Commit c75e4b05b591b6c134b7e66c1ea39757f452f1e8

Authored by Daniel Borkmann
Committed by Greg Kroah-Hartman
1 parent e452612a3d

net: sctp: fix slab corruption from use after free on INIT collisions

[ Upstream commit 600ddd6825543962fb807884169e57b580dba208 ]

When hitting an INIT collision case during the 4WHS with AUTH enabled, as
already described in detail in commit 1be9a950c646 ("net: sctp: inherit
auth_capable on INIT collisions"), it can happen that we occasionally
still remotely trigger the following panic on server side which seems to
have been uncovered after the fix from commit 1be9a950c646 ...

[  533.876389] BUG: unable to handle kernel paging request at 00000000ffffffff
[  533.913657] IP: [<ffffffff811ac385>] __kmalloc+0x95/0x230
[  533.940559] PGD 5030f2067 PUD 0
[  533.957104] Oops: 0000 [#1] SMP
[  533.974283] Modules linked in: sctp mlx4_en [...]
[  534.939704] Call Trace:
[  534.951833]  [<ffffffff81294e30>] ? crypto_init_shash_ops+0x60/0xf0
[  534.984213]  [<ffffffff81294e30>] crypto_init_shash_ops+0x60/0xf0
[  535.015025]  [<ffffffff8128c8ed>] __crypto_alloc_tfm+0x6d/0x170
[  535.045661]  [<ffffffff8128d12c>] crypto_alloc_base+0x4c/0xb0
[  535.074593]  [<ffffffff8160bd42>] ? _raw_spin_lock_bh+0x12/0x50
[  535.105239]  [<ffffffffa0418c11>] sctp_inet_listen+0x161/0x1e0 [sctp]
[  535.138606]  [<ffffffff814e43bd>] SyS_listen+0x9d/0xb0
[  535.166848]  [<ffffffff816149a9>] system_call_fastpath+0x16/0x1b

... or depending on the the application, for example this one:

[ 1370.026490] BUG: unable to handle kernel paging request at 00000000ffffffff
[ 1370.026506] IP: [<ffffffff811ab455>] kmem_cache_alloc+0x75/0x1d0
[ 1370.054568] PGD 633c94067 PUD 0
[ 1370.070446] Oops: 0000 [#1] SMP
[ 1370.085010] Modules linked in: sctp kvm_amd kvm [...]
[ 1370.963431] Call Trace:
[ 1370.974632]  [<ffffffff8120f7cf>] ? SyS_epoll_ctl+0x53f/0x960
[ 1371.000863]  [<ffffffff8120f7cf>] SyS_epoll_ctl+0x53f/0x960
[ 1371.027154]  [<ffffffff812100d3>] ? anon_inode_getfile+0xd3/0x170
[ 1371.054679]  [<ffffffff811e3d67>] ? __alloc_fd+0xa7/0x130
[ 1371.080183]  [<ffffffff816149a9>] system_call_fastpath+0x16/0x1b

With slab debugging enabled, we can see that the poison has been overwritten:

[  669.826368] BUG kmalloc-128 (Tainted: G        W     ): Poison overwritten
[  669.826385] INFO: 0xffff880228b32e50-0xffff880228b32e50. First byte 0x6a instead of 0x6b
[  669.826414] INFO: Allocated in sctp_auth_create_key+0x23/0x50 [sctp] age=3 cpu=0 pid=18494
[  669.826424]  __slab_alloc+0x4bf/0x566
[  669.826433]  __kmalloc+0x280/0x310
[  669.826453]  sctp_auth_create_key+0x23/0x50 [sctp]
[  669.826471]  sctp_auth_asoc_create_secret+0xcb/0x1e0 [sctp]
[  669.826488]  sctp_auth_asoc_init_active_key+0x68/0xa0 [sctp]
[  669.826505]  sctp_do_sm+0x29d/0x17c0 [sctp] [...]
[  669.826629] INFO: Freed in kzfree+0x31/0x40 age=1 cpu=0 pid=18494
[  669.826635]  __slab_free+0x39/0x2a8
[  669.826643]  kfree+0x1d6/0x230
[  669.826650]  kzfree+0x31/0x40
[  669.826666]  sctp_auth_key_put+0x19/0x20 [sctp]
[  669.826681]  sctp_assoc_update+0x1ee/0x2d0 [sctp]
[  669.826695]  sctp_do_sm+0x674/0x17c0 [sctp]

Since this only triggers in some collision-cases with AUTH, the problem at
heart is that sctp_auth_key_put() on asoc->asoc_shared_key is called twice
when having refcnt 1, once directly in sctp_assoc_update() and yet again
from within sctp_auth_asoc_init_active_key() via sctp_assoc_update() on
the already kzfree'd memory, which is also consistent with the observation
of the poison decrease from 0x6b to 0x6a (note: the overwrite is detected
at a later point in time when poison is checked on new allocation).

Reference counting of auth keys revisited:

Shared keys for AUTH chunks are being stored in endpoints and associations
in endpoint_shared_keys list. On endpoint creation, a null key is being
added; on association creation, all endpoint shared keys are being cached
and thus cloned over to the association. struct sctp_shared_key only holds
a pointer to the actual key bytes, that is, struct sctp_auth_bytes which
keeps track of users internally through refcounting. Naturally, on assoc
or enpoint destruction, sctp_shared_key are being destroyed directly and
the reference on sctp_auth_bytes dropped.

User space can add keys to either list via setsockopt(2) through struct
sctp_authkey and by passing that to sctp_auth_set_key() which replaces or
adds a new auth key. There, sctp_auth_create_key() creates a new sctp_auth_bytes
with refcount 1 and in case of replacement drops the reference on the old
sctp_auth_bytes. A key can be set active from user space through setsockopt()
on the id via sctp_auth_set_active_key(), which iterates through either
endpoint_shared_keys and in case of an assoc, invokes (one of various places)
sctp_auth_asoc_init_active_key().

sctp_auth_asoc_init_active_key() computes the actual secret from local's
and peer's random, hmac and shared key parameters and returns a new key
directly as sctp_auth_bytes, that is asoc->asoc_shared_key, plus drops
the reference if there was a previous one. The secret, which where we
eventually double drop the ref comes from sctp_auth_asoc_set_secret() with
intitial refcount of 1, which also stays unchanged eventually in
sctp_assoc_update(). This key is later being used for crypto layer to
set the key for the hash in crypto_hash_setkey() from sctp_auth_calculate_hmac().

To close the loop: asoc->asoc_shared_key is freshly allocated secret
material and independant of the sctp_shared_key management keeping track
of only shared keys in endpoints and assocs. Hence, also commit 4184b2a79a76
("net: sctp: fix memory leak in auth key management") is independant of
this bug here since it concerns a different layer (though same structures
being used eventually). asoc->asoc_shared_key is reference dropped correctly
on assoc destruction in sctp_association_free() and when active keys are
being replaced in sctp_auth_asoc_init_active_key(), it always has a refcount
of 1. Hence, it's freed prematurely in sctp_assoc_update(). Simple fix is
to remove that sctp_auth_key_put() from there which fixes these panics.

Fixes: 730fc3d05cd4 ("[SCTP]: Implete SCTP-AUTH parameter processing")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Showing 1 changed file with 0 additions and 1 deletions Inline Diff

net/sctp/associola.c
1 /* SCTP kernel implementation 1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004 2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp. 5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll 6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 * 7 *
8 * This file is part of the SCTP kernel implementation 8 * This file is part of the SCTP kernel implementation
9 * 9 *
10 * This module provides the abstraction for an SCTP association. 10 * This module provides the abstraction for an SCTP association.
11 * 11 *
12 * This SCTP implementation is free software; 12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of 13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by 14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option) 15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version. 16 * any later version.
17 * 17 *
18 * This SCTP implementation is distributed in the hope that it 18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************ 20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details. 22 * See the GNU General Public License for more details.
23 * 23 *
24 * You should have received a copy of the GNU General Public License 24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see 25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>. 26 * <http://www.gnu.org/licenses/>.
27 * 27 *
28 * Please send any bug reports or fixes you make to the 28 * Please send any bug reports or fixes you make to the
29 * email address(es): 29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org> 30 * lksctp developers <linux-sctp@vger.kernel.org>
31 * 31 *
32 * Written or modified by: 32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org> 33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us> 34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com> 35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com> 36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com> 37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com> 38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com> 39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com> 40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com> 41 * Kevin Gao <kevin.gao@intel.com>
42 */ 42 */
43 43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 45
46 #include <linux/types.h> 46 #include <linux/types.h>
47 #include <linux/fcntl.h> 47 #include <linux/fcntl.h>
48 #include <linux/poll.h> 48 #include <linux/poll.h>
49 #include <linux/init.h> 49 #include <linux/init.h>
50 50
51 #include <linux/slab.h> 51 #include <linux/slab.h>
52 #include <linux/in.h> 52 #include <linux/in.h>
53 #include <net/ipv6.h> 53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h> 54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h> 55 #include <net/sctp/sm.h>
56 56
57 /* Forward declarations for internal functions. */ 57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc); 58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work); 59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); 61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 62
63 /* 1st Level Abstractions. */ 63 /* 1st Level Abstractions. */
64 64
65 /* Initialize a new association from provided memory. */ 65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep, 67 const struct sctp_endpoint *ep,
68 const struct sock *sk, 68 const struct sock *sk,
69 sctp_scope_t scope, 69 sctp_scope_t scope,
70 gfp_t gfp) 70 gfp_t gfp)
71 { 71 {
72 struct net *net = sock_net(sk); 72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp; 73 struct sctp_sock *sp;
74 int i; 74 int i;
75 sctp_paramhdr_t *p; 75 sctp_paramhdr_t *p;
76 int err; 76 int err;
77 77
78 /* Retrieve the SCTP per socket area. */ 78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk); 79 sp = sctp_sk((struct sock *)sk);
80 80
81 /* Discarding const is appropriate here. */ 81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep; 82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk; 83 asoc->base.sk = (struct sock *)sk;
84 84
85 sctp_endpoint_hold(asoc->ep); 85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk); 86 sock_hold(asoc->base.sk);
87 87
88 /* Initialize the common base substructure. */ 88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 90
91 /* Initialize the object handling fields. */ 91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1); 92 atomic_set(&asoc->base.refcnt, 1);
93 93
94 /* Initialize the bind addr area. */ 94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 96
97 asoc->state = SCTP_STATE_CLOSED; 97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); 98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag; 99 asoc->user_frag = sp->user_frag;
100 100
101 /* Set the association max_retrans and RTO values from the 101 /* Set the association max_retrans and RTO values from the
102 * socket values. 102 * socket values.
103 */ 103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans; 105 asoc->pf_retrans = net->sctp.pf_retrans;
106 106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 110
111 /* Initialize the association's heartbeat interval based on the 111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value. 112 * sock configured value.
113 */ 113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 115
116 /* Initialize path max retrans value. */ 116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt; 117 asoc->pathmaxrxt = sp->pathmaxrxt;
118 118
119 /* Initialize default path MTU. */ 119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu; 120 asoc->pathmtu = sp->pathmtu;
121 121
122 /* Set association default SACK delay */ 122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq; 124 asoc->sackfreq = sp->sackfreq;
125 125
126 /* Set the association default flags controlling 126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery. 127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */ 128 */
129 asoc->param_flags = sp->param_flags; 129 asoc->param_flags = sp->param_flags;
130 130
131 /* Initialize the maximum number of new data packets that can be sent 131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst. 132 * in a burst.
133 */ 133 */
134 asoc->max_burst = sp->max_burst; 134 asoc->max_burst = sp->max_burst;
135 135
136 /* initialize association timers */ 136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140 140
141 /* sctpimpguide Section 2.12.2 141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'. 143 * recommended value of 5 times 'RTO.Max'.
144 */ 144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max; 146 = 5 * asoc->rto_max;
147 147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; 149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150 150
151 /* Initializes the timers */ 151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i], 153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc); 154 (unsigned long)asoc);
155 155
156 /* Pull default initialization values from the sock options. 156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been 157 * Note: This assumes that the values have already been
158 * validated in the sock. 158 * validated in the sock.
159 */ 159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163 163
164 asoc->max_init_timeo = 164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 166
167 /* Set the local window size for receive. 167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association. 168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet. 170 * 1500 bytes in one SCTP packet.
171 */ 171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else 174 else
175 asoc->rwnd = sk->sk_rcvbuf/2; 175 asoc->rwnd = sk->sk_rcvbuf/2;
176 176
177 asoc->a_rwnd = asoc->rwnd; 177 asoc->a_rwnd = asoc->rwnd;
178 178
179 /* Use my own max window until I learn something better. */ 179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 181
182 /* Initialize the receive memory counter */ 182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0); 183 atomic_set(&asoc->rmem_alloc, 0);
184 184
185 init_waitqueue_head(&asoc->wait); 185 init_waitqueue_head(&asoc->wait);
186 186
187 asoc->c.my_vtag = sctp_generate_tag(ep); 187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port; 188 asoc->c.my_port = ep->base.bind_addr.port;
189 189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep); 190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 191
192 asoc->next_tsn = asoc->c.initial_tsn; 192 asoc->next_tsn = asoc->c.initial_tsn;
193 193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1; 194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point; 196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures 199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 * 200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the 201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following: 202 * remote endpoint it should do the following:
203 * ... 203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial 204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial 205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the 206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN. 207 * association to the same value as the initial TSN.
208 */ 208 */
209 asoc->addip_serial = asoc->c.initial_tsn; 209 asoc->addip_serial = asoc->c.initial_tsn;
210 210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list); 211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list); 212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 213
214 /* Make an empty list of remote transport addresses. */ 214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 216
217 /* RFC 2960 5.1 Normal Establishment of an Association 217 /* RFC 2960 5.1 Normal Establishment of an Association
218 * 218 *
219 * After the reception of the first data chunk in an 219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a 220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent 221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section 222 * acknowledgements should be done as described in Section
223 * 6.2. 223 * 6.2.
224 * 224 *
225 * [We implement this by telling a new association that it 225 * [We implement this by telling a new association that it
226 * already received one packet.] 226 * already received one packet.]
227 */ 227 */
228 asoc->peer.sack_needed = 1; 228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1; 229 asoc->peer.sack_generation = 1;
230 230
231 /* Assume that the peer will tell us if he recognizes ASCONF 231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange. 232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility 233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior. 234 * and will revert old behavior.
235 */ 235 */
236 if (net->sctp.addip_noauth) 236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1; 237 asoc->peer.asconf_capable = 1;
238 238
239 /* Create an input queue. */ 239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue); 240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 242
243 /* Create an output queue. */ 243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue); 244 sctp_outq_init(asoc, &asoc->outqueue);
245 245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init; 247 goto fail_init;
248 248
249 /* Assume that peer would support both address types unless we are 249 /* Assume that peer would support both address types unless we are
250 * told otherwise. 250 * told otherwise.
251 */ 251 */
252 asoc->peer.ipv4_address = 1; 252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6) 253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1; 254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs); 255 INIT_LIST_HEAD(&asoc->asocs);
256 256
257 asoc->default_stream = sp->default_stream; 257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid; 258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags; 259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context; 260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive; 261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context; 262 asoc->default_rcv_context = sp->default_rcv_context;
263 263
264 /* AUTH related initializations */ 264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err) 267 if (err)
268 goto fail_init; 268 goto fail_init;
269 269
270 asoc->active_key_id = ep->active_key_id; 270 asoc->active_key_id = ep->active_key_id;
271 271
272 /* Save the hmacs and chunks list into this association */ 272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list) 273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length)); 275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list) 276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length)); 278 ntohs(ep->auth_chunk_list->param_hdr.length));
279 279
280 /* Get the AUTH random number for this association */ 280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random; 281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM; 282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285 285
286 return asoc; 286 return asoc;
287 287
288 fail_init: 288 fail_init:
289 sock_put(asoc->base.sk); 289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep); 290 sctp_endpoint_put(asoc->ep);
291 return NULL; 291 return NULL;
292 } 292 }
293 293
294 /* Allocate and initialize a new association */ 294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk, 296 const struct sock *sk,
297 sctp_scope_t scope, 297 sctp_scope_t scope,
298 gfp_t gfp) 298 gfp_t gfp)
299 { 299 {
300 struct sctp_association *asoc; 300 struct sctp_association *asoc;
301 301
302 asoc = kzalloc(sizeof(*asoc), gfp); 302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc) 303 if (!asoc)
304 goto fail; 304 goto fail;
305 305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init; 307 goto fail_init;
308 308
309 SCTP_DBG_OBJCNT_INC(assoc); 309 SCTP_DBG_OBJCNT_INC(assoc);
310 310
311 pr_debug("Created asoc %p\n", asoc); 311 pr_debug("Created asoc %p\n", asoc);
312 312
313 return asoc; 313 return asoc;
314 314
315 fail_init: 315 fail_init:
316 kfree(asoc); 316 kfree(asoc);
317 fail: 317 fail:
318 return NULL; 318 return NULL;
319 } 319 }
320 320
321 /* Free this association if possible. There may still be users, so 321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed. 322 * the actual deallocation may be delayed.
323 */ 323 */
324 void sctp_association_free(struct sctp_association *asoc) 324 void sctp_association_free(struct sctp_association *asoc)
325 { 325 {
326 struct sock *sk = asoc->base.sk; 326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport; 327 struct sctp_transport *transport;
328 struct list_head *pos, *temp; 328 struct list_head *pos, *temp;
329 int i; 329 int i;
330 330
331 /* Only real associations count against the endpoint, so 331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association. 332 * don't bother for if this is a temporary association.
333 */ 333 */
334 if (!list_empty(&asoc->asocs)) { 334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs); 335 list_del(&asoc->asocs);
336 336
337 /* Decrement the backlog value for a TCP-style listening 337 /* Decrement the backlog value for a TCP-style listening
338 * socket. 338 * socket.
339 */ 339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--; 341 sk->sk_ack_backlog--;
342 } 342 }
343 343
344 /* Mark as dead, so other users can know this structure is 344 /* Mark as dead, so other users can know this structure is
345 * going away. 345 * going away.
346 */ 346 */
347 asoc->base.dead = true; 347 asoc->base.dead = true;
348 348
349 /* Dispose of any data lying around in the outqueue. */ 349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue); 350 sctp_outq_free(&asoc->outqueue);
351 351
352 /* Dispose of any pending messages for the upper layer. */ 352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq); 353 sctp_ulpq_free(&asoc->ulpq);
354 354
355 /* Dispose of any pending chunks on the inqueue. */ 355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue); 356 sctp_inq_free(&asoc->base.inqueue);
357 357
358 sctp_tsnmap_free(&asoc->peer.tsn_map); 358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359 359
360 /* Free ssnmap storage. */ 360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap); 361 sctp_ssnmap_free(asoc->ssnmap);
362 362
363 /* Clean up the bound address list. */ 363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr); 364 sctp_bind_addr_free(&asoc->base.bind_addr);
365 365
366 /* Do we need to go through all of our timers and 366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we 367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based 368 * should be able to go through and make a guess based
369 * on our state. 369 * on our state.
370 */ 370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i])) 372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc); 373 sctp_association_put(asoc);
374 } 374 }
375 375
376 /* Free peer's cached cookie. */ 376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie); 377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random); 378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks); 379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs); 380 kfree(asoc->peer.peer_hmacs);
381 381
382 /* Release the transport structures. */ 382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports); 384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos); 385 list_del_rcu(pos);
386 sctp_transport_free(transport); 386 sctp_transport_free(transport);
387 } 387 }
388 388
389 asoc->peer.transport_count = 0; 389 asoc->peer.transport_count = 0;
390 390
391 sctp_asconf_queue_teardown(asoc); 391 sctp_asconf_queue_teardown(asoc);
392 392
393 /* Free pending address space being deleted */ 393 /* Free pending address space being deleted */
394 if (asoc->asconf_addr_del_pending != NULL) 394 if (asoc->asconf_addr_del_pending != NULL)
395 kfree(asoc->asconf_addr_del_pending); 395 kfree(asoc->asconf_addr_del_pending);
396 396
397 /* AUTH - Free the endpoint shared keys */ 397 /* AUTH - Free the endpoint shared keys */
398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399 399
400 /* AUTH - Free the association shared key */ 400 /* AUTH - Free the association shared key */
401 sctp_auth_key_put(asoc->asoc_shared_key); 401 sctp_auth_key_put(asoc->asoc_shared_key);
402 402
403 sctp_association_put(asoc); 403 sctp_association_put(asoc);
404 } 404 }
405 405
406 /* Cleanup and free up an association. */ 406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc) 407 static void sctp_association_destroy(struct sctp_association *asoc)
408 { 408 {
409 if (unlikely(!asoc->base.dead)) { 409 if (unlikely(!asoc->base.dead)) {
410 WARN(1, "Attempt to destroy undead association %p!\n", asoc); 410 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 return; 411 return;
412 } 412 }
413 413
414 sctp_endpoint_put(asoc->ep); 414 sctp_endpoint_put(asoc->ep);
415 sock_put(asoc->base.sk); 415 sock_put(asoc->base.sk);
416 416
417 if (asoc->assoc_id != 0) { 417 if (asoc->assoc_id != 0) {
418 spin_lock_bh(&sctp_assocs_id_lock); 418 spin_lock_bh(&sctp_assocs_id_lock);
419 idr_remove(&sctp_assocs_id, asoc->assoc_id); 419 idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 spin_unlock_bh(&sctp_assocs_id_lock); 420 spin_unlock_bh(&sctp_assocs_id_lock);
421 } 421 }
422 422
423 WARN_ON(atomic_read(&asoc->rmem_alloc)); 423 WARN_ON(atomic_read(&asoc->rmem_alloc));
424 424
425 kfree(asoc); 425 kfree(asoc);
426 SCTP_DBG_OBJCNT_DEC(assoc); 426 SCTP_DBG_OBJCNT_DEC(assoc);
427 } 427 }
428 428
429 /* Change the primary destination address for the peer. */ 429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc, 430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 struct sctp_transport *transport) 431 struct sctp_transport *transport)
432 { 432 {
433 int changeover = 0; 433 int changeover = 0;
434 434
435 /* it's a changeover only if we already have a primary path 435 /* it's a changeover only if we already have a primary path
436 * that we are changing 436 * that we are changing
437 */ 437 */
438 if (asoc->peer.primary_path != NULL && 438 if (asoc->peer.primary_path != NULL &&
439 asoc->peer.primary_path != transport) 439 asoc->peer.primary_path != transport)
440 changeover = 1 ; 440 changeover = 1 ;
441 441
442 asoc->peer.primary_path = transport; 442 asoc->peer.primary_path = transport;
443 443
444 /* Set a default msg_name for events. */ 444 /* Set a default msg_name for events. */
445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 sizeof(union sctp_addr)); 446 sizeof(union sctp_addr));
447 447
448 /* If the primary path is changing, assume that the 448 /* If the primary path is changing, assume that the
449 * user wants to use this new path. 449 * user wants to use this new path.
450 */ 450 */
451 if ((transport->state == SCTP_ACTIVE) || 451 if ((transport->state == SCTP_ACTIVE) ||
452 (transport->state == SCTP_UNKNOWN)) 452 (transport->state == SCTP_UNKNOWN))
453 asoc->peer.active_path = transport; 453 asoc->peer.active_path = transport;
454 454
455 /* 455 /*
456 * SFR-CACC algorithm: 456 * SFR-CACC algorithm:
457 * Upon the receipt of a request to change the primary 457 * Upon the receipt of a request to change the primary
458 * destination address, on the data structure for the new 458 * destination address, on the data structure for the new
459 * primary destination, the sender MUST do the following: 459 * primary destination, the sender MUST do the following:
460 * 460 *
461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 * to this destination address earlier. The sender MUST set 462 * to this destination address earlier. The sender MUST set
463 * CYCLING_CHANGEOVER to indicate that this switch is a 463 * CYCLING_CHANGEOVER to indicate that this switch is a
464 * double switch to the same destination address. 464 * double switch to the same destination address.
465 * 465 *
466 * Really, only bother is we have data queued or outstanding on 466 * Really, only bother is we have data queued or outstanding on
467 * the association. 467 * the association.
468 */ 468 */
469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 return; 470 return;
471 471
472 if (transport->cacc.changeover_active) 472 if (transport->cacc.changeover_active)
473 transport->cacc.cycling_changeover = changeover; 473 transport->cacc.cycling_changeover = changeover;
474 474
475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 * a changeover has occurred. 476 * a changeover has occurred.
477 */ 477 */
478 transport->cacc.changeover_active = changeover; 478 transport->cacc.changeover_active = changeover;
479 479
480 /* 3) The sender MUST store the next TSN to be sent in 480 /* 3) The sender MUST store the next TSN to be sent in
481 * next_tsn_at_change. 481 * next_tsn_at_change.
482 */ 482 */
483 transport->cacc.next_tsn_at_change = asoc->next_tsn; 483 transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 } 484 }
485 485
486 /* Remove a transport from an association. */ 486 /* Remove a transport from an association. */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc, 487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 struct sctp_transport *peer) 488 struct sctp_transport *peer)
489 { 489 {
490 struct list_head *pos; 490 struct list_head *pos;
491 struct sctp_transport *transport; 491 struct sctp_transport *transport;
492 492
493 pr_debug("%s: association:%p addr:%pISpc\n", 493 pr_debug("%s: association:%p addr:%pISpc\n",
494 __func__, asoc, &peer->ipaddr.sa); 494 __func__, asoc, &peer->ipaddr.sa);
495 495
496 /* If we are to remove the current retran_path, update it 496 /* If we are to remove the current retran_path, update it
497 * to the next peer before removing this peer from the list. 497 * to the next peer before removing this peer from the list.
498 */ 498 */
499 if (asoc->peer.retran_path == peer) 499 if (asoc->peer.retran_path == peer)
500 sctp_assoc_update_retran_path(asoc); 500 sctp_assoc_update_retran_path(asoc);
501 501
502 /* Remove this peer from the list. */ 502 /* Remove this peer from the list. */
503 list_del_rcu(&peer->transports); 503 list_del_rcu(&peer->transports);
504 504
505 /* Get the first transport of asoc. */ 505 /* Get the first transport of asoc. */
506 pos = asoc->peer.transport_addr_list.next; 506 pos = asoc->peer.transport_addr_list.next;
507 transport = list_entry(pos, struct sctp_transport, transports); 507 transport = list_entry(pos, struct sctp_transport, transports);
508 508
509 /* Update any entries that match the peer to be deleted. */ 509 /* Update any entries that match the peer to be deleted. */
510 if (asoc->peer.primary_path == peer) 510 if (asoc->peer.primary_path == peer)
511 sctp_assoc_set_primary(asoc, transport); 511 sctp_assoc_set_primary(asoc, transport);
512 if (asoc->peer.active_path == peer) 512 if (asoc->peer.active_path == peer)
513 asoc->peer.active_path = transport; 513 asoc->peer.active_path = transport;
514 if (asoc->peer.retran_path == peer) 514 if (asoc->peer.retran_path == peer)
515 asoc->peer.retran_path = transport; 515 asoc->peer.retran_path = transport;
516 if (asoc->peer.last_data_from == peer) 516 if (asoc->peer.last_data_from == peer)
517 asoc->peer.last_data_from = transport; 517 asoc->peer.last_data_from = transport;
518 518
519 /* If we remove the transport an INIT was last sent to, set it to 519 /* If we remove the transport an INIT was last sent to, set it to
520 * NULL. Combined with the update of the retran path above, this 520 * NULL. Combined with the update of the retran path above, this
521 * will cause the next INIT to be sent to the next available 521 * will cause the next INIT to be sent to the next available
522 * transport, maintaining the cycle. 522 * transport, maintaining the cycle.
523 */ 523 */
524 if (asoc->init_last_sent_to == peer) 524 if (asoc->init_last_sent_to == peer)
525 asoc->init_last_sent_to = NULL; 525 asoc->init_last_sent_to = NULL;
526 526
527 /* If we remove the transport an SHUTDOWN was last sent to, set it 527 /* If we remove the transport an SHUTDOWN was last sent to, set it
528 * to NULL. Combined with the update of the retran path above, this 528 * to NULL. Combined with the update of the retran path above, this
529 * will cause the next SHUTDOWN to be sent to the next available 529 * will cause the next SHUTDOWN to be sent to the next available
530 * transport, maintaining the cycle. 530 * transport, maintaining the cycle.
531 */ 531 */
532 if (asoc->shutdown_last_sent_to == peer) 532 if (asoc->shutdown_last_sent_to == peer)
533 asoc->shutdown_last_sent_to = NULL; 533 asoc->shutdown_last_sent_to = NULL;
534 534
535 /* If we remove the transport an ASCONF was last sent to, set it to 535 /* If we remove the transport an ASCONF was last sent to, set it to
536 * NULL. 536 * NULL.
537 */ 537 */
538 if (asoc->addip_last_asconf && 538 if (asoc->addip_last_asconf &&
539 asoc->addip_last_asconf->transport == peer) 539 asoc->addip_last_asconf->transport == peer)
540 asoc->addip_last_asconf->transport = NULL; 540 asoc->addip_last_asconf->transport = NULL;
541 541
542 /* If we have something on the transmitted list, we have to 542 /* If we have something on the transmitted list, we have to
543 * save it off. The best place is the active path. 543 * save it off. The best place is the active path.
544 */ 544 */
545 if (!list_empty(&peer->transmitted)) { 545 if (!list_empty(&peer->transmitted)) {
546 struct sctp_transport *active = asoc->peer.active_path; 546 struct sctp_transport *active = asoc->peer.active_path;
547 struct sctp_chunk *ch; 547 struct sctp_chunk *ch;
548 548
549 /* Reset the transport of each chunk on this list */ 549 /* Reset the transport of each chunk on this list */
550 list_for_each_entry(ch, &peer->transmitted, 550 list_for_each_entry(ch, &peer->transmitted,
551 transmitted_list) { 551 transmitted_list) {
552 ch->transport = NULL; 552 ch->transport = NULL;
553 ch->rtt_in_progress = 0; 553 ch->rtt_in_progress = 0;
554 } 554 }
555 555
556 list_splice_tail_init(&peer->transmitted, 556 list_splice_tail_init(&peer->transmitted,
557 &active->transmitted); 557 &active->transmitted);
558 558
559 /* Start a T3 timer here in case it wasn't running so 559 /* Start a T3 timer here in case it wasn't running so
560 * that these migrated packets have a chance to get 560 * that these migrated packets have a chance to get
561 * retransmitted. 561 * retransmitted.
562 */ 562 */
563 if (!timer_pending(&active->T3_rtx_timer)) 563 if (!timer_pending(&active->T3_rtx_timer))
564 if (!mod_timer(&active->T3_rtx_timer, 564 if (!mod_timer(&active->T3_rtx_timer,
565 jiffies + active->rto)) 565 jiffies + active->rto))
566 sctp_transport_hold(active); 566 sctp_transport_hold(active);
567 } 567 }
568 568
569 asoc->peer.transport_count--; 569 asoc->peer.transport_count--;
570 570
571 sctp_transport_free(peer); 571 sctp_transport_free(peer);
572 } 572 }
573 573
574 /* Add a transport address to an association. */ 574 /* Add a transport address to an association. */
575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
576 const union sctp_addr *addr, 576 const union sctp_addr *addr,
577 const gfp_t gfp, 577 const gfp_t gfp,
578 const int peer_state) 578 const int peer_state)
579 { 579 {
580 struct net *net = sock_net(asoc->base.sk); 580 struct net *net = sock_net(asoc->base.sk);
581 struct sctp_transport *peer; 581 struct sctp_transport *peer;
582 struct sctp_sock *sp; 582 struct sctp_sock *sp;
583 unsigned short port; 583 unsigned short port;
584 584
585 sp = sctp_sk(asoc->base.sk); 585 sp = sctp_sk(asoc->base.sk);
586 586
587 /* AF_INET and AF_INET6 share common port field. */ 587 /* AF_INET and AF_INET6 share common port field. */
588 port = ntohs(addr->v4.sin_port); 588 port = ntohs(addr->v4.sin_port);
589 589
590 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, 590 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
591 asoc, &addr->sa, peer_state); 591 asoc, &addr->sa, peer_state);
592 592
593 /* Set the port if it has not been set yet. */ 593 /* Set the port if it has not been set yet. */
594 if (0 == asoc->peer.port) 594 if (0 == asoc->peer.port)
595 asoc->peer.port = port; 595 asoc->peer.port = port;
596 596
597 /* Check to see if this is a duplicate. */ 597 /* Check to see if this is a duplicate. */
598 peer = sctp_assoc_lookup_paddr(asoc, addr); 598 peer = sctp_assoc_lookup_paddr(asoc, addr);
599 if (peer) { 599 if (peer) {
600 /* An UNKNOWN state is only set on transports added by 600 /* An UNKNOWN state is only set on transports added by
601 * user in sctp_connectx() call. Such transports should be 601 * user in sctp_connectx() call. Such transports should be
602 * considered CONFIRMED per RFC 4960, Section 5.4. 602 * considered CONFIRMED per RFC 4960, Section 5.4.
603 */ 603 */
604 if (peer->state == SCTP_UNKNOWN) { 604 if (peer->state == SCTP_UNKNOWN) {
605 peer->state = SCTP_ACTIVE; 605 peer->state = SCTP_ACTIVE;
606 } 606 }
607 return peer; 607 return peer;
608 } 608 }
609 609
610 peer = sctp_transport_new(net, addr, gfp); 610 peer = sctp_transport_new(net, addr, gfp);
611 if (!peer) 611 if (!peer)
612 return NULL; 612 return NULL;
613 613
614 sctp_transport_set_owner(peer, asoc); 614 sctp_transport_set_owner(peer, asoc);
615 615
616 /* Initialize the peer's heartbeat interval based on the 616 /* Initialize the peer's heartbeat interval based on the
617 * association configured value. 617 * association configured value.
618 */ 618 */
619 peer->hbinterval = asoc->hbinterval; 619 peer->hbinterval = asoc->hbinterval;
620 620
621 /* Set the path max_retrans. */ 621 /* Set the path max_retrans. */
622 peer->pathmaxrxt = asoc->pathmaxrxt; 622 peer->pathmaxrxt = asoc->pathmaxrxt;
623 623
624 /* And the partial failure retrans threshold */ 624 /* And the partial failure retrans threshold */
625 peer->pf_retrans = asoc->pf_retrans; 625 peer->pf_retrans = asoc->pf_retrans;
626 626
627 /* Initialize the peer's SACK delay timeout based on the 627 /* Initialize the peer's SACK delay timeout based on the
628 * association configured value. 628 * association configured value.
629 */ 629 */
630 peer->sackdelay = asoc->sackdelay; 630 peer->sackdelay = asoc->sackdelay;
631 peer->sackfreq = asoc->sackfreq; 631 peer->sackfreq = asoc->sackfreq;
632 632
633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
634 * based on association setting. 634 * based on association setting.
635 */ 635 */
636 peer->param_flags = asoc->param_flags; 636 peer->param_flags = asoc->param_flags;
637 637
638 sctp_transport_route(peer, NULL, sp); 638 sctp_transport_route(peer, NULL, sp);
639 639
640 /* Initialize the pmtu of the transport. */ 640 /* Initialize the pmtu of the transport. */
641 if (peer->param_flags & SPP_PMTUD_DISABLE) { 641 if (peer->param_flags & SPP_PMTUD_DISABLE) {
642 if (asoc->pathmtu) 642 if (asoc->pathmtu)
643 peer->pathmtu = asoc->pathmtu; 643 peer->pathmtu = asoc->pathmtu;
644 else 644 else
645 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 645 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
646 } 646 }
647 647
648 /* If this is the first transport addr on this association, 648 /* If this is the first transport addr on this association,
649 * initialize the association PMTU to the peer's PMTU. 649 * initialize the association PMTU to the peer's PMTU.
650 * If not and the current association PMTU is higher than the new 650 * If not and the current association PMTU is higher than the new
651 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 651 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
652 */ 652 */
653 if (asoc->pathmtu) 653 if (asoc->pathmtu)
654 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 654 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
655 else 655 else
656 asoc->pathmtu = peer->pathmtu; 656 asoc->pathmtu = peer->pathmtu;
657 657
658 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, 658 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
659 asoc->pathmtu); 659 asoc->pathmtu);
660 660
661 peer->pmtu_pending = 0; 661 peer->pmtu_pending = 0;
662 662
663 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 663 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
664 664
665 /* The asoc->peer.port might not be meaningful yet, but 665 /* The asoc->peer.port might not be meaningful yet, but
666 * initialize the packet structure anyway. 666 * initialize the packet structure anyway.
667 */ 667 */
668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
669 asoc->peer.port); 669 asoc->peer.port);
670 670
671 /* 7.2.1 Slow-Start 671 /* 7.2.1 Slow-Start
672 * 672 *
673 * o The initial cwnd before DATA transmission or after a sufficiently 673 * o The initial cwnd before DATA transmission or after a sufficiently
674 * long idle period MUST be set to 674 * long idle period MUST be set to
675 * min(4*MTU, max(2*MTU, 4380 bytes)) 675 * min(4*MTU, max(2*MTU, 4380 bytes))
676 * 676 *
677 * o The initial value of ssthresh MAY be arbitrarily high 677 * o The initial value of ssthresh MAY be arbitrarily high
678 * (for example, implementations MAY use the size of the 678 * (for example, implementations MAY use the size of the
679 * receiver advertised window). 679 * receiver advertised window).
680 */ 680 */
681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682 682
683 /* At this point, we may not have the receiver's advertised window, 683 /* At this point, we may not have the receiver's advertised window,
684 * so initialize ssthresh to the default value and it will be set 684 * so initialize ssthresh to the default value and it will be set
685 * later when we process the INIT. 685 * later when we process the INIT.
686 */ 686 */
687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688 688
689 peer->partial_bytes_acked = 0; 689 peer->partial_bytes_acked = 0;
690 peer->flight_size = 0; 690 peer->flight_size = 0;
691 peer->burst_limited = 0; 691 peer->burst_limited = 0;
692 692
693 /* Set the transport's RTO.initial value */ 693 /* Set the transport's RTO.initial value */
694 peer->rto = asoc->rto_initial; 694 peer->rto = asoc->rto_initial;
695 sctp_max_rto(asoc, peer); 695 sctp_max_rto(asoc, peer);
696 696
697 /* Set the peer's active state. */ 697 /* Set the peer's active state. */
698 peer->state = peer_state; 698 peer->state = peer_state;
699 699
700 /* Attach the remote transport to our asoc. */ 700 /* Attach the remote transport to our asoc. */
701 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); 701 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
702 asoc->peer.transport_count++; 702 asoc->peer.transport_count++;
703 703
704 /* If we do not yet have a primary path, set one. */ 704 /* If we do not yet have a primary path, set one. */
705 if (!asoc->peer.primary_path) { 705 if (!asoc->peer.primary_path) {
706 sctp_assoc_set_primary(asoc, peer); 706 sctp_assoc_set_primary(asoc, peer);
707 asoc->peer.retran_path = peer; 707 asoc->peer.retran_path = peer;
708 } 708 }
709 709
710 if (asoc->peer.active_path == asoc->peer.retran_path && 710 if (asoc->peer.active_path == asoc->peer.retran_path &&
711 peer->state != SCTP_UNCONFIRMED) { 711 peer->state != SCTP_UNCONFIRMED) {
712 asoc->peer.retran_path = peer; 712 asoc->peer.retran_path = peer;
713 } 713 }
714 714
715 return peer; 715 return peer;
716 } 716 }
717 717
718 /* Delete a transport address from an association. */ 718 /* Delete a transport address from an association. */
719 void sctp_assoc_del_peer(struct sctp_association *asoc, 719 void sctp_assoc_del_peer(struct sctp_association *asoc,
720 const union sctp_addr *addr) 720 const union sctp_addr *addr)
721 { 721 {
722 struct list_head *pos; 722 struct list_head *pos;
723 struct list_head *temp; 723 struct list_head *temp;
724 struct sctp_transport *transport; 724 struct sctp_transport *transport;
725 725
726 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 726 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
727 transport = list_entry(pos, struct sctp_transport, transports); 727 transport = list_entry(pos, struct sctp_transport, transports);
728 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 728 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
729 /* Do book keeping for removing the peer and free it. */ 729 /* Do book keeping for removing the peer and free it. */
730 sctp_assoc_rm_peer(asoc, transport); 730 sctp_assoc_rm_peer(asoc, transport);
731 break; 731 break;
732 } 732 }
733 } 733 }
734 } 734 }
735 735
736 /* Lookup a transport by address. */ 736 /* Lookup a transport by address. */
737 struct sctp_transport *sctp_assoc_lookup_paddr( 737 struct sctp_transport *sctp_assoc_lookup_paddr(
738 const struct sctp_association *asoc, 738 const struct sctp_association *asoc,
739 const union sctp_addr *address) 739 const union sctp_addr *address)
740 { 740 {
741 struct sctp_transport *t; 741 struct sctp_transport *t;
742 742
743 /* Cycle through all transports searching for a peer address. */ 743 /* Cycle through all transports searching for a peer address. */
744 744
745 list_for_each_entry(t, &asoc->peer.transport_addr_list, 745 list_for_each_entry(t, &asoc->peer.transport_addr_list,
746 transports) { 746 transports) {
747 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 747 if (sctp_cmp_addr_exact(address, &t->ipaddr))
748 return t; 748 return t;
749 } 749 }
750 750
751 return NULL; 751 return NULL;
752 } 752 }
753 753
754 /* Remove all transports except a give one */ 754 /* Remove all transports except a give one */
755 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 755 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
756 struct sctp_transport *primary) 756 struct sctp_transport *primary)
757 { 757 {
758 struct sctp_transport *temp; 758 struct sctp_transport *temp;
759 struct sctp_transport *t; 759 struct sctp_transport *t;
760 760
761 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 761 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
762 transports) { 762 transports) {
763 /* if the current transport is not the primary one, delete it */ 763 /* if the current transport is not the primary one, delete it */
764 if (t != primary) 764 if (t != primary)
765 sctp_assoc_rm_peer(asoc, t); 765 sctp_assoc_rm_peer(asoc, t);
766 } 766 }
767 } 767 }
768 768
769 /* Engage in transport control operations. 769 /* Engage in transport control operations.
770 * Mark the transport up or down and send a notification to the user. 770 * Mark the transport up or down and send a notification to the user.
771 * Select and update the new active and retran paths. 771 * Select and update the new active and retran paths.
772 */ 772 */
773 void sctp_assoc_control_transport(struct sctp_association *asoc, 773 void sctp_assoc_control_transport(struct sctp_association *asoc,
774 struct sctp_transport *transport, 774 struct sctp_transport *transport,
775 sctp_transport_cmd_t command, 775 sctp_transport_cmd_t command,
776 sctp_sn_error_t error) 776 sctp_sn_error_t error)
777 { 777 {
778 struct sctp_ulpevent *event; 778 struct sctp_ulpevent *event;
779 struct sockaddr_storage addr; 779 struct sockaddr_storage addr;
780 int spc_state = 0; 780 int spc_state = 0;
781 bool ulp_notify = true; 781 bool ulp_notify = true;
782 782
783 /* Record the transition on the transport. */ 783 /* Record the transition on the transport. */
784 switch (command) { 784 switch (command) {
785 case SCTP_TRANSPORT_UP: 785 case SCTP_TRANSPORT_UP:
786 /* If we are moving from UNCONFIRMED state due 786 /* If we are moving from UNCONFIRMED state due
787 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 787 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
788 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 788 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
789 */ 789 */
790 if (SCTP_UNCONFIRMED == transport->state && 790 if (SCTP_UNCONFIRMED == transport->state &&
791 SCTP_HEARTBEAT_SUCCESS == error) 791 SCTP_HEARTBEAT_SUCCESS == error)
792 spc_state = SCTP_ADDR_CONFIRMED; 792 spc_state = SCTP_ADDR_CONFIRMED;
793 else 793 else
794 spc_state = SCTP_ADDR_AVAILABLE; 794 spc_state = SCTP_ADDR_AVAILABLE;
795 /* Don't inform ULP about transition from PF to 795 /* Don't inform ULP about transition from PF to
796 * active state and set cwnd to 1 MTU, see SCTP 796 * active state and set cwnd to 1 MTU, see SCTP
797 * Quick failover draft section 5.1, point 5 797 * Quick failover draft section 5.1, point 5
798 */ 798 */
799 if (transport->state == SCTP_PF) { 799 if (transport->state == SCTP_PF) {
800 ulp_notify = false; 800 ulp_notify = false;
801 transport->cwnd = asoc->pathmtu; 801 transport->cwnd = asoc->pathmtu;
802 } 802 }
803 transport->state = SCTP_ACTIVE; 803 transport->state = SCTP_ACTIVE;
804 break; 804 break;
805 805
806 case SCTP_TRANSPORT_DOWN: 806 case SCTP_TRANSPORT_DOWN:
807 /* If the transport was never confirmed, do not transition it 807 /* If the transport was never confirmed, do not transition it
808 * to inactive state. Also, release the cached route since 808 * to inactive state. Also, release the cached route since
809 * there may be a better route next time. 809 * there may be a better route next time.
810 */ 810 */
811 if (transport->state != SCTP_UNCONFIRMED) 811 if (transport->state != SCTP_UNCONFIRMED)
812 transport->state = SCTP_INACTIVE; 812 transport->state = SCTP_INACTIVE;
813 else { 813 else {
814 dst_release(transport->dst); 814 dst_release(transport->dst);
815 transport->dst = NULL; 815 transport->dst = NULL;
816 ulp_notify = false; 816 ulp_notify = false;
817 } 817 }
818 818
819 spc_state = SCTP_ADDR_UNREACHABLE; 819 spc_state = SCTP_ADDR_UNREACHABLE;
820 break; 820 break;
821 821
822 case SCTP_TRANSPORT_PF: 822 case SCTP_TRANSPORT_PF:
823 transport->state = SCTP_PF; 823 transport->state = SCTP_PF;
824 ulp_notify = false; 824 ulp_notify = false;
825 break; 825 break;
826 826
827 default: 827 default:
828 return; 828 return;
829 } 829 }
830 830
831 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification 831 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
832 * to the user. 832 * to the user.
833 */ 833 */
834 if (ulp_notify) { 834 if (ulp_notify) {
835 memset(&addr, 0, sizeof(struct sockaddr_storage)); 835 memset(&addr, 0, sizeof(struct sockaddr_storage));
836 memcpy(&addr, &transport->ipaddr, 836 memcpy(&addr, &transport->ipaddr,
837 transport->af_specific->sockaddr_len); 837 transport->af_specific->sockaddr_len);
838 838
839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
840 0, spc_state, error, GFP_ATOMIC); 840 0, spc_state, error, GFP_ATOMIC);
841 if (event) 841 if (event)
842 sctp_ulpq_tail_event(&asoc->ulpq, event); 842 sctp_ulpq_tail_event(&asoc->ulpq, event);
843 } 843 }
844 844
845 /* Select new active and retran paths. */ 845 /* Select new active and retran paths. */
846 sctp_select_active_and_retran_path(asoc); 846 sctp_select_active_and_retran_path(asoc);
847 } 847 }
848 848
849 /* Hold a reference to an association. */ 849 /* Hold a reference to an association. */
850 void sctp_association_hold(struct sctp_association *asoc) 850 void sctp_association_hold(struct sctp_association *asoc)
851 { 851 {
852 atomic_inc(&asoc->base.refcnt); 852 atomic_inc(&asoc->base.refcnt);
853 } 853 }
854 854
855 /* Release a reference to an association and cleanup 855 /* Release a reference to an association and cleanup
856 * if there are no more references. 856 * if there are no more references.
857 */ 857 */
858 void sctp_association_put(struct sctp_association *asoc) 858 void sctp_association_put(struct sctp_association *asoc)
859 { 859 {
860 if (atomic_dec_and_test(&asoc->base.refcnt)) 860 if (atomic_dec_and_test(&asoc->base.refcnt))
861 sctp_association_destroy(asoc); 861 sctp_association_destroy(asoc);
862 } 862 }
863 863
864 /* Allocate the next TSN, Transmission Sequence Number, for the given 864 /* Allocate the next TSN, Transmission Sequence Number, for the given
865 * association. 865 * association.
866 */ 866 */
867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868 { 868 {
869 /* From Section 1.6 Serial Number Arithmetic: 869 /* From Section 1.6 Serial Number Arithmetic:
870 * Transmission Sequence Numbers wrap around when they reach 870 * Transmission Sequence Numbers wrap around when they reach
871 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 871 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
872 * after transmitting TSN = 2*32 - 1 is TSN = 0. 872 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873 */ 873 */
874 __u32 retval = asoc->next_tsn; 874 __u32 retval = asoc->next_tsn;
875 asoc->next_tsn++; 875 asoc->next_tsn++;
876 asoc->unack_data++; 876 asoc->unack_data++;
877 877
878 return retval; 878 return retval;
879 } 879 }
880 880
881 /* Compare two addresses to see if they match. Wildcard addresses 881 /* Compare two addresses to see if they match. Wildcard addresses
882 * only match themselves. 882 * only match themselves.
883 */ 883 */
884 int sctp_cmp_addr_exact(const union sctp_addr *ss1, 884 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885 const union sctp_addr *ss2) 885 const union sctp_addr *ss2)
886 { 886 {
887 struct sctp_af *af; 887 struct sctp_af *af;
888 888
889 af = sctp_get_af_specific(ss1->sa.sa_family); 889 af = sctp_get_af_specific(ss1->sa.sa_family);
890 if (unlikely(!af)) 890 if (unlikely(!af))
891 return 0; 891 return 0;
892 892
893 return af->cmp_addr(ss1, ss2); 893 return af->cmp_addr(ss1, ss2);
894 } 894 }
895 895
896 /* Return an ecne chunk to get prepended to a packet. 896 /* Return an ecne chunk to get prepended to a packet.
897 * Note: We are sly and return a shared, prealloced chunk. FIXME: 897 * Note: We are sly and return a shared, prealloced chunk. FIXME:
898 * No we don't, but we could/should. 898 * No we don't, but we could/should.
899 */ 899 */
900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901 { 901 {
902 if (!asoc->need_ecne) 902 if (!asoc->need_ecne)
903 return NULL; 903 return NULL;
904 904
905 /* Send ECNE if needed. 905 /* Send ECNE if needed.
906 * Not being able to allocate a chunk here is not deadly. 906 * Not being able to allocate a chunk here is not deadly.
907 */ 907 */
908 return sctp_make_ecne(asoc, asoc->last_ecne_tsn); 908 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909 } 909 }
910 910
911 /* 911 /*
912 * Find which transport this TSN was sent on. 912 * Find which transport this TSN was sent on.
913 */ 913 */
914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915 __u32 tsn) 915 __u32 tsn)
916 { 916 {
917 struct sctp_transport *active; 917 struct sctp_transport *active;
918 struct sctp_transport *match; 918 struct sctp_transport *match;
919 struct sctp_transport *transport; 919 struct sctp_transport *transport;
920 struct sctp_chunk *chunk; 920 struct sctp_chunk *chunk;
921 __be32 key = htonl(tsn); 921 __be32 key = htonl(tsn);
922 922
923 match = NULL; 923 match = NULL;
924 924
925 /* 925 /*
926 * FIXME: In general, find a more efficient data structure for 926 * FIXME: In general, find a more efficient data structure for
927 * searching. 927 * searching.
928 */ 928 */
929 929
930 /* 930 /*
931 * The general strategy is to search each transport's transmitted 931 * The general strategy is to search each transport's transmitted
932 * list. Return which transport this TSN lives on. 932 * list. Return which transport this TSN lives on.
933 * 933 *
934 * Let's be hopeful and check the active_path first. 934 * Let's be hopeful and check the active_path first.
935 * Another optimization would be to know if there is only one 935 * Another optimization would be to know if there is only one
936 * outbound path and not have to look for the TSN at all. 936 * outbound path and not have to look for the TSN at all.
937 * 937 *
938 */ 938 */
939 939
940 active = asoc->peer.active_path; 940 active = asoc->peer.active_path;
941 941
942 list_for_each_entry(chunk, &active->transmitted, 942 list_for_each_entry(chunk, &active->transmitted,
943 transmitted_list) { 943 transmitted_list) {
944 944
945 if (key == chunk->subh.data_hdr->tsn) { 945 if (key == chunk->subh.data_hdr->tsn) {
946 match = active; 946 match = active;
947 goto out; 947 goto out;
948 } 948 }
949 } 949 }
950 950
951 /* If not found, go search all the other transports. */ 951 /* If not found, go search all the other transports. */
952 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 952 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953 transports) { 953 transports) {
954 954
955 if (transport == active) 955 if (transport == active)
956 continue; 956 continue;
957 list_for_each_entry(chunk, &transport->transmitted, 957 list_for_each_entry(chunk, &transport->transmitted,
958 transmitted_list) { 958 transmitted_list) {
959 if (key == chunk->subh.data_hdr->tsn) { 959 if (key == chunk->subh.data_hdr->tsn) {
960 match = transport; 960 match = transport;
961 goto out; 961 goto out;
962 } 962 }
963 } 963 }
964 } 964 }
965 out: 965 out:
966 return match; 966 return match;
967 } 967 }
968 968
969 /* Is this the association we are looking for? */ 969 /* Is this the association we are looking for? */
970 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 970 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
971 struct net *net, 971 struct net *net,
972 const union sctp_addr *laddr, 972 const union sctp_addr *laddr,
973 const union sctp_addr *paddr) 973 const union sctp_addr *paddr)
974 { 974 {
975 struct sctp_transport *transport; 975 struct sctp_transport *transport;
976 976
977 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 977 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
978 (htons(asoc->peer.port) == paddr->v4.sin_port) && 978 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
979 net_eq(sock_net(asoc->base.sk), net)) { 979 net_eq(sock_net(asoc->base.sk), net)) {
980 transport = sctp_assoc_lookup_paddr(asoc, paddr); 980 transport = sctp_assoc_lookup_paddr(asoc, paddr);
981 if (!transport) 981 if (!transport)
982 goto out; 982 goto out;
983 983
984 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 984 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
985 sctp_sk(asoc->base.sk))) 985 sctp_sk(asoc->base.sk)))
986 goto out; 986 goto out;
987 } 987 }
988 transport = NULL; 988 transport = NULL;
989 989
990 out: 990 out:
991 return transport; 991 return transport;
992 } 992 }
993 993
994 /* Do delayed input processing. This is scheduled by sctp_rcv(). */ 994 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
995 static void sctp_assoc_bh_rcv(struct work_struct *work) 995 static void sctp_assoc_bh_rcv(struct work_struct *work)
996 { 996 {
997 struct sctp_association *asoc = 997 struct sctp_association *asoc =
998 container_of(work, struct sctp_association, 998 container_of(work, struct sctp_association,
999 base.inqueue.immediate); 999 base.inqueue.immediate);
1000 struct net *net = sock_net(asoc->base.sk); 1000 struct net *net = sock_net(asoc->base.sk);
1001 struct sctp_endpoint *ep; 1001 struct sctp_endpoint *ep;
1002 struct sctp_chunk *chunk; 1002 struct sctp_chunk *chunk;
1003 struct sctp_inq *inqueue; 1003 struct sctp_inq *inqueue;
1004 int state; 1004 int state;
1005 sctp_subtype_t subtype; 1005 sctp_subtype_t subtype;
1006 int error = 0; 1006 int error = 0;
1007 1007
1008 /* The association should be held so we should be safe. */ 1008 /* The association should be held so we should be safe. */
1009 ep = asoc->ep; 1009 ep = asoc->ep;
1010 1010
1011 inqueue = &asoc->base.inqueue; 1011 inqueue = &asoc->base.inqueue;
1012 sctp_association_hold(asoc); 1012 sctp_association_hold(asoc);
1013 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1013 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1014 state = asoc->state; 1014 state = asoc->state;
1015 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1015 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1016 1016
1017 /* SCTP-AUTH, Section 6.3: 1017 /* SCTP-AUTH, Section 6.3:
1018 * The receiver has a list of chunk types which it expects 1018 * The receiver has a list of chunk types which it expects
1019 * to be received only after an AUTH-chunk. This list has 1019 * to be received only after an AUTH-chunk. This list has
1020 * been sent to the peer during the association setup. It 1020 * been sent to the peer during the association setup. It
1021 * MUST silently discard these chunks if they are not placed 1021 * MUST silently discard these chunks if they are not placed
1022 * after an AUTH chunk in the packet. 1022 * after an AUTH chunk in the packet.
1023 */ 1023 */
1024 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1024 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025 continue; 1025 continue;
1026 1026
1027 /* Remember where the last DATA chunk came from so we 1027 /* Remember where the last DATA chunk came from so we
1028 * know where to send the SACK. 1028 * know where to send the SACK.
1029 */ 1029 */
1030 if (sctp_chunk_is_data(chunk)) 1030 if (sctp_chunk_is_data(chunk))
1031 asoc->peer.last_data_from = chunk->transport; 1031 asoc->peer.last_data_from = chunk->transport;
1032 else { 1032 else {
1033 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); 1033 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034 asoc->stats.ictrlchunks++; 1034 asoc->stats.ictrlchunks++;
1035 if (chunk->chunk_hdr->type == SCTP_CID_SACK) 1035 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036 asoc->stats.isacks++; 1036 asoc->stats.isacks++;
1037 } 1037 }
1038 1038
1039 if (chunk->transport) 1039 if (chunk->transport)
1040 chunk->transport->last_time_heard = ktime_get(); 1040 chunk->transport->last_time_heard = ktime_get();
1041 1041
1042 /* Run through the state machine. */ 1042 /* Run through the state machine. */
1043 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, 1043 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044 state, ep, asoc, chunk, GFP_ATOMIC); 1044 state, ep, asoc, chunk, GFP_ATOMIC);
1045 1045
1046 /* Check to see if the association is freed in response to 1046 /* Check to see if the association is freed in response to
1047 * the incoming chunk. If so, get out of the while loop. 1047 * the incoming chunk. If so, get out of the while loop.
1048 */ 1048 */
1049 if (asoc->base.dead) 1049 if (asoc->base.dead)
1050 break; 1050 break;
1051 1051
1052 /* If there is an error on chunk, discard this packet. */ 1052 /* If there is an error on chunk, discard this packet. */
1053 if (error && chunk) 1053 if (error && chunk)
1054 chunk->pdiscard = 1; 1054 chunk->pdiscard = 1;
1055 } 1055 }
1056 sctp_association_put(asoc); 1056 sctp_association_put(asoc);
1057 } 1057 }
1058 1058
1059 /* This routine moves an association from its old sk to a new sk. */ 1059 /* This routine moves an association from its old sk to a new sk. */
1060 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1060 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1061 { 1061 {
1062 struct sctp_sock *newsp = sctp_sk(newsk); 1062 struct sctp_sock *newsp = sctp_sk(newsk);
1063 struct sock *oldsk = assoc->base.sk; 1063 struct sock *oldsk = assoc->base.sk;
1064 1064
1065 /* Delete the association from the old endpoint's list of 1065 /* Delete the association from the old endpoint's list of
1066 * associations. 1066 * associations.
1067 */ 1067 */
1068 list_del_init(&assoc->asocs); 1068 list_del_init(&assoc->asocs);
1069 1069
1070 /* Decrement the backlog value for a TCP-style socket. */ 1070 /* Decrement the backlog value for a TCP-style socket. */
1071 if (sctp_style(oldsk, TCP)) 1071 if (sctp_style(oldsk, TCP))
1072 oldsk->sk_ack_backlog--; 1072 oldsk->sk_ack_backlog--;
1073 1073
1074 /* Release references to the old endpoint and the sock. */ 1074 /* Release references to the old endpoint and the sock. */
1075 sctp_endpoint_put(assoc->ep); 1075 sctp_endpoint_put(assoc->ep);
1076 sock_put(assoc->base.sk); 1076 sock_put(assoc->base.sk);
1077 1077
1078 /* Get a reference to the new endpoint. */ 1078 /* Get a reference to the new endpoint. */
1079 assoc->ep = newsp->ep; 1079 assoc->ep = newsp->ep;
1080 sctp_endpoint_hold(assoc->ep); 1080 sctp_endpoint_hold(assoc->ep);
1081 1081
1082 /* Get a reference to the new sock. */ 1082 /* Get a reference to the new sock. */
1083 assoc->base.sk = newsk; 1083 assoc->base.sk = newsk;
1084 sock_hold(assoc->base.sk); 1084 sock_hold(assoc->base.sk);
1085 1085
1086 /* Add the association to the new endpoint's list of associations. */ 1086 /* Add the association to the new endpoint's list of associations. */
1087 sctp_endpoint_add_asoc(newsp->ep, assoc); 1087 sctp_endpoint_add_asoc(newsp->ep, assoc);
1088 } 1088 }
1089 1089
1090 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1090 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1091 void sctp_assoc_update(struct sctp_association *asoc, 1091 void sctp_assoc_update(struct sctp_association *asoc,
1092 struct sctp_association *new) 1092 struct sctp_association *new)
1093 { 1093 {
1094 struct sctp_transport *trans; 1094 struct sctp_transport *trans;
1095 struct list_head *pos, *temp; 1095 struct list_head *pos, *temp;
1096 1096
1097 /* Copy in new parameters of peer. */ 1097 /* Copy in new parameters of peer. */
1098 asoc->c = new->c; 1098 asoc->c = new->c;
1099 asoc->peer.rwnd = new->peer.rwnd; 1099 asoc->peer.rwnd = new->peer.rwnd;
1100 asoc->peer.sack_needed = new->peer.sack_needed; 1100 asoc->peer.sack_needed = new->peer.sack_needed;
1101 asoc->peer.auth_capable = new->peer.auth_capable; 1101 asoc->peer.auth_capable = new->peer.auth_capable;
1102 asoc->peer.i = new->peer.i; 1102 asoc->peer.i = new->peer.i;
1103 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1103 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1104 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1104 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1105 1105
1106 /* Remove any peer addresses not present in the new association. */ 1106 /* Remove any peer addresses not present in the new association. */
1107 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1107 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1108 trans = list_entry(pos, struct sctp_transport, transports); 1108 trans = list_entry(pos, struct sctp_transport, transports);
1109 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { 1109 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1110 sctp_assoc_rm_peer(asoc, trans); 1110 sctp_assoc_rm_peer(asoc, trans);
1111 continue; 1111 continue;
1112 } 1112 }
1113 1113
1114 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1114 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1115 sctp_transport_reset(trans); 1115 sctp_transport_reset(trans);
1116 } 1116 }
1117 1117
1118 /* If the case is A (association restart), use 1118 /* If the case is A (association restart), use
1119 * initial_tsn as next_tsn. If the case is B, use 1119 * initial_tsn as next_tsn. If the case is B, use
1120 * current next_tsn in case data sent to peer 1120 * current next_tsn in case data sent to peer
1121 * has been discarded and needs retransmission. 1121 * has been discarded and needs retransmission.
1122 */ 1122 */
1123 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1123 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1124 asoc->next_tsn = new->next_tsn; 1124 asoc->next_tsn = new->next_tsn;
1125 asoc->ctsn_ack_point = new->ctsn_ack_point; 1125 asoc->ctsn_ack_point = new->ctsn_ack_point;
1126 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1126 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1127 1127
1128 /* Reinitialize SSN for both local streams 1128 /* Reinitialize SSN for both local streams
1129 * and peer's streams. 1129 * and peer's streams.
1130 */ 1130 */
1131 sctp_ssnmap_clear(asoc->ssnmap); 1131 sctp_ssnmap_clear(asoc->ssnmap);
1132 1132
1133 /* Flush the ULP reassembly and ordered queue. 1133 /* Flush the ULP reassembly and ordered queue.
1134 * Any data there will now be stale and will 1134 * Any data there will now be stale and will
1135 * cause problems. 1135 * cause problems.
1136 */ 1136 */
1137 sctp_ulpq_flush(&asoc->ulpq); 1137 sctp_ulpq_flush(&asoc->ulpq);
1138 1138
1139 /* reset the overall association error count so 1139 /* reset the overall association error count so
1140 * that the restarted association doesn't get torn 1140 * that the restarted association doesn't get torn
1141 * down on the next retransmission timer. 1141 * down on the next retransmission timer.
1142 */ 1142 */
1143 asoc->overall_error_count = 0; 1143 asoc->overall_error_count = 0;
1144 1144
1145 } else { 1145 } else {
1146 /* Add any peer addresses from the new association. */ 1146 /* Add any peer addresses from the new association. */
1147 list_for_each_entry(trans, &new->peer.transport_addr_list, 1147 list_for_each_entry(trans, &new->peer.transport_addr_list,
1148 transports) { 1148 transports) {
1149 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1149 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1150 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1150 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1151 GFP_ATOMIC, trans->state); 1151 GFP_ATOMIC, trans->state);
1152 } 1152 }
1153 1153
1154 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1154 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1155 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1155 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1156 if (!asoc->ssnmap) { 1156 if (!asoc->ssnmap) {
1157 /* Move the ssnmap. */ 1157 /* Move the ssnmap. */
1158 asoc->ssnmap = new->ssnmap; 1158 asoc->ssnmap = new->ssnmap;
1159 new->ssnmap = NULL; 1159 new->ssnmap = NULL;
1160 } 1160 }
1161 1161
1162 if (!asoc->assoc_id) { 1162 if (!asoc->assoc_id) {
1163 /* get a new association id since we don't have one 1163 /* get a new association id since we don't have one
1164 * yet. 1164 * yet.
1165 */ 1165 */
1166 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1166 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1167 } 1167 }
1168 } 1168 }
1169 1169
1170 /* SCTP-AUTH: Save the peer parameters from the new associations 1170 /* SCTP-AUTH: Save the peer parameters from the new associations
1171 * and also move the association shared keys over 1171 * and also move the association shared keys over
1172 */ 1172 */
1173 kfree(asoc->peer.peer_random); 1173 kfree(asoc->peer.peer_random);
1174 asoc->peer.peer_random = new->peer.peer_random; 1174 asoc->peer.peer_random = new->peer.peer_random;
1175 new->peer.peer_random = NULL; 1175 new->peer.peer_random = NULL;
1176 1176
1177 kfree(asoc->peer.peer_chunks); 1177 kfree(asoc->peer.peer_chunks);
1178 asoc->peer.peer_chunks = new->peer.peer_chunks; 1178 asoc->peer.peer_chunks = new->peer.peer_chunks;
1179 new->peer.peer_chunks = NULL; 1179 new->peer.peer_chunks = NULL;
1180 1180
1181 kfree(asoc->peer.peer_hmacs); 1181 kfree(asoc->peer.peer_hmacs);
1182 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1182 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1183 new->peer.peer_hmacs = NULL; 1183 new->peer.peer_hmacs = NULL;
1184 1184
1185 sctp_auth_key_put(asoc->asoc_shared_key);
1186 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1185 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1187 } 1186 }
1188 1187
1189 /* Update the retran path for sending a retransmitted packet. 1188 /* Update the retran path for sending a retransmitted packet.
1190 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: 1189 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1191 * 1190 *
1192 * When there is outbound data to send and the primary path 1191 * When there is outbound data to send and the primary path
1193 * becomes inactive (e.g., due to failures), or where the 1192 * becomes inactive (e.g., due to failures), or where the
1194 * SCTP user explicitly requests to send data to an 1193 * SCTP user explicitly requests to send data to an
1195 * inactive destination transport address, before reporting 1194 * inactive destination transport address, before reporting
1196 * an error to its ULP, the SCTP endpoint should try to send 1195 * an error to its ULP, the SCTP endpoint should try to send
1197 * the data to an alternate active destination transport 1196 * the data to an alternate active destination transport
1198 * address if one exists. 1197 * address if one exists.
1199 * 1198 *
1200 * When retransmitting data that timed out, if the endpoint 1199 * When retransmitting data that timed out, if the endpoint
1201 * is multihomed, it should consider each source-destination 1200 * is multihomed, it should consider each source-destination
1202 * address pair in its retransmission selection policy. 1201 * address pair in its retransmission selection policy.
1203 * When retransmitting timed-out data, the endpoint should 1202 * When retransmitting timed-out data, the endpoint should
1204 * attempt to pick the most divergent source-destination 1203 * attempt to pick the most divergent source-destination
1205 * pair from the original source-destination pair to which 1204 * pair from the original source-destination pair to which
1206 * the packet was transmitted. 1205 * the packet was transmitted.
1207 * 1206 *
1208 * Note: Rules for picking the most divergent source-destination 1207 * Note: Rules for picking the most divergent source-destination
1209 * pair are an implementation decision and are not specified 1208 * pair are an implementation decision and are not specified
1210 * within this document. 1209 * within this document.
1211 * 1210 *
1212 * Our basic strategy is to round-robin transports in priorities 1211 * Our basic strategy is to round-robin transports in priorities
1213 * according to sctp_state_prio_map[] e.g., if no such 1212 * according to sctp_state_prio_map[] e.g., if no such
1214 * transport with state SCTP_ACTIVE exists, round-robin through 1213 * transport with state SCTP_ACTIVE exists, round-robin through
1215 * SCTP_UNKNOWN, etc. You get the picture. 1214 * SCTP_UNKNOWN, etc. You get the picture.
1216 */ 1215 */
1217 static const u8 sctp_trans_state_to_prio_map[] = { 1216 static const u8 sctp_trans_state_to_prio_map[] = {
1218 [SCTP_ACTIVE] = 3, /* best case */ 1217 [SCTP_ACTIVE] = 3, /* best case */
1219 [SCTP_UNKNOWN] = 2, 1218 [SCTP_UNKNOWN] = 2,
1220 [SCTP_PF] = 1, 1219 [SCTP_PF] = 1,
1221 [SCTP_INACTIVE] = 0, /* worst case */ 1220 [SCTP_INACTIVE] = 0, /* worst case */
1222 }; 1221 };
1223 1222
1224 static u8 sctp_trans_score(const struct sctp_transport *trans) 1223 static u8 sctp_trans_score(const struct sctp_transport *trans)
1225 { 1224 {
1226 return sctp_trans_state_to_prio_map[trans->state]; 1225 return sctp_trans_state_to_prio_map[trans->state];
1227 } 1226 }
1228 1227
1229 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, 1228 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230 struct sctp_transport *trans2) 1229 struct sctp_transport *trans2)
1231 { 1230 {
1232 if (trans1->error_count > trans2->error_count) { 1231 if (trans1->error_count > trans2->error_count) {
1233 return trans2; 1232 return trans2;
1234 } else if (trans1->error_count == trans2->error_count && 1233 } else if (trans1->error_count == trans2->error_count &&
1235 ktime_after(trans2->last_time_heard, 1234 ktime_after(trans2->last_time_heard,
1236 trans1->last_time_heard)) { 1235 trans1->last_time_heard)) {
1237 return trans2; 1236 return trans2;
1238 } else { 1237 } else {
1239 return trans1; 1238 return trans1;
1240 } 1239 }
1241 } 1240 }
1242 1241
1243 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, 1242 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244 struct sctp_transport *best) 1243 struct sctp_transport *best)
1245 { 1244 {
1246 u8 score_curr, score_best; 1245 u8 score_curr, score_best;
1247 1246
1248 if (best == NULL || curr == best) 1247 if (best == NULL || curr == best)
1249 return curr; 1248 return curr;
1250 1249
1251 score_curr = sctp_trans_score(curr); 1250 score_curr = sctp_trans_score(curr);
1252 score_best = sctp_trans_score(best); 1251 score_best = sctp_trans_score(best);
1253 1252
1254 /* First, try a score-based selection if both transport states 1253 /* First, try a score-based selection if both transport states
1255 * differ. If we're in a tie, lets try to make a more clever 1254 * differ. If we're in a tie, lets try to make a more clever
1256 * decision here based on error counts and last time heard. 1255 * decision here based on error counts and last time heard.
1257 */ 1256 */
1258 if (score_curr > score_best) 1257 if (score_curr > score_best)
1259 return curr; 1258 return curr;
1260 else if (score_curr == score_best) 1259 else if (score_curr == score_best)
1261 return sctp_trans_elect_tie(curr, best); 1260 return sctp_trans_elect_tie(curr, best);
1262 else 1261 else
1263 return best; 1262 return best;
1264 } 1263 }
1265 1264
1266 void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1265 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267 { 1266 {
1268 struct sctp_transport *trans = asoc->peer.retran_path; 1267 struct sctp_transport *trans = asoc->peer.retran_path;
1269 struct sctp_transport *trans_next = NULL; 1268 struct sctp_transport *trans_next = NULL;
1270 1269
1271 /* We're done as we only have the one and only path. */ 1270 /* We're done as we only have the one and only path. */
1272 if (asoc->peer.transport_count == 1) 1271 if (asoc->peer.transport_count == 1)
1273 return; 1272 return;
1274 /* If active_path and retran_path are the same and active, 1273 /* If active_path and retran_path are the same and active,
1275 * then this is the only active path. Use it. 1274 * then this is the only active path. Use it.
1276 */ 1275 */
1277 if (asoc->peer.active_path == asoc->peer.retran_path && 1276 if (asoc->peer.active_path == asoc->peer.retran_path &&
1278 asoc->peer.active_path->state == SCTP_ACTIVE) 1277 asoc->peer.active_path->state == SCTP_ACTIVE)
1279 return; 1278 return;
1280 1279
1281 /* Iterate from retran_path's successor back to retran_path. */ 1280 /* Iterate from retran_path's successor back to retran_path. */
1282 for (trans = list_next_entry(trans, transports); 1; 1281 for (trans = list_next_entry(trans, transports); 1;
1283 trans = list_next_entry(trans, transports)) { 1282 trans = list_next_entry(trans, transports)) {
1284 /* Manually skip the head element. */ 1283 /* Manually skip the head element. */
1285 if (&trans->transports == &asoc->peer.transport_addr_list) 1284 if (&trans->transports == &asoc->peer.transport_addr_list)
1286 continue; 1285 continue;
1287 if (trans->state == SCTP_UNCONFIRMED) 1286 if (trans->state == SCTP_UNCONFIRMED)
1288 continue; 1287 continue;
1289 trans_next = sctp_trans_elect_best(trans, trans_next); 1288 trans_next = sctp_trans_elect_best(trans, trans_next);
1290 /* Active is good enough for immediate return. */ 1289 /* Active is good enough for immediate return. */
1291 if (trans_next->state == SCTP_ACTIVE) 1290 if (trans_next->state == SCTP_ACTIVE)
1292 break; 1291 break;
1293 /* We've reached the end, time to update path. */ 1292 /* We've reached the end, time to update path. */
1294 if (trans == asoc->peer.retran_path) 1293 if (trans == asoc->peer.retran_path)
1295 break; 1294 break;
1296 } 1295 }
1297 1296
1298 asoc->peer.retran_path = trans_next; 1297 asoc->peer.retran_path = trans_next;
1299 1298
1300 pr_debug("%s: association:%p updated new path to addr:%pISpc\n", 1299 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); 1300 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302 } 1301 }
1303 1302
1304 static void sctp_select_active_and_retran_path(struct sctp_association *asoc) 1303 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305 { 1304 {
1306 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; 1305 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307 struct sctp_transport *trans_pf = NULL; 1306 struct sctp_transport *trans_pf = NULL;
1308 1307
1309 /* Look for the two most recently used active transports. */ 1308 /* Look for the two most recently used active transports. */
1310 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 1309 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311 transports) { 1310 transports) {
1312 /* Skip uninteresting transports. */ 1311 /* Skip uninteresting transports. */
1313 if (trans->state == SCTP_INACTIVE || 1312 if (trans->state == SCTP_INACTIVE ||
1314 trans->state == SCTP_UNCONFIRMED) 1313 trans->state == SCTP_UNCONFIRMED)
1315 continue; 1314 continue;
1316 /* Keep track of the best PF transport from our 1315 /* Keep track of the best PF transport from our
1317 * list in case we don't find an active one. 1316 * list in case we don't find an active one.
1318 */ 1317 */
1319 if (trans->state == SCTP_PF) { 1318 if (trans->state == SCTP_PF) {
1320 trans_pf = sctp_trans_elect_best(trans, trans_pf); 1319 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321 continue; 1320 continue;
1322 } 1321 }
1323 /* For active transports, pick the most recent ones. */ 1322 /* For active transports, pick the most recent ones. */
1324 if (trans_pri == NULL || 1323 if (trans_pri == NULL ||
1325 ktime_after(trans->last_time_heard, 1324 ktime_after(trans->last_time_heard,
1326 trans_pri->last_time_heard)) { 1325 trans_pri->last_time_heard)) {
1327 trans_sec = trans_pri; 1326 trans_sec = trans_pri;
1328 trans_pri = trans; 1327 trans_pri = trans;
1329 } else if (trans_sec == NULL || 1328 } else if (trans_sec == NULL ||
1330 ktime_after(trans->last_time_heard, 1329 ktime_after(trans->last_time_heard,
1331 trans_sec->last_time_heard)) { 1330 trans_sec->last_time_heard)) {
1332 trans_sec = trans; 1331 trans_sec = trans;
1333 } 1332 }
1334 } 1333 }
1335 1334
1336 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 1335 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337 * 1336 *
1338 * By default, an endpoint should always transmit to the primary 1337 * By default, an endpoint should always transmit to the primary
1339 * path, unless the SCTP user explicitly specifies the 1338 * path, unless the SCTP user explicitly specifies the
1340 * destination transport address (and possibly source transport 1339 * destination transport address (and possibly source transport
1341 * address) to use. [If the primary is active but not most recent, 1340 * address) to use. [If the primary is active but not most recent,
1342 * bump the most recently used transport.] 1341 * bump the most recently used transport.]
1343 */ 1342 */
1344 if ((asoc->peer.primary_path->state == SCTP_ACTIVE || 1343 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345 asoc->peer.primary_path->state == SCTP_UNKNOWN) && 1344 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346 asoc->peer.primary_path != trans_pri) { 1345 asoc->peer.primary_path != trans_pri) {
1347 trans_sec = trans_pri; 1346 trans_sec = trans_pri;
1348 trans_pri = asoc->peer.primary_path; 1347 trans_pri = asoc->peer.primary_path;
1349 } 1348 }
1350 1349
1351 /* We did not find anything useful for a possible retransmission 1350 /* We did not find anything useful for a possible retransmission
1352 * path; either primary path that we found is the the same as 1351 * path; either primary path that we found is the the same as
1353 * the current one, or we didn't generally find an active one. 1352 * the current one, or we didn't generally find an active one.
1354 */ 1353 */
1355 if (trans_sec == NULL) 1354 if (trans_sec == NULL)
1356 trans_sec = trans_pri; 1355 trans_sec = trans_pri;
1357 1356
1358 /* If we failed to find a usable transport, just camp on the 1357 /* If we failed to find a usable transport, just camp on the
1359 * active or pick a PF iff it's the better choice. 1358 * active or pick a PF iff it's the better choice.
1360 */ 1359 */
1361 if (trans_pri == NULL) { 1360 if (trans_pri == NULL) {
1362 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); 1361 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363 trans_sec = trans_pri; 1362 trans_sec = trans_pri;
1364 } 1363 }
1365 1364
1366 /* Set the active and retran transports. */ 1365 /* Set the active and retran transports. */
1367 asoc->peer.active_path = trans_pri; 1366 asoc->peer.active_path = trans_pri;
1368 asoc->peer.retran_path = trans_sec; 1367 asoc->peer.retran_path = trans_sec;
1369 } 1368 }
1370 1369
1371 struct sctp_transport * 1370 struct sctp_transport *
1372 sctp_assoc_choose_alter_transport(struct sctp_association *asoc, 1371 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373 struct sctp_transport *last_sent_to) 1372 struct sctp_transport *last_sent_to)
1374 { 1373 {
1375 /* If this is the first time packet is sent, use the active path, 1374 /* If this is the first time packet is sent, use the active path,
1376 * else use the retran path. If the last packet was sent over the 1375 * else use the retran path. If the last packet was sent over the
1377 * retran path, update the retran path and use it. 1376 * retran path, update the retran path and use it.
1378 */ 1377 */
1379 if (last_sent_to == NULL) { 1378 if (last_sent_to == NULL) {
1380 return asoc->peer.active_path; 1379 return asoc->peer.active_path;
1381 } else { 1380 } else {
1382 if (last_sent_to == asoc->peer.retran_path) 1381 if (last_sent_to == asoc->peer.retran_path)
1383 sctp_assoc_update_retran_path(asoc); 1382 sctp_assoc_update_retran_path(asoc);
1384 1383
1385 return asoc->peer.retran_path; 1384 return asoc->peer.retran_path;
1386 } 1385 }
1387 } 1386 }
1388 1387
1389 /* Update the association's pmtu and frag_point by going through all the 1388 /* Update the association's pmtu and frag_point by going through all the
1390 * transports. This routine is called when a transport's PMTU has changed. 1389 * transports. This routine is called when a transport's PMTU has changed.
1391 */ 1390 */
1392 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) 1391 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1393 { 1392 {
1394 struct sctp_transport *t; 1393 struct sctp_transport *t;
1395 __u32 pmtu = 0; 1394 __u32 pmtu = 0;
1396 1395
1397 if (!asoc) 1396 if (!asoc)
1398 return; 1397 return;
1399 1398
1400 /* Get the lowest pmtu of all the transports. */ 1399 /* Get the lowest pmtu of all the transports. */
1401 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1400 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1402 transports) { 1401 transports) {
1403 if (t->pmtu_pending && t->dst) { 1402 if (t->pmtu_pending && t->dst) {
1404 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); 1403 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1405 t->pmtu_pending = 0; 1404 t->pmtu_pending = 0;
1406 } 1405 }
1407 if (!pmtu || (t->pathmtu < pmtu)) 1406 if (!pmtu || (t->pathmtu < pmtu))
1408 pmtu = t->pathmtu; 1407 pmtu = t->pathmtu;
1409 } 1408 }
1410 1409
1411 if (pmtu) { 1410 if (pmtu) {
1412 asoc->pathmtu = pmtu; 1411 asoc->pathmtu = pmtu;
1413 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1412 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1414 } 1413 }
1415 1414
1416 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, 1415 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1417 asoc->pathmtu, asoc->frag_point); 1416 asoc->pathmtu, asoc->frag_point);
1418 } 1417 }
1419 1418
1420 /* Should we send a SACK to update our peer? */ 1419 /* Should we send a SACK to update our peer? */
1421 static inline bool sctp_peer_needs_update(struct sctp_association *asoc) 1420 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1422 { 1421 {
1423 struct net *net = sock_net(asoc->base.sk); 1422 struct net *net = sock_net(asoc->base.sk);
1424 switch (asoc->state) { 1423 switch (asoc->state) {
1425 case SCTP_STATE_ESTABLISHED: 1424 case SCTP_STATE_ESTABLISHED:
1426 case SCTP_STATE_SHUTDOWN_PENDING: 1425 case SCTP_STATE_SHUTDOWN_PENDING:
1427 case SCTP_STATE_SHUTDOWN_RECEIVED: 1426 case SCTP_STATE_SHUTDOWN_RECEIVED:
1428 case SCTP_STATE_SHUTDOWN_SENT: 1427 case SCTP_STATE_SHUTDOWN_SENT:
1429 if ((asoc->rwnd > asoc->a_rwnd) && 1428 if ((asoc->rwnd > asoc->a_rwnd) &&
1430 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1429 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1431 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), 1430 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1432 asoc->pathmtu))) 1431 asoc->pathmtu)))
1433 return true; 1432 return true;
1434 break; 1433 break;
1435 default: 1434 default:
1436 break; 1435 break;
1437 } 1436 }
1438 return false; 1437 return false;
1439 } 1438 }
1440 1439
1441 /* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1440 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1442 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) 1441 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1443 { 1442 {
1444 struct sctp_chunk *sack; 1443 struct sctp_chunk *sack;
1445 struct timer_list *timer; 1444 struct timer_list *timer;
1446 1445
1447 if (asoc->rwnd_over) { 1446 if (asoc->rwnd_over) {
1448 if (asoc->rwnd_over >= len) { 1447 if (asoc->rwnd_over >= len) {
1449 asoc->rwnd_over -= len; 1448 asoc->rwnd_over -= len;
1450 } else { 1449 } else {
1451 asoc->rwnd += (len - asoc->rwnd_over); 1450 asoc->rwnd += (len - asoc->rwnd_over);
1452 asoc->rwnd_over = 0; 1451 asoc->rwnd_over = 0;
1453 } 1452 }
1454 } else { 1453 } else {
1455 asoc->rwnd += len; 1454 asoc->rwnd += len;
1456 } 1455 }
1457 1456
1458 /* If we had window pressure, start recovering it 1457 /* If we had window pressure, start recovering it
1459 * once our rwnd had reached the accumulated pressure 1458 * once our rwnd had reached the accumulated pressure
1460 * threshold. The idea is to recover slowly, but up 1459 * threshold. The idea is to recover slowly, but up
1461 * to the initial advertised window. 1460 * to the initial advertised window.
1462 */ 1461 */
1463 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1462 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1464 int change = min(asoc->pathmtu, asoc->rwnd_press); 1463 int change = min(asoc->pathmtu, asoc->rwnd_press);
1465 asoc->rwnd += change; 1464 asoc->rwnd += change;
1466 asoc->rwnd_press -= change; 1465 asoc->rwnd_press -= change;
1467 } 1466 }
1468 1467
1469 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", 1468 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1470 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1469 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1471 asoc->a_rwnd); 1470 asoc->a_rwnd);
1472 1471
1473 /* Send a window update SACK if the rwnd has increased by at least the 1472 /* Send a window update SACK if the rwnd has increased by at least the
1474 * minimum of the association's PMTU and half of the receive buffer. 1473 * minimum of the association's PMTU and half of the receive buffer.
1475 * The algorithm used is similar to the one described in 1474 * The algorithm used is similar to the one described in
1476 * Section 4.2.3.3 of RFC 1122. 1475 * Section 4.2.3.3 of RFC 1122.
1477 */ 1476 */
1478 if (sctp_peer_needs_update(asoc)) { 1477 if (sctp_peer_needs_update(asoc)) {
1479 asoc->a_rwnd = asoc->rwnd; 1478 asoc->a_rwnd = asoc->rwnd;
1480 1479
1481 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " 1480 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1482 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, 1481 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1483 asoc->a_rwnd); 1482 asoc->a_rwnd);
1484 1483
1485 sack = sctp_make_sack(asoc); 1484 sack = sctp_make_sack(asoc);
1486 if (!sack) 1485 if (!sack)
1487 return; 1486 return;
1488 1487
1489 asoc->peer.sack_needed = 0; 1488 asoc->peer.sack_needed = 0;
1490 1489
1491 sctp_outq_tail(&asoc->outqueue, sack); 1490 sctp_outq_tail(&asoc->outqueue, sack);
1492 1491
1493 /* Stop the SACK timer. */ 1492 /* Stop the SACK timer. */
1494 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1493 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1495 if (del_timer(timer)) 1494 if (del_timer(timer))
1496 sctp_association_put(asoc); 1495 sctp_association_put(asoc);
1497 } 1496 }
1498 } 1497 }
1499 1498
1500 /* Decrease asoc's rwnd by len. */ 1499 /* Decrease asoc's rwnd by len. */
1501 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) 1500 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1502 { 1501 {
1503 int rx_count; 1502 int rx_count;
1504 int over = 0; 1503 int over = 0;
1505 1504
1506 if (unlikely(!asoc->rwnd || asoc->rwnd_over)) 1505 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1507 pr_debug("%s: association:%p has asoc->rwnd:%u, " 1506 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1508 "asoc->rwnd_over:%u!\n", __func__, asoc, 1507 "asoc->rwnd_over:%u!\n", __func__, asoc,
1509 asoc->rwnd, asoc->rwnd_over); 1508 asoc->rwnd, asoc->rwnd_over);
1510 1509
1511 if (asoc->ep->rcvbuf_policy) 1510 if (asoc->ep->rcvbuf_policy)
1512 rx_count = atomic_read(&asoc->rmem_alloc); 1511 rx_count = atomic_read(&asoc->rmem_alloc);
1513 else 1512 else
1514 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1513 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1515 1514
1516 /* If we've reached or overflowed our receive buffer, announce 1515 /* If we've reached or overflowed our receive buffer, announce
1517 * a 0 rwnd if rwnd would still be positive. Store the 1516 * a 0 rwnd if rwnd would still be positive. Store the
1518 * the potential pressure overflow so that the window can be restored 1517 * the potential pressure overflow so that the window can be restored
1519 * back to original value. 1518 * back to original value.
1520 */ 1519 */
1521 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1520 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1522 over = 1; 1521 over = 1;
1523 1522
1524 if (asoc->rwnd >= len) { 1523 if (asoc->rwnd >= len) {
1525 asoc->rwnd -= len; 1524 asoc->rwnd -= len;
1526 if (over) { 1525 if (over) {
1527 asoc->rwnd_press += asoc->rwnd; 1526 asoc->rwnd_press += asoc->rwnd;
1528 asoc->rwnd = 0; 1527 asoc->rwnd = 0;
1529 } 1528 }
1530 } else { 1529 } else {
1531 asoc->rwnd_over = len - asoc->rwnd; 1530 asoc->rwnd_over = len - asoc->rwnd;
1532 asoc->rwnd = 0; 1531 asoc->rwnd = 0;
1533 } 1532 }
1534 1533
1535 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", 1534 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1536 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, 1535 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1537 asoc->rwnd_press); 1536 asoc->rwnd_press);
1538 } 1537 }
1539 1538
1540 /* Build the bind address list for the association based on info from the 1539 /* Build the bind address list for the association based on info from the
1541 * local endpoint and the remote peer. 1540 * local endpoint and the remote peer.
1542 */ 1541 */
1543 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1542 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1544 sctp_scope_t scope, gfp_t gfp) 1543 sctp_scope_t scope, gfp_t gfp)
1545 { 1544 {
1546 int flags; 1545 int flags;
1547 1546
1548 /* Use scoping rules to determine the subset of addresses from 1547 /* Use scoping rules to determine the subset of addresses from
1549 * the endpoint. 1548 * the endpoint.
1550 */ 1549 */
1551 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1550 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1552 if (asoc->peer.ipv4_address) 1551 if (asoc->peer.ipv4_address)
1553 flags |= SCTP_ADDR4_PEERSUPP; 1552 flags |= SCTP_ADDR4_PEERSUPP;
1554 if (asoc->peer.ipv6_address) 1553 if (asoc->peer.ipv6_address)
1555 flags |= SCTP_ADDR6_PEERSUPP; 1554 flags |= SCTP_ADDR6_PEERSUPP;
1556 1555
1557 return sctp_bind_addr_copy(sock_net(asoc->base.sk), 1556 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1558 &asoc->base.bind_addr, 1557 &asoc->base.bind_addr,
1559 &asoc->ep->base.bind_addr, 1558 &asoc->ep->base.bind_addr,
1560 scope, gfp, flags); 1559 scope, gfp, flags);
1561 } 1560 }
1562 1561
1563 /* Build the association's bind address list from the cookie. */ 1562 /* Build the association's bind address list from the cookie. */
1564 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1563 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1565 struct sctp_cookie *cookie, 1564 struct sctp_cookie *cookie,
1566 gfp_t gfp) 1565 gfp_t gfp)
1567 { 1566 {
1568 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1567 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1569 int var_size3 = cookie->raw_addr_list_len; 1568 int var_size3 = cookie->raw_addr_list_len;
1570 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1569 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1571 1570
1572 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1571 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1573 asoc->ep->base.bind_addr.port, gfp); 1572 asoc->ep->base.bind_addr.port, gfp);
1574 } 1573 }
1575 1574
1576 /* Lookup laddr in the bind address list of an association. */ 1575 /* Lookup laddr in the bind address list of an association. */
1577 int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1576 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1578 const union sctp_addr *laddr) 1577 const union sctp_addr *laddr)
1579 { 1578 {
1580 int found = 0; 1579 int found = 0;
1581 1580
1582 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1581 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1583 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1582 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1584 sctp_sk(asoc->base.sk))) 1583 sctp_sk(asoc->base.sk)))
1585 found = 1; 1584 found = 1;
1586 1585
1587 return found; 1586 return found;
1588 } 1587 }
1589 1588
1590 /* Set an association id for a given association */ 1589 /* Set an association id for a given association */
1591 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1590 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1592 { 1591 {
1593 bool preload = !!(gfp & __GFP_WAIT); 1592 bool preload = !!(gfp & __GFP_WAIT);
1594 int ret; 1593 int ret;
1595 1594
1596 /* If the id is already assigned, keep it. */ 1595 /* If the id is already assigned, keep it. */
1597 if (asoc->assoc_id) 1596 if (asoc->assoc_id)
1598 return 0; 1597 return 0;
1599 1598
1600 if (preload) 1599 if (preload)
1601 idr_preload(gfp); 1600 idr_preload(gfp);
1602 spin_lock_bh(&sctp_assocs_id_lock); 1601 spin_lock_bh(&sctp_assocs_id_lock);
1603 /* 0 is not a valid assoc_id, must be >= 1 */ 1602 /* 0 is not a valid assoc_id, must be >= 1 */
1604 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); 1603 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1605 spin_unlock_bh(&sctp_assocs_id_lock); 1604 spin_unlock_bh(&sctp_assocs_id_lock);
1606 if (preload) 1605 if (preload)
1607 idr_preload_end(); 1606 idr_preload_end();
1608 if (ret < 0) 1607 if (ret < 0)
1609 return ret; 1608 return ret;
1610 1609
1611 asoc->assoc_id = (sctp_assoc_t)ret; 1610 asoc->assoc_id = (sctp_assoc_t)ret;
1612 return 0; 1611 return 0;
1613 } 1612 }
1614 1613
1615 /* Free the ASCONF queue */ 1614 /* Free the ASCONF queue */
1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) 1615 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1617 { 1616 {
1618 struct sctp_chunk *asconf; 1617 struct sctp_chunk *asconf;
1619 struct sctp_chunk *tmp; 1618 struct sctp_chunk *tmp;
1620 1619
1621 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { 1620 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1622 list_del_init(&asconf->list); 1621 list_del_init(&asconf->list);
1623 sctp_chunk_free(asconf); 1622 sctp_chunk_free(asconf);
1624 } 1623 }
1625 } 1624 }
1626 1625
1627 /* Free asconf_ack cache */ 1626 /* Free asconf_ack cache */
1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1627 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1629 { 1628 {
1630 struct sctp_chunk *ack; 1629 struct sctp_chunk *ack;
1631 struct sctp_chunk *tmp; 1630 struct sctp_chunk *tmp;
1632 1631
1633 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1632 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1634 transmitted_list) { 1633 transmitted_list) {
1635 list_del_init(&ack->transmitted_list); 1634 list_del_init(&ack->transmitted_list);
1636 sctp_chunk_free(ack); 1635 sctp_chunk_free(ack);
1637 } 1636 }
1638 } 1637 }
1639 1638
1640 /* Clean up the ASCONF_ACK queue */ 1639 /* Clean up the ASCONF_ACK queue */
1641 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1640 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1642 { 1641 {
1643 struct sctp_chunk *ack; 1642 struct sctp_chunk *ack;
1644 struct sctp_chunk *tmp; 1643 struct sctp_chunk *tmp;
1645 1644
1646 /* We can remove all the entries from the queue up to 1645 /* We can remove all the entries from the queue up to
1647 * the "Peer-Sequence-Number". 1646 * the "Peer-Sequence-Number".
1648 */ 1647 */
1649 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1648 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1650 transmitted_list) { 1649 transmitted_list) {
1651 if (ack->subh.addip_hdr->serial == 1650 if (ack->subh.addip_hdr->serial ==
1652 htonl(asoc->peer.addip_serial)) 1651 htonl(asoc->peer.addip_serial))
1653 break; 1652 break;
1654 1653
1655 list_del_init(&ack->transmitted_list); 1654 list_del_init(&ack->transmitted_list);
1656 sctp_chunk_free(ack); 1655 sctp_chunk_free(ack);
1657 } 1656 }
1658 } 1657 }
1659 1658
1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */ 1659 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1661 struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1660 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1662 const struct sctp_association *asoc, 1661 const struct sctp_association *asoc,
1663 __be32 serial) 1662 __be32 serial)
1664 { 1663 {
1665 struct sctp_chunk *ack; 1664 struct sctp_chunk *ack;
1666 1665
1667 /* Walk through the list of cached ASCONF-ACKs and find the 1666 /* Walk through the list of cached ASCONF-ACKs and find the
1668 * ack chunk whose serial number matches that of the request. 1667 * ack chunk whose serial number matches that of the request.
1669 */ 1668 */
1670 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1669 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1671 if (sctp_chunk_pending(ack)) 1670 if (sctp_chunk_pending(ack))
1672 continue; 1671 continue;
1673 if (ack->subh.addip_hdr->serial == serial) { 1672 if (ack->subh.addip_hdr->serial == serial) {
1674 sctp_chunk_hold(ack); 1673 sctp_chunk_hold(ack);
1675 return ack; 1674 return ack;
1676 } 1675 }
1677 } 1676 }
1678 1677
1679 return NULL; 1678 return NULL;
1680 } 1679 }
1681 1680
1682 void sctp_asconf_queue_teardown(struct sctp_association *asoc) 1681 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1683 { 1682 {
1684 /* Free any cached ASCONF_ACK chunk. */ 1683 /* Free any cached ASCONF_ACK chunk. */
1685 sctp_assoc_free_asconf_acks(asoc); 1684 sctp_assoc_free_asconf_acks(asoc);
1686 1685
1687 /* Free the ASCONF queue. */ 1686 /* Free the ASCONF queue. */
1688 sctp_assoc_free_asconf_queue(asoc); 1687 sctp_assoc_free_asconf_queue(asoc);
1689 1688
1690 /* Free any cached ASCONF chunk. */ 1689 /* Free any cached ASCONF chunk. */
1691 if (asoc->addip_last_asconf) 1690 if (asoc->addip_last_asconf)
1692 sctp_chunk_free(asoc->addip_last_asconf); 1691 sctp_chunk_free(asoc->addip_last_asconf);
1693 } 1692 }
1694 1693