to find a parent device 399 * If the alias is virtual, try to find a parent device
400 * and test whether the IOMMU group is actualy rooted above 400 * and test whether the IOMMU group is actualy rooted above
401 * the alias. Be careful to also test the parent device if 401 * the alias. Be careful to also test the parent device if
402 * we think the alias is the root of the group. 402 * we think the alias is the root of the group.
403 */ 403 */
404 bus = pci_find_bus(0, alias >> 8); 404 bus = pci_find_bus(0, alias >> 8);
405 if (!bus) 405 if (!bus)
406 goto use_group; 406 goto use_group;
407 407
408 bus = find_hosted_bus(bus); 408 bus = find_hosted_bus(bus);
409 if (IS_ERR(bus) || !bus->self) 409 if (IS_ERR(bus) || !bus->self)
410 goto use_group; 410 goto use_group;
411 411
412 dma_pdev = get_isolation_root(pci_dev_get(bus->self)); 412 dma_pdev = get_isolation_root(pci_dev_get(bus->self));
413 if (dma_pdev != bus->self || (dma_pdev->multifunction && 413 if (dma_pdev != bus->self || (dma_pdev->multifunction &&
414 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))) 414 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
415 goto use_pdev; 415 goto use_pdev;
416 416
417 pci_dev_put(dma_pdev); 417 pci_dev_put(dma_pdev);
418 goto use_group; 418 goto use_group;
419 } 419 }
420 420
421 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev))); 421 dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
422 use_pdev: 422 use_pdev:
423 ret = use_pdev_iommu_group(dma_pdev, dev); 423 ret = use_pdev_iommu_group(dma_pdev, dev);
424 pci_dev_put(dma_pdev); 424 pci_dev_put(dma_pdev);
425 return ret; 425 return ret;
426 use_group: 426 use_group:
427 return use_dev_data_iommu_group(dev_data->alias_data, dev); 427 return use_dev_data_iommu_group(dev_data->alias_data, dev);
428 } 428 }
429 429
430 static int iommu_init_device(struct device *dev) 430 static int iommu_init_device(struct device *dev)
431 { 431 {
432 struct pci_dev *pdev = to_pci_dev(dev); 432 struct pci_dev *pdev = to_pci_dev(dev);
433 struct iommu_dev_data *dev_data; 433 struct iommu_dev_data *dev_data;
434 u16 alias; 434 u16 alias;
435 int ret; 435 int ret;
436 436
437 if (dev->archdata.iommu) 437 if (dev->archdata.iommu)
438 return 0; 438 return 0;
439 439
440 dev_data = find_dev_data(get_device_id(dev)); 440 dev_data = find_dev_data(get_device_id(dev));
441 if (!dev_data) 441 if (!dev_data)
442 return -ENOMEM; 442 return -ENOMEM;
443 443
444 alias = amd_iommu_alias_table[dev_data->devid]; 444 alias = amd_iommu_alias_table[dev_data->devid];
445 if (alias != dev_data->devid) { 445 if (alias != dev_data->devid) {
446 struct iommu_dev_data *alias_data; 446 struct iommu_dev_data *alias_data;
447 447
448 alias_data = find_dev_data(alias); 448 alias_data = find_dev_data(alias);
449 if (alias_data == NULL) { 449 if (alias_data == NULL) {
450 pr_err("AMD-Vi: Warning: Unhandled device %s\n", 450 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
451 dev_name(dev)); 451 dev_name(dev));
452 free_dev_data(dev_data); 452 free_dev_data(dev_data);
453 return -ENOTSUPP; 453 return -ENOTSUPP;
454 } 454 }
455 dev_data->alias_data = alias_data; 455 dev_data->alias_data = alias_data;
456 } 456 }
457 457
458 ret = init_iommu_group(dev); 458 ret = init_iommu_group(dev);
459 if (ret) { 459 if (ret) {
460 free_dev_data(dev_data); 460 free_dev_data(dev_data);
461 return ret; 461 return ret;
462 } 462 }
463 463
464 if (pci_iommuv2_capable(pdev)) { 464 if (pci_iommuv2_capable(pdev)) {
465 struct amd_iommu *iommu; 465 struct amd_iommu *iommu;
466 466
467 iommu = amd_iommu_rlookup_table[dev_data->devid]; 467 iommu = amd_iommu_rlookup_table[dev_data->devid];
468 dev_data->iommu_v2 = iommu->is_iommu_v2; 468 dev_data->iommu_v2 = iommu->is_iommu_v2;
469 } 469 }
470 470
471 dev->archdata.iommu = dev_data; 471 dev->archdata.iommu = dev_data;
472 472
473 return 0; 473 return 0;
474 } 474 }
475 475
476 static void iommu_ignore_device(struct device *dev) 476 static void iommu_ignore_device(struct device *dev)
477 { 477 {
478 u16 devid, alias; 478 u16 devid, alias;
479 479
480 devid = get_device_id(dev); 480 devid = get_device_id(dev);
481 alias = amd_iommu_alias_table[devid]; 481 alias = amd_iommu_alias_table[devid];
482 482
483 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); 483 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
484 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); 484 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
485 485
486 amd_iommu_rlookup_table[devid] = NULL; 486 amd_iommu_rlookup_table[devid] = NULL;
487 amd_iommu_rlookup_table[alias] = NULL; 487 amd_iommu_rlookup_table[alias] = NULL;
488 } 488 }
489 489
490 static void iommu_uninit_device(struct device *dev) 490 static void iommu_uninit_device(struct device *dev)
491 { 491 {
492 iommu_group_remove_device(dev); 492 iommu_group_remove_device(dev);
493 493
494 /* 494 /*
495 * Nothing to do here - we keep dev_data around for unplugged devices 495 * Nothing to do here - we keep dev_data around for unplugged devices
496 * and reuse it when the device is re-plugged - not doing so would 496 * and reuse it when the device is re-plugged - not doing so would
497 * introduce a ton of races. 497 * introduce a ton of races.
498 */ 498 */
499 } 499 }
500 500
501 void __init amd_iommu_uninit_devices(void) 501 void __init amd_iommu_uninit_devices(void)
502 { 502 {
503 struct iommu_dev_data *dev_data, *n; 503 struct iommu_dev_data *dev_data, *n;
504 struct pci_dev *pdev = NULL; 504 struct pci_dev *pdev = NULL;
505 505
506 for_each_pci_dev(pdev) { 506 for_each_pci_dev(pdev) {
507 507
508 if (!check_device(&pdev->dev)) 508 if (!check_device(&pdev->dev))
509 continue; 509 continue;
510 510
511 iommu_uninit_device(&pdev->dev); 511 iommu_uninit_device(&pdev->dev);
512 } 512 }
513 513
514 /* Free all of our dev_data structures */ 514 /* Free all of our dev_data structures */
515 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list) 515 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
516 free_dev_data(dev_data); 516 free_dev_data(dev_data);
517 } 517 }
518 518
519 int __init amd_iommu_init_devices(void) 519 int __init amd_iommu_init_devices(void)
520 { 520 {
521 struct pci_dev *pdev = NULL; 521 struct pci_dev *pdev = NULL;
522 int ret = 0; 522 int ret = 0;
523 523
524 for_each_pci_dev(pdev) { 524 for_each_pci_dev(pdev) {
525 525
526 if (!check_device(&pdev->dev)) 526 if (!check_device(&pdev->dev))
527 continue; 527 continue;
528 528
529 ret = iommu_init_device(&pdev->dev); 529 ret = iommu_init_device(&pdev->dev);
530 if (ret == -ENOTSUPP) 530 if (ret == -ENOTSUPP)
531 iommu_ignore_device(&pdev->dev); 531 iommu_ignore_device(&pdev->dev);
532 else if (ret) 532 else if (ret)
533 goto out_free; 533 goto out_free;
534 } 534 }
535 535
536 return 0; 536 return 0;
537 537
538 out_free: 538 out_free:
539 539
540 amd_iommu_uninit_devices(); 540 amd_iommu_uninit_devices();
541 541
542 return ret; 542 return ret;
543 } 543 }
544 #ifdef CONFIG_AMD_IOMMU_STATS 544 #ifdef CONFIG_AMD_IOMMU_STATS
545 545
546 /* 546 /*
547 * Initialization code for statistics collection 547 * Initialization code for statistics collection
548 */ 548 */
549 549
550 DECLARE_STATS_COUNTER(compl_wait); 550 DECLARE_STATS_COUNTER(compl_wait);
551 DECLARE_STATS_COUNTER(cnt_map_single); 551 DECLARE_STATS_COUNTER(cnt_map_single);
552 DECLARE_STATS_COUNTER(cnt_unmap_single); 552 DECLARE_STATS_COUNTER(cnt_unmap_single);
553 DECLARE_STATS_COUNTER(cnt_map_sg); 553 DECLARE_STATS_COUNTER(cnt_map_sg);
554 DECLARE_STATS_COUNTER(cnt_unmap_sg); 554 DECLARE_STATS_COUNTER(cnt_unmap_sg);
555 DECLARE_STATS_COUNTER(cnt_alloc_coherent); 555 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
556 DECLARE_STATS_COUNTER(cnt_free_coherent); 556 DECLARE_STATS_COUNTER(cnt_free_coherent);
557 DECLARE_STATS_COUNTER(cross_page); 557 DECLARE_STATS_COUNTER(cross_page);
558 DECLARE_STATS_COUNTER(domain_flush_single); 558 DECLARE_STATS_COUNTER(domain_flush_single);
559 DECLARE_STATS_COUNTER(domain_flush_all); 559 DECLARE_STATS_COUNTER(domain_flush_all);
560 DECLARE_STATS_COUNTER(alloced_io_mem); 560 DECLARE_STATS_COUNTER(alloced_io_mem);
561 DECLARE_STATS_COUNTER(total_map_requests); 561 DECLARE_STATS_COUNTER(total_map_requests);
562 DECLARE_STATS_COUNTER(complete_ppr); 562 DECLARE_STATS_COUNTER(complete_ppr);
563 DECLARE_STATS_COUNTER(invalidate_iotlb); 563 DECLARE_STATS_COUNTER(invalidate_iotlb);
564 DECLARE_STATS_COUNTER(invalidate_iotlb_all); 564 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
565 DECLARE_STATS_COUNTER(pri_requests); 565 DECLARE_STATS_COUNTER(pri_requests);
566 566
567 static struct dentry *stats_dir; 567 static struct dentry *stats_dir;
568 static struct dentry *de_fflush; 568 static struct dentry *de_fflush;
569 569
570 static void amd_iommu_stats_add(struct __iommu_counter *cnt) 570 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
571 { 571 {
572 if (stats_dir == NULL) 572 if (stats_dir == NULL)
573 return; 573 return;
574 574
575 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, 575 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
576 &cnt->value); 576 &cnt->value);
577 } 577 }
578 578
579 static void amd_iommu_stats_init(void) 579 static void amd_iommu_stats_init(void)
580 { 580 {
581 stats_dir = debugfs_create_dir("amd-iommu", NULL); 581 stats_dir = debugfs_create_dir("amd-iommu", NULL);
582 if (stats_dir == NULL) 582 if (stats_dir == NULL)
583 return; 583 return;
584 584
585 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, 585 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
586 &amd_iommu_unmap_flush); 586 &amd_iommu_unmap_flush);
587 587
588 amd_iommu_stats_add(&compl_wait); 588 amd_iommu_stats_add(&compl_wait);
589 amd_iommu_stats_add(&cnt_map_single); 589 amd_iommu_stats_add(&cnt_map_single);
590 amd_iommu_stats_add(&cnt_unmap_single); 590 amd_iommu_stats_add(&cnt_unmap_single);
591 amd_iommu_stats_add(&cnt_map_sg); 591 amd_iommu_stats_add(&cnt_map_sg);
592 amd_iommu_stats_add(&cnt_unmap_sg); 592 amd_iommu_stats_add(&cnt_unmap_sg);
593 amd_iommu_stats_add(&cnt_alloc_coherent); 593 amd_iommu_stats_add(&cnt_alloc_coherent);
594 amd_iommu_stats_add(&cnt_free_coherent); 594 amd_iommu_stats_add(&cnt_free_coherent);
595 amd_iommu_stats_add(&cross_page); 595 amd_iommu_stats_add(&cross_page);
596 amd_iommu_stats_add(&domain_flush_single); 596 amd_iommu_stats_add(&domain_flush_single);
597 amd_iommu_stats_add(&domain_flush_all); 597 amd_iommu_stats_add(&domain_flush_all);
598 amd_iommu_stats_add(&alloced_io_mem); 598 amd_iommu_stats_add(&alloced_io_mem);
599 amd_iommu_stats_add(&total_map_requests); 599 amd_iommu_stats_add(&total_map_requests);
600 amd_iommu_stats_add(&complete_ppr); 600 amd_iommu_stats_add(&complete_ppr);
601 amd_iommu_stats_add(&invalidate_iotlb); 601 amd_iommu_stats_add(&invalidate_iotlb);
602 amd_iommu_stats_add(&invalidate_iotlb_all); 602 amd_iommu_stats_add(&invalidate_iotlb_all);
603 amd_iommu_stats_add(&pri_requests); 603 amd_iommu_stats_add(&pri_requests);
604 } 604 }
605 605
606 #endif 606 #endif
607 607
608 /**************************************************************************** 608 /****************************************************************************
609 * 609 *
610 * Interrupt handling functions 610 * Interrupt handling functions
611 * 611 *
612 ****************************************************************************/ 612 ****************************************************************************/
613 613
614 static void dump_dte_entry(u16 devid) 614 static void dump_dte_entry(u16 devid)
615 { 615 {
616 int i; 616 int i;
617 617
618 for (i = 0; i < 4; ++i) 618 for (i = 0; i < 4; ++i)
619 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, 619 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
620 amd_iommu_dev_table[devid].data[i]); 620 amd_iommu_dev_table[devid].data[i]);
621 } 621 }
622 622
623 static void dump_command(unsigned long phys_addr) 623 static void dump_command(unsigned long phys_addr)
624 { 624 {
625 struct iommu_cmd *cmd = phys_to_virt(phys_addr); 625 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
626 int i; 626 int i;
627 627
628 for (i = 0; i < 4; ++i) 628 for (i = 0; i < 4; ++i)
629 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); 629 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
630 } 630 }
631 631
632 static void iommu_print_event(struct amd_iommu *iommu, void *__evt) 632 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
633 { 633 {
634 int type, devid, domid, flags; 634 int type, devid, domid, flags;
635 volatile u32 *event = __evt; 635 volatile u32 *event = __evt;
636 int count = 0; 636 int count = 0;
637 u64 address; 637 u64 address;
638 638
639 retry: 639 retry:
640 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; 640 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
641 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; 641 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
642 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; 642 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
643 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; 643 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
644 address = (u64)(((u64)event[3]) << 32) | event[2]; 644 address = (u64)(((u64)event[3]) << 32) | event[2];
645 645
646 if (type == 0) { 646 if (type == 0) {
647 /* Did we hit the erratum? */ 647 /* Did we hit the erratum? */
648 if (++count == LOOP_TIMEOUT) { 648 if (++count == LOOP_TIMEOUT) {
649 pr_err("AMD-Vi: No event written to event log\n"); 649 pr_err("AMD-Vi: No event written to event log\n");
650 return; 650 return;
651 } 651 }
652 udelay(1); 652 udelay(1);
653 goto retry; 653 goto retry;
654 } 654 }
655 655
656 printk(KERN_ERR "AMD-Vi: Event logged ["); 656 printk(KERN_ERR "AMD-Vi: Event logged [");
657 657
658 switch (type) { 658 switch (type) {
659 case EVENT_TYPE_ILL_DEV: 659 case EVENT_TYPE_ILL_DEV:
660 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " 660 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
661 "address=0x%016llx flags=0x%04x]\n", 661 "address=0x%016llx flags=0x%04x]\n",
662 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 662 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663 address, flags); 663 address, flags);
664 dump_dte_entry(devid); 664 dump_dte_entry(devid);
665 break; 665 break;
666 case EVENT_TYPE_IO_FAULT: 666 case EVENT_TYPE_IO_FAULT:
667 printk("IO_PAGE_FAULT device=%02x:%02x.%x " 667 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
668 "domain=0x%04x address=0x%016llx flags=0x%04x]\n", 668 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
669 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 669 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
670 domid, address, flags); 670 domid, address, flags);
671 break; 671 break;
672 case EVENT_TYPE_DEV_TAB_ERR: 672 case EVENT_TYPE_DEV_TAB_ERR:
673 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 673 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
674 "address=0x%016llx flags=0x%04x]\n", 674 "address=0x%016llx flags=0x%04x]\n",
675 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 675 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
676 address, flags); 676 address, flags);
677 break; 677 break;
678 case EVENT_TYPE_PAGE_TAB_ERR: 678 case EVENT_TYPE_PAGE_TAB_ERR:
679 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " 679 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
680 "domain=0x%04x address=0x%016llx flags=0x%04x]\n", 680 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
681 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 681 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
682 domid, address, flags); 682 domid, address, flags);
683 break; 683 break;
684 case EVENT_TYPE_ILL_CMD: 684 case EVENT_TYPE_ILL_CMD:
685 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); 685 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
686 dump_command(address); 686 dump_command(address);
687 break; 687 break;
688 case EVENT_TYPE_CMD_HARD_ERR: 688 case EVENT_TYPE_CMD_HARD_ERR:
689 printk("COMMAND_HARDWARE_ERROR address=0x%016llx " 689 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
690 "flags=0x%04x]\n", address, flags); 690 "flags=0x%04x]\n", address, flags);
691 break; 691 break;
692 case EVENT_TYPE_IOTLB_INV_TO: 692 case EVENT_TYPE_IOTLB_INV_TO:
693 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " 693 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
694 "address=0x%016llx]\n", 694 "address=0x%016llx]\n",
695 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 695 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
696 address); 696 address);
697 break; 697 break;
698 case EVENT_TYPE_INV_DEV_REQ: 698 case EVENT_TYPE_INV_DEV_REQ:
699 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " 699 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
700 "address=0x%016llx flags=0x%04x]\n", 700 "address=0x%016llx flags=0x%04x]\n",
701 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), 701 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
702 address, flags); 702 address, flags);
703 break; 703 break;
704 default: 704 default:
705 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); 705 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
706 } 706 }
707 707
708 memset(__evt, 0, 4 * sizeof(u32)); 708 memset(__evt, 0, 4 * sizeof(u32));
709 } 709 }
710 710
711 static void iommu_poll_events(struct amd_iommu *iommu) 711 static void iommu_poll_events(struct amd_iommu *iommu)
712 { 712 {
713 u32 head, tail; 713 u32 head, tail;
714 714
715 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 715 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
716 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 716 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
717 717
718 while (head != tail) { 718 while (head != tail) {
719 iommu_print_event(iommu, iommu->evt_buf + head); 719 iommu_print_event(iommu, iommu->evt_buf + head);
720 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; 720 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
721 } 721 }
722 722
723 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 723 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
724 } 724 }
725 725
726 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) 726 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
727 { 727 {
728 struct amd_iommu_fault fault; 728 struct amd_iommu_fault fault;
729 729
730 INC_STATS_COUNTER(pri_requests); 730 INC_STATS_COUNTER(pri_requests);
731 731
732 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { 732 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
733 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); 733 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
734 return; 734 return;
735 } 735 }
736 736
737 fault.address = raw[1]; 737 fault.address = raw[1];
738 fault.pasid = PPR_PASID(raw[0]); 738 fault.pasid = PPR_PASID(raw[0]);
739 fault.device_id = PPR_DEVID(raw[0]); 739 fault.device_id = PPR_DEVID(raw[0]);
740 fault.tag = PPR_TAG(raw[0]); 740 fault.tag = PPR_TAG(raw[0]);
741 fault.flags = PPR_FLAGS(raw[0]); 741 fault.flags = PPR_FLAGS(raw[0]);
742 742
743 atomic_notifier_call_chain(&ppr_notifier, 0, &fault); 743 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
744 } 744 }
745 745
746 static void iommu_poll_ppr_log(struct amd_iommu *iommu) 746 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
747 { 747 {
748 u32 head, tail; 748 u32 head, tail;
749 749
750 if (iommu->ppr_log == NULL) 750 if (iommu->ppr_log == NULL)
751 return; 751 return;
752 752
753 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 753 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
754 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 754 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
755 755
756 while (head != tail) { 756 while (head != tail) {
757 volatile u64 *raw; 757 volatile u64 *raw;
758 u64 entry[2]; 758 u64 entry[2];
759 int i; 759 int i;
760 760
761 raw = (u64 *)(iommu->ppr_log + head); 761 raw = (u64 *)(iommu->ppr_log + head);
762 762
763 /* 763 /*
764 * Hardware bug: Interrupt may arrive before the entry is 764 * Hardware bug: Interrupt may arrive before the entry is
765 * written to memory. If this happens we need to wait for the 765 * written to memory. If this happens we need to wait for the
766 * entry to arrive. 766 * entry to arrive.
767 */ 767 */
768 for (i = 0; i < LOOP_TIMEOUT; ++i) { 768 for (i = 0; i < LOOP_TIMEOUT; ++i) {
769 if (PPR_REQ_TYPE(raw[0]) != 0) 769 if (PPR_REQ_TYPE(raw[0]) != 0)
770 break; 770 break;
771 udelay(1); 771 udelay(1);
772 } 772 }
773 773
774 /* Avoid memcpy function-call overhead */ 774 /* Avoid memcpy function-call overhead */
775 entry[0] = raw[0]; 775 entry[0] = raw[0];
776 entry[1] = raw[1]; 776 entry[1] = raw[1];
777 777
778 /* 778 /*
779 * To detect the hardware bug we need to clear the entry 779 * To detect the hardware bug we need to clear the entry
780 * back to zero. 780 * back to zero.
781 */ 781 */
782 raw[0] = raw[1] = 0UL; 782 raw[0] = raw[1] = 0UL;
783 783
784 /* Update head pointer of hardware ring-buffer */ 784 /* Update head pointer of hardware ring-buffer */
785 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; 785 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
786 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 786 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
787 787
788 /* Handle PPR entry */ 788 /* Handle PPR entry */
789 iommu_handle_ppr_entry(iommu, entry); 789 iommu_handle_ppr_entry(iommu, entry);
790 790
791 /* Refresh ring-buffer information */ 791 /* Refresh ring-buffer information */
792 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 792 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
793 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 793 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
794 } 794 }
795 } 795 }
796 796
797 irqreturn_t amd_iommu_int_thread(int irq, void *data) 797 irqreturn_t amd_iommu_int_thread(int irq, void *data)
798 { 798 {
799 struct amd_iommu *iommu = (struct amd_iommu *) data; 799 struct amd_iommu *iommu = (struct amd_iommu *) data;
800 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 800 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
801 801
802 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) { 802 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
803 /* Enable EVT and PPR interrupts again */ 803 /* Enable EVT and PPR interrupts again */
804 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK), 804 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
805 iommu->mmio_base + MMIO_STATUS_OFFSET); 805 iommu->mmio_base + MMIO_STATUS_OFFSET);
806 806
807 if (status & MMIO_STATUS_EVT_INT_MASK) { 807 if (status & MMIO_STATUS_EVT_INT_MASK) {
808 pr_devel("AMD-Vi: Processing IOMMU Event Log\n"); 808 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
809 iommu_poll_events(iommu); 809 iommu_poll_events(iommu);
810 } 810 }
811 811
812 if (status & MMIO_STATUS_PPR_INT_MASK) { 812 if (status & MMIO_STATUS_PPR_INT_MASK) {
813 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n"); 813 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
814 iommu_poll_ppr_log(iommu); 814 iommu_poll_ppr_log(iommu);
815 } 815 }
816 816
817 /* 817 /*
818 * Hardware bug: ERBT1312 818 * Hardware bug: ERBT1312
819 * When re-enabling interrupt (by writing 1 819 * When re-enabling interrupt (by writing 1
820 * to clear the bit), the hardware might also try to set 820 * to clear the bit), the hardware might also try to set
821 * the interrupt bit in the event status register. 821 * the interrupt bit in the event status register.
822 * In this scenario, the bit will be set, and disable 822 * In this scenario, the bit will be set, and disable
823 * subsequent interrupts. 823 * subsequent interrupts.
824 * 824 *
825 * Workaround: The IOMMU driver should read back the 825 * Workaround: The IOMMU driver should read back the
826 * status register and check if the interrupt bits are cleared. 826 * status register and check if the interrupt bits are cleared.
827 * If not, driver will need to go through the interrupt handler 827 * If not, driver will need to go through the interrupt handler
828 * again and re-clear the bits 828 * again and re-clear the bits
829 */ 829 */
830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); 830 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
831 } 831 }
832 return IRQ_HANDLED; 832 return IRQ_HANDLED;
833 } 833 }
834 834
835 irqreturn_t amd_iommu_int_handler(int irq, void *data) 835 irqreturn_t amd_iommu_int_handler(int irq, void *data)
836 { 836 {
837 return IRQ_WAKE_THREAD; 837 return IRQ_WAKE_THREAD;
838 } 838 }
839 839
840 /**************************************************************************** 840 /****************************************************************************
841 * 841 *
842 * IOMMU command queuing functions 842 * IOMMU command queuing functions
843 * 843 *
844 ****************************************************************************/ 844 ****************************************************************************/
845 845
846 static int wait_on_sem(volatile u64 *sem) 846 static int wait_on_sem(volatile u64 *sem)
847 { 847 {
848 int i = 0; 848 int i = 0;
849 849
850 while (*sem == 0 && i < LOOP_TIMEOUT) { 850 while (*sem == 0 && i < LOOP_TIMEOUT) {
851 udelay(1); 851 udelay(1);
852 i += 1; 852 i += 1;
853 } 853 }
854 854
855 if (i == LOOP_TIMEOUT) { 855 if (i == LOOP_TIMEOUT) {
856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); 856 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
857 return -EIO; 857 return -EIO;
858 } 858 }
859 859
860 return 0; 860 return 0;
861 } 861 }
862 862
863 static void copy_cmd_to_buffer(struct amd_iommu *iommu, 863 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
864 struct iommu_cmd *cmd, 864 struct iommu_cmd *cmd,
865 u32 tail) 865 u32 tail)
866 { 866 {
867 u8 *target; 867 u8 *target;
868 868
869 target = iommu->cmd_buf + tail; 869 target = iommu->cmd_buf + tail;
870 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; 870 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
871 871
872 /* Copy command to buffer */ 872 /* Copy command to buffer */
873 memcpy(target, cmd, sizeof(*cmd)); 873 memcpy(target, cmd, sizeof(*cmd));
874 874
875 /* Tell the IOMMU about it */ 875 /* Tell the IOMMU about it */
876 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 876 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
877 } 877 }
878 878
879 static void build_completion_wait(struct iommu_cmd *cmd, u64 address) 879 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
880 { 880 {
881 WARN_ON(address & 0x7ULL); 881 WARN_ON(address & 0x7ULL);
882 882
883 memset(cmd, 0, sizeof(*cmd)); 883 memset(cmd, 0, sizeof(*cmd));
884 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; 884 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
885 cmd->data[1] = upper_32_bits(__pa(address)); 885 cmd->data[1] = upper_32_bits(__pa(address));
886 cmd->data[2] = 1; 886 cmd->data[2] = 1;
887 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); 887 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
888 } 888 }
889 889
890 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) 890 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
891 { 891 {
892 memset(cmd, 0, sizeof(*cmd)); 892 memset(cmd, 0, sizeof(*cmd));
893 cmd->data[0] = devid; 893 cmd->data[0] = devid;
894 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); 894 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
895 } 895 }
896 896
897 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, 897 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
898 size_t size, u16 domid, int pde) 898 size_t size, u16 domid, int pde)
899 { 899 {
900 u64 pages; 900 u64 pages;
901 int s; 901 int s;
902 902
903 pages = iommu_num_pages(address, size, PAGE_SIZE); 903 pages = iommu_num_pages(address, size, PAGE_SIZE);
904 s = 0; 904 s = 0;
905 905
906 if (pages > 1) { 906 if (pages > 1) {
907 /* 907 /*
908 * If we have to flush more than one page, flush all 908 * If we have to flush more than one page, flush all
909 * TLB entries for this domain 909 * TLB entries for this domain
910 */ 910 */
911 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 911 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
912 s = 1; 912 s = 1;
913 } 913 }
914 914
915 address &= PAGE_MASK; 915 address &= PAGE_MASK;
916 916
917 memset(cmd, 0, sizeof(*cmd)); 917 memset(cmd, 0, sizeof(*cmd));
918 cmd->data[1] |= domid; 918 cmd->data[1] |= domid;
919 cmd->data[2] = lower_32_bits(address); 919 cmd->data[2] = lower_32_bits(address);
920 cmd->data[3] = upper_32_bits(address); 920 cmd->data[3] = upper_32_bits(address);
921 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 921 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
922 if (s) /* size bit - we flush more than one 4kb page */ 922 if (s) /* size bit - we flush more than one 4kb page */
923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 923 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
924 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ 924 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
925 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 925 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
926 } 926 }
927 927
928 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, 928 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
929 u64 address, size_t size) 929 u64 address, size_t size)
930 { 930 {
931 u64 pages; 931 u64 pages;
932 int s; 932 int s;
933 933
934 pages = iommu_num_pages(address, size, PAGE_SIZE); 934 pages = iommu_num_pages(address, size, PAGE_SIZE);
935 s = 0; 935 s = 0;
936 936
937 if (pages > 1) { 937 if (pages > 1) {
938 /* 938 /*
939 * If we have to flush more than one page, flush all 939 * If we have to flush more than one page, flush all
940 * TLB entries for this domain 940 * TLB entries for this domain
941 */ 941 */
942 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; 942 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
943 s = 1; 943 s = 1;
944 } 944 }
945 945
946 address &= PAGE_MASK; 946 address &= PAGE_MASK;
947 947
948 memset(cmd, 0, sizeof(*cmd)); 948 memset(cmd, 0, sizeof(*cmd));
949 cmd->data[0] = devid; 949 cmd->data[0] = devid;
950 cmd->data[0] |= (qdep & 0xff) << 24; 950 cmd->data[0] |= (qdep & 0xff) << 24;
951 cmd->data[1] = devid; 951 cmd->data[1] = devid;
952 cmd->data[2] = lower_32_bits(address); 952 cmd->data[2] = lower_32_bits(address);
953 cmd->data[3] = upper_32_bits(address); 953 cmd->data[3] = upper_32_bits(address);
954 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 954 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
955 if (s) 955 if (s)
956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 956 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
957 } 957 }
958 958
959 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, 959 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
960 u64 address, bool size) 960 u64 address, bool size)
961 { 961 {
962 memset(cmd, 0, sizeof(*cmd)); 962 memset(cmd, 0, sizeof(*cmd));
963 963
964 address &= ~(0xfffULL); 964 address &= ~(0xfffULL);
965 965
966 cmd->data[0] = pasid; 966 cmd->data[0] = pasid;
967 cmd->data[1] = domid; 967 cmd->data[1] = domid;
968 cmd->data[2] = lower_32_bits(address); 968 cmd->data[2] = lower_32_bits(address);
969 cmd->data[3] = upper_32_bits(address); 969 cmd->data[3] = upper_32_bits(address);
970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; 970 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 971 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
972 if (size) 972 if (size)
973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 973 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
974 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); 974 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
975 } 975 }
976 976
977 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, 977 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
978 int qdep, u64 address, bool size) 978 int qdep, u64 address, bool size)
979 { 979 {
980 memset(cmd, 0, sizeof(*cmd)); 980 memset(cmd, 0, sizeof(*cmd));
981 981
982 address &= ~(0xfffULL); 982 address &= ~(0xfffULL);
983 983
984 cmd->data[0] = devid; 984 cmd->data[0] = devid;
985 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; 985 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
986 cmd->data[0] |= (qdep & 0xff) << 24; 986 cmd->data[0] |= (qdep & 0xff) << 24;
987 cmd->data[1] = devid; 987 cmd->data[1] = devid;
988 cmd->data[1] |= (pasid & 0xff) << 16; 988 cmd->data[1] |= (pasid & 0xff) << 16;
989 cmd->data[2] = lower_32_bits(address); 989 cmd->data[2] = lower_32_bits(address);
990 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; 990 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
991 cmd->data[3] = upper_32_bits(address); 991 cmd->data[3] = upper_32_bits(address);
992 if (size) 992 if (size)
993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; 993 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
994 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); 994 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
995 } 995 }
996 996
997 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, 997 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
998 int status, int tag, bool gn) 998 int status, int tag, bool gn)
999 { 999 {
1000 memset(cmd, 0, sizeof(*cmd)); 1000 memset(cmd, 0, sizeof(*cmd));
1001 1001
1002 cmd->data[0] = devid; 1002 cmd->data[0] = devid;
1003 if (gn) { 1003 if (gn) {
1004 cmd->data[1] = pasid; 1004 cmd->data[1] = pasid;
1005 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; 1005 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1006 } 1006 }
1007 cmd->data[3] = tag & 0x1ff; 1007 cmd->data[3] = tag & 0x1ff;
1008 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; 1008 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1009 1009
1010 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); 1010 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1011 } 1011 }
1012 1012
1013 static void build_inv_all(struct iommu_cmd *cmd) 1013 static void build_inv_all(struct iommu_cmd *cmd)
1014 { 1014 {
1015 memset(cmd, 0, sizeof(*cmd)); 1015 memset(cmd, 0, sizeof(*cmd));
1016 CMD_SET_TYPE(cmd, CMD_INV_ALL); 1016 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1017 } 1017 }
1018 1018
1019 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) 1019 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1020 { 1020 {
1021 memset(cmd, 0, sizeof(*cmd)); 1021 memset(cmd, 0, sizeof(*cmd));
1022 cmd->data[0] = devid; 1022 cmd->data[0] = devid;
1023 CMD_SET_TYPE(cmd, CMD_INV_IRT); 1023 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1024 } 1024 }
1025 1025
1026 /* 1026 /*
1027 * Writes the command to the IOMMUs command buffer and informs the 1027 * Writes the command to the IOMMUs command buffer and informs the
1028 * hardware about the new command. 1028 * hardware about the new command.
1029 */ 1029 */
1030 static int iommu_queue_command_sync(struct amd_iommu *iommu, 1030 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1031 struct iommu_cmd *cmd, 1031 struct iommu_cmd *cmd,
1032 bool sync) 1032 bool sync)
1033 { 1033 {
1034 u32 left, tail, head, next_tail; 1034 u32 left, tail, head, next_tail;
1035 unsigned long flags; 1035 unsigned long flags;
1036 1036
1037 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED); 1037 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1038 1038
1039 again: 1039 again:
1040 spin_lock_irqsave(&iommu->lock, flags); 1040 spin_lock_irqsave(&iommu->lock, flags);
1041 1041
1042 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); 1042 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1043 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 1043 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1044 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; 1044 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1045 left = (head - next_tail) % iommu->cmd_buf_size; 1045 left = (head - next_tail) % iommu->cmd_buf_size;
1046 1046
1047 if (left <= 2) { 1047 if (left <= 2) {
1048 struct iommu_cmd sync_cmd; 1048 struct iommu_cmd sync_cmd;
1049 volatile u64 sem = 0; 1049 volatile u64 sem = 0;
1050 int ret; 1050 int ret;
1051 1051
1052 build_completion_wait(&sync_cmd, (u64)&sem); 1052 build_completion_wait(&sync_cmd, (u64)&sem);
1053 copy_cmd_to_buffer(iommu, &sync_cmd, tail); 1053 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1054 1054
1055 spin_unlock_irqrestore(&iommu->lock, flags); 1055 spin_unlock_irqrestore(&iommu->lock, flags);
1056 1056
1057 if ((ret = wait_on_sem(&sem)) != 0) 1057 if ((ret = wait_on_sem(&sem)) != 0)
1058 return ret; 1058 return ret;
1059 1059
1060 goto again; 1060 goto again;
1061 } 1061 }
1062 1062
1063 copy_cmd_to_buffer(iommu, cmd, tail); 1063 copy_cmd_to_buffer(iommu, cmd, tail);
1064 1064
1065 /* We need to sync now to make sure all commands are processed */ 1065 /* We need to sync now to make sure all commands are processed */
1066 iommu->need_sync = sync; 1066 iommu->need_sync = sync;
1067 1067
1068 spin_unlock_irqrestore(&iommu->lock, flags); 1068 spin_unlock_irqrestore(&iommu->lock, flags);
1069 1069
1070 return 0; 1070 return 0;
1071 } 1071 }
1072 1072
1073 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) 1073 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1074 { 1074 {
1075 return iommu_queue_command_sync(iommu, cmd, true); 1075 return iommu_queue_command_sync(iommu, cmd, true);
1076 } 1076 }
1077 1077
1078 /* 1078 /*
1079 * This function queues a completion wait command into the command 1079 * This function queues a completion wait command into the command
1080 * buffer of an IOMMU 1080 * buffer of an IOMMU
1081 */ 1081 */
1082 static int iommu_completion_wait(struct amd_iommu *iommu) 1082 static int iommu_completion_wait(struct amd_iommu *iommu)
1083 { 1083 {
1084 struct iommu_cmd cmd; 1084 struct iommu_cmd cmd;
1085 volatile u64 sem = 0; 1085 volatile u64 sem = 0;
1086 int ret; 1086 int ret;
1087 1087
1088 if (!iommu->need_sync) 1088 if (!iommu->need_sync)
1089 return 0; 1089 return 0;
1090 1090
1091 build_completion_wait(&cmd, (u64)&sem); 1091 build_completion_wait(&cmd, (u64)&sem);
1092 1092
1093 ret = iommu_queue_command_sync(iommu, &cmd, false); 1093 ret = iommu_queue_command_sync(iommu, &cmd, false);
1094 if (ret) 1094 if (ret)
1095 return ret; 1095 return ret;
1096 1096
1097 return wait_on_sem(&sem); 1097 return wait_on_sem(&sem);
1098 } 1098 }
1099 1099
1100 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) 1100 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101 { 1101 {
1102 struct iommu_cmd cmd; 1102 struct iommu_cmd cmd;
1103 1103
1104 build_inv_dte(&cmd, devid); 1104 build_inv_dte(&cmd, devid);
1105 1105
1106 return iommu_queue_command(iommu, &cmd); 1106 return iommu_queue_command(iommu, &cmd);
1107 } 1107 }
1108 1108
1109 static void iommu_flush_dte_all(struct amd_iommu *iommu) 1109 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1110 { 1110 {
1111 u32 devid; 1111 u32 devid;
1112 1112
1113 for (devid = 0; devid <= 0xffff; ++devid) 1113 for (devid = 0; devid <= 0xffff; ++devid)
1114 iommu_flush_dte(iommu, devid); 1114 iommu_flush_dte(iommu, devid);
1115 1115
1116 iommu_completion_wait(iommu); 1116 iommu_completion_wait(iommu);
1117 } 1117 }
1118 1118
1119 /* 1119 /*
1120 * This function uses heavy locking and may disable irqs for some time. But 1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume. 1121 * this is no issue because it is only called during resume.
1122 */ 1122 */
1123 static void iommu_flush_tlb_all(struct amd_iommu *iommu) 1123 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1124 { 1124 {
1125 u32 dom_id; 1125 u32 dom_id;
1126 1126
1127 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { 1127 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1128 struct iommu_cmd cmd; 1128 struct iommu_cmd cmd;
1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1129 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1130 dom_id, 1); 1130 dom_id, 1);
1131 iommu_queue_command(iommu, &cmd); 1131 iommu_queue_command(iommu, &cmd);
1132 } 1132 }
1133 1133
1134 iommu_completion_wait(iommu); 1134 iommu_completion_wait(iommu);
1135 } 1135 }
1136 1136
1137 static void iommu_flush_all(struct amd_iommu *iommu) 1137 static void iommu_flush_all(struct amd_iommu *iommu)
1138 { 1138 {
1139 struct iommu_cmd cmd; 1139 struct iommu_cmd cmd;
1140 1140
1141 build_inv_all(&cmd); 1141 build_inv_all(&cmd);
1142 1142
1143 iommu_queue_command(iommu, &cmd); 1143 iommu_queue_command(iommu, &cmd);
1144 iommu_completion_wait(iommu); 1144 iommu_completion_wait(iommu);
1145 } 1145 }
1146 1146
1147 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) 1147 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1148 { 1148 {
1149 struct iommu_cmd cmd; 1149 struct iommu_cmd cmd;
1150 1150
1151 build_inv_irt(&cmd, devid); 1151 build_inv_irt(&cmd, devid);
1152 1152
1153 iommu_queue_command(iommu, &cmd); 1153 iommu_queue_command(iommu, &cmd);
1154 } 1154 }
1155 1155
1156 static void iommu_flush_irt_all(struct amd_iommu *iommu) 1156 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1157 { 1157 {
1158 u32 devid; 1158 u32 devid;
1159 1159
1160 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) 1160 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1161 iommu_flush_irt(iommu, devid); 1161 iommu_flush_irt(iommu, devid);
1162 1162
1163 iommu_completion_wait(iommu); 1163 iommu_completion_wait(iommu);
1164 } 1164 }
1165 1165
1166 void iommu_flush_all_caches(struct amd_iommu *iommu) 1166 void iommu_flush_all_caches(struct amd_iommu *iommu)
1167 { 1167 {
1168 if (iommu_feature(iommu, FEATURE_IA)) { 1168 if (iommu_feature(iommu, FEATURE_IA)) {
1169 iommu_flush_all(iommu); 1169 iommu_flush_all(iommu);
1170 } else { 1170 } else {
1171 iommu_flush_dte_all(iommu); 1171 iommu_flush_dte_all(iommu);
1172 iommu_flush_irt_all(iommu); 1172 iommu_flush_irt_all(iommu);
1173 iommu_flush_tlb_all(iommu); 1173 iommu_flush_tlb_all(iommu);
1174 } 1174 }
1175 } 1175 }
1176 1176
1177 /* 1177 /*
1178 * Command send function for flushing on-device TLB 1178 * Command send function for flushing on-device TLB
1179 */ 1179 */
1180 static int device_flush_iotlb(struct iommu_dev_data *dev_data, 1180 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1181 u64 address, size_t size) 1181 u64 address, size_t size)
1182 { 1182 {
1183 struct amd_iommu *iommu; 1183 struct amd_iommu *iommu;
1184 struct iommu_cmd cmd; 1184 struct iommu_cmd cmd;
1185 int qdep; 1185 int qdep;
1186 1186
1187 qdep = dev_data->ats.qdep; 1187 qdep = dev_data->ats.qdep;
1188 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1188 iommu = amd_iommu_rlookup_table[dev_data->devid];
1189 1189
1190 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); 1190 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191 1191
1192 return iommu_queue_command(iommu, &cmd); 1192 return iommu_queue_command(iommu, &cmd);
1193 } 1193 }
1194 1194
1195 /* 1195 /*
1196 * Command send function for invalidating a device table entry 1196 * Command send function for invalidating a device table entry
1197 */ 1197 */
1198 static int device_flush_dte(struct iommu_dev_data *dev_data) 1198 static int device_flush_dte(struct iommu_dev_data *dev_data)
1199 { 1199 {
1200 struct amd_iommu *iommu; 1200 struct amd_iommu *iommu;
1201 int ret; 1201 int ret;
1202 1202
1203 iommu = amd_iommu_rlookup_table[dev_data->devid]; 1203 iommu = amd_iommu_rlookup_table[dev_data->devid];
1204 1204
1205 ret = iommu_flush_dte(iommu, dev_data->devid); 1205 ret = iommu_flush_dte(iommu, dev_data->devid);
1206 if (ret) 1206 if (ret)
1207 return ret; 1207 return ret;
1208 1208
1209 if (dev_data->ats.enabled) 1209 if (dev_data->ats.enabled)
1210 ret = device_flush_iotlb(dev_data, 0, ~0UL); 1210 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1211 1211
1212 return ret; 1212 return ret;
1213 } 1213 }
1214 1214
1215 /* 1215 /*
1216 * TLB invalidation function which is called from the mapping functions. 1216 * TLB invalidation function which is called from the mapping functions.
1217 * It invalidates a single PTE if the range to flush is within a single 1217 * It invalidates a single PTE if the range to flush is within a single
1218 * page. Otherwise it flushes the whole TLB of the IOMMU. 1218 * page. Otherwise it flushes the whole TLB of the IOMMU.
1219 */ 1219 */
1220 static void __domain_flush_pages(struct protection_domain *domain, 1220 static void __domain_flush_pages(struct protection_domain *domain,
1221 u64 address, size_t size, int pde) 1221 u64 address, size_t size, int pde)
1222 { 1222 {
1223 struct iommu_dev_data *dev_data; 1223 struct iommu_dev_data *dev_data;
1224 struct iommu_cmd cmd; 1224 struct iommu_cmd cmd;
1225 int ret = 0, i; 1225 int ret = 0, i;
1226 1226
1227 build_inv_iommu_pages(&cmd, address, size, domain->id, pde); 1227 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1228 1228
1229 for (i = 0; i < amd_iommus_present; ++i) { 1229 for (i = 0; i < amd_iommus_present; ++i) {
1230 if (!domain->dev_iommu[i]) 1230 if (!domain->dev_iommu[i])
1231 continue; 1231 continue;
1232 1232
1233 /* 1233 /*
1234 * Devices of this domain are behind this IOMMU 1234 * Devices of this domain are behind this IOMMU
1235 * We need a TLB flush 1235 * We need a TLB flush
1236 */ 1236 */
1237 ret |= iommu_queue_command(amd_iommus[i], &cmd); 1237 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1238 } 1238 }
1239 1239
1240 list_for_each_entry(dev_data, &domain->dev_list, list) { 1240 list_for_each_entry(dev_data, &domain->dev_list, list) {
1241 1241
1242 if (!dev_data->ats.enabled) 1242 if (!dev_data->ats.enabled)
1243 continue; 1243 continue;
1244 1244
1245 ret |= device_flush_iotlb(dev_data, address, size); 1245 ret |= device_flush_iotlb(dev_data, address, size);
1246 } 1246 }
1247 1247
1248 WARN_ON(ret); 1248 WARN_ON(ret);
1249 } 1249 }
1250 1250
1251 static void domain_flush_pages(struct protection_domain *domain, 1251 static void domain_flush_pages(struct protection_domain *domain,
1252 u64 address, size_t size) 1252 u64 address, size_t size)
1253 { 1253 {
1254 __domain_flush_pages(domain, address, size, 0); 1254 __domain_flush_pages(domain, address, size, 0);
1255 } 1255 }
1256 1256
1257 /* Flush the whole IO/TLB for a given protection domain */ 1257 /* Flush the whole IO/TLB for a given protection domain */
1258 static void domain_flush_tlb(struct protection_domain *domain) 1258 static void domain_flush_tlb(struct protection_domain *domain)
1259 { 1259 {
1260 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); 1260 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1261 } 1261 }
1262 1262
1263 /* Flush the whole IO/TLB for a given protection domain - including PDE */ 1263 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1264 static void domain_flush_tlb_pde(struct protection_domain *domain) 1264 static void domain_flush_tlb_pde(struct protection_domain *domain)
1265 { 1265 {
1266 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); 1266 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1267 } 1267 }
1268 1268
1269 static void domain_flush_complete(struct protection_domain *domain) 1269 static void domain_flush_complete(struct protection_domain *domain)
1270 { 1270 {
1271 int i; 1271 int i;
1272 1272
1273 for (i = 0; i < amd_iommus_present; ++i) { 1273 for (i = 0; i < amd_iommus_present; ++i) {
1274 if (!domain->dev_iommu[i]) 1274 if (!domain->dev_iommu[i])
1275 continue; 1275 continue;
1276 1276
1277 /* 1277 /*
1278 * Devices of this domain are behind this IOMMU 1278 * Devices of this domain are behind this IOMMU
1279 * We need to wait for completion of all commands. 1279 * We need to wait for completion of all commands.
1280 */ 1280 */
1281 iommu_completion_wait(amd_iommus[i]); 1281 iommu_completion_wait(amd_iommus[i]);
1282 } 1282 }
1283 } 1283 }
1284 1284
1285 1285
1286 /* 1286 /*
1287 * This function flushes the DTEs for all devices in domain 1287 * This function flushes the DTEs for all devices in domain
1288 */ 1288 */
1289 static void domain_flush_devices(struct protection_domain *domain) 1289 static void domain_flush_devices(struct protection_domain *domain)
1290 { 1290 {
1291 struct iommu_dev_data *dev_data; 1291 struct iommu_dev_data *dev_data;
1292 1292
1293 list_for_each_entry(dev_data, &domain->dev_list, list) 1293 list_for_each_entry(dev_data, &domain->dev_list, list)
1294 device_flush_dte(dev_data); 1294 device_flush_dte(dev_data);
1295 } 1295 }
1296 1296
1297 /**************************************************************************** 1297 /****************************************************************************
1298 * 1298 *
1299 * The functions below are used the create the page table mappings for 1299 * The functions below are used the create the page table mappings for
1300 * unity mapped regions. 1300 * unity mapped regions.
1301 * 1301 *
1302 ****************************************************************************/ 1302 ****************************************************************************/
1303 1303
1304 /* 1304 /*
1305 * This function is used to add another level to an IO page table. Adding 1305 * This function is used to add another level to an IO page table. Adding
1306 * another level increases the size of the address space by 9 bits to a size up 1306 * another level increases the size of the address space by 9 bits to a size up
1307 * to 64 bits. 1307 * to 64 bits.
1308 */ 1308 */
1309 static bool increase_address_space(struct protection_domain *domain, 1309 static bool increase_address_space(struct protection_domain *domain,
1310 gfp_t gfp) 1310 gfp_t gfp)
1311 { 1311 {
1312 u64 *pte; 1312 u64 *pte;
1313 1313
1314 if (domain->mode == PAGE_MODE_6_LEVEL) 1314 if (domain->mode == PAGE_MODE_6_LEVEL)
1315 /* address space already 64 bit large */ 1315 /* address space already 64 bit large */
1316 return false; 1316 return false;
1317 1317
1318 pte = (void *)get_zeroed_page(gfp); 1318 pte = (void *)get_zeroed_page(gfp);
1319 if (!pte) 1319 if (!pte)
1320 return false; 1320 return false;
1321 1321
1322 *pte = PM_LEVEL_PDE(domain->mode, 1322 *pte = PM_LEVEL_PDE(domain->mode,
1323 virt_to_phys(domain->pt_root)); 1323 virt_to_phys(domain->pt_root));
1324 domain->pt_root = pte; 1324 domain->pt_root = pte;
1325 domain->mode += 1; 1325 domain->mode += 1;
1326 domain->updated = true; 1326 domain->updated = true;
1327 1327
1328 return true; 1328 return true;
1329 } 1329 }
1330 1330
1331 static u64 *alloc_pte(struct protection_domain *domain, 1331 static u64 *alloc_pte(struct protection_domain *domain,
1332 unsigned long address, 1332 unsigned long address,
1333 unsigned long page_size, 1333 unsigned long page_size,
1334 u64 **pte_page, 1334 u64 **pte_page,
1335 gfp_t gfp) 1335 gfp_t gfp)
1336 { 1336 {
1337 int level, end_lvl; 1337 int level, end_lvl;
1338 u64 *pte, *page; 1338 u64 *pte, *page;
1339 1339
1340 BUG_ON(!is_power_of_2(page_size)); 1340 BUG_ON(!is_power_of_2(page_size));
1341 1341
1342 while (address > PM_LEVEL_SIZE(domain->mode)) 1342 while (address > PM_LEVEL_SIZE(domain->mode))
1343 increase_address_space(domain, gfp); 1343 increase_address_space(domain, gfp);
1344 1344
1345 level = domain->mode - 1; 1345 level = domain->mode - 1;
1346 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; 1346 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1347 address = PAGE_SIZE_ALIGN(address, page_size); 1347 address = PAGE_SIZE_ALIGN(address, page_size);
1348 end_lvl = PAGE_SIZE_LEVEL(page_size); 1348 end_lvl = PAGE_SIZE_LEVEL(page_size);
1349 1349
1350 while (level > end_lvl) { 1350 while (level > end_lvl) {
1351 if (!IOMMU_PTE_PRESENT(*pte)) { 1351 if (!IOMMU_PTE_PRESENT(*pte)) {
1352 page = (u64 *)get_zeroed_page(gfp); 1352 page = (u64 *)get_zeroed_page(gfp);
1353 if (!page) 1353 if (!page)
1354 return NULL; 1354 return NULL;
1355 *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); 1355 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1356 } 1356 }
1357 1357
1358 /* No level skipping support yet */ 1358 /* No level skipping support yet */
1359 if (PM_PTE_LEVEL(*pte) != level) 1359 if (PM_PTE_LEVEL(*pte) != level)
1360 return NULL; 1360 return NULL;
1361 1361
1362 level -= 1; 1362 level -= 1;
1363 1363
1364 pte = IOMMU_PTE_PAGE(*pte); 1364 pte = IOMMU_PTE_PAGE(*pte);
1365 1365
1366 if (pte_page && level == end_lvl) 1366 if (pte_page && level == end_lvl)
1367 *pte_page = pte; 1367 *pte_page = pte;
1368 1368
1369 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1369 pte = &pte[PM_LEVEL_INDEX(level, address)];
1370 } 1370 }
1371 1371
1372 return pte; 1372 return pte;
1373 } 1373 }
1374 1374
1375 /* 1375 /*
1376 * This function checks if there is a PTE for a given dma address. If 1376 * This function checks if there is a PTE for a given dma address. If
1377 * there is one, it returns the pointer to it. 1377 * there is one, it returns the pointer to it.
1378 */ 1378 */
1379 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address) 1379 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1380 { 1380 {
1381 int level; 1381 int level;
1382 u64 *pte; 1382 u64 *pte;
1383 1383
1384 if (address > PM_LEVEL_SIZE(domain->mode)) 1384 if (address > PM_LEVEL_SIZE(domain->mode))
1385 return NULL; 1385 return NULL;
1386 1386
1387 level = domain->mode - 1; 1387 level = domain->mode - 1;
1388 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; 1388 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1389 1389
1390 while (level > 0) { 1390 while (level > 0) {
1391 1391
1392 /* Not Present */ 1392 /* Not Present */
1393 if (!IOMMU_PTE_PRESENT(*pte)) 1393 if (!IOMMU_PTE_PRESENT(*pte))
1394 return NULL; 1394 return NULL;
1395 1395
1396 /* Large PTE */ 1396 /* Large PTE */
1397 if (PM_PTE_LEVEL(*pte) == 0x07) { 1397 if (PM_PTE_LEVEL(*pte) == 0x07) {
1398 unsigned long pte_mask, __pte; 1398 unsigned long pte_mask, __pte;
1399 1399
1400 /* 1400 /*
1401 * If we have a series of large PTEs, make 1401 * If we have a series of large PTEs, make
1402 * sure to return a pointer to the first one. 1402 * sure to return a pointer to the first one.
1403 */ 1403 */
1404 pte_mask = PTE_PAGE_SIZE(*pte); 1404 pte_mask = PTE_PAGE_SIZE(*pte);
1405 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); 1405 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1406 __pte = ((unsigned long)pte) & pte_mask; 1406 __pte = ((unsigned long)pte) & pte_mask;
1407 1407
1408 return (u64 *)__pte; 1408 return (u64 *)__pte;
1409 } 1409 }
1410 1410
1411 /* No level skipping support yet */ 1411 /* No level skipping support yet */
1412 if (PM_PTE_LEVEL(*pte) != level) 1412 if (PM_PTE_LEVEL(*pte) != level)
1413 return NULL; 1413 return NULL;
1414 1414
1415 level -= 1; 1415 level -= 1;
1416 1416
1417 /* Walk to the next level */ 1417 /* Walk to the next level */
1418 pte = IOMMU_PTE_PAGE(*pte); 1418 pte = IOMMU_PTE_PAGE(*pte);
1419 pte = &pte[PM_LEVEL_INDEX(level, address)]; 1419 pte = &pte[PM_LEVEL_INDEX(level, address)];
1420 } 1420 }
1421 1421
1422 return pte; 1422 return pte;
1423 } 1423 }
1424 1424
1425 /* 1425 /*
1426 * Generic mapping functions. It maps a physical address into a DMA 1426 * Generic mapping functions. It maps a physical address into a DMA
1427 * address space. It allocates the page table pages if necessary. 1427 * address space. It allocates the page table pages if necessary.
1428 * In the future it can be extended to a generic mapping function 1428 * In the future it can be extended to a generic mapping function
1429 * supporting all features of AMD IOMMU page tables like level skipping 1429 * supporting all features of AMD IOMMU page tables like level skipping
1430 * and full 64 bit address spaces. 1430 * and full 64 bit address spaces.
1431 */ 1431 */
1432 static int iommu_map_page(struct protection_domain *dom, 1432 static int iommu_map_page(struct protection_domain *dom,
1433 unsigned long bus_addr, 1433 unsigned long bus_addr,
1434 unsigned long phys_addr, 1434 unsigned long phys_addr,
1435 int prot, 1435 int prot,
1436 unsigned long page_size) 1436 unsigned long page_size)
1437 { 1437 {
1438 u64 __pte, *pte; 1438 u64 __pte, *pte;
1439 int i, count; 1439 int i, count;
1440 1440
1441 if (!(prot & IOMMU_PROT_MASK)) 1441 if (!(prot & IOMMU_PROT_MASK))
1442 return -EINVAL; 1442 return -EINVAL;
1443 1443
1444 bus_addr = PAGE_ALIGN(bus_addr); 1444 bus_addr = PAGE_ALIGN(bus_addr);
1445 phys_addr = PAGE_ALIGN(phys_addr); 1445 phys_addr = PAGE_ALIGN(phys_addr);
1446 count = PAGE_SIZE_PTE_COUNT(page_size); 1446 count = PAGE_SIZE_PTE_COUNT(page_size);
1447 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); 1447 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1448 1448
1449 for (i = 0; i < count; ++i) 1449 for (i = 0; i < count; ++i)
1450 if (IOMMU_PTE_PRESENT(pte[i])) 1450 if (IOMMU_PTE_PRESENT(pte[i]))
1451 return -EBUSY; 1451 return -EBUSY;
1452 1452
1453 if (page_size > PAGE_SIZE) { 1453 if (page_size > PAGE_SIZE) {
1454 __pte = PAGE_SIZE_PTE(phys_addr, page_size); 1454 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1455 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; 1455 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1456 } else 1456 } else
1457 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; 1457 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1458 1458
1459 if (prot & IOMMU_PROT_IR) 1459 if (prot & IOMMU_PROT_IR)
1460 __pte |= IOMMU_PTE_IR; 1460 __pte |= IOMMU_PTE_IR;
1461 if (prot & IOMMU_PROT_IW) 1461 if (prot & IOMMU_PROT_IW)
1462 __pte |= IOMMU_PTE_IW; 1462 __pte |= IOMMU_PTE_IW;
1463 1463
1464 for (i = 0; i < count; ++i) 1464 for (i = 0; i < count; ++i)
1465 pte[i] = __pte; 1465 pte[i] = __pte;
1466 1466
1467 update_domain(dom); 1467 update_domain(dom);
1468 1468
1469 return 0; 1469 return 0;
1470 } 1470 }
1471 1471
1472 static unsigned long iommu_unmap_page(struct protection_domain *dom, 1472 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1473 unsigned long bus_addr, 1473 unsigned long bus_addr,
1474 unsigned long page_size) 1474 unsigned long page_size)
1475 { 1475 {
1476 unsigned long long unmap_size, unmapped; 1476 unsigned long long unmap_size, unmapped;
1477 u64 *pte; 1477 u64 *pte;
1478 1478
1479 BUG_ON(!is_power_of_2(page_size)); 1479 BUG_ON(!is_power_of_2(page_size));
1480 1480
1481 unmapped = 0; 1481 unmapped = 0;
1482 1482
1483 while (unmapped < page_size) { 1483 while (unmapped < page_size) {
1484 1484
1485 pte = fetch_pte(dom, bus_addr); 1485 pte = fetch_pte(dom, bus_addr);
1486 1486
1487 if (!pte) { 1487 if (!pte) {
1488 /* 1488 /*
1489 * No PTE for this address 1489 * No PTE for this address
1490 * move forward in 4kb steps 1490 * move forward in 4kb steps
1491 */ 1491 */
1492 unmap_size = PAGE_SIZE; 1492 unmap_size = PAGE_SIZE;
1493 } else if (PM_PTE_LEVEL(*pte) == 0) { 1493 } else if (PM_PTE_LEVEL(*pte) == 0) {
1494 /* 4kb PTE found for this address */ 1494 /* 4kb PTE found for this address */
1495 unmap_size = PAGE_SIZE; 1495 unmap_size = PAGE_SIZE;
1496 *pte = 0ULL; 1496 *pte = 0ULL;
1497 } else { 1497 } else {
1498 int count, i; 1498 int count, i;
1499 1499
1500 /* Large PTE found which maps this address */ 1500 /* Large PTE found which maps this address */
1501 unmap_size = PTE_PAGE_SIZE(*pte); 1501 unmap_size = PTE_PAGE_SIZE(*pte);
1502 1502
1503 /* Only unmap from the first pte in the page */ 1503 /* Only unmap from the first pte in the page */
1504 if ((unmap_size - 1) & bus_addr) 1504 if ((unmap_size - 1) & bus_addr)
1505 break; 1505 break;
1506 count = PAGE_SIZE_PTE_COUNT(unmap_size); 1506 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1507 for (i = 0; i < count; i++) 1507 for (i = 0; i < count; i++)
1508 pte[i] = 0ULL; 1508 pte[i] = 0ULL;
1509 } 1509 }
1510 1510
1511 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; 1511 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1512 unmapped += unmap_size; 1512 unmapped += unmap_size;
1513 } 1513 }
1514 1514
1515 BUG_ON(unmapped && !is_power_of_2(unmapped)); 1515 BUG_ON(unmapped && !is_power_of_2(unmapped));
1516 1516
1517 return unmapped; 1517 return unmapped;
1518 } 1518 }
1519 1519
1520 /* 1520 /*
1521 * This function checks if a specific unity mapping entry is needed for 1521 * This function checks if a specific unity mapping entry is needed for
1522 * this specific IOMMU. 1522 * this specific IOMMU.
1523 */ 1523 */
1524 static int iommu_for_unity_map(struct amd_iommu *iommu, 1524 static int iommu_for_unity_map(struct amd_iommu *iommu,
1525 struct unity_map_entry *entry) 1525 struct unity_map_entry *entry)
1526 { 1526 {
1527 u16 bdf, i; 1527 u16 bdf, i;
1528 1528
1529 for (i = entry->devid_start; i <= entry->devid_end; ++i) { 1529 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1530 bdf = amd_iommu_alias_table[i]; 1530 bdf = amd_iommu_alias_table[i];
1531 if (amd_iommu_rlookup_table[bdf] == iommu) 1531 if (amd_iommu_rlookup_table[bdf] == iommu)
1532 return 1; 1532 return 1;
1533 } 1533 }
1534 1534
1535 return 0; 1535 return 0;
1536 } 1536 }
1537 1537
1538 /* 1538 /*
1539 * This function actually applies the mapping to the page table of the 1539 * This function actually applies the mapping to the page table of the
1540 * dma_ops domain. 1540 * dma_ops domain.
1541 */ 1541 */
1542 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, 1542 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1543 struct unity_map_entry *e) 1543 struct unity_map_entry *e)
1544 { 1544 {
1545 u64 addr; 1545 u64 addr;
1546 int ret; 1546 int ret;
1547 1547
1548 for (addr = e->address_start; addr < e->address_end; 1548 for (addr = e->address_start; addr < e->address_end;
1549 addr += PAGE_SIZE) { 1549 addr += PAGE_SIZE) {
1550 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot, 1550 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1551 PAGE_SIZE); 1551 PAGE_SIZE);
1552 if (ret) 1552 if (ret)
1553 return ret; 1553 return ret;
1554 /* 1554 /*
1555 * if unity mapping is in aperture range mark the page 1555 * if unity mapping is in aperture range mark the page
1556 * as allocated in the aperture 1556 * as allocated in the aperture
1557 */ 1557 */
1558 if (addr < dma_dom->aperture_size) 1558 if (addr < dma_dom->aperture_size)
1559 __set_bit(addr >> PAGE_SHIFT, 1559 __set_bit(addr >> PAGE_SHIFT,
1560 dma_dom->aperture[0]->bitmap); 1560 dma_dom->aperture[0]->bitmap);
1561 } 1561 }
1562 1562
1563 return 0; 1563 return 0;
1564 } 1564 }
1565 1565
1566 /* 1566 /*
1567 * Init the unity mappings for a specific IOMMU in the system 1567 * Init the unity mappings for a specific IOMMU in the system
1568 * 1568 *
1569 * Basically iterates over all unity mapping entries and applies them to 1569 * Basically iterates over all unity mapping entries and applies them to
1570 * the default domain DMA of that IOMMU if necessary. 1570 * the default domain DMA of that IOMMU if necessary.
1571 */ 1571 */
1572 static int iommu_init_unity_mappings(struct amd_iommu *iommu) 1572 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1573 { 1573 {
1574 struct unity_map_entry *entry; 1574 struct unity_map_entry *entry;
1575 int ret; 1575 int ret;
1576 1576
1577 list_for_each_entry(entry, &amd_iommu_unity_map, list) { 1577 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1578 if (!iommu_for_unity_map(iommu, entry)) 1578 if (!iommu_for_unity_map(iommu, entry))
1579 continue; 1579 continue;
1580 ret = dma_ops_unity_map(iommu->default_dom, entry); 1580 ret = dma_ops_unity_map(iommu->default_dom, entry);
1581 if (ret) 1581 if (ret)
1582 return ret; 1582 return ret;
1583 } 1583 }
1584 1584
1585 return 0; 1585 return 0;
1586 } 1586 }
1587 1587
1588 /* 1588 /*
1589 * Inits the unity mappings required for a specific device 1589 * Inits the unity mappings required for a specific device
1590 */ 1590 */
1591 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, 1591 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1592 u16 devid) 1592 u16 devid)
1593 { 1593 {
1594 struct unity_map_entry *e; 1594 struct unity_map_entry *e;
1595 int ret; 1595 int ret;
1596 1596
1597 list_for_each_entry(e, &amd_iommu_unity_map, list) { 1597 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1598 if (!(devid >= e->devid_start && devid <= e->devid_end)) 1598 if (!(devid >= e->devid_start && devid <= e->devid_end))
1599 continue; 1599 continue;
1600 ret = dma_ops_unity_map(dma_dom, e); 1600 ret = dma_ops_unity_map(dma_dom, e);
1601 if (ret) 1601 if (ret)
1602 return ret; 1602 return ret;
1603 } 1603 }
1604 1604
1605 return 0; 1605 return 0;
1606 } 1606 }
1607 1607
1608 /**************************************************************************** 1608 /****************************************************************************
1609 * 1609 *
1610 * The next functions belong to the address allocator for the dma_ops 1610 * The next functions belong to the address allocator for the dma_ops
1611 * interface functions. They work like the allocators in the other IOMMU 1611 * interface functions. They work like the allocators in the other IOMMU
1612 * drivers. Its basically a bitmap which marks the allocated pages in 1612 * drivers. Its basically a bitmap which marks the allocated pages in
1613 * the aperture. Maybe it could be enhanced in the future to a more 1613 * the aperture. Maybe it could be enhanced in the future to a more
1614 * efficient allocator. 1614 * efficient allocator.
1615 * 1615 *
1616 ****************************************************************************/ 1616 ****************************************************************************/
1617 1617
1618 /* 1618 /*
1619 * The address allocator core functions. 1619 * The address allocator core functions.
1620 * 1620 *
1621 * called with domain->lock held 1621 * called with domain->lock held
1622 */ 1622 */
1623 1623
1624 /* 1624 /*
1625 * Used to reserve address ranges in the aperture (e.g. for exclusion 1625 * Used to reserve address ranges in the aperture (e.g. for exclusion
1626 * ranges. 1626 * ranges.
1627 */ 1627 */
1628 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, 1628 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1629 unsigned long start_page, 1629 unsigned long start_page,
1630 unsigned int pages) 1630 unsigned int pages)
1631 { 1631 {
1632 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; 1632 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1633 1633
1634 if (start_page + pages > last_page) 1634 if (start_page + pages > last_page)
1635 pages = last_page - start_page; 1635 pages = last_page - start_page;
1636 1636
1637 for (i = start_page; i < start_page + pages; ++i) { 1637 for (i = start_page; i < start_page + pages; ++i) {
1638 int index = i / APERTURE_RANGE_PAGES; 1638 int index = i / APERTURE_RANGE_PAGES;
1639 int page = i % APERTURE_RANGE_PAGES; 1639 int page = i % APERTURE_RANGE_PAGES;
1640 __set_bit(page, dom->aperture[index]->bitmap); 1640 __set_bit(page, dom->aperture[index]->bitmap);
1641 } 1641 }
1642 } 1642 }
1643 1643
1644 /* 1644 /*
1645 * This function is used to add a new aperture range to an existing 1645 * This function is used to add a new aperture range to an existing
1646 * aperture in case of dma_ops domain allocation or address allocation 1646 * aperture in case of dma_ops domain allocation or address allocation
1647 * failure. 1647 * failure.
1648 */ 1648 */
1649 static int alloc_new_range(struct dma_ops_domain *dma_dom, 1649 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1650 bool populate, gfp_t gfp) 1650 bool populate, gfp_t gfp)
1651 { 1651 {
1652 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; 1652 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1653 struct amd_iommu *iommu; 1653 struct amd_iommu *iommu;
1654 unsigned long i, old_size; 1654 unsigned long i, old_size;
1655 1655
1656 #ifdef CONFIG_IOMMU_STRESS 1656 #ifdef CONFIG_IOMMU_STRESS
1657 populate = false; 1657 populate = false;
1658 #endif 1658 #endif
1659 1659
1660 if (index >= APERTURE_MAX_RANGES) 1660 if (index >= APERTURE_MAX_RANGES)
1661 return -ENOMEM; 1661 return -ENOMEM;
1662 1662
1663 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); 1663 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1664 if (!dma_dom->aperture[index]) 1664 if (!dma_dom->aperture[index])
1665 return -ENOMEM; 1665 return -ENOMEM;
1666 1666
1667 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); 1667 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1668 if (!dma_dom->aperture[index]->bitmap) 1668 if (!dma_dom->aperture[index]->bitmap)
1669 goto out_free; 1669 goto out_free;
1670 1670
1671 dma_dom->aperture[index]->offset = dma_dom->aperture_size; 1671 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1672 1672
1673 if (populate) { 1673 if (populate) {
1674 unsigned long address = dma_dom->aperture_size; 1674 unsigned long address = dma_dom->aperture_size;
1675 int i, num_ptes = APERTURE_RANGE_PAGES / 512; 1675 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1676 u64 *pte, *pte_page; 1676 u64 *pte, *pte_page;
1677 1677
1678 for (i = 0; i < num_ptes; ++i) { 1678 for (i = 0; i < num_ptes; ++i) {
1679 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, 1679 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1680 &pte_page, gfp); 1680 &pte_page, gfp);
1681 if (!pte) 1681 if (!pte)
1682 goto out_free; 1682 goto out_free;
1683 1683
1684 dma_dom->aperture[index]->pte_pages[i] = pte_page; 1684 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1685 1685
1686 address += APERTURE_RANGE_SIZE / 64; 1686 address += APERTURE_RANGE_SIZE / 64;
1687 } 1687 }
1688 } 1688 }
1689 1689
1690 old_size = dma_dom->aperture_size; 1690 old_size = dma_dom->aperture_size;
1691 dma_dom->aperture_size += APERTURE_RANGE_SIZE; 1691 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1692 1692
1693 /* Reserve address range used for MSI messages */ 1693 /* Reserve address range used for MSI messages */
1694 if (old_size < MSI_ADDR_BASE_LO && 1694 if (old_size < MSI_ADDR_BASE_LO &&
1695 dma_dom->aperture_size > MSI_ADDR_BASE_LO) { 1695 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1696 unsigned long spage; 1696 unsigned long spage;
1697 int pages; 1697 int pages;
1698 1698
1699 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE); 1699 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1700 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT; 1700 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1701 1701
1702 dma_ops_reserve_addresses(dma_dom, spage, pages); 1702 dma_ops_reserve_addresses(dma_dom, spage, pages);
1703 } 1703 }
1704 1704
1705 /* Initialize the exclusion range if necessary */ 1705 /* Initialize the exclusion range if necessary */
1706 for_each_iommu(iommu) { 1706 for_each_iommu(iommu) {
1707 if (iommu->exclusion_start && 1707 if (iommu->exclusion_start &&
1708 iommu->exclusion_start >= dma_dom->aperture[index]->offset 1708 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1709 && iommu->exclusion_start < dma_dom->aperture_size) { 1709 && iommu->exclusion_start < dma_dom->aperture_size) {
1710 unsigned long startpage; 1710 unsigned long startpage;
1711 int pages = iommu_num_pages(iommu->exclusion_start, 1711 int pages = iommu_num_pages(iommu->exclusion_start,
1712 iommu->exclusion_length, 1712 iommu->exclusion_length,
1713 PAGE_SIZE); 1713 PAGE_SIZE);
1714 startpage = iommu->exclusion_start >> PAGE_SHIFT; 1714 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1715 dma_ops_reserve_addresses(dma_dom, startpage, pages); 1715 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1716 } 1716 }
1717 } 1717 }
1718 1718
1719 /* 1719 /*
1720 * Check for areas already mapped as present in the new aperture 1720 * Check for areas already mapped as present in the new aperture
1721 * range and mark those pages as reserved in the allocator. Such 1721 * range and mark those pages as reserved in the allocator. Such
1722 * mappings may already exist as a result of requested unity 1722 * mappings may already exist as a result of requested unity
1723 * mappings for devices. 1723 * mappings for devices.
1724 */ 1724 */
1725 for (i = dma_dom->aperture[index]->offset; 1725 for (i = dma_dom->aperture[index]->offset;
1726 i < dma_dom->aperture_size; 1726 i < dma_dom->aperture_size;
1727 i += PAGE_SIZE) { 1727 i += PAGE_SIZE) {
1728 u64 *pte = fetch_pte(&dma_dom->domain, i); 1728 u64 *pte = fetch_pte(&dma_dom->domain, i);
1729 if (!pte || !IOMMU_PTE_PRESENT(*pte)) 1729 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1730 continue; 1730 continue;
1731 1731
1732 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1); 1732 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1733 } 1733 }
1734 1734
1735 update_domain(&dma_dom->domain); 1735 update_domain(&dma_dom->domain);
1736 1736
1737 return 0; 1737 return 0;
1738 1738
1739 out_free: 1739 out_free:
1740 update_domain(&dma_dom->domain); 1740 update_domain(&dma_dom->domain);
1741 1741
1742 free_page((unsigned long)dma_dom->aperture[index]->bitmap); 1742 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1743 1743
1744 kfree(dma_dom->aperture[index]); 1744 kfree(dma_dom->aperture[index]);
1745 dma_dom->aperture[index] = NULL; 1745 dma_dom->aperture[index] = NULL;
1746 1746
1747 return -ENOMEM; 1747 return -ENOMEM;
1748 } 1748 }
1749 1749
1750 static unsigned long dma_ops_area_alloc(struct device *dev, 1750 static unsigned long dma_ops_area_alloc(struct device *dev,
1751 struct dma_ops_domain *dom, 1751 struct dma_ops_domain *dom,
1752 unsigned int pages, 1752 unsigned int pages,
1753 unsigned long align_mask, 1753 unsigned long align_mask,
1754 u64 dma_mask, 1754 u64 dma_mask,
1755 unsigned long start) 1755 unsigned long start)
1756 { 1756 {
1757 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; 1757 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1758 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; 1758 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1759 int i = start >> APERTURE_RANGE_SHIFT; 1759 int i = start >> APERTURE_RANGE_SHIFT;
1760 unsigned long boundary_size; 1760 unsigned long boundary_size;
1761 unsigned long address = -1; 1761 unsigned long address = -1;
1762 unsigned long limit; 1762 unsigned long limit;
1763 1763
1764 next_bit >>= PAGE_SHIFT; 1764 next_bit >>= PAGE_SHIFT;
1765 1765
1766 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, 1766 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1767 PAGE_SIZE) >> PAGE_SHIFT; 1767 PAGE_SIZE) >> PAGE_SHIFT;
1768 1768
1769 for (;i < max_index; ++i) { 1769 for (;i < max_index; ++i) {
1770 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; 1770 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1771 1771
1772 if (dom->aperture[i]->offset >= dma_mask) 1772 if (dom->aperture[i]->offset >= dma_mask)
1773 break; 1773 break;
1774 1774
1775 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, 1775 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1776 dma_mask >> PAGE_SHIFT); 1776 dma_mask >> PAGE_SHIFT);
1777 1777
1778 address = iommu_area_alloc(dom->aperture[i]->bitmap, 1778 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1779 limit, next_bit, pages, 0, 1779 limit, next_bit, pages, 0,
1780 boundary_size, align_mask); 1780 boundary_size, align_mask);
1781 if (address != -1) { 1781 if (address != -1) {
1782 address = dom->aperture[i]->offset + 1782 address = dom->aperture[i]->offset +
1783 (address << PAGE_SHIFT); 1783 (address << PAGE_SHIFT);
1784 dom->next_address = address + (pages << PAGE_SHIFT); 1784 dom->next_address = address + (pages << PAGE_SHIFT);
1785 break; 1785 break;
1786 } 1786 }
1787 1787
1788 next_bit = 0; 1788 next_bit = 0;
1789 } 1789 }
1790 1790
1791 return address; 1791 return address;
1792 } 1792 }
1793 1793
1794 static unsigned long dma_ops_alloc_addresses(struct device *dev, 1794 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1795 struct dma_ops_domain *dom, 1795 struct dma_ops_domain *dom,
1796 unsigned int pages, 1796 unsigned int pages,
1797 unsigned long align_mask, 1797 unsigned long align_mask,
1798 u64 dma_mask) 1798 u64 dma_mask)
1799 { 1799 {
1800 unsigned long address; 1800 unsigned long address;
1801 1801
1802 #ifdef CONFIG_IOMMU_STRESS 1802 #ifdef CONFIG_IOMMU_STRESS
1803 dom->next_address = 0; 1803 dom->next_address = 0;
1804 dom->need_flush = true; 1804 dom->need_flush = true;
1805 #endif 1805 #endif
1806 1806
1807 address = dma_ops_area_alloc(dev, dom, pages, align_mask, 1807 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1808 dma_mask, dom->next_address); 1808 dma_mask, dom->next_address);
1809 1809
1810 if (address == -1) { 1810 if (address == -1) {
1811 dom->next_address = 0; 1811 dom->next_address = 0;
1812 address = dma_ops_area_alloc(dev, dom, pages, align_mask, 1812 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1813 dma_mask, 0); 1813 dma_mask, 0);
1814 dom->need_flush = true; 1814 dom->need_flush = true;
1815 } 1815 }
1816 1816
1817 if (unlikely(address == -1)) 1817 if (unlikely(address == -1))
1818 address = DMA_ERROR_CODE; 1818 address = DMA_ERROR_CODE;
1819 1819
1820 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); 1820 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1821 1821
1822 return address; 1822 return address;
1823 } 1823 }
1824 1824
1825 /* 1825 /*
1826 * The address free function. 1826 * The address free function.
1827 * 1827 *
1828 * called with domain->lock held 1828 * called with domain->lock held
1829 */ 1829 */
1830 static void dma_ops_free_addresses(struct dma_ops_domain *dom, 1830 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1831 unsigned long address, 1831 unsigned long address,
1832 unsigned int pages) 1832 unsigned int pages)
1833 { 1833 {
1834 unsigned i = address >> APERTURE_RANGE_SHIFT; 1834 unsigned i = address >> APERTURE_RANGE_SHIFT;
1835 struct aperture_range *range = dom->aperture[i]; 1835 struct aperture_range *range = dom->aperture[i];
1836 1836
1837 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); 1837 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1838 1838
1839 #ifdef CONFIG_IOMMU_STRESS 1839 #ifdef CONFIG_IOMMU_STRESS
1840 if (i < 4) 1840 if (i < 4)
1841 return; 1841 return;
1842 #endif 1842 #endif
1843 1843
1844 if (address >= dom->next_address) 1844 if (address >= dom->next_address)
1845 dom->need_flush = true; 1845 dom->need_flush = true;
1846 1846
1847 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; 1847 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1848 1848
1849 bitmap_clear(range->bitmap, address, pages); 1849 bitmap_clear(range->bitmap, address, pages);
1850 1850
1851 } 1851 }
1852 1852
1853 /**************************************************************************** 1853 /****************************************************************************
1854 * 1854 *
1855 * The next functions belong to the domain allocation. A domain is 1855 * The next functions belong to the domain allocation. A domain is
1856 * allocated for every IOMMU as the default domain. If device isolation 1856 * allocated for every IOMMU as the default domain. If device isolation
1857 * is enabled, every device get its own domain. The most important thing 1857 * is enabled, every device get its own domain. The most important thing
1858 * about domains is the page table mapping the DMA address space they 1858 * about domains is the page table mapping the DMA address space they
1859 * contain. 1859 * contain.
1860 * 1860 *
1861 ****************************************************************************/ 1861 ****************************************************************************/
1862 1862
1863 /* 1863 /*
1864 * This function adds a protection domain to the global protection domain list 1864 * This function adds a protection domain to the global protection domain list
1865 */ 1865 */
1866 static void add_domain_to_list(struct protection_domain *domain) 1866 static void add_domain_to_list(struct protection_domain *domain)
1867 { 1867 {
1868 unsigned long flags; 1868 unsigned long flags;
1869 1869
1870 spin_lock_irqsave(&amd_iommu_pd_lock, flags); 1870 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1871 list_add(&domain->list, &amd_iommu_pd_list); 1871 list_add(&domain->list, &amd_iommu_pd_list);
1872 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); 1872 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1873 } 1873 }
1874 1874
1875 /* 1875 /*
1876 * This function removes a protection domain to the global 1876 * This function removes a protection domain to the global
1877 * protection domain list 1877 * protection domain list
1878 */ 1878 */
1879 static void del_domain_from_list(struct protection_domain *domain) 1879 static void del_domain_from_list(struct protection_domain *domain)
1880 { 1880 {
1881 unsigned long flags; 1881 unsigned long flags;
1882 1882
1883 spin_lock_irqsave(&amd_iommu_pd_lock, flags); 1883 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1884 list_del(&domain->list); 1884 list_del(&domain->list);
1885 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); 1885 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1886 } 1886 }
1887 1887
1888 static u16 domain_id_alloc(void) 1888 static u16 domain_id_alloc(void)
1889 { 1889 {
1890 unsigned long flags; 1890 unsigned long flags;
1891 int id; 1891 int id;
1892 1892
1893 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 1893 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1894 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); 1894 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1895 BUG_ON(id == 0); 1895 BUG_ON(id == 0);
1896 if (id > 0 && id < MAX_DOMAIN_ID) 1896 if (id > 0 && id < MAX_DOMAIN_ID)
1897 __set_bit(id, amd_iommu_pd_alloc_bitmap); 1897 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1898 else 1898 else
1899 id = 0; 1899 id = 0;
1900 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 1900 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1901 1901
1902 return id; 1902 return id;
1903 } 1903 }
1904 1904
1905 static void domain_id_free(int id) 1905 static void domain_id_free(int id)
1906 { 1906 {
1907 unsigned long flags; 1907 unsigned long flags;
1908 1908
1909 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 1909 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1910 if (id > 0 && id < MAX_DOMAIN_ID) 1910 if (id > 0 && id < MAX_DOMAIN_ID)
1911 __clear_bit(id, amd_iommu_pd_alloc_bitmap); 1911 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 1912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1913 } 1913 }
1914 1914
1915 #define DEFINE_FREE_PT_FN(LVL, FN) \ 1915 #define DEFINE_FREE_PT_FN(LVL, FN) \
1916 static void free_pt_##LVL (unsigned long __pt) \ 1916 static void free_pt_##LVL (unsigned long __pt) \
1917 { \ 1917 { \
1918 unsigned long p; \ 1918 unsigned long p; \
1919 u64 *pt; \ 1919 u64 *pt; \
1920 int i; \ 1920 int i; \
1921 \ 1921 \
1922 pt = (u64 *)__pt; \ 1922 pt = (u64 *)__pt; \
1923 \ 1923 \
1924 for (i = 0; i < 512; ++i) { \ 1924 for (i = 0; i < 512; ++i) { \
1925 if (!IOMMU_PTE_PRESENT(pt[i])) \ 1925 if (!IOMMU_PTE_PRESENT(pt[i])) \
1926 continue; \ 1926 continue; \
1927 \ 1927 \
1928 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \ 1928 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1929 FN(p); \ 1929 FN(p); \
1930 } \ 1930 } \
1931 free_page((unsigned long)pt); \ 1931 free_page((unsigned long)pt); \
1932 } 1932 }
1933 1933
1934 DEFINE_FREE_PT_FN(l2, free_page) 1934 DEFINE_FREE_PT_FN(l2, free_page)
1935 DEFINE_FREE_PT_FN(l3, free_pt_l2) 1935 DEFINE_FREE_PT_FN(l3, free_pt_l2)
1936 DEFINE_FREE_PT_FN(l4, free_pt_l3) 1936 DEFINE_FREE_PT_FN(l4, free_pt_l3)
1937 DEFINE_FREE_PT_FN(l5, free_pt_l4) 1937 DEFINE_FREE_PT_FN(l5, free_pt_l4)
1938 DEFINE_FREE_PT_FN(l6, free_pt_l5) 1938 DEFINE_FREE_PT_FN(l6, free_pt_l5)
1939 1939
1940 static void free_pagetable(struct protection_domain *domain) 1940 static void free_pagetable(struct protection_domain *domain)
1941 { 1941 {
1942 unsigned long root = (unsigned long)domain->pt_root; 1942 unsigned long root = (unsigned long)domain->pt_root;
1943 1943
1944 switch (domain->mode) { 1944 switch (domain->mode) {
1945 case PAGE_MODE_NONE: 1945 case PAGE_MODE_NONE:
1946 break; 1946 break;
1947 case PAGE_MODE_1_LEVEL: 1947 case PAGE_MODE_1_LEVEL:
1948 free_page(root); 1948 free_page(root);
1949 break; 1949 break;
1950 case PAGE_MODE_2_LEVEL: 1950 case PAGE_MODE_2_LEVEL:
1951 free_pt_l2(root); 1951 free_pt_l2(root);
1952 break; 1952 break;
1953 case PAGE_MODE_3_LEVEL: 1953 case PAGE_MODE_3_LEVEL:
1954 free_pt_l3(root); 1954 free_pt_l3(root);
1955 break; 1955 break;
1956 case PAGE_MODE_4_LEVEL: 1956 case PAGE_MODE_4_LEVEL:
1957 free_pt_l4(root); 1957 free_pt_l4(root);
1958 break; 1958 break;
1959 case PAGE_MODE_5_LEVEL: 1959 case PAGE_MODE_5_LEVEL:
1960 free_pt_l5(root); 1960 free_pt_l5(root);
1961 break; 1961 break;
1962 case PAGE_MODE_6_LEVEL: 1962 case PAGE_MODE_6_LEVEL:
1963 free_pt_l6(root); 1963 free_pt_l6(root);
1964 break; 1964 break;
1965 default: 1965 default:
1966 BUG(); 1966 BUG();
1967 } 1967 }
1968 } 1968 }
1969 1969
1970 static void free_gcr3_tbl_level1(u64 *tbl) 1970 static void free_gcr3_tbl_level1(u64 *tbl)
1971 { 1971 {
1972 u64 *ptr; 1972 u64 *ptr;
1973 int i; 1973 int i;
1974 1974
1975 for (i = 0; i < 512; ++i) { 1975 for (i = 0; i < 512; ++i) {
1976 if (!(tbl[i] & GCR3_VALID)) 1976 if (!(tbl[i] & GCR3_VALID))
1977 continue; 1977 continue;
1978 1978
1979 ptr = __va(tbl[i] & PAGE_MASK); 1979 ptr = __va(tbl[i] & PAGE_MASK);
1980 1980
1981 free_page((unsigned long)ptr); 1981 free_page((unsigned long)ptr);
1982 } 1982 }
1983 } 1983 }
1984 1984
1985 static void free_gcr3_tbl_level2(u64 *tbl) 1985 static void free_gcr3_tbl_level2(u64 *tbl)
1986 { 1986 {
1987 u64 *ptr; 1987 u64 *ptr;
1988 int i; 1988 int i;
1989 1989
1990 for (i = 0; i < 512; ++i) { 1990 for (i = 0; i < 512; ++i) {
1991 if (!(tbl[i] & GCR3_VALID)) 1991 if (!(tbl[i] & GCR3_VALID))
1992 continue; 1992 continue;
1993 1993
1994 ptr = __va(tbl[i] & PAGE_MASK); 1994 ptr = __va(tbl[i] & PAGE_MASK);
1995 1995
1996 free_gcr3_tbl_level1(ptr); 1996 free_gcr3_tbl_level1(ptr);
1997 } 1997 }
1998 } 1998 }
1999 1999
2000 static void free_gcr3_table(struct protection_domain *domain) 2000 static void free_gcr3_table(struct protection_domain *domain)
2001 { 2001 {
2002 if (domain->glx == 2) 2002 if (domain->glx == 2)
2003 free_gcr3_tbl_level2(domain->gcr3_tbl); 2003 free_gcr3_tbl_level2(domain->gcr3_tbl);
2004 else if (domain->glx == 1) 2004 else if (domain->glx == 1)
2005 free_gcr3_tbl_level1(domain->gcr3_tbl); 2005 free_gcr3_tbl_level1(domain->gcr3_tbl);
2006 else if (domain->glx != 0) 2006 else if (domain->glx != 0)
2007 BUG(); 2007 BUG();
2008 2008
2009 free_page((unsigned long)domain->gcr3_tbl); 2009 free_page((unsigned long)domain->gcr3_tbl);
2010 } 2010 }
2011 2011
2012 /* 2012 /*
2013 * Free a domain, only used if something went wrong in the 2013 * Free a domain, only used if something went wrong in the
2014 * allocation path and we need to free an already allocated page table 2014 * allocation path and we need to free an already allocated page table
2015 */ 2015 */
2016 static void dma_ops_domain_free(struct dma_ops_domain *dom) 2016 static void dma_ops_domain_free(struct dma_ops_domain *dom)
2017 { 2017 {
2018 int i; 2018 int i;
2019 2019
2020 if (!dom) 2020 if (!dom)
2021 return; 2021 return;
2022 2022
2023 del_domain_from_list(&dom->domain); 2023 del_domain_from_list(&dom->domain);
2024 2024
2025 free_pagetable(&dom->domain); 2025 free_pagetable(&dom->domain);
2026 2026
2027 for (i = 0; i < APERTURE_MAX_RANGES; ++i) { 2027 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
2028 if (!dom->aperture[i]) 2028 if (!dom->aperture[i])
2029 continue; 2029 continue;
2030 free_page((unsigned long)dom->aperture[i]->bitmap); 2030 free_page((unsigned long)dom->aperture[i]->bitmap);
2031 kfree(dom->aperture[i]); 2031 kfree(dom->aperture[i]);
2032 } 2032 }
2033 2033
2034 kfree(dom); 2034 kfree(dom);
2035 } 2035 }
2036 2036
2037 /* 2037 /*
2038 * Allocates a new protection domain usable for the dma_ops functions. 2038 * Allocates a new protection domain usable for the dma_ops functions.
2039 * It also initializes the page table and the address allocator data 2039 * It also initializes the page table and the address allocator data
2040 * structures required for the dma_ops interface 2040 * structures required for the dma_ops interface
2041 */ 2041 */
2042 static struct dma_ops_domain *dma_ops_domain_alloc(void) 2042 static struct dma_ops_domain *dma_ops_domain_alloc(void)
2043 { 2043 {
2044 struct dma_ops_domain *dma_dom; 2044 struct dma_ops_domain *dma_dom;
2045 2045
2046 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); 2046 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2047 if (!dma_dom) 2047 if (!dma_dom)
2048 return NULL; 2048 return NULL;
2049 2049
2050 spin_lock_init(&dma_dom->domain.lock); 2050 spin_lock_init(&dma_dom->domain.lock);
2051 2051
2052 dma_dom->domain.id = domain_id_alloc(); 2052 dma_dom->domain.id = domain_id_alloc();
2053 if (dma_dom->domain.id == 0) 2053 if (dma_dom->domain.id == 0)
2054 goto free_dma_dom; 2054 goto free_dma_dom;
2055 INIT_LIST_HEAD(&dma_dom->domain.dev_list); 2055 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2056 dma_dom->domain.mode = PAGE_MODE_2_LEVEL; 2056 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2057 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); 2057 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2058 dma_dom->domain.flags = PD_DMA_OPS_MASK; 2058 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2059 dma_dom->domain.priv = dma_dom; 2059 dma_dom->domain.priv = dma_dom;
2060 if (!dma_dom->domain.pt_root) 2060 if (!dma_dom->domain.pt_root)
2061 goto free_dma_dom; 2061 goto free_dma_dom;
2062 2062
2063 dma_dom->need_flush = false; 2063 dma_dom->need_flush = false;
2064 dma_dom->target_dev = 0xffff; 2064 dma_dom->target_dev = 0xffff;
2065 2065
2066 add_domain_to_list(&dma_dom->domain); 2066 add_domain_to_list(&dma_dom->domain);
2067 2067
2068 if (alloc_new_range(dma_dom, true, GFP_KERNEL)) 2068 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2069 goto free_dma_dom; 2069 goto free_dma_dom;
2070 2070
2071 /* 2071 /*
2072 * mark the first page as allocated so we never return 0 as 2072 * mark the first page as allocated so we never return 0 as
2073 * a valid dma-address. So we can use 0 as error value 2073 * a valid dma-address. So we can use 0 as error value
2074 */ 2074 */
2075 dma_dom->aperture[0]->bitmap[0] = 1; 2075 dma_dom->aperture[0]->bitmap[0] = 1;
2076 dma_dom->next_address = 0; 2076 dma_dom->next_address = 0;
2077 2077
2078 2078
2079 return dma_dom; 2079 return dma_dom;
2080 2080
2081 free_dma_dom: 2081 free_dma_dom:
2082 dma_ops_domain_free(dma_dom); 2082 dma_ops_domain_free(dma_dom);
2083 2083
2084 return NULL; 2084 return NULL;
2085 } 2085 }
2086 2086
2087 /* 2087 /*
2088 * little helper function to check whether a given protection domain is a 2088 * little helper function to check whether a given protection domain is a
2089 * dma_ops domain 2089 * dma_ops domain
2090 */ 2090 */
2091 static bool dma_ops_domain(struct protection_domain *domain) 2091 static bool dma_ops_domain(struct protection_domain *domain)
2092 { 2092 {
2093 return domain->flags & PD_DMA_OPS_MASK; 2093 return domain->flags & PD_DMA_OPS_MASK;
2094 } 2094 }
2095 2095
2096 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) 2096 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2097 { 2097 {
2098 u64 pte_root = 0; 2098 u64 pte_root = 0;
2099 u64 flags = 0; 2099 u64 flags = 0;
2100 2100
2101 if (domain->mode != PAGE_MODE_NONE) 2101 if (domain->mode != PAGE_MODE_NONE)
2102 pte_root = virt_to_phys(domain->pt_root); 2102 pte_root = virt_to_phys(domain->pt_root);
2103 2103
2104 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) 2104 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2105 << DEV_ENTRY_MODE_SHIFT; 2105 << DEV_ENTRY_MODE_SHIFT;
2106 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; 2106 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2107 2107
2108 flags = amd_iommu_dev_table[devid].data[1]; 2108 flags = amd_iommu_dev_table[devid].data[1];
2109 2109
2110 if (ats) 2110 if (ats)
2111 flags |= DTE_FLAG_IOTLB; 2111 flags |= DTE_FLAG_IOTLB;
2112 2112
2113 if (domain->flags & PD_IOMMUV2_MASK) { 2113 if (domain->flags & PD_IOMMUV2_MASK) {
2114 u64 gcr3 = __pa(domain->gcr3_tbl); 2114 u64 gcr3 = __pa(domain->gcr3_tbl);
2115 u64 glx = domain->glx; 2115 u64 glx = domain->glx;
2116 u64 tmp; 2116 u64 tmp;
2117 2117
2118 pte_root |= DTE_FLAG_GV; 2118 pte_root |= DTE_FLAG_GV;
2119 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; 2119 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2120 2120
2121 /* First mask out possible old values for GCR3 table */ 2121 /* First mask out possible old values for GCR3 table */
2122 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; 2122 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2123 flags &= ~tmp; 2123 flags &= ~tmp;
2124 2124
2125 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; 2125 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2126 flags &= ~tmp; 2126 flags &= ~tmp;
2127 2127
2128 /* Encode GCR3 table into DTE */ 2128 /* Encode GCR3 table into DTE */
2129 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; 2129 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2130 pte_root |= tmp; 2130 pte_root |= tmp;
2131 2131
2132 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; 2132 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2133 flags |= tmp; 2133 flags |= tmp;
2134 2134
2135 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; 2135 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2136 flags |= tmp; 2136 flags |= tmp;
2137 } 2137 }
2138 2138
2139 flags &= ~(0xffffUL); 2139 flags &= ~(0xffffUL);
2140 flags |= domain->id; 2140 flags |= domain->id;
2141 2141
2142 amd_iommu_dev_table[devid].data[1] = flags; 2142 amd_iommu_dev_table[devid].data[1] = flags;
2143 amd_iommu_dev_table[devid].data[0] = pte_root; 2143 amd_iommu_dev_table[devid].data[0] = pte_root;
2144 } 2144 }
2145 2145
2146 static void clear_dte_entry(u16 devid) 2146 static void clear_dte_entry(u16 devid)
2147 { 2147 {
2148 /* remove entry from the device table seen by the hardware */ 2148 /* remove entry from the device table seen by the hardware */
2149 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; 2149 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2150 amd_iommu_dev_table[devid].data[1] = 0; 2150 amd_iommu_dev_table[devid].data[1] = 0;
2151 2151
2152 amd_iommu_apply_erratum_63(devid); 2152 amd_iommu_apply_erratum_63(devid);
2153 } 2153 }
2154 2154
2155 static void do_attach(struct iommu_dev_data *dev_data, 2155 static void do_attach(struct iommu_dev_data *dev_data,
2156 struct protection_domain *domain) 2156 struct protection_domain *domain)
2157 { 2157 {
2158 struct amd_iommu *iommu; 2158 struct amd_iommu *iommu;
2159 bool ats; 2159 bool ats;
2160 2160
2161 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2161 iommu = amd_iommu_rlookup_table[dev_data->devid];
2162 ats = dev_data->ats.enabled; 2162 ats = dev_data->ats.enabled;
2163 2163
2164 /* Update data structures */ 2164 /* Update data structures */
2165 dev_data->domain = domain; 2165 dev_data->domain = domain;
2166 list_add(&dev_data->list, &domain->dev_list); 2166 list_add(&dev_data->list, &domain->dev_list);
2167 set_dte_entry(dev_data->devid, domain, ats); 2167 set_dte_entry(dev_data->devid, domain, ats);
2168 2168
2169 /* Do reference counting */ 2169 /* Do reference counting */
2170 domain->dev_iommu[iommu->index] += 1; 2170 domain->dev_iommu[iommu->index] += 1;
2171 domain->dev_cnt += 1; 2171 domain->dev_cnt += 1;
2172 2172
2173 /* Flush the DTE entry */ 2173 /* Flush the DTE entry */
2174 device_flush_dte(dev_data); 2174 device_flush_dte(dev_data);
2175 } 2175 }
2176 2176
2177 static void do_detach(struct iommu_dev_data *dev_data) 2177 static void do_detach(struct iommu_dev_data *dev_data)
2178 { 2178 {
2179 struct amd_iommu *iommu; 2179 struct amd_iommu *iommu;
2180 2180
2181 iommu = amd_iommu_rlookup_table[dev_data->devid]; 2181 iommu = amd_iommu_rlookup_table[dev_data->devid];
2182 2182
2183 /* decrease reference counters */ 2183 /* decrease reference counters */
2184 dev_data->domain->dev_iommu[iommu->index] -= 1; 2184 dev_data->domain->dev_iommu[iommu->index] -= 1;
2185 dev_data->domain->dev_cnt -= 1; 2185 dev_data->domain->dev_cnt -= 1;
2186 2186
2187 /* Update data structures */ 2187 /* Update data structures */
2188 dev_data->domain = NULL; 2188 dev_data->domain = NULL;
2189 list_del(&dev_data->list); 2189 list_del(&dev_data->list);
2190 clear_dte_entry(dev_data->devid); 2190 clear_dte_entry(dev_data->devid);
2191 2191
2192 /* Flush the DTE entry */ 2192 /* Flush the DTE entry */
2193 device_flush_dte(dev_data); 2193 device_flush_dte(dev_data);
2194 } 2194 }
2195 2195
2196 /* 2196 /*
2197 * If a device is not yet associated with a domain, this function does 2197 * If a device is not yet associated with a domain, this function does
2198 * assigns it visible for the hardware 2198 * assigns it visible for the hardware
2199 */ 2199 */
2200 static int __attach_device(struct iommu_dev_data *dev_data, 2200 static int __attach_device(struct iommu_dev_data *dev_data,
2201 struct protection_domain *domain) 2201 struct protection_domain *domain)
2202 { 2202 {
2203 int ret; 2203 int ret;
2204 2204
2205 /* lock domain */ 2205 /* lock domain */
2206 spin_lock(&domain->lock); 2206 spin_lock(&domain->lock);
2207 2207
2208 if (dev_data->alias_data != NULL) { 2208 if (dev_data->alias_data != NULL) {
2209 struct iommu_dev_data *alias_data = dev_data->alias_data; 2209 struct iommu_dev_data *alias_data = dev_data->alias_data;
2210 2210
2211 /* Some sanity checks */ 2211 /* Some sanity checks */
2212 ret = -EBUSY; 2212 ret = -EBUSY;
2213 if (alias_data->domain != NULL && 2213 if (alias_data->domain != NULL &&
2214 alias_data->domain != domain) 2214 alias_data->domain != domain)
2215 goto out_unlock; 2215 goto out_unlock;
2216 2216
2217 if (dev_data->domain != NULL && 2217 if (dev_data->domain != NULL &&
2218 dev_data->domain != domain) 2218 dev_data->domain != domain)
2219 goto out_unlock; 2219 goto out_unlock;
2220 2220
2221 /* Do real assignment */ 2221 /* Do real assignment */
2222 if (alias_data->domain == NULL) 2222 if (alias_data->domain == NULL)
2223 do_attach(alias_data, domain); 2223 do_attach(alias_data, domain);
2224 2224
2225 atomic_inc(&alias_data->bind); 2225 atomic_inc(&alias_data->bind);
2226 } 2226 }
2227 2227
2228 if (dev_data->domain == NULL) 2228 if (dev_data->domain == NULL)
2229 do_attach(dev_data, domain); 2229 do_attach(dev_data, domain);
2230 2230
2231 atomic_inc(&dev_data->bind); 2231 atomic_inc(&dev_data->bind);
2232 2232
2233 ret = 0; 2233 ret = 0;
2234 2234
2235 out_unlock: 2235 out_unlock:
2236 2236
2237 /* ready */ 2237 /* ready */
2238 spin_unlock(&domain->lock); 2238 spin_unlock(&domain->lock);
2239 2239
2240 return ret; 2240 return ret;
2241 } 2241 }
2242 2242
2243 2243
2244 static void pdev_iommuv2_disable(struct pci_dev *pdev) 2244 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2245 { 2245 {
2246 pci_disable_ats(pdev); 2246 pci_disable_ats(pdev);
2247 pci_disable_pri(pdev); 2247 pci_disable_pri(pdev);
2248 pci_disable_pasid(pdev); 2248 pci_disable_pasid(pdev);
2249 } 2249 }
2250 2250
2251 /* FIXME: Change generic reset-function to do the same */ 2251 /* FIXME: Change generic reset-function to do the same */
2252 static int pri_reset_while_enabled(struct pci_dev *pdev) 2252 static int pri_reset_while_enabled(struct pci_dev *pdev)
2253 { 2253 {
2254 u16 control; 2254 u16 control;
2255 int pos; 2255 int pos;
2256 2256
2257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2258 if (!pos) 2258 if (!pos)
2259 return -EINVAL; 2259 return -EINVAL;
2260 2260
2261 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); 2261 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2262 control |= PCI_PRI_CTRL_RESET; 2262 control |= PCI_PRI_CTRL_RESET;
2263 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); 2263 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2264 2264
2265 return 0; 2265 return 0;
2266 } 2266 }
2267 2267
2268 static int pdev_iommuv2_enable(struct pci_dev *pdev) 2268 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2269 { 2269 {
2270 bool reset_enable; 2270 bool reset_enable;
2271 int reqs, ret; 2271 int reqs, ret;
2272 2272
2273 /* FIXME: Hardcode number of outstanding requests for now */ 2273 /* FIXME: Hardcode number of outstanding requests for now */
2274 reqs = 32; 2274 reqs = 32;
2275 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) 2275 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2276 reqs = 1; 2276 reqs = 1;
2277 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); 2277 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2278 2278
2279 /* Only allow access to user-accessible pages */ 2279 /* Only allow access to user-accessible pages */
2280 ret = pci_enable_pasid(pdev, 0); 2280 ret = pci_enable_pasid(pdev, 0);
2281 if (ret) 2281 if (ret)
2282 goto out_err; 2282 goto out_err;
2283 2283
2284 /* First reset the PRI state of the device */ 2284 /* First reset the PRI state of the device */
2285 ret = pci_reset_pri(pdev); 2285 ret = pci_reset_pri(pdev);
2286 if (ret) 2286 if (ret)
2287 goto out_err; 2287 goto out_err;
2288 2288
2289 /* Enable PRI */ 2289 /* Enable PRI */
2290 ret = pci_enable_pri(pdev, reqs); 2290 ret = pci_enable_pri(pdev, reqs);
2291 if (ret) 2291 if (ret)
2292 goto out_err; 2292 goto out_err;
2293 2293
2294 if (reset_enable) { 2294 if (reset_enable) {
2295 ret = pri_reset_while_enabled(pdev); 2295 ret = pri_reset_while_enabled(pdev);
2296 if (ret) 2296 if (ret)
2297 goto out_err; 2297 goto out_err;
2298 } 2298 }
2299 2299
2300 ret = pci_enable_ats(pdev, PAGE_SHIFT); 2300 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2301 if (ret) 2301 if (ret)
2302 goto out_err; 2302 goto out_err;
2303 2303
2304 return 0; 2304 return 0;
2305 2305
2306 out_err: 2306 out_err:
2307 pci_disable_pri(pdev); 2307 pci_disable_pri(pdev);
2308 pci_disable_pasid(pdev); 2308 pci_disable_pasid(pdev);
2309 2309
2310 return ret; 2310 return ret;
2311 } 2311 }
2312 2312
2313 /* FIXME: Move this to PCI code */ 2313 /* FIXME: Move this to PCI code */
2314 #define PCI_PRI_TLP_OFF (1 << 15) 2314 #define PCI_PRI_TLP_OFF (1 << 15)
2315 2315
2316 static bool pci_pri_tlp_required(struct pci_dev *pdev) 2316 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2317 { 2317 {
2318 u16 status; 2318 u16 status;
2319 int pos; 2319 int pos;
2320 2320
2321 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 2321 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2322 if (!pos) 2322 if (!pos)
2323 return false; 2323 return false;
2324 2324
2325 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); 2325 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2326 2326
2327 return (status & PCI_PRI_TLP_OFF) ? true : false; 2327 return (status & PCI_PRI_TLP_OFF) ? true : false;
2328 } 2328 }
2329 2329
2330 /* 2330 /*
2331 * If a device is not yet associated with a domain, this function 2331 * If a device is not yet associated with a domain, this function
2332 * assigns it visible for the hardware 2332 * assigns it visible for the hardware
2333 */ 2333 */
2334 static int attach_device(struct device *dev, 2334 static int attach_device(struct device *dev,
2335 struct protection_domain *domain) 2335 struct protection_domain *domain)
2336 { 2336 {
2337 struct pci_dev *pdev = to_pci_dev(dev); 2337 struct pci_dev *pdev = to_pci_dev(dev);
2338 struct iommu_dev_data *dev_data; 2338 struct iommu_dev_data *dev_data;
2339 unsigned long flags; 2339 unsigned long flags;
2340 int ret; 2340 int ret;
2341 2341
2342 dev_data = get_dev_data(dev); 2342 dev_data = get_dev_data(dev);
2343 2343
2344 if (domain->flags & PD_IOMMUV2_MASK) { 2344 if (domain->flags & PD_IOMMUV2_MASK) {
2345 if (!dev_data->iommu_v2 || !dev_data->passthrough) 2345 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2346 return -EINVAL; 2346 return -EINVAL;
2347 2347
2348 if (pdev_iommuv2_enable(pdev) != 0) 2348 if (pdev_iommuv2_enable(pdev) != 0)
2349 return -EINVAL; 2349 return -EINVAL;
2350 2350
2351 dev_data->ats.enabled = true; 2351 dev_data->ats.enabled = true;
2352 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2352 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2353 dev_data->pri_tlp = pci_pri_tlp_required(pdev); 2353 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2354 } else if (amd_iommu_iotlb_sup && 2354 } else if (amd_iommu_iotlb_sup &&
2355 pci_enable_ats(pdev, PAGE_SHIFT) == 0) { 2355 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2356 dev_data->ats.enabled = true; 2356 dev_data->ats.enabled = true;
2357 dev_data->ats.qdep = pci_ats_queue_depth(pdev); 2357 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2358 } 2358 }
2359 2359
2360 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 2360 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2361 ret = __attach_device(dev_data, domain); 2361 ret = __attach_device(dev_data, domain);
2362 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 2362 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2363 2363
2364 /* 2364 /*
2365 * We might boot into a crash-kernel here. The crashed kernel 2365 * We might boot into a crash-kernel here. The crashed kernel
2366 * left the caches in the IOMMU dirty. So we have to flush 2366 * left the caches in the IOMMU dirty. So we have to flush
2367 * here to evict all dirty stuff. 2367 * here to evict all dirty stuff.
2368 */ 2368 */
2369 domain_flush_tlb_pde(domain); 2369 domain_flush_tlb_pde(domain);
2370 2370
2371 return ret; 2371 return ret;
2372 } 2372 }
2373 2373
2374 /* 2374 /*
2375 * Removes a device from a protection domain (unlocked) 2375 * Removes a device from a protection domain (unlocked)
2376 */ 2376 */
2377 static void __detach_device(struct iommu_dev_data *dev_data) 2377 static void __detach_device(struct iommu_dev_data *dev_data)
2378 { 2378 {
2379 struct protection_domain *domain; 2379 struct protection_domain *domain;
2380 unsigned long flags; 2380 unsigned long flags;
2381 2381
2382 BUG_ON(!dev_data->domain); 2382 BUG_ON(!dev_data->domain);
2383 2383
2384 domain = dev_data->domain; 2384 domain = dev_data->domain;
2385 2385
2386 spin_lock_irqsave(&domain->lock, flags); 2386 spin_lock_irqsave(&domain->lock, flags);
2387 2387
2388 if (dev_data->alias_data != NULL) { 2388 if (dev_data->alias_data != NULL) {
2389 struct iommu_dev_data *alias_data = dev_data->alias_data; 2389 struct iommu_dev_data *alias_data = dev_data->alias_data;
2390 2390
2391 if (atomic_dec_and_test(&alias_data->bind)) 2391 if (atomic_dec_and_test(&alias_data->bind))
2392 do_detach(alias_data); 2392 do_detach(alias_data);
2393 } 2393 }
2394 2394
2395 if (atomic_dec_and_test(&dev_data->bind)) 2395 if (atomic_dec_and_test(&dev_data->bind))
2396 do_detach(dev_data); 2396 do_detach(dev_data);
2397 2397
2398 spin_unlock_irqrestore(&domain->lock, flags); 2398 spin_unlock_irqrestore(&domain->lock, flags);
2399 2399
2400 /* 2400 /*
2401 * If we run in passthrough mode the device must be assigned to the 2401 * If we run in passthrough mode the device must be assigned to the
2402 * passthrough domain if it is detached from any other domain. 2402 * passthrough domain if it is detached from any other domain.
2403 * Make sure we can deassign from the pt_domain itself. 2403 * Make sure we can deassign from the pt_domain itself.
2404 */ 2404 */
2405 if (dev_data->passthrough && 2405 if (dev_data->passthrough &&
2406 (dev_data->domain == NULL && domain != pt_domain)) 2406 (dev_data->domain == NULL && domain != pt_domain))
2407 __attach_device(dev_data, pt_domain); 2407 __attach_device(dev_data, pt_domain);
2408 } 2408 }
2409 2409
2410 /* 2410 /*
2411 * Removes a device from a protection domain (with devtable_lock held) 2411 * Removes a device from a protection domain (with devtable_lock held)
2412 */ 2412 */
2413 static void detach_device(struct device *dev) 2413 static void detach_device(struct device *dev)
2414 { 2414 {
2415 struct protection_domain *domain; 2415 struct protection_domain *domain;
2416 struct iommu_dev_data *dev_data; 2416 struct iommu_dev_data *dev_data;
2417 unsigned long flags; 2417 unsigned long flags;
2418 2418
2419 dev_data = get_dev_data(dev); 2419 dev_data = get_dev_data(dev);
2420 domain = dev_data->domain; 2420 domain = dev_data->domain;
2421 2421
2422 /* lock device table */ 2422 /* lock device table */
2423 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 2423 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2424 __detach_device(dev_data); 2424 __detach_device(dev_data);
2425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 2425 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2426 2426
2427 if (domain->flags & PD_IOMMUV2_MASK) 2427 if (domain->flags & PD_IOMMUV2_MASK)
2428 pdev_iommuv2_disable(to_pci_dev(dev)); 2428 pdev_iommuv2_disable(to_pci_dev(dev));
2429 else if (dev_data->ats.enabled) 2429 else if (dev_data->ats.enabled)
2430 pci_disable_ats(to_pci_dev(dev)); 2430 pci_disable_ats(to_pci_dev(dev));
2431 2431
2432 dev_data->ats.enabled = false; 2432 dev_data->ats.enabled = false;
2433 } 2433 }
2434 2434
2435 /* 2435 /*
2436 * Find out the protection domain structure for a given PCI device. This 2436 * Find out the protection domain structure for a given PCI device. This
2437 * will give us the pointer to the page table root for example. 2437 * will give us the pointer to the page table root for example.
2438 */ 2438 */
2439 static struct protection_domain *domain_for_device(struct device *dev) 2439 static struct protection_domain *domain_for_device(struct device *dev)
2440 { 2440 {
2441 struct iommu_dev_data *dev_data; 2441 struct iommu_dev_data *dev_data;
2442 struct protection_domain *dom = NULL; 2442 struct protection_domain *dom = NULL;
2443 unsigned long flags; 2443 unsigned long flags;
2444 2444
2445 dev_data = get_dev_data(dev); 2445 dev_data = get_dev_data(dev);
2446 2446
2447 if (dev_data->domain) 2447 if (dev_data->domain)
2448 return dev_data->domain; 2448 return dev_data->domain;
2449 2449
2450 if (dev_data->alias_data != NULL) { 2450 if (dev_data->alias_data != NULL) {
2451 struct iommu_dev_data *alias_data = dev_data->alias_data; 2451 struct iommu_dev_data *alias_data = dev_data->alias_data;
2452 2452
2453 read_lock_irqsave(&amd_iommu_devtable_lock, flags); 2453 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2454 if (alias_data->domain != NULL) { 2454 if (alias_data->domain != NULL) {
2455 __attach_device(dev_data, alias_data->domain); 2455 __attach_device(dev_data, alias_data->domain);
2456 dom = alias_data->domain; 2456 dom = alias_data->domain;
2457 } 2457 }
2458 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 2458 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2459 } 2459 }
2460 2460
2461 return dom; 2461 return dom;
2462 } 2462 }
2463 2463
2464 static int device_change_notifier(struct notifier_block *nb, 2464 static int device_change_notifier(struct notifier_block *nb,
2465 unsigned long action, void *data) 2465 unsigned long action, void *data)
2466 { 2466 {
2467 struct dma_ops_domain *dma_domain; 2467 struct dma_ops_domain *dma_domain;
2468 struct protection_domain *domain; 2468 struct protection_domain *domain;
2469 struct iommu_dev_data *dev_data; 2469 struct iommu_dev_data *dev_data;
2470 struct device *dev = data; 2470 struct device *dev = data;
2471 struct amd_iommu *iommu; 2471 struct amd_iommu *iommu;
2472 unsigned long flags; 2472 unsigned long flags;
2473 u16 devid; 2473 u16 devid;
2474 2474
2475 if (!check_device(dev)) 2475 if (!check_device(dev))
2476 return 0; 2476 return 0;
2477 2477
2478 devid = get_device_id(dev); 2478 devid = get_device_id(dev);
2479 iommu = amd_iommu_rlookup_table[devid]; 2479 iommu = amd_iommu_rlookup_table[devid];
2480 dev_data = get_dev_data(dev); 2480 dev_data = get_dev_data(dev);
2481 2481
2482 switch (action) { 2482 switch (action) {
2483 case BUS_NOTIFY_UNBOUND_DRIVER: 2483 case BUS_NOTIFY_UNBOUND_DRIVER:
2484 2484
2485 domain = domain_for_device(dev); 2485 domain = domain_for_device(dev);
2486 2486
2487 if (!domain) 2487 if (!domain)
2488 goto out; 2488 goto out;
2489 if (dev_data->passthrough) 2489 if (dev_data->passthrough)
2490 break; 2490 break;
2491 detach_device(dev); 2491 detach_device(dev);
2492 break; 2492 break;
2493 case BUS_NOTIFY_ADD_DEVICE: 2493 case BUS_NOTIFY_ADD_DEVICE:
2494 2494
2495 iommu_init_device(dev); 2495 iommu_init_device(dev);
2496 2496
2497 /* 2497 /*
2498 * dev_data is still NULL and 2498 * dev_data is still NULL and
2499 * got initialized in iommu_init_device 2499 * got initialized in iommu_init_device
2500 */ 2500 */
2501 dev_data = get_dev_data(dev); 2501 dev_data = get_dev_data(dev);
2502 2502
2503 if (iommu_pass_through || dev_data->iommu_v2) { 2503 if (iommu_pass_through || dev_data->iommu_v2) {
2504 dev_data->passthrough = true; 2504 dev_data->passthrough = true;
2505 attach_device(dev, pt_domain); 2505 attach_device(dev, pt_domain);
2506 break; 2506 break;
2507 } 2507 }
2508 2508
2509 domain = domain_for_device(dev); 2509 domain = domain_for_device(dev);
2510 2510
2511 /* allocate a protection domain if a device is added */ 2511 /* allocate a protection domain if a device is added */
2512 dma_domain = find_protection_domain(devid); 2512 dma_domain = find_protection_domain(devid);
2513 if (!dma_domain) { 2513 if (!dma_domain) {
2514 dma_domain = dma_ops_domain_alloc(); 2514 dma_domain = dma_ops_domain_alloc();
2515 if (!dma_domain) 2515 if (!dma_domain)
2516 goto out; 2516 goto out;
2517 dma_domain->target_dev = devid; 2517 dma_domain->target_dev = devid;
2518 2518
2519 spin_lock_irqsave(&iommu_pd_list_lock, flags); 2519 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2520 list_add_tail(&dma_domain->list, &iommu_pd_list); 2520 list_add_tail(&dma_domain->list, &iommu_pd_list);
2521 spin_unlock_irqrestore(&iommu_pd_list_lock, flags); 2521 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2522 } 2522 }
2523 2523
2524 dev->archdata.dma_ops = &amd_iommu_dma_ops; 2524 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2525 2525
2526 break; 2526 break;
2527 case BUS_NOTIFY_DEL_DEVICE: 2527 case BUS_NOTIFY_DEL_DEVICE:
2528 2528
2529 iommu_uninit_device(dev); 2529 iommu_uninit_device(dev);
2530 2530
2531 default: 2531 default:
2532 goto out; 2532 goto out;
2533 } 2533 }
2534 2534
2535 iommu_completion_wait(iommu); 2535 iommu_completion_wait(iommu);
2536 2536
2537 out: 2537 out:
2538 return 0; 2538 return 0;
2539 } 2539 }
2540 2540
2541 static struct notifier_block device_nb = { 2541 static struct notifier_block device_nb = {
2542 .notifier_call = device_change_notifier, 2542 .notifier_call = device_change_notifier,
2543 }; 2543 };
2544 2544
2545 void amd_iommu_init_notifier(void) 2545 void amd_iommu_init_notifier(void)
2546 { 2546 {
2547 bus_register_notifier(&pci_bus_type, &device_nb); 2547 bus_register_notifier(&pci_bus_type, &device_nb);
2548 } 2548 }
2549 2549
2550 /***************************************************************************** 2550 /*****************************************************************************
2551 * 2551 *
2552 * The next functions belong to the dma_ops mapping/unmapping code. 2552 * The next functions belong to the dma_ops mapping/unmapping code.
2553 * 2553 *
2554 *****************************************************************************/ 2554 *****************************************************************************/
2555 2555
2556 /* 2556 /*
2557 * In the dma_ops path we only have the struct device. This function 2557 * In the dma_ops path we only have the struct device. This function
2558 * finds the corresponding IOMMU, the protection domain and the 2558 * finds the corresponding IOMMU, the protection domain and the
2559 * requestor id for a given device. 2559 * requestor id for a given device.
2560 * If the device is not yet associated with a domain this is also done 2560 * If the device is not yet associated with a domain this is also done
2561 * in this function. 2561 * in this function.
2562 */ 2562 */
2563 static struct protection_domain *get_domain(struct device *dev) 2563 static struct protection_domain *get_domain(struct device *dev)
2564 { 2564 {
2565 struct protection_domain *domain; 2565 struct protection_domain *domain;
2566 struct dma_ops_domain *dma_dom; 2566 struct dma_ops_domain *dma_dom;
2567 u16 devid = get_device_id(dev); 2567 u16 devid = get_device_id(dev);
2568 2568
2569 if (!check_device(dev)) 2569 if (!check_device(dev))
2570 return ERR_PTR(-EINVAL); 2570 return ERR_PTR(-EINVAL);
2571 2571
2572 domain = domain_for_device(dev); 2572 domain = domain_for_device(dev);
2573 if (domain != NULL && !dma_ops_domain(domain)) 2573 if (domain != NULL && !dma_ops_domain(domain))
2574 return ERR_PTR(-EBUSY); 2574 return ERR_PTR(-EBUSY);
2575 2575
2576 if (domain != NULL) 2576 if (domain != NULL)
2577 return domain; 2577 return domain;
2578 2578
2579 /* Device not bound yet - bind it */ 2579 /* Device not bound yet - bind it */
2580 dma_dom = find_protection_domain(devid); 2580 dma_dom = find_protection_domain(devid);
2581 if (!dma_dom) 2581 if (!dma_dom)
2582 dma_dom = amd_iommu_rlookup_table[devid]->default_dom; 2582 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2583 attach_device(dev, &dma_dom->domain); 2583 attach_device(dev, &dma_dom->domain);
2584 DUMP_printk("Using protection domain %d for device %s\n", 2584 DUMP_printk("Using protection domain %d for device %s\n",
2585 dma_dom->domain.id, dev_name(dev)); 2585 dma_dom->domain.id, dev_name(dev));
2586 2586
2587 return &dma_dom->domain; 2587 return &dma_dom->domain;
2588 } 2588 }
2589 2589
2590 static void update_device_table(struct protection_domain *domain) 2590 static void update_device_table(struct protection_domain *domain)
2591 { 2591 {
2592 struct iommu_dev_data *dev_data; 2592 struct iommu_dev_data *dev_data;
2593 2593
2594 list_for_each_entry(dev_data, &domain->dev_list, list) 2594 list_for_each_entry(dev_data, &domain->dev_list, list)
2595 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); 2595 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2596 } 2596 }
2597 2597
2598 static void update_domain(struct protection_domain *domain) 2598 static void update_domain(struct protection_domain *domain)
2599 { 2599 {
2600 if (!domain->updated) 2600 if (!domain->updated)
2601 return; 2601 return;
2602 2602
2603 update_device_table(domain); 2603 update_device_table(domain);
2604 2604
2605 domain_flush_devices(domain); 2605 domain_flush_devices(domain);
2606 domain_flush_tlb_pde(domain); 2606 domain_flush_tlb_pde(domain);
2607 2607
2608 domain->updated = false; 2608 domain->updated = false;
2609 } 2609 }
2610 2610
2611 /* 2611 /*
2612 * This function fetches the PTE for a given address in the aperture 2612 * This function fetches the PTE for a given address in the aperture
2613 */ 2613 */
2614 static u64* dma_ops_get_pte(struct dma_ops_domain *dom, 2614 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2615 unsigned long address) 2615 unsigned long address)
2616 { 2616 {
2617 struct aperture_range *aperture; 2617 struct aperture_range *aperture;
2618 u64 *pte, *pte_page; 2618 u64 *pte, *pte_page;
2619 2619
2620 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; 2620 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2621 if (!aperture) 2621 if (!aperture)
2622 return NULL; 2622 return NULL;
2623 2623
2624 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; 2624 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2625 if (!pte) { 2625 if (!pte) {
2626 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, 2626 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2627 GFP_ATOMIC); 2627 GFP_ATOMIC);
2628 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; 2628 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2629 } else 2629 } else
2630 pte += PM_LEVEL_INDEX(0, address); 2630 pte += PM_LEVEL_INDEX(0, address);
2631 2631
2632 update_domain(&dom->domain); 2632 update_domain(&dom->domain);
2633 2633
2634 return pte; 2634 return pte;
2635 } 2635 }
2636 2636
2637 /* 2637 /*
2638 * This is the generic map function. It maps one 4kb page at paddr to 2638 * This is the generic map function. It maps one 4kb page at paddr to
2639 * the given address in the DMA address space for the domain. 2639 * the given address in the DMA address space for the domain.
2640 */ 2640 */
2641 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, 2641 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2642 unsigned long address, 2642 unsigned long address,
2643 phys_addr_t paddr, 2643 phys_addr_t paddr,
2644 int direction) 2644 int direction)
2645 { 2645 {
2646 u64 *pte, __pte; 2646 u64 *pte, __pte;
2647 2647
2648 WARN_ON(address > dom->aperture_size); 2648 WARN_ON(address > dom->aperture_size);
2649 2649
2650 paddr &= PAGE_MASK; 2650 paddr &= PAGE_MASK;
2651 2651
2652 pte = dma_ops_get_pte(dom, address); 2652 pte = dma_ops_get_pte(dom, address);
2653 if (!pte) 2653 if (!pte)
2654 return DMA_ERROR_CODE; 2654 return DMA_ERROR_CODE;
2655 2655
2656 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; 2656 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2657 2657
2658 if (direction == DMA_TO_DEVICE) 2658 if (direction == DMA_TO_DEVICE)
2659 __pte |= IOMMU_PTE_IR; 2659 __pte |= IOMMU_PTE_IR;
2660 else if (direction == DMA_FROM_DEVICE) 2660 else if (direction == DMA_FROM_DEVICE)
2661 __pte |= IOMMU_PTE_IW; 2661 __pte |= IOMMU_PTE_IW;
2662 else if (direction == DMA_BIDIRECTIONAL) 2662 else if (direction == DMA_BIDIRECTIONAL)
2663 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; 2663 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2664 2664
2665 WARN_ON(*pte); 2665 WARN_ON(*pte);
2666 2666
2667 *pte = __pte; 2667 *pte = __pte;
2668 2668
2669 return (dma_addr_t)address; 2669 return (dma_addr_t)address;
2670 } 2670 }
2671 2671
2672 /* 2672 /*
2673 * The generic unmapping function for on page in the DMA address space. 2673 * The generic unmapping function for on page in the DMA address space.
2674 */ 2674 */
2675 static void dma_ops_domain_unmap(struct dma_ops_domain *dom, 2675 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2676 unsigned long address) 2676 unsigned long address)
2677 { 2677 {
2678 struct aperture_range *aperture; 2678 struct aperture_range *aperture;
2679 u64 *pte; 2679 u64 *pte;
2680 2680
2681 if (address >= dom->aperture_size) 2681 if (address >= dom->aperture_size)
2682 return; 2682 return;
2683 2683
2684 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; 2684 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2685 if (!aperture) 2685 if (!aperture)
2686 return; 2686 return;
2687 2687
2688 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; 2688 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2689 if (!pte) 2689 if (!pte)
2690 return; 2690 return;
2691 2691
2692 pte += PM_LEVEL_INDEX(0, address); 2692 pte += PM_LEVEL_INDEX(0, address);
2693 2693
2694 WARN_ON(!*pte); 2694 WARN_ON(!*pte);
2695 2695
2696 *pte = 0ULL; 2696 *pte = 0ULL;
2697 } 2697 }
2698 2698
2699 /* 2699 /*
2700 * This function contains common code for mapping of a physically 2700 * This function contains common code for mapping of a physically
2701 * contiguous memory region into DMA address space. It is used by all 2701 * contiguous memory region into DMA address space. It is used by all
2702 * mapping functions provided with this IOMMU driver. 2702 * mapping functions provided with this IOMMU driver.
2703 * Must be called with the domain lock held. 2703 * Must be called with the domain lock held.
2704 */ 2704 */
2705 static dma_addr_t __map_single(struct device *dev, 2705 static dma_addr_t __map_single(struct device *dev,
2706 struct dma_ops_domain *dma_dom, 2706 struct dma_ops_domain *dma_dom,
2707 phys_addr_t paddr, 2707 phys_addr_t paddr,
2708 size_t size, 2708 size_t size,
2709 int dir, 2709 int dir,
2710 bool align, 2710 bool align,
2711 u64 dma_mask) 2711 u64 dma_mask)
2712 { 2712 {
2713 dma_addr_t offset = paddr & ~PAGE_MASK; 2713 dma_addr_t offset = paddr & ~PAGE_MASK;
2714 dma_addr_t address, start, ret; 2714 dma_addr_t address, start, ret;
2715 unsigned int pages; 2715 unsigned int pages;
2716 unsigned long align_mask = 0; 2716 unsigned long align_mask = 0;
2717 int i; 2717 int i;
2718 2718
2719 pages = iommu_num_pages(paddr, size, PAGE_SIZE); 2719 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2720 paddr &= PAGE_MASK; 2720 paddr &= PAGE_MASK;
2721 2721
2722 INC_STATS_COUNTER(total_map_requests); 2722 INC_STATS_COUNTER(total_map_requests);
2723 2723
2724 if (pages > 1) 2724 if (pages > 1)
2725 INC_STATS_COUNTER(cross_page); 2725 INC_STATS_COUNTER(cross_page);
2726 2726
2727 if (align) 2727 if (align)
2728 align_mask = (1UL << get_order(size)) - 1; 2728 align_mask = (1UL << get_order(size)) - 1;
2729 2729
2730 retry: 2730 retry:
2731 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, 2731 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2732 dma_mask); 2732 dma_mask);
2733 if (unlikely(address == DMA_ERROR_CODE)) { 2733 if (unlikely(address == DMA_ERROR_CODE)) {
2734 /* 2734 /*
2735 * setting next_address here will let the address 2735 * setting next_address here will let the address
2736 * allocator only scan the new allocated range in the 2736 * allocator only scan the new allocated range in the
2737 * first run. This is a small optimization. 2737 * first run. This is a small optimization.
2738 */ 2738 */
2739 dma_dom->next_address = dma_dom->aperture_size; 2739 dma_dom->next_address = dma_dom->aperture_size;
2740 2740
2741 if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) 2741 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2742 goto out; 2742 goto out;
2743 2743
2744 /* 2744 /*
2745 * aperture was successfully enlarged by 128 MB, try 2745 * aperture was successfully enlarged by 128 MB, try
2746 * allocation again 2746 * allocation again
2747 */ 2747 */
2748 goto retry; 2748 goto retry;
2749 } 2749 }
2750 2750
2751 start = address; 2751 start = address;
2752 for (i = 0; i < pages; ++i) { 2752 for (i = 0; i < pages; ++i) {
2753 ret = dma_ops_domain_map(dma_dom, start, paddr, dir); 2753 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2754 if (ret == DMA_ERROR_CODE) 2754 if (ret == DMA_ERROR_CODE)
2755 goto out_unmap; 2755 goto out_unmap;
2756 2756
2757 paddr += PAGE_SIZE; 2757 paddr += PAGE_SIZE;
2758 start += PAGE_SIZE; 2758 start += PAGE_SIZE;
2759 } 2759 }
2760 address += offset; 2760 address += offset;
2761 2761
2762 ADD_STATS_COUNTER(alloced_io_mem, size); 2762 ADD_STATS_COUNTER(alloced_io_mem, size);
2763 2763
2764 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { 2764 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2765 domain_flush_tlb(&dma_dom->domain); 2765 domain_flush_tlb(&dma_dom->domain);
2766 dma_dom->need_flush = false; 2766 dma_dom->need_flush = false;
2767 } else if (unlikely(amd_iommu_np_cache)) 2767 } else if (unlikely(amd_iommu_np_cache))
2768 domain_flush_pages(&dma_dom->domain, address, size); 2768 domain_flush_pages(&dma_dom->domain, address, size);
2769 2769
2770 out: 2770 out:
2771 return address; 2771 return address;
2772 2772
2773 out_unmap: 2773 out_unmap:
2774 2774
2775 for (--i; i >= 0; --i) { 2775 for (--i; i >= 0; --i) {
2776 start -= PAGE_SIZE; 2776 start -= PAGE_SIZE;
2777 dma_ops_domain_unmap(dma_dom, start); 2777 dma_ops_domain_unmap(dma_dom, start);
2778 } 2778 }
2779 2779
2780 dma_ops_free_addresses(dma_dom, address, pages); 2780 dma_ops_free_addresses(dma_dom, address, pages);
2781 2781
2782 return DMA_ERROR_CODE; 2782 return DMA_ERROR_CODE;
2783 } 2783 }
2784 2784
2785 /* 2785 /*
2786 * Does the reverse of the __map_single function. Must be called with 2786 * Does the reverse of the __map_single function. Must be called with
2787 * the domain lock held too 2787 * the domain lock held too
2788 */ 2788 */
2789 static void __unmap_single(struct dma_ops_domain *dma_dom, 2789 static void __unmap_single(struct dma_ops_domain *dma_dom,
2790 dma_addr_t dma_addr, 2790 dma_addr_t dma_addr,
2791 size_t size, 2791 size_t size,
2792 int dir) 2792 int dir)
2793 { 2793 {
2794 dma_addr_t flush_addr; 2794 dma_addr_t flush_addr;
2795 dma_addr_t i, start; 2795 dma_addr_t i, start;
2796 unsigned int pages; 2796 unsigned int pages;
2797 2797
2798 if ((dma_addr == DMA_ERROR_CODE) || 2798 if ((dma_addr == DMA_ERROR_CODE) ||
2799 (dma_addr + size > dma_dom->aperture_size)) 2799 (dma_addr + size > dma_dom->aperture_size))
2800 return; 2800 return;
2801 2801
2802 flush_addr = dma_addr; 2802 flush_addr = dma_addr;
2803 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); 2803 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2804 dma_addr &= PAGE_MASK; 2804 dma_addr &= PAGE_MASK;
2805 start = dma_addr; 2805 start = dma_addr;
2806 2806
2807 for (i = 0; i < pages; ++i) { 2807 for (i = 0; i < pages; ++i) {
2808 dma_ops_domain_unmap(dma_dom, start); 2808 dma_ops_domain_unmap(dma_dom, start);
2809 start += PAGE_SIZE; 2809 start += PAGE_SIZE;
2810 } 2810 }
2811 2811
2812 SUB_STATS_COUNTER(alloced_io_mem, size); 2812 SUB_STATS_COUNTER(alloced_io_mem, size);
2813 2813
2814 dma_ops_free_addresses(dma_dom, dma_addr, pages); 2814 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2815 2815
2816 if (amd_iommu_unmap_flush || dma_dom->need_flush) { 2816 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2817 domain_flush_pages(&dma_dom->domain, flush_addr, size); 2817 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2818 dma_dom->need_flush = false; 2818 dma_dom->need_flush = false;
2819 } 2819 }
2820 } 2820 }
2821 2821
2822 /* 2822 /*
2823 * The exported map_single function for dma_ops. 2823 * The exported map_single function for dma_ops.
2824 */ 2824 */
2825 static dma_addr_t map_page(struct device *dev, struct page *page, 2825 static dma_addr_t map_page(struct device *dev, struct page *page,
2826 unsigned long offset, size_t size, 2826 unsigned long offset, size_t size,
2827 enum dma_data_direction dir, 2827 enum dma_data_direction dir,
2828 struct dma_attrs *attrs) 2828 struct dma_attrs *attrs)
2829 { 2829 {
2830 unsigned long flags; 2830 unsigned long flags;
2831 struct protection_domain *domain; 2831 struct protection_domain *domain;
2832 dma_addr_t addr; 2832 dma_addr_t addr;
2833 u64 dma_mask; 2833 u64 dma_mask;
2834 phys_addr_t paddr = page_to_phys(page) + offset; 2834 phys_addr_t paddr = page_to_phys(page) + offset;
2835 2835
2836 INC_STATS_COUNTER(cnt_map_single); 2836 INC_STATS_COUNTER(cnt_map_single);
2837 2837
2838 domain = get_domain(dev); 2838 domain = get_domain(dev);
2839 if (PTR_ERR(domain) == -EINVAL) 2839 if (PTR_ERR(domain) == -EINVAL)
2840 return (dma_addr_t)paddr; 2840 return (dma_addr_t)paddr;
2841 else if (IS_ERR(domain)) 2841 else if (IS_ERR(domain))
2842 return DMA_ERROR_CODE; 2842 return DMA_ERROR_CODE;
2843 2843
2844 dma_mask = *dev->dma_mask; 2844 dma_mask = *dev->dma_mask;
2845 2845
2846 spin_lock_irqsave(&domain->lock, flags); 2846 spin_lock_irqsave(&domain->lock, flags);
2847 2847
2848 addr = __map_single(dev, domain->priv, paddr, size, dir, false, 2848 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2849 dma_mask); 2849 dma_mask);
2850 if (addr == DMA_ERROR_CODE) 2850 if (addr == DMA_ERROR_CODE)
2851 goto out; 2851 goto out;
2852 2852
2853 domain_flush_complete(domain); 2853 domain_flush_complete(domain);
2854 2854
2855 out: 2855 out:
2856 spin_unlock_irqrestore(&domain->lock, flags); 2856 spin_unlock_irqrestore(&domain->lock, flags);
2857 2857
2858 return addr; 2858 return addr;
2859 } 2859 }
2860 2860
2861 /* 2861 /*
2862 * The exported unmap_single function for dma_ops. 2862 * The exported unmap_single function for dma_ops.
2863 */ 2863 */
2864 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, 2864 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2865 enum dma_data_direction dir, struct dma_attrs *attrs) 2865 enum dma_data_direction dir, struct dma_attrs *attrs)
2866 { 2866 {
2867 unsigned long flags; 2867 unsigned long flags;
2868 struct protection_domain *domain; 2868 struct protection_domain *domain;
2869 2869
2870 INC_STATS_COUNTER(cnt_unmap_single); 2870 INC_STATS_COUNTER(cnt_unmap_single);
2871 2871
2872 domain = get_domain(dev); 2872 domain = get_domain(dev);
2873 if (IS_ERR(domain)) 2873 if (IS_ERR(domain))
2874 return; 2874 return;
2875 2875
2876 spin_lock_irqsave(&domain->lock, flags); 2876 spin_lock_irqsave(&domain->lock, flags);
2877 2877
2878 __unmap_single(domain->priv, dma_addr, size, dir); 2878 __unmap_single(domain->priv, dma_addr, size, dir);
2879 2879
2880 domain_flush_complete(domain); 2880 domain_flush_complete(domain);
2881 2881
2882 spin_unlock_irqrestore(&domain->lock, flags); 2882 spin_unlock_irqrestore(&domain->lock, flags);
2883 } 2883 }
2884 2884
2885 /* 2885 /*
2886 * The exported map_sg function for dma_ops (handles scatter-gather 2886 * The exported map_sg function for dma_ops (handles scatter-gather
2887 * lists). 2887 * lists).
2888 */ 2888 */
2889 static int map_sg(struct device *dev, struct scatterlist *sglist, 2889 static int map_sg(struct device *dev, struct scatterlist *sglist,
2890 int nelems, enum dma_data_direction dir, 2890 int nelems, enum dma_data_direction dir,
2891 struct dma_attrs *attrs) 2891 struct dma_attrs *attrs)
2892 { 2892 {
2893 unsigned long flags; 2893 unsigned long flags;
2894 struct protection_domain *domain; 2894 struct protection_domain *domain;
2895 int i; 2895 int i;
2896 struct scatterlist *s; 2896 struct scatterlist *s;
2897 phys_addr_t paddr; 2897 phys_addr_t paddr;
2898 int mapped_elems = 0; 2898 int mapped_elems = 0;
2899 u64 dma_mask; 2899 u64 dma_mask;
2900 2900
2901 INC_STATS_COUNTER(cnt_map_sg); 2901 INC_STATS_COUNTER(cnt_map_sg);
2902 2902
2903 domain = get_domain(dev); 2903 domain = get_domain(dev);
2904 if (IS_ERR(domain)) 2904 if (IS_ERR(domain))
2905 return 0; 2905 return 0;
2906 2906
2907 dma_mask = *dev->dma_mask; 2907 dma_mask = *dev->dma_mask;
2908 2908
2909 spin_lock_irqsave(&domain->lock, flags); 2909 spin_lock_irqsave(&domain->lock, flags);
2910 2910
2911 for_each_sg(sglist, s, nelems, i) { 2911 for_each_sg(sglist, s, nelems, i) {
2912 paddr = sg_phys(s); 2912 paddr = sg_phys(s);
2913 2913
2914 s->dma_address = __map_single(dev, domain->priv, 2914 s->dma_address = __map_single(dev, domain->priv,
2915 paddr, s->length, dir, false, 2915 paddr, s->length, dir, false,
2916 dma_mask); 2916 dma_mask);
2917 2917
2918 if (s->dma_address) { 2918 if (s->dma_address) {
2919 s->dma_length = s->length; 2919 s->dma_length = s->length;
2920 mapped_elems++; 2920 mapped_elems++;
2921 } else 2921 } else
2922 goto unmap; 2922 goto unmap;
2923 } 2923 }
2924 2924
2925 domain_flush_complete(domain); 2925 domain_flush_complete(domain);
2926 2926
2927 out: 2927 out:
2928 spin_unlock_irqrestore(&domain->lock, flags); 2928 spin_unlock_irqrestore(&domain->lock, flags);
2929 2929
2930 return mapped_elems; 2930 return mapped_elems;
2931 unmap: 2931 unmap:
2932 for_each_sg(sglist, s, mapped_elems, i) { 2932 for_each_sg(sglist, s, mapped_elems, i) {
2933 if (s->dma_address) 2933 if (s->dma_address)
2934 __unmap_single(domain->priv, s->dma_address, 2934 __unmap_single(domain->priv, s->dma_address,
2935 s->dma_length, dir); 2935 s->dma_length, dir);
2936 s->dma_address = s->dma_length = 0; 2936 s->dma_address = s->dma_length = 0;
2937 } 2937 }
2938 2938
2939 mapped_elems = 0; 2939 mapped_elems = 0;
2940 2940
2941 goto out; 2941 goto out;
2942 } 2942 }
2943 2943
2944 /* 2944 /*
2945 * The exported map_sg function for dma_ops (handles scatter-gather 2945 * The exported map_sg function for dma_ops (handles scatter-gather
2946 * lists). 2946 * lists).
2947 */ 2947 */
2948 static void unmap_sg(struct device *dev, struct scatterlist *sglist, 2948 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2949 int nelems, enum dma_data_direction dir, 2949 int nelems, enum dma_data_direction dir,
2950 struct dma_attrs *attrs) 2950 struct dma_attrs *attrs)
2951 { 2951 {
2952 unsigned long flags; 2952 unsigned long flags;
2953 struct protection_domain *domain; 2953 struct protection_domain *domain;
2954 struct scatterlist *s; 2954 struct scatterlist *s;
2955 int i; 2955 int i;
2956 2956
2957 INC_STATS_COUNTER(cnt_unmap_sg); 2957 INC_STATS_COUNTER(cnt_unmap_sg);
2958 2958
2959 domain = get_domain(dev); 2959 domain = get_domain(dev);
2960 if (IS_ERR(domain)) 2960 if (IS_ERR(domain))
2961 return; 2961 return;
2962 2962
2963 spin_lock_irqsave(&domain->lock, flags); 2963 spin_lock_irqsave(&domain->lock, flags);
2964 2964
2965 for_each_sg(sglist, s, nelems, i) { 2965 for_each_sg(sglist, s, nelems, i) {
2966 __unmap_single(domain->priv, s->dma_address, 2966 __unmap_single(domain->priv, s->dma_address,
2967 s->dma_length, dir); 2967 s->dma_length, dir);
2968 s->dma_address = s->dma_length = 0; 2968 s->dma_address = s->dma_length = 0;
2969 } 2969 }
2970 2970
2971 domain_flush_complete(domain); 2971 domain_flush_complete(domain);
2972 2972
2973 spin_unlock_irqrestore(&domain->lock, flags); 2973 spin_unlock_irqrestore(&domain->lock, flags);
2974 } 2974 }
2975 2975
2976 /* 2976 /*
2977 * The exported alloc_coherent function for dma_ops. 2977 * The exported alloc_coherent function for dma_ops.
2978 */ 2978 */
2979 static void *alloc_coherent(struct device *dev, size_t size, 2979 static void *alloc_coherent(struct device *dev, size_t size,
2980 dma_addr_t *dma_addr, gfp_t flag, 2980 dma_addr_t *dma_addr, gfp_t flag,
2981 struct dma_attrs *attrs) 2981 struct dma_attrs *attrs)
2982 { 2982 {
2983 unsigned long flags; 2983 unsigned long flags;
2984 void *virt_addr; 2984 void *virt_addr;
2985 struct protection_domain *domain; 2985 struct protection_domain *domain;
2986 phys_addr_t paddr; 2986 phys_addr_t paddr;
2987 u64 dma_mask = dev->coherent_dma_mask; 2987 u64 dma_mask = dev->coherent_dma_mask;
2988 2988
2989 INC_STATS_COUNTER(cnt_alloc_coherent); 2989 INC_STATS_COUNTER(cnt_alloc_coherent);
2990 2990
2991 domain = get_domain(dev); 2991 domain = get_domain(dev);
2992 if (PTR_ERR(domain) == -EINVAL) { 2992 if (PTR_ERR(domain) == -EINVAL) {
2993 virt_addr = (void *)__get_free_pages(flag, get_order(size)); 2993 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2994 *dma_addr = __pa(virt_addr); 2994 *dma_addr = __pa(virt_addr);
2995 return virt_addr; 2995 return virt_addr;
2996 } else if (IS_ERR(domain)) 2996 } else if (IS_ERR(domain))
2997 return NULL; 2997 return NULL;
2998 2998
2999 dma_mask = dev->coherent_dma_mask; 2999 dma_mask = dev->coherent_dma_mask;
3000 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); 3000 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
3001 flag |= __GFP_ZERO; 3001 flag |= __GFP_ZERO;
3002 3002
3003 virt_addr = (void *)__get_free_pages(flag, get_order(size)); 3003 virt_addr = (void *)__get_free_pages(flag, get_order(size));
3004 if (!virt_addr) 3004 if (!virt_addr)
3005 return NULL; 3005 return NULL;
3006 3006
3007 paddr = virt_to_phys(virt_addr); 3007 paddr = virt_to_phys(virt_addr);
3008 3008
3009 if (!dma_mask) 3009 if (!dma_mask)
3010 dma_mask = *dev->dma_mask; 3010 dma_mask = *dev->dma_mask;
3011 3011
3012 spin_lock_irqsave(&domain->lock, flags); 3012 spin_lock_irqsave(&domain->lock, flags);
3013 3013
3014 *dma_addr = __map_single(dev, domain->priv, paddr, 3014 *dma_addr = __map_single(dev, domain->priv, paddr,
3015 size, DMA_BIDIRECTIONAL, true, dma_mask); 3015 size, DMA_BIDIRECTIONAL, true, dma_mask);
3016 3016
3017 if (*dma_addr == DMA_ERROR_CODE) { 3017 if (*dma_addr == DMA_ERROR_CODE) {
3018 spin_unlock_irqrestore(&domain->lock, flags); 3018 spin_unlock_irqrestore(&domain->lock, flags);
3019 goto out_free; 3019 goto out_free;
3020 } 3020 }
3021 3021
3022 domain_flush_complete(domain); 3022 domain_flush_complete(domain);
3023 3023
3024 spin_unlock_irqrestore(&domain->lock, flags); 3024 spin_unlock_irqrestore(&domain->lock, flags);
3025 3025
3026 return virt_addr; 3026 return virt_addr;
3027 3027
3028 out_free: 3028 out_free:
3029 3029
3030 free_pages((unsigned long)virt_addr, get_order(size)); 3030 free_pages((unsigned long)virt_addr, get_order(size));
3031 3031
3032 return NULL; 3032 return NULL;
3033 } 3033 }
3034 3034
3035 /* 3035 /*
3036 * The exported free_coherent function for dma_ops. 3036 * The exported free_coherent function for dma_ops.
3037 */ 3037 */
3038 static void free_coherent(struct device *dev, size_t size, 3038 static void free_coherent(struct device *dev, size_t size,
3039 void *virt_addr, dma_addr_t dma_addr, 3039 void *virt_addr, dma_addr_t dma_addr,
3040 struct dma_attrs *attrs) 3040 struct dma_attrs *attrs)
3041 { 3041 {
3042 unsigned long flags; 3042 unsigned long flags;
3043 struct protection_domain *domain; 3043 struct protection_domain *domain;
3044 3044
3045 INC_STATS_COUNTER(cnt_free_coherent); 3045 INC_STATS_COUNTER(cnt_free_coherent);
3046 3046
3047 domain = get_domain(dev); 3047 domain = get_domain(dev);
3048 if (IS_ERR(domain)) 3048 if (IS_ERR(domain))
3049 goto free_mem; 3049 goto free_mem;
3050 3050
3051 spin_lock_irqsave(&domain->lock, flags); 3051 spin_lock_irqsave(&domain->lock, flags);
3052 3052
3053 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); 3053 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3054 3054
3055 domain_flush_complete(domain); 3055 domain_flush_complete(domain);
3056 3056
3057 spin_unlock_irqrestore(&domain->lock, flags); 3057 spin_unlock_irqrestore(&domain->lock, flags);
3058 3058
3059 free_mem: 3059 free_mem:
3060 free_pages((unsigned long)virt_addr, get_order(size)); 3060 free_pages((unsigned long)virt_addr, get_order(size));
3061 } 3061 }
3062 3062
3063 /* 3063 /*
3064 * This function is called by the DMA layer to find out if we can handle a 3064 * This function is called by the DMA layer to find out if we can handle a
3065 * particular device. It is part of the dma_ops. 3065 * particular device. It is part of the dma_ops.
3066 */ 3066 */
3067 static int amd_iommu_dma_supported(struct device *dev, u64 mask) 3067 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3068 { 3068 {
3069 return check_device(dev); 3069 return check_device(dev);
3070 } 3070 }
3071 3071
3072 /* 3072 /*
3073 * The function for pre-allocating protection domains. 3073 * The function for pre-allocating protection domains.
3074 * 3074 *
3075 * If the driver core informs the DMA layer if a driver grabs a device 3075 * If the driver core informs the DMA layer if a driver grabs a device
3076 * we don't need to preallocate the protection domains anymore. 3076 * we don't need to preallocate the protection domains anymore.
3077 * For now we have to. 3077 * For now we have to.
3078 */ 3078 */
3079 static void __init prealloc_protection_domains(void) 3079 static void __init prealloc_protection_domains(void)
3080 { 3080 {
3081 struct iommu_dev_data *dev_data; 3081 struct iommu_dev_data *dev_data;
3082 struct dma_ops_domain *dma_dom; 3082 struct dma_ops_domain *dma_dom;
3083 struct pci_dev *dev = NULL; 3083 struct pci_dev *dev = NULL;
3084 u16 devid; 3084 u16 devid;
3085 3085
3086 for_each_pci_dev(dev) { 3086 for_each_pci_dev(dev) {
3087 3087
3088 /* Do we handle this device? */ 3088 /* Do we handle this device? */
3089 if (!check_device(&dev->dev)) 3089 if (!check_device(&dev->dev))
3090 continue; 3090 continue;
3091 3091
3092 dev_data = get_dev_data(&dev->dev); 3092 dev_data = get_dev_data(&dev->dev);
3093 if (!amd_iommu_force_isolation && dev_data->iommu_v2) { 3093 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3094 /* Make sure passthrough domain is allocated */ 3094 /* Make sure passthrough domain is allocated */
3095 alloc_passthrough_domain(); 3095 alloc_passthrough_domain();
3096 dev_data->passthrough = true; 3096 dev_data->passthrough = true;
3097 attach_device(&dev->dev, pt_domain); 3097 attach_device(&dev->dev, pt_domain);
3098 pr_info("AMD-Vi: Using passthrough domain for device %s\n", 3098 pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3099 dev_name(&dev->dev)); 3099 dev_name(&dev->dev));
3100 } 3100 }
3101 3101
3102 /* Is there already any domain for it? */ 3102 /* Is there already any domain for it? */
3103 if (domain_for_device(&dev->dev)) 3103 if (domain_for_device(&dev->dev))
3104 continue; 3104 continue;
3105 3105
3106 devid = get_device_id(&dev->dev); 3106 devid = get_device_id(&dev->dev);
3107 3107
3108 dma_dom = dma_ops_domain_alloc(); 3108 dma_dom = dma_ops_domain_alloc();
3109 if (!dma_dom) 3109 if (!dma_dom)
3110 continue; 3110 continue;
3111 init_unity_mappings_for_device(dma_dom, devid); 3111 init_unity_mappings_for_device(dma_dom, devid);
3112 dma_dom->target_dev = devid; 3112 dma_dom->target_dev = devid;
3113 3113
3114 attach_device(&dev->dev, &dma_dom->domain); 3114 attach_device(&dev->dev, &dma_dom->domain);
3115 3115
3116 list_add_tail(&dma_dom->list, &iommu_pd_list); 3116 list_add_tail(&dma_dom->list, &iommu_pd_list);
3117 } 3117 }
3118 } 3118 }
3119 3119
3120 static struct dma_map_ops amd_iommu_dma_ops = { 3120 static struct dma_map_ops amd_iommu_dma_ops = {
3121 .alloc = alloc_coherent, 3121 .alloc = alloc_coherent,
3122 .free = free_coherent, 3122 .free = free_coherent,
3123 .map_page = map_page, 3123 .map_page = map_page,
3124 .unmap_page = unmap_page, 3124 .unmap_page = unmap_page,
3125 .map_sg = map_sg, 3125 .map_sg = map_sg,
3126 .unmap_sg = unmap_sg, 3126 .unmap_sg = unmap_sg,
3127 .dma_supported = amd_iommu_dma_supported, 3127 .dma_supported = amd_iommu_dma_supported,
3128 }; 3128 };
3129 3129
3130 static unsigned device_dma_ops_init(void) 3130 static unsigned device_dma_ops_init(void)
3131 { 3131 {
3132 struct iommu_dev_data *dev_data; 3132 struct iommu_dev_data *dev_data;
3133 struct pci_dev *pdev = NULL; 3133 struct pci_dev *pdev = NULL;
3134 unsigned unhandled = 0; 3134 unsigned unhandled = 0;
3135 3135
3136 for_each_pci_dev(pdev) { 3136 for_each_pci_dev(pdev) {
3137 if (!check_device(&pdev->dev)) { 3137 if (!check_device(&pdev->dev)) {
3138 3138
3139 iommu_ignore_device(&pdev->dev); 3139 iommu_ignore_device(&pdev->dev);
3140 3140
3141 unhandled += 1; 3141 unhandled += 1;
3142 continue; 3142 continue;
3143 } 3143 }
3144 3144
3145 dev_data = get_dev_data(&pdev->dev); 3145 dev_data = get_dev_data(&pdev->dev);
3146 3146
3147 if (!dev_data->passthrough) 3147 if (!dev_data->passthrough)
3148 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops; 3148 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3149 else 3149 else
3150 pdev->dev.archdata.dma_ops = &nommu_dma_ops; 3150 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3151 } 3151 }
3152 3152
3153 return unhandled; 3153 return unhandled;
3154 } 3154 }
3155 3155
3156 /* 3156 /*
3157 * The function which clues the AMD IOMMU driver into dma_ops. 3157 * The function which clues the AMD IOMMU driver into dma_ops.
3158 */ 3158 */
3159 3159
3160 void __init amd_iommu_init_api(void) 3160 void __init amd_iommu_init_api(void)
3161 { 3161 {
3162 bus_set_iommu(&pci_bus_type, &amd_iommu_ops); 3162 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3163 } 3163 }
3164 3164
3165 int __init amd_iommu_init_dma_ops(void) 3165 int __init amd_iommu_init_dma_ops(void)
3166 { 3166 {
3167 struct amd_iommu *iommu; 3167 struct amd_iommu *iommu;
3168 int ret, unhandled; 3168 int ret, unhandled;
3169 3169
3170 /* 3170 /*
3171 * first allocate a default protection domain for every IOMMU we 3171 * first allocate a default protection domain for every IOMMU we
3172 * found in the system. Devices not assigned to any other 3172 * found in the system. Devices not assigned to any other
3173 * protection domain will be assigned to the default one. 3173 * protection domain will be assigned to the default one.
3174 */ 3174 */
3175 for_each_iommu(iommu) { 3175 for_each_iommu(iommu) {
3176 iommu->default_dom = dma_ops_domain_alloc(); 3176 iommu->default_dom = dma_ops_domain_alloc();
3177 if (iommu->default_dom == NULL) 3177 if (iommu->default_dom == NULL)
3178 return -ENOMEM; 3178 return -ENOMEM;
3179 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; 3179 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3180 ret = iommu_init_unity_mappings(iommu); 3180 ret = iommu_init_unity_mappings(iommu);
3181 if (ret) 3181 if (ret)
3182 goto free_domains; 3182 goto free_domains;
3183 } 3183 }
3184 3184
3185 /* 3185 /*
3186 * Pre-allocate the protection domains for each device. 3186 * Pre-allocate the protection domains for each device.
3187 */ 3187 */
3188 prealloc_protection_domains(); 3188 prealloc_protection_domains();
3189 3189
3190 iommu_detected = 1; 3190 iommu_detected = 1;
3191 swiotlb = 0; 3191 swiotlb = 0;
3192 3192
3193 /* Make the driver finally visible to the drivers */ 3193 /* Make the driver finally visible to the drivers */
3194 unhandled = device_dma_ops_init(); 3194 unhandled = device_dma_ops_init();
3195 if (unhandled && max_pfn > MAX_DMA32_PFN) { 3195 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3196 /* There are unhandled devices - initialize swiotlb for them */ 3196 /* There are unhandled devices - initialize swiotlb for them */
3197 swiotlb = 1; 3197 swiotlb = 1;
3198 } 3198 }
3199 3199
3200 amd_iommu_stats_init(); 3200 amd_iommu_stats_init();
3201 3201
3202 if (amd_iommu_unmap_flush) 3202 if (amd_iommu_unmap_flush)
3203 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n"); 3203 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3204 else 3204 else
3205 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n"); 3205 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3206 3206
3207 return 0; 3207 return 0;
3208 3208
3209 free_domains: 3209 free_domains:
3210 3210
3211 for_each_iommu(iommu) { 3211 for_each_iommu(iommu) {
3212 dma_ops_domain_free(iommu->default_dom); 3212 dma_ops_domain_free(iommu->default_dom);
3213 } 3213 }
3214 3214
3215 return ret; 3215 return ret;
3216 } 3216 }
3217 3217
3218 /***************************************************************************** 3218 /*****************************************************************************
3219 * 3219 *
3220 * The following functions belong to the exported interface of AMD IOMMU 3220 * The following functions belong to the exported interface of AMD IOMMU
3221 * 3221 *
3222 * This interface allows access to lower level functions of the IOMMU 3222 * This interface allows access to lower level functions of the IOMMU
3223 * like protection domain handling and assignement of devices to domains 3223 * like protection domain handling and assignement of devices to domains
3224 * which is not possible with the dma_ops interface. 3224 * which is not possible with the dma_ops interface.
3225 * 3225 *
3226 *****************************************************************************/ 3226 *****************************************************************************/
3227 3227
3228 static void cleanup_domain(struct protection_domain *domain) 3228 static void cleanup_domain(struct protection_domain *domain)
3229 { 3229 {
3230 struct iommu_dev_data *dev_data, *next; 3230 struct iommu_dev_data *dev_data, *next;
3231 unsigned long flags; 3231 unsigned long flags;
3232 3232
3233 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 3233 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3234 3234
3235 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) { 3235 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3236 __detach_device(dev_data); 3236 __detach_device(dev_data);
3237 atomic_set(&dev_data->bind, 0); 3237 atomic_set(&dev_data->bind, 0);
3238 } 3238 }
3239 3239
3240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 3240 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3241 } 3241 }
3242 3242
3243 static void protection_domain_free(struct protection_domain *domain) 3243 static void protection_domain_free(struct protection_domain *domain)
3244 { 3244 {
3245 if (!domain) 3245 if (!domain)
3246 return; 3246 return;
3247 3247
3248 del_domain_from_list(domain); 3248 del_domain_from_list(domain);
3249 3249
3250 if (domain->id) 3250 if (domain->id)
3251 domain_id_free(domain->id); 3251 domain_id_free(domain->id);
3252 3252
3253 kfree(domain); 3253 kfree(domain);
3254 } 3254 }
3255 3255
3256 static struct protection_domain *protection_domain_alloc(void) 3256 static struct protection_domain *protection_domain_alloc(void)
3257 { 3257 {
3258 struct protection_domain *domain; 3258 struct protection_domain *domain;
3259 3259
3260 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 3260 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3261 if (!domain) 3261 if (!domain)
3262 return NULL; 3262 return NULL;
3263 3263
3264 spin_lock_init(&domain->lock); 3264 spin_lock_init(&domain->lock);
3265 mutex_init(&domain->api_lock); 3265 mutex_init(&domain->api_lock);
3266 domain->id = domain_id_alloc(); 3266 domain->id = domain_id_alloc();
3267 if (!domain->id) 3267 if (!domain->id)
3268 goto out_err; 3268 goto out_err;
3269 INIT_LIST_HEAD(&domain->dev_list); 3269 INIT_LIST_HEAD(&domain->dev_list);
3270 3270
3271 add_domain_to_list(domain); 3271 add_domain_to_list(domain);
3272 3272
3273 return domain; 3273 return domain;
3274 3274
3275 out_err: 3275 out_err:
3276 kfree(domain); 3276 kfree(domain);
3277 3277
3278 return NULL; 3278 return NULL;
3279 } 3279 }
3280 3280
3281 static int __init alloc_passthrough_domain(void) 3281 static int __init alloc_passthrough_domain(void)
3282 { 3282 {
3283 if (pt_domain != NULL) 3283 if (pt_domain != NULL)
3284 return 0; 3284 return 0;
3285 3285
3286 /* allocate passthrough domain */ 3286 /* allocate passthrough domain */
3287 pt_domain = protection_domain_alloc(); 3287 pt_domain = protection_domain_alloc();
3288 if (!pt_domain) 3288 if (!pt_domain)
3289 return -ENOMEM; 3289 return -ENOMEM;
3290 3290
3291 pt_domain->mode = PAGE_MODE_NONE; 3291 pt_domain->mode = PAGE_MODE_NONE;
3292 3292
3293 return 0; 3293 return 0;
3294 } 3294 }
3295 static int amd_iommu_domain_init(struct iommu_domain *dom) 3295 static int amd_iommu_domain_init(struct iommu_domain *dom)
3296 { 3296 {
3297 struct protection_domain *domain; 3297 struct protection_domain *domain;
3298 3298
3299 domain = protection_domain_alloc(); 3299 domain = protection_domain_alloc();
3300 if (!domain) 3300 if (!domain)
3301 goto out_free; 3301 goto out_free;
3302 3302
3303 domain->mode = PAGE_MODE_3_LEVEL; 3303 domain->mode = PAGE_MODE_3_LEVEL;
3304 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); 3304 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3305 if (!domain->pt_root) 3305 if (!domain->pt_root)
3306 goto out_free; 3306 goto out_free;
3307 3307
3308 domain->iommu_domain = dom; 3308 domain->iommu_domain = dom;
3309 3309
3310 dom->priv = domain; 3310 dom->priv = domain;
3311 3311
3312 dom->geometry.aperture_start = 0; 3312 dom->geometry.aperture_start = 0;
3313 dom->geometry.aperture_end = ~0ULL; 3313 dom->geometry.aperture_end = ~0ULL;
3314 dom->geometry.force_aperture = true; 3314 dom->geometry.force_aperture = true;
3315 3315
3316 return 0; 3316 return 0;
3317 3317
3318 out_free: 3318 out_free:
3319 protection_domain_free(domain); 3319 protection_domain_free(domain);
3320 3320
3321 return -ENOMEM; 3321 return -ENOMEM;
3322 } 3322 }
3323 3323
3324 static void amd_iommu_domain_destroy(struct iommu_domain *dom) 3324 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3325 { 3325 {
3326 struct protection_domain *domain = dom->priv; 3326 struct protection_domain *domain = dom->priv;
3327 3327
3328 if (!domain) 3328 if (!domain)
3329 return; 3329 return;
3330 3330
3331 if (domain->dev_cnt > 0) 3331 if (domain->dev_cnt > 0)
3332 cleanup_domain(domain); 3332 cleanup_domain(domain);
3333 3333
3334 BUG_ON(domain->dev_cnt != 0); 3334 BUG_ON(domain->dev_cnt != 0);
3335 3335
3336 if (domain->mode != PAGE_MODE_NONE) 3336 if (domain->mode != PAGE_MODE_NONE)
3337 free_pagetable(domain); 3337 free_pagetable(domain);
3338 3338
3339 if (domain->flags & PD_IOMMUV2_MASK) 3339 if (domain->flags & PD_IOMMUV2_MASK)
3340 free_gcr3_table(domain); 3340 free_gcr3_table(domain);
3341 3341
3342 protection_domain_free(domain); 3342 protection_domain_free(domain);
3343 3343
3344 dom->priv = NULL; 3344 dom->priv = NULL;
3345 } 3345 }
3346 3346
3347 static void amd_iommu_detach_device(struct iommu_domain *dom, 3347 static void amd_iommu_detach_device(struct iommu_domain *dom,
3348 struct device *dev) 3348 struct device *dev)
3349 { 3349 {
3350 struct iommu_dev_data *dev_data = dev->archdata.iommu; 3350 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3351 struct amd_iommu *iommu; 3351 struct amd_iommu *iommu;
3352 u16 devid; 3352 u16 devid;
3353 3353
3354 if (!check_device(dev)) 3354 if (!check_device(dev))
3355 return; 3355 return;
3356 3356
3357 devid = get_device_id(dev); 3357 devid = get_device_id(dev);
3358 3358
3359 if (dev_data->domain != NULL) 3359 if (dev_data->domain != NULL)
3360 detach_device(dev); 3360 detach_device(dev);
3361 3361
3362 iommu = amd_iommu_rlookup_table[devid]; 3362 iommu = amd_iommu_rlookup_table[devid];
3363 if (!iommu) 3363 if (!iommu)
3364 return; 3364 return;
3365 3365
3366 iommu_completion_wait(iommu); 3366 iommu_completion_wait(iommu);
3367 } 3367 }
3368 3368
3369 static int amd_iommu_attach_device(struct iommu_domain *dom, 3369 static int amd_iommu_attach_device(struct iommu_domain *dom,
3370 struct device *dev) 3370 struct device *dev)
3371 { 3371 {
3372 struct protection_domain *domain = dom->priv; 3372 struct protection_domain *domain = dom->priv;
3373 struct iommu_dev_data *dev_data; 3373 struct iommu_dev_data *dev_data;
3374 struct amd_iommu *iommu; 3374 struct amd_iommu *iommu;
3375 int ret; 3375 int ret;
3376 3376
3377 if (!check_device(dev)) 3377 if (!check_device(dev))
3378 return -EINVAL; 3378 return -EINVAL;
3379 3379
3380 dev_data = dev->archdata.iommu; 3380 dev_data = dev->archdata.iommu;
3381 3381
3382 iommu = amd_iommu_rlookup_table[dev_data->devid]; 3382 iommu = amd_iommu_rlookup_table[dev_data->devid];
3383 if (!iommu) 3383 if (!iommu)
3384 return -EINVAL; 3384 return -EINVAL;
3385 3385
3386 if (dev_data->domain) 3386 if (dev_data->domain)
3387 detach_device(dev); 3387 detach_device(dev);
3388 3388
3389 ret = attach_device(dev, domain); 3389 ret = attach_device(dev, domain);
3390 3390
3391 iommu_completion_wait(iommu); 3391 iommu_completion_wait(iommu);
3392 3392
3393 return ret; 3393 return ret;
3394 } 3394 }
3395 3395
3396 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, 3396 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3397 phys_addr_t paddr, size_t page_size, int iommu_prot) 3397 phys_addr_t paddr, size_t page_size, int iommu_prot)
3398 { 3398 {
3399 struct protection_domain *domain = dom->priv; 3399 struct protection_domain *domain = dom->priv;
3400 int prot = 0; 3400 int prot = 0;
3401 int ret; 3401 int ret;
3402 3402
3403 if (domain->mode == PAGE_MODE_NONE) 3403 if (domain->mode == PAGE_MODE_NONE)
3404 return -EINVAL; 3404 return -EINVAL;
3405 3405
3406 if (iommu_prot & IOMMU_READ) 3406 if (iommu_prot & IOMMU_READ)
3407 prot |= IOMMU_PROT_IR; 3407 prot |= IOMMU_PROT_IR;
3408 if (iommu_prot & IOMMU_WRITE) 3408 if (iommu_prot & IOMMU_WRITE)
3409 prot |= IOMMU_PROT_IW; 3409 prot |= IOMMU_PROT_IW;
3410 3410
3411 mutex_lock(&domain->api_lock); 3411 mutex_lock(&domain->api_lock);
3412 ret = iommu_map_page(domain, iova, paddr, prot, page_size); 3412 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3413 mutex_unlock(&domain->api_lock); 3413 mutex_unlock(&domain->api_lock);
3414 3414
3415 return ret; 3415 return ret;
3416 } 3416 }
3417 3417
3418 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, 3418 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3419 size_t page_size) 3419 size_t page_size)
3420 { 3420 {
3421 struct protection_domain *domain = dom->priv; 3421 struct protection_domain *domain = dom->priv;
3422 size_t unmap_size; 3422 size_t unmap_size;
3423 3423
3424 if (domain->mode == PAGE_MODE_NONE) 3424 if (domain->mode == PAGE_MODE_NONE)
3425 return -EINVAL; 3425 return -EINVAL;
3426 3426
3427 mutex_lock(&domain->api_lock); 3427 mutex_lock(&domain->api_lock);
3428 unmap_size = iommu_unmap_page(domain, iova, page_size); 3428 unmap_size = iommu_unmap_page(domain, iova, page_size);
3429 mutex_unlock(&domain->api_lock); 3429 mutex_unlock(&domain->api_lock);
3430 3430
3431 domain_flush_tlb_pde(domain); 3431 domain_flush_tlb_pde(domain);
3432 3432
3433 return unmap_size; 3433 return unmap_size;
3434 } 3434 }
3435 3435
3436 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, 3436 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3437 dma_addr_t iova) 3437 dma_addr_t iova)
3438 { 3438 {
3439 struct protection_domain *domain = dom->priv; 3439 struct protection_domain *domain = dom->priv;
3440 unsigned long offset_mask; 3440 unsigned long offset_mask;
3441 phys_addr_t paddr; 3441 phys_addr_t paddr;
3442 u64 *pte, __pte; 3442 u64 *pte, __pte;
3443 3443
3444 if (domain->mode == PAGE_MODE_NONE) 3444 if (domain->mode == PAGE_MODE_NONE)
3445 return iova; 3445 return iova;
3446 3446
3447 pte = fetch_pte(domain, iova); 3447 pte = fetch_pte(domain, iova);
3448 3448
3449 if (!pte || !IOMMU_PTE_PRESENT(*pte)) 3449 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3450 return 0; 3450 return 0;
3451 3451
3452 if (PM_PTE_LEVEL(*pte) == 0) 3452 if (PM_PTE_LEVEL(*pte) == 0)
3453 offset_mask = PAGE_SIZE - 1; 3453 offset_mask = PAGE_SIZE - 1;
3454 else 3454 else
3455 offset_mask = PTE_PAGE_SIZE(*pte) - 1; 3455 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3456 3456
3457 __pte = *pte & PM_ADDR_MASK; 3457 __pte = *pte & PM_ADDR_MASK;
3458 paddr = (__pte & ~offset_mask) | (iova & offset_mask); 3458 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3459 3459
3460 return paddr; 3460 return paddr;
3461 } 3461 }
3462 3462
3463 static int amd_iommu_domain_has_cap(struct iommu_domain *domain, 3463 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3464 unsigned long cap) 3464 unsigned long cap)
3465 { 3465 {
3466 switch (cap) { 3466 switch (cap) {
3467 case IOMMU_CAP_CACHE_COHERENCY: 3467 case IOMMU_CAP_CACHE_COHERENCY:
3468 return 1; 3468 return 1;
3469 case IOMMU_CAP_INTR_REMAP: 3469 case IOMMU_CAP_INTR_REMAP:
3470 return irq_remapping_enabled; 3470 return irq_remapping_enabled;
3471 } 3471 }
3472 3472
3473 return 0; 3473 return 0;
3474 } 3474 }
3475 3475
3476 static struct iommu_ops amd_iommu_ops = { 3476 static struct iommu_ops amd_iommu_ops = {
3477 .domain_init = amd_iommu_domain_init, 3477 .domain_init = amd_iommu_domain_init,
3478 .domain_destroy = amd_iommu_domain_destroy, 3478 .domain_destroy = amd_iommu_domain_destroy,
3479 .attach_dev = amd_iommu_attach_device, 3479 .attach_dev = amd_iommu_attach_device,
3480 .detach_dev = amd_iommu_detach_device, 3480 .detach_dev = amd_iommu_detach_device,
3481 .map = amd_iommu_map, 3481 .map = amd_iommu_map,
3482 .unmap = amd_iommu_unmap, 3482 .unmap = amd_iommu_unmap,
3483 .iova_to_phys = amd_iommu_iova_to_phys, 3483 .iova_to_phys = amd_iommu_iova_to_phys,
3484 .domain_has_cap = amd_iommu_domain_has_cap, 3484 .domain_has_cap = amd_iommu_domain_has_cap,
3485 .pgsize_bitmap = AMD_IOMMU_PGSIZES, 3485 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3486 }; 3486 };
3487 3487
3488 /***************************************************************************** 3488 /*****************************************************************************
3489 * 3489 *
3490 * The next functions do a basic initialization of IOMMU for pass through 3490 * The next functions do a basic initialization of IOMMU for pass through
3491 * mode 3491 * mode
3492 * 3492 *
3493 * In passthrough mode the IOMMU is initialized and enabled but not used for 3493 * In passthrough mode the IOMMU is initialized and enabled but not used for
3494 * DMA-API translation. 3494 * DMA-API translation.
3495 * 3495 *
3496 *****************************************************************************/ 3496 *****************************************************************************/
3497 3497
3498 int __init amd_iommu_init_passthrough(void) 3498 int __init amd_iommu_init_passthrough(void)
3499 { 3499 {
3500 struct iommu_dev_data *dev_data; 3500 struct iommu_dev_data *dev_data;
3501 struct pci_dev *dev = NULL; 3501 struct pci_dev *dev = NULL;
3502 struct amd_iommu *iommu; 3502 struct amd_iommu *iommu;
3503 u16 devid; 3503 u16 devid;
3504 int ret; 3504 int ret;
3505 3505
3506 ret = alloc_passthrough_domain(); 3506 ret = alloc_passthrough_domain();
3507 if (ret) 3507 if (ret)
3508 return ret; 3508 return ret;
3509 3509
3510 for_each_pci_dev(dev) { 3510 for_each_pci_dev(dev) {
3511 if (!check_device(&dev->dev)) 3511 if (!check_device(&dev->dev))
3512 continue; 3512 continue;
3513 3513
3514 dev_data = get_dev_data(&dev->dev); 3514 dev_data = get_dev_data(&dev->dev);
3515 dev_data->passthrough = true; 3515 dev_data->passthrough = true;
3516 3516
3517 devid = get_device_id(&dev->dev); 3517 devid = get_device_id(&dev->dev);
3518 3518
3519 iommu = amd_iommu_rlookup_table[devid]; 3519 iommu = amd_iommu_rlookup_table[devid];
3520 if (!iommu) 3520 if (!iommu)
3521 continue; 3521 continue;
3522 3522
3523 attach_device(&dev->dev, pt_domain); 3523 attach_device(&dev->dev, pt_domain);
3524 } 3524 }
3525 3525
3526 amd_iommu_stats_init(); 3526 amd_iommu_stats_init();
3527 3527
3528 pr_info("AMD-Vi: Initialized for Passthrough Mode\n"); 3528 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3529 3529
3530 return 0; 3530 return 0;
3531 } 3531 }
3532 3532
3533 /* IOMMUv2 specific functions */ 3533 /* IOMMUv2 specific functions */
3534 int amd_iommu_register_ppr_notifier(struct notifier_block *nb) 3534 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3535 { 3535 {
3536 return atomic_notifier_chain_register(&ppr_notifier, nb); 3536 return atomic_notifier_chain_register(&ppr_notifier, nb);
3537 } 3537 }
3538 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); 3538 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3539 3539
3540 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) 3540 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3541 { 3541 {
3542 return atomic_notifier_chain_unregister(&ppr_notifier, nb); 3542 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3543 } 3543 }
3544 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); 3544 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3545 3545
3546 void amd_iommu_domain_direct_map(struct iommu_domain *dom) 3546 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3547 { 3547 {
3548 struct protection_domain *domain = dom->priv; 3548 struct protection_domain *domain = dom->priv;
3549 unsigned long flags; 3549 unsigned long flags;
3550 3550
3551 spin_lock_irqsave(&domain->lock, flags); 3551 spin_lock_irqsave(&domain->lock, flags);
3552 3552
3553 /* Update data structure */ 3553 /* Update data structure */
3554 domain->mode = PAGE_MODE_NONE; 3554 domain->mode = PAGE_MODE_NONE;
3555 domain->updated = true; 3555 domain->updated = true;
3556 3556
3557 /* Make changes visible to IOMMUs */ 3557 /* Make changes visible to IOMMUs */
3558 update_domain(domain); 3558 update_domain(domain);
3559 3559
3560 /* Page-table is not visible to IOMMU anymore, so free it */ 3560 /* Page-table is not visible to IOMMU anymore, so free it */
3561 free_pagetable(domain); 3561 free_pagetable(domain);
3562 3562
3563 spin_unlock_irqrestore(&domain->lock, flags); 3563 spin_unlock_irqrestore(&domain->lock, flags);
3564 } 3564 }
3565 EXPORT_SYMBOL(amd_iommu_domain_direct_map); 3565 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3566 3566
3567 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) 3567 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3568 { 3568 {
3569 struct protection_domain *domain = dom->priv; 3569 struct protection_domain *domain = dom->priv;
3570 unsigned long flags; 3570 unsigned long flags;
3571 int levels, ret; 3571 int levels, ret;
3572 3572
3573 if (pasids <= 0 || pasids > (PASID_MASK + 1)) 3573 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3574 return -EINVAL; 3574 return -EINVAL;
3575 3575
3576 /* Number of GCR3 table levels required */ 3576 /* Number of GCR3 table levels required */
3577 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) 3577 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3578 levels += 1; 3578 levels += 1;
3579 3579
3580 if (levels > amd_iommu_max_glx_val) 3580 if (levels > amd_iommu_max_glx_val)
3581 return -EINVAL; 3581 return -EINVAL;
3582 3582
3583 spin_lock_irqsave(&domain->lock, flags); 3583 spin_lock_irqsave(&domain->lock, flags);
3584 3584
3585 /* 3585 /*
3586 * Save us all sanity checks whether devices already in the 3586 * Save us all sanity checks whether devices already in the
3587 * domain support IOMMUv2. Just force that the domain has no 3587 * domain support IOMMUv2. Just force that the domain has no
3588 * devices attached when it is switched into IOMMUv2 mode. 3588 * devices attached when it is switched into IOMMUv2 mode.
3589 */ 3589 */
3590 ret = -EBUSY; 3590 ret = -EBUSY;
3591 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) 3591 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3592 goto out; 3592 goto out;
3593 3593
3594 ret = -ENOMEM; 3594 ret = -ENOMEM;
3595 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); 3595 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3596 if (domain->gcr3_tbl == NULL) 3596 if (domain->gcr3_tbl == NULL)
3597 goto out; 3597 goto out;
3598 3598
3599 domain->glx = levels; 3599 domain->glx = levels;
3600 domain->flags |= PD_IOMMUV2_MASK; 3600 domain->flags |= PD_IOMMUV2_MASK;
3601 domain->updated = true; 3601 domain->updated = true;
3602 3602
3603 update_domain(domain); 3603 update_domain(domain);
3604 3604
3605 ret = 0; 3605 ret = 0;
3606 3606
3607 out: 3607 out:
3608 spin_unlock_irqrestore(&domain->lock, flags); 3608 spin_unlock_irqrestore(&domain->lock, flags);
3609 3609
3610 return ret; 3610 return ret;
3611 } 3611 }
3612 EXPORT_SYMBOL(amd_iommu_domain_enable_v2); 3612 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3613 3613
3614 static int __flush_pasid(struct protection_domain *domain, int pasid, 3614 static int __flush_pasid(struct protection_domain *domain, int pasid,
3615 u64 address, bool size) 3615 u64 address, bool size)
3616 { 3616 {
3617 struct iommu_dev_data *dev_data; 3617 struct iommu_dev_data *dev_data;
3618 struct iommu_cmd cmd; 3618 struct iommu_cmd cmd;
3619 int i, ret; 3619 int i, ret;
3620 3620
3621 if (!(domain->flags & PD_IOMMUV2_MASK)) 3621 if (!(domain->flags & PD_IOMMUV2_MASK))
3622 return -EINVAL; 3622 return -EINVAL;
3623 3623
3624 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); 3624 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3625 3625
3626 /* 3626 /*
3627 * IOMMU TLB needs to be flushed before Device TLB to 3627 * IOMMU TLB needs to be flushed before Device TLB to
3628 * prevent device TLB refill from IOMMU TLB 3628 * prevent device TLB refill from IOMMU TLB
3629 */ 3629 */
3630 for (i = 0; i < amd_iommus_present; ++i) { 3630 for (i = 0; i < amd_iommus_present; ++i) {
3631 if (domain->dev_iommu[i] == 0) 3631 if (domain->dev_iommu[i] == 0)
3632 continue; 3632 continue;
3633 3633
3634 ret = iommu_queue_command(amd_iommus[i], &cmd); 3634 ret = iommu_queue_command(amd_iommus[i], &cmd);
3635 if (ret != 0) 3635 if (ret != 0)
3636 goto out; 3636 goto out;
3637 } 3637 }
3638 3638
3639 /* Wait until IOMMU TLB flushes are complete */ 3639 /* Wait until IOMMU TLB flushes are complete */
3640 domain_flush_complete(domain); 3640 domain_flush_complete(domain);
3641 3641
3642 /* Now flush device TLBs */ 3642 /* Now flush device TLBs */
3643 list_for_each_entry(dev_data, &domain->dev_list, list) { 3643 list_for_each_entry(dev_data, &domain->dev_list, list) {
3644 struct amd_iommu *iommu; 3644 struct amd_iommu *iommu;
3645 int qdep; 3645 int qdep;
3646 3646
3647 BUG_ON(!dev_data->ats.enabled); 3647 BUG_ON(!dev_data->ats.enabled);
3648 3648
3649 qdep = dev_data->ats.qdep; 3649 qdep = dev_data->ats.qdep;
3650 iommu = amd_iommu_rlookup_table[dev_data->devid]; 3650 iommu = amd_iommu_rlookup_table[dev_data->devid];
3651 3651
3652 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, 3652 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3653 qdep, address, size); 3653 qdep, address, size);
3654 3654
3655 ret = iommu_queue_command(iommu, &cmd); 3655 ret = iommu_queue_command(iommu, &cmd);
3656 if (ret != 0) 3656 if (ret != 0)
3657 goto out; 3657 goto out;
3658 } 3658 }
3659 3659
3660 /* Wait until all device TLBs are flushed */ 3660 /* Wait until all device TLBs are flushed */
3661 domain_flush_complete(domain); 3661 domain_flush_complete(domain);
3662 3662
3663 ret = 0; 3663 ret = 0;
3664 3664
3665 out: 3665 out:
3666 3666
3667 return ret; 3667 return ret;
3668 } 3668 }
3669 3669
3670 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, 3670 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3671 u64 address) 3671 u64 address)
3672 { 3672 {
3673 INC_STATS_COUNTER(invalidate_iotlb); 3673 INC_STATS_COUNTER(invalidate_iotlb);
3674 3674
3675 return __flush_pasid(domain, pasid, address, false); 3675 return __flush_pasid(domain, pasid, address, false);
3676 } 3676 }
3677 3677
3678 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, 3678 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3679 u64 address) 3679 u64 address)
3680 { 3680 {
3681 struct protection_domain *domain = dom->priv; 3681 struct protection_domain *domain = dom->priv;
3682 unsigned long flags; 3682 unsigned long flags;
3683 int ret; 3683 int ret;
3684 3684
3685 spin_lock_irqsave(&domain->lock, flags); 3685 spin_lock_irqsave(&domain->lock, flags);
3686 ret = __amd_iommu_flush_page(domain, pasid, address); 3686 ret = __amd_iommu_flush_page(domain, pasid, address);
3687 spin_unlock_irqrestore(&domain->lock, flags); 3687 spin_unlock_irqrestore(&domain->lock, flags);
3688 3688
3689 return ret; 3689 return ret;
3690 } 3690 }
3691 EXPORT_SYMBOL(amd_iommu_flush_page); 3691 EXPORT_SYMBOL(amd_iommu_flush_page);
3692 3692
3693 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) 3693 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3694 { 3694 {
3695 INC_STATS_COUNTER(invalidate_iotlb_all); 3695 INC_STATS_COUNTER(invalidate_iotlb_all);
3696 3696
3697 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 3697 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3698 true); 3698 true);
3699 } 3699 }
3700 3700
3701 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) 3701 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3702 { 3702 {
3703 struct protection_domain *domain = dom->priv; 3703 struct protection_domain *domain = dom->priv;
3704 unsigned long flags; 3704 unsigned long flags;
3705 int ret; 3705 int ret;
3706 3706
3707 spin_lock_irqsave(&domain->lock, flags); 3707 spin_lock_irqsave(&domain->lock, flags);
3708 ret = __amd_iommu_flush_tlb(domain, pasid); 3708 ret = __amd_iommu_flush_tlb(domain, pasid);
3709 spin_unlock_irqrestore(&domain->lock, flags); 3709 spin_unlock_irqrestore(&domain->lock, flags);
3710 3710
3711 return ret; 3711 return ret;
3712 } 3712 }
3713 EXPORT_SYMBOL(amd_iommu_flush_tlb); 3713 EXPORT_SYMBOL(amd_iommu_flush_tlb);
3714 3714
3715 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) 3715 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3716 { 3716 {
3717 int index; 3717 int index;
3718 u64 *pte; 3718 u64 *pte;
3719 3719
3720 while (true) { 3720 while (true) {
3721 3721
3722 index = (pasid >> (9 * level)) & 0x1ff; 3722 index = (pasid >> (9 * level)) & 0x1ff;
3723 pte = &root[index]; 3723 pte = &root[index];
3724 3724
3725 if (level == 0) 3725 if (level == 0)
3726 break; 3726 break;
3727 3727
3728 if (!(*pte & GCR3_VALID)) { 3728 if (!(*pte & GCR3_VALID)) {
3729 if (!alloc) 3729 if (!alloc)
3730 return NULL; 3730 return NULL;
3731 3731
3732 root = (void *)get_zeroed_page(GFP_ATOMIC); 3732 root = (void *)get_zeroed_page(GFP_ATOMIC);
3733 if (root == NULL) 3733 if (root == NULL)
3734 return NULL; 3734 return NULL;
3735 3735
3736 *pte = __pa(root) | GCR3_VALID; 3736 *pte = __pa(root) | GCR3_VALID;
3737 } 3737 }
3738 3738
3739 root = __va(*pte & PAGE_MASK); 3739 root = __va(*pte & PAGE_MASK);
3740 3740
3741 level -= 1; 3741 level -= 1;
3742 } 3742 }
3743 3743
3744 return pte; 3744 return pte;
3745 } 3745 }
3746 3746
3747 static int __set_gcr3(struct protection_domain *domain, int pasid, 3747 static int __set_gcr3(struct protection_domain *domain, int pasid,
3748 unsigned long cr3) 3748 unsigned long cr3)
3749 { 3749 {
3750 u64 *pte; 3750 u64 *pte;
3751 3751
3752 if (domain->mode != PAGE_MODE_NONE) 3752 if (domain->mode != PAGE_MODE_NONE)
3753 return -EINVAL; 3753 return -EINVAL;
3754 3754
3755 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); 3755 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3756 if (pte == NULL) 3756 if (pte == NULL)
3757 return -ENOMEM; 3757 return -ENOMEM;
3758 3758
3759 *pte = (cr3 & PAGE_MASK) | GCR3_VALID; 3759 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3760 3760
3761 return __amd_iommu_flush_tlb(domain, pasid); 3761 return __amd_iommu_flush_tlb(domain, pasid);
3762 } 3762 }
3763 3763
3764 static int __clear_gcr3(struct protection_domain *domain, int pasid) 3764 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3765 { 3765 {
3766 u64 *pte; 3766 u64 *pte;
3767 3767
3768 if (domain->mode != PAGE_MODE_NONE) 3768 if (domain->mode != PAGE_MODE_NONE)
3769 return -EINVAL; 3769 return -EINVAL;
3770 3770
3771 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); 3771 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3772 if (pte == NULL) 3772 if (pte == NULL)
3773 return 0; 3773 return 0;
3774 3774
3775 *pte = 0; 3775 *pte = 0;
3776 3776
3777 return __amd_iommu_flush_tlb(domain, pasid); 3777 return __amd_iommu_flush_tlb(domain, pasid);
3778 } 3778 }
3779 3779
3780 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, 3780 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3781 unsigned long cr3) 3781 unsigned long cr3)
3782 { 3782 {
3783 struct protection_domain *domain = dom->priv; 3783 struct protection_domain *domain = dom->priv;
3784 unsigned long flags; 3784 unsigned long flags;
3785 int ret; 3785 int ret;
3786 3786
3787 spin_lock_irqsave(&domain->lock, flags); 3787 spin_lock_irqsave(&domain->lock, flags);
3788 ret = __set_gcr3(domain, pasid, cr3); 3788 ret = __set_gcr3(domain, pasid, cr3);
3789 spin_unlock_irqrestore(&domain->lock, flags); 3789 spin_unlock_irqrestore(&domain->lock, flags);
3790 3790
3791 return ret; 3791 return ret;
3792 } 3792 }
3793 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); 3793 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3794 3794
3795 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) 3795 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3796 { 3796 {
3797 struct protection_domain *domain = dom->priv; 3797 struct protection_domain *domain = dom->priv;
3798 unsigned long flags; 3798 unsigned long flags;
3799 int ret; 3799 int ret;
3800 3800
3801 spin_lock_irqsave(&domain->lock, flags); 3801 spin_lock_irqsave(&domain->lock, flags);
3802 ret = __clear_gcr3(domain, pasid); 3802 ret = __clear_gcr3(domain, pasid);
3803 spin_unlock_irqrestore(&domain->lock, flags); 3803 spin_unlock_irqrestore(&domain->lock, flags);
3804 3804
3805 return ret; 3805 return ret;
3806 } 3806 }
3807 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); 3807 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3808 3808
3809 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, 3809 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3810 int status, int tag) 3810 int status, int tag)
3811 { 3811 {
3812 struct iommu_dev_data *dev_data; 3812 struct iommu_dev_data *dev_data;
3813 struct amd_iommu *iommu; 3813 struct amd_iommu *iommu;
3814 struct iommu_cmd cmd; 3814 struct iommu_cmd cmd;
3815 3815
3816 INC_STATS_COUNTER(complete_ppr); 3816 INC_STATS_COUNTER(complete_ppr);
3817 3817
3818 dev_data = get_dev_data(&pdev->dev); 3818 dev_data = get_dev_data(&pdev->dev);
3819 iommu = amd_iommu_rlookup_table[dev_data->devid]; 3819 iommu = amd_iommu_rlookup_table[dev_data->devid];
3820 3820
3821 build_complete_ppr(&cmd, dev_data->devid, pasid, status, 3821 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3822 tag, dev_data->pri_tlp); 3822 tag, dev_data->pri_tlp);
3823 3823
3824 return iommu_queue_command(iommu, &cmd); 3824 return iommu_queue_command(iommu, &cmd);
3825 } 3825 }
3826 EXPORT_SYMBOL(amd_iommu_complete_ppr); 3826 EXPORT_SYMBOL(amd_iommu_complete_ppr);
3827 3827
3828 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) 3828 struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3829 { 3829 {
3830 struct protection_domain *domain; 3830 struct protection_domain *domain;
3831 3831
3832 domain = get_domain(&pdev->dev); 3832 domain = get_domain(&pdev->dev);
3833 if (IS_ERR(domain)) 3833 if (IS_ERR(domain))
3834 return NULL; 3834 return NULL;
3835 3835
3836 /* Only return IOMMUv2 domains */ 3836 /* Only return IOMMUv2 domains */
3837 if (!(domain->flags & PD_IOMMUV2_MASK)) 3837 if (!(domain->flags & PD_IOMMUV2_MASK))
3838 return NULL; 3838 return NULL;
3839 3839
3840 return domain->iommu_domain; 3840 return domain->iommu_domain;
3841 } 3841 }
3842 EXPORT_SYMBOL(amd_iommu_get_v2_domain); 3842 EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3843 3843
3844 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) 3844 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3845 { 3845 {
3846 struct iommu_dev_data *dev_data; 3846 struct iommu_dev_data *dev_data;
3847 3847
3848 if (!amd_iommu_v2_supported()) 3848 if (!amd_iommu_v2_supported())
3849 return; 3849 return;
3850 3850
3851 dev_data = get_dev_data(&pdev->dev); 3851 dev_data = get_dev_data(&pdev->dev);
3852 dev_data->errata |= (1 << erratum); 3852 dev_data->errata |= (1 << erratum);
3853 } 3853 }
3854 EXPORT_SYMBOL(amd_iommu_enable_device_erratum); 3854 EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3855 3855
3856 int amd_iommu_device_info(struct pci_dev *pdev, 3856 int amd_iommu_device_info(struct pci_dev *pdev,
3857 struct amd_iommu_device_info *info) 3857 struct amd_iommu_device_info *info)
3858 { 3858 {
3859 int max_pasids; 3859 int max_pasids;
3860 int pos; 3860 int pos;
3861 3861
3862 if (pdev == NULL || info == NULL) 3862 if (pdev == NULL || info == NULL)
3863 return -EINVAL; 3863 return -EINVAL;
3864 3864
3865 if (!amd_iommu_v2_supported()) 3865 if (!amd_iommu_v2_supported())
3866 return -EINVAL; 3866 return -EINVAL;
3867 3867
3868 memset(info, 0, sizeof(*info)); 3868 memset(info, 0, sizeof(*info));
3869 3869
3870 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); 3870 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3871 if (pos) 3871 if (pos)
3872 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; 3872 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3873 3873
3874 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); 3874 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3875 if (pos) 3875 if (pos)
3876 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; 3876 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3877 3877
3878 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); 3878 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3879 if (pos) { 3879 if (pos) {
3880 int features; 3880 int features;
3881 3881
3882 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); 3882 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3883 max_pasids = min(max_pasids, (1 << 20)); 3883 max_pasids = min(max_pasids, (1 << 20));
3884 3884
3885 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; 3885 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3886 info->max_pasids = min(pci_max_pasids(pdev), max_pasids); 3886 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3887 3887
3888 features = pci_pasid_features(pdev); 3888 features = pci_pasid_features(pdev);
3889 if (features & PCI_PASID_CAP_EXEC) 3889 if (features & PCI_PASID_CAP_EXEC)
3890 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; 3890 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3891 if (features & PCI_PASID_CAP_PRIV) 3891 if (features & PCI_PASID_CAP_PRIV)
3892 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; 3892 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3893 } 3893 }
3894 3894
3895 return 0; 3895 return 0;
3896 } 3896 }
3897 EXPORT_SYMBOL(amd_iommu_device_info); 3897 EXPORT_SYMBOL(amd_iommu_device_info);
3898 3898
3899 #ifdef CONFIG_IRQ_REMAP 3899 #ifdef CONFIG_IRQ_REMAP
3900 3900
3901 /***************************************************************************** 3901 /*****************************************************************************
3902 * 3902 *
3903 * Interrupt Remapping Implementation 3903 * Interrupt Remapping Implementation
3904 * 3904 *
3905 *****************************************************************************/ 3905 *****************************************************************************/
3906 3906
3907 union irte { 3907 union irte {
3908 u32 val; 3908 u32 val;
3909 struct { 3909 struct {
3910 u32 valid : 1, 3910 u32 valid : 1,
3911 no_fault : 1, 3911 no_fault : 1,
3912 int_type : 3, 3912 int_type : 3,
3913 rq_eoi : 1, 3913 rq_eoi : 1,
3914 dm : 1, 3914 dm : 1,
3915 rsvd_1 : 1, 3915 rsvd_1 : 1,
3916 destination : 8, 3916 destination : 8,
3917 vector : 8, 3917 vector : 8,
3918 rsvd_2 : 8; 3918 rsvd_2 : 8;
3919 } fields; 3919 } fields;
3920 }; 3920 };
3921 3921
3922 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6) 3922 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3923 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60) 3923 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3924 #define DTE_IRQ_TABLE_LEN (8ULL << 1) 3924 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3925 #define DTE_IRQ_REMAP_ENABLE 1ULL 3925 #define DTE_IRQ_REMAP_ENABLE 1ULL
3926 3926
3927 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) 3927 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3928 { 3928 {
3929 u64 dte; 3929 u64 dte;
3930 3930
3931 dte = amd_iommu_dev_table[devid].data[2]; 3931 dte = amd_iommu_dev_table[devid].data[2];
3932 dte &= ~DTE_IRQ_PHYS_ADDR_MASK; 3932 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3933 dte |= virt_to_phys(table->table); 3933 dte |= virt_to_phys(table->table);
3934 dte |= DTE_IRQ_REMAP_INTCTL; 3934 dte |= DTE_IRQ_REMAP_INTCTL;
3935 dte |= DTE_IRQ_TABLE_LEN; 3935 dte |= DTE_IRQ_TABLE_LEN;
3936 dte |= DTE_IRQ_REMAP_ENABLE; 3936 dte |= DTE_IRQ_REMAP_ENABLE;
3937 3937
3938 amd_iommu_dev_table[devid].data[2] = dte; 3938 amd_iommu_dev_table[devid].data[2] = dte;
3939 } 3939 }
3940 3940
3941 #define IRTE_ALLOCATED (~1U) 3941 #define IRTE_ALLOCATED (~1U)
3942 3942
3943 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic) 3943 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3944 { 3944 {
3945 struct irq_remap_table *table = NULL; 3945 struct irq_remap_table *table = NULL;
3946 struct amd_iommu *iommu; 3946 struct amd_iommu *iommu;
3947 unsigned long flags; 3947 unsigned long flags;
3948 u16 alias; 3948 u16 alias;
3949 3949
3950 write_lock_irqsave(&amd_iommu_devtable_lock, flags); 3950 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3951 3951
3952 iommu = amd_iommu_rlookup_table[devid]; 3952 iommu = amd_iommu_rlookup_table[devid];
3953 if (!iommu) 3953 if (!iommu)
3954 goto out_unlock; 3954 goto out_unlock;
3955 3955
3956 table = irq_lookup_table[devid]; 3956 table = irq_lookup_table[devid];
3957 if (table) 3957 if (table)
3958 goto out; 3958 goto out;
3959 3959
3960 alias = amd_iommu_alias_table[devid]; 3960 alias = amd_iommu_alias_table[devid];
3961 table = irq_lookup_table[alias]; 3961 table = irq_lookup_table[alias];
3962 if (table) { 3962 if (table) {
3963 irq_lookup_table[devid] = table; 3963 irq_lookup_table[devid] = table;
3964 set_dte_irq_entry(devid, table); 3964 set_dte_irq_entry(devid, table);
3965 iommu_flush_dte(iommu, devid); 3965 iommu_flush_dte(iommu, devid);
3966 goto out; 3966 goto out;
3967 } 3967 }
3968 3968
3969 /* Nothing there yet, allocate new irq remapping table */ 3969 /* Nothing there yet, allocate new irq remapping table */
3970 table = kzalloc(sizeof(*table), GFP_ATOMIC); 3970 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3971 if (!table) 3971 if (!table)
3972 goto out; 3972 goto out;
3973 3973
3974 /* Initialize table spin-lock */ 3974 /* Initialize table spin-lock */
3975 spin_lock_init(&table->lock); 3975 spin_lock_init(&table->lock);
3976 3976
3977 if (ioapic) 3977 if (ioapic)
3978 /* Keep the first 32 indexes free for IOAPIC interrupts */ 3978 /* Keep the first 32 indexes free for IOAPIC interrupts */
3979 table->min_index = 32; 3979 table->min_index = 32;
3980 3980
3981 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC); 3981 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3982 if (!table->table) { 3982 if (!table->table) {
3983 kfree(table); 3983 kfree(table);
3984 table = NULL; 3984 table = NULL;
3985 goto out; 3985 goto out;
3986 } 3986 }
3987 3987
3988 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32)); 3988 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3989 3989
3990 if (ioapic) { 3990 if (ioapic) {
3991 int i; 3991 int i;
3992 3992
3993 for (i = 0; i < 32; ++i) 3993 for (i = 0; i < 32; ++i)
3994 table->table[i] = IRTE_ALLOCATED; 3994 table->table[i] = IRTE_ALLOCATED;
3995 } 3995 }
3996 3996
3997 irq_lookup_table[devid] = table; 3997 irq_lookup_table[devid] = table;
3998 set_dte_irq_entry(devid, table); 3998 set_dte_irq_entry(devid, table);
3999 iommu_flush_dte(iommu, devid); 3999 iommu_flush_dte(iommu, devid);
4000 if (devid != alias) { 4000 if (devid != alias) {
4001 irq_lookup_table[alias] = table; 4001 irq_lookup_table[alias] = table;
4002 set_dte_irq_entry(devid, table); 4002 set_dte_irq_entry(alias, table);
4003 iommu_flush_dte(iommu, alias); 4003 iommu_flush_dte(iommu, alias);
4004 } 4004 }
4005 4005
4006 out: 4006 out:
4007 iommu_completion_wait(iommu); 4007 iommu_completion_wait(iommu);
4008 4008
4009 out_unlock: 4009 out_unlock:
4010 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); 4010 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
4011 4011
4012 return table; 4012 return table;
4013 } 4013 }
4014 4014
4015 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count) 4015 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
4016 { 4016 {
4017 struct irq_remap_table *table; 4017 struct irq_remap_table *table;
4018 unsigned long flags; 4018 unsigned long flags;
4019 int index, c; 4019 int index, c;
4020 4020
4021 table = get_irq_table(devid, false); 4021 table = get_irq_table(devid, false);
4022 if (!table) 4022 if (!table)
4023 return -ENODEV; 4023 return -ENODEV;
4024 4024
4025 spin_lock_irqsave(&table->lock, flags); 4025 spin_lock_irqsave(&table->lock, flags);
4026 4026
4027 /* Scan table for free entries */ 4027 /* Scan table for free entries */
4028 for (c = 0, index = table->min_index; 4028 for (c = 0, index = table->min_index;
4029 index < MAX_IRQS_PER_TABLE; 4029 index < MAX_IRQS_PER_TABLE;
4030 ++index) { 4030 ++index) {
4031 if (table->table[index] == 0) 4031 if (table->table[index] == 0)
4032 c += 1; 4032 c += 1;
4033 else 4033 else
4034 c = 0; 4034 c = 0;
4035 4035
4036 if (c == count) { 4036 if (c == count) {
4037 struct irq_2_irte *irte_info; 4037 struct irq_2_irte *irte_info;
4038 4038
4039 for (; c != 0; --c) 4039 for (; c != 0; --c)
4040 table->table[index - c + 1] = IRTE_ALLOCATED; 4040 table->table[index - c + 1] = IRTE_ALLOCATED;
4041 4041
4042 index -= count - 1; 4042 index -= count - 1;
4043 4043
4044 cfg->remapped = 1; 4044 cfg->remapped = 1;
4045 irte_info = &cfg->irq_2_irte; 4045 irte_info = &cfg->irq_2_irte;
4046 irte_info->devid = devid; 4046 irte_info->devid = devid;
4047 irte_info->index = index; 4047 irte_info->index = index;
4048 4048
4049 goto out; 4049 goto out;
4050 } 4050 }
4051 } 4051 }
4052 4052
4053 index = -ENOSPC; 4053 index = -ENOSPC;
4054 4054
4055 out: 4055 out:
4056 spin_unlock_irqrestore(&table->lock, flags); 4056 spin_unlock_irqrestore(&table->lock, flags);
4057 4057
4058 return index; 4058 return index;
4059 } 4059 }
4060 4060
4061 static int get_irte(u16 devid, int index, union irte *irte) 4061 static int get_irte(u16 devid, int index, union irte *irte)
4062 { 4062 {
4063 struct irq_remap_table *table; 4063 struct irq_remap_table *table;
4064 unsigned long flags; 4064 unsigned long flags;
4065 4065
4066 table = get_irq_table(devid, false); 4066 table = get_irq_table(devid, false);
4067 if (!table) 4067 if (!table)
4068 return -ENOMEM; 4068 return -ENOMEM;
4069 4069
4070 spin_lock_irqsave(&table->lock, flags); 4070 spin_lock_irqsave(&table->lock, flags);
4071 irte->val = table->table[index]; 4071 irte->val = table->table[index];
4072 spin_unlock_irqrestore(&table->lock, flags); 4072 spin_unlock_irqrestore(&table->lock, flags);
4073 4073
4074 return 0; 4074 return 0;
4075 } 4075 }
4076 4076
4077 static int modify_irte(u16 devid, int index, union irte irte) 4077 static int modify_irte(u16 devid, int index, union irte irte)
4078 { 4078 {
4079 struct irq_remap_table *table; 4079 struct irq_remap_table *table;
4080 struct amd_iommu *iommu; 4080 struct amd_iommu *iommu;
4081 unsigned long flags; 4081 unsigned long flags;
4082 4082
4083 iommu = amd_iommu_rlookup_table[devid]; 4083 iommu = amd_iommu_rlookup_table[devid];
4084 if (iommu == NULL) 4084 if (iommu == NULL)
4085 return -EINVAL; 4085 return -EINVAL;
4086 4086
4087 table = get_irq_table(devid, false); 4087 table = get_irq_table(devid, false);
4088 if (!table) 4088 if (!table)
4089 return -ENOMEM; 4089 return -ENOMEM;
4090 4090
4091 spin_lock_irqsave(&table->lock, flags); 4091 spin_lock_irqsave(&table->lock, flags);
4092 table->table[index] = irte.val; 4092 table->table[index] = irte.val;
4093 spin_unlock_irqrestore(&table->lock, flags); 4093 spin_unlock_irqrestore(&table->lock, flags);
4094 4094
4095 iommu_flush_irt(iommu, devid); 4095 iommu_flush_irt(iommu, devid);
4096 iommu_completion_wait(iommu); 4096 iommu_completion_wait(iommu);
4097 4097
4098 return 0; 4098 return 0;
4099 } 4099 }
4100 4100
4101 static void free_irte(u16 devid, int index) 4101 static void free_irte(u16 devid, int index)
4102 { 4102 {
4103 struct irq_remap_table *table; 4103 struct irq_remap_table *table;
4104 struct amd_iommu *iommu; 4104 struct amd_iommu *iommu;
4105 unsigned long flags; 4105 unsigned long flags;
4106 4106
4107 iommu = amd_iommu_rlookup_table[devid]; 4107 iommu = amd_iommu_rlookup_table[devid];
4108 if (iommu == NULL) 4108 if (iommu == NULL)
4109 return; 4109 return;
4110 4110
4111 table = get_irq_table(devid, false); 4111 table = get_irq_table(devid, false);
4112 if (!table) 4112 if (!table)
4113 return; 4113 return;
4114 4114
4115 spin_lock_irqsave(&table->lock, flags); 4115 spin_lock_irqsave(&table->lock, flags);
4116 table->table[index] = 0; 4116 table->table[index] = 0;
4117 spin_unlock_irqrestore(&table->lock, flags); 4117 spin_unlock_irqrestore(&table->lock, flags);
4118 4118
4119 iommu_flush_irt(iommu, devid); 4119 iommu_flush_irt(iommu, devid);
4120 iommu_completion_wait(iommu); 4120 iommu_completion_wait(iommu);
4121 } 4121 }
4122 4122
4123 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry, 4123 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4124 unsigned int destination, int vector, 4124 unsigned int destination, int vector,
4125 struct io_apic_irq_attr *attr) 4125 struct io_apic_irq_attr *attr)
4126 { 4126 {
4127 struct irq_remap_table *table; 4127 struct irq_remap_table *table;
4128 struct irq_2_irte *irte_info; 4128 struct irq_2_irte *irte_info;
4129 struct irq_cfg *cfg; 4129 struct irq_cfg *cfg;
4130 union irte irte; 4130 union irte irte;
4131 int ioapic_id; 4131 int ioapic_id;
4132 int index; 4132 int index;
4133 int devid; 4133 int devid;
4134 int ret; 4134 int ret;
4135 4135
4136 cfg = irq_get_chip_data(irq); 4136 cfg = irq_get_chip_data(irq);
4137 if (!cfg) 4137 if (!cfg)
4138 return -EINVAL; 4138 return -EINVAL;
4139 4139
4140 irte_info = &cfg->irq_2_irte; 4140 irte_info = &cfg->irq_2_irte;
4141 ioapic_id = mpc_ioapic_id(attr->ioapic); 4141 ioapic_id = mpc_ioapic_id(attr->ioapic);
4142 devid = get_ioapic_devid(ioapic_id); 4142 devid = get_ioapic_devid(ioapic_id);
4143 4143
4144 if (devid < 0) 4144 if (devid < 0)
4145 return devid; 4145 return devid;
4146 4146
4147 table = get_irq_table(devid, true); 4147 table = get_irq_table(devid, true);
4148 if (table == NULL) 4148 if (table == NULL)
4149 return -ENOMEM; 4149 return -ENOMEM;
4150 4150
4151 index = attr->ioapic_pin; 4151 index = attr->ioapic_pin;
4152 4152
4153 /* Setup IRQ remapping info */ 4153 /* Setup IRQ remapping info */
4154 cfg->remapped = 1; 4154 cfg->remapped = 1;
4155 irte_info->devid = devid; 4155 irte_info->devid = devid;
4156 irte_info->index = index; 4156 irte_info->index = index;
4157 4157
4158 /* Setup IRTE for IOMMU */ 4158 /* Setup IRTE for IOMMU */
4159 irte.val = 0; 4159 irte.val = 0;
4160 irte.fields.vector = vector; 4160 irte.fields.vector = vector;
4161 irte.fields.int_type = apic->irq_delivery_mode; 4161 irte.fields.int_type = apic->irq_delivery_mode;
4162 irte.fields.destination = destination; 4162 irte.fields.destination = destination;
4163 irte.fields.dm = apic->irq_dest_mode; 4163 irte.fields.dm = apic->irq_dest_mode;
4164 irte.fields.valid = 1; 4164 irte.fields.valid = 1;
4165 4165
4166 ret = modify_irte(devid, index, irte); 4166 ret = modify_irte(devid, index, irte);
4167 if (ret) 4167 if (ret)
4168 return ret; 4168 return ret;
4169 4169
4170 /* Setup IOAPIC entry */ 4170 /* Setup IOAPIC entry */
4171 memset(entry, 0, sizeof(*entry)); 4171 memset(entry, 0, sizeof(*entry));
4172 4172
4173 entry->vector = index; 4173 entry->vector = index;
4174 entry->mask = 0; 4174 entry->mask = 0;
4175 entry->trigger = attr->trigger; 4175 entry->trigger = attr->trigger;
4176 entry->polarity = attr->polarity; 4176 entry->polarity = attr->polarity;
4177 4177
4178 /* 4178 /*
4179 * Mask level triggered irqs. 4179 * Mask level triggered irqs.
4180 */ 4180 */
4181 if (attr->trigger) 4181 if (attr->trigger)
4182 entry->mask = 1; 4182 entry->mask = 1;
4183 4183
4184 return 0; 4184 return 0;
4185 } 4185 }
4186 4186
4187 static int set_affinity(struct irq_data *data, const struct cpumask *mask, 4187 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4188 bool force) 4188 bool force)
4189 { 4189 {
4190 struct irq_2_irte *irte_info; 4190 struct irq_2_irte *irte_info;
4191 unsigned int dest, irq; 4191 unsigned int dest, irq;
4192 struct irq_cfg *cfg; 4192 struct irq_cfg *cfg;
4193 union irte irte; 4193 union irte irte;
4194 int err; 4194 int err;
4195 4195
4196 if (!config_enabled(CONFIG_SMP)) 4196 if (!config_enabled(CONFIG_SMP))
4197 return -1; 4197 return -1;
4198 4198
4199 cfg = data->chip_data; 4199 cfg = data->chip_data;
4200 irq = data->irq; 4200 irq = data->irq;
4201 irte_info = &cfg->irq_2_irte; 4201 irte_info = &cfg->irq_2_irte;
4202 4202
4203 if (!cpumask_intersects(mask, cpu_online_mask)) 4203 if (!cpumask_intersects(mask, cpu_online_mask))
4204 return -EINVAL; 4204 return -EINVAL;
4205 4205
4206 if (get_irte(irte_info->devid, irte_info->index, &irte)) 4206 if (get_irte(irte_info->devid, irte_info->index, &irte))
4207 return -EBUSY; 4207 return -EBUSY;
4208 4208
4209 if (assign_irq_vector(irq, cfg, mask)) 4209 if (assign_irq_vector(irq, cfg, mask))
4210 return -EBUSY; 4210 return -EBUSY;
4211 4211
4212 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest); 4212 err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4213 if (err) { 4213 if (err) {
4214 if (assign_irq_vector(irq, cfg, data->affinity)) 4214 if (assign_irq_vector(irq, cfg, data->affinity))
4215 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq); 4215 pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4216 return err; 4216 return err;
4217 } 4217 }
4218 4218
4219 irte.fields.vector = cfg->vector; 4219 irte.fields.vector = cfg->vector;
4220 irte.fields.destination = dest; 4220 irte.fields.destination = dest;
4221 4221
4222 modify_irte(irte_info->devid, irte_info->index, irte); 4222 modify_irte(irte_info->devid, irte_info->index, irte);
4223 4223
4224 if (cfg->move_in_progress) 4224 if (cfg->move_in_progress)
4225 send_cleanup_vector(cfg); 4225 send_cleanup_vector(cfg);
4226 4226
4227 cpumask_copy(data->affinity, mask); 4227 cpumask_copy(data->affinity, mask);
4228 4228
4229 return 0; 4229 return 0;
4230 } 4230 }
4231 4231
4232 static int free_irq(int irq) 4232 static int free_irq(int irq)
4233 { 4233 {
4234 struct irq_2_irte *irte_info; 4234 struct irq_2_irte *irte_info;
4235 struct irq_cfg *cfg; 4235 struct irq_cfg *cfg;
4236 4236
4237 cfg = irq_get_chip_data(irq); 4237 cfg = irq_get_chip_data(irq);
4238 if (!cfg) 4238 if (!cfg)
4239 return -EINVAL; 4239 return -EINVAL;
4240 4240
4241 irte_info = &cfg->irq_2_irte; 4241 irte_info = &cfg->irq_2_irte;
4242 4242
4243 free_irte(irte_info->devid, irte_info->index); 4243 free_irte(irte_info->devid, irte_info->index);
4244 4244
4245 return 0; 4245 return 0;
4246 } 4246 }
4247 4247
4248 static void compose_msi_msg(struct pci_dev *pdev, 4248 static void compose_msi_msg(struct pci_dev *pdev,
4249 unsigned int irq, unsigned int dest, 4249 unsigned int irq, unsigned int dest,
4250 struct msi_msg *msg, u8 hpet_id) 4250 struct msi_msg *msg, u8 hpet_id)
4251 { 4251 {
4252 struct irq_2_irte *irte_info; 4252 struct irq_2_irte *irte_info;
4253 struct irq_cfg *cfg; 4253 struct irq_cfg *cfg;
4254 union irte irte; 4254 union irte irte;
4255 4255
4256 cfg = irq_get_chip_data(irq); 4256 cfg = irq_get_chip_data(irq);
4257 if (!cfg) 4257 if (!cfg)
4258 return; 4258 return;
4259 4259
4260 irte_info = &cfg->irq_2_irte; 4260 irte_info = &cfg->irq_2_irte;
4261 4261
4262 irte.val = 0; 4262 irte.val = 0;
4263 irte.fields.vector = cfg->vector; 4263 irte.fields.vector = cfg->vector;
4264 irte.fields.int_type = apic->irq_delivery_mode; 4264 irte.fields.int_type = apic->irq_delivery_mode;
4265 irte.fields.destination = dest; 4265 irte.fields.destination = dest;
4266 irte.fields.dm = apic->irq_dest_mode; 4266 irte.fields.dm = apic->irq_dest_mode;
4267 irte.fields.valid = 1; 4267 irte.fields.valid = 1;
4268 4268
4269 modify_irte(irte_info->devid, irte_info->index, irte); 4269 modify_irte(irte_info->devid, irte_info->index, irte);
4270 4270
4271 msg->address_hi = MSI_ADDR_BASE_HI; 4271 msg->address_hi = MSI_ADDR_BASE_HI;
4272 msg->address_lo = MSI_ADDR_BASE_LO; 4272 msg->address_lo = MSI_ADDR_BASE_LO;
4273 msg->data = irte_info->index; 4273 msg->data = irte_info->index;
4274 } 4274 }
4275 4275
4276 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec) 4276 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4277 { 4277 {
4278 struct irq_cfg *cfg; 4278 struct irq_cfg *cfg;
4279 int index; 4279 int index;
4280 u16 devid; 4280 u16 devid;
4281 4281
4282 if (!pdev) 4282 if (!pdev)
4283 return -EINVAL; 4283 return -EINVAL;
4284 4284
4285 cfg = irq_get_chip_data(irq); 4285 cfg = irq_get_chip_data(irq);
4286 if (!cfg) 4286 if (!cfg)
4287 return -EINVAL; 4287 return -EINVAL;
4288 4288
4289 devid = get_device_id(&pdev->dev); 4289 devid = get_device_id(&pdev->dev);
4290 index = alloc_irq_index(cfg, devid, nvec); 4290 index = alloc_irq_index(cfg, devid, nvec);
4291 4291
4292 return index < 0 ? MAX_IRQS_PER_TABLE : index; 4292 return index < 0 ? MAX_IRQS_PER_TABLE : index;
4293 } 4293 }
4294 4294
4295 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq, 4295 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4296 int index, int offset) 4296 int index, int offset)
4297 { 4297 {
4298 struct irq_2_irte *irte_info; 4298 struct irq_2_irte *irte_info;
4299 struct irq_cfg *cfg; 4299 struct irq_cfg *cfg;
4300 u16 devid; 4300 u16 devid;
4301 4301
4302 if (!pdev) 4302 if (!pdev)
4303 return -EINVAL; 4303 return -EINVAL;
4304 4304
4305 cfg = irq_get_chip_data(irq); 4305 cfg = irq_get_chip_data(irq);
4306 if (!cfg) 4306 if (!cfg)
4307 return -EINVAL; 4307 return -EINVAL;
4308 4308
4309 if (index >= MAX_IRQS_PER_TABLE) 4309 if (index >= MAX_IRQS_PER_TABLE)
4310 return 0; 4310 return 0;
4311 4311
4312 devid = get_device_id(&pdev->dev); 4312 devid = get_device_id(&pdev->dev);
4313 irte_info = &cfg->irq_2_irte; 4313 irte_info = &cfg->irq_2_irte;
4314 4314
4315 cfg->remapped = 1; 4315 cfg->remapped = 1;
4316 irte_info->devid = devid; 4316 irte_info->devid = devid;
4317 irte_info->index = index + offset; 4317 irte_info->index = index + offset;
4318 4318
4319 return 0; 4319 return 0;
4320 } 4320 }
4321 4321
4322 static int setup_hpet_msi(unsigned int irq, unsigned int id) 4322 static int setup_hpet_msi(unsigned int irq, unsigned int id)
4323 { 4323 {
4324 struct irq_2_irte *irte_info; 4324 struct irq_2_irte *irte_info;
4325 struct irq_cfg *cfg; 4325 struct irq_cfg *cfg;
4326 int index, devid; 4326 int index, devid;
4327 4327
4328 cfg = irq_get_chip_data(irq); 4328 cfg = irq_get_chip_data(irq);
4329 if (!cfg) 4329 if (!cfg)
4330 return -EINVAL; 4330 return -EINVAL;
4331 4331
4332 irte_info = &cfg->irq_2_irte; 4332 irte_info = &cfg->irq_2_irte;
4333 devid = get_hpet_devid(id); 4333 devid = get_hpet_devid(id);
4334 if (devid < 0) 4334 if (devid < 0)
4335 return devid; 4335 return devid;
4336 4336
4337 index = alloc_irq_index(cfg, devid, 1); 4337 index = alloc_irq_index(cfg, devid, 1);
4338 if (index < 0) 4338 if (index < 0)
4339 return index; 4339 return index;
4340 4340
4341 cfg->remapped = 1; 4341 cfg->remapped = 1;
4342 irte_info->devid = devid; 4342 irte_info->devid = devid;
4343 irte_info->index = index; 4343 irte_info->index = index;
4344 4344
4345 return 0; 4345 return 0;
4346 } 4346 }
4347 4347
4348 struct irq_remap_ops amd_iommu_irq_ops = { 4348 struct irq_remap_ops amd_iommu_irq_ops = {
4349 .supported = amd_iommu_supported, 4349 .supported = amd_iommu_supported,
4350 .prepare = amd_iommu_prepare, 4350 .prepare = amd_iommu_prepare,
4351 .enable = amd_iommu_enable, 4351 .enable = amd_iommu_enable,
4352 .disable = amd_iommu_disable, 4352 .disable = amd_iommu_disable,
4353 .reenable = amd_iommu_reenable, 4353 .reenable = amd_iommu_reenable,
4354 .enable_faulting = amd_iommu_enable_faulting, 4354 .enable_faulting = amd_iommu_enable_faulting,
4355 .setup_ioapic_entry = setup_ioapic_entry, 4355 .setup_ioapic_entry = setup_ioapic_entry,
4356 .set_affinity = set_affinity, 4356 .set_affinity = set_affinity,
4357 .free_irq = free_irq, 4357 .free_irq = free_irq,
4358 .compose_msi_msg = compose_msi_msg, 4358 .compose_msi_msg = compose_msi_msg,
4359 .msi_alloc_irq = msi_alloc_irq, 4359 .msi_alloc_irq = msi_alloc_irq,
4360 .msi_setup_irq = msi_setup_irq, 4360 .msi_setup_irq = msi_setup_irq,
4361 .setup_hpet_msi = setup_hpet_msi, 4361 .setup_hpet_msi = setup_hpet_msi,
4362 }; 4362 };
4363 #endif 4363 #endif
4364 4364
drivers/iommu/amd_iommu_init.c
1 /* 1 /*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com> 3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com> 4 * Leo Duran <leo.duran@amd.com>
5 * 5 *
6 * This program is free software; you can redistribute it and/or modify it 6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published 7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation. 8 * by the Free Software Foundation.
9 * 9 *
10 * This program is distributed in the hope that it will be useful, 10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details. 13 * GNU General Public License for more details.
14 * 14 *
15 * You should have received a copy of the GNU General Public License 15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software 16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */ 18 */
19 19
20 #include <linux/pci.h> 20 #include <linux/pci.h>
21 #include <linux/acpi.h> 21 #include <linux/acpi.h>
22 #include <linux/list.h> 22 #include <linux/list.h>
23 #include <linux/slab.h> 23 #include <linux/slab.h>
24 #include <linux/syscore_ops.h> 24 #include <linux/syscore_ops.h>
25 #include <linux/interrupt.h> 25 #include <linux/interrupt.h>
26 #include <linux/msi.h> 26 #include <linux/msi.h>
27 #include <linux/amd-iommu.h> 27 #include <linux/amd-iommu.h>
28 #include <linux/export.h> 28 #include <linux/export.h>
29 #include <asm/pci-direct.h> 29 #include <asm/pci-direct.h>
30 #include <asm/iommu.h> 30 #include <asm/iommu.h>
31 #include <asm/gart.h> 31 #include <asm/gart.h>
32 #include <asm/x86_init.h> 32 #include <asm/x86_init.h>
33 #include <asm/iommu_table.h> 33 #include <asm/iommu_table.h>
34 #include <asm/io_apic.h> 34 #include <asm/io_apic.h>
35 #include <asm/irq_remapping.h> 35 #include <asm/irq_remapping.h>
36 36
37 #include "amd_iommu_proto.h" 37 #include "amd_iommu_proto.h"
38 #include "amd_iommu_types.h" 38 #include "amd_iommu_types.h"
39 #include "irq_remapping.h" 39 #include "irq_remapping.h"
40 40
41 /* 41 /*
42 * definitions for the ACPI scanning code 42 * definitions for the ACPI scanning code
43 */ 43 */
44 #define IVRS_HEADER_LENGTH 48 44 #define IVRS_HEADER_LENGTH 48
45 45
46 #define ACPI_IVHD_TYPE 0x10 46 #define ACPI_IVHD_TYPE 0x10
47 #define ACPI_IVMD_TYPE_ALL 0x20 47 #define ACPI_IVMD_TYPE_ALL 0x20
48 #define ACPI_IVMD_TYPE 0x21 48 #define ACPI_IVMD_TYPE 0x21
49 #define ACPI_IVMD_TYPE_RANGE 0x22 49 #define ACPI_IVMD_TYPE_RANGE 0x22
50 50
51 #define IVHD_DEV_ALL 0x01 51 #define IVHD_DEV_ALL 0x01
52 #define IVHD_DEV_SELECT 0x02 52 #define IVHD_DEV_SELECT 0x02
53 #define IVHD_DEV_SELECT_RANGE_START 0x03 53 #define IVHD_DEV_SELECT_RANGE_START 0x03
54 #define IVHD_DEV_RANGE_END 0x04 54 #define IVHD_DEV_RANGE_END 0x04
55 #define IVHD_DEV_ALIAS 0x42 55 #define IVHD_DEV_ALIAS 0x42
56 #define IVHD_DEV_ALIAS_RANGE 0x43 56 #define IVHD_DEV_ALIAS_RANGE 0x43
57 #define IVHD_DEV_EXT_SELECT 0x46 57 #define IVHD_DEV_EXT_SELECT 0x46
58 #define IVHD_DEV_EXT_SELECT_RANGE 0x47 58 #define IVHD_DEV_EXT_SELECT_RANGE 0x47
59 #define IVHD_DEV_SPECIAL 0x48 59 #define IVHD_DEV_SPECIAL 0x48
60 60
61 #define IVHD_SPECIAL_IOAPIC 1 61 #define IVHD_SPECIAL_IOAPIC 1
62 #define IVHD_SPECIAL_HPET 2 62 #define IVHD_SPECIAL_HPET 2
63 63
64 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01 64 #define IVHD_FLAG_HT_TUN_EN_MASK 0x01
65 #define IVHD_FLAG_PASSPW_EN_MASK 0x02 65 #define IVHD_FLAG_PASSPW_EN_MASK 0x02
66 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04 66 #define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
67 #define IVHD_FLAG_ISOC_EN_MASK 0x08 67 #define IVHD_FLAG_ISOC_EN_MASK 0x08
68 68
69 #define IVMD_FLAG_EXCL_RANGE 0x08 69 #define IVMD_FLAG_EXCL_RANGE 0x08
70 #define IVMD_FLAG_UNITY_MAP 0x01 70 #define IVMD_FLAG_UNITY_MAP 0x01
71 71
72 #define ACPI_DEVFLAG_INITPASS 0x01 72 #define ACPI_DEVFLAG_INITPASS 0x01
73 #define ACPI_DEVFLAG_EXTINT 0x02 73 #define ACPI_DEVFLAG_EXTINT 0x02
74 #define ACPI_DEVFLAG_NMI 0x04 74 #define ACPI_DEVFLAG_NMI 0x04
75 #define ACPI_DEVFLAG_SYSMGT1 0x10 75 #define ACPI_DEVFLAG_SYSMGT1 0x10
76 #define ACPI_DEVFLAG_SYSMGT2 0x20 76 #define ACPI_DEVFLAG_SYSMGT2 0x20
77 #define ACPI_DEVFLAG_LINT0 0x40 77 #define ACPI_DEVFLAG_LINT0 0x40
78 #define ACPI_DEVFLAG_LINT1 0x80 78 #define ACPI_DEVFLAG_LINT1 0x80
79 #define ACPI_DEVFLAG_ATSDIS 0x10000000 79 #define ACPI_DEVFLAG_ATSDIS 0x10000000
80 80
81 /* 81 /*
82 * ACPI table definitions 82 * ACPI table definitions
83 * 83 *
84 * These data structures are laid over the table to parse the important values 84 * These data structures are laid over the table to parse the important values
85 * out of it. 85 * out of it.
86 */ 86 */
87 87
88 /* 88 /*
89 * structure describing one IOMMU in the ACPI table. Typically followed by one 89 * structure describing one IOMMU in the ACPI table. Typically followed by one
90 * or more ivhd_entrys. 90 * or more ivhd_entrys.
91 */ 91 */
92 struct ivhd_header { 92 struct ivhd_header {
93 u8 type; 93 u8 type;
94 u8 flags; 94 u8 flags;
95 u16 length; 95 u16 length;
96 u16 devid; 96 u16 devid;
97 u16 cap_ptr; 97 u16 cap_ptr;
98 u64 mmio_phys; 98 u64 mmio_phys;
99 u16 pci_seg; 99 u16 pci_seg;
100 u16 info; 100 u16 info;
101 u32 efr; 101 u32 efr;
102 } __attribute__((packed)); 102 } __attribute__((packed));
103 103
104 /* 104 /*
105 * A device entry describing which devices a specific IOMMU translates and 105 * A device entry describing which devices a specific IOMMU translates and
106 * which requestor ids they use. 106 * which requestor ids they use.
107 */ 107 */
108 struct ivhd_entry { 108 struct ivhd_entry {
109 u8 type; 109 u8 type;
110 u16 devid; 110 u16 devid;
111 u8 flags; 111 u8 flags;
112 u32 ext; 112 u32 ext;
113 } __attribute__((packed)); 113 } __attribute__((packed));
114 114
115 /* 115 /*
116 * An AMD IOMMU memory definition structure. It defines things like exclusion 116 * An AMD IOMMU memory definition structure. It defines things like exclusion
117 * ranges for devices and regions that should be unity mapped. 117 * ranges for devices and regions that should be unity mapped.
118 */ 118 */
119 struct ivmd_header { 119 struct ivmd_header {
120 u8 type; 120 u8 type;
121 u8 flags; 121 u8 flags;
122 u16 length; 122 u16 length;
123 u16 devid; 123 u16 devid;
124 u16 aux; 124 u16 aux;
125 u64 resv; 125 u64 resv;
126 u64 range_start; 126 u64 range_start;
127 u64 range_length; 127 u64 range_length;
128 } __attribute__((packed)); 128 } __attribute__((packed));
129 129
130 bool amd_iommu_dump; 130 bool amd_iommu_dump;
131 bool amd_iommu_irq_remap __read_mostly; 131 bool amd_iommu_irq_remap __read_mostly;
132 132
133 static bool amd_iommu_detected; 133 static bool amd_iommu_detected;
134 static bool __initdata amd_iommu_disabled; 134 static bool __initdata amd_iommu_disabled;
135 135
136 u16 amd_iommu_last_bdf; /* largest PCI device id we have 136 u16 amd_iommu_last_bdf; /* largest PCI device id we have
137 to handle */ 137 to handle */
138 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings 138 LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
139 we find in ACPI */ 139 we find in ACPI */
140 u32 amd_iommu_unmap_flush; /* if true, flush on every unmap */ 140 u32 amd_iommu_unmap_flush; /* if true, flush on every unmap */
141 141
142 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the 142 LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
143 system */ 143 system */
144 144
145 /* Array to assign indices to IOMMUs*/ 145 /* Array to assign indices to IOMMUs*/
146 struct amd_iommu *amd_iommus[MAX_IOMMUS]; 146 struct amd_iommu *amd_iommus[MAX_IOMMUS];
147 int amd_iommus_present; 147 int amd_iommus_present;
148 148
149 /* IOMMUs have a non-present cache? */ 149 /* IOMMUs have a non-present cache? */
150 bool amd_iommu_np_cache __read_mostly; 150 bool amd_iommu_np_cache __read_mostly;
151 bool amd_iommu_iotlb_sup __read_mostly = true; 151 bool amd_iommu_iotlb_sup __read_mostly = true;
152 152
153 u32 amd_iommu_max_pasid __read_mostly = ~0; 153 u32 amd_iommu_max_pasid __read_mostly = ~0;
154 154
155 bool amd_iommu_v2_present __read_mostly; 155 bool amd_iommu_v2_present __read_mostly;
156 bool amd_iommu_pc_present __read_mostly; 156 bool amd_iommu_pc_present __read_mostly;
157 157
158 bool amd_iommu_force_isolation __read_mostly; 158 bool amd_iommu_force_isolation __read_mostly;
159 159
160 /* 160 /*
161 * List of protection domains - used during resume 161 * List of protection domains - used during resume
162 */ 162 */
163 LIST_HEAD(amd_iommu_pd_list); 163 LIST_HEAD(amd_iommu_pd_list);
164 spinlock_t amd_iommu_pd_lock; 164 spinlock_t amd_iommu_pd_lock;
165 165
166 /* 166 /*
167 * Pointer to the device table which is shared by all AMD IOMMUs 167 * Pointer to the device table which is shared by all AMD IOMMUs
168 * it is indexed by the PCI device id or the HT unit id and contains 168 * it is indexed by the PCI device id or the HT unit id and contains
169 * information about the domain the device belongs to as well as the 169 * information about the domain the device belongs to as well as the
170 * page table root pointer. 170 * page table root pointer.
171 */ 171 */
172 struct dev_table_entry *amd_iommu_dev_table; 172 struct dev_table_entry *amd_iommu_dev_table;
173 173
174 /* 174 /*
175 * The alias table is a driver specific data structure which contains the 175 * The alias table is a driver specific data structure which contains the
176 * mappings of the PCI device ids to the actual requestor ids on the IOMMU. 176 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
177 * More than one device can share the same requestor id. 177 * More than one device can share the same requestor id.
178 */ 178 */
179 u16 *amd_iommu_alias_table; 179 u16 *amd_iommu_alias_table;
180 180
181 /* 181 /*
182 * The rlookup table is used to find the IOMMU which is responsible 182 * The rlookup table is used to find the IOMMU which is responsible
183 * for a specific device. It is also indexed by the PCI device id. 183 * for a specific device. It is also indexed by the PCI device id.
184 */ 184 */
185 struct amd_iommu **amd_iommu_rlookup_table; 185 struct amd_iommu **amd_iommu_rlookup_table;
186 186
187 /* 187 /*
188 * This table is used to find the irq remapping table for a given device id 188 * This table is used to find the irq remapping table for a given device id
189 * quickly. 189 * quickly.
190 */ 190 */
191 struct irq_remap_table **irq_lookup_table; 191 struct irq_remap_table **irq_lookup_table;
192 192
193 /* 193 /*
194 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap 194 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
195 * to know which ones are already in use. 195 * to know which ones are already in use.
196 */ 196 */
197 unsigned long *amd_iommu_pd_alloc_bitmap; 197 unsigned long *amd_iommu_pd_alloc_bitmap;
198 198
199 static u32 dev_table_size; /* size of the device table */ 199 static u32 dev_table_size; /* size of the device table */
200 static u32 alias_table_size; /* size of the alias table */ 200 static u32 alias_table_size; /* size of the alias table */
201 static u32 rlookup_table_size; /* size if the rlookup table */ 201 static u32 rlookup_table_size; /* size if the rlookup table */
202 202
203 enum iommu_init_state { 203 enum iommu_init_state {
204 IOMMU_START_STATE, 204 IOMMU_START_STATE,
205 IOMMU_IVRS_DETECTED, 205 IOMMU_IVRS_DETECTED,
206 IOMMU_ACPI_FINISHED, 206 IOMMU_ACPI_FINISHED,
207 IOMMU_ENABLED, 207 IOMMU_ENABLED,
208 IOMMU_PCI_INIT, 208 IOMMU_PCI_INIT,
209 IOMMU_INTERRUPTS_EN, 209 IOMMU_INTERRUPTS_EN,
210 IOMMU_DMA_OPS, 210 IOMMU_DMA_OPS,
211 IOMMU_INITIALIZED, 211 IOMMU_INITIALIZED,
212 IOMMU_NOT_FOUND, 212 IOMMU_NOT_FOUND,
213 IOMMU_INIT_ERROR, 213 IOMMU_INIT_ERROR,
214 }; 214 };
215 215
216 /* Early ioapic and hpet maps from kernel command line */ 216 /* Early ioapic and hpet maps from kernel command line */
217 #define EARLY_MAP_SIZE 4 217 #define EARLY_MAP_SIZE 4
218 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE]; 218 static struct devid_map __initdata early_ioapic_map[EARLY_MAP_SIZE];
219 static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE]; 219 static struct devid_map __initdata early_hpet_map[EARLY_MAP_SIZE];
220 static int __initdata early_ioapic_map_size; 220 static int __initdata early_ioapic_map_size;
221 static int __initdata early_hpet_map_size; 221 static int __initdata early_hpet_map_size;
222 static bool __initdata cmdline_maps; 222 static bool __initdata cmdline_maps;
223 223
224 static enum iommu_init_state init_state = IOMMU_START_STATE; 224 static enum iommu_init_state init_state = IOMMU_START_STATE;
225 225
226 static int amd_iommu_enable_interrupts(void); 226 static int amd_iommu_enable_interrupts(void);
227 static int __init iommu_go_to_state(enum iommu_init_state state); 227 static int __init iommu_go_to_state(enum iommu_init_state state);
228 228
229 static inline void update_last_devid(u16 devid) 229 static inline void update_last_devid(u16 devid)
230 { 230 {
231 if (devid > amd_iommu_last_bdf) 231 if (devid > amd_iommu_last_bdf)
232 amd_iommu_last_bdf = devid; 232 amd_iommu_last_bdf = devid;
233 } 233 }
234 234
235 static inline unsigned long tbl_size(int entry_size) 235 static inline unsigned long tbl_size(int entry_size)
236 { 236 {
237 unsigned shift = PAGE_SHIFT + 237 unsigned shift = PAGE_SHIFT +
238 get_order(((int)amd_iommu_last_bdf + 1) * entry_size); 238 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
239 239
240 return 1UL << shift; 240 return 1UL << shift;
241 } 241 }
242 242
243 /* Access to l1 and l2 indexed register spaces */ 243 /* Access to l1 and l2 indexed register spaces */
244 244
245 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address) 245 static u32 iommu_read_l1(struct amd_iommu *iommu, u16 l1, u8 address)
246 { 246 {
247 u32 val; 247 u32 val;
248 248
249 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); 249 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
250 pci_read_config_dword(iommu->dev, 0xfc, &val); 250 pci_read_config_dword(iommu->dev, 0xfc, &val);
251 return val; 251 return val;
252 } 252 }
253 253
254 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val) 254 static void iommu_write_l1(struct amd_iommu *iommu, u16 l1, u8 address, u32 val)
255 { 255 {
256 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31)); 256 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16 | 1 << 31));
257 pci_write_config_dword(iommu->dev, 0xfc, val); 257 pci_write_config_dword(iommu->dev, 0xfc, val);
258 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16)); 258 pci_write_config_dword(iommu->dev, 0xf8, (address | l1 << 16));
259 } 259 }
260 260
261 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address) 261 static u32 iommu_read_l2(struct amd_iommu *iommu, u8 address)
262 { 262 {
263 u32 val; 263 u32 val;
264 264
265 pci_write_config_dword(iommu->dev, 0xf0, address); 265 pci_write_config_dword(iommu->dev, 0xf0, address);
266 pci_read_config_dword(iommu->dev, 0xf4, &val); 266 pci_read_config_dword(iommu->dev, 0xf4, &val);
267 return val; 267 return val;
268 } 268 }
269 269
270 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val) 270 static void iommu_write_l2(struct amd_iommu *iommu, u8 address, u32 val)
271 { 271 {
272 pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8)); 272 pci_write_config_dword(iommu->dev, 0xf0, (address | 1 << 8));
273 pci_write_config_dword(iommu->dev, 0xf4, val); 273 pci_write_config_dword(iommu->dev, 0xf4, val);
274 } 274 }
275 275
276 /**************************************************************************** 276 /****************************************************************************
277 * 277 *
278 * AMD IOMMU MMIO register space handling functions 278 * AMD IOMMU MMIO register space handling functions
279 * 279 *
280 * These functions are used to program the IOMMU device registers in 280 * These functions are used to program the IOMMU device registers in
281 * MMIO space required for that driver. 281 * MMIO space required for that driver.
282 * 282 *
283 ****************************************************************************/ 283 ****************************************************************************/
284 284
285 /* 285 /*
286 * This function set the exclusion range in the IOMMU. DMA accesses to the 286 * This function set the exclusion range in the IOMMU. DMA accesses to the
287 * exclusion range are passed through untranslated 287 * exclusion range are passed through untranslated
288 */ 288 */
289 static void iommu_set_exclusion_range(struct amd_iommu *iommu) 289 static void iommu_set_exclusion_range(struct amd_iommu *iommu)
290 { 290 {
291 u64 start = iommu->exclusion_start & PAGE_MASK; 291 u64 start = iommu->exclusion_start & PAGE_MASK;
292 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK; 292 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
293 u64 entry; 293 u64 entry;
294 294
295 if (!iommu->exclusion_start) 295 if (!iommu->exclusion_start)
296 return; 296 return;
297 297
298 entry = start | MMIO_EXCL_ENABLE_MASK; 298 entry = start | MMIO_EXCL_ENABLE_MASK;
299 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET, 299 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
300 &entry, sizeof(entry)); 300 &entry, sizeof(entry));
301 301
302 entry = limit; 302 entry = limit;
303 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET, 303 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
304 &entry, sizeof(entry)); 304 &entry, sizeof(entry));
305 } 305 }
306 306
307 /* Programs the physical address of the device table into the IOMMU hardware */ 307 /* Programs the physical address of the device table into the IOMMU hardware */
308 static void iommu_set_device_table(struct amd_iommu *iommu) 308 static void iommu_set_device_table(struct amd_iommu *iommu)
309 { 309 {
310 u64 entry; 310 u64 entry;
311 311
312 BUG_ON(iommu->mmio_base == NULL); 312 BUG_ON(iommu->mmio_base == NULL);
313 313
314 entry = virt_to_phys(amd_iommu_dev_table); 314 entry = virt_to_phys(amd_iommu_dev_table);
315 entry |= (dev_table_size >> 12) - 1; 315 entry |= (dev_table_size >> 12) - 1;
316 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET, 316 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
317 &entry, sizeof(entry)); 317 &entry, sizeof(entry));
318 } 318 }
319 319
320 /* Generic functions to enable/disable certain features of the IOMMU. */ 320 /* Generic functions to enable/disable certain features of the IOMMU. */
321 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit) 321 static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
322 { 322 {
323 u32 ctrl; 323 u32 ctrl;
324 324
325 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); 325 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
326 ctrl |= (1 << bit); 326 ctrl |= (1 << bit);
327 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); 327 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
328 } 328 }
329 329
330 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit) 330 static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
331 { 331 {
332 u32 ctrl; 332 u32 ctrl;
333 333
334 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); 334 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
335 ctrl &= ~(1 << bit); 335 ctrl &= ~(1 << bit);
336 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); 336 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
337 } 337 }
338 338
339 static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout) 339 static void iommu_set_inv_tlb_timeout(struct amd_iommu *iommu, int timeout)
340 { 340 {
341 u32 ctrl; 341 u32 ctrl;
342 342
343 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET); 343 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
344 ctrl &= ~CTRL_INV_TO_MASK; 344 ctrl &= ~CTRL_INV_TO_MASK;
345 ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK; 345 ctrl |= (timeout << CONTROL_INV_TIMEOUT) & CTRL_INV_TO_MASK;
346 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET); 346 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
347 } 347 }
348 348
349 /* Function to enable the hardware */ 349 /* Function to enable the hardware */
350 static void iommu_enable(struct amd_iommu *iommu) 350 static void iommu_enable(struct amd_iommu *iommu)
351 { 351 {
352 iommu_feature_enable(iommu, CONTROL_IOMMU_EN); 352 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
353 } 353 }
354 354
355 static void iommu_disable(struct amd_iommu *iommu) 355 static void iommu_disable(struct amd_iommu *iommu)
356 { 356 {
357 /* Disable command buffer */ 357 /* Disable command buffer */
358 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); 358 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
359 359
360 /* Disable event logging and event interrupts */ 360 /* Disable event logging and event interrupts */
361 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN); 361 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
362 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN); 362 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
363 363
364 /* Disable IOMMU hardware itself */ 364 /* Disable IOMMU hardware itself */
365 iommu_feature_disable(iommu, CONTROL_IOMMU_EN); 365 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
366 } 366 }
367 367
368 /* 368 /*
369 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in 369 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
370 * the system has one. 370 * the system has one.
371 */ 371 */
372 static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end) 372 static u8 __iomem * __init iommu_map_mmio_space(u64 address, u64 end)
373 { 373 {
374 if (!request_mem_region(address, end, "amd_iommu")) { 374 if (!request_mem_region(address, end, "amd_iommu")) {
375 pr_err("AMD-Vi: Can not reserve memory region %llx-%llx for mmio\n", 375 pr_err("AMD-Vi: Can not reserve memory region %llx-%llx for mmio\n",
376 address, end); 376 address, end);
377 pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n"); 377 pr_err("AMD-Vi: This is a BIOS bug. Please contact your hardware vendor\n");
378 return NULL; 378 return NULL;
379 } 379 }
380 380
381 return (u8 __iomem *)ioremap_nocache(address, end); 381 return (u8 __iomem *)ioremap_nocache(address, end);
382 } 382 }
383 383
384 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu) 384 static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
385 { 385 {
386 if (iommu->mmio_base) 386 if (iommu->mmio_base)
387 iounmap(iommu->mmio_base); 387 iounmap(iommu->mmio_base);
388 release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end); 388 release_mem_region(iommu->mmio_phys, iommu->mmio_phys_end);
389 } 389 }
390 390
391 /**************************************************************************** 391 /****************************************************************************
392 * 392 *
393 * The functions below belong to the first pass of AMD IOMMU ACPI table 393 * The functions below belong to the first pass of AMD IOMMU ACPI table
394 * parsing. In this pass we try to find out the highest device id this 394 * parsing. In this pass we try to find out the highest device id this
395 * code has to handle. Upon this information the size of the shared data 395 * code has to handle. Upon this information the size of the shared data
396 * structures is determined later. 396 * structures is determined later.
397 * 397 *
398 ****************************************************************************/ 398 ****************************************************************************/
399 399
400 /* 400 /*
401 * This function calculates the length of a given IVHD entry 401 * This function calculates the length of a given IVHD entry
402 */ 402 */
403 static inline int ivhd_entry_length(u8 *ivhd) 403 static inline int ivhd_entry_length(u8 *ivhd)
404 { 404 {
405 return 0x04 << (*ivhd >> 6); 405 return 0x04 << (*ivhd >> 6);
406 } 406 }
407 407
408 /* 408 /*
409 * This function reads the last device id the IOMMU has to handle from the PCI 409 * This function reads the last device id the IOMMU has to handle from the PCI
410 * capability header for this IOMMU 410 * capability header for this IOMMU
411 */ 411 */
412 static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr) 412 static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
413 { 413 {
414 u32 cap; 414 u32 cap;
415 415
416 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET); 416 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
417 update_last_devid(PCI_DEVID(MMIO_GET_BUS(cap), MMIO_GET_LD(cap))); 417 update_last_devid(PCI_DEVID(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
418 418
419 return 0; 419 return 0;
420 } 420 }
421 421
422 /* 422 /*
423 * After reading the highest device id from the IOMMU PCI capability header 423 * After reading the highest device id from the IOMMU PCI capability header
424 * this function looks if there is a higher device id defined in the ACPI table 424 * this function looks if there is a higher device id defined in the ACPI table
425 */ 425 */
426 static int __init find_last_devid_from_ivhd(struct ivhd_header *h) 426 static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
427 { 427 {
428 u8 *p = (void *)h, *end = (void *)h; 428 u8 *p = (void *)h, *end = (void *)h;
429 struct ivhd_entry *dev; 429 struct ivhd_entry *dev;
430 430
431 p += sizeof(*h); 431 p += sizeof(*h);
432 end += h->length; 432 end += h->length;
433 433
434 find_last_devid_on_pci(PCI_BUS_NUM(h->devid), 434 find_last_devid_on_pci(PCI_BUS_NUM(h->devid),
435 PCI_SLOT(h->devid), 435 PCI_SLOT(h->devid),
436 PCI_FUNC(h->devid), 436 PCI_FUNC(h->devid),
437 h->cap_ptr); 437 h->cap_ptr);
438 438
439 while (p < end) { 439 while (p < end) {
440 dev = (struct ivhd_entry *)p; 440 dev = (struct ivhd_entry *)p;
441 switch (dev->type) { 441 switch (dev->type) {
442 case IVHD_DEV_SELECT: 442 case IVHD_DEV_SELECT:
443 case IVHD_DEV_RANGE_END: 443 case IVHD_DEV_RANGE_END:
444 case IVHD_DEV_ALIAS: 444 case IVHD_DEV_ALIAS:
445 case IVHD_DEV_EXT_SELECT: 445 case IVHD_DEV_EXT_SELECT:
446 /* all the above subfield types refer to device ids */ 446 /* all the above subfield types refer to device ids */
447 update_last_devid(dev->devid); 447 update_last_devid(dev->devid);
448 break; 448 break;
449 default: 449 default:
450 break; 450 break;
451 } 451 }
452 p += ivhd_entry_length(p); 452 p += ivhd_entry_length(p);
453 } 453 }
454 454
455 WARN_ON(p != end); 455 WARN_ON(p != end);
456 456
457 return 0; 457 return 0;
458 } 458 }
459 459
460 /* 460 /*
461 * Iterate over all IVHD entries in the ACPI table and find the highest device 461 * Iterate over all IVHD entries in the ACPI table and find the highest device
462 * id which we need to handle. This is the first of three functions which parse 462 * id which we need to handle. This is the first of three functions which parse
463 * the ACPI table. So we check the checksum here. 463 * the ACPI table. So we check the checksum here.
464 */ 464 */
465 static int __init find_last_devid_acpi(struct acpi_table_header *table) 465 static int __init find_last_devid_acpi(struct acpi_table_header *table)
466 { 466 {
467 int i; 467 int i;
468 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table; 468 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
469 struct ivhd_header *h; 469 struct ivhd_header *h;
470 470
471 /* 471 /*
472 * Validate checksum here so we don't need to do it when 472 * Validate checksum here so we don't need to do it when
473 * we actually parse the table 473 * we actually parse the table
474 */ 474 */
475 for (i = 0; i < table->length; ++i) 475 for (i = 0; i < table->length; ++i)
476 checksum += p[i]; 476 checksum += p[i];
477 if (checksum != 0) 477 if (checksum != 0)
478 /* ACPI table corrupt */ 478 /* ACPI table corrupt */
479 return -ENODEV; 479 return -ENODEV;
480 480
481 p += IVRS_HEADER_LENGTH; 481 p += IVRS_HEADER_LENGTH;
482 482
483 end += table->length; 483 end += table->length;
484 while (p < end) { 484 while (p < end) {
485 h = (struct ivhd_header *)p; 485 h = (struct ivhd_header *)p;
486 switch (h->type) { 486 switch (h->type) {
487 case ACPI_IVHD_TYPE: 487 case ACPI_IVHD_TYPE:
488 find_last_devid_from_ivhd(h); 488 find_last_devid_from_ivhd(h);
489 break; 489 break;
490 default: 490 default:
491 break; 491 break;
492 } 492 }
493 p += h->length; 493 p += h->length;
494 } 494 }
495 WARN_ON(p != end); 495 WARN_ON(p != end);
496 496
497 return 0; 497 return 0;
498 } 498 }
499 499
500 /**************************************************************************** 500 /****************************************************************************
501 * 501 *
502 * The following functions belong to the code path which parses the ACPI table 502 * The following functions belong to the code path which parses the ACPI table
503 * the second time. In this ACPI parsing iteration we allocate IOMMU specific 503 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
504 * data structures, initialize the device/alias/rlookup table and also 504 * data structures, initialize the device/alias/rlookup table and also
505 * basically initialize the hardware. 505 * basically initialize the hardware.
506 * 506 *
507 ****************************************************************************/ 507 ****************************************************************************/
508 508
509 /* 509 /*
510 * Allocates the command buffer. This buffer is per AMD IOMMU. We can 510 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
511 * write commands to that buffer later and the IOMMU will execute them 511 * write commands to that buffer later and the IOMMU will execute them
512 * asynchronously 512 * asynchronously
513 */ 513 */
514 static u8 * __init alloc_command_buffer(struct amd_iommu *iommu) 514 static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
515 { 515 {
516 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 516 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
517 get_order(CMD_BUFFER_SIZE)); 517 get_order(CMD_BUFFER_SIZE));
518 518
519 if (cmd_buf == NULL) 519 if (cmd_buf == NULL)
520 return NULL; 520 return NULL;
521 521
522 iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED; 522 iommu->cmd_buf_size = CMD_BUFFER_SIZE | CMD_BUFFER_UNINITIALIZED;
523 523
524 return cmd_buf; 524 return cmd_buf;
525 } 525 }
526 526
527 /* 527 /*
528 * This function resets the command buffer if the IOMMU stopped fetching 528 * This function resets the command buffer if the IOMMU stopped fetching
529 * commands from it. 529 * commands from it.
530 */ 530 */
531 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu) 531 void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
532 { 532 {
533 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN); 533 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
534 534
535 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); 535 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
536 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); 536 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
537 537
538 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN); 538 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
539 } 539 }
540 540
541 /* 541 /*
542 * This function writes the command buffer address to the hardware and 542 * This function writes the command buffer address to the hardware and
543 * enables it. 543 * enables it.
544 */ 544 */
545 static void iommu_enable_command_buffer(struct amd_iommu *iommu) 545 static void iommu_enable_command_buffer(struct amd_iommu *iommu)
546 { 546 {
547 u64 entry; 547 u64 entry;
548 548
549 BUG_ON(iommu->cmd_buf == NULL); 549 BUG_ON(iommu->cmd_buf == NULL);
550 550
551 entry = (u64)virt_to_phys(iommu->cmd_buf); 551 entry = (u64)virt_to_phys(iommu->cmd_buf);
552 entry |= MMIO_CMD_SIZE_512; 552 entry |= MMIO_CMD_SIZE_512;
553 553
554 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET, 554 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
555 &entry, sizeof(entry)); 555 &entry, sizeof(entry));
556 556
557 amd_iommu_reset_cmd_buffer(iommu); 557 amd_iommu_reset_cmd_buffer(iommu);
558 iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED); 558 iommu->cmd_buf_size &= ~(CMD_BUFFER_UNINITIALIZED);
559 } 559 }
560 560
561 static void __init free_command_buffer(struct amd_iommu *iommu) 561 static void __init free_command_buffer(struct amd_iommu *iommu)
562 { 562 {
563 free_pages((unsigned long)iommu->cmd_buf, 563 free_pages((unsigned long)iommu->cmd_buf,
564 get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED))); 564 get_order(iommu->cmd_buf_size & ~(CMD_BUFFER_UNINITIALIZED)));
565 } 565 }
566 566
567 /* allocates the memory where the IOMMU will log its events to */ 567 /* allocates the memory where the IOMMU will log its events to */
568 static u8 * __init alloc_event_buffer(struct amd_iommu *iommu) 568 static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
569 { 569 {
570 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 570 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
571 get_order(EVT_BUFFER_SIZE)); 571 get_order(EVT_BUFFER_SIZE));
572 572
573 if (iommu->evt_buf == NULL) 573 if (iommu->evt_buf == NULL)
574 return NULL; 574 return NULL;
575 575
576 iommu->evt_buf_size = EVT_BUFFER_SIZE; 576 iommu->evt_buf_size = EVT_BUFFER_SIZE;
577 577
578 return iommu->evt_buf; 578 return iommu->evt_buf;
579 } 579 }
580 580
581 static void iommu_enable_event_buffer(struct amd_iommu *iommu) 581 static void iommu_enable_event_buffer(struct amd_iommu *iommu)
582 { 582 {
583 u64 entry; 583 u64 entry;
584 584
585 BUG_ON(iommu->evt_buf == NULL); 585 BUG_ON(iommu->evt_buf == NULL);
586 586
587 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK; 587 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
588 588
589 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET, 589 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
590 &entry, sizeof(entry)); 590 &entry, sizeof(entry));
591 591
592 /* set head and tail to zero manually */ 592 /* set head and tail to zero manually */
593 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); 593 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
594 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); 594 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
595 595
596 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN); 596 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
597 } 597 }
598 598
599 static void __init free_event_buffer(struct amd_iommu *iommu) 599 static void __init free_event_buffer(struct amd_iommu *iommu)
600 { 600 {
601 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE)); 601 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
602 } 602 }
603 603
604 /* allocates the memory where the IOMMU will log its events to */ 604 /* allocates the memory where the IOMMU will log its events to */
605 static u8 * __init alloc_ppr_log(struct amd_iommu *iommu) 605 static u8 * __init alloc_ppr_log(struct amd_iommu *iommu)
606 { 606 {
607 iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 607 iommu->ppr_log = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
608 get_order(PPR_LOG_SIZE)); 608 get_order(PPR_LOG_SIZE));
609 609
610 if (iommu->ppr_log == NULL) 610 if (iommu->ppr_log == NULL)
611 return NULL; 611 return NULL;
612 612
613 return iommu->ppr_log; 613 return iommu->ppr_log;
614 } 614 }
615 615
616 static void iommu_enable_ppr_log(struct amd_iommu *iommu) 616 static void iommu_enable_ppr_log(struct amd_iommu *iommu)
617 { 617 {
618 u64 entry; 618 u64 entry;
619 619
620 if (iommu->ppr_log == NULL) 620 if (iommu->ppr_log == NULL)
621 return; 621 return;
622 622
623 entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512; 623 entry = (u64)virt_to_phys(iommu->ppr_log) | PPR_LOG_SIZE_512;
624 624
625 memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET, 625 memcpy_toio(iommu->mmio_base + MMIO_PPR_LOG_OFFSET,
626 &entry, sizeof(entry)); 626 &entry, sizeof(entry));
627 627
628 /* set head and tail to zero manually */ 628 /* set head and tail to zero manually */
629 writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); 629 writel(0x00, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
630 writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); 630 writel(0x00, iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
631 631
632 iommu_feature_enable(iommu, CONTROL_PPFLOG_EN); 632 iommu_feature_enable(iommu, CONTROL_PPFLOG_EN);
633 iommu_feature_enable(iommu, CONTROL_PPR_EN); 633 iommu_feature_enable(iommu, CONTROL_PPR_EN);
634 } 634 }
635 635
636 static void __init free_ppr_log(struct amd_iommu *iommu) 636 static void __init free_ppr_log(struct amd_iommu *iommu)
637 { 637 {
638 if (iommu->ppr_log == NULL) 638 if (iommu->ppr_log == NULL)
639 return; 639 return;
640 640
641 free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE)); 641 free_pages((unsigned long)iommu->ppr_log, get_order(PPR_LOG_SIZE));
642 } 642 }
643 643
644 static void iommu_enable_gt(struct amd_iommu *iommu) 644 static void iommu_enable_gt(struct amd_iommu *iommu)
645 { 645 {
646 if (!iommu_feature(iommu, FEATURE_GT)) 646 if (!iommu_feature(iommu, FEATURE_GT))
647 return; 647 return;
648 648
649 iommu_feature_enable(iommu, CONTROL_GT_EN); 649 iommu_feature_enable(iommu, CONTROL_GT_EN);
650 } 650 }
651 651
652 /* sets a specific bit in the device table entry. */ 652 /* sets a specific bit in the device table entry. */
653 static void set_dev_entry_bit(u16 devid, u8 bit) 653 static void set_dev_entry_bit(u16 devid, u8 bit)
654 { 654 {
655 int i = (bit >> 6) & 0x03; 655 int i = (bit >> 6) & 0x03;
656 int _bit = bit & 0x3f; 656 int _bit = bit & 0x3f;
657 657
658 amd_iommu_dev_table[devid].data[i] |= (1UL << _bit); 658 amd_iommu_dev_table[devid].data[i] |= (1UL << _bit);
659 } 659 }
660 660
661 static int get_dev_entry_bit(u16 devid, u8 bit) 661 static int get_dev_entry_bit(u16 devid, u8 bit)
662 { 662 {
663 int i = (bit >> 6) & 0x03; 663 int i = (bit >> 6) & 0x03;
664 int _bit = bit & 0x3f; 664 int _bit = bit & 0x3f;
665 665
666 return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit; 666 return (amd_iommu_dev_table[devid].data[i] & (1UL << _bit)) >> _bit;
667 } 667 }
668 668
669 669
670 void amd_iommu_apply_erratum_63(u16 devid) 670 void amd_iommu_apply_erratum_63(u16 devid)
671 { 671 {
672 int sysmgt; 672 int sysmgt;
673 673
674 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) | 674 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
675 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1); 675 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
676 676
677 if (sysmgt == 0x01) 677 if (sysmgt == 0x01)
678 set_dev_entry_bit(devid, DEV_ENTRY_IW); 678 set_dev_entry_bit(devid, DEV_ENTRY_IW);
679 } 679 }
680 680
681 /* Writes the specific IOMMU for a device into the rlookup table */ 681 /* Writes the specific IOMMU for a device into the rlookup table */
682 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid) 682 static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
683 { 683 {
684 amd_iommu_rlookup_table[devid] = iommu; 684 amd_iommu_rlookup_table[devid] = iommu;
685 } 685 }
686 686
687 /* 687 /*
688 * This function takes the device specific flags read from the ACPI 688 * This function takes the device specific flags read from the ACPI
689 * table and sets up the device table entry with that information 689 * table and sets up the device table entry with that information
690 */ 690 */
691 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu, 691 static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
692 u16 devid, u32 flags, u32 ext_flags) 692 u16 devid, u32 flags, u32 ext_flags)
693 { 693 {
694 if (flags & ACPI_DEVFLAG_INITPASS) 694 if (flags & ACPI_DEVFLAG_INITPASS)
695 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS); 695 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
696 if (flags & ACPI_DEVFLAG_EXTINT) 696 if (flags & ACPI_DEVFLAG_EXTINT)
697 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS); 697 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
698 if (flags & ACPI_DEVFLAG_NMI) 698 if (flags & ACPI_DEVFLAG_NMI)
699 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS); 699 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
700 if (flags & ACPI_DEVFLAG_SYSMGT1) 700 if (flags & ACPI_DEVFLAG_SYSMGT1)
701 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1); 701 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
702 if (flags & ACPI_DEVFLAG_SYSMGT2) 702 if (flags & ACPI_DEVFLAG_SYSMGT2)
703 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2); 703 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
704 if (flags & ACPI_DEVFLAG_LINT0) 704 if (flags & ACPI_DEVFLAG_LINT0)
705 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS); 705 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
706 if (flags & ACPI_DEVFLAG_LINT1) 706 if (flags & ACPI_DEVFLAG_LINT1)
707 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS); 707 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
708 708
709 amd_iommu_apply_erratum_63(devid); 709 amd_iommu_apply_erratum_63(devid);
710 710
711 set_iommu_for_device(iommu, devid); 711 set_iommu_for_device(iommu, devid);
712 } 712 }
713 713
714 static int __init add_special_device(u8 type, u8 id, u16 devid, bool cmd_line) 714 static int __init add_special_device(u8 type, u8 id, u16 devid, bool cmd_line)
715 { 715 {
716 struct devid_map *entry; 716 struct devid_map *entry;
717 struct list_head *list; 717 struct list_head *list;
718 718
719 if (type == IVHD_SPECIAL_IOAPIC) 719 if (type == IVHD_SPECIAL_IOAPIC)
720 list = &ioapic_map; 720 list = &ioapic_map;
721 else if (type == IVHD_SPECIAL_HPET) 721 else if (type == IVHD_SPECIAL_HPET)
722 list = &hpet_map; 722 list = &hpet_map;
723 else 723 else
724 return -EINVAL; 724 return -EINVAL;
725 725
726 list_for_each_entry(entry, list, list) { 726 list_for_each_entry(entry, list, list) {
727 if (!(entry->id == id && entry->cmd_line)) 727 if (!(entry->id == id && entry->cmd_line))
728 continue; 728 continue;
729 729
730 pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n", 730 pr_info("AMD-Vi: Command-line override present for %s id %d - ignoring\n",
731 type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id); 731 type == IVHD_SPECIAL_IOAPIC ? "IOAPIC" : "HPET", id);
732 732
733 return 0; 733 return 0;
734 } 734 }
735 735
736 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 736 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
737 if (!entry) 737 if (!entry)
738 return -ENOMEM; 738 return -ENOMEM;
739 739
740 entry->id = id; 740 entry->id = id;
741 entry->devid = devid; 741 entry->devid = devid;
742 entry->cmd_line = cmd_line; 742 entry->cmd_line = cmd_line;
743 743
744 list_add_tail(&entry->list, list); 744 list_add_tail(&entry->list, list);
745 745
746 return 0; 746 return 0;
747 } 747 }
748 748
749 static int __init add_early_maps(void) 749 static int __init add_early_maps(void)
750 { 750 {
751 int i, ret; 751 int i, ret;
752 752
753 for (i = 0; i < early_ioapic_map_size; ++i) { 753 for (i = 0; i < early_ioapic_map_size; ++i) {
754 ret = add_special_device(IVHD_SPECIAL_IOAPIC, 754 ret = add_special_device(IVHD_SPECIAL_IOAPIC,
755 early_ioapic_map[i].id, 755 early_ioapic_map[i].id,
756 early_ioapic_map[i].devid, 756 early_ioapic_map[i].devid,
757 early_ioapic_map[i].cmd_line); 757 early_ioapic_map[i].cmd_line);
758 if (ret) 758 if (ret)
759 return ret; 759 return ret;
760 } 760 }
761 761
762 for (i = 0; i < early_hpet_map_size; ++i) { 762 for (i = 0; i < early_hpet_map_size; ++i) {
763 ret = add_special_device(IVHD_SPECIAL_HPET, 763 ret = add_special_device(IVHD_SPECIAL_HPET,
764 early_hpet_map[i].id, 764 early_hpet_map[i].id,
765 early_hpet_map[i].devid, 765 early_hpet_map[i].devid,
766 early_hpet_map[i].cmd_line); 766 early_hpet_map[i].cmd_line);
767 if (ret) 767 if (ret)
768 return ret; 768 return ret;
769 } 769 }
770 770
771 return 0; 771 return 0;
772 } 772 }
773 773
774 /* 774 /*
775 * Reads the device exclusion range from ACPI and initializes the IOMMU with 775 * Reads the device exclusion range from ACPI and initializes the IOMMU with
776 * it 776 * it
777 */ 777 */
778 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m) 778 static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
779 { 779 {
780 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; 780 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
781 781
782 if (!(m->flags & IVMD_FLAG_EXCL_RANGE)) 782 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
783 return; 783 return;
784 784
785 if (iommu) { 785 if (iommu) {
786 /* 786 /*
787 * We only can configure exclusion ranges per IOMMU, not 787 * We only can configure exclusion ranges per IOMMU, not
788 * per device. But we can enable the exclusion range per 788 * per device. But we can enable the exclusion range per
789 * device. This is done here 789 * device. This is done here
790 */ 790 */
791 set_dev_entry_bit(m->devid, DEV_ENTRY_EX); 791 set_dev_entry_bit(devid, DEV_ENTRY_EX);
792 iommu->exclusion_start = m->range_start; 792 iommu->exclusion_start = m->range_start;
793 iommu->exclusion_length = m->range_length; 793 iommu->exclusion_length = m->range_length;
794 } 794 }
795 } 795 }
796 796
797 /* 797 /*
798 * Takes a pointer to an AMD IOMMU entry in the ACPI table and 798 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
799 * initializes the hardware and our data structures with it. 799 * initializes the hardware and our data structures with it.
800 */ 800 */
801 static int __init init_iommu_from_acpi(struct amd_iommu *iommu, 801 static int __init init_iommu_from_acpi(struct amd_iommu *iommu,
802 struct ivhd_header *h) 802 struct ivhd_header *h)
803 { 803 {
804 u8 *p = (u8 *)h; 804 u8 *p = (u8 *)h;
805 u8 *end = p, flags = 0; 805 u8 *end = p, flags = 0;
806 u16 devid = 0, devid_start = 0, devid_to = 0; 806 u16 devid = 0, devid_start = 0, devid_to = 0;
807 u32 dev_i, ext_flags = 0; 807 u32 dev_i, ext_flags = 0;
808 bool alias = false; 808 bool alias = false;
809 struct ivhd_entry *e; 809 struct ivhd_entry *e;
810 int ret; 810 int ret;
811 811
812 812
813 ret = add_early_maps(); 813 ret = add_early_maps();
814 if (ret) 814 if (ret)
815 return ret; 815 return ret;
816 816
817 /* 817 /*
818 * First save the recommended feature enable bits from ACPI 818 * First save the recommended feature enable bits from ACPI
819 */ 819 */
820 iommu->acpi_flags = h->flags; 820 iommu->acpi_flags = h->flags;
821 821
822 /* 822 /*
823 * Done. Now parse the device entries 823 * Done. Now parse the device entries
824 */ 824 */
825 p += sizeof(struct ivhd_header); 825 p += sizeof(struct ivhd_header);
826 end += h->length; 826 end += h->length;
827 827
828 828
829 while (p < end) { 829 while (p < end) {
830 e = (struct ivhd_entry *)p; 830 e = (struct ivhd_entry *)p;
831 switch (e->type) { 831 switch (e->type) {
832 case IVHD_DEV_ALL: 832 case IVHD_DEV_ALL:
833 833
834 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x" 834 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
835 " last device %02x:%02x.%x flags: %02x\n", 835 " last device %02x:%02x.%x flags: %02x\n",
836 PCI_BUS_NUM(iommu->first_device), 836 PCI_BUS_NUM(iommu->first_device),
837 PCI_SLOT(iommu->first_device), 837 PCI_SLOT(iommu->first_device),
838 PCI_FUNC(iommu->first_device), 838 PCI_FUNC(iommu->first_device),
839 PCI_BUS_NUM(iommu->last_device), 839 PCI_BUS_NUM(iommu->last_device),
840 PCI_SLOT(iommu->last_device), 840 PCI_SLOT(iommu->last_device),
841 PCI_FUNC(iommu->last_device), 841 PCI_FUNC(iommu->last_device),
842 e->flags); 842 e->flags);
843 843
844 for (dev_i = iommu->first_device; 844 for (dev_i = iommu->first_device;
845 dev_i <= iommu->last_device; ++dev_i) 845 dev_i <= iommu->last_device; ++dev_i)
846 set_dev_entry_from_acpi(iommu, dev_i, 846 set_dev_entry_from_acpi(iommu, dev_i,
847 e->flags, 0); 847 e->flags, 0);
848 break; 848 break;
849 case IVHD_DEV_SELECT: 849 case IVHD_DEV_SELECT:
850 850
851 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x " 851 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
852 "flags: %02x\n", 852 "flags: %02x\n",
853 PCI_BUS_NUM(e->devid), 853 PCI_BUS_NUM(e->devid),
854 PCI_SLOT(e->devid), 854 PCI_SLOT(e->devid),
855 PCI_FUNC(e->devid), 855 PCI_FUNC(e->devid),
856 e->flags); 856 e->flags);
857 857
858 devid = e->devid; 858 devid = e->devid;
859 set_dev_entry_from_acpi(iommu, devid, e->flags, 0); 859 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
860 break; 860 break;
861 case IVHD_DEV_SELECT_RANGE_START: 861 case IVHD_DEV_SELECT_RANGE_START:
862 862
863 DUMP_printk(" DEV_SELECT_RANGE_START\t " 863 DUMP_printk(" DEV_SELECT_RANGE_START\t "
864 "devid: %02x:%02x.%x flags: %02x\n", 864 "devid: %02x:%02x.%x flags: %02x\n",
865 PCI_BUS_NUM(e->devid), 865 PCI_BUS_NUM(e->devid),
866 PCI_SLOT(e->devid), 866 PCI_SLOT(e->devid),
867 PCI_FUNC(e->devid), 867 PCI_FUNC(e->devid),
868 e->flags); 868 e->flags);
869 869
870 devid_start = e->devid; 870 devid_start = e->devid;
871 flags = e->flags; 871 flags = e->flags;
872 ext_flags = 0; 872 ext_flags = 0;
873 alias = false; 873 alias = false;
874 break; 874 break;
875 case IVHD_DEV_ALIAS: 875 case IVHD_DEV_ALIAS:
876 876
877 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x " 877 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
878 "flags: %02x devid_to: %02x:%02x.%x\n", 878 "flags: %02x devid_to: %02x:%02x.%x\n",
879 PCI_BUS_NUM(e->devid), 879 PCI_BUS_NUM(e->devid),
880 PCI_SLOT(e->devid), 880 PCI_SLOT(e->devid),
881 PCI_FUNC(e->devid), 881 PCI_FUNC(e->devid),
882 e->flags, 882 e->flags,
883 PCI_BUS_NUM(e->ext >> 8), 883 PCI_BUS_NUM(e->ext >> 8),
884 PCI_SLOT(e->ext >> 8), 884 PCI_SLOT(e->ext >> 8),
885 PCI_FUNC(e->ext >> 8)); 885 PCI_FUNC(e->ext >> 8));
886 886
887 devid = e->devid; 887 devid = e->devid;
888 devid_to = e->ext >> 8; 888 devid_to = e->ext >> 8;
889 set_dev_entry_from_acpi(iommu, devid , e->flags, 0); 889 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
890 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0); 890 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
891 amd_iommu_alias_table[devid] = devid_to; 891 amd_iommu_alias_table[devid] = devid_to;
892 break; 892 break;
893 case IVHD_DEV_ALIAS_RANGE: 893 case IVHD_DEV_ALIAS_RANGE:
894 894
895 DUMP_printk(" DEV_ALIAS_RANGE\t\t " 895 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
896 "devid: %02x:%02x.%x flags: %02x " 896 "devid: %02x:%02x.%x flags: %02x "
897 "devid_to: %02x:%02x.%x\n", 897 "devid_to: %02x:%02x.%x\n",
898 PCI_BUS_NUM(e->devid), 898 PCI_BUS_NUM(e->devid),
899 PCI_SLOT(e->devid), 899 PCI_SLOT(e->devid),
900 PCI_FUNC(e->devid), 900 PCI_FUNC(e->devid),
901 e->flags, 901 e->flags,
902 PCI_BUS_NUM(e->ext >> 8), 902 PCI_BUS_NUM(e->ext >> 8),
903 PCI_SLOT(e->ext >> 8), 903 PCI_SLOT(e->ext >> 8),
904 PCI_FUNC(e->ext >> 8)); 904 PCI_FUNC(e->ext >> 8));
905 905
906 devid_start = e->devid; 906 devid_start = e->devid;
907 flags = e->flags; 907 flags = e->flags;
908 devid_to = e->ext >> 8; 908 devid_to = e->ext >> 8;
909 ext_flags = 0; 909 ext_flags = 0;
910 alias = true; 910 alias = true;
911 break; 911 break;
912 case IVHD_DEV_EXT_SELECT: 912 case IVHD_DEV_EXT_SELECT:
913 913
914 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x " 914 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
915 "flags: %02x ext: %08x\n", 915 "flags: %02x ext: %08x\n",
916 PCI_BUS_NUM(e->devid), 916 PCI_BUS_NUM(e->devid),
917 PCI_SLOT(e->devid), 917 PCI_SLOT(e->devid),
918 PCI_FUNC(e->devid), 918 PCI_FUNC(e->devid),
919 e->flags, e->ext); 919 e->flags, e->ext);
920 920
921 devid = e->devid; 921 devid = e->devid;
922 set_dev_entry_from_acpi(iommu, devid, e->flags, 922 set_dev_entry_from_acpi(iommu, devid, e->flags,
923 e->ext); 923 e->ext);
924 break; 924 break;
925 case IVHD_DEV_EXT_SELECT_RANGE: 925 case IVHD_DEV_EXT_SELECT_RANGE:
926 926
927 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: " 927 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
928 "%02x:%02x.%x flags: %02x ext: %08x\n", 928 "%02x:%02x.%x flags: %02x ext: %08x\n",
929 PCI_BUS_NUM(e->devid), 929 PCI_BUS_NUM(e->devid),
930 PCI_SLOT(e->devid), 930 PCI_SLOT(e->devid),
931 PCI_FUNC(e->devid), 931 PCI_FUNC(e->devid),
932 e->flags, e->ext); 932 e->flags, e->ext);
933 933
934 devid_start = e->devid; 934 devid_start = e->devid;
935 flags = e->flags; 935 flags = e->flags;
936 ext_flags = e->ext; 936 ext_flags = e->ext;
937 alias = false; 937 alias = false;
938 break; 938 break;
939 case IVHD_DEV_RANGE_END: 939 case IVHD_DEV_RANGE_END:
940 940
941 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n", 941 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
942 PCI_BUS_NUM(e->devid), 942 PCI_BUS_NUM(e->devid),
943 PCI_SLOT(e->devid), 943 PCI_SLOT(e->devid),
944 PCI_FUNC(e->devid)); 944 PCI_FUNC(e->devid));
945 945
946 devid = e->devid; 946 devid = e->devid;
947 for (dev_i = devid_start; dev_i <= devid; ++dev_i) { 947 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
948 if (alias) { 948 if (alias) {
949 amd_iommu_alias_table[dev_i] = devid_to; 949 amd_iommu_alias_table[dev_i] = devid_to;
950 set_dev_entry_from_acpi(iommu, 950 set_dev_entry_from_acpi(iommu,
951 devid_to, flags, ext_flags); 951 devid_to, flags, ext_flags);
952 } 952 }
953 set_dev_entry_from_acpi(iommu, dev_i, 953 set_dev_entry_from_acpi(iommu, dev_i,
954 flags, ext_flags); 954 flags, ext_flags);
955 } 955 }
956 break; 956 break;
957 case IVHD_DEV_SPECIAL: { 957 case IVHD_DEV_SPECIAL: {
958 u8 handle, type; 958 u8 handle, type;
959 const char *var; 959 const char *var;
960 u16 devid; 960 u16 devid;
961 int ret; 961 int ret;
962 962
963 handle = e->ext & 0xff; 963 handle = e->ext & 0xff;
964 devid = (e->ext >> 8) & 0xffff; 964 devid = (e->ext >> 8) & 0xffff;
965 type = (e->ext >> 24) & 0xff; 965 type = (e->ext >> 24) & 0xff;
966 966
967 if (type == IVHD_SPECIAL_IOAPIC) 967 if (type == IVHD_SPECIAL_IOAPIC)
968 var = "IOAPIC"; 968 var = "IOAPIC";
969 else if (type == IVHD_SPECIAL_HPET) 969 else if (type == IVHD_SPECIAL_HPET)
970 var = "HPET"; 970 var = "HPET";
971 else 971 else
972 var = "UNKNOWN"; 972 var = "UNKNOWN";
973 973
974 DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n", 974 DUMP_printk(" DEV_SPECIAL(%s[%d])\t\tdevid: %02x:%02x.%x\n",
975 var, (int)handle, 975 var, (int)handle,
976 PCI_BUS_NUM(devid), 976 PCI_BUS_NUM(devid),
977 PCI_SLOT(devid), 977 PCI_SLOT(devid),
978 PCI_FUNC(devid)); 978 PCI_FUNC(devid));
979 979
980 set_dev_entry_from_acpi(iommu, devid, e->flags, 0); 980 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
981 ret = add_special_device(type, handle, devid, false); 981 ret = add_special_device(type, handle, devid, false);
982 if (ret) 982 if (ret)
983 return ret; 983 return ret;
984 break; 984 break;
985 } 985 }
986 default: 986 default:
987 break; 987 break;
988 } 988 }
989 989
990 p += ivhd_entry_length(p); 990 p += ivhd_entry_length(p);
991 } 991 }
992 992
993 return 0; 993 return 0;
994 } 994 }
995 995
996 /* Initializes the device->iommu mapping for the driver */ 996 /* Initializes the device->iommu mapping for the driver */
997 static int __init init_iommu_devices(struct amd_iommu *iommu) 997 static int __init init_iommu_devices(struct amd_iommu *iommu)
998 { 998 {
999 u32 i; 999 u32 i;
1000 1000
1001 for (i = iommu->first_device; i <= iommu->last_device; ++i) 1001 for (i = iommu->first_device; i <= iommu->last_device; ++i)
1002 set_iommu_for_device(iommu, i); 1002 set_iommu_for_device(iommu, i);
1003 1003
1004 return 0; 1004 return 0;
1005 } 1005 }
1006 1006
1007 static void __init free_iommu_one(struct amd_iommu *iommu) 1007 static void __init free_iommu_one(struct amd_iommu *iommu)
1008 { 1008 {
1009 free_command_buffer(iommu); 1009 free_command_buffer(iommu);
1010 free_event_buffer(iommu); 1010 free_event_buffer(iommu);
1011 free_ppr_log(iommu); 1011 free_ppr_log(iommu);
1012 iommu_unmap_mmio_space(iommu); 1012 iommu_unmap_mmio_space(iommu);
1013 } 1013 }
1014 1014
1015 static void __init free_iommu_all(void) 1015 static void __init free_iommu_all(void)
1016 { 1016 {
1017 struct amd_iommu *iommu, *next; 1017 struct amd_iommu *iommu, *next;
1018 1018
1019 for_each_iommu_safe(iommu, next) { 1019 for_each_iommu_safe(iommu, next) {
1020 list_del(&iommu->list); 1020 list_del(&iommu->list);
1021 free_iommu_one(iommu); 1021 free_iommu_one(iommu);
1022 kfree(iommu); 1022 kfree(iommu);
1023 } 1023 }
1024 } 1024 }
1025 1025
1026 /* 1026 /*
1027 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations) 1027 * Family15h Model 10h-1fh erratum 746 (IOMMU Logging May Stall Translations)
1028 * Workaround: 1028 * Workaround:
1029 * BIOS should disable L2B micellaneous clock gating by setting 1029 * BIOS should disable L2B micellaneous clock gating by setting
1030 * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b 1030 * L2_L2B_CK_GATE_CONTROL[CKGateL2BMiscDisable](D0F2xF4_x90[2]) = 1b
1031 */ 1031 */
1032 static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu) 1032 static void amd_iommu_erratum_746_workaround(struct amd_iommu *iommu)
1033 { 1033 {
1034 u32 value; 1034 u32 value;
1035 1035
1036 if ((boot_cpu_data.x86 != 0x15) || 1036 if ((boot_cpu_data.x86 != 0x15) ||
1037 (boot_cpu_data.x86_model < 0x10) || 1037 (boot_cpu_data.x86_model < 0x10) ||
1038 (boot_cpu_data.x86_model > 0x1f)) 1038 (boot_cpu_data.x86_model > 0x1f))
1039 return; 1039 return;
1040 1040
1041 pci_write_config_dword(iommu->dev, 0xf0, 0x90); 1041 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1042 pci_read_config_dword(iommu->dev, 0xf4, &value); 1042 pci_read_config_dword(iommu->dev, 0xf4, &value);
1043 1043
1044 if (value & BIT(2)) 1044 if (value & BIT(2))
1045 return; 1045 return;
1046 1046
1047 /* Select NB indirect register 0x90 and enable writing */ 1047 /* Select NB indirect register 0x90 and enable writing */
1048 pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8)); 1048 pci_write_config_dword(iommu->dev, 0xf0, 0x90 | (1 << 8));
1049 1049
1050 pci_write_config_dword(iommu->dev, 0xf4, value | 0x4); 1050 pci_write_config_dword(iommu->dev, 0xf4, value | 0x4);
1051 pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n", 1051 pr_info("AMD-Vi: Applying erratum 746 workaround for IOMMU at %s\n",
1052 dev_name(&iommu->dev->dev)); 1052 dev_name(&iommu->dev->dev));
1053 1053
1054 /* Clear the enable writing bit */ 1054 /* Clear the enable writing bit */
1055 pci_write_config_dword(iommu->dev, 0xf0, 0x90); 1055 pci_write_config_dword(iommu->dev, 0xf0, 0x90);
1056 } 1056 }
1057 1057
1058 /* 1058 /*
1059 * This function clues the initialization function for one IOMMU 1059 * This function clues the initialization function for one IOMMU
1060 * together and also allocates the command buffer and programs the 1060 * together and also allocates the command buffer and programs the
1061 * hardware. It does NOT enable the IOMMU. This is done afterwards. 1061 * hardware. It does NOT enable the IOMMU. This is done afterwards.
1062 */ 1062 */
1063 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h) 1063 static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
1064 { 1064 {
1065 int ret; 1065 int ret;
1066 1066
1067 spin_lock_init(&iommu->lock); 1067 spin_lock_init(&iommu->lock);
1068 1068
1069 /* Add IOMMU to internal data structures */ 1069 /* Add IOMMU to internal data structures */
1070 list_add_tail(&iommu->list, &amd_iommu_list); 1070 list_add_tail(&iommu->list, &amd_iommu_list);
1071 iommu->index = amd_iommus_present++; 1071 iommu->index = amd_iommus_present++;
1072 1072
1073 if (unlikely(iommu->index >= MAX_IOMMUS)) { 1073 if (unlikely(iommu->index >= MAX_IOMMUS)) {
1074 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n"); 1074 WARN(1, "AMD-Vi: System has more IOMMUs than supported by this driver\n");
1075 return -ENOSYS; 1075 return -ENOSYS;
1076 } 1076 }
1077 1077
1078 /* Index is fine - add IOMMU to the array */ 1078 /* Index is fine - add IOMMU to the array */
1079 amd_iommus[iommu->index] = iommu; 1079 amd_iommus[iommu->index] = iommu;
1080 1080
1081 /* 1081 /*
1082 * Copy data from ACPI table entry to the iommu struct 1082 * Copy data from ACPI table entry to the iommu struct
1083 */ 1083 */
1084 iommu->devid = h->devid; 1084 iommu->devid = h->devid;
1085 iommu->cap_ptr = h->cap_ptr; 1085 iommu->cap_ptr = h->cap_ptr;
1086 iommu->pci_seg = h->pci_seg; 1086 iommu->pci_seg = h->pci_seg;
1087 iommu->mmio_phys = h->mmio_phys; 1087 iommu->mmio_phys = h->mmio_phys;
1088 1088
1089 /* Check if IVHD EFR contains proper max banks/counters */ 1089 /* Check if IVHD EFR contains proper max banks/counters */
1090 if ((h->efr != 0) && 1090 if ((h->efr != 0) &&
1091 ((h->efr & (0xF << 13)) != 0) && 1091 ((h->efr & (0xF << 13)) != 0) &&
1092 ((h->efr & (0x3F << 17)) != 0)) { 1092 ((h->efr & (0x3F << 17)) != 0)) {
1093 iommu->mmio_phys_end = MMIO_REG_END_OFFSET; 1093 iommu->mmio_phys_end = MMIO_REG_END_OFFSET;
1094 } else { 1094 } else {
1095 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET; 1095 iommu->mmio_phys_end = MMIO_CNTR_CONF_OFFSET;
1096 } 1096 }
1097 1097
1098 iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys, 1098 iommu->mmio_base = iommu_map_mmio_space(iommu->mmio_phys,
1099 iommu->mmio_phys_end); 1099 iommu->mmio_phys_end);
1100 if (!iommu->mmio_base) 1100 if (!iommu->mmio_base)
1101 return -ENOMEM; 1101 return -ENOMEM;
1102 1102
1103 iommu->cmd_buf = alloc_command_buffer(iommu); 1103 iommu->cmd_buf = alloc_command_buffer(iommu);
1104 if (!iommu->cmd_buf) 1104 if (!iommu->cmd_buf)
1105 return -ENOMEM; 1105 return -ENOMEM;
1106 1106
1107 iommu->evt_buf = alloc_event_buffer(iommu); 1107 iommu->evt_buf = alloc_event_buffer(iommu);
1108 if (!iommu->evt_buf) 1108 if (!iommu->evt_buf)
1109 return -ENOMEM; 1109 return -ENOMEM;
1110 1110
1111 iommu->int_enabled = false; 1111 iommu->int_enabled = false;
1112 1112
1113 ret = init_iommu_from_acpi(iommu, h); 1113 ret = init_iommu_from_acpi(iommu, h);
1114 if (ret) 1114 if (ret)
1115 return ret; 1115 return ret;
1116 1116
1117 /* 1117 /*
1118 * Make sure IOMMU is not considered to translate itself. The IVRS 1118 * Make sure IOMMU is not considered to translate itself. The IVRS
1119 * table tells us so, but this is a lie! 1119 * table tells us so, but this is a lie!
1120 */ 1120 */
1121 amd_iommu_rlookup_table[iommu->devid] = NULL; 1121 amd_iommu_rlookup_table[iommu->devid] = NULL;
1122 1122
1123 init_iommu_devices(iommu); 1123 init_iommu_devices(iommu);
1124 1124
1125 return 0; 1125 return 0;
1126 } 1126 }
1127 1127
1128 /* 1128 /*
1129 * Iterates over all IOMMU entries in the ACPI table, allocates the 1129 * Iterates over all IOMMU entries in the ACPI table, allocates the
1130 * IOMMU structure and initializes it with init_iommu_one() 1130 * IOMMU structure and initializes it with init_iommu_one()
1131 */ 1131 */
1132 static int __init init_iommu_all(struct acpi_table_header *table) 1132 static int __init init_iommu_all(struct acpi_table_header *table)
1133 { 1133 {
1134 u8 *p = (u8 *)table, *end = (u8 *)table; 1134 u8 *p = (u8 *)table, *end = (u8 *)table;
1135 struct ivhd_header *h; 1135 struct ivhd_header *h;
1136 struct amd_iommu *iommu; 1136 struct amd_iommu *iommu;
1137 int ret; 1137 int ret;
1138 1138
1139 end += table->length; 1139 end += table->length;
1140 p += IVRS_HEADER_LENGTH; 1140 p += IVRS_HEADER_LENGTH;
1141 1141
1142 while (p < end) { 1142 while (p < end) {
1143 h = (struct ivhd_header *)p; 1143 h = (struct ivhd_header *)p;
1144 switch (*p) { 1144 switch (*p) {
1145 case ACPI_IVHD_TYPE: 1145 case ACPI_IVHD_TYPE:
1146 1146
1147 DUMP_printk("device: %02x:%02x.%01x cap: %04x " 1147 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
1148 "seg: %d flags: %01x info %04x\n", 1148 "seg: %d flags: %01x info %04x\n",
1149 PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid), 1149 PCI_BUS_NUM(h->devid), PCI_SLOT(h->devid),
1150 PCI_FUNC(h->devid), h->cap_ptr, 1150 PCI_FUNC(h->devid), h->cap_ptr,
1151 h->pci_seg, h->flags, h->info); 1151 h->pci_seg, h->flags, h->info);
1152 DUMP_printk(" mmio-addr: %016llx\n", 1152 DUMP_printk(" mmio-addr: %016llx\n",
1153 h->mmio_phys); 1153 h->mmio_phys);
1154 1154
1155 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL); 1155 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
1156 if (iommu == NULL) 1156 if (iommu == NULL)
1157 return -ENOMEM; 1157 return -ENOMEM;
1158 1158
1159 ret = init_iommu_one(iommu, h); 1159 ret = init_iommu_one(iommu, h);
1160 if (ret) 1160 if (ret)
1161 return ret; 1161 return ret;
1162 break; 1162 break;
1163 default: 1163 default:
1164 break; 1164 break;
1165 } 1165 }
1166 p += h->length; 1166 p += h->length;
1167 1167
1168 } 1168 }
1169 WARN_ON(p != end); 1169 WARN_ON(p != end);
1170 1170
1171 return 0; 1171 return 0;
1172 } 1172 }
1173 1173
1174 1174
1175 static void init_iommu_perf_ctr(struct amd_iommu *iommu) 1175 static void init_iommu_perf_ctr(struct amd_iommu *iommu)
1176 { 1176 {
1177 u64 val = 0xabcd, val2 = 0; 1177 u64 val = 0xabcd, val2 = 0;
1178 1178
1179 if (!iommu_feature(iommu, FEATURE_PC)) 1179 if (!iommu_feature(iommu, FEATURE_PC))
1180 return; 1180 return;
1181 1181
1182 amd_iommu_pc_present = true; 1182 amd_iommu_pc_present = true;
1183 1183
1184 /* Check if the performance counters can be written to */ 1184 /* Check if the performance counters can be written to */
1185 if ((0 != amd_iommu_pc_get_set_reg_val(0, 0, 0, 0, &val, true)) || 1185 if ((0 != amd_iommu_pc_get_set_reg_val(0, 0, 0, 0, &val, true)) ||
1186 (0 != amd_iommu_pc_get_set_reg_val(0, 0, 0, 0, &val2, false)) || 1186 (0 != amd_iommu_pc_get_set_reg_val(0, 0, 0, 0, &val2, false)) ||
1187 (val != val2)) { 1187 (val != val2)) {
1188 pr_err("AMD-Vi: Unable to write to IOMMU perf counter.\n"); 1188 pr_err("AMD-Vi: Unable to write to IOMMU perf counter.\n");
1189 amd_iommu_pc_present = false; 1189 amd_iommu_pc_present = false;
1190 return; 1190 return;
1191 } 1191 }
1192 1192
1193 pr_info("AMD-Vi: IOMMU performance counters supported\n"); 1193 pr_info("AMD-Vi: IOMMU performance counters supported\n");
1194 1194
1195 val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET); 1195 val = readl(iommu->mmio_base + MMIO_CNTR_CONF_OFFSET);
1196 iommu->max_banks = (u8) ((val >> 12) & 0x3f); 1196 iommu->max_banks = (u8) ((val >> 12) & 0x3f);
1197 iommu->max_counters = (u8) ((val >> 7) & 0xf); 1197 iommu->max_counters = (u8) ((val >> 7) & 0xf);
1198 } 1198 }
1199 1199
1200 1200
1201 static int iommu_init_pci(struct amd_iommu *iommu) 1201 static int iommu_init_pci(struct amd_iommu *iommu)
1202 { 1202 {
1203 int cap_ptr = iommu->cap_ptr; 1203 int cap_ptr = iommu->cap_ptr;
1204 u32 range, misc, low, high; 1204 u32 range, misc, low, high;
1205 1205
1206 iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid), 1206 iommu->dev = pci_get_bus_and_slot(PCI_BUS_NUM(iommu->devid),
1207 iommu->devid & 0xff); 1207 iommu->devid & 0xff);
1208 if (!iommu->dev) 1208 if (!iommu->dev)
1209 return -ENODEV; 1209 return -ENODEV;
1210 1210
1211 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET, 1211 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
1212 &iommu->cap); 1212 &iommu->cap);
1213 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET, 1213 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
1214 &range); 1214 &range);
1215 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET, 1215 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
1216 &misc); 1216 &misc);
1217 1217
1218 iommu->first_device = PCI_DEVID(MMIO_GET_BUS(range), 1218 iommu->first_device = PCI_DEVID(MMIO_GET_BUS(range),
1219 MMIO_GET_FD(range)); 1219 MMIO_GET_FD(range));
1220 iommu->last_device = PCI_DEVID(MMIO_GET_BUS(range), 1220 iommu->last_device = PCI_DEVID(MMIO_GET_BUS(range),
1221 MMIO_GET_LD(range)); 1221 MMIO_GET_LD(range));
1222 1222
1223 if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB))) 1223 if (!(iommu->cap & (1 << IOMMU_CAP_IOTLB)))
1224 amd_iommu_iotlb_sup = false; 1224 amd_iommu_iotlb_sup = false;
1225 1225
1226 /* read extended feature bits */ 1226 /* read extended feature bits */
1227 low = readl(iommu->mmio_base + MMIO_EXT_FEATURES); 1227 low = readl(iommu->mmio_base + MMIO_EXT_FEATURES);
1228 high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4); 1228 high = readl(iommu->mmio_base + MMIO_EXT_FEATURES + 4);
1229 1229
1230 iommu->features = ((u64)high << 32) | low; 1230 iommu->features = ((u64)high << 32) | low;
1231 1231
1232 if (iommu_feature(iommu, FEATURE_GT)) { 1232 if (iommu_feature(iommu, FEATURE_GT)) {
1233 int glxval; 1233 int glxval;
1234 u32 max_pasid; 1234 u32 max_pasid;
1235 u64 pasmax; 1235 u64 pasmax;
1236 1236
1237 pasmax = iommu->features & FEATURE_PASID_MASK; 1237 pasmax = iommu->features & FEATURE_PASID_MASK;
1238 pasmax >>= FEATURE_PASID_SHIFT; 1238 pasmax >>= FEATURE_PASID_SHIFT;
1239 max_pasid = (1 << (pasmax + 1)) - 1; 1239 max_pasid = (1 << (pasmax + 1)) - 1;
1240 1240
1241 amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid); 1241 amd_iommu_max_pasid = min(amd_iommu_max_pasid, max_pasid);
1242 1242
1243 BUG_ON(amd_iommu_max_pasid & ~PASID_MASK); 1243 BUG_ON(amd_iommu_max_pasid & ~PASID_MASK);
1244 1244
1245 glxval = iommu->features & FEATURE_GLXVAL_MASK; 1245 glxval = iommu->features & FEATURE_GLXVAL_MASK;
1246 glxval >>= FEATURE_GLXVAL_SHIFT; 1246 glxval >>= FEATURE_GLXVAL_SHIFT;
1247 1247
1248 if (amd_iommu_max_glx_val == -1) 1248 if (amd_iommu_max_glx_val == -1)
1249 amd_iommu_max_glx_val = glxval; 1249 amd_iommu_max_glx_val = glxval;
1250 else 1250 else
1251 amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval); 1251 amd_iommu_max_glx_val = min(amd_iommu_max_glx_val, glxval);
1252 } 1252 }
1253 1253
1254 if (iommu_feature(iommu, FEATURE_GT) && 1254 if (iommu_feature(iommu, FEATURE_GT) &&
1255 iommu_feature(iommu, FEATURE_PPR)) { 1255 iommu_feature(iommu, FEATURE_PPR)) {
1256 iommu->is_iommu_v2 = true; 1256 iommu->is_iommu_v2 = true;
1257 amd_iommu_v2_present = true; 1257 amd_iommu_v2_present = true;
1258 } 1258 }
1259 1259
1260 if (iommu_feature(iommu, FEATURE_PPR)) { 1260 if (iommu_feature(iommu, FEATURE_PPR)) {
1261 iommu->ppr_log = alloc_ppr_log(iommu); 1261 iommu->ppr_log = alloc_ppr_log(iommu);
1262 if (!iommu->ppr_log) 1262 if (!iommu->ppr_log)
1263 return -ENOMEM; 1263 return -ENOMEM;
1264 } 1264 }
1265 1265
1266 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE)) 1266 if (iommu->cap & (1UL << IOMMU_CAP_NPCACHE))
1267 amd_iommu_np_cache = true; 1267 amd_iommu_np_cache = true;
1268 1268
1269 init_iommu_perf_ctr(iommu); 1269 init_iommu_perf_ctr(iommu);
1270 1270
1271 if (is_rd890_iommu(iommu->dev)) { 1271 if (is_rd890_iommu(iommu->dev)) {
1272 int i, j; 1272 int i, j;
1273 1273
1274 iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number, 1274 iommu->root_pdev = pci_get_bus_and_slot(iommu->dev->bus->number,
1275 PCI_DEVFN(0, 0)); 1275 PCI_DEVFN(0, 0));
1276 1276
1277 /* 1277 /*
1278 * Some rd890 systems may not be fully reconfigured by the 1278 * Some rd890 systems may not be fully reconfigured by the
1279 * BIOS, so it's necessary for us to store this information so 1279 * BIOS, so it's necessary for us to store this information so
1280 * it can be reprogrammed on resume 1280 * it can be reprogrammed on resume
1281 */ 1281 */
1282 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4, 1282 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 4,
1283 &iommu->stored_addr_lo); 1283 &iommu->stored_addr_lo);
1284 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8, 1284 pci_read_config_dword(iommu->dev, iommu->cap_ptr + 8,
1285 &iommu->stored_addr_hi); 1285 &iommu->stored_addr_hi);
1286 1286
1287 /* Low bit locks writes to configuration space */ 1287 /* Low bit locks writes to configuration space */
1288 iommu->stored_addr_lo &= ~1; 1288 iommu->stored_addr_lo &= ~1;
1289 1289
1290 for (i = 0; i < 6; i++) 1290 for (i = 0; i < 6; i++)
1291 for (j = 0; j < 0x12; j++) 1291 for (j = 0; j < 0x12; j++)
1292 iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j); 1292 iommu->stored_l1[i][j] = iommu_read_l1(iommu, i, j);
1293 1293
1294 for (i = 0; i < 0x83; i++) 1294 for (i = 0; i < 0x83; i++)
1295 iommu->stored_l2[i] = iommu_read_l2(iommu, i); 1295 iommu->stored_l2[i] = iommu_read_l2(iommu, i);
1296 } 1296 }
1297 1297
1298 amd_iommu_erratum_746_workaround(iommu); 1298 amd_iommu_erratum_746_workaround(iommu);
1299 1299
1300 return pci_enable_device(iommu->dev); 1300 return pci_enable_device(iommu->dev);
1301 } 1301 }
1302 1302
1303 static void print_iommu_info(void) 1303 static void print_iommu_info(void)
1304 { 1304 {
1305 static const char * const feat_str[] = { 1305 static const char * const feat_str[] = {
1306 "PreF", "PPR", "X2APIC", "NX", "GT", "[5]", 1306 "PreF", "PPR", "X2APIC", "NX", "GT", "[5]",
1307 "IA", "GA", "HE", "PC" 1307 "IA", "GA", "HE", "PC"
1308 }; 1308 };
1309 struct amd_iommu *iommu; 1309 struct amd_iommu *iommu;
1310 1310
1311 for_each_iommu(iommu) { 1311 for_each_iommu(iommu) {
1312 int i; 1312 int i;
1313 1313
1314 pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n", 1314 pr_info("AMD-Vi: Found IOMMU at %s cap 0x%hx\n",
1315 dev_name(&iommu->dev->dev), iommu->cap_ptr); 1315 dev_name(&iommu->dev->dev), iommu->cap_ptr);
1316 1316
1317 if (iommu->cap & (1 << IOMMU_CAP_EFR)) { 1317 if (iommu->cap & (1 << IOMMU_CAP_EFR)) {
1318 pr_info("AMD-Vi: Extended features: "); 1318 pr_info("AMD-Vi: Extended features: ");
1319 for (i = 0; i < ARRAY_SIZE(feat_str); ++i) { 1319 for (i = 0; i < ARRAY_SIZE(feat_str); ++i) {
1320 if (iommu_feature(iommu, (1ULL << i))) 1320 if (iommu_feature(iommu, (1ULL << i)))
1321 pr_cont(" %s", feat_str[i]); 1321 pr_cont(" %s", feat_str[i]);
1322 } 1322 }
1323 pr_cont("\n"); 1323 pr_cont("\n");
1324 } 1324 }
1325 } 1325 }
1326 if (irq_remapping_enabled) 1326 if (irq_remapping_enabled)
1327 pr_info("AMD-Vi: Interrupt remapping enabled\n"); 1327 pr_info("AMD-Vi: Interrupt remapping enabled\n");
1328 } 1328 }
1329 1329
1330 static int __init amd_iommu_init_pci(void) 1330 static int __init amd_iommu_init_pci(void)
1331 { 1331 {
1332 struct amd_iommu *iommu; 1332 struct amd_iommu *iommu;
1333 int ret = 0; 1333 int ret = 0;
1334 1334
1335 for_each_iommu(iommu) { 1335 for_each_iommu(iommu) {
1336 ret = iommu_init_pci(iommu); 1336 ret = iommu_init_pci(iommu);
1337 if (ret) 1337 if (ret)
1338 break; 1338 break;
1339 } 1339 }
1340 1340
1341 ret = amd_iommu_init_devices(); 1341 ret = amd_iommu_init_devices();
1342 1342
1343 print_iommu_info(); 1343 print_iommu_info();
1344 1344
1345 return ret; 1345 return ret;
1346 } 1346 }
1347 1347
1348 /**************************************************************************** 1348 /****************************************************************************
1349 * 1349 *
1350 * The following functions initialize the MSI interrupts for all IOMMUs 1350 * The following functions initialize the MSI interrupts for all IOMMUs
1351 * in the system. It's a bit challenging because there could be multiple 1351 * in the system. It's a bit challenging because there could be multiple
1352 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per 1352 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
1353 * pci_dev. 1353 * pci_dev.
1354 * 1354 *
1355 ****************************************************************************/ 1355 ****************************************************************************/
1356 1356
1357 static int iommu_setup_msi(struct amd_iommu *iommu) 1357 static int iommu_setup_msi(struct amd_iommu *iommu)
1358 { 1358 {
1359 int r; 1359 int r;
1360 1360
1361 r = pci_enable_msi(iommu->dev); 1361 r = pci_enable_msi(iommu->dev);
1362 if (r) 1362 if (r)
1363 return r; 1363 return r;
1364 1364
1365 r = request_threaded_irq(iommu->dev->irq, 1365 r = request_threaded_irq(iommu->dev->irq,
1366 amd_iommu_int_handler, 1366 amd_iommu_int_handler,
1367 amd_iommu_int_thread, 1367 amd_iommu_int_thread,
1368 0, "AMD-Vi", 1368 0, "AMD-Vi",
1369 iommu); 1369 iommu);
1370 1370
1371 if (r) { 1371 if (r) {
1372 pci_disable_msi(iommu->dev); 1372 pci_disable_msi(iommu->dev);
1373 return r; 1373 return r;
1374 } 1374 }
1375 1375
1376 iommu->int_enabled = true; 1376 iommu->int_enabled = true;
1377 1377
1378 return 0; 1378 return 0;
1379 } 1379 }
1380 1380
1381 static int iommu_init_msi(struct amd_iommu *iommu) 1381 static int iommu_init_msi(struct amd_iommu *iommu)
1382 { 1382 {
1383 int ret; 1383 int ret;
1384 1384
1385 if (iommu->int_enabled) 1385 if (iommu->int_enabled)
1386 goto enable_faults; 1386 goto enable_faults;
1387 1387
1388 if (iommu->dev->msi_cap) 1388 if (iommu->dev->msi_cap)
1389 ret = iommu_setup_msi(iommu); 1389 ret = iommu_setup_msi(iommu);
1390 else 1390 else
1391 ret = -ENODEV; 1391 ret = -ENODEV;
1392 1392
1393 if (ret) 1393 if (ret)
1394 return ret; 1394 return ret;
1395 1395
1396 enable_faults: 1396 enable_faults:
1397 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN); 1397 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
1398 1398
1399 if (iommu->ppr_log != NULL) 1399 if (iommu->ppr_log != NULL)
1400 iommu_feature_enable(iommu, CONTROL_PPFINT_EN); 1400 iommu_feature_enable(iommu, CONTROL_PPFINT_EN);
1401 1401
1402 return 0; 1402 return 0;
1403 } 1403 }
1404 1404
1405 /**************************************************************************** 1405 /****************************************************************************
1406 * 1406 *
1407 * The next functions belong to the third pass of parsing the ACPI 1407 * The next functions belong to the third pass of parsing the ACPI
1408 * table. In this last pass the memory mapping requirements are 1408 * table. In this last pass the memory mapping requirements are
1409 * gathered (like exclusion and unity mapping ranges). 1409 * gathered (like exclusion and unity mapping ranges).
1410 * 1410 *
1411 ****************************************************************************/ 1411 ****************************************************************************/
1412 1412
1413 static void __init free_unity_maps(void) 1413 static void __init free_unity_maps(void)
1414 { 1414 {
1415 struct unity_map_entry *entry, *next; 1415 struct unity_map_entry *entry, *next;
1416 1416
1417 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) { 1417 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
1418 list_del(&entry->list); 1418 list_del(&entry->list);
1419 kfree(entry); 1419 kfree(entry);
1420 } 1420 }
1421 } 1421 }
1422 1422
1423 /* called when we find an exclusion range definition in ACPI */ 1423 /* called when we find an exclusion range definition in ACPI */
1424 static int __init init_exclusion_range(struct ivmd_header *m) 1424 static int __init init_exclusion_range(struct ivmd_header *m)
1425 { 1425 {
1426 int i; 1426 int i;
1427 1427
1428 switch (m->type) { 1428 switch (m->type) {
1429 case ACPI_IVMD_TYPE: 1429 case ACPI_IVMD_TYPE:
1430 set_device_exclusion_range(m->devid, m); 1430 set_device_exclusion_range(m->devid, m);
1431 break; 1431 break;
1432 case ACPI_IVMD_TYPE_ALL: 1432 case ACPI_IVMD_TYPE_ALL:
1433 for (i = 0; i <= amd_iommu_last_bdf; ++i) 1433 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1434 set_device_exclusion_range(i, m); 1434 set_device_exclusion_range(i, m);
1435 break; 1435 break;
1436 case ACPI_IVMD_TYPE_RANGE: 1436 case ACPI_IVMD_TYPE_RANGE:
1437 for (i = m->devid; i <= m->aux; ++i) 1437 for (i = m->devid; i <= m->aux; ++i)
1438 set_device_exclusion_range(i, m); 1438 set_device_exclusion_range(i, m);
1439 break; 1439 break;
1440 default: 1440 default:
1441 break; 1441 break;
1442 } 1442 }
1443 1443
1444 return 0; 1444 return 0;
1445 } 1445 }
1446 1446
1447 /* called for unity map ACPI definition */ 1447 /* called for unity map ACPI definition */
1448 static int __init init_unity_map_range(struct ivmd_header *m) 1448 static int __init init_unity_map_range(struct ivmd_header *m)
1449 { 1449 {
1450 struct unity_map_entry *e = NULL; 1450 struct unity_map_entry *e = NULL;
1451 char *s; 1451 char *s;
1452 1452
1453 e = kzalloc(sizeof(*e), GFP_KERNEL); 1453 e = kzalloc(sizeof(*e), GFP_KERNEL);
1454 if (e == NULL) 1454 if (e == NULL)
1455 return -ENOMEM; 1455 return -ENOMEM;
1456 1456
1457 switch (m->type) { 1457 switch (m->type) {
1458 default: 1458 default:
1459 kfree(e); 1459 kfree(e);
1460 return 0; 1460 return 0;
1461 case ACPI_IVMD_TYPE: 1461 case ACPI_IVMD_TYPE:
1462 s = "IVMD_TYPEi\t\t\t"; 1462 s = "IVMD_TYPEi\t\t\t";
1463 e->devid_start = e->devid_end = m->devid; 1463 e->devid_start = e->devid_end = m->devid;
1464 break; 1464 break;
1465 case ACPI_IVMD_TYPE_ALL: 1465 case ACPI_IVMD_TYPE_ALL:
1466 s = "IVMD_TYPE_ALL\t\t"; 1466 s = "IVMD_TYPE_ALL\t\t";
1467 e->devid_start = 0; 1467 e->devid_start = 0;
1468 e->devid_end = amd_iommu_last_bdf; 1468 e->devid_end = amd_iommu_last_bdf;
1469 break; 1469 break;
1470 case ACPI_IVMD_TYPE_RANGE: 1470 case ACPI_IVMD_TYPE_RANGE:
1471 s = "IVMD_TYPE_RANGE\t\t"; 1471 s = "IVMD_TYPE_RANGE\t\t";
1472 e->devid_start = m->devid; 1472 e->devid_start = m->devid;
1473 e->devid_end = m->aux; 1473 e->devid_end = m->aux;
1474 break; 1474 break;
1475 } 1475 }
1476 e->address_start = PAGE_ALIGN(m->range_start); 1476 e->address_start = PAGE_ALIGN(m->range_start);
1477 e->address_end = e->address_start + PAGE_ALIGN(m->range_length); 1477 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1478 e->prot = m->flags >> 1; 1478 e->prot = m->flags >> 1;
1479 1479
1480 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x" 1480 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1481 " range_start: %016llx range_end: %016llx flags: %x\n", s, 1481 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1482 PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start), 1482 PCI_BUS_NUM(e->devid_start), PCI_SLOT(e->devid_start),
1483 PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end), 1483 PCI_FUNC(e->devid_start), PCI_BUS_NUM(e->devid_end),
1484 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end), 1484 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1485 e->address_start, e->address_end, m->flags); 1485 e->address_start, e->address_end, m->flags);
1486 1486
1487 list_add_tail(&e->list, &amd_iommu_unity_map); 1487 list_add_tail(&e->list, &amd_iommu_unity_map);
1488 1488
1489 return 0; 1489 return 0;
1490 } 1490 }
1491 1491
1492 /* iterates over all memory definitions we find in the ACPI table */ 1492 /* iterates over all memory definitions we find in the ACPI table */
1493 static int __init init_memory_definitions(struct acpi_table_header *table) 1493 static int __init init_memory_definitions(struct acpi_table_header *table)
1494 { 1494 {
1495 u8 *p = (u8 *)table, *end = (u8 *)table; 1495 u8 *p = (u8 *)table, *end = (u8 *)table;
1496 struct ivmd_header *m; 1496 struct ivmd_header *m;
1497 1497
1498 end += table->length; 1498 end += table->length;
1499 p += IVRS_HEADER_LENGTH; 1499 p += IVRS_HEADER_LENGTH;
1500 1500
1501 while (p < end) { 1501 while (p < end) {
1502 m = (struct ivmd_header *)p; 1502 m = (struct ivmd_header *)p;
1503 if (m->flags & IVMD_FLAG_EXCL_RANGE) 1503 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1504 init_exclusion_range(m); 1504 init_exclusion_range(m);
1505 else if (m->flags & IVMD_FLAG_UNITY_MAP) 1505 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1506 init_unity_map_range(m); 1506 init_unity_map_range(m);
1507 1507
1508 p += m->length; 1508 p += m->length;
1509 } 1509 }
1510 1510
1511 return 0; 1511 return 0;
1512 } 1512 }
1513 1513
1514 /* 1514 /*
1515 * Init the device table to not allow DMA access for devices and 1515 * Init the device table to not allow DMA access for devices and
1516 * suppress all page faults 1516 * suppress all page faults
1517 */ 1517 */
1518 static void init_device_table_dma(void) 1518 static void init_device_table_dma(void)
1519 { 1519 {
1520 u32 devid; 1520 u32 devid;
1521 1521
1522 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) { 1522 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1523 set_dev_entry_bit(devid, DEV_ENTRY_VALID); 1523 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1524 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION); 1524 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
1525 } 1525 }
1526 } 1526 }
1527 1527
1528 static void __init uninit_device_table_dma(void) 1528 static void __init uninit_device_table_dma(void)
1529 { 1529 {
1530 u32 devid; 1530 u32 devid;
1531 1531
1532 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) { 1532 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1533 amd_iommu_dev_table[devid].data[0] = 0ULL; 1533 amd_iommu_dev_table[devid].data[0] = 0ULL;
1534 amd_iommu_dev_table[devid].data[1] = 0ULL; 1534 amd_iommu_dev_table[devid].data[1] = 0ULL;
1535 } 1535 }
1536 } 1536 }
1537 1537
1538 static void init_device_table(void) 1538 static void init_device_table(void)
1539 { 1539 {
1540 u32 devid; 1540 u32 devid;
1541 1541
1542 if (!amd_iommu_irq_remap) 1542 if (!amd_iommu_irq_remap)
1543 return; 1543 return;
1544 1544
1545 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) 1545 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1546 set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN); 1546 set_dev_entry_bit(devid, DEV_ENTRY_IRQ_TBL_EN);
1547 } 1547 }
1548 1548
1549 static void iommu_init_flags(struct amd_iommu *iommu) 1549 static void iommu_init_flags(struct amd_iommu *iommu)
1550 { 1550 {
1551 iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ? 1551 iommu->acpi_flags & IVHD_FLAG_HT_TUN_EN_MASK ?
1552 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) : 1552 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
1553 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN); 1553 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
1554 1554
1555 iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ? 1555 iommu->acpi_flags & IVHD_FLAG_PASSPW_EN_MASK ?
1556 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) : 1556 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
1557 iommu_feature_disable(iommu, CONTROL_PASSPW_EN); 1557 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
1558 1558
1559 iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ? 1559 iommu->acpi_flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
1560 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) : 1560 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
1561 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN); 1561 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
1562 1562
1563 iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ? 1563 iommu->acpi_flags & IVHD_FLAG_ISOC_EN_MASK ?
1564 iommu_feature_enable(iommu, CONTROL_ISOC_EN) : 1564 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
1565 iommu_feature_disable(iommu, CONTROL_ISOC_EN); 1565 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
1566 1566
1567 /* 1567 /*
1568 * make IOMMU memory accesses cache coherent 1568 * make IOMMU memory accesses cache coherent
1569 */ 1569 */
1570 iommu_feature_enable(iommu, CONTROL_COHERENT_EN); 1570 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
1571 1571
1572 /* Set IOTLB invalidation timeout to 1s */ 1572 /* Set IOTLB invalidation timeout to 1s */
1573 iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S); 1573 iommu_set_inv_tlb_timeout(iommu, CTRL_INV_TO_1S);
1574 } 1574 }
1575 1575
1576 static void iommu_apply_resume_quirks(struct amd_iommu *iommu) 1576 static void iommu_apply_resume_quirks(struct amd_iommu *iommu)
1577 { 1577 {
1578 int i, j; 1578 int i, j;
1579 u32 ioc_feature_control; 1579 u32 ioc_feature_control;
1580 struct pci_dev *pdev = iommu->root_pdev; 1580 struct pci_dev *pdev = iommu->root_pdev;
1581 1581
1582 /* RD890 BIOSes may not have completely reconfigured the iommu */ 1582 /* RD890 BIOSes may not have completely reconfigured the iommu */
1583 if (!is_rd890_iommu(iommu->dev) || !pdev) 1583 if (!is_rd890_iommu(iommu->dev) || !pdev)
1584 return; 1584 return;
1585 1585
1586 /* 1586 /*
1587 * First, we need to ensure that the iommu is enabled. This is 1587 * First, we need to ensure that the iommu is enabled. This is
1588 * controlled by a register in the northbridge 1588 * controlled by a register in the northbridge
1589 */ 1589 */
1590 1590
1591 /* Select Northbridge indirect register 0x75 and enable writing */ 1591 /* Select Northbridge indirect register 0x75 and enable writing */
1592 pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7)); 1592 pci_write_config_dword(pdev, 0x60, 0x75 | (1 << 7));
1593 pci_read_config_dword(pdev, 0x64, &ioc_feature_control); 1593 pci_read_config_dword(pdev, 0x64, &ioc_feature_control);
1594 1594
1595 /* Enable the iommu */ 1595 /* Enable the iommu */
1596 if (!(ioc_feature_control & 0x1)) 1596 if (!(ioc_feature_control & 0x1))
1597 pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1); 1597 pci_write_config_dword(pdev, 0x64, ioc_feature_control | 1);
1598 1598
1599 /* Restore the iommu BAR */ 1599 /* Restore the iommu BAR */
1600 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, 1600 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1601 iommu->stored_addr_lo); 1601 iommu->stored_addr_lo);
1602 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8, 1602 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 8,
1603 iommu->stored_addr_hi); 1603 iommu->stored_addr_hi);
1604 1604
1605 /* Restore the l1 indirect regs for each of the 6 l1s */ 1605 /* Restore the l1 indirect regs for each of the 6 l1s */
1606 for (i = 0; i < 6; i++) 1606 for (i = 0; i < 6; i++)
1607 for (j = 0; j < 0x12; j++) 1607 for (j = 0; j < 0x12; j++)
1608 iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]); 1608 iommu_write_l1(iommu, i, j, iommu->stored_l1[i][j]);
1609 1609
1610 /* Restore the l2 indirect regs */ 1610 /* Restore the l2 indirect regs */
1611 for (i = 0; i < 0x83; i++) 1611 for (i = 0; i < 0x83; i++)
1612 iommu_write_l2(iommu, i, iommu->stored_l2[i]); 1612 iommu_write_l2(iommu, i, iommu->stored_l2[i]);
1613 1613
1614 /* Lock PCI setup registers */ 1614 /* Lock PCI setup registers */
1615 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4, 1615 pci_write_config_dword(iommu->dev, iommu->cap_ptr + 4,
1616 iommu->stored_addr_lo | 1); 1616 iommu->stored_addr_lo | 1);
1617 } 1617 }
1618 1618
1619 /* 1619 /*
1620 * This function finally enables all IOMMUs found in the system after 1620 * This function finally enables all IOMMUs found in the system after
1621 * they have been initialized 1621 * they have been initialized
1622 */ 1622 */
1623 static void early_enable_iommus(void) 1623 static void early_enable_iommus(void)
1624 { 1624 {
1625 struct amd_iommu *iommu; 1625 struct amd_iommu *iommu;
1626 1626
1627 for_each_iommu(iommu) { 1627 for_each_iommu(iommu) {
1628 iommu_disable(iommu); 1628 iommu_disable(iommu);
1629 iommu_init_flags(iommu); 1629 iommu_init_flags(iommu);
1630 iommu_set_device_table(iommu); 1630 iommu_set_device_table(iommu);
1631 iommu_enable_command_buffer(iommu); 1631 iommu_enable_command_buffer(iommu);
1632 iommu_enable_event_buffer(iommu); 1632 iommu_enable_event_buffer(iommu);
1633 iommu_set_exclusion_range(iommu); 1633 iommu_set_exclusion_range(iommu);
1634 iommu_enable(iommu); 1634 iommu_enable(iommu);
1635 iommu_flush_all_caches(iommu); 1635 iommu_flush_all_caches(iommu);
1636 } 1636 }
1637 } 1637 }
1638 1638
1639 static void enable_iommus_v2(void) 1639 static void enable_iommus_v2(void)
1640 { 1640 {
1641 struct amd_iommu *iommu; 1641 struct amd_iommu *iommu;
1642 1642
1643 for_each_iommu(iommu) { 1643 for_each_iommu(iommu) {
1644 iommu_enable_ppr_log(iommu); 1644 iommu_enable_ppr_log(iommu);
1645 iommu_enable_gt(iommu); 1645 iommu_enable_gt(iommu);
1646 } 1646 }
1647 } 1647 }
1648 1648
1649 static void enable_iommus(void) 1649 static void enable_iommus(void)
1650 { 1650 {
1651 early_enable_iommus(); 1651 early_enable_iommus();
1652 1652
1653 enable_iommus_v2(); 1653 enable_iommus_v2();
1654 } 1654 }
1655 1655
1656 static void disable_iommus(void) 1656 static void disable_iommus(void)
1657 { 1657 {
1658 struct amd_iommu *iommu; 1658 struct amd_iommu *iommu;
1659 1659
1660 for_each_iommu(iommu) 1660 for_each_iommu(iommu)
1661 iommu_disable(iommu); 1661 iommu_disable(iommu);
1662 } 1662 }
1663 1663
1664 /* 1664 /*
1665 * Suspend/Resume support 1665 * Suspend/Resume support
1666 * disable suspend until real resume implemented 1666 * disable suspend until real resume implemented
1667 */ 1667 */
1668 1668
1669 static void amd_iommu_resume(void) 1669 static void amd_iommu_resume(void)
1670 { 1670 {
1671 struct amd_iommu *iommu; 1671 struct amd_iommu *iommu;
1672 1672
1673 for_each_iommu(iommu) 1673 for_each_iommu(iommu)
1674 iommu_apply_resume_quirks(iommu); 1674 iommu_apply_resume_quirks(iommu);
1675 1675
1676 /* re-load the hardware */ 1676 /* re-load the hardware */
1677 enable_iommus(); 1677 enable_iommus();
1678 1678
1679 amd_iommu_enable_interrupts(); 1679 amd_iommu_enable_interrupts();
1680 } 1680 }
1681 1681
1682 static int amd_iommu_suspend(void) 1682 static int amd_iommu_suspend(void)
1683 { 1683 {
1684 /* disable IOMMUs to go out of the way for BIOS */ 1684 /* disable IOMMUs to go out of the way for BIOS */
1685 disable_iommus(); 1685 disable_iommus();
1686 1686
1687 return 0; 1687 return 0;
1688 } 1688 }
1689 1689
1690 static struct syscore_ops amd_iommu_syscore_ops = { 1690 static struct syscore_ops amd_iommu_syscore_ops = {
1691 .suspend = amd_iommu_suspend, 1691 .suspend = amd_iommu_suspend,
1692 .resume = amd_iommu_resume, 1692 .resume = amd_iommu_resume,
1693 }; 1693 };
1694 1694
1695 static void __init free_on_init_error(void) 1695 static void __init free_on_init_error(void)
1696 { 1696 {
1697 free_pages((unsigned long)irq_lookup_table, 1697 free_pages((unsigned long)irq_lookup_table,
1698 get_order(rlookup_table_size)); 1698 get_order(rlookup_table_size));
1699 1699
1700 if (amd_iommu_irq_cache) { 1700 if (amd_iommu_irq_cache) {
1701 kmem_cache_destroy(amd_iommu_irq_cache); 1701 kmem_cache_destroy(amd_iommu_irq_cache);
1702 amd_iommu_irq_cache = NULL; 1702 amd_iommu_irq_cache = NULL;
1703 1703
1704 } 1704 }
1705 1705
1706 free_pages((unsigned long)amd_iommu_rlookup_table, 1706 free_pages((unsigned long)amd_iommu_rlookup_table,
1707 get_order(rlookup_table_size)); 1707 get_order(rlookup_table_size));
1708 1708
1709 free_pages((unsigned long)amd_iommu_alias_table, 1709 free_pages((unsigned long)amd_iommu_alias_table,
1710 get_order(alias_table_size)); 1710 get_order(alias_table_size));
1711 1711
1712 free_pages((unsigned long)amd_iommu_dev_table, 1712 free_pages((unsigned long)amd_iommu_dev_table,
1713 get_order(dev_table_size)); 1713 get_order(dev_table_size));
1714 1714
1715 free_iommu_all(); 1715 free_iommu_all();
1716 1716
1717 #ifdef CONFIG_GART_IOMMU 1717 #ifdef CONFIG_GART_IOMMU
1718 /* 1718 /*
1719 * We failed to initialize the AMD IOMMU - try fallback to GART 1719 * We failed to initialize the AMD IOMMU - try fallback to GART
1720 * if possible. 1720 * if possible.
1721 */ 1721 */
1722 gart_iommu_init(); 1722 gart_iommu_init();
1723 1723
1724 #endif 1724 #endif
1725 } 1725 }
1726 1726
1727 /* SB IOAPIC is always on this device in AMD systems */ 1727 /* SB IOAPIC is always on this device in AMD systems */
1728 #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0)) 1728 #define IOAPIC_SB_DEVID ((0x00 << 8) | PCI_DEVFN(0x14, 0))
1729 1729
1730 static bool __init check_ioapic_information(void) 1730 static bool __init check_ioapic_information(void)
1731 { 1731 {
1732 const char *fw_bug = FW_BUG; 1732 const char *fw_bug = FW_BUG;
1733 bool ret, has_sb_ioapic; 1733 bool ret, has_sb_ioapic;
1734 int idx; 1734 int idx;
1735 1735
1736 has_sb_ioapic = false; 1736 has_sb_ioapic = false;
1737 ret = false; 1737 ret = false;
1738 1738
1739 /* 1739 /*
1740 * If we have map overrides on the kernel command line the 1740 * If we have map overrides on the kernel command line the
1741 * messages in this function might not describe firmware bugs 1741 * messages in this function might not describe firmware bugs
1742 * anymore - so be careful 1742 * anymore - so be careful
1743 */ 1743 */
1744 if (cmdline_maps) 1744 if (cmdline_maps)
1745 fw_bug = ""; 1745 fw_bug = "";
1746 1746
1747 for (idx = 0; idx < nr_ioapics; idx++) { 1747 for (idx = 0; idx < nr_ioapics; idx++) {
1748 int devid, id = mpc_ioapic_id(idx); 1748 int devid, id = mpc_ioapic_id(idx);
1749 1749
1750 devid = get_ioapic_devid(id); 1750 devid = get_ioapic_devid(id);
1751 if (devid < 0) { 1751 if (devid < 0) {
1752 pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n", 1752 pr_err("%sAMD-Vi: IOAPIC[%d] not in IVRS table\n",
1753 fw_bug, id); 1753 fw_bug, id);
1754 ret = false; 1754 ret = false;
1755 } else if (devid == IOAPIC_SB_DEVID) { 1755 } else if (devid == IOAPIC_SB_DEVID) {
1756 has_sb_ioapic = true; 1756 has_sb_ioapic = true;
1757 ret = true; 1757 ret = true;
1758 } 1758 }
1759 } 1759 }
1760 1760
1761 if (!has_sb_ioapic) { 1761 if (!has_sb_ioapic) {
1762 /* 1762 /*
1763 * We expect the SB IOAPIC to be listed in the IVRS 1763 * We expect the SB IOAPIC to be listed in the IVRS
1764 * table. The system timer is connected to the SB IOAPIC 1764 * table. The system timer is connected to the SB IOAPIC
1765 * and if we don't have it in the list the system will 1765 * and if we don't have it in the list the system will
1766 * panic at boot time. This situation usually happens 1766 * panic at boot time. This situation usually happens
1767 * when the BIOS is buggy and provides us the wrong 1767 * when the BIOS is buggy and provides us the wrong
1768 * device id for the IOAPIC in the system. 1768 * device id for the IOAPIC in the system.
1769 */ 1769 */
1770 pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug); 1770 pr_err("%sAMD-Vi: No southbridge IOAPIC found\n", fw_bug);
1771 } 1771 }
1772 1772
1773 if (!ret) 1773 if (!ret)
1774 pr_err("AMD-Vi: Disabling interrupt remapping\n"); 1774 pr_err("AMD-Vi: Disabling interrupt remapping\n");
1775 1775
1776 return ret; 1776 return ret;
1777 } 1777 }
1778 1778
1779 static void __init free_dma_resources(void) 1779 static void __init free_dma_resources(void)
1780 { 1780 {
1781 amd_iommu_uninit_devices(); 1781 amd_iommu_uninit_devices();
1782 1782
1783 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, 1783 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1784 get_order(MAX_DOMAIN_ID/8)); 1784 get_order(MAX_DOMAIN_ID/8));
1785 1785
1786 free_unity_maps(); 1786 free_unity_maps();
1787 } 1787 }
1788 1788
1789 /* 1789 /*
1790 * This is the hardware init function for AMD IOMMU in the system. 1790 * This is the hardware init function for AMD IOMMU in the system.
1791 * This function is called either from amd_iommu_init or from the interrupt 1791 * This function is called either from amd_iommu_init or from the interrupt
1792 * remapping setup code. 1792 * remapping setup code.
1793 * 1793 *
1794 * This function basically parses the ACPI table for AMD IOMMU (IVRS) 1794 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1795 * three times: 1795 * three times:
1796 * 1796 *
1797 * 1 pass) Find the highest PCI device id the driver has to handle. 1797 * 1 pass) Find the highest PCI device id the driver has to handle.
1798 * Upon this information the size of the data structures is 1798 * Upon this information the size of the data structures is
1799 * determined that needs to be allocated. 1799 * determined that needs to be allocated.
1800 * 1800 *
1801 * 2 pass) Initialize the data structures just allocated with the 1801 * 2 pass) Initialize the data structures just allocated with the
1802 * information in the ACPI table about available AMD IOMMUs 1802 * information in the ACPI table about available AMD IOMMUs
1803 * in the system. It also maps the PCI devices in the 1803 * in the system. It also maps the PCI devices in the
1804 * system to specific IOMMUs 1804 * system to specific IOMMUs
1805 * 1805 *
1806 * 3 pass) After the basic data structures are allocated and 1806 * 3 pass) After the basic data structures are allocated and
1807 * initialized we update them with information about memory 1807 * initialized we update them with information about memory
1808 * remapping requirements parsed out of the ACPI table in 1808 * remapping requirements parsed out of the ACPI table in
1809 * this last pass. 1809 * this last pass.
1810 * 1810 *
1811 * After everything is set up the IOMMUs are enabled and the necessary 1811 * After everything is set up the IOMMUs are enabled and the necessary
1812 * hotplug and suspend notifiers are registered. 1812 * hotplug and suspend notifiers are registered.
1813 */ 1813 */
1814 static int __init early_amd_iommu_init(void) 1814 static int __init early_amd_iommu_init(void)
1815 { 1815 {
1816 struct acpi_table_header *ivrs_base; 1816 struct acpi_table_header *ivrs_base;
1817 acpi_size ivrs_size; 1817 acpi_size ivrs_size;
1818 acpi_status status; 1818 acpi_status status;
1819 int i, ret = 0; 1819 int i, ret = 0;
1820 1820
1821 if (!amd_iommu_detected) 1821 if (!amd_iommu_detected)
1822 return -ENODEV; 1822 return -ENODEV;
1823 1823
1824 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size); 1824 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
1825 if (status == AE_NOT_FOUND) 1825 if (status == AE_NOT_FOUND)
1826 return -ENODEV; 1826 return -ENODEV;
1827 else if (ACPI_FAILURE(status)) { 1827 else if (ACPI_FAILURE(status)) {
1828 const char *err = acpi_format_exception(status); 1828 const char *err = acpi_format_exception(status);
1829 pr_err("AMD-Vi: IVRS table error: %s\n", err); 1829 pr_err("AMD-Vi: IVRS table error: %s\n", err);
1830 return -EINVAL; 1830 return -EINVAL;
1831 } 1831 }
1832 1832
1833 /* 1833 /*
1834 * First parse ACPI tables to find the largest Bus/Dev/Func 1834 * First parse ACPI tables to find the largest Bus/Dev/Func
1835 * we need to handle. Upon this information the shared data 1835 * we need to handle. Upon this information the shared data
1836 * structures for the IOMMUs in the system will be allocated 1836 * structures for the IOMMUs in the system will be allocated
1837 */ 1837 */
1838 ret = find_last_devid_acpi(ivrs_base); 1838 ret = find_last_devid_acpi(ivrs_base);
1839 if (ret) 1839 if (ret)
1840 goto out; 1840 goto out;
1841 1841
1842 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE); 1842 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1843 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE); 1843 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1844 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE); 1844 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1845 1845
1846 /* Device table - directly used by all IOMMUs */ 1846 /* Device table - directly used by all IOMMUs */
1847 ret = -ENOMEM; 1847 ret = -ENOMEM;
1848 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1848 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1849 get_order(dev_table_size)); 1849 get_order(dev_table_size));
1850 if (amd_iommu_dev_table == NULL) 1850 if (amd_iommu_dev_table == NULL)
1851 goto out; 1851 goto out;
1852 1852
1853 /* 1853 /*
1854 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the 1854 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1855 * IOMMU see for that device 1855 * IOMMU see for that device
1856 */ 1856 */
1857 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL, 1857 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1858 get_order(alias_table_size)); 1858 get_order(alias_table_size));
1859 if (amd_iommu_alias_table == NULL) 1859 if (amd_iommu_alias_table == NULL)
1860 goto out; 1860 goto out;
1861 1861
1862 /* IOMMU rlookup table - find the IOMMU for a specific device */ 1862 /* IOMMU rlookup table - find the IOMMU for a specific device */
1863 amd_iommu_rlookup_table = (void *)__get_free_pages( 1863 amd_iommu_rlookup_table = (void *)__get_free_pages(
1864 GFP_KERNEL | __GFP_ZERO, 1864 GFP_KERNEL | __GFP_ZERO,
1865 get_order(rlookup_table_size)); 1865 get_order(rlookup_table_size));
1866 if (amd_iommu_rlookup_table == NULL) 1866 if (amd_iommu_rlookup_table == NULL)
1867 goto out; 1867 goto out;
1868 1868
1869 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages( 1869 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1870 GFP_KERNEL | __GFP_ZERO, 1870 GFP_KERNEL | __GFP_ZERO,
1871 get_order(MAX_DOMAIN_ID/8)); 1871 get_order(MAX_DOMAIN_ID/8));
1872 if (amd_iommu_pd_alloc_bitmap == NULL) 1872 if (amd_iommu_pd_alloc_bitmap == NULL)
1873 goto out; 1873 goto out;
1874 1874
1875 /* 1875 /*
1876 * let all alias entries point to itself 1876 * let all alias entries point to itself
1877 */ 1877 */
1878 for (i = 0; i <= amd_iommu_last_bdf; ++i) 1878 for (i = 0; i <= amd_iommu_last_bdf; ++i)
1879 amd_iommu_alias_table[i] = i; 1879 amd_iommu_alias_table[i] = i;
1880 1880
1881 /* 1881 /*
1882 * never allocate domain 0 because its used as the non-allocated and 1882 * never allocate domain 0 because its used as the non-allocated and
1883 * error value placeholder 1883 * error value placeholder
1884 */ 1884 */
1885 amd_iommu_pd_alloc_bitmap[0] = 1; 1885 amd_iommu_pd_alloc_bitmap[0] = 1;
1886 1886
1887 spin_lock_init(&amd_iommu_pd_lock); 1887 spin_lock_init(&amd_iommu_pd_lock);
1888 1888
1889 /* 1889 /*
1890 * now the data structures are allocated and basically initialized 1890 * now the data structures are allocated and basically initialized
1891 * start the real acpi table scan 1891 * start the real acpi table scan
1892 */ 1892 */
1893 ret = init_iommu_all(ivrs_base); 1893 ret = init_iommu_all(ivrs_base);
1894 if (ret) 1894 if (ret)
1895 goto out; 1895 goto out;
1896 1896
1897 if (amd_iommu_irq_remap) 1897 if (amd_iommu_irq_remap)
1898 amd_iommu_irq_remap = check_ioapic_information(); 1898 amd_iommu_irq_remap = check_ioapic_information();
1899 1899
1900 if (amd_iommu_irq_remap) { 1900 if (amd_iommu_irq_remap) {
1901 /* 1901 /*
1902 * Interrupt remapping enabled, create kmem_cache for the 1902 * Interrupt remapping enabled, create kmem_cache for the
1903 * remapping tables. 1903 * remapping tables.
1904 */ 1904 */
1905 ret = -ENOMEM; 1905 ret = -ENOMEM;
1906 amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache", 1906 amd_iommu_irq_cache = kmem_cache_create("irq_remap_cache",
1907 MAX_IRQS_PER_TABLE * sizeof(u32), 1907 MAX_IRQS_PER_TABLE * sizeof(u32),
1908 IRQ_TABLE_ALIGNMENT, 1908 IRQ_TABLE_ALIGNMENT,
1909 0, NULL); 1909 0, NULL);
1910 if (!amd_iommu_irq_cache) 1910 if (!amd_iommu_irq_cache)
1911 goto out; 1911 goto out;
1912 1912
1913 irq_lookup_table = (void *)__get_free_pages( 1913 irq_lookup_table = (void *)__get_free_pages(
1914 GFP_KERNEL | __GFP_ZERO, 1914 GFP_KERNEL | __GFP_ZERO,
1915 get_order(rlookup_table_size)); 1915 get_order(rlookup_table_size));
1916 if (!irq_lookup_table) 1916 if (!irq_lookup_table)
1917 goto out; 1917 goto out;
1918 } 1918 }
1919 1919
1920 ret = init_memory_definitions(ivrs_base); 1920 ret = init_memory_definitions(ivrs_base);
1921 if (ret) 1921 if (ret)
1922 goto out; 1922 goto out;
1923 1923
1924 /* init the device table */ 1924 /* init the device table */
1925 init_device_table(); 1925 init_device_table();
1926 1926
1927 out: 1927 out:
1928 /* Don't leak any ACPI memory */ 1928 /* Don't leak any ACPI memory */
1929 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size); 1929 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
1930 ivrs_base = NULL; 1930 ivrs_base = NULL;
1931 1931
1932 return ret; 1932 return ret;
1933 } 1933 }
1934 1934
1935 static int amd_iommu_enable_interrupts(void) 1935 static int amd_iommu_enable_interrupts(void)
1936 { 1936 {
1937 struct amd_iommu *iommu; 1937 struct amd_iommu *iommu;
1938 int ret = 0; 1938 int ret = 0;
1939 1939
1940 for_each_iommu(iommu) { 1940 for_each_iommu(iommu) {
1941 ret = iommu_init_msi(iommu); 1941 ret = iommu_init_msi(iommu);
1942 if (ret) 1942 if (ret)
1943 goto out; 1943 goto out;
1944 } 1944 }
1945 1945
1946 out: 1946 out:
1947 return ret; 1947 return ret;
1948 } 1948 }
1949 1949
1950 static bool detect_ivrs(void) 1950 static bool detect_ivrs(void)
1951 { 1951 {
1952 struct acpi_table_header *ivrs_base; 1952 struct acpi_table_header *ivrs_base;
1953 acpi_size ivrs_size; 1953 acpi_size ivrs_size;
1954 acpi_status status; 1954 acpi_status status;
1955 1955
1956 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size); 1956 status = acpi_get_table_with_size("IVRS", 0, &ivrs_base, &ivrs_size);
1957 if (status == AE_NOT_FOUND) 1957 if (status == AE_NOT_FOUND)
1958 return false; 1958 return false;
1959 else if (ACPI_FAILURE(status)) { 1959 else if (ACPI_FAILURE(status)) {
1960 const char *err = acpi_format_exception(status); 1960 const char *err = acpi_format_exception(status);
1961 pr_err("AMD-Vi: IVRS table error: %s\n", err); 1961 pr_err("AMD-Vi: IVRS table error: %s\n", err);
1962 return false; 1962 return false;
1963 } 1963 }
1964 1964
1965 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size); 1965 early_acpi_os_unmap_memory((char __iomem *)ivrs_base, ivrs_size);
1966 1966
1967 /* Make sure ACS will be enabled during PCI probe */ 1967 /* Make sure ACS will be enabled during PCI probe */
1968 pci_request_acs(); 1968 pci_request_acs();
1969 1969
1970 if (!disable_irq_remap) 1970 if (!disable_irq_remap)
1971 amd_iommu_irq_remap = true; 1971 amd_iommu_irq_remap = true;
1972 1972
1973 return true; 1973 return true;
1974 } 1974 }
1975 1975
1976 static int amd_iommu_init_dma(void) 1976 static int amd_iommu_init_dma(void)
1977 { 1977 {
1978 struct amd_iommu *iommu; 1978 struct amd_iommu *iommu;
1979 int ret; 1979 int ret;
1980 1980
1981 if (iommu_pass_through) 1981 if (iommu_pass_through)
1982 ret = amd_iommu_init_passthrough(); 1982 ret = amd_iommu_init_passthrough();
1983 else 1983 else
1984 ret = amd_iommu_init_dma_ops(); 1984 ret = amd_iommu_init_dma_ops();
1985 1985
1986 if (ret) 1986 if (ret)
1987 return ret; 1987 return ret;
1988 1988
1989 init_device_table_dma(); 1989 init_device_table_dma();
1990 1990
1991 for_each_iommu(iommu) 1991 for_each_iommu(iommu)
1992 iommu_flush_all_caches(iommu); 1992 iommu_flush_all_caches(iommu);
1993 1993
1994 amd_iommu_init_api(); 1994 amd_iommu_init_api();
1995 1995
1996 amd_iommu_init_notifier(); 1996 amd_iommu_init_notifier();
1997 1997
1998 return 0; 1998 return 0;
1999 } 1999 }
2000 2000
2001 /**************************************************************************** 2001 /****************************************************************************
2002 * 2002 *
2003 * AMD IOMMU Initialization State Machine 2003 * AMD IOMMU Initialization State Machine
2004 * 2004 *
2005 ****************************************************************************/ 2005 ****************************************************************************/
2006 2006
2007 static int __init state_next(void) 2007 static int __init state_next(void)
2008 { 2008 {
2009 int ret = 0; 2009 int ret = 0;
2010 2010
2011 switch (init_state) { 2011 switch (init_state) {
2012 case IOMMU_START_STATE: 2012 case IOMMU_START_STATE:
2013 if (!detect_ivrs()) { 2013 if (!detect_ivrs()) {
2014 init_state = IOMMU_NOT_FOUND; 2014 init_state = IOMMU_NOT_FOUND;
2015 ret = -ENODEV; 2015 ret = -ENODEV;
2016 } else { 2016 } else {
2017 init_state = IOMMU_IVRS_DETECTED; 2017 init_state = IOMMU_IVRS_DETECTED;
2018 } 2018 }
2019 break; 2019 break;
2020 case IOMMU_IVRS_DETECTED: 2020 case IOMMU_IVRS_DETECTED:
2021 ret = early_amd_iommu_init(); 2021 ret = early_amd_iommu_init();
2022 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED; 2022 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_ACPI_FINISHED;
2023 break; 2023 break;
2024 case IOMMU_ACPI_FINISHED: 2024 case IOMMU_ACPI_FINISHED:
2025 early_enable_iommus(); 2025 early_enable_iommus();
2026 register_syscore_ops(&amd_iommu_syscore_ops); 2026 register_syscore_ops(&amd_iommu_syscore_ops);
2027 x86_platform.iommu_shutdown = disable_iommus; 2027 x86_platform.iommu_shutdown = disable_iommus;
2028 init_state = IOMMU_ENABLED; 2028 init_state = IOMMU_ENABLED;
2029 break; 2029 break;
2030 case IOMMU_ENABLED: 2030 case IOMMU_ENABLED:
2031 ret = amd_iommu_init_pci(); 2031 ret = amd_iommu_init_pci();
2032 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT; 2032 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_PCI_INIT;
2033 enable_iommus_v2(); 2033 enable_iommus_v2();
2034 break; 2034 break;
2035 case IOMMU_PCI_INIT: 2035 case IOMMU_PCI_INIT:
2036 ret = amd_iommu_enable_interrupts(); 2036 ret = amd_iommu_enable_interrupts();
2037 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN; 2037 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_INTERRUPTS_EN;
2038 break; 2038 break;
2039 case IOMMU_INTERRUPTS_EN: 2039 case IOMMU_INTERRUPTS_EN:
2040 ret = amd_iommu_init_dma(); 2040 ret = amd_iommu_init_dma();
2041 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS; 2041 init_state = ret ? IOMMU_INIT_ERROR : IOMMU_DMA_OPS;
2042 break; 2042 break;
2043 case IOMMU_DMA_OPS: 2043 case IOMMU_DMA_OPS:
2044 init_state = IOMMU_INITIALIZED; 2044 init_state = IOMMU_INITIALIZED;
2045 break; 2045 break;
2046 case IOMMU_INITIALIZED: 2046 case IOMMU_INITIALIZED:
2047 /* Nothing to do */ 2047 /* Nothing to do */
2048 break; 2048 break;
2049 case IOMMU_NOT_FOUND: 2049 case IOMMU_NOT_FOUND:
2050 case IOMMU_INIT_ERROR: 2050 case IOMMU_INIT_ERROR:
2051 /* Error states => do nothing */ 2051 /* Error states => do nothing */
2052 ret = -EINVAL; 2052 ret = -EINVAL;
2053 break; 2053 break;
2054 default: 2054 default:
2055 /* Unknown state */ 2055 /* Unknown state */
2056 BUG(); 2056 BUG();
2057 } 2057 }
2058 2058
2059 return ret; 2059 return ret;
2060 } 2060 }
2061 2061
2062 static int __init iommu_go_to_state(enum iommu_init_state state) 2062 static int __init iommu_go_to_state(enum iommu_init_state state)
2063 { 2063 {
2064 int ret = 0; 2064 int ret = 0;
2065 2065
2066 while (init_state != state) { 2066 while (init_state != state) {
2067 ret = state_next(); 2067 ret = state_next();
2068 if (init_state == IOMMU_NOT_FOUND || 2068 if (init_state == IOMMU_NOT_FOUND ||
2069 init_state == IOMMU_INIT_ERROR) 2069 init_state == IOMMU_INIT_ERROR)
2070 break; 2070 break;
2071 } 2071 }
2072 2072
2073 return ret; 2073 return ret;
2074 } 2074 }
2075 2075
2076 #ifdef CONFIG_IRQ_REMAP 2076 #ifdef CONFIG_IRQ_REMAP
2077 int __init amd_iommu_prepare(void) 2077 int __init amd_iommu_prepare(void)
2078 { 2078 {
2079 return iommu_go_to_state(IOMMU_ACPI_FINISHED); 2079 return iommu_go_to_state(IOMMU_ACPI_FINISHED);
2080 } 2080 }
2081 2081
2082 int __init amd_iommu_supported(void) 2082 int __init amd_iommu_supported(void)
2083 { 2083 {
2084 return amd_iommu_irq_remap ? 1 : 0; 2084 return amd_iommu_irq_remap ? 1 : 0;
2085 } 2085 }
2086 2086
2087 int __init amd_iommu_enable(void) 2087 int __init amd_iommu_enable(void)
2088 { 2088 {
2089 int ret; 2089 int ret;
2090 2090
2091 ret = iommu_go_to_state(IOMMU_ENABLED); 2091 ret = iommu_go_to_state(IOMMU_ENABLED);
2092 if (ret) 2092 if (ret)
2093 return ret; 2093 return ret;
2094 2094
2095 irq_remapping_enabled = 1; 2095 irq_remapping_enabled = 1;
2096 2096
2097 return 0; 2097 return 0;
2098 } 2098 }
2099 2099
2100 void amd_iommu_disable(void) 2100 void amd_iommu_disable(void)
2101 { 2101 {
2102 amd_iommu_suspend(); 2102 amd_iommu_suspend();
2103 } 2103 }
2104 2104
2105 int amd_iommu_reenable(int mode) 2105 int amd_iommu_reenable(int mode)
2106 { 2106 {
2107 amd_iommu_resume(); 2107 amd_iommu_resume();
2108 2108
2109 return 0; 2109 return 0;
2110 } 2110 }
2111 2111
2112 int __init amd_iommu_enable_faulting(void) 2112 int __init amd_iommu_enable_faulting(void)
2113 { 2113 {
2114 /* We enable MSI later when PCI is initialized */ 2114 /* We enable MSI later when PCI is initialized */
2115 return 0; 2115 return 0;
2116 } 2116 }
2117 #endif 2117 #endif
2118 2118
2119 /* 2119 /*
2120 * This is the core init function for AMD IOMMU hardware in the system. 2120 * This is the core init function for AMD IOMMU hardware in the system.
2121 * This function is called from the generic x86 DMA layer initialization 2121 * This function is called from the generic x86 DMA layer initialization
2122 * code. 2122 * code.
2123 */ 2123 */
2124 static int __init amd_iommu_init(void) 2124 static int __init amd_iommu_init(void)
2125 { 2125 {
2126 int ret; 2126 int ret;
2127 2127
2128 ret = iommu_go_to_state(IOMMU_INITIALIZED); 2128 ret = iommu_go_to_state(IOMMU_INITIALIZED);
2129 if (ret) { 2129 if (ret) {
2130 free_dma_resources(); 2130 free_dma_resources();
2131 if (!irq_remapping_enabled) { 2131 if (!irq_remapping_enabled) {
2132 disable_iommus(); 2132 disable_iommus();
2133 free_on_init_error(); 2133 free_on_init_error();
2134 } else { 2134 } else {
2135 struct amd_iommu *iommu; 2135 struct amd_iommu *iommu;
2136 2136
2137 uninit_device_table_dma(); 2137 uninit_device_table_dma();
2138 for_each_iommu(iommu) 2138 for_each_iommu(iommu)
2139 iommu_flush_all_caches(iommu); 2139 iommu_flush_all_caches(iommu);
2140 } 2140 }
2141 } 2141 }
2142 2142
2143 return ret; 2143 return ret;
2144 } 2144 }
2145 2145
2146 /**************************************************************************** 2146 /****************************************************************************
2147 * 2147 *
2148 * Early detect code. This code runs at IOMMU detection time in the DMA 2148 * Early detect code. This code runs at IOMMU detection time in the DMA
2149 * layer. It just looks if there is an IVRS ACPI table to detect AMD 2149 * layer. It just looks if there is an IVRS ACPI table to detect AMD
2150 * IOMMUs 2150 * IOMMUs
2151 * 2151 *
2152 ****************************************************************************/ 2152 ****************************************************************************/
2153 int __init amd_iommu_detect(void) 2153 int __init amd_iommu_detect(void)
2154 { 2154 {
2155 int ret; 2155 int ret;
2156 2156
2157 if (no_iommu || (iommu_detected && !gart_iommu_aperture)) 2157 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
2158 return -ENODEV; 2158 return -ENODEV;
2159 2159
2160 if (amd_iommu_disabled) 2160 if (amd_iommu_disabled)
2161 return -ENODEV; 2161 return -ENODEV;
2162 2162
2163 ret = iommu_go_to_state(IOMMU_IVRS_DETECTED); 2163 ret = iommu_go_to_state(IOMMU_IVRS_DETECTED);
2164 if (ret) 2164 if (ret)
2165 return ret; 2165 return ret;
2166 2166
2167 amd_iommu_detected = true; 2167 amd_iommu_detected = true;
2168 iommu_detected = 1; 2168 iommu_detected = 1;
2169 x86_init.iommu.iommu_init = amd_iommu_init; 2169 x86_init.iommu.iommu_init = amd_iommu_init;
2170 2170
2171 return 0; 2171 return 0;
2172 } 2172 }
2173 2173
2174 /**************************************************************************** 2174 /****************************************************************************
2175 * 2175 *
2176 * Parsing functions for the AMD IOMMU specific kernel command line 2176 * Parsing functions for the AMD IOMMU specific kernel command line
2177 * options. 2177 * options.
2178 * 2178 *
2179 ****************************************************************************/ 2179 ****************************************************************************/
2180 2180
2181 static int __init parse_amd_iommu_dump(char *str) 2181 static int __init parse_amd_iommu_dump(char *str)
2182 { 2182 {
2183 amd_iommu_dump = true; 2183 amd_iommu_dump = true;
2184 2184
2185 return 1; 2185 return 1;
2186 } 2186 }
2187 2187
2188 static int __init parse_amd_iommu_options(char *str) 2188 static int __init parse_amd_iommu_options(char *str)
2189 { 2189 {
2190 for (; *str; ++str) { 2190 for (; *str; ++str) {
2191 if (strncmp(str, "fullflush", 9) == 0) 2191 if (strncmp(str, "fullflush", 9) == 0)
2192 amd_iommu_unmap_flush = true; 2192 amd_iommu_unmap_flush = true;
2193 if (strncmp(str, "off", 3) == 0) 2193 if (strncmp(str, "off", 3) == 0)
2194 amd_iommu_disabled = true; 2194 amd_iommu_disabled = true;
2195 if (strncmp(str, "force_isolation", 15) == 0) 2195 if (strncmp(str, "force_isolation", 15) == 0)
2196 amd_iommu_force_isolation = true; 2196 amd_iommu_force_isolation = true;
2197 } 2197 }
2198 2198
2199 return 1; 2199 return 1;
2200 } 2200 }
2201 2201
2202 static int __init parse_ivrs_ioapic(char *str) 2202 static int __init parse_ivrs_ioapic(char *str)
2203 { 2203 {
2204 unsigned int bus, dev, fn; 2204 unsigned int bus, dev, fn;
2205 int ret, id, i; 2205 int ret, id, i;
2206 u16 devid; 2206 u16 devid;
2207 2207
2208 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn); 2208 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
2209 2209
2210 if (ret != 4) { 2210 if (ret != 4) {
2211 pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str); 2211 pr_err("AMD-Vi: Invalid command line: ivrs_ioapic%s\n", str);
2212 return 1; 2212 return 1;
2213 } 2213 }
2214 2214
2215 if (early_ioapic_map_size == EARLY_MAP_SIZE) { 2215 if (early_ioapic_map_size == EARLY_MAP_SIZE) {
2216 pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n", 2216 pr_err("AMD-Vi: Early IOAPIC map overflow - ignoring ivrs_ioapic%s\n",
2217 str); 2217 str);
2218 return 1; 2218 return 1;
2219 } 2219 }
2220 2220
2221 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7); 2221 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
2222 2222
2223 cmdline_maps = true; 2223 cmdline_maps = true;
2224 i = early_ioapic_map_size++; 2224 i = early_ioapic_map_size++;
2225 early_ioapic_map[i].id = id; 2225 early_ioapic_map[i].id = id;
2226 early_ioapic_map[i].devid = devid; 2226 early_ioapic_map[i].devid = devid;
2227 early_ioapic_map[i].cmd_line = true; 2227 early_ioapic_map[i].cmd_line = true;
2228 2228
2229 return 1; 2229 return 1;
2230 } 2230 }
2231 2231
2232 static int __init parse_ivrs_hpet(char *str) 2232 static int __init parse_ivrs_hpet(char *str)
2233 { 2233 {
2234 unsigned int bus, dev, fn; 2234 unsigned int bus, dev, fn;
2235 int ret, id, i; 2235 int ret, id, i;
2236 u16 devid; 2236 u16 devid;
2237 2237
2238 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn); 2238 ret = sscanf(str, "[%d]=%x:%x.%x", &id, &bus, &dev, &fn);
2239 2239
2240 if (ret != 4) { 2240 if (ret != 4) {
2241 pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str); 2241 pr_err("AMD-Vi: Invalid command line: ivrs_hpet%s\n", str);
2242 return 1; 2242 return 1;
2243 } 2243 }
2244 2244
2245 if (early_hpet_map_size == EARLY_MAP_SIZE) { 2245 if (early_hpet_map_size == EARLY_MAP_SIZE) {
2246 pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n", 2246 pr_err("AMD-Vi: Early HPET map overflow - ignoring ivrs_hpet%s\n",
2247 str); 2247 str);
2248 return 1; 2248 return 1;
2249 } 2249 }
2250 2250
2251 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7); 2251 devid = ((bus & 0xff) << 8) | ((dev & 0x1f) << 3) | (fn & 0x7);
2252 2252
2253 cmdline_maps = true; 2253 cmdline_maps = true;
2254 i = early_hpet_map_size++; 2254 i = early_hpet_map_size++;
2255 early_hpet_map[i].id = id; 2255 early_hpet_map[i].id = id;
2256 early_hpet_map[i].devid = devid; 2256 early_hpet_map[i].devid = devid;
2257 early_hpet_map[i].cmd_line = true; 2257 early_hpet_map[i].cmd_line = true;
2258 2258
2259 return 1; 2259 return 1;
2260 } 2260 }
2261 2261
2262 __setup("amd_iommu_dump", parse_amd_iommu_dump); 2262 __setup("amd_iommu_dump", parse_amd_iommu_dump);
2263 __setup("amd_iommu=", parse_amd_iommu_options); 2263 __setup("amd_iommu=", parse_amd_iommu_options);
2264 __setup("ivrs_ioapic", parse_ivrs_ioapic); 2264 __setup("ivrs_ioapic", parse_ivrs_ioapic);
2265 __setup("ivrs_hpet", parse_ivrs_hpet); 2265 __setup("ivrs_hpet", parse_ivrs_hpet);
2266 2266
2267 IOMMU_INIT_FINISH(amd_iommu_detect, 2267 IOMMU_INIT_FINISH(amd_iommu_detect,
2268 gart_iommu_hole_init, 2268 gart_iommu_hole_init,
2269 NULL, 2269 NULL,
2270 NULL); 2270 NULL);
2271 2271
2272 bool amd_iommu_v2_supported(void) 2272 bool amd_iommu_v2_supported(void)
2273 { 2273 {
2274 return amd_iommu_v2_present; 2274 return amd_iommu_v2_present;
2275 } 2275 }
2276 EXPORT_SYMBOL(amd_iommu_v2_supported); 2276 EXPORT_SYMBOL(amd_iommu_v2_supported);
2277 2277
2278 /**************************************************************************** 2278 /****************************************************************************
2279 * 2279 *
2280 * IOMMU EFR Performance Counter support functionality. This code allows 2280 * IOMMU EFR Performance Counter support functionality. This code allows
2281 * access to the IOMMU PC functionality. 2281 * access to the IOMMU PC functionality.
2282 * 2282 *
2283 ****************************************************************************/ 2283 ****************************************************************************/
2284 2284
2285 u8 amd_iommu_pc_get_max_banks(u16 devid) 2285 u8 amd_iommu_pc_get_max_banks(u16 devid)
2286 { 2286 {
2287 struct amd_iommu *iommu; 2287 struct amd_iommu *iommu;
2288 u8 ret = 0; 2288 u8 ret = 0;
2289 2289
2290 /* locate the iommu governing the devid */ 2290 /* locate the iommu governing the devid */
2291 iommu = amd_iommu_rlookup_table[devid]; 2291 iommu = amd_iommu_rlookup_table[devid];
2292 if (iommu) 2292 if (iommu)
2293 ret = iommu->max_banks; 2293 ret = iommu->max_banks;
2294 2294
2295 return ret; 2295 return ret;
2296 } 2296 }
2297 EXPORT_SYMBOL(amd_iommu_pc_get_max_banks); 2297 EXPORT_SYMBOL(amd_iommu_pc_get_max_banks);
2298 2298
2299 bool amd_iommu_pc_supported(void) 2299 bool amd_iommu_pc_supported(void)
2300 { 2300 {
2301 return amd_iommu_pc_present; 2301 return amd_iommu_pc_present;
2302 } 2302 }
2303 EXPORT_SYMBOL(amd_iommu_pc_supported); 2303 EXPORT_SYMBOL(amd_iommu_pc_supported);
2304 2304
2305 u8 amd_iommu_pc_get_max_counters(u16 devid) 2305 u8 amd_iommu_pc_get_max_counters(u16 devid)
2306 { 2306 {
2307 struct amd_iommu *iommu; 2307 struct amd_iommu *iommu;
2308 u8 ret = 0; 2308 u8 ret = 0;
2309 2309
2310 /* locate the iommu governing the devid */ 2310 /* locate the iommu governing the devid */
2311 iommu = amd_iommu_rlookup_table[devid]; 2311 iommu = amd_iommu_rlookup_table[devid];
2312 if (iommu) 2312 if (iommu)
2313 ret = iommu->max_counters; 2313 ret = iommu->max_counters;
2314 2314
2315 return ret; 2315 return ret;
2316 } 2316 }
2317 EXPORT_SYMBOL(amd_iommu_pc_get_max_counters); 2317 EXPORT_SYMBOL(amd_iommu_pc_get_max_counters);
2318 2318
2319 int amd_iommu_pc_get_set_reg_val(u16 devid, u8 bank, u8 cntr, u8 fxn, 2319 int amd_iommu_pc_get_set_reg_val(u16 devid, u8 bank, u8 cntr, u8 fxn,
2320 u64 *value, bool is_write) 2320 u64 *value, bool is_write)
2321 { 2321 {
2322 struct amd_iommu *iommu; 2322 struct amd_iommu *iommu;
2323 u32 offset; 2323 u32 offset;
2324 u32 max_offset_lim; 2324 u32 max_offset_lim;
2325 2325
2326 /* Make sure the IOMMU PC resource is available */ 2326 /* Make sure the IOMMU PC resource is available */
2327 if (!amd_iommu_pc_present) 2327 if (!amd_iommu_pc_present)
2328 return -ENODEV; 2328 return -ENODEV;
2329 2329
2330 /* Locate the iommu associated with the device ID */ 2330 /* Locate the iommu associated with the device ID */
2331 iommu = amd_iommu_rlookup_table[devid]; 2331 iommu = amd_iommu_rlookup_table[devid];
2332 2332
2333 /* Check for valid iommu and pc register indexing */ 2333 /* Check for valid iommu and pc register indexing */
2334 if (WARN_ON((iommu == NULL) || (fxn > 0x28) || (fxn & 7))) 2334 if (WARN_ON((iommu == NULL) || (fxn > 0x28) || (fxn & 7)))
2335 return -ENODEV; 2335 return -ENODEV;
2336 2336
2337 offset = (u32)(((0x40|bank) << 12) | (cntr << 8) | fxn); 2337 offset = (u32)(((0x40|bank) << 12) | (cntr << 8) | fxn);
2338 2338
2339 /* Limit the offset to the hw defined mmio region aperture */ 2339 /* Limit the offset to the hw defined mmio region aperture */
2340 max_offset_lim = (u32)(((0x40|iommu->max_banks) << 12) | 2340 max_offset_lim = (u32)(((0x40|iommu->max_banks) << 12) |
2341 (iommu->max_counters << 8) | 0x28); 2341 (iommu->max_counters << 8) | 0x28);
2342 if ((offset < MMIO_CNTR_REG_OFFSET) || 2342 if ((offset < MMIO_CNTR_REG_OFFSET) ||
2343 (offset > max_offset_lim)) 2343 (offset > max_offset_lim))
2344 return -EINVAL; 2344 return -EINVAL;
2345 2345
2346 if (is_write) { 2346 if (is_write) {
2347 writel((u32)*value, iommu->mmio_base + offset); 2347 writel((u32)*value, iommu->mmio_base + offset);
2348 writel((*value >> 32), iommu->mmio_base + offset + 4); 2348 writel((*value >> 32), iommu->mmio_base + offset + 4);
2349 } else { 2349 } else {
2350 *value = readl(iommu->mmio_base + offset + 4); 2350 *value = readl(iommu->mmio_base + offset + 4);
2351 *value <<= 32; 2351 *value <<= 32;
2352 *value = readl(iommu->mmio_base + offset); 2352 *value = readl(iommu->mmio_base + offset);
2353 } 2353 }
2354 2354
2355 return 0; 2355 return 0;
2356 } 2356 }
2357 EXPORT_SYMBOL(amd_iommu_pc_get_set_reg_val); 2357 EXPORT_SYMBOL(amd_iommu_pc_get_set_reg_val);
2358 2358
drivers/iommu/amd_iommu_v2.c
1 /* 1 /*
2 * Copyright (C) 2010-2012 Advanced Micro Devices, Inc. 2 * Copyright (C) 2010-2012 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com> 3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * 4 *
5 * This program is free software; you can redistribute it and/or modify it 5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published 6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation. 7 * by the Free Software Foundation.
8 * 8 *
9 * This program is distributed in the hope that it will be useful, 9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details. 12 * GNU General Public License for more details.
13 * 13 *
14 * You should have received a copy of the GNU General Public License 14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software 15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */ 17 */
18 18
19 #include <linux/mmu_notifier.h> 19 #include <linux/mmu_notifier.h>
20 #include <linux/amd-iommu.h> 20 #include <linux/amd-iommu.h>
21 #include <linux/mm_types.h> 21 #include <linux/mm_types.h>
22 #include <linux/profile.h> 22 #include <linux/profile.h>
23 #include <linux/module.h> 23 #include <linux/module.h>
24 #include <linux/sched.h> 24 #include <linux/sched.h>
25 #include <linux/iommu.h> 25 #include <linux/iommu.h>
26 #include <linux/wait.h> 26 #include <linux/wait.h>
27 #include <linux/pci.h> 27 #include <linux/pci.h>
28 #include <linux/gfp.h> 28 #include <linux/gfp.h>
29 29
30 #include "amd_iommu_types.h" 30 #include "amd_iommu_types.h"
31 #include "amd_iommu_proto.h" 31 #include "amd_iommu_proto.h"
32 32
33 MODULE_LICENSE("GPL v2"); 33 MODULE_LICENSE("GPL v2");
34 MODULE_AUTHOR("Joerg Roedel <joerg.roedel@amd.com>"); 34 MODULE_AUTHOR("Joerg Roedel <joerg.roedel@amd.com>");
35 35
36 #define MAX_DEVICES 0x10000 36 #define MAX_DEVICES 0x10000
37 #define PRI_QUEUE_SIZE 512 37 #define PRI_QUEUE_SIZE 512
38 38
39 struct pri_queue { 39 struct pri_queue {
40 atomic_t inflight; 40 atomic_t inflight;
41 bool finish; 41 bool finish;
42 int status; 42 int status;
43 }; 43 };
44 44
45 struct pasid_state { 45 struct pasid_state {
46 struct list_head list; /* For global state-list */ 46 struct list_head list; /* For global state-list */
47 atomic_t count; /* Reference count */ 47 atomic_t count; /* Reference count */
48 struct task_struct *task; /* Task bound to this PASID */ 48 struct task_struct *task; /* Task bound to this PASID */
49 struct mm_struct *mm; /* mm_struct for the faults */ 49 struct mm_struct *mm; /* mm_struct for the faults */
50 struct mmu_notifier mn; /* mmu_otifier handle */ 50 struct mmu_notifier mn; /* mmu_otifier handle */
51 struct pri_queue pri[PRI_QUEUE_SIZE]; /* PRI tag states */ 51 struct pri_queue pri[PRI_QUEUE_SIZE]; /* PRI tag states */
52 struct device_state *device_state; /* Link to our device_state */ 52 struct device_state *device_state; /* Link to our device_state */
53 int pasid; /* PASID index */ 53 int pasid; /* PASID index */
54 spinlock_t lock; /* Protect pri_queues */ 54 spinlock_t lock; /* Protect pri_queues */
55 wait_queue_head_t wq; /* To wait for count == 0 */ 55 wait_queue_head_t wq; /* To wait for count == 0 */
56 }; 56 };
57 57
58 struct device_state { 58 struct device_state {
59 atomic_t count; 59 atomic_t count;
60 struct pci_dev *pdev; 60 struct pci_dev *pdev;
61 struct pasid_state **states; 61 struct pasid_state **states;
62 struct iommu_domain *domain; 62 struct iommu_domain *domain;
63 int pasid_levels; 63 int pasid_levels;
64 int max_pasids; 64 int max_pasids;
65 amd_iommu_invalid_ppr_cb inv_ppr_cb; 65 amd_iommu_invalid_ppr_cb inv_ppr_cb;
66 amd_iommu_invalidate_ctx inv_ctx_cb; 66 amd_iommu_invalidate_ctx inv_ctx_cb;
67 spinlock_t lock; 67 spinlock_t lock;
68 wait_queue_head_t wq; 68 wait_queue_head_t wq;
69 }; 69 };
70 70
71 struct fault { 71 struct fault {
72 struct work_struct work; 72 struct work_struct work;
73 struct device_state *dev_state; 73 struct device_state *dev_state;
74 struct pasid_state *state; 74 struct pasid_state *state;
75 struct mm_struct *mm; 75 struct mm_struct *mm;
76 u64 address; 76 u64 address;
77 u16 devid; 77 u16 devid;
78 u16 pasid; 78 u16 pasid;
79 u16 tag; 79 u16 tag;
80 u16 finish; 80 u16 finish;
81 u16 flags; 81 u16 flags;
82 }; 82 };
83 83
84 static struct device_state **state_table; 84 static struct device_state **state_table;
85 static spinlock_t state_lock; 85 static spinlock_t state_lock;
86 86
87 /* List and lock for all pasid_states */ 87 /* List and lock for all pasid_states */
88 static LIST_HEAD(pasid_state_list); 88 static LIST_HEAD(pasid_state_list);
89 static DEFINE_SPINLOCK(ps_lock); 89 static DEFINE_SPINLOCK(ps_lock);
90 90
91 static struct workqueue_struct *iommu_wq; 91 static struct workqueue_struct *iommu_wq;
92 92
93 /* 93 /*
94 * Empty page table - Used between 94 * Empty page table - Used between
95 * mmu_notifier_invalidate_range_start and 95 * mmu_notifier_invalidate_range_start and
96 * mmu_notifier_invalidate_range_end 96 * mmu_notifier_invalidate_range_end
97 */ 97 */
98 static u64 *empty_page_table; 98 static u64 *empty_page_table;
99 99
100 static void free_pasid_states(struct device_state *dev_state); 100 static void free_pasid_states(struct device_state *dev_state);
101 static void unbind_pasid(struct device_state *dev_state, int pasid); 101 static void unbind_pasid(struct device_state *dev_state, int pasid);
102 static int task_exit(struct notifier_block *nb, unsigned long e, void *data); 102 static int task_exit(struct notifier_block *nb, unsigned long e, void *data);
103 103
104 static u16 device_id(struct pci_dev *pdev) 104 static u16 device_id(struct pci_dev *pdev)
105 { 105 {
106 u16 devid; 106 u16 devid;
107 107
108 devid = pdev->bus->number; 108 devid = pdev->bus->number;
109 devid = (devid << 8) | pdev->devfn; 109 devid = (devid << 8) | pdev->devfn;
110 110
111 return devid; 111 return devid;
112 } 112 }
113 113
114 static struct device_state *get_device_state(u16 devid) 114 static struct device_state *get_device_state(u16 devid)
115 { 115 {
116 struct device_state *dev_state; 116 struct device_state *dev_state;
117 unsigned long flags; 117 unsigned long flags;
118 118
119 spin_lock_irqsave(&state_lock, flags); 119 spin_lock_irqsave(&state_lock, flags);
120 dev_state = state_table[devid]; 120 dev_state = state_table[devid];
121 if (dev_state != NULL) 121 if (dev_state != NULL)
122 atomic_inc(&dev_state->count); 122 atomic_inc(&dev_state->count);
123 spin_unlock_irqrestore(&state_lock, flags); 123 spin_unlock_irqrestore(&state_lock, flags);
124 124
125 return dev_state; 125 return dev_state;
126 } 126 }
127 127
128 static void free_device_state(struct device_state *dev_state) 128 static void free_device_state(struct device_state *dev_state)
129 { 129 {
130 /* 130 /*
131 * First detach device from domain - No more PRI requests will arrive 131 * First detach device from domain - No more PRI requests will arrive
132 * from that device after it is unbound from the IOMMUv2 domain. 132 * from that device after it is unbound from the IOMMUv2 domain.
133 */ 133 */
134 iommu_detach_device(dev_state->domain, &dev_state->pdev->dev); 134 iommu_detach_device(dev_state->domain, &dev_state->pdev->dev);
135 135
136 /* Everything is down now, free the IOMMUv2 domain */ 136 /* Everything is down now, free the IOMMUv2 domain */
137 iommu_domain_free(dev_state->domain); 137 iommu_domain_free(dev_state->domain);
138 138
139 /* Finally get rid of the device-state */ 139 /* Finally get rid of the device-state */
140 kfree(dev_state); 140 kfree(dev_state);
141 } 141 }
142 142
143 static void put_device_state(struct device_state *dev_state) 143 static void put_device_state(struct device_state *dev_state)
144 { 144 {
145 if (atomic_dec_and_test(&dev_state->count)) 145 if (atomic_dec_and_test(&dev_state->count))
146 wake_up(&dev_state->wq); 146 wake_up(&dev_state->wq);
147 } 147 }
148 148
149 static void put_device_state_wait(struct device_state *dev_state) 149 static void put_device_state_wait(struct device_state *dev_state)
150 { 150 {
151 DEFINE_WAIT(wait); 151 DEFINE_WAIT(wait);
152 152
153 prepare_to_wait(&dev_state->wq, &wait, TASK_UNINTERRUPTIBLE); 153 prepare_to_wait(&dev_state->wq, &wait, TASK_UNINTERRUPTIBLE);
154 if (!atomic_dec_and_test(&dev_state->count)) 154 if (!atomic_dec_and_test(&dev_state->count))
155 schedule(); 155 schedule();
156 finish_wait(&dev_state->wq, &wait); 156 finish_wait(&dev_state->wq, &wait);
157 157
158 free_device_state(dev_state); 158 free_device_state(dev_state);
159 } 159 }
160 160
161 static struct notifier_block profile_nb = { 161 static struct notifier_block profile_nb = {
162 .notifier_call = task_exit, 162 .notifier_call = task_exit,
163 }; 163 };
164 164
165 static void link_pasid_state(struct pasid_state *pasid_state) 165 static void link_pasid_state(struct pasid_state *pasid_state)
166 { 166 {
167 spin_lock(&ps_lock); 167 spin_lock(&ps_lock);
168 list_add_tail(&pasid_state->list, &pasid_state_list); 168 list_add_tail(&pasid_state->list, &pasid_state_list);
169 spin_unlock(&ps_lock); 169 spin_unlock(&ps_lock);
170 } 170 }
171 171
172 static void __unlink_pasid_state(struct pasid_state *pasid_state) 172 static void __unlink_pasid_state(struct pasid_state *pasid_state)
173 { 173 {
174 list_del(&pasid_state->list); 174 list_del(&pasid_state->list);
175 } 175 }
176 176
177 static void unlink_pasid_state(struct pasid_state *pasid_state) 177 static void unlink_pasid_state(struct pasid_state *pasid_state)
178 { 178 {
179 spin_lock(&ps_lock); 179 spin_lock(&ps_lock);
180 __unlink_pasid_state(pasid_state); 180 __unlink_pasid_state(pasid_state);
181 spin_unlock(&ps_lock); 181 spin_unlock(&ps_lock);
182 } 182 }
183 183
184 /* Must be called under dev_state->lock */ 184 /* Must be called under dev_state->lock */
185 static struct pasid_state **__get_pasid_state_ptr(struct device_state *dev_state, 185 static struct pasid_state **__get_pasid_state_ptr(struct device_state *dev_state,
186 int pasid, bool alloc) 186 int pasid, bool alloc)
187 { 187 {
188 struct pasid_state **root, **ptr; 188 struct pasid_state **root, **ptr;
189 int level, index; 189 int level, index;
190 190
191 level = dev_state->pasid_levels; 191 level = dev_state->pasid_levels;
192 root = dev_state->states; 192 root = dev_state->states;
193 193
194 while (true) { 194 while (true) {
195 195
196 index = (pasid >> (9 * level)) & 0x1ff; 196 index = (pasid >> (9 * level)) & 0x1ff;
197 ptr = &root[index]; 197 ptr = &root[index];
198 198
199 if (level == 0) 199 if (level == 0)
200 break; 200 break;
201 201
202 if (*ptr == NULL) { 202 if (*ptr == NULL) {
203 if (!alloc) 203 if (!alloc)
204 return NULL; 204 return NULL;
205 205
206 *ptr = (void *)get_zeroed_page(GFP_ATOMIC); 206 *ptr = (void *)get_zeroed_page(GFP_ATOMIC);
207 if (*ptr == NULL) 207 if (*ptr == NULL)
208 return NULL; 208 return NULL;
209 } 209 }
210 210
211 root = (struct pasid_state **)*ptr; 211 root = (struct pasid_state **)*ptr;
212 level -= 1; 212 level -= 1;
213 } 213 }
214 214
215 return ptr; 215 return ptr;
216 } 216 }
217 217
218 static int set_pasid_state(struct device_state *dev_state, 218 static int set_pasid_state(struct device_state *dev_state,
219 struct pasid_state *pasid_state, 219 struct pasid_state *pasid_state,
220 int pasid) 220 int pasid)
221 { 221 {
222 struct pasid_state **ptr; 222 struct pasid_state **ptr;
223 unsigned long flags; 223 unsigned long flags;
224 int ret; 224 int ret;
225 225
226 spin_lock_irqsave(&dev_state->lock, flags); 226 spin_lock_irqsave(&dev_state->lock, flags);
227 ptr = __get_pasid_state_ptr(dev_state, pasid, true); 227 ptr = __get_pasid_state_ptr(dev_state, pasid, true);
228 228
229 ret = -ENOMEM; 229 ret = -ENOMEM;
230 if (ptr == NULL) 230 if (ptr == NULL)
231 goto out_unlock; 231 goto out_unlock;
232 232
233 ret = -ENOMEM; 233 ret = -ENOMEM;
234 if (*ptr != NULL) 234 if (*ptr != NULL)
235 goto out_unlock; 235 goto out_unlock;
236 236
237 *ptr = pasid_state; 237 *ptr = pasid_state;
238 238
239 ret = 0; 239 ret = 0;
240 240
241 out_unlock: 241 out_unlock:
242 spin_unlock_irqrestore(&dev_state->lock, flags); 242 spin_unlock_irqrestore(&dev_state->lock, flags);
243 243
244 return ret; 244 return ret;
245 } 245 }
246 246
247 static void clear_pasid_state(struct device_state *dev_state, int pasid) 247 static void clear_pasid_state(struct device_state *dev_state, int pasid)
248 { 248 {
249 struct pasid_state **ptr; 249 struct pasid_state **ptr;
250 unsigned long flags; 250 unsigned long flags;
251 251
252 spin_lock_irqsave(&dev_state->lock, flags); 252 spin_lock_irqsave(&dev_state->lock, flags);
253 ptr = __get_pasid_state_ptr(dev_state, pasid, true); 253 ptr = __get_pasid_state_ptr(dev_state, pasid, true);
254 254
255 if (ptr == NULL) 255 if (ptr == NULL)
256 goto out_unlock; 256 goto out_unlock;
257 257
258 *ptr = NULL; 258 *ptr = NULL;
259 259
260 out_unlock: 260 out_unlock:
261 spin_unlock_irqrestore(&dev_state->lock, flags); 261 spin_unlock_irqrestore(&dev_state->lock, flags);
262 } 262 }
263 263
264 static struct pasid_state *get_pasid_state(struct device_state *dev_state, 264 static struct pasid_state *get_pasid_state(struct device_state *dev_state,
265 int pasid) 265 int pasid)
266 { 266 {
267 struct pasid_state **ptr, *ret = NULL; 267 struct pasid_state **ptr, *ret = NULL;
268 unsigned long flags; 268 unsigned long flags;
269 269
270 spin_lock_irqsave(&dev_state->lock, flags); 270 spin_lock_irqsave(&dev_state->lock, flags);
271 ptr = __get_pasid_state_ptr(dev_state, pasid, false); 271 ptr = __get_pasid_state_ptr(dev_state, pasid, false);
272 272
273 if (ptr == NULL) 273 if (ptr == NULL)
274 goto out_unlock; 274 goto out_unlock;
275 275
276 ret = *ptr; 276 ret = *ptr;
277 if (ret) 277 if (ret)
278 atomic_inc(&ret->count); 278 atomic_inc(&ret->count);
279 279
280 out_unlock: 280 out_unlock:
281 spin_unlock_irqrestore(&dev_state->lock, flags); 281 spin_unlock_irqrestore(&dev_state->lock, flags);
282 282
283 return ret; 283 return ret;
284 } 284 }
285 285
286 static void free_pasid_state(struct pasid_state *pasid_state) 286 static void free_pasid_state(struct pasid_state *pasid_state)
287 { 287 {
288 kfree(pasid_state); 288 kfree(pasid_state);
289 } 289 }
290 290
291 static void put_pasid_state(struct pasid_state *pasid_state) 291 static void put_pasid_state(struct pasid_state *pasid_state)
292 { 292 {
293 if (atomic_dec_and_test(&pasid_state->count)) { 293 if (atomic_dec_and_test(&pasid_state->count)) {
294 put_device_state(pasid_state->device_state); 294 put_device_state(pasid_state->device_state);
295 wake_up(&pasid_state->wq); 295 wake_up(&pasid_state->wq);
296 } 296 }
297 } 297 }
298 298
299 static void put_pasid_state_wait(struct pasid_state *pasid_state) 299 static void put_pasid_state_wait(struct pasid_state *pasid_state)
300 { 300 {
301 DEFINE_WAIT(wait); 301 DEFINE_WAIT(wait);
302 302
303 prepare_to_wait(&pasid_state->wq, &wait, TASK_UNINTERRUPTIBLE); 303 prepare_to_wait(&pasid_state->wq, &wait, TASK_UNINTERRUPTIBLE);
304 304
305 if (atomic_dec_and_test(&pasid_state->count)) 305 if (atomic_dec_and_test(&pasid_state->count))
306 put_device_state(pasid_state->device_state); 306 put_device_state(pasid_state->device_state);
307 else 307 else
308 schedule(); 308 schedule();
309 309
310 finish_wait(&pasid_state->wq, &wait); 310 finish_wait(&pasid_state->wq, &wait);
311 mmput(pasid_state->mm); 311 mmput(pasid_state->mm);
312 free_pasid_state(pasid_state); 312 free_pasid_state(pasid_state);
313 } 313 }
314 314
315 static void __unbind_pasid(struct pasid_state *pasid_state) 315 static void __unbind_pasid(struct pasid_state *pasid_state)
316 { 316 {
317 struct iommu_domain *domain; 317 struct iommu_domain *domain;
318 318
319 domain = pasid_state->device_state->domain; 319 domain = pasid_state->device_state->domain;
320 320
321 amd_iommu_domain_clear_gcr3(domain, pasid_state->pasid); 321 amd_iommu_domain_clear_gcr3(domain, pasid_state->pasid);
322 clear_pasid_state(pasid_state->device_state, pasid_state->pasid); 322 clear_pasid_state(pasid_state->device_state, pasid_state->pasid);
323 323
324 /* Make sure no more pending faults are in the queue */ 324 /* Make sure no more pending faults are in the queue */
325 flush_workqueue(iommu_wq); 325 flush_workqueue(iommu_wq);
326 326
327 mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm); 327 mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm);
328 328
329 put_pasid_state(pasid_state); /* Reference taken in bind() function */ 329 put_pasid_state(pasid_state); /* Reference taken in bind() function */
330 } 330 }
331 331
332 static void unbind_pasid(struct device_state *dev_state, int pasid) 332 static void unbind_pasid(struct device_state *dev_state, int pasid)
333 { 333 {
334 struct pasid_state *pasid_state; 334 struct pasid_state *pasid_state;
335 335
336 pasid_state = get_pasid_state(dev_state, pasid); 336 pasid_state = get_pasid_state(dev_state, pasid);
337 if (pasid_state == NULL) 337 if (pasid_state == NULL)
338 return; 338 return;
339 339
340 unlink_pasid_state(pasid_state); 340 unlink_pasid_state(pasid_state);
341 __unbind_pasid(pasid_state); 341 __unbind_pasid(pasid_state);
342 put_pasid_state_wait(pasid_state); /* Reference taken in this function */ 342 put_pasid_state_wait(pasid_state); /* Reference taken in this function */
343 } 343 }
344 344
345 static void free_pasid_states_level1(struct pasid_state **tbl) 345 static void free_pasid_states_level1(struct pasid_state **tbl)
346 { 346 {
347 int i; 347 int i;
348 348
349 for (i = 0; i < 512; ++i) { 349 for (i = 0; i < 512; ++i) {
350 if (tbl[i] == NULL) 350 if (tbl[i] == NULL)
351 continue; 351 continue;
352 352
353 free_page((unsigned long)tbl[i]); 353 free_page((unsigned long)tbl[i]);
354 } 354 }
355 } 355 }
356 356
357 static void free_pasid_states_level2(struct pasid_state **tbl) 357 static void free_pasid_states_level2(struct pasid_state **tbl)
358 { 358 {
359 struct pasid_state **ptr; 359 struct pasid_state **ptr;
360 int i; 360 int i;
361 361
362 for (i = 0; i < 512; ++i) { 362 for (i = 0; i < 512; ++i) {
363 if (tbl[i] == NULL) 363 if (tbl[i] == NULL)
364 continue; 364 continue;
365 365
366 ptr = (struct pasid_state **)tbl[i]; 366 ptr = (struct pasid_state **)tbl[i];
367 free_pasid_states_level1(ptr); 367 free_pasid_states_level1(ptr);
368 } 368 }
369 } 369 }
370 370
371 static void free_pasid_states(struct device_state *dev_state) 371 static void free_pasid_states(struct device_state *dev_state)
372 { 372 {
373 struct pasid_state *pasid_state; 373 struct pasid_state *pasid_state;
374 int i; 374 int i;
375 375
376 for (i = 0; i < dev_state->max_pasids; ++i) { 376 for (i = 0; i < dev_state->max_pasids; ++i) {
377 pasid_state = get_pasid_state(dev_state, i); 377 pasid_state = get_pasid_state(dev_state, i);
378 if (pasid_state == NULL) 378 if (pasid_state == NULL)
379 continue; 379 continue;
380 380
381 put_pasid_state(pasid_state); 381 put_pasid_state(pasid_state);
382 unbind_pasid(dev_state, i); 382 unbind_pasid(dev_state, i);
383 } 383 }
384 384
385 if (dev_state->pasid_levels == 2) 385 if (dev_state->pasid_levels == 2)
386 free_pasid_states_level2(dev_state->states); 386 free_pasid_states_level2(dev_state->states);
387 else if (dev_state->pasid_levels == 1) 387 else if (dev_state->pasid_levels == 1)
388 free_pasid_states_level1(dev_state->states); 388 free_pasid_states_level1(dev_state->states);
389 else if (dev_state->pasid_levels != 0) 389 else if (dev_state->pasid_levels != 0)
390 BUG(); 390 BUG();
391 391
392 free_page((unsigned long)dev_state->states); 392 free_page((unsigned long)dev_state->states);
393 } 393 }
394 394
395 static struct pasid_state *mn_to_state(struct mmu_notifier *mn) 395 static struct pasid_state *mn_to_state(struct mmu_notifier *mn)
396 { 396 {
397 return container_of(mn, struct pasid_state, mn); 397 return container_of(mn, struct pasid_state, mn);
398 } 398 }
399 399
400 static void __mn_flush_page(struct mmu_notifier *mn, 400 static void __mn_flush_page(struct mmu_notifier *mn,
401 unsigned long address) 401 unsigned long address)
402 { 402 {
403 struct pasid_state *pasid_state; 403 struct pasid_state *pasid_state;
404 struct device_state *dev_state; 404 struct device_state *dev_state;
405 405
406 pasid_state = mn_to_state(mn); 406 pasid_state = mn_to_state(mn);
407 dev_state = pasid_state->device_state; 407 dev_state = pasid_state->device_state;
408 408
409 amd_iommu_flush_page(dev_state->domain, pasid_state->pasid, address); 409 amd_iommu_flush_page(dev_state->domain, pasid_state->pasid, address);
410 } 410 }
411 411
412 static int mn_clear_flush_young(struct mmu_notifier *mn, 412 static int mn_clear_flush_young(struct mmu_notifier *mn,
413 struct mm_struct *mm, 413 struct mm_struct *mm,
414 unsigned long address) 414 unsigned long address)
415 { 415 {
416 __mn_flush_page(mn, address); 416 __mn_flush_page(mn, address);
417 417
418 return 0; 418 return 0;
419 } 419 }
420 420
421 static void mn_change_pte(struct mmu_notifier *mn, 421 static void mn_change_pte(struct mmu_notifier *mn,
422 struct mm_struct *mm, 422 struct mm_struct *mm,
423 unsigned long address, 423 unsigned long address,
424 pte_t pte) 424 pte_t pte)
425 { 425 {
426 __mn_flush_page(mn, address); 426 __mn_flush_page(mn, address);
427 } 427 }
428 428
429 static void mn_invalidate_page(struct mmu_notifier *mn, 429 static void mn_invalidate_page(struct mmu_notifier *mn,
430 struct mm_struct *mm, 430 struct mm_struct *mm,
431 unsigned long address) 431 unsigned long address)
432 { 432 {
433 __mn_flush_page(mn, address); 433 __mn_flush_page(mn, address);
434 } 434 }
435 435
436 static void mn_invalidate_range_start(struct mmu_notifier *mn, 436 static void mn_invalidate_range_start(struct mmu_notifier *mn,
437 struct mm_struct *mm, 437 struct mm_struct *mm,
438 unsigned long start, unsigned long end) 438 unsigned long start, unsigned long end)
439 { 439 {
440 struct pasid_state *pasid_state; 440 struct pasid_state *pasid_state;
441 struct device_state *dev_state; 441 struct device_state *dev_state;
442 442
443 pasid_state = mn_to_state(mn); 443 pasid_state = mn_to_state(mn);
444 dev_state = pasid_state->device_state; 444 dev_state = pasid_state->device_state;
445 445
446 amd_iommu_domain_set_gcr3(dev_state->domain, pasid_state->pasid, 446 amd_iommu_domain_set_gcr3(dev_state->domain, pasid_state->pasid,
447 __pa(empty_page_table)); 447 __pa(empty_page_table));
448 } 448 }
449 449
450 static void mn_invalidate_range_end(struct mmu_notifier *mn, 450 static void mn_invalidate_range_end(struct mmu_notifier *mn,
451 struct mm_struct *mm, 451 struct mm_struct *mm,
452 unsigned long start, unsigned long end) 452 unsigned long start, unsigned long end)
453 { 453 {
454 struct pasid_state *pasid_state; 454 struct pasid_state *pasid_state;
455 struct device_state *dev_state; 455 struct device_state *dev_state;
456 456
457 pasid_state = mn_to_state(mn); 457 pasid_state = mn_to_state(mn);
458 dev_state = pasid_state->device_state; 458 dev_state = pasid_state->device_state;
459 459
460 amd_iommu_domain_set_gcr3(dev_state->domain, pasid_state->pasid, 460 amd_iommu_domain_set_gcr3(dev_state->domain, pasid_state->pasid,
461 __pa(pasid_state->mm->pgd)); 461 __pa(pasid_state->mm->pgd));
462 } 462 }
463 463
464 static struct mmu_notifier_ops iommu_mn = { 464 static struct mmu_notifier_ops iommu_mn = {
465 .clear_flush_young = mn_clear_flush_young, 465 .clear_flush_young = mn_clear_flush_young,
466 .change_pte = mn_change_pte, 466 .change_pte = mn_change_pte,
467 .invalidate_page = mn_invalidate_page, 467 .invalidate_page = mn_invalidate_page,
468 .invalidate_range_start = mn_invalidate_range_start, 468 .invalidate_range_start = mn_invalidate_range_start,
469 .invalidate_range_end = mn_invalidate_range_end, 469 .invalidate_range_end = mn_invalidate_range_end,
470 }; 470 };
471 471
472 static void set_pri_tag_status(struct pasid_state *pasid_state, 472 static void set_pri_tag_status(struct pasid_state *pasid_state,
473 u16 tag, int status) 473 u16 tag, int status)
474 { 474 {
475 unsigned long flags; 475 unsigned long flags;
476 476
477 spin_lock_irqsave(&pasid_state->lock, flags); 477 spin_lock_irqsave(&pasid_state->lock, flags);
478 pasid_state->pri[tag].status = status; 478 pasid_state->pri[tag].status = status;
479 spin_unlock_irqrestore(&pasid_state->lock, flags); 479 spin_unlock_irqrestore(&pasid_state->lock, flags);
480 } 480 }
481 481
482 static void finish_pri_tag(struct device_state *dev_state, 482 static void finish_pri_tag(struct device_state *dev_state,
483 struct pasid_state *pasid_state, 483 struct pasid_state *pasid_state,
484 u16 tag) 484 u16 tag)
485 { 485 {
486 unsigned long flags; 486 unsigned long flags;
487 487
488 spin_lock_irqsave(&pasid_state->lock, flags); 488 spin_lock_irqsave(&pasid_state->lock, flags);
489 if (atomic_dec_and_test(&pasid_state->pri[tag].inflight) && 489 if (atomic_dec_and_test(&pasid_state->pri[tag].inflight) &&
490 pasid_state->pri[tag].finish) { 490 pasid_state->pri[tag].finish) {
491 amd_iommu_complete_ppr(dev_state->pdev, pasid_state->pasid, 491 amd_iommu_complete_ppr(dev_state->pdev, pasid_state->pasid,
492 pasid_state->pri[tag].status, tag); 492 pasid_state->pri[tag].status, tag);
493 pasid_state->pri[tag].finish = false; 493 pasid_state->pri[tag].finish = false;
494 pasid_state->pri[tag].status = PPR_SUCCESS; 494 pasid_state->pri[tag].status = PPR_SUCCESS;
495 } 495 }
496 spin_unlock_irqrestore(&pasid_state->lock, flags); 496 spin_unlock_irqrestore(&pasid_state->lock, flags);
497 } 497 }
498 498
499 static void do_fault(struct work_struct *work) 499 static void do_fault(struct work_struct *work)
500 { 500 {
501 struct fault *fault = container_of(work, struct fault, work); 501 struct fault *fault = container_of(work, struct fault, work);
502 int npages, write; 502 int npages, write;
503 struct page *page; 503 struct page *page;
504 504
505 write = !!(fault->flags & PPR_FAULT_WRITE); 505 write = !!(fault->flags & PPR_FAULT_WRITE);
506 506
507 down_read(&fault->state->mm->mmap_sem);
507 npages = get_user_pages(fault->state->task, fault->state->mm, 508 npages = get_user_pages(fault->state->task, fault->state->mm,
508 fault->address, 1, write, 0, &page, NULL); 509 fault->address, 1, write, 0, &page, NULL);
510 up_read(&fault->state->mm->mmap_sem);
509 511
510 if (npages == 1) { 512 if (npages == 1) {
511 put_page(page); 513 put_page(page);
512 } else if (fault->dev_state->inv_ppr_cb) { 514 } else if (fault->dev_state->inv_ppr_cb) {
513 int status; 515 int status;
514 516
515 status = fault->dev_state->inv_ppr_cb(fault->dev_state->pdev, 517 status = fault->dev_state->inv_ppr_cb(fault->dev_state->pdev,
516 fault->pasid, 518 fault->pasid,
517 fault->address, 519 fault->address,
518 fault->flags); 520 fault->flags);
519 switch (status) { 521 switch (status) {
520 case AMD_IOMMU_INV_PRI_RSP_SUCCESS: 522 case AMD_IOMMU_INV_PRI_RSP_SUCCESS:
521 set_pri_tag_status(fault->state, fault->tag, PPR_SUCCESS); 523 set_pri_tag_status(fault->state, fault->tag, PPR_SUCCESS);
522 break; 524 break;
523 case AMD_IOMMU_INV_PRI_RSP_INVALID: 525 case AMD_IOMMU_INV_PRI_RSP_INVALID:
524 set_pri_tag_status(fault->state, fault->tag, PPR_INVALID); 526 set_pri_tag_status(fault->state, fault->tag, PPR_INVALID);
525 break; 527 break;
526 case AMD_IOMMU_INV_PRI_RSP_FAIL: 528 case AMD_IOMMU_INV_PRI_RSP_FAIL:
527 set_pri_tag_status(fault->state, fault->tag, PPR_FAILURE); 529 set_pri_tag_status(fault->state, fault->tag, PPR_FAILURE);
528 break; 530 break;
529 default: 531 default:
530 BUG(); 532 BUG();
531 } 533 }
532 } else { 534 } else {
533 set_pri_tag_status(fault->state, fault->tag, PPR_INVALID); 535 set_pri_tag_status(fault->state, fault->tag, PPR_INVALID);
534 } 536 }
535 537
536 finish_pri_tag(fault->dev_state, fault->state, fault->tag); 538 finish_pri_tag(fault->dev_state, fault->state, fault->tag);
537 539
538 put_pasid_state(fault->state); 540 put_pasid_state(fault->state);
539 541
540 kfree(fault); 542 kfree(fault);
541 } 543 }
542 544
543 static int ppr_notifier(struct notifier_block *nb, unsigned long e, void *data) 545 static int ppr_notifier(struct notifier_block *nb, unsigned long e, void *data)
544 { 546 {
545 struct amd_iommu_fault *iommu_fault; 547 struct amd_iommu_fault *iommu_fault;
546 struct pasid_state *pasid_state; 548 struct pasid_state *pasid_state;
547 struct device_state *dev_state; 549 struct device_state *dev_state;
548 unsigned long flags; 550 unsigned long flags;
549 struct fault *fault; 551 struct fault *fault;
550 bool finish; 552 bool finish;
551 u16 tag; 553 u16 tag;
552 int ret; 554 int ret;
553 555
554 iommu_fault = data; 556 iommu_fault = data;
555 tag = iommu_fault->tag & 0x1ff; 557 tag = iommu_fault->tag & 0x1ff;
556 finish = (iommu_fault->tag >> 9) & 1; 558 finish = (iommu_fault->tag >> 9) & 1;
557 559
558 ret = NOTIFY_DONE; 560 ret = NOTIFY_DONE;
559 dev_state = get_device_state(iommu_fault->device_id); 561 dev_state = get_device_state(iommu_fault->device_id);
560 if (dev_state == NULL) 562 if (dev_state == NULL)
561 goto out; 563 goto out;
562 564
563 pasid_state = get_pasid_state(dev_state, iommu_fault->pasid); 565 pasid_state = get_pasid_state(dev_state, iommu_fault->pasid);
564 if (pasid_state == NULL) { 566 if (pasid_state == NULL) {
565 /* We know the device but not the PASID -> send INVALID */ 567 /* We know the device but not the PASID -> send INVALID */
566 amd_iommu_complete_ppr(dev_state->pdev, iommu_fault->pasid, 568 amd_iommu_complete_ppr(dev_state->pdev, iommu_fault->pasid,
567 PPR_INVALID, tag); 569 PPR_INVALID, tag);
568 goto out_drop_state; 570 goto out_drop_state;
569 } 571 }
570 572
571 spin_lock_irqsave(&pasid_state->lock, flags); 573 spin_lock_irqsave(&pasid_state->lock, flags);
572 atomic_inc(&pasid_state->pri[tag].inflight); 574 atomic_inc(&pasid_state->pri[tag].inflight);
573 if (finish) 575 if (finish)
574 pasid_state->pri[tag].finish = true; 576 pasid_state->pri[tag].finish = true;
575 spin_unlock_irqrestore(&pasid_state->lock, flags); 577 spin_unlock_irqrestore(&pasid_state->lock, flags);
576 578
577 fault = kzalloc(sizeof(*fault), GFP_ATOMIC); 579 fault = kzalloc(sizeof(*fault), GFP_ATOMIC);
578 if (fault == NULL) { 580 if (fault == NULL) {
579 /* We are OOM - send success and let the device re-fault */ 581 /* We are OOM - send success and let the device re-fault */
580 finish_pri_tag(dev_state, pasid_state, tag); 582 finish_pri_tag(dev_state, pasid_state, tag);
581 goto out_drop_state; 583 goto out_drop_state;
582 } 584 }
583 585
584 fault->dev_state = dev_state; 586 fault->dev_state = dev_state;
585 fault->address = iommu_fault->address; 587 fault->address = iommu_fault->address;
586 fault->state = pasid_state; 588 fault->state = pasid_state;
587 fault->tag = tag; 589 fault->tag = tag;
588 fault->finish = finish; 590 fault->finish = finish;
589 fault->flags = iommu_fault->flags; 591 fault->flags = iommu_fault->flags;
590 INIT_WORK(&fault->work, do_fault); 592 INIT_WORK(&fault->work, do_fault);
591 593
592 queue_work(iommu_wq, &fault->work); 594 queue_work(iommu_wq, &fault->work);
593 595
594 ret = NOTIFY_OK; 596 ret = NOTIFY_OK;
595 597
596 out_drop_state: 598 out_drop_state:
597 put_device_state(dev_state); 599 put_device_state(dev_state);
598 600
599 out: 601 out:
600 return ret; 602 return ret;
601 } 603 }
602 604
603 static struct notifier_block ppr_nb = { 605 static struct notifier_block ppr_nb = {
604 .notifier_call = ppr_notifier, 606 .notifier_call = ppr_notifier,
605 }; 607 };
606 608
607 static int task_exit(struct notifier_block *nb, unsigned long e, void *data) 609 static int task_exit(struct notifier_block *nb, unsigned long e, void *data)
608 { 610 {
609 struct pasid_state *pasid_state; 611 struct pasid_state *pasid_state;
610 struct task_struct *task; 612 struct task_struct *task;
611 613
612 task = data; 614 task = data;
613 615
614 /* 616 /*
615 * Using this notifier is a hack - but there is no other choice 617 * Using this notifier is a hack - but there is no other choice
616 * at the moment. What I really want is a sleeping notifier that 618 * at the moment. What I really want is a sleeping notifier that
617 * is called when an MM goes down. But such a notifier doesn't 619 * is called when an MM goes down. But such a notifier doesn't
618 * exist yet. The notifier needs to sleep because it has to make 620 * exist yet. The notifier needs to sleep because it has to make
619 * sure that the device does not use the PASID and the address 621 * sure that the device does not use the PASID and the address
620 * space anymore before it is destroyed. This includes waiting 622 * space anymore before it is destroyed. This includes waiting
621 * for pending PRI requests to pass the workqueue. The 623 * for pending PRI requests to pass the workqueue. The
622 * MMU-Notifiers would be a good fit, but they use RCU and so 624 * MMU-Notifiers would be a good fit, but they use RCU and so
623 * they are not allowed to sleep. Lets see how we can solve this 625 * they are not allowed to sleep. Lets see how we can solve this
624 * in a more intelligent way in the future. 626 * in a more intelligent way in the future.
625 */ 627 */
626 again: 628 again:
627 spin_lock(&ps_lock); 629 spin_lock(&ps_lock);
628 list_for_each_entry(pasid_state, &pasid_state_list, list) { 630 list_for_each_entry(pasid_state, &pasid_state_list, list) {
629 struct device_state *dev_state; 631 struct device_state *dev_state;
630 int pasid; 632 int pasid;
631 633
632 if (pasid_state->task != task) 634 if (pasid_state->task != task)
633 continue; 635 continue;
634 636
635 /* Drop Lock and unbind */ 637 /* Drop Lock and unbind */
636 spin_unlock(&ps_lock); 638 spin_unlock(&ps_lock);
637 639
638 dev_state = pasid_state->device_state; 640 dev_state = pasid_state->device_state;
639 pasid = pasid_state->pasid; 641 pasid = pasid_state->pasid;
640 642
641 if (pasid_state->device_state->inv_ctx_cb) 643 if (pasid_state->device_state->inv_ctx_cb)
642 dev_state->inv_ctx_cb(dev_state->pdev, pasid); 644 dev_state->inv_ctx_cb(dev_state->pdev, pasid);
643 645
644 unbind_pasid(dev_state, pasid); 646 unbind_pasid(dev_state, pasid);
645 647
646 /* Task may be in the list multiple times */ 648 /* Task may be in the list multiple times */
647 goto again; 649 goto again;
648 } 650 }
649 spin_unlock(&ps_lock); 651 spin_unlock(&ps_lock);
650 652
651 return NOTIFY_OK; 653 return NOTIFY_OK;
652 } 654 }
653 655
654 int amd_iommu_bind_pasid(struct pci_dev *pdev, int pasid, 656 int amd_iommu_bind_pasid(struct pci_dev *pdev, int pasid,
655 struct task_struct *task) 657 struct task_struct *task)
656 { 658 {
657 struct pasid_state *pasid_state; 659 struct pasid_state *pasid_state;
658 struct device_state *dev_state; 660 struct device_state *dev_state;
659 u16 devid; 661 u16 devid;
660 int ret; 662 int ret;
661 663
662 might_sleep(); 664 might_sleep();
663 665
664 if (!amd_iommu_v2_supported()) 666 if (!amd_iommu_v2_supported())
665 return -ENODEV; 667 return -ENODEV;
666 668
667 devid = device_id(pdev); 669 devid = device_id(pdev);
668 dev_state = get_device_state(devid); 670 dev_state = get_device_state(devid);
669 671
670 if (dev_state == NULL) 672 if (dev_state == NULL)
671 return -EINVAL; 673 return -EINVAL;
672 674
673 ret = -EINVAL; 675 ret = -EINVAL;
674 if (pasid < 0 || pasid >= dev_state->max_pasids) 676 if (pasid < 0 || pasid >= dev_state->max_pasids)
675 goto out; 677 goto out;
676 678
677 ret = -ENOMEM; 679 ret = -ENOMEM;
678 pasid_state = kzalloc(sizeof(*pasid_state), GFP_KERNEL); 680 pasid_state = kzalloc(sizeof(*pasid_state), GFP_KERNEL);
679 if (pasid_state == NULL) 681 if (pasid_state == NULL)
680 goto out; 682 goto out;
681 683
682 atomic_set(&pasid_state->count, 1); 684 atomic_set(&pasid_state->count, 1);
683 init_waitqueue_head(&pasid_state->wq); 685 init_waitqueue_head(&pasid_state->wq);
684 spin_lock_init(&pasid_state->lock); 686 spin_lock_init(&pasid_state->lock);
685 687
686 pasid_state->task = task; 688 pasid_state->task = task;
687 pasid_state->mm = get_task_mm(task); 689 pasid_state->mm = get_task_mm(task);
688 pasid_state->device_state = dev_state; 690 pasid_state->device_state = dev_state;
689 pasid_state->pasid = pasid; 691 pasid_state->pasid = pasid;
690 pasid_state->mn.ops = &iommu_mn; 692 pasid_state->mn.ops = &iommu_mn;
691 693
692 if (pasid_state->mm == NULL) 694 if (pasid_state->mm == NULL)
693 goto out_free; 695 goto out_free;
694 696
695 mmu_notifier_register(&pasid_state->mn, pasid_state->mm); 697 mmu_notifier_register(&pasid_state->mn, pasid_state->mm);
696 698
697 ret = set_pasid_state(dev_state, pasid_state, pasid); 699 ret = set_pasid_state(dev_state, pasid_state, pasid);
698 if (ret) 700 if (ret)
699 goto out_unregister; 701 goto out_unregister;
700 702
701 ret = amd_iommu_domain_set_gcr3(dev_state->domain, pasid, 703 ret = amd_iommu_domain_set_gcr3(dev_state->domain, pasid,
702 __pa(pasid_state->mm->pgd)); 704 __pa(pasid_state->mm->pgd));
703 if (ret) 705 if (ret)
704 goto out_clear_state; 706 goto out_clear_state;
705 707
706 link_pasid_state(pasid_state); 708 link_pasid_state(pasid_state);
707 709
708 return 0; 710 return 0;
709 711
710 out_clear_state: 712 out_clear_state:
711 clear_pasid_state(dev_state, pasid); 713 clear_pasid_state(dev_state, pasid);
712 714
713 out_unregister: 715 out_unregister:
714 mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm); 716 mmu_notifier_unregister(&pasid_state->mn, pasid_state->mm);
715 717
716 out_free: 718 out_free:
717 free_pasid_state(pasid_state); 719 free_pasid_state(pasid_state);
718 720
719 out: 721 out:
720 put_device_state(dev_state); 722 put_device_state(dev_state);
721 723
722 return ret; 724 return ret;
723 } 725 }
724 EXPORT_SYMBOL(amd_iommu_bind_pasid); 726 EXPORT_SYMBOL(amd_iommu_bind_pasid);
725 727
726 void amd_iommu_unbind_pasid(struct pci_dev *pdev, int pasid) 728 void amd_iommu_unbind_pasid(struct pci_dev *pdev, int pasid)
727 { 729 {
728 struct device_state *dev_state; 730 struct device_state *dev_state;
729 u16 devid; 731 u16 devid;
730 732
731 might_sleep(); 733 might_sleep();
732 734
733 if (!amd_iommu_v2_supported()) 735 if (!amd_iommu_v2_supported())
734 return; 736 return;
735 737
736 devid = device_id(pdev); 738 devid = device_id(pdev);
737 dev_state = get_device_state(devid); 739 dev_state = get_device_state(devid);
738 if (dev_state == NULL) 740 if (dev_state == NULL)
739 return; 741 return;
740 742
741 if (pasid < 0 || pasid >= dev_state->max_pasids) 743 if (pasid < 0 || pasid >= dev_state->max_pasids)
742 goto out; 744 goto out;
743 745
744 unbind_pasid(dev_state, pasid); 746 unbind_pasid(dev_state, pasid);
745 747
746 out: 748 out:
747 put_device_state(dev_state); 749 put_device_state(dev_state);
748 } 750 }
749 EXPORT_SYMBOL(amd_iommu_unbind_pasid); 751 EXPORT_SYMBOL(amd_iommu_unbind_pasid);
750 752
751 int amd_iommu_init_device(struct pci_dev *pdev, int pasids) 753 int amd_iommu_init_device(struct pci_dev *pdev, int pasids)
752 { 754 {
753 struct device_state *dev_state; 755 struct device_state *dev_state;
754 unsigned long flags; 756 unsigned long flags;
755 int ret, tmp; 757 int ret, tmp;
756 u16 devid; 758 u16 devid;
757 759
758 might_sleep(); 760 might_sleep();
759 761
760 if (!amd_iommu_v2_supported()) 762 if (!amd_iommu_v2_supported())
761 return -ENODEV; 763 return -ENODEV;
762 764
763 if (pasids <= 0 || pasids > (PASID_MASK + 1)) 765 if (pasids <= 0 || pasids > (PASID_MASK + 1))
764 return -EINVAL; 766 return -EINVAL;
765 767
766 devid = device_id(pdev); 768 devid = device_id(pdev);
767 769
768 dev_state = kzalloc(sizeof(*dev_state), GFP_KERNEL); 770 dev_state = kzalloc(sizeof(*dev_state), GFP_KERNEL);
769 if (dev_state == NULL) 771 if (dev_state == NULL)
770 return -ENOMEM; 772 return -ENOMEM;
771 773
772 spin_lock_init(&dev_state->lock); 774 spin_lock_init(&dev_state->lock);
773 init_waitqueue_head(&dev_state->wq); 775 init_waitqueue_head(&dev_state->wq);
774 dev_state->pdev = pdev; 776 dev_state->pdev = pdev;
775 777
776 tmp = pasids; 778 tmp = pasids;
777 for (dev_state->pasid_levels = 0; (tmp - 1) & ~0x1ff; tmp >>= 9) 779 for (dev_state->pasid_levels = 0; (tmp - 1) & ~0x1ff; tmp >>= 9)
778 dev_state->pasid_levels += 1; 780 dev_state->pasid_levels += 1;
779 781
780 atomic_set(&dev_state->count, 1); 782 atomic_set(&dev_state->count, 1);
781 dev_state->max_pasids = pasids; 783 dev_state->max_pasids = pasids;
782 784
783 ret = -ENOMEM; 785 ret = -ENOMEM;
784 dev_state->states = (void *)get_zeroed_page(GFP_KERNEL); 786 dev_state->states = (void *)get_zeroed_page(GFP_KERNEL);
785 if (dev_state->states == NULL) 787 if (dev_state->states == NULL)
786 goto out_free_dev_state; 788 goto out_free_dev_state;
787 789
788 dev_state->domain = iommu_domain_alloc(&pci_bus_type); 790 dev_state->domain = iommu_domain_alloc(&pci_bus_type);
789 if (dev_state->domain == NULL) 791 if (dev_state->domain == NULL)
790 goto out_free_states; 792 goto out_free_states;
791 793
792 amd_iommu_domain_direct_map(dev_state->domain); 794 amd_iommu_domain_direct_map(dev_state->domain);
793 795
794 ret = amd_iommu_domain_enable_v2(dev_state->domain, pasids); 796 ret = amd_iommu_domain_enable_v2(dev_state->domain, pasids);
795 if (ret) 797 if (ret)
796 goto out_free_domain; 798 goto out_free_domain;
797 799
798 ret = iommu_attach_device(dev_state->domain, &pdev->dev); 800 ret = iommu_attach_device(dev_state->domain, &pdev->dev);
799 if (ret != 0) 801 if (ret != 0)
800 goto out_free_domain; 802 goto out_free_domain;
801 803
802 spin_lock_irqsave(&state_lock, flags); 804 spin_lock_irqsave(&state_lock, flags);
803 805
804 if (state_table[devid] != NULL) { 806 if (state_table[devid] != NULL) {
805 spin_unlock_irqrestore(&state_lock, flags); 807 spin_unlock_irqrestore(&state_lock, flags);
806 ret = -EBUSY; 808 ret = -EBUSY;
807 goto out_free_domain; 809 goto out_free_domain;
808 } 810 }
809 811
810 state_table[devid] = dev_state; 812 state_table[devid] = dev_state;
811 813
812 spin_unlock_irqrestore(&state_lock, flags); 814 spin_unlock_irqrestore(&state_lock, flags);
813 815
814 return 0; 816 return 0;
815 817
816 out_free_domain: 818 out_free_domain:
817 iommu_domain_free(dev_state->domain); 819 iommu_domain_free(dev_state->domain);
818 820
819 out_free_states: 821 out_free_states:
820 free_page((unsigned long)dev_state->states); 822 free_page((unsigned long)dev_state->states);
821 823
822 out_free_dev_state: 824 out_free_dev_state:
823 kfree(dev_state); 825 kfree(dev_state);
824 826
825 return ret; 827 return ret;
826 } 828 }
827 EXPORT_SYMBOL(amd_iommu_init_device); 829 EXPORT_SYMBOL(amd_iommu_init_device);
828 830
829 void amd_iommu_free_device(struct pci_dev *pdev) 831 void amd_iommu_free_device(struct pci_dev *pdev)
830 { 832 {
831 struct device_state *dev_state; 833 struct device_state *dev_state;
832 unsigned long flags; 834 unsigned long flags;
833 u16 devid; 835 u16 devid;
834 836
835 if (!amd_iommu_v2_supported()) 837 if (!amd_iommu_v2_supported())
836 return; 838 return;
837 839
838 devid = device_id(pdev); 840 devid = device_id(pdev);
839 841
840 spin_lock_irqsave(&state_lock, flags); 842 spin_lock_irqsave(&state_lock, flags);
841 843
842 dev_state = state_table[devid]; 844 dev_state = state_table[devid];
843 if (dev_state == NULL) { 845 if (dev_state == NULL) {
844 spin_unlock_irqrestore(&state_lock, flags); 846 spin_unlock_irqrestore(&state_lock, flags);
845 return; 847 return;
846 } 848 }
847 849
848 state_table[devid] = NULL; 850 state_table[devid] = NULL;
849 851
850 spin_unlock_irqrestore(&state_lock, flags); 852 spin_unlock_irqrestore(&state_lock, flags);
851 853
852 /* Get rid of any remaining pasid states */ 854 /* Get rid of any remaining pasid states */
853 free_pasid_states(dev_state); 855 free_pasid_states(dev_state);
854 856
855 put_device_state_wait(dev_state); 857 put_device_state_wait(dev_state);
856 } 858 }
857 EXPORT_SYMBOL(amd_iommu_free_device); 859 EXPORT_SYMBOL(amd_iommu_free_device);
858 860
859 int amd_iommu_set_invalid_ppr_cb(struct pci_dev *pdev, 861 int amd_iommu_set_invalid_ppr_cb(struct pci_dev *pdev,
860 amd_iommu_invalid_ppr_cb cb) 862 amd_iommu_invalid_ppr_cb cb)
861 { 863 {
862 struct device_state *dev_state; 864 struct device_state *dev_state;
863 unsigned long flags; 865 unsigned long flags;
864 u16 devid; 866 u16 devid;
865 int ret; 867 int ret;
866 868
867 if (!amd_iommu_v2_supported()) 869 if (!amd_iommu_v2_supported())
868 return -ENODEV; 870 return -ENODEV;
869 871
870 devid = device_id(pdev); 872 devid = device_id(pdev);
871 873
872 spin_lock_irqsave(&state_lock, flags); 874 spin_lock_irqsave(&state_lock, flags);
873 875
874 ret = -EINVAL; 876 ret = -EINVAL;
875 dev_state = state_table[devid]; 877 dev_state = state_table[devid];
876 if (dev_state == NULL) 878 if (dev_state == NULL)
877 goto out_unlock; 879 goto out_unlock;
878 880
879 dev_state->inv_ppr_cb = cb; 881 dev_state->inv_ppr_cb = cb;
880 882
881 ret = 0; 883 ret = 0;
882 884
883 out_unlock: 885 out_unlock:
884 spin_unlock_irqrestore(&state_lock, flags); 886 spin_unlock_irqrestore(&state_lock, flags);
885 887
886 return ret; 888 return ret;
887 } 889 }
888 EXPORT_SYMBOL(amd_iommu_set_invalid_ppr_cb); 890 EXPORT_SYMBOL(amd_iommu_set_invalid_ppr_cb);
889 891
890 int amd_iommu_set_invalidate_ctx_cb(struct pci_dev *pdev, 892 int amd_iommu_set_invalidate_ctx_cb(struct pci_dev *pdev,
891 amd_iommu_invalidate_ctx cb) 893 amd_iommu_invalidate_ctx cb)
892 { 894 {
893 struct device_state *dev_state; 895 struct device_state *dev_state;
894 unsigned long flags; 896 unsigned long flags;
895 u16 devid; 897 u16 devid;
896 int ret; 898 int ret;
897 899
898 if (!amd_iommu_v2_supported()) 900 if (!amd_iommu_v2_supported())
899 return -ENODEV; 901 return -ENODEV;
900 902
901 devid = device_id(pdev); 903 devid = device_id(pdev);
902 904
903 spin_lock_irqsave(&state_lock, flags); 905 spin_lock_irqsave(&state_lock, flags);
904 906
905 ret = -EINVAL; 907 ret = -EINVAL;
906 dev_state = state_table[devid]; 908 dev_state = state_table[devid];
907 if (dev_state == NULL) 909 if (dev_state == NULL)
908 goto out_unlock; 910 goto out_unlock;
909 911
910 dev_state->inv_ctx_cb = cb; 912 dev_state->inv_ctx_cb = cb;
911 913
912 ret = 0; 914 ret = 0;
913 915
914 out_unlock: 916 out_unlock:
915 spin_unlock_irqrestore(&state_lock, flags); 917 spin_unlock_irqrestore(&state_lock, flags);
916 918
917 return ret; 919 return ret;
918 } 920 }
919 EXPORT_SYMBOL(amd_iommu_set_invalidate_ctx_cb); 921 EXPORT_SYMBOL(amd_iommu_set_invalidate_ctx_cb);
920 922
921 static int __init amd_iommu_v2_init(void) 923 static int __init amd_iommu_v2_init(void)
922 { 924 {
923 size_t state_table_size; 925 size_t state_table_size;
924 int ret; 926 int ret;
925 927
926 pr_info("AMD IOMMUv2 driver by Joerg Roedel <joerg.roedel@amd.com>\n"); 928 pr_info("AMD IOMMUv2 driver by Joerg Roedel <joerg.roedel@amd.com>\n");
927 929
928 if (!amd_iommu_v2_supported()) { 930 if (!amd_iommu_v2_supported()) {
929 pr_info("AMD IOMMUv2 functionality not available on this system\n"); 931 pr_info("AMD IOMMUv2 functionality not available on this system\n");
930 /* 932 /*
931 * Load anyway to provide the symbols to other modules 933 * Load anyway to provide the symbols to other modules
932 * which may use AMD IOMMUv2 optionally. 934 * which may use AMD IOMMUv2 optionally.
933 */ 935 */
934 return 0; 936 return 0;
935 } 937 }
936 938
937 spin_lock_init(&state_lock); 939 spin_lock_init(&state_lock);
938 940
939 state_table_size = MAX_DEVICES * sizeof(struct device_state *); 941 state_table_size = MAX_DEVICES * sizeof(struct device_state *);
940 state_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 942 state_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
941 get_order(state_table_size)); 943 get_order(state_table_size));
942 if (state_table == NULL) 944 if (state_table == NULL)
943 return -ENOMEM; 945 return -ENOMEM;
944 946
945 ret = -ENOMEM; 947 ret = -ENOMEM;
946 iommu_wq = create_workqueue("amd_iommu_v2"); 948 iommu_wq = create_workqueue("amd_iommu_v2");
947 if (iommu_wq == NULL) 949 if (iommu_wq == NULL)
948 goto out_free; 950 goto out_free;
949 951
950 ret = -ENOMEM; 952 ret = -ENOMEM;
951 empty_page_table = (u64 *)get_zeroed_page(GFP_KERNEL); 953 empty_page_table = (u64 *)get_zeroed_page(GFP_KERNEL);
952 if (empty_page_table == NULL) 954 if (empty_page_table == NULL)
953 goto out_destroy_wq; 955 goto out_destroy_wq;
954 956
955 amd_iommu_register_ppr_notifier(&ppr_nb); 957 amd_iommu_register_ppr_notifier(&ppr_nb);
956 profile_event_register(PROFILE_TASK_EXIT, &profile_nb); 958 profile_event_register(PROFILE_TASK_EXIT, &profile_nb);
957 959
958 return 0; 960 return 0;
959 961
960 out_destroy_wq: 962 out_destroy_wq:
961 destroy_workqueue(iommu_wq); 963 destroy_workqueue(iommu_wq);
962 964
963 out_free: 965 out_free:
964 free_pages((unsigned long)state_table, get_order(state_table_size)); 966 free_pages((unsigned long)state_table, get_order(state_table_size));
965 967
966 return ret; 968 return ret;
967 } 969 }
968 970
969 static void __exit amd_iommu_v2_exit(void) 971 static void __exit amd_iommu_v2_exit(void)
970 { 972 {
971 struct device_state *dev_state; 973 struct device_state *dev_state;
972 size_t state_table_size; 974 size_t state_table_size;
973 int i; 975 int i;
974 976
975 if (!amd_iommu_v2_supported()) 977 if (!amd_iommu_v2_supported())
976 return; 978 return;
977 979
978 profile_event_unregister(PROFILE_TASK_EXIT, &profile_nb); 980 profile_event_unregister(PROFILE_TASK_EXIT, &profile_nb);
979 amd_iommu_unregister_ppr_notifier(&ppr_nb); 981 amd_iommu_unregister_ppr_notifier(&ppr_nb);
980 982
981 flush_workqueue(iommu_wq); 983 flush_workqueue(iommu_wq);
982 984
983 /* 985 /*
984 * The loop below might call flush_workqueue(), so call 986 * The loop below might call flush_workqueue(), so call
985 * destroy_workqueue() after it 987 * destroy_workqueue() after it
986 */ 988 */
987 for (i = 0; i < MAX_DEVICES; ++i) { 989 for (i = 0; i < MAX_DEVICES; ++i) {
988 dev_state = get_device_state(i); 990 dev_state = get_device_state(i);
989 991
990 if (dev_state == NULL) 992 if (dev_state == NULL)
991 continue; 993 continue;
992 994
993 WARN_ON_ONCE(1); 995 WARN_ON_ONCE(1);
994 996
995 put_device_state(dev_state); 997 put_device_state(dev_state);
996 amd_iommu_free_device(dev_state->pdev); 998 amd_iommu_free_device(dev_state->pdev);
997 } 999 }
998 1000
999 destroy_workqueue(iommu_wq); 1001 destroy_workqueue(iommu_wq);
1000 1002
1001 state_table_size = MAX_DEVICES * sizeof(struct device_state *); 1003 state_table_size = MAX_DEVICES * sizeof(struct device_state *);
1002 free_pages((unsigned long)state_table, get_order(state_table_size)); 1004 free_pages((unsigned long)state_table, get_order(state_table_size));
1003 1005
1004 free_page((unsigned long)empty_page_table); 1006 free_page((unsigned long)empty_page_table);
1005 } 1007 }
1006 1008
1007 module_init(amd_iommu_v2_init); 1009 module_init(amd_iommu_v2_init);
1008 module_exit(amd_iommu_v2_exit); 1010 module_exit(amd_iommu_v2_exit);
1009 1011