Commit d038a63ace6cf2ce3aeafa741b73d542ffb65163

Authored by Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs

Pull btrfs deadlock fix from Chris Mason:
 "This has a fix for a long standing deadlock that we've been trying to
  nail down for a while.  It ended up being a bad interaction with the
  fair reader/writer locks and the order btrfs reacquires locks in the
  btree"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix lockups from btrfs_clear_path_blocking

Showing 3 changed files Inline Diff

1 /* 1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
3 * 3 *
4 * This program is free software; you can redistribute it and/or 4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public 5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation. 6 * License v2 as published by the Free Software Foundation.
7 * 7 *
8 * This program is distributed in the hope that it will be useful, 8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details. 11 * General Public License for more details.
12 * 12 *
13 * You should have received a copy of the GNU General Public 13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the 14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA. 16 * Boston, MA 021110-1307, USA.
17 */ 17 */
18 18
19 #include <linux/sched.h> 19 #include <linux/sched.h>
20 #include <linux/slab.h> 20 #include <linux/slab.h>
21 #include <linux/rbtree.h> 21 #include <linux/rbtree.h>
22 #include "ctree.h" 22 #include "ctree.h"
23 #include "disk-io.h" 23 #include "disk-io.h"
24 #include "transaction.h" 24 #include "transaction.h"
25 #include "print-tree.h" 25 #include "print-tree.h"
26 #include "locking.h" 26 #include "locking.h"
27 27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level); 29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key, 31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend); 32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans, 33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst, 34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty); 35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans, 36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root, 37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf, 38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf); 39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot); 41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb); 43 struct extent_buffer *eb);
44 44
45 struct btrfs_path *btrfs_alloc_path(void) 45 struct btrfs_path *btrfs_alloc_path(void)
46 { 46 {
47 struct btrfs_path *path; 47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path; 49 return path;
50 } 50 }
51 51
52 /* 52 /*
53 * set all locked nodes in the path to blocking locks. This should 53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling 54 * be done before scheduling
55 */ 55 */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 { 57 {
58 int i; 58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i]) 60 if (!p->nodes[i] || !p->locks[i])
61 continue; 61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK) 63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 } 67 }
68 } 68 }
69 69
70 /* 70 /*
71 * reset all the locked nodes in the patch to spinning locks. 71 * reset all the locked nodes in the patch to spinning locks.
72 * 72 *
73 * held is used to keep lockdep happy, when lockdep is enabled 73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and 74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL 75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held 76 * for held
77 */ 77 */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw) 79 struct extent_buffer *held, int held_rw)
80 { 80 {
81 int i; 81 int i;
82 82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84 /* lockdep really cares that we take all of these spinlocks
85 * in the right order. If any of the locks in the path are not
86 * currently blocking, it is going to complain. So, make really
87 * really sure by forcing the path to blocking before we clear
88 * the path blocking.
89 */
90 if (held) { 83 if (held) {
91 btrfs_set_lock_blocking_rw(held, held_rw); 84 btrfs_set_lock_blocking_rw(held, held_rw);
92 if (held_rw == BTRFS_WRITE_LOCK) 85 if (held_rw == BTRFS_WRITE_LOCK)
93 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94 else if (held_rw == BTRFS_READ_LOCK) 87 else if (held_rw == BTRFS_READ_LOCK)
95 held_rw = BTRFS_READ_LOCK_BLOCKING; 88 held_rw = BTRFS_READ_LOCK_BLOCKING;
96 } 89 }
97 btrfs_set_path_blocking(p); 90 btrfs_set_path_blocking(p);
98 #endif
99 91
100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101 if (p->nodes[i] && p->locks[i]) { 93 if (p->nodes[i] && p->locks[i]) {
102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104 p->locks[i] = BTRFS_WRITE_LOCK; 96 p->locks[i] = BTRFS_WRITE_LOCK;
105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106 p->locks[i] = BTRFS_READ_LOCK; 98 p->locks[i] = BTRFS_READ_LOCK;
107 } 99 }
108 } 100 }
109 101
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111 if (held) 102 if (held)
112 btrfs_clear_lock_blocking_rw(held, held_rw); 103 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 } 104 }
115 105
116 /* this also releases the path */ 106 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p) 107 void btrfs_free_path(struct btrfs_path *p)
118 { 108 {
119 if (!p) 109 if (!p)
120 return; 110 return;
121 btrfs_release_path(p); 111 btrfs_release_path(p);
122 kmem_cache_free(btrfs_path_cachep, p); 112 kmem_cache_free(btrfs_path_cachep, p);
123 } 113 }
124 114
125 /* 115 /*
126 * path release drops references on the extent buffers in the path 116 * path release drops references on the extent buffers in the path
127 * and it drops any locks held by this path 117 * and it drops any locks held by this path
128 * 118 *
129 * It is safe to call this on paths that no locks or extent buffers held. 119 * It is safe to call this on paths that no locks or extent buffers held.
130 */ 120 */
131 noinline void btrfs_release_path(struct btrfs_path *p) 121 noinline void btrfs_release_path(struct btrfs_path *p)
132 { 122 {
133 int i; 123 int i;
134 124
135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136 p->slots[i] = 0; 126 p->slots[i] = 0;
137 if (!p->nodes[i]) 127 if (!p->nodes[i])
138 continue; 128 continue;
139 if (p->locks[i]) { 129 if (p->locks[i]) {
140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141 p->locks[i] = 0; 131 p->locks[i] = 0;
142 } 132 }
143 free_extent_buffer(p->nodes[i]); 133 free_extent_buffer(p->nodes[i]);
144 p->nodes[i] = NULL; 134 p->nodes[i] = NULL;
145 } 135 }
146 } 136 }
147 137
148 /* 138 /*
149 * safely gets a reference on the root node of a tree. A lock 139 * safely gets a reference on the root node of a tree. A lock
150 * is not taken, so a concurrent writer may put a different node 140 * is not taken, so a concurrent writer may put a different node
151 * at the root of the tree. See btrfs_lock_root_node for the 141 * at the root of the tree. See btrfs_lock_root_node for the
152 * looping required. 142 * looping required.
153 * 143 *
154 * The extent buffer returned by this has a reference taken, so 144 * The extent buffer returned by this has a reference taken, so
155 * it won't disappear. It may stop being the root of the tree 145 * it won't disappear. It may stop being the root of the tree
156 * at any time because there are no locks held. 146 * at any time because there are no locks held.
157 */ 147 */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 { 149 {
160 struct extent_buffer *eb; 150 struct extent_buffer *eb;
161 151
162 while (1) { 152 while (1) {
163 rcu_read_lock(); 153 rcu_read_lock();
164 eb = rcu_dereference(root->node); 154 eb = rcu_dereference(root->node);
165 155
166 /* 156 /*
167 * RCU really hurts here, we could free up the root node because 157 * RCU really hurts here, we could free up the root node because
168 * it was cow'ed but we may not get the new root node yet so do 158 * it was cow'ed but we may not get the new root node yet so do
169 * the inc_not_zero dance and if it doesn't work then 159 * the inc_not_zero dance and if it doesn't work then
170 * synchronize_rcu and try again. 160 * synchronize_rcu and try again.
171 */ 161 */
172 if (atomic_inc_not_zero(&eb->refs)) { 162 if (atomic_inc_not_zero(&eb->refs)) {
173 rcu_read_unlock(); 163 rcu_read_unlock();
174 break; 164 break;
175 } 165 }
176 rcu_read_unlock(); 166 rcu_read_unlock();
177 synchronize_rcu(); 167 synchronize_rcu();
178 } 168 }
179 return eb; 169 return eb;
180 } 170 }
181 171
182 /* loop around taking references on and locking the root node of the 172 /* loop around taking references on and locking the root node of the
183 * tree until you end up with a lock on the root. A locked buffer 173 * tree until you end up with a lock on the root. A locked buffer
184 * is returned, with a reference held. 174 * is returned, with a reference held.
185 */ 175 */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 { 177 {
188 struct extent_buffer *eb; 178 struct extent_buffer *eb;
189 179
190 while (1) { 180 while (1) {
191 eb = btrfs_root_node(root); 181 eb = btrfs_root_node(root);
192 btrfs_tree_lock(eb); 182 btrfs_tree_lock(eb);
193 if (eb == root->node) 183 if (eb == root->node)
194 break; 184 break;
195 btrfs_tree_unlock(eb); 185 btrfs_tree_unlock(eb);
196 free_extent_buffer(eb); 186 free_extent_buffer(eb);
197 } 187 }
198 return eb; 188 return eb;
199 } 189 }
200 190
201 /* loop around taking references on and locking the root node of the 191 /* loop around taking references on and locking the root node of the
202 * tree until you end up with a lock on the root. A locked buffer 192 * tree until you end up with a lock on the root. A locked buffer
203 * is returned, with a reference held. 193 * is returned, with a reference held.
204 */ 194 */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 { 196 {
207 struct extent_buffer *eb; 197 struct extent_buffer *eb;
208 198
209 while (1) { 199 while (1) {
210 eb = btrfs_root_node(root); 200 eb = btrfs_root_node(root);
211 btrfs_tree_read_lock(eb); 201 btrfs_tree_read_lock(eb);
212 if (eb == root->node) 202 if (eb == root->node)
213 break; 203 break;
214 btrfs_tree_read_unlock(eb); 204 btrfs_tree_read_unlock(eb);
215 free_extent_buffer(eb); 205 free_extent_buffer(eb);
216 } 206 }
217 return eb; 207 return eb;
218 } 208 }
219 209
220 /* cowonly root (everything not a reference counted cow subvolume), just get 210 /* cowonly root (everything not a reference counted cow subvolume), just get
221 * put onto a simple dirty list. transaction.c walks this to make sure they 211 * put onto a simple dirty list. transaction.c walks this to make sure they
222 * get properly updated on disk. 212 * get properly updated on disk.
223 */ 213 */
224 static void add_root_to_dirty_list(struct btrfs_root *root) 214 static void add_root_to_dirty_list(struct btrfs_root *root)
225 { 215 {
226 spin_lock(&root->fs_info->trans_lock); 216 spin_lock(&root->fs_info->trans_lock);
227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) && 217 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
228 list_empty(&root->dirty_list)) { 218 list_empty(&root->dirty_list)) {
229 list_add(&root->dirty_list, 219 list_add(&root->dirty_list,
230 &root->fs_info->dirty_cowonly_roots); 220 &root->fs_info->dirty_cowonly_roots);
231 } 221 }
232 spin_unlock(&root->fs_info->trans_lock); 222 spin_unlock(&root->fs_info->trans_lock);
233 } 223 }
234 224
235 /* 225 /*
236 * used by snapshot creation to make a copy of a root for a tree with 226 * used by snapshot creation to make a copy of a root for a tree with
237 * a given objectid. The buffer with the new root node is returned in 227 * a given objectid. The buffer with the new root node is returned in
238 * cow_ret, and this func returns zero on success or a negative error code. 228 * cow_ret, and this func returns zero on success or a negative error code.
239 */ 229 */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 230 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 struct btrfs_root *root, 231 struct btrfs_root *root,
242 struct extent_buffer *buf, 232 struct extent_buffer *buf,
243 struct extent_buffer **cow_ret, u64 new_root_objectid) 233 struct extent_buffer **cow_ret, u64 new_root_objectid)
244 { 234 {
245 struct extent_buffer *cow; 235 struct extent_buffer *cow;
246 int ret = 0; 236 int ret = 0;
247 int level; 237 int level;
248 struct btrfs_disk_key disk_key; 238 struct btrfs_disk_key disk_key;
249 239
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 240 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->fs_info->running_transaction->transid); 241 trans->transid != root->fs_info->running_transaction->transid);
252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 242 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
253 trans->transid != root->last_trans); 243 trans->transid != root->last_trans);
254 244
255 level = btrfs_header_level(buf); 245 level = btrfs_header_level(buf);
256 if (level == 0) 246 if (level == 0)
257 btrfs_item_key(buf, &disk_key, 0); 247 btrfs_item_key(buf, &disk_key, 0);
258 else 248 else
259 btrfs_node_key(buf, &disk_key, 0); 249 btrfs_node_key(buf, &disk_key, 0);
260 250
261 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 251 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
262 &disk_key, level, buf->start, 0); 252 &disk_key, level, buf->start, 0);
263 if (IS_ERR(cow)) 253 if (IS_ERR(cow))
264 return PTR_ERR(cow); 254 return PTR_ERR(cow);
265 255
266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 256 copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 btrfs_set_header_bytenr(cow, cow->start); 257 btrfs_set_header_bytenr(cow, cow->start);
268 btrfs_set_header_generation(cow, trans->transid); 258 btrfs_set_header_generation(cow, trans->transid);
269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 259 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 260 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 BTRFS_HEADER_FLAG_RELOC); 261 BTRFS_HEADER_FLAG_RELOC);
272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 262 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 263 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 else 264 else
275 btrfs_set_header_owner(cow, new_root_objectid); 265 btrfs_set_header_owner(cow, new_root_objectid);
276 266
277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 267 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278 BTRFS_FSID_SIZE); 268 BTRFS_FSID_SIZE);
279 269
280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 270 WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 ret = btrfs_inc_ref(trans, root, cow, 1); 272 ret = btrfs_inc_ref(trans, root, cow, 1);
283 else 273 else
284 ret = btrfs_inc_ref(trans, root, cow, 0); 274 ret = btrfs_inc_ref(trans, root, cow, 0);
285 275
286 if (ret) 276 if (ret)
287 return ret; 277 return ret;
288 278
289 btrfs_mark_buffer_dirty(cow); 279 btrfs_mark_buffer_dirty(cow);
290 *cow_ret = cow; 280 *cow_ret = cow;
291 return 0; 281 return 0;
292 } 282 }
293 283
294 enum mod_log_op { 284 enum mod_log_op {
295 MOD_LOG_KEY_REPLACE, 285 MOD_LOG_KEY_REPLACE,
296 MOD_LOG_KEY_ADD, 286 MOD_LOG_KEY_ADD,
297 MOD_LOG_KEY_REMOVE, 287 MOD_LOG_KEY_REMOVE,
298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 288 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 289 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 MOD_LOG_MOVE_KEYS, 290 MOD_LOG_MOVE_KEYS,
301 MOD_LOG_ROOT_REPLACE, 291 MOD_LOG_ROOT_REPLACE,
302 }; 292 };
303 293
304 struct tree_mod_move { 294 struct tree_mod_move {
305 int dst_slot; 295 int dst_slot;
306 int nr_items; 296 int nr_items;
307 }; 297 };
308 298
309 struct tree_mod_root { 299 struct tree_mod_root {
310 u64 logical; 300 u64 logical;
311 u8 level; 301 u8 level;
312 }; 302 };
313 303
314 struct tree_mod_elem { 304 struct tree_mod_elem {
315 struct rb_node node; 305 struct rb_node node;
316 u64 index; /* shifted logical */ 306 u64 index; /* shifted logical */
317 u64 seq; 307 u64 seq;
318 enum mod_log_op op; 308 enum mod_log_op op;
319 309
320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 310 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 int slot; 311 int slot;
322 312
323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 313 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 u64 generation; 314 u64 generation;
325 315
326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 316 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 struct btrfs_disk_key key; 317 struct btrfs_disk_key key;
328 u64 blockptr; 318 u64 blockptr;
329 319
330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 320 /* this is used for op == MOD_LOG_MOVE_KEYS */
331 struct tree_mod_move move; 321 struct tree_mod_move move;
332 322
333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 323 /* this is used for op == MOD_LOG_ROOT_REPLACE */
334 struct tree_mod_root old_root; 324 struct tree_mod_root old_root;
335 }; 325 };
336 326
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 327 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 { 328 {
339 read_lock(&fs_info->tree_mod_log_lock); 329 read_lock(&fs_info->tree_mod_log_lock);
340 } 330 }
341 331
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 332 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 { 333 {
344 read_unlock(&fs_info->tree_mod_log_lock); 334 read_unlock(&fs_info->tree_mod_log_lock);
345 } 335 }
346 336
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 337 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 { 338 {
349 write_lock(&fs_info->tree_mod_log_lock); 339 write_lock(&fs_info->tree_mod_log_lock);
350 } 340 }
351 341
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 342 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 { 343 {
354 write_unlock(&fs_info->tree_mod_log_lock); 344 write_unlock(&fs_info->tree_mod_log_lock);
355 } 345 }
356 346
357 /* 347 /*
358 * Pull a new tree mod seq number for our operation. 348 * Pull a new tree mod seq number for our operation.
359 */ 349 */
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 350 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 { 351 {
362 return atomic64_inc_return(&fs_info->tree_mod_seq); 352 return atomic64_inc_return(&fs_info->tree_mod_seq);
363 } 353 }
364 354
365 /* 355 /*
366 * This adds a new blocker to the tree mod log's blocker list if the @elem 356 * This adds a new blocker to the tree mod log's blocker list if the @elem
367 * passed does not already have a sequence number set. So when a caller expects 357 * passed does not already have a sequence number set. So when a caller expects
368 * to record tree modifications, it should ensure to set elem->seq to zero 358 * to record tree modifications, it should ensure to set elem->seq to zero
369 * before calling btrfs_get_tree_mod_seq. 359 * before calling btrfs_get_tree_mod_seq.
370 * Returns a fresh, unused tree log modification sequence number, even if no new 360 * Returns a fresh, unused tree log modification sequence number, even if no new
371 * blocker was added. 361 * blocker was added.
372 */ 362 */
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 363 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 struct seq_list *elem) 364 struct seq_list *elem)
375 { 365 {
376 tree_mod_log_write_lock(fs_info); 366 tree_mod_log_write_lock(fs_info);
377 spin_lock(&fs_info->tree_mod_seq_lock); 367 spin_lock(&fs_info->tree_mod_seq_lock);
378 if (!elem->seq) { 368 if (!elem->seq) {
379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 369 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 370 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 } 371 }
382 spin_unlock(&fs_info->tree_mod_seq_lock); 372 spin_unlock(&fs_info->tree_mod_seq_lock);
383 tree_mod_log_write_unlock(fs_info); 373 tree_mod_log_write_unlock(fs_info);
384 374
385 return elem->seq; 375 return elem->seq;
386 } 376 }
387 377
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 378 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 struct seq_list *elem) 379 struct seq_list *elem)
390 { 380 {
391 struct rb_root *tm_root; 381 struct rb_root *tm_root;
392 struct rb_node *node; 382 struct rb_node *node;
393 struct rb_node *next; 383 struct rb_node *next;
394 struct seq_list *cur_elem; 384 struct seq_list *cur_elem;
395 struct tree_mod_elem *tm; 385 struct tree_mod_elem *tm;
396 u64 min_seq = (u64)-1; 386 u64 min_seq = (u64)-1;
397 u64 seq_putting = elem->seq; 387 u64 seq_putting = elem->seq;
398 388
399 if (!seq_putting) 389 if (!seq_putting)
400 return; 390 return;
401 391
402 spin_lock(&fs_info->tree_mod_seq_lock); 392 spin_lock(&fs_info->tree_mod_seq_lock);
403 list_del(&elem->list); 393 list_del(&elem->list);
404 elem->seq = 0; 394 elem->seq = 0;
405 395
406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 396 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 if (cur_elem->seq < min_seq) { 397 if (cur_elem->seq < min_seq) {
408 if (seq_putting > cur_elem->seq) { 398 if (seq_putting > cur_elem->seq) {
409 /* 399 /*
410 * blocker with lower sequence number exists, we 400 * blocker with lower sequence number exists, we
411 * cannot remove anything from the log 401 * cannot remove anything from the log
412 */ 402 */
413 spin_unlock(&fs_info->tree_mod_seq_lock); 403 spin_unlock(&fs_info->tree_mod_seq_lock);
414 return; 404 return;
415 } 405 }
416 min_seq = cur_elem->seq; 406 min_seq = cur_elem->seq;
417 } 407 }
418 } 408 }
419 spin_unlock(&fs_info->tree_mod_seq_lock); 409 spin_unlock(&fs_info->tree_mod_seq_lock);
420 410
421 /* 411 /*
422 * anything that's lower than the lowest existing (read: blocked) 412 * anything that's lower than the lowest existing (read: blocked)
423 * sequence number can be removed from the tree. 413 * sequence number can be removed from the tree.
424 */ 414 */
425 tree_mod_log_write_lock(fs_info); 415 tree_mod_log_write_lock(fs_info);
426 tm_root = &fs_info->tree_mod_log; 416 tm_root = &fs_info->tree_mod_log;
427 for (node = rb_first(tm_root); node; node = next) { 417 for (node = rb_first(tm_root); node; node = next) {
428 next = rb_next(node); 418 next = rb_next(node);
429 tm = container_of(node, struct tree_mod_elem, node); 419 tm = container_of(node, struct tree_mod_elem, node);
430 if (tm->seq > min_seq) 420 if (tm->seq > min_seq)
431 continue; 421 continue;
432 rb_erase(node, tm_root); 422 rb_erase(node, tm_root);
433 kfree(tm); 423 kfree(tm);
434 } 424 }
435 tree_mod_log_write_unlock(fs_info); 425 tree_mod_log_write_unlock(fs_info);
436 } 426 }
437 427
438 /* 428 /*
439 * key order of the log: 429 * key order of the log:
440 * index -> sequence 430 * index -> sequence
441 * 431 *
442 * the index is the shifted logical of the *new* root node for root replace 432 * the index is the shifted logical of the *new* root node for root replace
443 * operations, or the shifted logical of the affected block for all other 433 * operations, or the shifted logical of the affected block for all other
444 * operations. 434 * operations.
445 * 435 *
446 * Note: must be called with write lock (tree_mod_log_write_lock). 436 * Note: must be called with write lock (tree_mod_log_write_lock).
447 */ 437 */
448 static noinline int 438 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 439 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 { 440 {
451 struct rb_root *tm_root; 441 struct rb_root *tm_root;
452 struct rb_node **new; 442 struct rb_node **new;
453 struct rb_node *parent = NULL; 443 struct rb_node *parent = NULL;
454 struct tree_mod_elem *cur; 444 struct tree_mod_elem *cur;
455 445
456 BUG_ON(!tm); 446 BUG_ON(!tm);
457 447
458 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 448 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459 449
460 tm_root = &fs_info->tree_mod_log; 450 tm_root = &fs_info->tree_mod_log;
461 new = &tm_root->rb_node; 451 new = &tm_root->rb_node;
462 while (*new) { 452 while (*new) {
463 cur = container_of(*new, struct tree_mod_elem, node); 453 cur = container_of(*new, struct tree_mod_elem, node);
464 parent = *new; 454 parent = *new;
465 if (cur->index < tm->index) 455 if (cur->index < tm->index)
466 new = &((*new)->rb_left); 456 new = &((*new)->rb_left);
467 else if (cur->index > tm->index) 457 else if (cur->index > tm->index)
468 new = &((*new)->rb_right); 458 new = &((*new)->rb_right);
469 else if (cur->seq < tm->seq) 459 else if (cur->seq < tm->seq)
470 new = &((*new)->rb_left); 460 new = &((*new)->rb_left);
471 else if (cur->seq > tm->seq) 461 else if (cur->seq > tm->seq)
472 new = &((*new)->rb_right); 462 new = &((*new)->rb_right);
473 else 463 else
474 return -EEXIST; 464 return -EEXIST;
475 } 465 }
476 466
477 rb_link_node(&tm->node, parent, new); 467 rb_link_node(&tm->node, parent, new);
478 rb_insert_color(&tm->node, tm_root); 468 rb_insert_color(&tm->node, tm_root);
479 return 0; 469 return 0;
480 } 470 }
481 471
482 /* 472 /*
483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 473 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 474 * returns zero with the tree_mod_log_lock acquired. The caller must hold
485 * this until all tree mod log insertions are recorded in the rb tree and then 475 * this until all tree mod log insertions are recorded in the rb tree and then
486 * call tree_mod_log_write_unlock() to release. 476 * call tree_mod_log_write_unlock() to release.
487 */ 477 */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 478 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 struct extent_buffer *eb) { 479 struct extent_buffer *eb) {
490 smp_mb(); 480 smp_mb();
491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 481 if (list_empty(&(fs_info)->tree_mod_seq_list))
492 return 1; 482 return 1;
493 if (eb && btrfs_header_level(eb) == 0) 483 if (eb && btrfs_header_level(eb) == 0)
494 return 1; 484 return 1;
495 485
496 tree_mod_log_write_lock(fs_info); 486 tree_mod_log_write_lock(fs_info);
497 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 487 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498 tree_mod_log_write_unlock(fs_info); 488 tree_mod_log_write_unlock(fs_info);
499 return 1; 489 return 1;
500 } 490 }
501 491
502 return 0; 492 return 0;
503 } 493 }
504 494
505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 495 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 496 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507 struct extent_buffer *eb) 497 struct extent_buffer *eb)
508 { 498 {
509 smp_mb(); 499 smp_mb();
510 if (list_empty(&(fs_info)->tree_mod_seq_list)) 500 if (list_empty(&(fs_info)->tree_mod_seq_list))
511 return 0; 501 return 0;
512 if (eb && btrfs_header_level(eb) == 0) 502 if (eb && btrfs_header_level(eb) == 0)
513 return 0; 503 return 0;
514 504
515 return 1; 505 return 1;
516 } 506 }
517 507
518 static struct tree_mod_elem * 508 static struct tree_mod_elem *
519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 509 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520 enum mod_log_op op, gfp_t flags) 510 enum mod_log_op op, gfp_t flags)
521 { 511 {
522 struct tree_mod_elem *tm; 512 struct tree_mod_elem *tm;
523 513
524 tm = kzalloc(sizeof(*tm), flags); 514 tm = kzalloc(sizeof(*tm), flags);
525 if (!tm) 515 if (!tm)
526 return NULL; 516 return NULL;
527 517
528 tm->index = eb->start >> PAGE_CACHE_SHIFT; 518 tm->index = eb->start >> PAGE_CACHE_SHIFT;
529 if (op != MOD_LOG_KEY_ADD) { 519 if (op != MOD_LOG_KEY_ADD) {
530 btrfs_node_key(eb, &tm->key, slot); 520 btrfs_node_key(eb, &tm->key, slot);
531 tm->blockptr = btrfs_node_blockptr(eb, slot); 521 tm->blockptr = btrfs_node_blockptr(eb, slot);
532 } 522 }
533 tm->op = op; 523 tm->op = op;
534 tm->slot = slot; 524 tm->slot = slot;
535 tm->generation = btrfs_node_ptr_generation(eb, slot); 525 tm->generation = btrfs_node_ptr_generation(eb, slot);
536 RB_CLEAR_NODE(&tm->node); 526 RB_CLEAR_NODE(&tm->node);
537 527
538 return tm; 528 return tm;
539 } 529 }
540 530
541 static noinline int 531 static noinline int
542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 532 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543 struct extent_buffer *eb, int slot, 533 struct extent_buffer *eb, int slot,
544 enum mod_log_op op, gfp_t flags) 534 enum mod_log_op op, gfp_t flags)
545 { 535 {
546 struct tree_mod_elem *tm; 536 struct tree_mod_elem *tm;
547 int ret; 537 int ret;
548 538
549 if (!tree_mod_need_log(fs_info, eb)) 539 if (!tree_mod_need_log(fs_info, eb))
550 return 0; 540 return 0;
551 541
552 tm = alloc_tree_mod_elem(eb, slot, op, flags); 542 tm = alloc_tree_mod_elem(eb, slot, op, flags);
553 if (!tm) 543 if (!tm)
554 return -ENOMEM; 544 return -ENOMEM;
555 545
556 if (tree_mod_dont_log(fs_info, eb)) { 546 if (tree_mod_dont_log(fs_info, eb)) {
557 kfree(tm); 547 kfree(tm);
558 return 0; 548 return 0;
559 } 549 }
560 550
561 ret = __tree_mod_log_insert(fs_info, tm); 551 ret = __tree_mod_log_insert(fs_info, tm);
562 tree_mod_log_write_unlock(fs_info); 552 tree_mod_log_write_unlock(fs_info);
563 if (ret) 553 if (ret)
564 kfree(tm); 554 kfree(tm);
565 555
566 return ret; 556 return ret;
567 } 557 }
568 558
569 static noinline int 559 static noinline int
570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 560 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571 struct extent_buffer *eb, int dst_slot, int src_slot, 561 struct extent_buffer *eb, int dst_slot, int src_slot,
572 int nr_items, gfp_t flags) 562 int nr_items, gfp_t flags)
573 { 563 {
574 struct tree_mod_elem *tm = NULL; 564 struct tree_mod_elem *tm = NULL;
575 struct tree_mod_elem **tm_list = NULL; 565 struct tree_mod_elem **tm_list = NULL;
576 int ret = 0; 566 int ret = 0;
577 int i; 567 int i;
578 int locked = 0; 568 int locked = 0;
579 569
580 if (!tree_mod_need_log(fs_info, eb)) 570 if (!tree_mod_need_log(fs_info, eb))
581 return 0; 571 return 0;
582 572
583 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags); 573 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
584 if (!tm_list) 574 if (!tm_list)
585 return -ENOMEM; 575 return -ENOMEM;
586 576
587 tm = kzalloc(sizeof(*tm), flags); 577 tm = kzalloc(sizeof(*tm), flags);
588 if (!tm) { 578 if (!tm) {
589 ret = -ENOMEM; 579 ret = -ENOMEM;
590 goto free_tms; 580 goto free_tms;
591 } 581 }
592 582
593 tm->index = eb->start >> PAGE_CACHE_SHIFT; 583 tm->index = eb->start >> PAGE_CACHE_SHIFT;
594 tm->slot = src_slot; 584 tm->slot = src_slot;
595 tm->move.dst_slot = dst_slot; 585 tm->move.dst_slot = dst_slot;
596 tm->move.nr_items = nr_items; 586 tm->move.nr_items = nr_items;
597 tm->op = MOD_LOG_MOVE_KEYS; 587 tm->op = MOD_LOG_MOVE_KEYS;
598 588
599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 589 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 590 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 591 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602 if (!tm_list[i]) { 592 if (!tm_list[i]) {
603 ret = -ENOMEM; 593 ret = -ENOMEM;
604 goto free_tms; 594 goto free_tms;
605 } 595 }
606 } 596 }
607 597
608 if (tree_mod_dont_log(fs_info, eb)) 598 if (tree_mod_dont_log(fs_info, eb))
609 goto free_tms; 599 goto free_tms;
610 locked = 1; 600 locked = 1;
611 601
612 /* 602 /*
613 * When we override something during the move, we log these removals. 603 * When we override something during the move, we log these removals.
614 * This can only happen when we move towards the beginning of the 604 * This can only happen when we move towards the beginning of the
615 * buffer, i.e. dst_slot < src_slot. 605 * buffer, i.e. dst_slot < src_slot.
616 */ 606 */
617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 607 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
618 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 608 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 if (ret) 609 if (ret)
620 goto free_tms; 610 goto free_tms;
621 } 611 }
622 612
623 ret = __tree_mod_log_insert(fs_info, tm); 613 ret = __tree_mod_log_insert(fs_info, tm);
624 if (ret) 614 if (ret)
625 goto free_tms; 615 goto free_tms;
626 tree_mod_log_write_unlock(fs_info); 616 tree_mod_log_write_unlock(fs_info);
627 kfree(tm_list); 617 kfree(tm_list);
628 618
629 return 0; 619 return 0;
630 free_tms: 620 free_tms:
631 for (i = 0; i < nr_items; i++) { 621 for (i = 0; i < nr_items; i++) {
632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 622 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 623 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634 kfree(tm_list[i]); 624 kfree(tm_list[i]);
635 } 625 }
636 if (locked) 626 if (locked)
637 tree_mod_log_write_unlock(fs_info); 627 tree_mod_log_write_unlock(fs_info);
638 kfree(tm_list); 628 kfree(tm_list);
639 kfree(tm); 629 kfree(tm);
640 630
641 return ret; 631 return ret;
642 } 632 }
643 633
644 static inline int 634 static inline int
645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 635 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646 struct tree_mod_elem **tm_list, 636 struct tree_mod_elem **tm_list,
647 int nritems) 637 int nritems)
648 { 638 {
649 int i, j; 639 int i, j;
650 int ret; 640 int ret;
651 641
652 for (i = nritems - 1; i >= 0; i--) { 642 for (i = nritems - 1; i >= 0; i--) {
653 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 643 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 if (ret) { 644 if (ret) {
655 for (j = nritems - 1; j > i; j--) 645 for (j = nritems - 1; j > i; j--)
656 rb_erase(&tm_list[j]->node, 646 rb_erase(&tm_list[j]->node,
657 &fs_info->tree_mod_log); 647 &fs_info->tree_mod_log);
658 return ret; 648 return ret;
659 } 649 }
660 } 650 }
661 651
662 return 0; 652 return 0;
663 } 653 }
664 654
665 static noinline int 655 static noinline int
666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 656 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667 struct extent_buffer *old_root, 657 struct extent_buffer *old_root,
668 struct extent_buffer *new_root, gfp_t flags, 658 struct extent_buffer *new_root, gfp_t flags,
669 int log_removal) 659 int log_removal)
670 { 660 {
671 struct tree_mod_elem *tm = NULL; 661 struct tree_mod_elem *tm = NULL;
672 struct tree_mod_elem **tm_list = NULL; 662 struct tree_mod_elem **tm_list = NULL;
673 int nritems = 0; 663 int nritems = 0;
674 int ret = 0; 664 int ret = 0;
675 int i; 665 int i;
676 666
677 if (!tree_mod_need_log(fs_info, NULL)) 667 if (!tree_mod_need_log(fs_info, NULL))
678 return 0; 668 return 0;
679 669
680 if (log_removal && btrfs_header_level(old_root) > 0) { 670 if (log_removal && btrfs_header_level(old_root) > 0) {
681 nritems = btrfs_header_nritems(old_root); 671 nritems = btrfs_header_nritems(old_root);
682 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 672 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
683 flags); 673 flags);
684 if (!tm_list) { 674 if (!tm_list) {
685 ret = -ENOMEM; 675 ret = -ENOMEM;
686 goto free_tms; 676 goto free_tms;
687 } 677 }
688 for (i = 0; i < nritems; i++) { 678 for (i = 0; i < nritems; i++) {
689 tm_list[i] = alloc_tree_mod_elem(old_root, i, 679 tm_list[i] = alloc_tree_mod_elem(old_root, i,
690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 680 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691 if (!tm_list[i]) { 681 if (!tm_list[i]) {
692 ret = -ENOMEM; 682 ret = -ENOMEM;
693 goto free_tms; 683 goto free_tms;
694 } 684 }
695 } 685 }
696 } 686 }
697 687
698 tm = kzalloc(sizeof(*tm), flags); 688 tm = kzalloc(sizeof(*tm), flags);
699 if (!tm) { 689 if (!tm) {
700 ret = -ENOMEM; 690 ret = -ENOMEM;
701 goto free_tms; 691 goto free_tms;
702 } 692 }
703 693
704 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 694 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
705 tm->old_root.logical = old_root->start; 695 tm->old_root.logical = old_root->start;
706 tm->old_root.level = btrfs_header_level(old_root); 696 tm->old_root.level = btrfs_header_level(old_root);
707 tm->generation = btrfs_header_generation(old_root); 697 tm->generation = btrfs_header_generation(old_root);
708 tm->op = MOD_LOG_ROOT_REPLACE; 698 tm->op = MOD_LOG_ROOT_REPLACE;
709 699
710 if (tree_mod_dont_log(fs_info, NULL)) 700 if (tree_mod_dont_log(fs_info, NULL))
711 goto free_tms; 701 goto free_tms;
712 702
713 if (tm_list) 703 if (tm_list)
714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 704 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 if (!ret) 705 if (!ret)
716 ret = __tree_mod_log_insert(fs_info, tm); 706 ret = __tree_mod_log_insert(fs_info, tm);
717 707
718 tree_mod_log_write_unlock(fs_info); 708 tree_mod_log_write_unlock(fs_info);
719 if (ret) 709 if (ret)
720 goto free_tms; 710 goto free_tms;
721 kfree(tm_list); 711 kfree(tm_list);
722 712
723 return ret; 713 return ret;
724 714
725 free_tms: 715 free_tms:
726 if (tm_list) { 716 if (tm_list) {
727 for (i = 0; i < nritems; i++) 717 for (i = 0; i < nritems; i++)
728 kfree(tm_list[i]); 718 kfree(tm_list[i]);
729 kfree(tm_list); 719 kfree(tm_list);
730 } 720 }
731 kfree(tm); 721 kfree(tm);
732 722
733 return ret; 723 return ret;
734 } 724 }
735 725
736 static struct tree_mod_elem * 726 static struct tree_mod_elem *
737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 727 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 int smallest) 728 int smallest)
739 { 729 {
740 struct rb_root *tm_root; 730 struct rb_root *tm_root;
741 struct rb_node *node; 731 struct rb_node *node;
742 struct tree_mod_elem *cur = NULL; 732 struct tree_mod_elem *cur = NULL;
743 struct tree_mod_elem *found = NULL; 733 struct tree_mod_elem *found = NULL;
744 u64 index = start >> PAGE_CACHE_SHIFT; 734 u64 index = start >> PAGE_CACHE_SHIFT;
745 735
746 tree_mod_log_read_lock(fs_info); 736 tree_mod_log_read_lock(fs_info);
747 tm_root = &fs_info->tree_mod_log; 737 tm_root = &fs_info->tree_mod_log;
748 node = tm_root->rb_node; 738 node = tm_root->rb_node;
749 while (node) { 739 while (node) {
750 cur = container_of(node, struct tree_mod_elem, node); 740 cur = container_of(node, struct tree_mod_elem, node);
751 if (cur->index < index) { 741 if (cur->index < index) {
752 node = node->rb_left; 742 node = node->rb_left;
753 } else if (cur->index > index) { 743 } else if (cur->index > index) {
754 node = node->rb_right; 744 node = node->rb_right;
755 } else if (cur->seq < min_seq) { 745 } else if (cur->seq < min_seq) {
756 node = node->rb_left; 746 node = node->rb_left;
757 } else if (!smallest) { 747 } else if (!smallest) {
758 /* we want the node with the highest seq */ 748 /* we want the node with the highest seq */
759 if (found) 749 if (found)
760 BUG_ON(found->seq > cur->seq); 750 BUG_ON(found->seq > cur->seq);
761 found = cur; 751 found = cur;
762 node = node->rb_left; 752 node = node->rb_left;
763 } else if (cur->seq > min_seq) { 753 } else if (cur->seq > min_seq) {
764 /* we want the node with the smallest seq */ 754 /* we want the node with the smallest seq */
765 if (found) 755 if (found)
766 BUG_ON(found->seq < cur->seq); 756 BUG_ON(found->seq < cur->seq);
767 found = cur; 757 found = cur;
768 node = node->rb_right; 758 node = node->rb_right;
769 } else { 759 } else {
770 found = cur; 760 found = cur;
771 break; 761 break;
772 } 762 }
773 } 763 }
774 tree_mod_log_read_unlock(fs_info); 764 tree_mod_log_read_unlock(fs_info);
775 765
776 return found; 766 return found;
777 } 767 }
778 768
779 /* 769 /*
780 * this returns the element from the log with the smallest time sequence 770 * this returns the element from the log with the smallest time sequence
781 * value that's in the log (the oldest log item). any element with a time 771 * value that's in the log (the oldest log item). any element with a time
782 * sequence lower than min_seq will be ignored. 772 * sequence lower than min_seq will be ignored.
783 */ 773 */
784 static struct tree_mod_elem * 774 static struct tree_mod_elem *
785 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 775 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
786 u64 min_seq) 776 u64 min_seq)
787 { 777 {
788 return __tree_mod_log_search(fs_info, start, min_seq, 1); 778 return __tree_mod_log_search(fs_info, start, min_seq, 1);
789 } 779 }
790 780
791 /* 781 /*
792 * this returns the element from the log with the largest time sequence 782 * this returns the element from the log with the largest time sequence
793 * value that's in the log (the most recent log item). any element with 783 * value that's in the log (the most recent log item). any element with
794 * a time sequence lower than min_seq will be ignored. 784 * a time sequence lower than min_seq will be ignored.
795 */ 785 */
796 static struct tree_mod_elem * 786 static struct tree_mod_elem *
797 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 787 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
798 { 788 {
799 return __tree_mod_log_search(fs_info, start, min_seq, 0); 789 return __tree_mod_log_search(fs_info, start, min_seq, 0);
800 } 790 }
801 791
802 static noinline int 792 static noinline int
803 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 793 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
804 struct extent_buffer *src, unsigned long dst_offset, 794 struct extent_buffer *src, unsigned long dst_offset,
805 unsigned long src_offset, int nr_items) 795 unsigned long src_offset, int nr_items)
806 { 796 {
807 int ret = 0; 797 int ret = 0;
808 struct tree_mod_elem **tm_list = NULL; 798 struct tree_mod_elem **tm_list = NULL;
809 struct tree_mod_elem **tm_list_add, **tm_list_rem; 799 struct tree_mod_elem **tm_list_add, **tm_list_rem;
810 int i; 800 int i;
811 int locked = 0; 801 int locked = 0;
812 802
813 if (!tree_mod_need_log(fs_info, NULL)) 803 if (!tree_mod_need_log(fs_info, NULL))
814 return 0; 804 return 0;
815 805
816 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 806 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
817 return 0; 807 return 0;
818 808
819 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *), 809 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
820 GFP_NOFS); 810 GFP_NOFS);
821 if (!tm_list) 811 if (!tm_list)
822 return -ENOMEM; 812 return -ENOMEM;
823 813
824 tm_list_add = tm_list; 814 tm_list_add = tm_list;
825 tm_list_rem = tm_list + nr_items; 815 tm_list_rem = tm_list + nr_items;
826 for (i = 0; i < nr_items; i++) { 816 for (i = 0; i < nr_items; i++) {
827 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 817 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
828 MOD_LOG_KEY_REMOVE, GFP_NOFS); 818 MOD_LOG_KEY_REMOVE, GFP_NOFS);
829 if (!tm_list_rem[i]) { 819 if (!tm_list_rem[i]) {
830 ret = -ENOMEM; 820 ret = -ENOMEM;
831 goto free_tms; 821 goto free_tms;
832 } 822 }
833 823
834 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 824 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
835 MOD_LOG_KEY_ADD, GFP_NOFS); 825 MOD_LOG_KEY_ADD, GFP_NOFS);
836 if (!tm_list_add[i]) { 826 if (!tm_list_add[i]) {
837 ret = -ENOMEM; 827 ret = -ENOMEM;
838 goto free_tms; 828 goto free_tms;
839 } 829 }
840 } 830 }
841 831
842 if (tree_mod_dont_log(fs_info, NULL)) 832 if (tree_mod_dont_log(fs_info, NULL))
843 goto free_tms; 833 goto free_tms;
844 locked = 1; 834 locked = 1;
845 835
846 for (i = 0; i < nr_items; i++) { 836 for (i = 0; i < nr_items; i++) {
847 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 837 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
848 if (ret) 838 if (ret)
849 goto free_tms; 839 goto free_tms;
850 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 840 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
851 if (ret) 841 if (ret)
852 goto free_tms; 842 goto free_tms;
853 } 843 }
854 844
855 tree_mod_log_write_unlock(fs_info); 845 tree_mod_log_write_unlock(fs_info);
856 kfree(tm_list); 846 kfree(tm_list);
857 847
858 return 0; 848 return 0;
859 849
860 free_tms: 850 free_tms:
861 for (i = 0; i < nr_items * 2; i++) { 851 for (i = 0; i < nr_items * 2; i++) {
862 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 852 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
863 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 853 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
864 kfree(tm_list[i]); 854 kfree(tm_list[i]);
865 } 855 }
866 if (locked) 856 if (locked)
867 tree_mod_log_write_unlock(fs_info); 857 tree_mod_log_write_unlock(fs_info);
868 kfree(tm_list); 858 kfree(tm_list);
869 859
870 return ret; 860 return ret;
871 } 861 }
872 862
873 static inline void 863 static inline void
874 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 864 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
875 int dst_offset, int src_offset, int nr_items) 865 int dst_offset, int src_offset, int nr_items)
876 { 866 {
877 int ret; 867 int ret;
878 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 868 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
879 nr_items, GFP_NOFS); 869 nr_items, GFP_NOFS);
880 BUG_ON(ret < 0); 870 BUG_ON(ret < 0);
881 } 871 }
882 872
883 static noinline void 873 static noinline void
884 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 874 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
885 struct extent_buffer *eb, int slot, int atomic) 875 struct extent_buffer *eb, int slot, int atomic)
886 { 876 {
887 int ret; 877 int ret;
888 878
889 ret = tree_mod_log_insert_key(fs_info, eb, slot, 879 ret = tree_mod_log_insert_key(fs_info, eb, slot,
890 MOD_LOG_KEY_REPLACE, 880 MOD_LOG_KEY_REPLACE,
891 atomic ? GFP_ATOMIC : GFP_NOFS); 881 atomic ? GFP_ATOMIC : GFP_NOFS);
892 BUG_ON(ret < 0); 882 BUG_ON(ret < 0);
893 } 883 }
894 884
895 static noinline int 885 static noinline int
896 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 886 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
897 { 887 {
898 struct tree_mod_elem **tm_list = NULL; 888 struct tree_mod_elem **tm_list = NULL;
899 int nritems = 0; 889 int nritems = 0;
900 int i; 890 int i;
901 int ret = 0; 891 int ret = 0;
902 892
903 if (btrfs_header_level(eb) == 0) 893 if (btrfs_header_level(eb) == 0)
904 return 0; 894 return 0;
905 895
906 if (!tree_mod_need_log(fs_info, NULL)) 896 if (!tree_mod_need_log(fs_info, NULL))
907 return 0; 897 return 0;
908 898
909 nritems = btrfs_header_nritems(eb); 899 nritems = btrfs_header_nritems(eb);
910 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 900 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
911 GFP_NOFS); 901 GFP_NOFS);
912 if (!tm_list) 902 if (!tm_list)
913 return -ENOMEM; 903 return -ENOMEM;
914 904
915 for (i = 0; i < nritems; i++) { 905 for (i = 0; i < nritems; i++) {
916 tm_list[i] = alloc_tree_mod_elem(eb, i, 906 tm_list[i] = alloc_tree_mod_elem(eb, i,
917 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 907 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
918 if (!tm_list[i]) { 908 if (!tm_list[i]) {
919 ret = -ENOMEM; 909 ret = -ENOMEM;
920 goto free_tms; 910 goto free_tms;
921 } 911 }
922 } 912 }
923 913
924 if (tree_mod_dont_log(fs_info, eb)) 914 if (tree_mod_dont_log(fs_info, eb))
925 goto free_tms; 915 goto free_tms;
926 916
927 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 917 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
928 tree_mod_log_write_unlock(fs_info); 918 tree_mod_log_write_unlock(fs_info);
929 if (ret) 919 if (ret)
930 goto free_tms; 920 goto free_tms;
931 kfree(tm_list); 921 kfree(tm_list);
932 922
933 return 0; 923 return 0;
934 924
935 free_tms: 925 free_tms:
936 for (i = 0; i < nritems; i++) 926 for (i = 0; i < nritems; i++)
937 kfree(tm_list[i]); 927 kfree(tm_list[i]);
938 kfree(tm_list); 928 kfree(tm_list);
939 929
940 return ret; 930 return ret;
941 } 931 }
942 932
943 static noinline void 933 static noinline void
944 tree_mod_log_set_root_pointer(struct btrfs_root *root, 934 tree_mod_log_set_root_pointer(struct btrfs_root *root,
945 struct extent_buffer *new_root_node, 935 struct extent_buffer *new_root_node,
946 int log_removal) 936 int log_removal)
947 { 937 {
948 int ret; 938 int ret;
949 ret = tree_mod_log_insert_root(root->fs_info, root->node, 939 ret = tree_mod_log_insert_root(root->fs_info, root->node,
950 new_root_node, GFP_NOFS, log_removal); 940 new_root_node, GFP_NOFS, log_removal);
951 BUG_ON(ret < 0); 941 BUG_ON(ret < 0);
952 } 942 }
953 943
954 /* 944 /*
955 * check if the tree block can be shared by multiple trees 945 * check if the tree block can be shared by multiple trees
956 */ 946 */
957 int btrfs_block_can_be_shared(struct btrfs_root *root, 947 int btrfs_block_can_be_shared(struct btrfs_root *root,
958 struct extent_buffer *buf) 948 struct extent_buffer *buf)
959 { 949 {
960 /* 950 /*
961 * Tree blocks not in refernece counted trees and tree roots 951 * Tree blocks not in refernece counted trees and tree roots
962 * are never shared. If a block was allocated after the last 952 * are never shared. If a block was allocated after the last
963 * snapshot and the block was not allocated by tree relocation, 953 * snapshot and the block was not allocated by tree relocation,
964 * we know the block is not shared. 954 * we know the block is not shared.
965 */ 955 */
966 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 956 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
967 buf != root->node && buf != root->commit_root && 957 buf != root->node && buf != root->commit_root &&
968 (btrfs_header_generation(buf) <= 958 (btrfs_header_generation(buf) <=
969 btrfs_root_last_snapshot(&root->root_item) || 959 btrfs_root_last_snapshot(&root->root_item) ||
970 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 960 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
971 return 1; 961 return 1;
972 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
973 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
974 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 964 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
975 return 1; 965 return 1;
976 #endif 966 #endif
977 return 0; 967 return 0;
978 } 968 }
979 969
980 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 970 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root, 971 struct btrfs_root *root,
982 struct extent_buffer *buf, 972 struct extent_buffer *buf,
983 struct extent_buffer *cow, 973 struct extent_buffer *cow,
984 int *last_ref) 974 int *last_ref)
985 { 975 {
986 u64 refs; 976 u64 refs;
987 u64 owner; 977 u64 owner;
988 u64 flags; 978 u64 flags;
989 u64 new_flags = 0; 979 u64 new_flags = 0;
990 int ret; 980 int ret;
991 981
992 /* 982 /*
993 * Backrefs update rules: 983 * Backrefs update rules:
994 * 984 *
995 * Always use full backrefs for extent pointers in tree block 985 * Always use full backrefs for extent pointers in tree block
996 * allocated by tree relocation. 986 * allocated by tree relocation.
997 * 987 *
998 * If a shared tree block is no longer referenced by its owner 988 * If a shared tree block is no longer referenced by its owner
999 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 989 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1000 * use full backrefs for extent pointers in tree block. 990 * use full backrefs for extent pointers in tree block.
1001 * 991 *
1002 * If a tree block is been relocating 992 * If a tree block is been relocating
1003 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 993 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1004 * use full backrefs for extent pointers in tree block. 994 * use full backrefs for extent pointers in tree block.
1005 * The reason for this is some operations (such as drop tree) 995 * The reason for this is some operations (such as drop tree)
1006 * are only allowed for blocks use full backrefs. 996 * are only allowed for blocks use full backrefs.
1007 */ 997 */
1008 998
1009 if (btrfs_block_can_be_shared(root, buf)) { 999 if (btrfs_block_can_be_shared(root, buf)) {
1010 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1000 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1011 btrfs_header_level(buf), 1, 1001 btrfs_header_level(buf), 1,
1012 &refs, &flags); 1002 &refs, &flags);
1013 if (ret) 1003 if (ret)
1014 return ret; 1004 return ret;
1015 if (refs == 0) { 1005 if (refs == 0) {
1016 ret = -EROFS; 1006 ret = -EROFS;
1017 btrfs_std_error(root->fs_info, ret); 1007 btrfs_std_error(root->fs_info, ret);
1018 return ret; 1008 return ret;
1019 } 1009 }
1020 } else { 1010 } else {
1021 refs = 1; 1011 refs = 1;
1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1012 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1023 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1013 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1024 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1014 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1025 else 1015 else
1026 flags = 0; 1016 flags = 0;
1027 } 1017 }
1028 1018
1029 owner = btrfs_header_owner(buf); 1019 owner = btrfs_header_owner(buf);
1030 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1020 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1031 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1021 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1032 1022
1033 if (refs > 1) { 1023 if (refs > 1) {
1034 if ((owner == root->root_key.objectid || 1024 if ((owner == root->root_key.objectid ||
1035 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1025 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1036 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1026 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1037 ret = btrfs_inc_ref(trans, root, buf, 1); 1027 ret = btrfs_inc_ref(trans, root, buf, 1);
1038 BUG_ON(ret); /* -ENOMEM */ 1028 BUG_ON(ret); /* -ENOMEM */
1039 1029
1040 if (root->root_key.objectid == 1030 if (root->root_key.objectid ==
1041 BTRFS_TREE_RELOC_OBJECTID) { 1031 BTRFS_TREE_RELOC_OBJECTID) {
1042 ret = btrfs_dec_ref(trans, root, buf, 0); 1032 ret = btrfs_dec_ref(trans, root, buf, 0);
1043 BUG_ON(ret); /* -ENOMEM */ 1033 BUG_ON(ret); /* -ENOMEM */
1044 ret = btrfs_inc_ref(trans, root, cow, 1); 1034 ret = btrfs_inc_ref(trans, root, cow, 1);
1045 BUG_ON(ret); /* -ENOMEM */ 1035 BUG_ON(ret); /* -ENOMEM */
1046 } 1036 }
1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1037 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1048 } else { 1038 } else {
1049 1039
1050 if (root->root_key.objectid == 1040 if (root->root_key.objectid ==
1051 BTRFS_TREE_RELOC_OBJECTID) 1041 BTRFS_TREE_RELOC_OBJECTID)
1052 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 ret = btrfs_inc_ref(trans, root, cow, 1);
1053 else 1043 else
1054 ret = btrfs_inc_ref(trans, root, cow, 0); 1044 ret = btrfs_inc_ref(trans, root, cow, 0);
1055 BUG_ON(ret); /* -ENOMEM */ 1045 BUG_ON(ret); /* -ENOMEM */
1056 } 1046 }
1057 if (new_flags != 0) { 1047 if (new_flags != 0) {
1058 int level = btrfs_header_level(buf); 1048 int level = btrfs_header_level(buf);
1059 1049
1060 ret = btrfs_set_disk_extent_flags(trans, root, 1050 ret = btrfs_set_disk_extent_flags(trans, root,
1061 buf->start, 1051 buf->start,
1062 buf->len, 1052 buf->len,
1063 new_flags, level, 0); 1053 new_flags, level, 0);
1064 if (ret) 1054 if (ret)
1065 return ret; 1055 return ret;
1066 } 1056 }
1067 } else { 1057 } else {
1068 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1058 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1069 if (root->root_key.objectid == 1059 if (root->root_key.objectid ==
1070 BTRFS_TREE_RELOC_OBJECTID) 1060 BTRFS_TREE_RELOC_OBJECTID)
1071 ret = btrfs_inc_ref(trans, root, cow, 1); 1061 ret = btrfs_inc_ref(trans, root, cow, 1);
1072 else 1062 else
1073 ret = btrfs_inc_ref(trans, root, cow, 0); 1063 ret = btrfs_inc_ref(trans, root, cow, 0);
1074 BUG_ON(ret); /* -ENOMEM */ 1064 BUG_ON(ret); /* -ENOMEM */
1075 ret = btrfs_dec_ref(trans, root, buf, 1); 1065 ret = btrfs_dec_ref(trans, root, buf, 1);
1076 BUG_ON(ret); /* -ENOMEM */ 1066 BUG_ON(ret); /* -ENOMEM */
1077 } 1067 }
1078 clean_tree_block(trans, root, buf); 1068 clean_tree_block(trans, root, buf);
1079 *last_ref = 1; 1069 *last_ref = 1;
1080 } 1070 }
1081 return 0; 1071 return 0;
1082 } 1072 }
1083 1073
1084 /* 1074 /*
1085 * does the dirty work in cow of a single block. The parent block (if 1075 * does the dirty work in cow of a single block. The parent block (if
1086 * supplied) is updated to point to the new cow copy. The new buffer is marked 1076 * supplied) is updated to point to the new cow copy. The new buffer is marked
1087 * dirty and returned locked. If you modify the block it needs to be marked 1077 * dirty and returned locked. If you modify the block it needs to be marked
1088 * dirty again. 1078 * dirty again.
1089 * 1079 *
1090 * search_start -- an allocation hint for the new block 1080 * search_start -- an allocation hint for the new block
1091 * 1081 *
1092 * empty_size -- a hint that you plan on doing more cow. This is the size in 1082 * empty_size -- a hint that you plan on doing more cow. This is the size in
1093 * bytes the allocator should try to find free next to the block it returns. 1083 * bytes the allocator should try to find free next to the block it returns.
1094 * This is just a hint and may be ignored by the allocator. 1084 * This is just a hint and may be ignored by the allocator.
1095 */ 1085 */
1096 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1086 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root, 1087 struct btrfs_root *root,
1098 struct extent_buffer *buf, 1088 struct extent_buffer *buf,
1099 struct extent_buffer *parent, int parent_slot, 1089 struct extent_buffer *parent, int parent_slot,
1100 struct extent_buffer **cow_ret, 1090 struct extent_buffer **cow_ret,
1101 u64 search_start, u64 empty_size) 1091 u64 search_start, u64 empty_size)
1102 { 1092 {
1103 struct btrfs_disk_key disk_key; 1093 struct btrfs_disk_key disk_key;
1104 struct extent_buffer *cow; 1094 struct extent_buffer *cow;
1105 int level, ret; 1095 int level, ret;
1106 int last_ref = 0; 1096 int last_ref = 0;
1107 int unlock_orig = 0; 1097 int unlock_orig = 0;
1108 u64 parent_start; 1098 u64 parent_start;
1109 1099
1110 if (*cow_ret == buf) 1100 if (*cow_ret == buf)
1111 unlock_orig = 1; 1101 unlock_orig = 1;
1112 1102
1113 btrfs_assert_tree_locked(buf); 1103 btrfs_assert_tree_locked(buf);
1114 1104
1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1105 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 trans->transid != root->fs_info->running_transaction->transid); 1106 trans->transid != root->fs_info->running_transaction->transid);
1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1107 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 trans->transid != root->last_trans); 1108 trans->transid != root->last_trans);
1119 1109
1120 level = btrfs_header_level(buf); 1110 level = btrfs_header_level(buf);
1121 1111
1122 if (level == 0) 1112 if (level == 0)
1123 btrfs_item_key(buf, &disk_key, 0); 1113 btrfs_item_key(buf, &disk_key, 0);
1124 else 1114 else
1125 btrfs_node_key(buf, &disk_key, 0); 1115 btrfs_node_key(buf, &disk_key, 0);
1126 1116
1127 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1117 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1128 if (parent) 1118 if (parent)
1129 parent_start = parent->start; 1119 parent_start = parent->start;
1130 else 1120 else
1131 parent_start = 0; 1121 parent_start = 0;
1132 } else 1122 } else
1133 parent_start = 0; 1123 parent_start = 0;
1134 1124
1135 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1125 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1136 root->root_key.objectid, &disk_key, level, 1126 root->root_key.objectid, &disk_key, level,
1137 search_start, empty_size); 1127 search_start, empty_size);
1138 if (IS_ERR(cow)) 1128 if (IS_ERR(cow))
1139 return PTR_ERR(cow); 1129 return PTR_ERR(cow);
1140 1130
1141 /* cow is set to blocking by btrfs_init_new_buffer */ 1131 /* cow is set to blocking by btrfs_init_new_buffer */
1142 1132
1143 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1133 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1144 btrfs_set_header_bytenr(cow, cow->start); 1134 btrfs_set_header_bytenr(cow, cow->start);
1145 btrfs_set_header_generation(cow, trans->transid); 1135 btrfs_set_header_generation(cow, trans->transid);
1146 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1136 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1147 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1137 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1148 BTRFS_HEADER_FLAG_RELOC); 1138 BTRFS_HEADER_FLAG_RELOC);
1149 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1139 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1150 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1140 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1151 else 1141 else
1152 btrfs_set_header_owner(cow, root->root_key.objectid); 1142 btrfs_set_header_owner(cow, root->root_key.objectid);
1153 1143
1154 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1144 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1155 BTRFS_FSID_SIZE); 1145 BTRFS_FSID_SIZE);
1156 1146
1157 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1147 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1158 if (ret) { 1148 if (ret) {
1159 btrfs_abort_transaction(trans, root, ret); 1149 btrfs_abort_transaction(trans, root, ret);
1160 return ret; 1150 return ret;
1161 } 1151 }
1162 1152
1163 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1153 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1164 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1154 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1165 if (ret) 1155 if (ret)
1166 return ret; 1156 return ret;
1167 } 1157 }
1168 1158
1169 if (buf == root->node) { 1159 if (buf == root->node) {
1170 WARN_ON(parent && parent != buf); 1160 WARN_ON(parent && parent != buf);
1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1161 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1162 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1173 parent_start = buf->start; 1163 parent_start = buf->start;
1174 else 1164 else
1175 parent_start = 0; 1165 parent_start = 0;
1176 1166
1177 extent_buffer_get(cow); 1167 extent_buffer_get(cow);
1178 tree_mod_log_set_root_pointer(root, cow, 1); 1168 tree_mod_log_set_root_pointer(root, cow, 1);
1179 rcu_assign_pointer(root->node, cow); 1169 rcu_assign_pointer(root->node, cow);
1180 1170
1181 btrfs_free_tree_block(trans, root, buf, parent_start, 1171 btrfs_free_tree_block(trans, root, buf, parent_start,
1182 last_ref); 1172 last_ref);
1183 free_extent_buffer(buf); 1173 free_extent_buffer(buf);
1184 add_root_to_dirty_list(root); 1174 add_root_to_dirty_list(root);
1185 } else { 1175 } else {
1186 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1176 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1187 parent_start = parent->start; 1177 parent_start = parent->start;
1188 else 1178 else
1189 parent_start = 0; 1179 parent_start = 0;
1190 1180
1191 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1181 WARN_ON(trans->transid != btrfs_header_generation(parent));
1192 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1182 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1193 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1183 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1194 btrfs_set_node_blockptr(parent, parent_slot, 1184 btrfs_set_node_blockptr(parent, parent_slot,
1195 cow->start); 1185 cow->start);
1196 btrfs_set_node_ptr_generation(parent, parent_slot, 1186 btrfs_set_node_ptr_generation(parent, parent_slot,
1197 trans->transid); 1187 trans->transid);
1198 btrfs_mark_buffer_dirty(parent); 1188 btrfs_mark_buffer_dirty(parent);
1199 if (last_ref) { 1189 if (last_ref) {
1200 ret = tree_mod_log_free_eb(root->fs_info, buf); 1190 ret = tree_mod_log_free_eb(root->fs_info, buf);
1201 if (ret) { 1191 if (ret) {
1202 btrfs_abort_transaction(trans, root, ret); 1192 btrfs_abort_transaction(trans, root, ret);
1203 return ret; 1193 return ret;
1204 } 1194 }
1205 } 1195 }
1206 btrfs_free_tree_block(trans, root, buf, parent_start, 1196 btrfs_free_tree_block(trans, root, buf, parent_start,
1207 last_ref); 1197 last_ref);
1208 } 1198 }
1209 if (unlock_orig) 1199 if (unlock_orig)
1210 btrfs_tree_unlock(buf); 1200 btrfs_tree_unlock(buf);
1211 free_extent_buffer_stale(buf); 1201 free_extent_buffer_stale(buf);
1212 btrfs_mark_buffer_dirty(cow); 1202 btrfs_mark_buffer_dirty(cow);
1213 *cow_ret = cow; 1203 *cow_ret = cow;
1214 return 0; 1204 return 0;
1215 } 1205 }
1216 1206
1217 /* 1207 /*
1218 * returns the logical address of the oldest predecessor of the given root. 1208 * returns the logical address of the oldest predecessor of the given root.
1219 * entries older than time_seq are ignored. 1209 * entries older than time_seq are ignored.
1220 */ 1210 */
1221 static struct tree_mod_elem * 1211 static struct tree_mod_elem *
1222 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1212 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1223 struct extent_buffer *eb_root, u64 time_seq) 1213 struct extent_buffer *eb_root, u64 time_seq)
1224 { 1214 {
1225 struct tree_mod_elem *tm; 1215 struct tree_mod_elem *tm;
1226 struct tree_mod_elem *found = NULL; 1216 struct tree_mod_elem *found = NULL;
1227 u64 root_logical = eb_root->start; 1217 u64 root_logical = eb_root->start;
1228 int looped = 0; 1218 int looped = 0;
1229 1219
1230 if (!time_seq) 1220 if (!time_seq)
1231 return NULL; 1221 return NULL;
1232 1222
1233 /* 1223 /*
1234 * the very last operation that's logged for a root is the replacement 1224 * the very last operation that's logged for a root is the replacement
1235 * operation (if it is replaced at all). this has the index of the *new* 1225 * operation (if it is replaced at all). this has the index of the *new*
1236 * root, making it the very first operation that's logged for this root. 1226 * root, making it the very first operation that's logged for this root.
1237 */ 1227 */
1238 while (1) { 1228 while (1) {
1239 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1229 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 time_seq); 1230 time_seq);
1241 if (!looped && !tm) 1231 if (!looped && !tm)
1242 return NULL; 1232 return NULL;
1243 /* 1233 /*
1244 * if there are no tree operation for the oldest root, we simply 1234 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at 1235 * return it. this should only happen if that (old) root is at
1246 * level 0. 1236 * level 0.
1247 */ 1237 */
1248 if (!tm) 1238 if (!tm)
1249 break; 1239 break;
1250 1240
1251 /* 1241 /*
1252 * if there's an operation that's not a root replacement, we 1242 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a 1243 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 */ 1245 */
1256 if (tm->op != MOD_LOG_ROOT_REPLACE) 1246 if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 break; 1247 break;
1258 1248
1259 found = tm; 1249 found = tm;
1260 root_logical = tm->old_root.logical; 1250 root_logical = tm->old_root.logical;
1261 looped = 1; 1251 looped = 1;
1262 } 1252 }
1263 1253
1264 /* if there's no old root to return, return what we found instead */ 1254 /* if there's no old root to return, return what we found instead */
1265 if (!found) 1255 if (!found)
1266 found = tm; 1256 found = tm;
1267 1257
1268 return found; 1258 return found;
1269 } 1259 }
1270 1260
1271 /* 1261 /*
1272 * tm is a pointer to the first operation to rewind within eb. then, all 1262 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewinded (until we reach something older than 1263 * previous operations will be rewinded (until we reach something older than
1274 * time_seq). 1264 * time_seq).
1275 */ 1265 */
1276 static void 1266 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1267 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 u64 time_seq, struct tree_mod_elem *first_tm) 1268 u64 time_seq, struct tree_mod_elem *first_tm)
1279 { 1269 {
1280 u32 n; 1270 u32 n;
1281 struct rb_node *next; 1271 struct rb_node *next;
1282 struct tree_mod_elem *tm = first_tm; 1272 struct tree_mod_elem *tm = first_tm;
1283 unsigned long o_dst; 1273 unsigned long o_dst;
1284 unsigned long o_src; 1274 unsigned long o_src;
1285 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1275 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286 1276
1287 n = btrfs_header_nritems(eb); 1277 n = btrfs_header_nritems(eb);
1288 tree_mod_log_read_lock(fs_info); 1278 tree_mod_log_read_lock(fs_info);
1289 while (tm && tm->seq >= time_seq) { 1279 while (tm && tm->seq >= time_seq) {
1290 /* 1280 /*
1291 * all the operations are recorded with the operator used for 1281 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the 1282 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here. 1283 * opposite of each operation here.
1294 */ 1284 */
1295 switch (tm->op) { 1285 switch (tm->op) {
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 BUG_ON(tm->slot < n); 1287 BUG_ON(tm->slot < n);
1298 /* Fallthrough */ 1288 /* Fallthrough */
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 case MOD_LOG_KEY_REMOVE: 1290 case MOD_LOG_KEY_REMOVE:
1301 btrfs_set_node_key(eb, &tm->key, tm->slot); 1291 btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 btrfs_set_node_ptr_generation(eb, tm->slot, 1293 btrfs_set_node_ptr_generation(eb, tm->slot,
1304 tm->generation); 1294 tm->generation);
1305 n++; 1295 n++;
1306 break; 1296 break;
1307 case MOD_LOG_KEY_REPLACE: 1297 case MOD_LOG_KEY_REPLACE:
1308 BUG_ON(tm->slot >= n); 1298 BUG_ON(tm->slot >= n);
1309 btrfs_set_node_key(eb, &tm->key, tm->slot); 1299 btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 btrfs_set_node_ptr_generation(eb, tm->slot, 1301 btrfs_set_node_ptr_generation(eb, tm->slot,
1312 tm->generation); 1302 tm->generation);
1313 break; 1303 break;
1314 case MOD_LOG_KEY_ADD: 1304 case MOD_LOG_KEY_ADD:
1315 /* if a move operation is needed it's in the log */ 1305 /* if a move operation is needed it's in the log */
1316 n--; 1306 n--;
1317 break; 1307 break;
1318 case MOD_LOG_MOVE_KEYS: 1308 case MOD_LOG_MOVE_KEYS:
1319 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1309 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 memmove_extent_buffer(eb, o_dst, o_src, 1311 memmove_extent_buffer(eb, o_dst, o_src,
1322 tm->move.nr_items * p_size); 1312 tm->move.nr_items * p_size);
1323 break; 1313 break;
1324 case MOD_LOG_ROOT_REPLACE: 1314 case MOD_LOG_ROOT_REPLACE:
1325 /* 1315 /*
1326 * this operation is special. for roots, this must be 1316 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding. 1317 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node 1318 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and 1319 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll 1320 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block 1321 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation. 1322 * that is no root. we simply ignore that operation.
1333 */ 1323 */
1334 break; 1324 break;
1335 } 1325 }
1336 next = rb_next(&tm->node); 1326 next = rb_next(&tm->node);
1337 if (!next) 1327 if (!next)
1338 break; 1328 break;
1339 tm = container_of(next, struct tree_mod_elem, node); 1329 tm = container_of(next, struct tree_mod_elem, node);
1340 if (tm->index != first_tm->index) 1330 if (tm->index != first_tm->index)
1341 break; 1331 break;
1342 } 1332 }
1343 tree_mod_log_read_unlock(fs_info); 1333 tree_mod_log_read_unlock(fs_info);
1344 btrfs_set_header_nritems(eb, n); 1334 btrfs_set_header_nritems(eb, n);
1345 } 1335 }
1346 1336
1347 /* 1337 /*
1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1338 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The 1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the 1340 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer 1341 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented). 1342 * is freed (its refcount is decremented).
1353 */ 1343 */
1354 static struct extent_buffer * 1344 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1345 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 struct extent_buffer *eb, u64 time_seq) 1346 struct extent_buffer *eb, u64 time_seq)
1357 { 1347 {
1358 struct extent_buffer *eb_rewin; 1348 struct extent_buffer *eb_rewin;
1359 struct tree_mod_elem *tm; 1349 struct tree_mod_elem *tm;
1360 1350
1361 if (!time_seq) 1351 if (!time_seq)
1362 return eb; 1352 return eb;
1363 1353
1364 if (btrfs_header_level(eb) == 0) 1354 if (btrfs_header_level(eb) == 0)
1365 return eb; 1355 return eb;
1366 1356
1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 if (!tm) 1358 if (!tm)
1369 return eb; 1359 return eb;
1370 1360
1371 btrfs_set_path_blocking(path); 1361 btrfs_set_path_blocking(path);
1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373 1363
1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 BUG_ON(tm->slot != 0); 1365 BUG_ON(tm->slot != 0);
1376 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1366 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1377 fs_info->tree_root->nodesize); 1367 fs_info->tree_root->nodesize);
1378 if (!eb_rewin) { 1368 if (!eb_rewin) {
1379 btrfs_tree_read_unlock_blocking(eb); 1369 btrfs_tree_read_unlock_blocking(eb);
1380 free_extent_buffer(eb); 1370 free_extent_buffer(eb);
1381 return NULL; 1371 return NULL;
1382 } 1372 }
1383 btrfs_set_header_bytenr(eb_rewin, eb->start); 1373 btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 btrfs_set_header_backref_rev(eb_rewin, 1374 btrfs_set_header_backref_rev(eb_rewin,
1385 btrfs_header_backref_rev(eb)); 1375 btrfs_header_backref_rev(eb));
1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1376 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1377 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 } else { 1378 } else {
1389 eb_rewin = btrfs_clone_extent_buffer(eb); 1379 eb_rewin = btrfs_clone_extent_buffer(eb);
1390 if (!eb_rewin) { 1380 if (!eb_rewin) {
1391 btrfs_tree_read_unlock_blocking(eb); 1381 btrfs_tree_read_unlock_blocking(eb);
1392 free_extent_buffer(eb); 1382 free_extent_buffer(eb);
1393 return NULL; 1383 return NULL;
1394 } 1384 }
1395 } 1385 }
1396 1386
1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1387 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 btrfs_tree_read_unlock_blocking(eb); 1388 btrfs_tree_read_unlock_blocking(eb);
1399 free_extent_buffer(eb); 1389 free_extent_buffer(eb);
1400 1390
1401 extent_buffer_get(eb_rewin); 1391 extent_buffer_get(eb_rewin);
1402 btrfs_tree_read_lock(eb_rewin); 1392 btrfs_tree_read_lock(eb_rewin);
1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1393 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 WARN_ON(btrfs_header_nritems(eb_rewin) > 1394 WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1395 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406 1396
1407 return eb_rewin; 1397 return eb_rewin;
1408 } 1398 }
1409 1399
1410 /* 1400 /*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1401 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If 1402 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the 1403 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked. 1404 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held). 1405 * Returns NULL on error (with no locks held).
1416 */ 1406 */
1417 static inline struct extent_buffer * 1407 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq) 1408 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 { 1409 {
1420 struct tree_mod_elem *tm; 1410 struct tree_mod_elem *tm;
1421 struct extent_buffer *eb = NULL; 1411 struct extent_buffer *eb = NULL;
1422 struct extent_buffer *eb_root; 1412 struct extent_buffer *eb_root;
1423 struct extent_buffer *old; 1413 struct extent_buffer *old;
1424 struct tree_mod_root *old_root = NULL; 1414 struct tree_mod_root *old_root = NULL;
1425 u64 old_generation = 0; 1415 u64 old_generation = 0;
1426 u64 logical; 1416 u64 logical;
1427 1417
1428 eb_root = btrfs_read_lock_root_node(root); 1418 eb_root = btrfs_read_lock_root_node(root);
1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1419 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 if (!tm) 1420 if (!tm)
1431 return eb_root; 1421 return eb_root;
1432 1422
1433 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1423 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 old_root = &tm->old_root; 1424 old_root = &tm->old_root;
1435 old_generation = tm->generation; 1425 old_generation = tm->generation;
1436 logical = old_root->logical; 1426 logical = old_root->logical;
1437 } else { 1427 } else {
1438 logical = eb_root->start; 1428 logical = eb_root->start;
1439 } 1429 }
1440 1430
1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1431 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 btrfs_tree_read_unlock(eb_root); 1433 btrfs_tree_read_unlock(eb_root);
1444 free_extent_buffer(eb_root); 1434 free_extent_buffer(eb_root);
1445 old = read_tree_block(root, logical, 0); 1435 old = read_tree_block(root, logical, 0);
1446 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1436 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1447 free_extent_buffer(old); 1437 free_extent_buffer(old);
1448 btrfs_warn(root->fs_info, 1438 btrfs_warn(root->fs_info,
1449 "failed to read tree block %llu from get_old_root", logical); 1439 "failed to read tree block %llu from get_old_root", logical);
1450 } else { 1440 } else {
1451 eb = btrfs_clone_extent_buffer(old); 1441 eb = btrfs_clone_extent_buffer(old);
1452 free_extent_buffer(old); 1442 free_extent_buffer(old);
1453 } 1443 }
1454 } else if (old_root) { 1444 } else if (old_root) {
1455 btrfs_tree_read_unlock(eb_root); 1445 btrfs_tree_read_unlock(eb_root);
1456 free_extent_buffer(eb_root); 1446 free_extent_buffer(eb_root);
1457 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1447 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1458 } else { 1448 } else {
1459 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1449 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460 eb = btrfs_clone_extent_buffer(eb_root); 1450 eb = btrfs_clone_extent_buffer(eb_root);
1461 btrfs_tree_read_unlock_blocking(eb_root); 1451 btrfs_tree_read_unlock_blocking(eb_root);
1462 free_extent_buffer(eb_root); 1452 free_extent_buffer(eb_root);
1463 } 1453 }
1464 1454
1465 if (!eb) 1455 if (!eb)
1466 return NULL; 1456 return NULL;
1467 extent_buffer_get(eb); 1457 extent_buffer_get(eb);
1468 btrfs_tree_read_lock(eb); 1458 btrfs_tree_read_lock(eb);
1469 if (old_root) { 1459 if (old_root) {
1470 btrfs_set_header_bytenr(eb, eb->start); 1460 btrfs_set_header_bytenr(eb, eb->start);
1471 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1461 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1462 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473 btrfs_set_header_level(eb, old_root->level); 1463 btrfs_set_header_level(eb, old_root->level);
1474 btrfs_set_header_generation(eb, old_generation); 1464 btrfs_set_header_generation(eb, old_generation);
1475 } 1465 }
1476 if (tm) 1466 if (tm)
1477 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1467 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478 else 1468 else
1479 WARN_ON(btrfs_header_level(eb) != 0); 1469 WARN_ON(btrfs_header_level(eb) != 0);
1480 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1470 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481 1471
1482 return eb; 1472 return eb;
1483 } 1473 }
1484 1474
1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1475 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486 { 1476 {
1487 struct tree_mod_elem *tm; 1477 struct tree_mod_elem *tm;
1488 int level; 1478 int level;
1489 struct extent_buffer *eb_root = btrfs_root_node(root); 1479 struct extent_buffer *eb_root = btrfs_root_node(root);
1490 1480
1491 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1481 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1482 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493 level = tm->old_root.level; 1483 level = tm->old_root.level;
1494 } else { 1484 } else {
1495 level = btrfs_header_level(eb_root); 1485 level = btrfs_header_level(eb_root);
1496 } 1486 }
1497 free_extent_buffer(eb_root); 1487 free_extent_buffer(eb_root);
1498 1488
1499 return level; 1489 return level;
1500 } 1490 }
1501 1491
1502 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1492 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503 struct btrfs_root *root, 1493 struct btrfs_root *root,
1504 struct extent_buffer *buf) 1494 struct extent_buffer *buf)
1505 { 1495 {
1506 if (btrfs_test_is_dummy_root(root)) 1496 if (btrfs_test_is_dummy_root(root))
1507 return 0; 1497 return 0;
1508 1498
1509 /* ensure we can see the force_cow */ 1499 /* ensure we can see the force_cow */
1510 smp_rmb(); 1500 smp_rmb();
1511 1501
1512 /* 1502 /*
1513 * We do not need to cow a block if 1503 * We do not need to cow a block if
1514 * 1) this block is not created or changed in this transaction; 1504 * 1) this block is not created or changed in this transaction;
1515 * 2) this block does not belong to TREE_RELOC tree; 1505 * 2) this block does not belong to TREE_RELOC tree;
1516 * 3) the root is not forced COW. 1506 * 3) the root is not forced COW.
1517 * 1507 *
1518 * What is forced COW: 1508 * What is forced COW:
1519 * when we create snapshot during commiting the transaction, 1509 * when we create snapshot during commiting the transaction,
1520 * after we've finished coping src root, we must COW the shared 1510 * after we've finished coping src root, we must COW the shared
1521 * block to ensure the metadata consistency. 1511 * block to ensure the metadata consistency.
1522 */ 1512 */
1523 if (btrfs_header_generation(buf) == trans->transid && 1513 if (btrfs_header_generation(buf) == trans->transid &&
1524 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1514 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1515 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1516 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1517 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528 return 0; 1518 return 0;
1529 return 1; 1519 return 1;
1530 } 1520 }
1531 1521
1532 /* 1522 /*
1533 * cows a single block, see __btrfs_cow_block for the real work. 1523 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than 1524 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet 1525 * once per transaction, as long as it hasn't been written yet
1536 */ 1526 */
1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1527 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root, struct extent_buffer *buf, 1528 struct btrfs_root *root, struct extent_buffer *buf,
1539 struct extent_buffer *parent, int parent_slot, 1529 struct extent_buffer *parent, int parent_slot,
1540 struct extent_buffer **cow_ret) 1530 struct extent_buffer **cow_ret)
1541 { 1531 {
1542 u64 search_start; 1532 u64 search_start;
1543 int ret; 1533 int ret;
1544 1534
1545 if (trans->transaction != root->fs_info->running_transaction) 1535 if (trans->transaction != root->fs_info->running_transaction)
1546 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1536 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547 trans->transid, 1537 trans->transid,
1548 root->fs_info->running_transaction->transid); 1538 root->fs_info->running_transaction->transid);
1549 1539
1550 if (trans->transid != root->fs_info->generation) 1540 if (trans->transid != root->fs_info->generation)
1551 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1541 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552 trans->transid, root->fs_info->generation); 1542 trans->transid, root->fs_info->generation);
1553 1543
1554 if (!should_cow_block(trans, root, buf)) { 1544 if (!should_cow_block(trans, root, buf)) {
1555 *cow_ret = buf; 1545 *cow_ret = buf;
1556 return 0; 1546 return 0;
1557 } 1547 }
1558 1548
1559 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1549 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1560 1550
1561 if (parent) 1551 if (parent)
1562 btrfs_set_lock_blocking(parent); 1552 btrfs_set_lock_blocking(parent);
1563 btrfs_set_lock_blocking(buf); 1553 btrfs_set_lock_blocking(buf);
1564 1554
1565 ret = __btrfs_cow_block(trans, root, buf, parent, 1555 ret = __btrfs_cow_block(trans, root, buf, parent,
1566 parent_slot, cow_ret, search_start, 0); 1556 parent_slot, cow_ret, search_start, 0);
1567 1557
1568 trace_btrfs_cow_block(root, buf, *cow_ret); 1558 trace_btrfs_cow_block(root, buf, *cow_ret);
1569 1559
1570 return ret; 1560 return ret;
1571 } 1561 }
1572 1562
1573 /* 1563 /*
1574 * helper function for defrag to decide if two blocks pointed to by a 1564 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by 1565 * node are actually close by
1576 */ 1566 */
1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1567 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578 { 1568 {
1579 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1569 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580 return 1; 1570 return 1;
1581 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1571 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582 return 1; 1572 return 1;
1583 return 0; 1573 return 0;
1584 } 1574 }
1585 1575
1586 /* 1576 /*
1587 * compare two keys in a memcmp fashion 1577 * compare two keys in a memcmp fashion
1588 */ 1578 */
1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1579 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1590 { 1580 {
1591 struct btrfs_key k1; 1581 struct btrfs_key k1;
1592 1582
1593 btrfs_disk_key_to_cpu(&k1, disk); 1583 btrfs_disk_key_to_cpu(&k1, disk);
1594 1584
1595 return btrfs_comp_cpu_keys(&k1, k2); 1585 return btrfs_comp_cpu_keys(&k1, k2);
1596 } 1586 }
1597 1587
1598 /* 1588 /*
1599 * same as comp_keys only with two btrfs_key's 1589 * same as comp_keys only with two btrfs_key's
1600 */ 1590 */
1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1591 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602 { 1592 {
1603 if (k1->objectid > k2->objectid) 1593 if (k1->objectid > k2->objectid)
1604 return 1; 1594 return 1;
1605 if (k1->objectid < k2->objectid) 1595 if (k1->objectid < k2->objectid)
1606 return -1; 1596 return -1;
1607 if (k1->type > k2->type) 1597 if (k1->type > k2->type)
1608 return 1; 1598 return 1;
1609 if (k1->type < k2->type) 1599 if (k1->type < k2->type)
1610 return -1; 1600 return -1;
1611 if (k1->offset > k2->offset) 1601 if (k1->offset > k2->offset)
1612 return 1; 1602 return 1;
1613 if (k1->offset < k2->offset) 1603 if (k1->offset < k2->offset)
1614 return -1; 1604 return -1;
1615 return 0; 1605 return 0;
1616 } 1606 }
1617 1607
1618 /* 1608 /*
1619 * this is used by the defrag code to go through all the 1609 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that 1610 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order 1611 * disk order is close to key order
1622 */ 1612 */
1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1613 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624 struct btrfs_root *root, struct extent_buffer *parent, 1614 struct btrfs_root *root, struct extent_buffer *parent,
1625 int start_slot, u64 *last_ret, 1615 int start_slot, u64 *last_ret,
1626 struct btrfs_key *progress) 1616 struct btrfs_key *progress)
1627 { 1617 {
1628 struct extent_buffer *cur; 1618 struct extent_buffer *cur;
1629 u64 blocknr; 1619 u64 blocknr;
1630 u64 gen; 1620 u64 gen;
1631 u64 search_start = *last_ret; 1621 u64 search_start = *last_ret;
1632 u64 last_block = 0; 1622 u64 last_block = 0;
1633 u64 other; 1623 u64 other;
1634 u32 parent_nritems; 1624 u32 parent_nritems;
1635 int end_slot; 1625 int end_slot;
1636 int i; 1626 int i;
1637 int err = 0; 1627 int err = 0;
1638 int parent_level; 1628 int parent_level;
1639 int uptodate; 1629 int uptodate;
1640 u32 blocksize; 1630 u32 blocksize;
1641 int progress_passed = 0; 1631 int progress_passed = 0;
1642 struct btrfs_disk_key disk_key; 1632 struct btrfs_disk_key disk_key;
1643 1633
1644 parent_level = btrfs_header_level(parent); 1634 parent_level = btrfs_header_level(parent);
1645 1635
1646 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1636 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647 WARN_ON(trans->transid != root->fs_info->generation); 1637 WARN_ON(trans->transid != root->fs_info->generation);
1648 1638
1649 parent_nritems = btrfs_header_nritems(parent); 1639 parent_nritems = btrfs_header_nritems(parent);
1650 blocksize = root->nodesize; 1640 blocksize = root->nodesize;
1651 end_slot = parent_nritems; 1641 end_slot = parent_nritems;
1652 1642
1653 if (parent_nritems == 1) 1643 if (parent_nritems == 1)
1654 return 0; 1644 return 0;
1655 1645
1656 btrfs_set_lock_blocking(parent); 1646 btrfs_set_lock_blocking(parent);
1657 1647
1658 for (i = start_slot; i < end_slot; i++) { 1648 for (i = start_slot; i < end_slot; i++) {
1659 int close = 1; 1649 int close = 1;
1660 1650
1661 btrfs_node_key(parent, &disk_key, i); 1651 btrfs_node_key(parent, &disk_key, i);
1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1652 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 continue; 1653 continue;
1664 1654
1665 progress_passed = 1; 1655 progress_passed = 1;
1666 blocknr = btrfs_node_blockptr(parent, i); 1656 blocknr = btrfs_node_blockptr(parent, i);
1667 gen = btrfs_node_ptr_generation(parent, i); 1657 gen = btrfs_node_ptr_generation(parent, i);
1668 if (last_block == 0) 1658 if (last_block == 0)
1669 last_block = blocknr; 1659 last_block = blocknr;
1670 1660
1671 if (i > 0) { 1661 if (i > 0) {
1672 other = btrfs_node_blockptr(parent, i - 1); 1662 other = btrfs_node_blockptr(parent, i - 1);
1673 close = close_blocks(blocknr, other, blocksize); 1663 close = close_blocks(blocknr, other, blocksize);
1674 } 1664 }
1675 if (!close && i < end_slot - 2) { 1665 if (!close && i < end_slot - 2) {
1676 other = btrfs_node_blockptr(parent, i + 1); 1666 other = btrfs_node_blockptr(parent, i + 1);
1677 close = close_blocks(blocknr, other, blocksize); 1667 close = close_blocks(blocknr, other, blocksize);
1678 } 1668 }
1679 if (close) { 1669 if (close) {
1680 last_block = blocknr; 1670 last_block = blocknr;
1681 continue; 1671 continue;
1682 } 1672 }
1683 1673
1684 cur = btrfs_find_tree_block(root, blocknr); 1674 cur = btrfs_find_tree_block(root, blocknr);
1685 if (cur) 1675 if (cur)
1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1676 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687 else 1677 else
1688 uptodate = 0; 1678 uptodate = 0;
1689 if (!cur || !uptodate) { 1679 if (!cur || !uptodate) {
1690 if (!cur) { 1680 if (!cur) {
1691 cur = read_tree_block(root, blocknr, gen); 1681 cur = read_tree_block(root, blocknr, gen);
1692 if (!cur || !extent_buffer_uptodate(cur)) { 1682 if (!cur || !extent_buffer_uptodate(cur)) {
1693 free_extent_buffer(cur); 1683 free_extent_buffer(cur);
1694 return -EIO; 1684 return -EIO;
1695 } 1685 }
1696 } else if (!uptodate) { 1686 } else if (!uptodate) {
1697 err = btrfs_read_buffer(cur, gen); 1687 err = btrfs_read_buffer(cur, gen);
1698 if (err) { 1688 if (err) {
1699 free_extent_buffer(cur); 1689 free_extent_buffer(cur);
1700 return err; 1690 return err;
1701 } 1691 }
1702 } 1692 }
1703 } 1693 }
1704 if (search_start == 0) 1694 if (search_start == 0)
1705 search_start = last_block; 1695 search_start = last_block;
1706 1696
1707 btrfs_tree_lock(cur); 1697 btrfs_tree_lock(cur);
1708 btrfs_set_lock_blocking(cur); 1698 btrfs_set_lock_blocking(cur);
1709 err = __btrfs_cow_block(trans, root, cur, parent, i, 1699 err = __btrfs_cow_block(trans, root, cur, parent, i,
1710 &cur, search_start, 1700 &cur, search_start,
1711 min(16 * blocksize, 1701 min(16 * blocksize,
1712 (end_slot - i) * blocksize)); 1702 (end_slot - i) * blocksize));
1713 if (err) { 1703 if (err) {
1714 btrfs_tree_unlock(cur); 1704 btrfs_tree_unlock(cur);
1715 free_extent_buffer(cur); 1705 free_extent_buffer(cur);
1716 break; 1706 break;
1717 } 1707 }
1718 search_start = cur->start; 1708 search_start = cur->start;
1719 last_block = cur->start; 1709 last_block = cur->start;
1720 *last_ret = search_start; 1710 *last_ret = search_start;
1721 btrfs_tree_unlock(cur); 1711 btrfs_tree_unlock(cur);
1722 free_extent_buffer(cur); 1712 free_extent_buffer(cur);
1723 } 1713 }
1724 return err; 1714 return err;
1725 } 1715 }
1726 1716
1727 /* 1717 /*
1728 * The leaf data grows from end-to-front in the node. 1718 * The leaf data grows from end-to-front in the node.
1729 * this returns the address of the start of the last item, 1719 * this returns the address of the start of the last item,
1730 * which is the stop of the leaf data stack 1720 * which is the stop of the leaf data stack
1731 */ 1721 */
1732 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1722 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1733 struct extent_buffer *leaf) 1723 struct extent_buffer *leaf)
1734 { 1724 {
1735 u32 nr = btrfs_header_nritems(leaf); 1725 u32 nr = btrfs_header_nritems(leaf);
1736 if (nr == 0) 1726 if (nr == 0)
1737 return BTRFS_LEAF_DATA_SIZE(root); 1727 return BTRFS_LEAF_DATA_SIZE(root);
1738 return btrfs_item_offset_nr(leaf, nr - 1); 1728 return btrfs_item_offset_nr(leaf, nr - 1);
1739 } 1729 }
1740 1730
1741 1731
1742 /* 1732 /*
1743 * search for key in the extent_buffer. The items start at offset p, 1733 * search for key in the extent_buffer. The items start at offset p,
1744 * and they are item_size apart. There are 'max' items in p. 1734 * and they are item_size apart. There are 'max' items in p.
1745 * 1735 *
1746 * the slot in the array is returned via slot, and it points to 1736 * the slot in the array is returned via slot, and it points to
1747 * the place where you would insert key if it is not found in 1737 * the place where you would insert key if it is not found in
1748 * the array. 1738 * the array.
1749 * 1739 *
1750 * slot may point to max if the key is bigger than all of the keys 1740 * slot may point to max if the key is bigger than all of the keys
1751 */ 1741 */
1752 static noinline int generic_bin_search(struct extent_buffer *eb, 1742 static noinline int generic_bin_search(struct extent_buffer *eb,
1753 unsigned long p, 1743 unsigned long p,
1754 int item_size, struct btrfs_key *key, 1744 int item_size, struct btrfs_key *key,
1755 int max, int *slot) 1745 int max, int *slot)
1756 { 1746 {
1757 int low = 0; 1747 int low = 0;
1758 int high = max; 1748 int high = max;
1759 int mid; 1749 int mid;
1760 int ret; 1750 int ret;
1761 struct btrfs_disk_key *tmp = NULL; 1751 struct btrfs_disk_key *tmp = NULL;
1762 struct btrfs_disk_key unaligned; 1752 struct btrfs_disk_key unaligned;
1763 unsigned long offset; 1753 unsigned long offset;
1764 char *kaddr = NULL; 1754 char *kaddr = NULL;
1765 unsigned long map_start = 0; 1755 unsigned long map_start = 0;
1766 unsigned long map_len = 0; 1756 unsigned long map_len = 0;
1767 int err; 1757 int err;
1768 1758
1769 while (low < high) { 1759 while (low < high) {
1770 mid = (low + high) / 2; 1760 mid = (low + high) / 2;
1771 offset = p + mid * item_size; 1761 offset = p + mid * item_size;
1772 1762
1773 if (!kaddr || offset < map_start || 1763 if (!kaddr || offset < map_start ||
1774 (offset + sizeof(struct btrfs_disk_key)) > 1764 (offset + sizeof(struct btrfs_disk_key)) >
1775 map_start + map_len) { 1765 map_start + map_len) {
1776 1766
1777 err = map_private_extent_buffer(eb, offset, 1767 err = map_private_extent_buffer(eb, offset,
1778 sizeof(struct btrfs_disk_key), 1768 sizeof(struct btrfs_disk_key),
1779 &kaddr, &map_start, &map_len); 1769 &kaddr, &map_start, &map_len);
1780 1770
1781 if (!err) { 1771 if (!err) {
1782 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1772 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1783 map_start); 1773 map_start);
1784 } else { 1774 } else {
1785 read_extent_buffer(eb, &unaligned, 1775 read_extent_buffer(eb, &unaligned,
1786 offset, sizeof(unaligned)); 1776 offset, sizeof(unaligned));
1787 tmp = &unaligned; 1777 tmp = &unaligned;
1788 } 1778 }
1789 1779
1790 } else { 1780 } else {
1791 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1781 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1792 map_start); 1782 map_start);
1793 } 1783 }
1794 ret = comp_keys(tmp, key); 1784 ret = comp_keys(tmp, key);
1795 1785
1796 if (ret < 0) 1786 if (ret < 0)
1797 low = mid + 1; 1787 low = mid + 1;
1798 else if (ret > 0) 1788 else if (ret > 0)
1799 high = mid; 1789 high = mid;
1800 else { 1790 else {
1801 *slot = mid; 1791 *slot = mid;
1802 return 0; 1792 return 0;
1803 } 1793 }
1804 } 1794 }
1805 *slot = low; 1795 *slot = low;
1806 return 1; 1796 return 1;
1807 } 1797 }
1808 1798
1809 /* 1799 /*
1810 * simple bin_search frontend that does the right thing for 1800 * simple bin_search frontend that does the right thing for
1811 * leaves vs nodes 1801 * leaves vs nodes
1812 */ 1802 */
1813 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1803 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1814 int level, int *slot) 1804 int level, int *slot)
1815 { 1805 {
1816 if (level == 0) 1806 if (level == 0)
1817 return generic_bin_search(eb, 1807 return generic_bin_search(eb,
1818 offsetof(struct btrfs_leaf, items), 1808 offsetof(struct btrfs_leaf, items),
1819 sizeof(struct btrfs_item), 1809 sizeof(struct btrfs_item),
1820 key, btrfs_header_nritems(eb), 1810 key, btrfs_header_nritems(eb),
1821 slot); 1811 slot);
1822 else 1812 else
1823 return generic_bin_search(eb, 1813 return generic_bin_search(eb,
1824 offsetof(struct btrfs_node, ptrs), 1814 offsetof(struct btrfs_node, ptrs),
1825 sizeof(struct btrfs_key_ptr), 1815 sizeof(struct btrfs_key_ptr),
1826 key, btrfs_header_nritems(eb), 1816 key, btrfs_header_nritems(eb),
1827 slot); 1817 slot);
1828 } 1818 }
1829 1819
1830 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1820 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1831 int level, int *slot) 1821 int level, int *slot)
1832 { 1822 {
1833 return bin_search(eb, key, level, slot); 1823 return bin_search(eb, key, level, slot);
1834 } 1824 }
1835 1825
1836 static void root_add_used(struct btrfs_root *root, u32 size) 1826 static void root_add_used(struct btrfs_root *root, u32 size)
1837 { 1827 {
1838 spin_lock(&root->accounting_lock); 1828 spin_lock(&root->accounting_lock);
1839 btrfs_set_root_used(&root->root_item, 1829 btrfs_set_root_used(&root->root_item,
1840 btrfs_root_used(&root->root_item) + size); 1830 btrfs_root_used(&root->root_item) + size);
1841 spin_unlock(&root->accounting_lock); 1831 spin_unlock(&root->accounting_lock);
1842 } 1832 }
1843 1833
1844 static void root_sub_used(struct btrfs_root *root, u32 size) 1834 static void root_sub_used(struct btrfs_root *root, u32 size)
1845 { 1835 {
1846 spin_lock(&root->accounting_lock); 1836 spin_lock(&root->accounting_lock);
1847 btrfs_set_root_used(&root->root_item, 1837 btrfs_set_root_used(&root->root_item,
1848 btrfs_root_used(&root->root_item) - size); 1838 btrfs_root_used(&root->root_item) - size);
1849 spin_unlock(&root->accounting_lock); 1839 spin_unlock(&root->accounting_lock);
1850 } 1840 }
1851 1841
1852 /* given a node and slot number, this reads the blocks it points to. The 1842 /* given a node and slot number, this reads the blocks it points to. The
1853 * extent buffer is returned with a reference taken (but unlocked). 1843 * extent buffer is returned with a reference taken (but unlocked).
1854 * NULL is returned on error. 1844 * NULL is returned on error.
1855 */ 1845 */
1856 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1846 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1857 struct extent_buffer *parent, int slot) 1847 struct extent_buffer *parent, int slot)
1858 { 1848 {
1859 int level = btrfs_header_level(parent); 1849 int level = btrfs_header_level(parent);
1860 struct extent_buffer *eb; 1850 struct extent_buffer *eb;
1861 1851
1862 if (slot < 0) 1852 if (slot < 0)
1863 return NULL; 1853 return NULL;
1864 if (slot >= btrfs_header_nritems(parent)) 1854 if (slot >= btrfs_header_nritems(parent))
1865 return NULL; 1855 return NULL;
1866 1856
1867 BUG_ON(level == 0); 1857 BUG_ON(level == 0);
1868 1858
1869 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1859 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1870 btrfs_node_ptr_generation(parent, slot)); 1860 btrfs_node_ptr_generation(parent, slot));
1871 if (eb && !extent_buffer_uptodate(eb)) { 1861 if (eb && !extent_buffer_uptodate(eb)) {
1872 free_extent_buffer(eb); 1862 free_extent_buffer(eb);
1873 eb = NULL; 1863 eb = NULL;
1874 } 1864 }
1875 1865
1876 return eb; 1866 return eb;
1877 } 1867 }
1878 1868
1879 /* 1869 /*
1880 * node level balancing, used to make sure nodes are in proper order for 1870 * node level balancing, used to make sure nodes are in proper order for
1881 * item deletion. We balance from the top down, so we have to make sure 1871 * item deletion. We balance from the top down, so we have to make sure
1882 * that a deletion won't leave an node completely empty later on. 1872 * that a deletion won't leave an node completely empty later on.
1883 */ 1873 */
1884 static noinline int balance_level(struct btrfs_trans_handle *trans, 1874 static noinline int balance_level(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root, 1875 struct btrfs_root *root,
1886 struct btrfs_path *path, int level) 1876 struct btrfs_path *path, int level)
1887 { 1877 {
1888 struct extent_buffer *right = NULL; 1878 struct extent_buffer *right = NULL;
1889 struct extent_buffer *mid; 1879 struct extent_buffer *mid;
1890 struct extent_buffer *left = NULL; 1880 struct extent_buffer *left = NULL;
1891 struct extent_buffer *parent = NULL; 1881 struct extent_buffer *parent = NULL;
1892 int ret = 0; 1882 int ret = 0;
1893 int wret; 1883 int wret;
1894 int pslot; 1884 int pslot;
1895 int orig_slot = path->slots[level]; 1885 int orig_slot = path->slots[level];
1896 u64 orig_ptr; 1886 u64 orig_ptr;
1897 1887
1898 if (level == 0) 1888 if (level == 0)
1899 return 0; 1889 return 0;
1900 1890
1901 mid = path->nodes[level]; 1891 mid = path->nodes[level];
1902 1892
1903 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1893 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1904 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1894 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1905 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1895 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1906 1896
1907 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1897 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1908 1898
1909 if (level < BTRFS_MAX_LEVEL - 1) { 1899 if (level < BTRFS_MAX_LEVEL - 1) {
1910 parent = path->nodes[level + 1]; 1900 parent = path->nodes[level + 1];
1911 pslot = path->slots[level + 1]; 1901 pslot = path->slots[level + 1];
1912 } 1902 }
1913 1903
1914 /* 1904 /*
1915 * deal with the case where there is only one pointer in the root 1905 * deal with the case where there is only one pointer in the root
1916 * by promoting the node below to a root 1906 * by promoting the node below to a root
1917 */ 1907 */
1918 if (!parent) { 1908 if (!parent) {
1919 struct extent_buffer *child; 1909 struct extent_buffer *child;
1920 1910
1921 if (btrfs_header_nritems(mid) != 1) 1911 if (btrfs_header_nritems(mid) != 1)
1922 return 0; 1912 return 0;
1923 1913
1924 /* promote the child to a root */ 1914 /* promote the child to a root */
1925 child = read_node_slot(root, mid, 0); 1915 child = read_node_slot(root, mid, 0);
1926 if (!child) { 1916 if (!child) {
1927 ret = -EROFS; 1917 ret = -EROFS;
1928 btrfs_std_error(root->fs_info, ret); 1918 btrfs_std_error(root->fs_info, ret);
1929 goto enospc; 1919 goto enospc;
1930 } 1920 }
1931 1921
1932 btrfs_tree_lock(child); 1922 btrfs_tree_lock(child);
1933 btrfs_set_lock_blocking(child); 1923 btrfs_set_lock_blocking(child);
1934 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1935 if (ret) { 1925 if (ret) {
1936 btrfs_tree_unlock(child); 1926 btrfs_tree_unlock(child);
1937 free_extent_buffer(child); 1927 free_extent_buffer(child);
1938 goto enospc; 1928 goto enospc;
1939 } 1929 }
1940 1930
1941 tree_mod_log_set_root_pointer(root, child, 1); 1931 tree_mod_log_set_root_pointer(root, child, 1);
1942 rcu_assign_pointer(root->node, child); 1932 rcu_assign_pointer(root->node, child);
1943 1933
1944 add_root_to_dirty_list(root); 1934 add_root_to_dirty_list(root);
1945 btrfs_tree_unlock(child); 1935 btrfs_tree_unlock(child);
1946 1936
1947 path->locks[level] = 0; 1937 path->locks[level] = 0;
1948 path->nodes[level] = NULL; 1938 path->nodes[level] = NULL;
1949 clean_tree_block(trans, root, mid); 1939 clean_tree_block(trans, root, mid);
1950 btrfs_tree_unlock(mid); 1940 btrfs_tree_unlock(mid);
1951 /* once for the path */ 1941 /* once for the path */
1952 free_extent_buffer(mid); 1942 free_extent_buffer(mid);
1953 1943
1954 root_sub_used(root, mid->len); 1944 root_sub_used(root, mid->len);
1955 btrfs_free_tree_block(trans, root, mid, 0, 1); 1945 btrfs_free_tree_block(trans, root, mid, 0, 1);
1956 /* once for the root ptr */ 1946 /* once for the root ptr */
1957 free_extent_buffer_stale(mid); 1947 free_extent_buffer_stale(mid);
1958 return 0; 1948 return 0;
1959 } 1949 }
1960 if (btrfs_header_nritems(mid) > 1950 if (btrfs_header_nritems(mid) >
1961 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1951 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1962 return 0; 1952 return 0;
1963 1953
1964 left = read_node_slot(root, parent, pslot - 1); 1954 left = read_node_slot(root, parent, pslot - 1);
1965 if (left) { 1955 if (left) {
1966 btrfs_tree_lock(left); 1956 btrfs_tree_lock(left);
1967 btrfs_set_lock_blocking(left); 1957 btrfs_set_lock_blocking(left);
1968 wret = btrfs_cow_block(trans, root, left, 1958 wret = btrfs_cow_block(trans, root, left,
1969 parent, pslot - 1, &left); 1959 parent, pslot - 1, &left);
1970 if (wret) { 1960 if (wret) {
1971 ret = wret; 1961 ret = wret;
1972 goto enospc; 1962 goto enospc;
1973 } 1963 }
1974 } 1964 }
1975 right = read_node_slot(root, parent, pslot + 1); 1965 right = read_node_slot(root, parent, pslot + 1);
1976 if (right) { 1966 if (right) {
1977 btrfs_tree_lock(right); 1967 btrfs_tree_lock(right);
1978 btrfs_set_lock_blocking(right); 1968 btrfs_set_lock_blocking(right);
1979 wret = btrfs_cow_block(trans, root, right, 1969 wret = btrfs_cow_block(trans, root, right,
1980 parent, pslot + 1, &right); 1970 parent, pslot + 1, &right);
1981 if (wret) { 1971 if (wret) {
1982 ret = wret; 1972 ret = wret;
1983 goto enospc; 1973 goto enospc;
1984 } 1974 }
1985 } 1975 }
1986 1976
1987 /* first, try to make some room in the middle buffer */ 1977 /* first, try to make some room in the middle buffer */
1988 if (left) { 1978 if (left) {
1989 orig_slot += btrfs_header_nritems(left); 1979 orig_slot += btrfs_header_nritems(left);
1990 wret = push_node_left(trans, root, left, mid, 1); 1980 wret = push_node_left(trans, root, left, mid, 1);
1991 if (wret < 0) 1981 if (wret < 0)
1992 ret = wret; 1982 ret = wret;
1993 } 1983 }
1994 1984
1995 /* 1985 /*
1996 * then try to empty the right most buffer into the middle 1986 * then try to empty the right most buffer into the middle
1997 */ 1987 */
1998 if (right) { 1988 if (right) {
1999 wret = push_node_left(trans, root, mid, right, 1); 1989 wret = push_node_left(trans, root, mid, right, 1);
2000 if (wret < 0 && wret != -ENOSPC) 1990 if (wret < 0 && wret != -ENOSPC)
2001 ret = wret; 1991 ret = wret;
2002 if (btrfs_header_nritems(right) == 0) { 1992 if (btrfs_header_nritems(right) == 0) {
2003 clean_tree_block(trans, root, right); 1993 clean_tree_block(trans, root, right);
2004 btrfs_tree_unlock(right); 1994 btrfs_tree_unlock(right);
2005 del_ptr(root, path, level + 1, pslot + 1); 1995 del_ptr(root, path, level + 1, pslot + 1);
2006 root_sub_used(root, right->len); 1996 root_sub_used(root, right->len);
2007 btrfs_free_tree_block(trans, root, right, 0, 1); 1997 btrfs_free_tree_block(trans, root, right, 0, 1);
2008 free_extent_buffer_stale(right); 1998 free_extent_buffer_stale(right);
2009 right = NULL; 1999 right = NULL;
2010 } else { 2000 } else {
2011 struct btrfs_disk_key right_key; 2001 struct btrfs_disk_key right_key;
2012 btrfs_node_key(right, &right_key, 0); 2002 btrfs_node_key(right, &right_key, 0);
2013 tree_mod_log_set_node_key(root->fs_info, parent, 2003 tree_mod_log_set_node_key(root->fs_info, parent,
2014 pslot + 1, 0); 2004 pslot + 1, 0);
2015 btrfs_set_node_key(parent, &right_key, pslot + 1); 2005 btrfs_set_node_key(parent, &right_key, pslot + 1);
2016 btrfs_mark_buffer_dirty(parent); 2006 btrfs_mark_buffer_dirty(parent);
2017 } 2007 }
2018 } 2008 }
2019 if (btrfs_header_nritems(mid) == 1) { 2009 if (btrfs_header_nritems(mid) == 1) {
2020 /* 2010 /*
2021 * we're not allowed to leave a node with one item in the 2011 * we're not allowed to leave a node with one item in the
2022 * tree during a delete. A deletion from lower in the tree 2012 * tree during a delete. A deletion from lower in the tree
2023 * could try to delete the only pointer in this node. 2013 * could try to delete the only pointer in this node.
2024 * So, pull some keys from the left. 2014 * So, pull some keys from the left.
2025 * There has to be a left pointer at this point because 2015 * There has to be a left pointer at this point because
2026 * otherwise we would have pulled some pointers from the 2016 * otherwise we would have pulled some pointers from the
2027 * right 2017 * right
2028 */ 2018 */
2029 if (!left) { 2019 if (!left) {
2030 ret = -EROFS; 2020 ret = -EROFS;
2031 btrfs_std_error(root->fs_info, ret); 2021 btrfs_std_error(root->fs_info, ret);
2032 goto enospc; 2022 goto enospc;
2033 } 2023 }
2034 wret = balance_node_right(trans, root, mid, left); 2024 wret = balance_node_right(trans, root, mid, left);
2035 if (wret < 0) { 2025 if (wret < 0) {
2036 ret = wret; 2026 ret = wret;
2037 goto enospc; 2027 goto enospc;
2038 } 2028 }
2039 if (wret == 1) { 2029 if (wret == 1) {
2040 wret = push_node_left(trans, root, left, mid, 1); 2030 wret = push_node_left(trans, root, left, mid, 1);
2041 if (wret < 0) 2031 if (wret < 0)
2042 ret = wret; 2032 ret = wret;
2043 } 2033 }
2044 BUG_ON(wret == 1); 2034 BUG_ON(wret == 1);
2045 } 2035 }
2046 if (btrfs_header_nritems(mid) == 0) { 2036 if (btrfs_header_nritems(mid) == 0) {
2047 clean_tree_block(trans, root, mid); 2037 clean_tree_block(trans, root, mid);
2048 btrfs_tree_unlock(mid); 2038 btrfs_tree_unlock(mid);
2049 del_ptr(root, path, level + 1, pslot); 2039 del_ptr(root, path, level + 1, pslot);
2050 root_sub_used(root, mid->len); 2040 root_sub_used(root, mid->len);
2051 btrfs_free_tree_block(trans, root, mid, 0, 1); 2041 btrfs_free_tree_block(trans, root, mid, 0, 1);
2052 free_extent_buffer_stale(mid); 2042 free_extent_buffer_stale(mid);
2053 mid = NULL; 2043 mid = NULL;
2054 } else { 2044 } else {
2055 /* update the parent key to reflect our changes */ 2045 /* update the parent key to reflect our changes */
2056 struct btrfs_disk_key mid_key; 2046 struct btrfs_disk_key mid_key;
2057 btrfs_node_key(mid, &mid_key, 0); 2047 btrfs_node_key(mid, &mid_key, 0);
2058 tree_mod_log_set_node_key(root->fs_info, parent, 2048 tree_mod_log_set_node_key(root->fs_info, parent,
2059 pslot, 0); 2049 pslot, 0);
2060 btrfs_set_node_key(parent, &mid_key, pslot); 2050 btrfs_set_node_key(parent, &mid_key, pslot);
2061 btrfs_mark_buffer_dirty(parent); 2051 btrfs_mark_buffer_dirty(parent);
2062 } 2052 }
2063 2053
2064 /* update the path */ 2054 /* update the path */
2065 if (left) { 2055 if (left) {
2066 if (btrfs_header_nritems(left) > orig_slot) { 2056 if (btrfs_header_nritems(left) > orig_slot) {
2067 extent_buffer_get(left); 2057 extent_buffer_get(left);
2068 /* left was locked after cow */ 2058 /* left was locked after cow */
2069 path->nodes[level] = left; 2059 path->nodes[level] = left;
2070 path->slots[level + 1] -= 1; 2060 path->slots[level + 1] -= 1;
2071 path->slots[level] = orig_slot; 2061 path->slots[level] = orig_slot;
2072 if (mid) { 2062 if (mid) {
2073 btrfs_tree_unlock(mid); 2063 btrfs_tree_unlock(mid);
2074 free_extent_buffer(mid); 2064 free_extent_buffer(mid);
2075 } 2065 }
2076 } else { 2066 } else {
2077 orig_slot -= btrfs_header_nritems(left); 2067 orig_slot -= btrfs_header_nritems(left);
2078 path->slots[level] = orig_slot; 2068 path->slots[level] = orig_slot;
2079 } 2069 }
2080 } 2070 }
2081 /* double check we haven't messed things up */ 2071 /* double check we haven't messed things up */
2082 if (orig_ptr != 2072 if (orig_ptr !=
2083 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2073 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2084 BUG(); 2074 BUG();
2085 enospc: 2075 enospc:
2086 if (right) { 2076 if (right) {
2087 btrfs_tree_unlock(right); 2077 btrfs_tree_unlock(right);
2088 free_extent_buffer(right); 2078 free_extent_buffer(right);
2089 } 2079 }
2090 if (left) { 2080 if (left) {
2091 if (path->nodes[level] != left) 2081 if (path->nodes[level] != left)
2092 btrfs_tree_unlock(left); 2082 btrfs_tree_unlock(left);
2093 free_extent_buffer(left); 2083 free_extent_buffer(left);
2094 } 2084 }
2095 return ret; 2085 return ret;
2096 } 2086 }
2097 2087
2098 /* Node balancing for insertion. Here we only split or push nodes around 2088 /* Node balancing for insertion. Here we only split or push nodes around
2099 * when they are completely full. This is also done top down, so we 2089 * when they are completely full. This is also done top down, so we
2100 * have to be pessimistic. 2090 * have to be pessimistic.
2101 */ 2091 */
2102 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2103 struct btrfs_root *root, 2093 struct btrfs_root *root,
2104 struct btrfs_path *path, int level) 2094 struct btrfs_path *path, int level)
2105 { 2095 {
2106 struct extent_buffer *right = NULL; 2096 struct extent_buffer *right = NULL;
2107 struct extent_buffer *mid; 2097 struct extent_buffer *mid;
2108 struct extent_buffer *left = NULL; 2098 struct extent_buffer *left = NULL;
2109 struct extent_buffer *parent = NULL; 2099 struct extent_buffer *parent = NULL;
2110 int ret = 0; 2100 int ret = 0;
2111 int wret; 2101 int wret;
2112 int pslot; 2102 int pslot;
2113 int orig_slot = path->slots[level]; 2103 int orig_slot = path->slots[level];
2114 2104
2115 if (level == 0) 2105 if (level == 0)
2116 return 1; 2106 return 1;
2117 2107
2118 mid = path->nodes[level]; 2108 mid = path->nodes[level];
2119 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2109 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2120 2110
2121 if (level < BTRFS_MAX_LEVEL - 1) { 2111 if (level < BTRFS_MAX_LEVEL - 1) {
2122 parent = path->nodes[level + 1]; 2112 parent = path->nodes[level + 1];
2123 pslot = path->slots[level + 1]; 2113 pslot = path->slots[level + 1];
2124 } 2114 }
2125 2115
2126 if (!parent) 2116 if (!parent)
2127 return 1; 2117 return 1;
2128 2118
2129 left = read_node_slot(root, parent, pslot - 1); 2119 left = read_node_slot(root, parent, pslot - 1);
2130 2120
2131 /* first, try to make some room in the middle buffer */ 2121 /* first, try to make some room in the middle buffer */
2132 if (left) { 2122 if (left) {
2133 u32 left_nr; 2123 u32 left_nr;
2134 2124
2135 btrfs_tree_lock(left); 2125 btrfs_tree_lock(left);
2136 btrfs_set_lock_blocking(left); 2126 btrfs_set_lock_blocking(left);
2137 2127
2138 left_nr = btrfs_header_nritems(left); 2128 left_nr = btrfs_header_nritems(left);
2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2129 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2140 wret = 1; 2130 wret = 1;
2141 } else { 2131 } else {
2142 ret = btrfs_cow_block(trans, root, left, parent, 2132 ret = btrfs_cow_block(trans, root, left, parent,
2143 pslot - 1, &left); 2133 pslot - 1, &left);
2144 if (ret) 2134 if (ret)
2145 wret = 1; 2135 wret = 1;
2146 else { 2136 else {
2147 wret = push_node_left(trans, root, 2137 wret = push_node_left(trans, root,
2148 left, mid, 0); 2138 left, mid, 0);
2149 } 2139 }
2150 } 2140 }
2151 if (wret < 0) 2141 if (wret < 0)
2152 ret = wret; 2142 ret = wret;
2153 if (wret == 0) { 2143 if (wret == 0) {
2154 struct btrfs_disk_key disk_key; 2144 struct btrfs_disk_key disk_key;
2155 orig_slot += left_nr; 2145 orig_slot += left_nr;
2156 btrfs_node_key(mid, &disk_key, 0); 2146 btrfs_node_key(mid, &disk_key, 0);
2157 tree_mod_log_set_node_key(root->fs_info, parent, 2147 tree_mod_log_set_node_key(root->fs_info, parent,
2158 pslot, 0); 2148 pslot, 0);
2159 btrfs_set_node_key(parent, &disk_key, pslot); 2149 btrfs_set_node_key(parent, &disk_key, pslot);
2160 btrfs_mark_buffer_dirty(parent); 2150 btrfs_mark_buffer_dirty(parent);
2161 if (btrfs_header_nritems(left) > orig_slot) { 2151 if (btrfs_header_nritems(left) > orig_slot) {
2162 path->nodes[level] = left; 2152 path->nodes[level] = left;
2163 path->slots[level + 1] -= 1; 2153 path->slots[level + 1] -= 1;
2164 path->slots[level] = orig_slot; 2154 path->slots[level] = orig_slot;
2165 btrfs_tree_unlock(mid); 2155 btrfs_tree_unlock(mid);
2166 free_extent_buffer(mid); 2156 free_extent_buffer(mid);
2167 } else { 2157 } else {
2168 orig_slot -= 2158 orig_slot -=
2169 btrfs_header_nritems(left); 2159 btrfs_header_nritems(left);
2170 path->slots[level] = orig_slot; 2160 path->slots[level] = orig_slot;
2171 btrfs_tree_unlock(left); 2161 btrfs_tree_unlock(left);
2172 free_extent_buffer(left); 2162 free_extent_buffer(left);
2173 } 2163 }
2174 return 0; 2164 return 0;
2175 } 2165 }
2176 btrfs_tree_unlock(left); 2166 btrfs_tree_unlock(left);
2177 free_extent_buffer(left); 2167 free_extent_buffer(left);
2178 } 2168 }
2179 right = read_node_slot(root, parent, pslot + 1); 2169 right = read_node_slot(root, parent, pslot + 1);
2180 2170
2181 /* 2171 /*
2182 * then try to empty the right most buffer into the middle 2172 * then try to empty the right most buffer into the middle
2183 */ 2173 */
2184 if (right) { 2174 if (right) {
2185 u32 right_nr; 2175 u32 right_nr;
2186 2176
2187 btrfs_tree_lock(right); 2177 btrfs_tree_lock(right);
2188 btrfs_set_lock_blocking(right); 2178 btrfs_set_lock_blocking(right);
2189 2179
2190 right_nr = btrfs_header_nritems(right); 2180 right_nr = btrfs_header_nritems(right);
2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2181 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2192 wret = 1; 2182 wret = 1;
2193 } else { 2183 } else {
2194 ret = btrfs_cow_block(trans, root, right, 2184 ret = btrfs_cow_block(trans, root, right,
2195 parent, pslot + 1, 2185 parent, pslot + 1,
2196 &right); 2186 &right);
2197 if (ret) 2187 if (ret)
2198 wret = 1; 2188 wret = 1;
2199 else { 2189 else {
2200 wret = balance_node_right(trans, root, 2190 wret = balance_node_right(trans, root,
2201 right, mid); 2191 right, mid);
2202 } 2192 }
2203 } 2193 }
2204 if (wret < 0) 2194 if (wret < 0)
2205 ret = wret; 2195 ret = wret;
2206 if (wret == 0) { 2196 if (wret == 0) {
2207 struct btrfs_disk_key disk_key; 2197 struct btrfs_disk_key disk_key;
2208 2198
2209 btrfs_node_key(right, &disk_key, 0); 2199 btrfs_node_key(right, &disk_key, 0);
2210 tree_mod_log_set_node_key(root->fs_info, parent, 2200 tree_mod_log_set_node_key(root->fs_info, parent,
2211 pslot + 1, 0); 2201 pslot + 1, 0);
2212 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2202 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2213 btrfs_mark_buffer_dirty(parent); 2203 btrfs_mark_buffer_dirty(parent);
2214 2204
2215 if (btrfs_header_nritems(mid) <= orig_slot) { 2205 if (btrfs_header_nritems(mid) <= orig_slot) {
2216 path->nodes[level] = right; 2206 path->nodes[level] = right;
2217 path->slots[level + 1] += 1; 2207 path->slots[level + 1] += 1;
2218 path->slots[level] = orig_slot - 2208 path->slots[level] = orig_slot -
2219 btrfs_header_nritems(mid); 2209 btrfs_header_nritems(mid);
2220 btrfs_tree_unlock(mid); 2210 btrfs_tree_unlock(mid);
2221 free_extent_buffer(mid); 2211 free_extent_buffer(mid);
2222 } else { 2212 } else {
2223 btrfs_tree_unlock(right); 2213 btrfs_tree_unlock(right);
2224 free_extent_buffer(right); 2214 free_extent_buffer(right);
2225 } 2215 }
2226 return 0; 2216 return 0;
2227 } 2217 }
2228 btrfs_tree_unlock(right); 2218 btrfs_tree_unlock(right);
2229 free_extent_buffer(right); 2219 free_extent_buffer(right);
2230 } 2220 }
2231 return 1; 2221 return 1;
2232 } 2222 }
2233 2223
2234 /* 2224 /*
2235 * readahead one full node of leaves, finding things that are close 2225 * readahead one full node of leaves, finding things that are close
2236 * to the block in 'slot', and triggering ra on them. 2226 * to the block in 'slot', and triggering ra on them.
2237 */ 2227 */
2238 static void reada_for_search(struct btrfs_root *root, 2228 static void reada_for_search(struct btrfs_root *root,
2239 struct btrfs_path *path, 2229 struct btrfs_path *path,
2240 int level, int slot, u64 objectid) 2230 int level, int slot, u64 objectid)
2241 { 2231 {
2242 struct extent_buffer *node; 2232 struct extent_buffer *node;
2243 struct btrfs_disk_key disk_key; 2233 struct btrfs_disk_key disk_key;
2244 u32 nritems; 2234 u32 nritems;
2245 u64 search; 2235 u64 search;
2246 u64 target; 2236 u64 target;
2247 u64 nread = 0; 2237 u64 nread = 0;
2248 u64 gen; 2238 u64 gen;
2249 int direction = path->reada; 2239 int direction = path->reada;
2250 struct extent_buffer *eb; 2240 struct extent_buffer *eb;
2251 u32 nr; 2241 u32 nr;
2252 u32 blocksize; 2242 u32 blocksize;
2253 u32 nscan = 0; 2243 u32 nscan = 0;
2254 2244
2255 if (level != 1) 2245 if (level != 1)
2256 return; 2246 return;
2257 2247
2258 if (!path->nodes[level]) 2248 if (!path->nodes[level])
2259 return; 2249 return;
2260 2250
2261 node = path->nodes[level]; 2251 node = path->nodes[level];
2262 2252
2263 search = btrfs_node_blockptr(node, slot); 2253 search = btrfs_node_blockptr(node, slot);
2264 blocksize = root->nodesize; 2254 blocksize = root->nodesize;
2265 eb = btrfs_find_tree_block(root, search); 2255 eb = btrfs_find_tree_block(root, search);
2266 if (eb) { 2256 if (eb) {
2267 free_extent_buffer(eb); 2257 free_extent_buffer(eb);
2268 return; 2258 return;
2269 } 2259 }
2270 2260
2271 target = search; 2261 target = search;
2272 2262
2273 nritems = btrfs_header_nritems(node); 2263 nritems = btrfs_header_nritems(node);
2274 nr = slot; 2264 nr = slot;
2275 2265
2276 while (1) { 2266 while (1) {
2277 if (direction < 0) { 2267 if (direction < 0) {
2278 if (nr == 0) 2268 if (nr == 0)
2279 break; 2269 break;
2280 nr--; 2270 nr--;
2281 } else if (direction > 0) { 2271 } else if (direction > 0) {
2282 nr++; 2272 nr++;
2283 if (nr >= nritems) 2273 if (nr >= nritems)
2284 break; 2274 break;
2285 } 2275 }
2286 if (path->reada < 0 && objectid) { 2276 if (path->reada < 0 && objectid) {
2287 btrfs_node_key(node, &disk_key, nr); 2277 btrfs_node_key(node, &disk_key, nr);
2288 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2278 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289 break; 2279 break;
2290 } 2280 }
2291 search = btrfs_node_blockptr(node, nr); 2281 search = btrfs_node_blockptr(node, nr);
2292 if ((search <= target && target - search <= 65536) || 2282 if ((search <= target && target - search <= 65536) ||
2293 (search > target && search - target <= 65536)) { 2283 (search > target && search - target <= 65536)) {
2294 gen = btrfs_node_ptr_generation(node, nr); 2284 gen = btrfs_node_ptr_generation(node, nr);
2295 readahead_tree_block(root, search, blocksize); 2285 readahead_tree_block(root, search, blocksize);
2296 nread += blocksize; 2286 nread += blocksize;
2297 } 2287 }
2298 nscan++; 2288 nscan++;
2299 if ((nread > 65536 || nscan > 32)) 2289 if ((nread > 65536 || nscan > 32))
2300 break; 2290 break;
2301 } 2291 }
2302 } 2292 }
2303 2293
2304 static noinline void reada_for_balance(struct btrfs_root *root, 2294 static noinline void reada_for_balance(struct btrfs_root *root,
2305 struct btrfs_path *path, int level) 2295 struct btrfs_path *path, int level)
2306 { 2296 {
2307 int slot; 2297 int slot;
2308 int nritems; 2298 int nritems;
2309 struct extent_buffer *parent; 2299 struct extent_buffer *parent;
2310 struct extent_buffer *eb; 2300 struct extent_buffer *eb;
2311 u64 gen; 2301 u64 gen;
2312 u64 block1 = 0; 2302 u64 block1 = 0;
2313 u64 block2 = 0; 2303 u64 block2 = 0;
2314 int blocksize; 2304 int blocksize;
2315 2305
2316 parent = path->nodes[level + 1]; 2306 parent = path->nodes[level + 1];
2317 if (!parent) 2307 if (!parent)
2318 return; 2308 return;
2319 2309
2320 nritems = btrfs_header_nritems(parent); 2310 nritems = btrfs_header_nritems(parent);
2321 slot = path->slots[level + 1]; 2311 slot = path->slots[level + 1];
2322 blocksize = root->nodesize; 2312 blocksize = root->nodesize;
2323 2313
2324 if (slot > 0) { 2314 if (slot > 0) {
2325 block1 = btrfs_node_blockptr(parent, slot - 1); 2315 block1 = btrfs_node_blockptr(parent, slot - 1);
2326 gen = btrfs_node_ptr_generation(parent, slot - 1); 2316 gen = btrfs_node_ptr_generation(parent, slot - 1);
2327 eb = btrfs_find_tree_block(root, block1); 2317 eb = btrfs_find_tree_block(root, block1);
2328 /* 2318 /*
2329 * if we get -eagain from btrfs_buffer_uptodate, we 2319 * if we get -eagain from btrfs_buffer_uptodate, we
2330 * don't want to return eagain here. That will loop 2320 * don't want to return eagain here. That will loop
2331 * forever 2321 * forever
2332 */ 2322 */
2333 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2323 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2334 block1 = 0; 2324 block1 = 0;
2335 free_extent_buffer(eb); 2325 free_extent_buffer(eb);
2336 } 2326 }
2337 if (slot + 1 < nritems) { 2327 if (slot + 1 < nritems) {
2338 block2 = btrfs_node_blockptr(parent, slot + 1); 2328 block2 = btrfs_node_blockptr(parent, slot + 1);
2339 gen = btrfs_node_ptr_generation(parent, slot + 1); 2329 gen = btrfs_node_ptr_generation(parent, slot + 1);
2340 eb = btrfs_find_tree_block(root, block2); 2330 eb = btrfs_find_tree_block(root, block2);
2341 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2331 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2342 block2 = 0; 2332 block2 = 0;
2343 free_extent_buffer(eb); 2333 free_extent_buffer(eb);
2344 } 2334 }
2345 2335
2346 if (block1) 2336 if (block1)
2347 readahead_tree_block(root, block1, blocksize); 2337 readahead_tree_block(root, block1, blocksize);
2348 if (block2) 2338 if (block2)
2349 readahead_tree_block(root, block2, blocksize); 2339 readahead_tree_block(root, block2, blocksize);
2350 } 2340 }
2351 2341
2352 2342
2353 /* 2343 /*
2354 * when we walk down the tree, it is usually safe to unlock the higher layers 2344 * when we walk down the tree, it is usually safe to unlock the higher layers
2355 * in the tree. The exceptions are when our path goes through slot 0, because 2345 * in the tree. The exceptions are when our path goes through slot 0, because
2356 * operations on the tree might require changing key pointers higher up in the 2346 * operations on the tree might require changing key pointers higher up in the
2357 * tree. 2347 * tree.
2358 * 2348 *
2359 * callers might also have set path->keep_locks, which tells this code to keep 2349 * callers might also have set path->keep_locks, which tells this code to keep
2360 * the lock if the path points to the last slot in the block. This is part of 2350 * the lock if the path points to the last slot in the block. This is part of
2361 * walking through the tree, and selecting the next slot in the higher block. 2351 * walking through the tree, and selecting the next slot in the higher block.
2362 * 2352 *
2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2353 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2364 * if lowest_unlock is 1, level 0 won't be unlocked 2354 * if lowest_unlock is 1, level 0 won't be unlocked
2365 */ 2355 */
2366 static noinline void unlock_up(struct btrfs_path *path, int level, 2356 static noinline void unlock_up(struct btrfs_path *path, int level,
2367 int lowest_unlock, int min_write_lock_level, 2357 int lowest_unlock, int min_write_lock_level,
2368 int *write_lock_level) 2358 int *write_lock_level)
2369 { 2359 {
2370 int i; 2360 int i;
2371 int skip_level = level; 2361 int skip_level = level;
2372 int no_skips = 0; 2362 int no_skips = 0;
2373 struct extent_buffer *t; 2363 struct extent_buffer *t;
2374 2364
2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2365 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376 if (!path->nodes[i]) 2366 if (!path->nodes[i])
2377 break; 2367 break;
2378 if (!path->locks[i]) 2368 if (!path->locks[i])
2379 break; 2369 break;
2380 if (!no_skips && path->slots[i] == 0) { 2370 if (!no_skips && path->slots[i] == 0) {
2381 skip_level = i + 1; 2371 skip_level = i + 1;
2382 continue; 2372 continue;
2383 } 2373 }
2384 if (!no_skips && path->keep_locks) { 2374 if (!no_skips && path->keep_locks) {
2385 u32 nritems; 2375 u32 nritems;
2386 t = path->nodes[i]; 2376 t = path->nodes[i];
2387 nritems = btrfs_header_nritems(t); 2377 nritems = btrfs_header_nritems(t);
2388 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2378 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2389 skip_level = i + 1; 2379 skip_level = i + 1;
2390 continue; 2380 continue;
2391 } 2381 }
2392 } 2382 }
2393 if (skip_level < i && i >= lowest_unlock) 2383 if (skip_level < i && i >= lowest_unlock)
2394 no_skips = 1; 2384 no_skips = 1;
2395 2385
2396 t = path->nodes[i]; 2386 t = path->nodes[i];
2397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2387 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2398 btrfs_tree_unlock_rw(t, path->locks[i]); 2388 btrfs_tree_unlock_rw(t, path->locks[i]);
2399 path->locks[i] = 0; 2389 path->locks[i] = 0;
2400 if (write_lock_level && 2390 if (write_lock_level &&
2401 i > min_write_lock_level && 2391 i > min_write_lock_level &&
2402 i <= *write_lock_level) { 2392 i <= *write_lock_level) {
2403 *write_lock_level = i - 1; 2393 *write_lock_level = i - 1;
2404 } 2394 }
2405 } 2395 }
2406 } 2396 }
2407 } 2397 }
2408 2398
2409 /* 2399 /*
2410 * This releases any locks held in the path starting at level and 2400 * This releases any locks held in the path starting at level and
2411 * going all the way up to the root. 2401 * going all the way up to the root.
2412 * 2402 *
2413 * btrfs_search_slot will keep the lock held on higher nodes in a few 2403 * btrfs_search_slot will keep the lock held on higher nodes in a few
2414 * corner cases, such as COW of the block at slot zero in the node. This 2404 * corner cases, such as COW of the block at slot zero in the node. This
2415 * ignores those rules, and it should only be called when there are no 2405 * ignores those rules, and it should only be called when there are no
2416 * more updates to be done higher up in the tree. 2406 * more updates to be done higher up in the tree.
2417 */ 2407 */
2418 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2408 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2419 { 2409 {
2420 int i; 2410 int i;
2421 2411
2422 if (path->keep_locks) 2412 if (path->keep_locks)
2423 return; 2413 return;
2424 2414
2425 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2415 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2426 if (!path->nodes[i]) 2416 if (!path->nodes[i])
2427 continue; 2417 continue;
2428 if (!path->locks[i]) 2418 if (!path->locks[i])
2429 continue; 2419 continue;
2430 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2420 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2431 path->locks[i] = 0; 2421 path->locks[i] = 0;
2432 } 2422 }
2433 } 2423 }
2434 2424
2435 /* 2425 /*
2436 * helper function for btrfs_search_slot. The goal is to find a block 2426 * helper function for btrfs_search_slot. The goal is to find a block
2437 * in cache without setting the path to blocking. If we find the block 2427 * in cache without setting the path to blocking. If we find the block
2438 * we return zero and the path is unchanged. 2428 * we return zero and the path is unchanged.
2439 * 2429 *
2440 * If we can't find the block, we set the path blocking and do some 2430 * If we can't find the block, we set the path blocking and do some
2441 * reada. -EAGAIN is returned and the search must be repeated. 2431 * reada. -EAGAIN is returned and the search must be repeated.
2442 */ 2432 */
2443 static int 2433 static int
2444 read_block_for_search(struct btrfs_trans_handle *trans, 2434 read_block_for_search(struct btrfs_trans_handle *trans,
2445 struct btrfs_root *root, struct btrfs_path *p, 2435 struct btrfs_root *root, struct btrfs_path *p,
2446 struct extent_buffer **eb_ret, int level, int slot, 2436 struct extent_buffer **eb_ret, int level, int slot,
2447 struct btrfs_key *key, u64 time_seq) 2437 struct btrfs_key *key, u64 time_seq)
2448 { 2438 {
2449 u64 blocknr; 2439 u64 blocknr;
2450 u64 gen; 2440 u64 gen;
2451 struct extent_buffer *b = *eb_ret; 2441 struct extent_buffer *b = *eb_ret;
2452 struct extent_buffer *tmp; 2442 struct extent_buffer *tmp;
2453 int ret; 2443 int ret;
2454 2444
2455 blocknr = btrfs_node_blockptr(b, slot); 2445 blocknr = btrfs_node_blockptr(b, slot);
2456 gen = btrfs_node_ptr_generation(b, slot); 2446 gen = btrfs_node_ptr_generation(b, slot);
2457 2447
2458 tmp = btrfs_find_tree_block(root, blocknr); 2448 tmp = btrfs_find_tree_block(root, blocknr);
2459 if (tmp) { 2449 if (tmp) {
2460 /* first we do an atomic uptodate check */ 2450 /* first we do an atomic uptodate check */
2461 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2451 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2462 *eb_ret = tmp; 2452 *eb_ret = tmp;
2463 return 0; 2453 return 0;
2464 } 2454 }
2465 2455
2466 /* the pages were up to date, but we failed 2456 /* the pages were up to date, but we failed
2467 * the generation number check. Do a full 2457 * the generation number check. Do a full
2468 * read for the generation number that is correct. 2458 * read for the generation number that is correct.
2469 * We must do this without dropping locks so 2459 * We must do this without dropping locks so
2470 * we can trust our generation number 2460 * we can trust our generation number
2471 */ 2461 */
2472 btrfs_set_path_blocking(p); 2462 btrfs_set_path_blocking(p);
2473 2463
2474 /* now we're allowed to do a blocking uptodate check */ 2464 /* now we're allowed to do a blocking uptodate check */
2475 ret = btrfs_read_buffer(tmp, gen); 2465 ret = btrfs_read_buffer(tmp, gen);
2476 if (!ret) { 2466 if (!ret) {
2477 *eb_ret = tmp; 2467 *eb_ret = tmp;
2478 return 0; 2468 return 0;
2479 } 2469 }
2480 free_extent_buffer(tmp); 2470 free_extent_buffer(tmp);
2481 btrfs_release_path(p); 2471 btrfs_release_path(p);
2482 return -EIO; 2472 return -EIO;
2483 } 2473 }
2484 2474
2485 /* 2475 /*
2486 * reduce lock contention at high levels 2476 * reduce lock contention at high levels
2487 * of the btree by dropping locks before 2477 * of the btree by dropping locks before
2488 * we read. Don't release the lock on the current 2478 * we read. Don't release the lock on the current
2489 * level because we need to walk this node to figure 2479 * level because we need to walk this node to figure
2490 * out which blocks to read. 2480 * out which blocks to read.
2491 */ 2481 */
2492 btrfs_unlock_up_safe(p, level + 1); 2482 btrfs_unlock_up_safe(p, level + 1);
2493 btrfs_set_path_blocking(p); 2483 btrfs_set_path_blocking(p);
2494 2484
2495 free_extent_buffer(tmp); 2485 free_extent_buffer(tmp);
2496 if (p->reada) 2486 if (p->reada)
2497 reada_for_search(root, p, level, slot, key->objectid); 2487 reada_for_search(root, p, level, slot, key->objectid);
2498 2488
2499 btrfs_release_path(p); 2489 btrfs_release_path(p);
2500 2490
2501 ret = -EAGAIN; 2491 ret = -EAGAIN;
2502 tmp = read_tree_block(root, blocknr, 0); 2492 tmp = read_tree_block(root, blocknr, 0);
2503 if (tmp) { 2493 if (tmp) {
2504 /* 2494 /*
2505 * If the read above didn't mark this buffer up to date, 2495 * If the read above didn't mark this buffer up to date,
2506 * it will never end up being up to date. Set ret to EIO now 2496 * it will never end up being up to date. Set ret to EIO now
2507 * and give up so that our caller doesn't loop forever 2497 * and give up so that our caller doesn't loop forever
2508 * on our EAGAINs. 2498 * on our EAGAINs.
2509 */ 2499 */
2510 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2500 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2511 ret = -EIO; 2501 ret = -EIO;
2512 free_extent_buffer(tmp); 2502 free_extent_buffer(tmp);
2513 } 2503 }
2514 return ret; 2504 return ret;
2515 } 2505 }
2516 2506
2517 /* 2507 /*
2518 * helper function for btrfs_search_slot. This does all of the checks 2508 * helper function for btrfs_search_slot. This does all of the checks
2519 * for node-level blocks and does any balancing required based on 2509 * for node-level blocks and does any balancing required based on
2520 * the ins_len. 2510 * the ins_len.
2521 * 2511 *
2522 * If no extra work was required, zero is returned. If we had to 2512 * If no extra work was required, zero is returned. If we had to
2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2513 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524 * start over 2514 * start over
2525 */ 2515 */
2526 static int 2516 static int
2527 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2517 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2528 struct btrfs_root *root, struct btrfs_path *p, 2518 struct btrfs_root *root, struct btrfs_path *p,
2529 struct extent_buffer *b, int level, int ins_len, 2519 struct extent_buffer *b, int level, int ins_len,
2530 int *write_lock_level) 2520 int *write_lock_level)
2531 { 2521 {
2532 int ret; 2522 int ret;
2533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2523 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2534 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2524 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2535 int sret; 2525 int sret;
2536 2526
2537 if (*write_lock_level < level + 1) { 2527 if (*write_lock_level < level + 1) {
2538 *write_lock_level = level + 1; 2528 *write_lock_level = level + 1;
2539 btrfs_release_path(p); 2529 btrfs_release_path(p);
2540 goto again; 2530 goto again;
2541 } 2531 }
2542 2532
2543 btrfs_set_path_blocking(p); 2533 btrfs_set_path_blocking(p);
2544 reada_for_balance(root, p, level); 2534 reada_for_balance(root, p, level);
2545 sret = split_node(trans, root, p, level); 2535 sret = split_node(trans, root, p, level);
2546 btrfs_clear_path_blocking(p, NULL, 0); 2536 btrfs_clear_path_blocking(p, NULL, 0);
2547 2537
2548 BUG_ON(sret > 0); 2538 BUG_ON(sret > 0);
2549 if (sret) { 2539 if (sret) {
2550 ret = sret; 2540 ret = sret;
2551 goto done; 2541 goto done;
2552 } 2542 }
2553 b = p->nodes[level]; 2543 b = p->nodes[level];
2554 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2544 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2555 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2545 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2556 int sret; 2546 int sret;
2557 2547
2558 if (*write_lock_level < level + 1) { 2548 if (*write_lock_level < level + 1) {
2559 *write_lock_level = level + 1; 2549 *write_lock_level = level + 1;
2560 btrfs_release_path(p); 2550 btrfs_release_path(p);
2561 goto again; 2551 goto again;
2562 } 2552 }
2563 2553
2564 btrfs_set_path_blocking(p); 2554 btrfs_set_path_blocking(p);
2565 reada_for_balance(root, p, level); 2555 reada_for_balance(root, p, level);
2566 sret = balance_level(trans, root, p, level); 2556 sret = balance_level(trans, root, p, level);
2567 btrfs_clear_path_blocking(p, NULL, 0); 2557 btrfs_clear_path_blocking(p, NULL, 0);
2568 2558
2569 if (sret) { 2559 if (sret) {
2570 ret = sret; 2560 ret = sret;
2571 goto done; 2561 goto done;
2572 } 2562 }
2573 b = p->nodes[level]; 2563 b = p->nodes[level];
2574 if (!b) { 2564 if (!b) {
2575 btrfs_release_path(p); 2565 btrfs_release_path(p);
2576 goto again; 2566 goto again;
2577 } 2567 }
2578 BUG_ON(btrfs_header_nritems(b) == 1); 2568 BUG_ON(btrfs_header_nritems(b) == 1);
2579 } 2569 }
2580 return 0; 2570 return 0;
2581 2571
2582 again: 2572 again:
2583 ret = -EAGAIN; 2573 ret = -EAGAIN;
2584 done: 2574 done:
2585 return ret; 2575 return ret;
2586 } 2576 }
2587 2577
2588 static void key_search_validate(struct extent_buffer *b, 2578 static void key_search_validate(struct extent_buffer *b,
2589 struct btrfs_key *key, 2579 struct btrfs_key *key,
2590 int level) 2580 int level)
2591 { 2581 {
2592 #ifdef CONFIG_BTRFS_ASSERT 2582 #ifdef CONFIG_BTRFS_ASSERT
2593 struct btrfs_disk_key disk_key; 2583 struct btrfs_disk_key disk_key;
2594 2584
2595 btrfs_cpu_key_to_disk(&disk_key, key); 2585 btrfs_cpu_key_to_disk(&disk_key, key);
2596 2586
2597 if (level == 0) 2587 if (level == 0)
2598 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2588 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2599 offsetof(struct btrfs_leaf, items[0].key), 2589 offsetof(struct btrfs_leaf, items[0].key),
2600 sizeof(disk_key))); 2590 sizeof(disk_key)));
2601 else 2591 else
2602 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2592 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603 offsetof(struct btrfs_node, ptrs[0].key), 2593 offsetof(struct btrfs_node, ptrs[0].key),
2604 sizeof(disk_key))); 2594 sizeof(disk_key)));
2605 #endif 2595 #endif
2606 } 2596 }
2607 2597
2608 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2598 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2609 int level, int *prev_cmp, int *slot) 2599 int level, int *prev_cmp, int *slot)
2610 { 2600 {
2611 if (*prev_cmp != 0) { 2601 if (*prev_cmp != 0) {
2612 *prev_cmp = bin_search(b, key, level, slot); 2602 *prev_cmp = bin_search(b, key, level, slot);
2613 return *prev_cmp; 2603 return *prev_cmp;
2614 } 2604 }
2615 2605
2616 key_search_validate(b, key, level); 2606 key_search_validate(b, key, level);
2617 *slot = 0; 2607 *slot = 0;
2618 2608
2619 return 0; 2609 return 0;
2620 } 2610 }
2621 2611
2622 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, 2612 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2623 u64 iobjectid, u64 ioff, u8 key_type, 2613 u64 iobjectid, u64 ioff, u8 key_type,
2624 struct btrfs_key *found_key) 2614 struct btrfs_key *found_key)
2625 { 2615 {
2626 int ret; 2616 int ret;
2627 struct btrfs_key key; 2617 struct btrfs_key key;
2628 struct extent_buffer *eb; 2618 struct extent_buffer *eb;
2629 struct btrfs_path *path; 2619 struct btrfs_path *path;
2630 2620
2631 key.type = key_type; 2621 key.type = key_type;
2632 key.objectid = iobjectid; 2622 key.objectid = iobjectid;
2633 key.offset = ioff; 2623 key.offset = ioff;
2634 2624
2635 if (found_path == NULL) { 2625 if (found_path == NULL) {
2636 path = btrfs_alloc_path(); 2626 path = btrfs_alloc_path();
2637 if (!path) 2627 if (!path)
2638 return -ENOMEM; 2628 return -ENOMEM;
2639 } else 2629 } else
2640 path = found_path; 2630 path = found_path;
2641 2631
2642 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2632 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2643 if ((ret < 0) || (found_key == NULL)) { 2633 if ((ret < 0) || (found_key == NULL)) {
2644 if (path != found_path) 2634 if (path != found_path)
2645 btrfs_free_path(path); 2635 btrfs_free_path(path);
2646 return ret; 2636 return ret;
2647 } 2637 }
2648 2638
2649 eb = path->nodes[0]; 2639 eb = path->nodes[0];
2650 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2640 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2651 ret = btrfs_next_leaf(fs_root, path); 2641 ret = btrfs_next_leaf(fs_root, path);
2652 if (ret) 2642 if (ret)
2653 return ret; 2643 return ret;
2654 eb = path->nodes[0]; 2644 eb = path->nodes[0];
2655 } 2645 }
2656 2646
2657 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2647 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2658 if (found_key->type != key.type || 2648 if (found_key->type != key.type ||
2659 found_key->objectid != key.objectid) 2649 found_key->objectid != key.objectid)
2660 return 1; 2650 return 1;
2661 2651
2662 return 0; 2652 return 0;
2663 } 2653 }
2664 2654
2665 /* 2655 /*
2666 * look for key in the tree. path is filled in with nodes along the way 2656 * look for key in the tree. path is filled in with nodes along the way
2667 * if key is found, we return zero and you can find the item in the leaf 2657 * if key is found, we return zero and you can find the item in the leaf
2668 * level of the path (level 0) 2658 * level of the path (level 0)
2669 * 2659 *
2670 * If the key isn't found, the path points to the slot where it should 2660 * If the key isn't found, the path points to the slot where it should
2671 * be inserted, and 1 is returned. If there are other errors during the 2661 * be inserted, and 1 is returned. If there are other errors during the
2672 * search a negative error number is returned. 2662 * search a negative error number is returned.
2673 * 2663 *
2674 * if ins_len > 0, nodes and leaves will be split as we walk down the 2664 * if ins_len > 0, nodes and leaves will be split as we walk down the
2675 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2665 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2676 * possible) 2666 * possible)
2677 */ 2667 */
2678 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2679 *root, struct btrfs_key *key, struct btrfs_path *p, int 2669 *root, struct btrfs_key *key, struct btrfs_path *p, int
2680 ins_len, int cow) 2670 ins_len, int cow)
2681 { 2671 {
2682 struct extent_buffer *b; 2672 struct extent_buffer *b;
2683 int slot; 2673 int slot;
2684 int ret; 2674 int ret;
2685 int err; 2675 int err;
2686 int level; 2676 int level;
2687 int lowest_unlock = 1; 2677 int lowest_unlock = 1;
2688 int root_lock; 2678 int root_lock;
2689 /* everything at write_lock_level or lower must be write locked */ 2679 /* everything at write_lock_level or lower must be write locked */
2690 int write_lock_level = 0; 2680 int write_lock_level = 0;
2691 u8 lowest_level = 0; 2681 u8 lowest_level = 0;
2692 int min_write_lock_level; 2682 int min_write_lock_level;
2693 int prev_cmp; 2683 int prev_cmp;
2694 2684
2695 lowest_level = p->lowest_level; 2685 lowest_level = p->lowest_level;
2696 WARN_ON(lowest_level && ins_len > 0); 2686 WARN_ON(lowest_level && ins_len > 0);
2697 WARN_ON(p->nodes[0] != NULL); 2687 WARN_ON(p->nodes[0] != NULL);
2698 BUG_ON(!cow && ins_len); 2688 BUG_ON(!cow && ins_len);
2699 2689
2700 if (ins_len < 0) { 2690 if (ins_len < 0) {
2701 lowest_unlock = 2; 2691 lowest_unlock = 2;
2702 2692
2703 /* when we are removing items, we might have to go up to level 2693 /* when we are removing items, we might have to go up to level
2704 * two as we update tree pointers Make sure we keep write 2694 * two as we update tree pointers Make sure we keep write
2705 * for those levels as well 2695 * for those levels as well
2706 */ 2696 */
2707 write_lock_level = 2; 2697 write_lock_level = 2;
2708 } else if (ins_len > 0) { 2698 } else if (ins_len > 0) {
2709 /* 2699 /*
2710 * for inserting items, make sure we have a write lock on 2700 * for inserting items, make sure we have a write lock on
2711 * level 1 so we can update keys 2701 * level 1 so we can update keys
2712 */ 2702 */
2713 write_lock_level = 1; 2703 write_lock_level = 1;
2714 } 2704 }
2715 2705
2716 if (!cow) 2706 if (!cow)
2717 write_lock_level = -1; 2707 write_lock_level = -1;
2718 2708
2719 if (cow && (p->keep_locks || p->lowest_level)) 2709 if (cow && (p->keep_locks || p->lowest_level))
2720 write_lock_level = BTRFS_MAX_LEVEL; 2710 write_lock_level = BTRFS_MAX_LEVEL;
2721 2711
2722 min_write_lock_level = write_lock_level; 2712 min_write_lock_level = write_lock_level;
2723 2713
2724 again: 2714 again:
2725 prev_cmp = -1; 2715 prev_cmp = -1;
2726 /* 2716 /*
2727 * we try very hard to do read locks on the root 2717 * we try very hard to do read locks on the root
2728 */ 2718 */
2729 root_lock = BTRFS_READ_LOCK; 2719 root_lock = BTRFS_READ_LOCK;
2730 level = 0; 2720 level = 0;
2731 if (p->search_commit_root) { 2721 if (p->search_commit_root) {
2732 /* 2722 /*
2733 * the commit roots are read only 2723 * the commit roots are read only
2734 * so we always do read locks 2724 * so we always do read locks
2735 */ 2725 */
2736 if (p->need_commit_sem) 2726 if (p->need_commit_sem)
2737 down_read(&root->fs_info->commit_root_sem); 2727 down_read(&root->fs_info->commit_root_sem);
2738 b = root->commit_root; 2728 b = root->commit_root;
2739 extent_buffer_get(b); 2729 extent_buffer_get(b);
2740 level = btrfs_header_level(b); 2730 level = btrfs_header_level(b);
2741 if (p->need_commit_sem) 2731 if (p->need_commit_sem)
2742 up_read(&root->fs_info->commit_root_sem); 2732 up_read(&root->fs_info->commit_root_sem);
2743 if (!p->skip_locking) 2733 if (!p->skip_locking)
2744 btrfs_tree_read_lock(b); 2734 btrfs_tree_read_lock(b);
2745 } else { 2735 } else {
2746 if (p->skip_locking) { 2736 if (p->skip_locking) {
2747 b = btrfs_root_node(root); 2737 b = btrfs_root_node(root);
2748 level = btrfs_header_level(b); 2738 level = btrfs_header_level(b);
2749 } else { 2739 } else {
2750 /* we don't know the level of the root node 2740 /* we don't know the level of the root node
2751 * until we actually have it read locked 2741 * until we actually have it read locked
2752 */ 2742 */
2753 b = btrfs_read_lock_root_node(root); 2743 b = btrfs_read_lock_root_node(root);
2754 level = btrfs_header_level(b); 2744 level = btrfs_header_level(b);
2755 if (level <= write_lock_level) { 2745 if (level <= write_lock_level) {
2756 /* whoops, must trade for write lock */ 2746 /* whoops, must trade for write lock */
2757 btrfs_tree_read_unlock(b); 2747 btrfs_tree_read_unlock(b);
2758 free_extent_buffer(b); 2748 free_extent_buffer(b);
2759 b = btrfs_lock_root_node(root); 2749 b = btrfs_lock_root_node(root);
2760 root_lock = BTRFS_WRITE_LOCK; 2750 root_lock = BTRFS_WRITE_LOCK;
2761 2751
2762 /* the level might have changed, check again */ 2752 /* the level might have changed, check again */
2763 level = btrfs_header_level(b); 2753 level = btrfs_header_level(b);
2764 } 2754 }
2765 } 2755 }
2766 } 2756 }
2767 p->nodes[level] = b; 2757 p->nodes[level] = b;
2768 if (!p->skip_locking) 2758 if (!p->skip_locking)
2769 p->locks[level] = root_lock; 2759 p->locks[level] = root_lock;
2770 2760
2771 while (b) { 2761 while (b) {
2772 level = btrfs_header_level(b); 2762 level = btrfs_header_level(b);
2773 2763
2774 /* 2764 /*
2775 * setup the path here so we can release it under lock 2765 * setup the path here so we can release it under lock
2776 * contention with the cow code 2766 * contention with the cow code
2777 */ 2767 */
2778 if (cow) { 2768 if (cow) {
2779 /* 2769 /*
2780 * if we don't really need to cow this block 2770 * if we don't really need to cow this block
2781 * then we don't want to set the path blocking, 2771 * then we don't want to set the path blocking,
2782 * so we test it here 2772 * so we test it here
2783 */ 2773 */
2784 if (!should_cow_block(trans, root, b)) 2774 if (!should_cow_block(trans, root, b))
2785 goto cow_done; 2775 goto cow_done;
2786 2776
2787 /* 2777 /*
2788 * must have write locks on this node and the 2778 * must have write locks on this node and the
2789 * parent 2779 * parent
2790 */ 2780 */
2791 if (level > write_lock_level || 2781 if (level > write_lock_level ||
2792 (level + 1 > write_lock_level && 2782 (level + 1 > write_lock_level &&
2793 level + 1 < BTRFS_MAX_LEVEL && 2783 level + 1 < BTRFS_MAX_LEVEL &&
2794 p->nodes[level + 1])) { 2784 p->nodes[level + 1])) {
2795 write_lock_level = level + 1; 2785 write_lock_level = level + 1;
2796 btrfs_release_path(p); 2786 btrfs_release_path(p);
2797 goto again; 2787 goto again;
2798 } 2788 }
2799 2789
2800 btrfs_set_path_blocking(p); 2790 btrfs_set_path_blocking(p);
2801 err = btrfs_cow_block(trans, root, b, 2791 err = btrfs_cow_block(trans, root, b,
2802 p->nodes[level + 1], 2792 p->nodes[level + 1],
2803 p->slots[level + 1], &b); 2793 p->slots[level + 1], &b);
2804 if (err) { 2794 if (err) {
2805 ret = err; 2795 ret = err;
2806 goto done; 2796 goto done;
2807 } 2797 }
2808 } 2798 }
2809 cow_done: 2799 cow_done:
2810 p->nodes[level] = b; 2800 p->nodes[level] = b;
2811 btrfs_clear_path_blocking(p, NULL, 0); 2801 btrfs_clear_path_blocking(p, NULL, 0);
2812 2802
2813 /* 2803 /*
2814 * we have a lock on b and as long as we aren't changing 2804 * we have a lock on b and as long as we aren't changing
2815 * the tree, there is no way to for the items in b to change. 2805 * the tree, there is no way to for the items in b to change.
2816 * It is safe to drop the lock on our parent before we 2806 * It is safe to drop the lock on our parent before we
2817 * go through the expensive btree search on b. 2807 * go through the expensive btree search on b.
2818 * 2808 *
2819 * If we're inserting or deleting (ins_len != 0), then we might 2809 * If we're inserting or deleting (ins_len != 0), then we might
2820 * be changing slot zero, which may require changing the parent. 2810 * be changing slot zero, which may require changing the parent.
2821 * So, we can't drop the lock until after we know which slot 2811 * So, we can't drop the lock until after we know which slot
2822 * we're operating on. 2812 * we're operating on.
2823 */ 2813 */
2824 if (!ins_len && !p->keep_locks) { 2814 if (!ins_len && !p->keep_locks) {
2825 int u = level + 1; 2815 int u = level + 1;
2826 2816
2827 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2817 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2828 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2818 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2829 p->locks[u] = 0; 2819 p->locks[u] = 0;
2830 } 2820 }
2831 } 2821 }
2832 2822
2833 ret = key_search(b, key, level, &prev_cmp, &slot); 2823 ret = key_search(b, key, level, &prev_cmp, &slot);
2834 2824
2835 if (level != 0) { 2825 if (level != 0) {
2836 int dec = 0; 2826 int dec = 0;
2837 if (ret && slot > 0) { 2827 if (ret && slot > 0) {
2838 dec = 1; 2828 dec = 1;
2839 slot -= 1; 2829 slot -= 1;
2840 } 2830 }
2841 p->slots[level] = slot; 2831 p->slots[level] = slot;
2842 err = setup_nodes_for_search(trans, root, p, b, level, 2832 err = setup_nodes_for_search(trans, root, p, b, level,
2843 ins_len, &write_lock_level); 2833 ins_len, &write_lock_level);
2844 if (err == -EAGAIN) 2834 if (err == -EAGAIN)
2845 goto again; 2835 goto again;
2846 if (err) { 2836 if (err) {
2847 ret = err; 2837 ret = err;
2848 goto done; 2838 goto done;
2849 } 2839 }
2850 b = p->nodes[level]; 2840 b = p->nodes[level];
2851 slot = p->slots[level]; 2841 slot = p->slots[level];
2852 2842
2853 /* 2843 /*
2854 * slot 0 is special, if we change the key 2844 * slot 0 is special, if we change the key
2855 * we have to update the parent pointer 2845 * we have to update the parent pointer
2856 * which means we must have a write lock 2846 * which means we must have a write lock
2857 * on the parent 2847 * on the parent
2858 */ 2848 */
2859 if (slot == 0 && ins_len && 2849 if (slot == 0 && ins_len &&
2860 write_lock_level < level + 1) { 2850 write_lock_level < level + 1) {
2861 write_lock_level = level + 1; 2851 write_lock_level = level + 1;
2862 btrfs_release_path(p); 2852 btrfs_release_path(p);
2863 goto again; 2853 goto again;
2864 } 2854 }
2865 2855
2866 unlock_up(p, level, lowest_unlock, 2856 unlock_up(p, level, lowest_unlock,
2867 min_write_lock_level, &write_lock_level); 2857 min_write_lock_level, &write_lock_level);
2868 2858
2869 if (level == lowest_level) { 2859 if (level == lowest_level) {
2870 if (dec) 2860 if (dec)
2871 p->slots[level]++; 2861 p->slots[level]++;
2872 goto done; 2862 goto done;
2873 } 2863 }
2874 2864
2875 err = read_block_for_search(trans, root, p, 2865 err = read_block_for_search(trans, root, p,
2876 &b, level, slot, key, 0); 2866 &b, level, slot, key, 0);
2877 if (err == -EAGAIN) 2867 if (err == -EAGAIN)
2878 goto again; 2868 goto again;
2879 if (err) { 2869 if (err) {
2880 ret = err; 2870 ret = err;
2881 goto done; 2871 goto done;
2882 } 2872 }
2883 2873
2884 if (!p->skip_locking) { 2874 if (!p->skip_locking) {
2885 level = btrfs_header_level(b); 2875 level = btrfs_header_level(b);
2886 if (level <= write_lock_level) { 2876 if (level <= write_lock_level) {
2887 err = btrfs_try_tree_write_lock(b); 2877 err = btrfs_try_tree_write_lock(b);
2888 if (!err) { 2878 if (!err) {
2889 btrfs_set_path_blocking(p); 2879 btrfs_set_path_blocking(p);
2890 btrfs_tree_lock(b); 2880 btrfs_tree_lock(b);
2891 btrfs_clear_path_blocking(p, b, 2881 btrfs_clear_path_blocking(p, b,
2892 BTRFS_WRITE_LOCK); 2882 BTRFS_WRITE_LOCK);
2893 } 2883 }
2894 p->locks[level] = BTRFS_WRITE_LOCK; 2884 p->locks[level] = BTRFS_WRITE_LOCK;
2895 } else { 2885 } else {
2896 err = btrfs_try_tree_read_lock(b); 2886 err = btrfs_tree_read_lock_atomic(b);
2897 if (!err) { 2887 if (!err) {
2898 btrfs_set_path_blocking(p); 2888 btrfs_set_path_blocking(p);
2899 btrfs_tree_read_lock(b); 2889 btrfs_tree_read_lock(b);
2900 btrfs_clear_path_blocking(p, b, 2890 btrfs_clear_path_blocking(p, b,
2901 BTRFS_READ_LOCK); 2891 BTRFS_READ_LOCK);
2902 } 2892 }
2903 p->locks[level] = BTRFS_READ_LOCK; 2893 p->locks[level] = BTRFS_READ_LOCK;
2904 } 2894 }
2905 p->nodes[level] = b; 2895 p->nodes[level] = b;
2906 } 2896 }
2907 } else { 2897 } else {
2908 p->slots[level] = slot; 2898 p->slots[level] = slot;
2909 if (ins_len > 0 && 2899 if (ins_len > 0 &&
2910 btrfs_leaf_free_space(root, b) < ins_len) { 2900 btrfs_leaf_free_space(root, b) < ins_len) {
2911 if (write_lock_level < 1) { 2901 if (write_lock_level < 1) {
2912 write_lock_level = 1; 2902 write_lock_level = 1;
2913 btrfs_release_path(p); 2903 btrfs_release_path(p);
2914 goto again; 2904 goto again;
2915 } 2905 }
2916 2906
2917 btrfs_set_path_blocking(p); 2907 btrfs_set_path_blocking(p);
2918 err = split_leaf(trans, root, key, 2908 err = split_leaf(trans, root, key,
2919 p, ins_len, ret == 0); 2909 p, ins_len, ret == 0);
2920 btrfs_clear_path_blocking(p, NULL, 0); 2910 btrfs_clear_path_blocking(p, NULL, 0);
2921 2911
2922 BUG_ON(err > 0); 2912 BUG_ON(err > 0);
2923 if (err) { 2913 if (err) {
2924 ret = err; 2914 ret = err;
2925 goto done; 2915 goto done;
2926 } 2916 }
2927 } 2917 }
2928 if (!p->search_for_split) 2918 if (!p->search_for_split)
2929 unlock_up(p, level, lowest_unlock, 2919 unlock_up(p, level, lowest_unlock,
2930 min_write_lock_level, &write_lock_level); 2920 min_write_lock_level, &write_lock_level);
2931 goto done; 2921 goto done;
2932 } 2922 }
2933 } 2923 }
2934 ret = 1; 2924 ret = 1;
2935 done: 2925 done:
2936 /* 2926 /*
2937 * we don't really know what they plan on doing with the path 2927 * we don't really know what they plan on doing with the path
2938 * from here on, so for now just mark it as blocking 2928 * from here on, so for now just mark it as blocking
2939 */ 2929 */
2940 if (!p->leave_spinning) 2930 if (!p->leave_spinning)
2941 btrfs_set_path_blocking(p); 2931 btrfs_set_path_blocking(p);
2942 if (ret < 0) 2932 if (ret < 0)
2943 btrfs_release_path(p); 2933 btrfs_release_path(p);
2944 return ret; 2934 return ret;
2945 } 2935 }
2946 2936
2947 /* 2937 /*
2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2938 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2949 * current state of the tree together with the operations recorded in the tree 2939 * current state of the tree together with the operations recorded in the tree
2950 * modification log to search for the key in a previous version of this tree, as 2940 * modification log to search for the key in a previous version of this tree, as
2951 * denoted by the time_seq parameter. 2941 * denoted by the time_seq parameter.
2952 * 2942 *
2953 * Naturally, there is no support for insert, delete or cow operations. 2943 * Naturally, there is no support for insert, delete or cow operations.
2954 * 2944 *
2955 * The resulting path and return value will be set up as if we called 2945 * The resulting path and return value will be set up as if we called
2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2946 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2957 */ 2947 */
2958 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2948 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2959 struct btrfs_path *p, u64 time_seq) 2949 struct btrfs_path *p, u64 time_seq)
2960 { 2950 {
2961 struct extent_buffer *b; 2951 struct extent_buffer *b;
2962 int slot; 2952 int slot;
2963 int ret; 2953 int ret;
2964 int err; 2954 int err;
2965 int level; 2955 int level;
2966 int lowest_unlock = 1; 2956 int lowest_unlock = 1;
2967 u8 lowest_level = 0; 2957 u8 lowest_level = 0;
2968 int prev_cmp = -1; 2958 int prev_cmp = -1;
2969 2959
2970 lowest_level = p->lowest_level; 2960 lowest_level = p->lowest_level;
2971 WARN_ON(p->nodes[0] != NULL); 2961 WARN_ON(p->nodes[0] != NULL);
2972 2962
2973 if (p->search_commit_root) { 2963 if (p->search_commit_root) {
2974 BUG_ON(time_seq); 2964 BUG_ON(time_seq);
2975 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2965 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2976 } 2966 }
2977 2967
2978 again: 2968 again:
2979 b = get_old_root(root, time_seq); 2969 b = get_old_root(root, time_seq);
2980 level = btrfs_header_level(b); 2970 level = btrfs_header_level(b);
2981 p->locks[level] = BTRFS_READ_LOCK; 2971 p->locks[level] = BTRFS_READ_LOCK;
2982 2972
2983 while (b) { 2973 while (b) {
2984 level = btrfs_header_level(b); 2974 level = btrfs_header_level(b);
2985 p->nodes[level] = b; 2975 p->nodes[level] = b;
2986 btrfs_clear_path_blocking(p, NULL, 0); 2976 btrfs_clear_path_blocking(p, NULL, 0);
2987 2977
2988 /* 2978 /*
2989 * we have a lock on b and as long as we aren't changing 2979 * we have a lock on b and as long as we aren't changing
2990 * the tree, there is no way to for the items in b to change. 2980 * the tree, there is no way to for the items in b to change.
2991 * It is safe to drop the lock on our parent before we 2981 * It is safe to drop the lock on our parent before we
2992 * go through the expensive btree search on b. 2982 * go through the expensive btree search on b.
2993 */ 2983 */
2994 btrfs_unlock_up_safe(p, level + 1); 2984 btrfs_unlock_up_safe(p, level + 1);
2995 2985
2996 /* 2986 /*
2997 * Since we can unwind eb's we want to do a real search every 2987 * Since we can unwind eb's we want to do a real search every
2998 * time. 2988 * time.
2999 */ 2989 */
3000 prev_cmp = -1; 2990 prev_cmp = -1;
3001 ret = key_search(b, key, level, &prev_cmp, &slot); 2991 ret = key_search(b, key, level, &prev_cmp, &slot);
3002 2992
3003 if (level != 0) { 2993 if (level != 0) {
3004 int dec = 0; 2994 int dec = 0;
3005 if (ret && slot > 0) { 2995 if (ret && slot > 0) {
3006 dec = 1; 2996 dec = 1;
3007 slot -= 1; 2997 slot -= 1;
3008 } 2998 }
3009 p->slots[level] = slot; 2999 p->slots[level] = slot;
3010 unlock_up(p, level, lowest_unlock, 0, NULL); 3000 unlock_up(p, level, lowest_unlock, 0, NULL);
3011 3001
3012 if (level == lowest_level) { 3002 if (level == lowest_level) {
3013 if (dec) 3003 if (dec)
3014 p->slots[level]++; 3004 p->slots[level]++;
3015 goto done; 3005 goto done;
3016 } 3006 }
3017 3007
3018 err = read_block_for_search(NULL, root, p, &b, level, 3008 err = read_block_for_search(NULL, root, p, &b, level,
3019 slot, key, time_seq); 3009 slot, key, time_seq);
3020 if (err == -EAGAIN) 3010 if (err == -EAGAIN)
3021 goto again; 3011 goto again;
3022 if (err) { 3012 if (err) {
3023 ret = err; 3013 ret = err;
3024 goto done; 3014 goto done;
3025 } 3015 }
3026 3016
3027 level = btrfs_header_level(b); 3017 level = btrfs_header_level(b);
3028 err = btrfs_try_tree_read_lock(b); 3018 err = btrfs_tree_read_lock_atomic(b);
3029 if (!err) { 3019 if (!err) {
3030 btrfs_set_path_blocking(p); 3020 btrfs_set_path_blocking(p);
3031 btrfs_tree_read_lock(b); 3021 btrfs_tree_read_lock(b);
3032 btrfs_clear_path_blocking(p, b, 3022 btrfs_clear_path_blocking(p, b,
3033 BTRFS_READ_LOCK); 3023 BTRFS_READ_LOCK);
3034 } 3024 }
3035 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3025 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3036 if (!b) { 3026 if (!b) {
3037 ret = -ENOMEM; 3027 ret = -ENOMEM;
3038 goto done; 3028 goto done;
3039 } 3029 }
3040 p->locks[level] = BTRFS_READ_LOCK; 3030 p->locks[level] = BTRFS_READ_LOCK;
3041 p->nodes[level] = b; 3031 p->nodes[level] = b;
3042 } else { 3032 } else {
3043 p->slots[level] = slot; 3033 p->slots[level] = slot;
3044 unlock_up(p, level, lowest_unlock, 0, NULL); 3034 unlock_up(p, level, lowest_unlock, 0, NULL);
3045 goto done; 3035 goto done;
3046 } 3036 }
3047 } 3037 }
3048 ret = 1; 3038 ret = 1;
3049 done: 3039 done:
3050 if (!p->leave_spinning) 3040 if (!p->leave_spinning)
3051 btrfs_set_path_blocking(p); 3041 btrfs_set_path_blocking(p);
3052 if (ret < 0) 3042 if (ret < 0)
3053 btrfs_release_path(p); 3043 btrfs_release_path(p);
3054 3044
3055 return ret; 3045 return ret;
3056 } 3046 }
3057 3047
3058 /* 3048 /*
3059 * helper to use instead of search slot if no exact match is needed but 3049 * helper to use instead of search slot if no exact match is needed but
3060 * instead the next or previous item should be returned. 3050 * instead the next or previous item should be returned.
3061 * When find_higher is true, the next higher item is returned, the next lower 3051 * When find_higher is true, the next higher item is returned, the next lower
3062 * otherwise. 3052 * otherwise.
3063 * When return_any and find_higher are both true, and no higher item is found, 3053 * When return_any and find_higher are both true, and no higher item is found,
3064 * return the next lower instead. 3054 * return the next lower instead.
3065 * When return_any is true and find_higher is false, and no lower item is found, 3055 * When return_any is true and find_higher is false, and no lower item is found,
3066 * return the next higher instead. 3056 * return the next higher instead.
3067 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3057 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3068 * < 0 on error 3058 * < 0 on error
3069 */ 3059 */
3070 int btrfs_search_slot_for_read(struct btrfs_root *root, 3060 int btrfs_search_slot_for_read(struct btrfs_root *root,
3071 struct btrfs_key *key, struct btrfs_path *p, 3061 struct btrfs_key *key, struct btrfs_path *p,
3072 int find_higher, int return_any) 3062 int find_higher, int return_any)
3073 { 3063 {
3074 int ret; 3064 int ret;
3075 struct extent_buffer *leaf; 3065 struct extent_buffer *leaf;
3076 3066
3077 again: 3067 again:
3078 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3068 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3079 if (ret <= 0) 3069 if (ret <= 0)
3080 return ret; 3070 return ret;
3081 /* 3071 /*
3082 * a return value of 1 means the path is at the position where the 3072 * a return value of 1 means the path is at the position where the
3083 * item should be inserted. Normally this is the next bigger item, 3073 * item should be inserted. Normally this is the next bigger item,
3084 * but in case the previous item is the last in a leaf, path points 3074 * but in case the previous item is the last in a leaf, path points
3085 * to the first free slot in the previous leaf, i.e. at an invalid 3075 * to the first free slot in the previous leaf, i.e. at an invalid
3086 * item. 3076 * item.
3087 */ 3077 */
3088 leaf = p->nodes[0]; 3078 leaf = p->nodes[0];
3089 3079
3090 if (find_higher) { 3080 if (find_higher) {
3091 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3081 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3092 ret = btrfs_next_leaf(root, p); 3082 ret = btrfs_next_leaf(root, p);
3093 if (ret <= 0) 3083 if (ret <= 0)
3094 return ret; 3084 return ret;
3095 if (!return_any) 3085 if (!return_any)
3096 return 1; 3086 return 1;
3097 /* 3087 /*
3098 * no higher item found, return the next 3088 * no higher item found, return the next
3099 * lower instead 3089 * lower instead
3100 */ 3090 */
3101 return_any = 0; 3091 return_any = 0;
3102 find_higher = 0; 3092 find_higher = 0;
3103 btrfs_release_path(p); 3093 btrfs_release_path(p);
3104 goto again; 3094 goto again;
3105 } 3095 }
3106 } else { 3096 } else {
3107 if (p->slots[0] == 0) { 3097 if (p->slots[0] == 0) {
3108 ret = btrfs_prev_leaf(root, p); 3098 ret = btrfs_prev_leaf(root, p);
3109 if (ret < 0) 3099 if (ret < 0)
3110 return ret; 3100 return ret;
3111 if (!ret) { 3101 if (!ret) {
3112 leaf = p->nodes[0]; 3102 leaf = p->nodes[0];
3113 if (p->slots[0] == btrfs_header_nritems(leaf)) 3103 if (p->slots[0] == btrfs_header_nritems(leaf))
3114 p->slots[0]--; 3104 p->slots[0]--;
3115 return 0; 3105 return 0;
3116 } 3106 }
3117 if (!return_any) 3107 if (!return_any)
3118 return 1; 3108 return 1;
3119 /* 3109 /*
3120 * no lower item found, return the next 3110 * no lower item found, return the next
3121 * higher instead 3111 * higher instead
3122 */ 3112 */
3123 return_any = 0; 3113 return_any = 0;
3124 find_higher = 1; 3114 find_higher = 1;
3125 btrfs_release_path(p); 3115 btrfs_release_path(p);
3126 goto again; 3116 goto again;
3127 } else { 3117 } else {
3128 --p->slots[0]; 3118 --p->slots[0];
3129 } 3119 }
3130 } 3120 }
3131 return 0; 3121 return 0;
3132 } 3122 }
3133 3123
3134 /* 3124 /*
3135 * adjust the pointers going up the tree, starting at level 3125 * adjust the pointers going up the tree, starting at level
3136 * making sure the right key of each node is points to 'key'. 3126 * making sure the right key of each node is points to 'key'.
3137 * This is used after shifting pointers to the left, so it stops 3127 * This is used after shifting pointers to the left, so it stops
3138 * fixing up pointers when a given leaf/node is not in slot 0 of the 3128 * fixing up pointers when a given leaf/node is not in slot 0 of the
3139 * higher levels 3129 * higher levels
3140 * 3130 *
3141 */ 3131 */
3142 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 3132 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3143 struct btrfs_disk_key *key, int level) 3133 struct btrfs_disk_key *key, int level)
3144 { 3134 {
3145 int i; 3135 int i;
3146 struct extent_buffer *t; 3136 struct extent_buffer *t;
3147 3137
3148 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3138 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149 int tslot = path->slots[i]; 3139 int tslot = path->slots[i];
3150 if (!path->nodes[i]) 3140 if (!path->nodes[i])
3151 break; 3141 break;
3152 t = path->nodes[i]; 3142 t = path->nodes[i];
3153 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 3143 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3154 btrfs_set_node_key(t, key, tslot); 3144 btrfs_set_node_key(t, key, tslot);
3155 btrfs_mark_buffer_dirty(path->nodes[i]); 3145 btrfs_mark_buffer_dirty(path->nodes[i]);
3156 if (tslot != 0) 3146 if (tslot != 0)
3157 break; 3147 break;
3158 } 3148 }
3159 } 3149 }
3160 3150
3161 /* 3151 /*
3162 * update item key. 3152 * update item key.
3163 * 3153 *
3164 * This function isn't completely safe. It's the caller's responsibility 3154 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order 3155 * that the new key won't break the order
3166 */ 3156 */
3167 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3157 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3168 struct btrfs_key *new_key) 3158 struct btrfs_key *new_key)
3169 { 3159 {
3170 struct btrfs_disk_key disk_key; 3160 struct btrfs_disk_key disk_key;
3171 struct extent_buffer *eb; 3161 struct extent_buffer *eb;
3172 int slot; 3162 int slot;
3173 3163
3174 eb = path->nodes[0]; 3164 eb = path->nodes[0];
3175 slot = path->slots[0]; 3165 slot = path->slots[0];
3176 if (slot > 0) { 3166 if (slot > 0) {
3177 btrfs_item_key(eb, &disk_key, slot - 1); 3167 btrfs_item_key(eb, &disk_key, slot - 1);
3178 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3168 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3179 } 3169 }
3180 if (slot < btrfs_header_nritems(eb) - 1) { 3170 if (slot < btrfs_header_nritems(eb) - 1) {
3181 btrfs_item_key(eb, &disk_key, slot + 1); 3171 btrfs_item_key(eb, &disk_key, slot + 1);
3182 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3172 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3183 } 3173 }
3184 3174
3185 btrfs_cpu_key_to_disk(&disk_key, new_key); 3175 btrfs_cpu_key_to_disk(&disk_key, new_key);
3186 btrfs_set_item_key(eb, &disk_key, slot); 3176 btrfs_set_item_key(eb, &disk_key, slot);
3187 btrfs_mark_buffer_dirty(eb); 3177 btrfs_mark_buffer_dirty(eb);
3188 if (slot == 0) 3178 if (slot == 0)
3189 fixup_low_keys(root, path, &disk_key, 1); 3179 fixup_low_keys(root, path, &disk_key, 1);
3190 } 3180 }
3191 3181
3192 /* 3182 /*
3193 * try to push data from one node into the next node left in the 3183 * try to push data from one node into the next node left in the
3194 * tree. 3184 * tree.
3195 * 3185 *
3196 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3186 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3197 * error, and > 0 if there was no room in the left hand block. 3187 * error, and > 0 if there was no room in the left hand block.
3198 */ 3188 */
3199 static int push_node_left(struct btrfs_trans_handle *trans, 3189 static int push_node_left(struct btrfs_trans_handle *trans,
3200 struct btrfs_root *root, struct extent_buffer *dst, 3190 struct btrfs_root *root, struct extent_buffer *dst,
3201 struct extent_buffer *src, int empty) 3191 struct extent_buffer *src, int empty)
3202 { 3192 {
3203 int push_items = 0; 3193 int push_items = 0;
3204 int src_nritems; 3194 int src_nritems;
3205 int dst_nritems; 3195 int dst_nritems;
3206 int ret = 0; 3196 int ret = 0;
3207 3197
3208 src_nritems = btrfs_header_nritems(src); 3198 src_nritems = btrfs_header_nritems(src);
3209 dst_nritems = btrfs_header_nritems(dst); 3199 dst_nritems = btrfs_header_nritems(dst);
3210 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3200 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3211 WARN_ON(btrfs_header_generation(src) != trans->transid); 3201 WARN_ON(btrfs_header_generation(src) != trans->transid);
3212 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3202 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3213 3203
3214 if (!empty && src_nritems <= 8) 3204 if (!empty && src_nritems <= 8)
3215 return 1; 3205 return 1;
3216 3206
3217 if (push_items <= 0) 3207 if (push_items <= 0)
3218 return 1; 3208 return 1;
3219 3209
3220 if (empty) { 3210 if (empty) {
3221 push_items = min(src_nritems, push_items); 3211 push_items = min(src_nritems, push_items);
3222 if (push_items < src_nritems) { 3212 if (push_items < src_nritems) {
3223 /* leave at least 8 pointers in the node if 3213 /* leave at least 8 pointers in the node if
3224 * we aren't going to empty it 3214 * we aren't going to empty it
3225 */ 3215 */
3226 if (src_nritems - push_items < 8) { 3216 if (src_nritems - push_items < 8) {
3227 if (push_items <= 8) 3217 if (push_items <= 8)
3228 return 1; 3218 return 1;
3229 push_items -= 8; 3219 push_items -= 8;
3230 } 3220 }
3231 } 3221 }
3232 } else 3222 } else
3233 push_items = min(src_nritems - 8, push_items); 3223 push_items = min(src_nritems - 8, push_items);
3234 3224
3235 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3225 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3236 push_items); 3226 push_items);
3237 if (ret) { 3227 if (ret) {
3238 btrfs_abort_transaction(trans, root, ret); 3228 btrfs_abort_transaction(trans, root, ret);
3239 return ret; 3229 return ret;
3240 } 3230 }
3241 copy_extent_buffer(dst, src, 3231 copy_extent_buffer(dst, src,
3242 btrfs_node_key_ptr_offset(dst_nritems), 3232 btrfs_node_key_ptr_offset(dst_nritems),
3243 btrfs_node_key_ptr_offset(0), 3233 btrfs_node_key_ptr_offset(0),
3244 push_items * sizeof(struct btrfs_key_ptr)); 3234 push_items * sizeof(struct btrfs_key_ptr));
3245 3235
3246 if (push_items < src_nritems) { 3236 if (push_items < src_nritems) {
3247 /* 3237 /*
3248 * don't call tree_mod_log_eb_move here, key removal was already 3238 * don't call tree_mod_log_eb_move here, key removal was already
3249 * fully logged by tree_mod_log_eb_copy above. 3239 * fully logged by tree_mod_log_eb_copy above.
3250 */ 3240 */
3251 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3241 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3252 btrfs_node_key_ptr_offset(push_items), 3242 btrfs_node_key_ptr_offset(push_items),
3253 (src_nritems - push_items) * 3243 (src_nritems - push_items) *
3254 sizeof(struct btrfs_key_ptr)); 3244 sizeof(struct btrfs_key_ptr));
3255 } 3245 }
3256 btrfs_set_header_nritems(src, src_nritems - push_items); 3246 btrfs_set_header_nritems(src, src_nritems - push_items);
3257 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3247 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3258 btrfs_mark_buffer_dirty(src); 3248 btrfs_mark_buffer_dirty(src);
3259 btrfs_mark_buffer_dirty(dst); 3249 btrfs_mark_buffer_dirty(dst);
3260 3250
3261 return ret; 3251 return ret;
3262 } 3252 }
3263 3253
3264 /* 3254 /*
3265 * try to push data from one node into the next node right in the 3255 * try to push data from one node into the next node right in the
3266 * tree. 3256 * tree.
3267 * 3257 *
3268 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3258 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3269 * error, and > 0 if there was no room in the right hand block. 3259 * error, and > 0 if there was no room in the right hand block.
3270 * 3260 *
3271 * this will only push up to 1/2 the contents of the left node over 3261 * this will only push up to 1/2 the contents of the left node over
3272 */ 3262 */
3273 static int balance_node_right(struct btrfs_trans_handle *trans, 3263 static int balance_node_right(struct btrfs_trans_handle *trans,
3274 struct btrfs_root *root, 3264 struct btrfs_root *root,
3275 struct extent_buffer *dst, 3265 struct extent_buffer *dst,
3276 struct extent_buffer *src) 3266 struct extent_buffer *src)
3277 { 3267 {
3278 int push_items = 0; 3268 int push_items = 0;
3279 int max_push; 3269 int max_push;
3280 int src_nritems; 3270 int src_nritems;
3281 int dst_nritems; 3271 int dst_nritems;
3282 int ret = 0; 3272 int ret = 0;
3283 3273
3284 WARN_ON(btrfs_header_generation(src) != trans->transid); 3274 WARN_ON(btrfs_header_generation(src) != trans->transid);
3285 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3275 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3286 3276
3287 src_nritems = btrfs_header_nritems(src); 3277 src_nritems = btrfs_header_nritems(src);
3288 dst_nritems = btrfs_header_nritems(dst); 3278 dst_nritems = btrfs_header_nritems(dst);
3289 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3279 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3290 if (push_items <= 0) 3280 if (push_items <= 0)
3291 return 1; 3281 return 1;
3292 3282
3293 if (src_nritems < 4) 3283 if (src_nritems < 4)
3294 return 1; 3284 return 1;
3295 3285
3296 max_push = src_nritems / 2 + 1; 3286 max_push = src_nritems / 2 + 1;
3297 /* don't try to empty the node */ 3287 /* don't try to empty the node */
3298 if (max_push >= src_nritems) 3288 if (max_push >= src_nritems)
3299 return 1; 3289 return 1;
3300 3290
3301 if (max_push < push_items) 3291 if (max_push < push_items)
3302 push_items = max_push; 3292 push_items = max_push;
3303 3293
3304 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3294 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3305 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3295 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3306 btrfs_node_key_ptr_offset(0), 3296 btrfs_node_key_ptr_offset(0),
3307 (dst_nritems) * 3297 (dst_nritems) *
3308 sizeof(struct btrfs_key_ptr)); 3298 sizeof(struct btrfs_key_ptr));
3309 3299
3310 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3300 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3311 src_nritems - push_items, push_items); 3301 src_nritems - push_items, push_items);
3312 if (ret) { 3302 if (ret) {
3313 btrfs_abort_transaction(trans, root, ret); 3303 btrfs_abort_transaction(trans, root, ret);
3314 return ret; 3304 return ret;
3315 } 3305 }
3316 copy_extent_buffer(dst, src, 3306 copy_extent_buffer(dst, src,
3317 btrfs_node_key_ptr_offset(0), 3307 btrfs_node_key_ptr_offset(0),
3318 btrfs_node_key_ptr_offset(src_nritems - push_items), 3308 btrfs_node_key_ptr_offset(src_nritems - push_items),
3319 push_items * sizeof(struct btrfs_key_ptr)); 3309 push_items * sizeof(struct btrfs_key_ptr));
3320 3310
3321 btrfs_set_header_nritems(src, src_nritems - push_items); 3311 btrfs_set_header_nritems(src, src_nritems - push_items);
3322 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3312 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3323 3313
3324 btrfs_mark_buffer_dirty(src); 3314 btrfs_mark_buffer_dirty(src);
3325 btrfs_mark_buffer_dirty(dst); 3315 btrfs_mark_buffer_dirty(dst);
3326 3316
3327 return ret; 3317 return ret;
3328 } 3318 }
3329 3319
3330 /* 3320 /*
3331 * helper function to insert a new root level in the tree. 3321 * helper function to insert a new root level in the tree.
3332 * A new node is allocated, and a single item is inserted to 3322 * A new node is allocated, and a single item is inserted to
3333 * point to the existing root 3323 * point to the existing root
3334 * 3324 *
3335 * returns zero on success or < 0 on failure. 3325 * returns zero on success or < 0 on failure.
3336 */ 3326 */
3337 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3327 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3338 struct btrfs_root *root, 3328 struct btrfs_root *root,
3339 struct btrfs_path *path, int level) 3329 struct btrfs_path *path, int level)
3340 { 3330 {
3341 u64 lower_gen; 3331 u64 lower_gen;
3342 struct extent_buffer *lower; 3332 struct extent_buffer *lower;
3343 struct extent_buffer *c; 3333 struct extent_buffer *c;
3344 struct extent_buffer *old; 3334 struct extent_buffer *old;
3345 struct btrfs_disk_key lower_key; 3335 struct btrfs_disk_key lower_key;
3346 3336
3347 BUG_ON(path->nodes[level]); 3337 BUG_ON(path->nodes[level]);
3348 BUG_ON(path->nodes[level-1] != root->node); 3338 BUG_ON(path->nodes[level-1] != root->node);
3349 3339
3350 lower = path->nodes[level-1]; 3340 lower = path->nodes[level-1];
3351 if (level == 1) 3341 if (level == 1)
3352 btrfs_item_key(lower, &lower_key, 0); 3342 btrfs_item_key(lower, &lower_key, 0);
3353 else 3343 else
3354 btrfs_node_key(lower, &lower_key, 0); 3344 btrfs_node_key(lower, &lower_key, 0);
3355 3345
3356 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3346 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3357 &lower_key, level, root->node->start, 0); 3347 &lower_key, level, root->node->start, 0);
3358 if (IS_ERR(c)) 3348 if (IS_ERR(c))
3359 return PTR_ERR(c); 3349 return PTR_ERR(c);
3360 3350
3361 root_add_used(root, root->nodesize); 3351 root_add_used(root, root->nodesize);
3362 3352
3363 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3353 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3364 btrfs_set_header_nritems(c, 1); 3354 btrfs_set_header_nritems(c, 1);
3365 btrfs_set_header_level(c, level); 3355 btrfs_set_header_level(c, level);
3366 btrfs_set_header_bytenr(c, c->start); 3356 btrfs_set_header_bytenr(c, c->start);
3367 btrfs_set_header_generation(c, trans->transid); 3357 btrfs_set_header_generation(c, trans->transid);
3368 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3358 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3369 btrfs_set_header_owner(c, root->root_key.objectid); 3359 btrfs_set_header_owner(c, root->root_key.objectid);
3370 3360
3371 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3361 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3372 BTRFS_FSID_SIZE); 3362 BTRFS_FSID_SIZE);
3373 3363
3374 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3364 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3375 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3365 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3376 3366
3377 btrfs_set_node_key(c, &lower_key, 0); 3367 btrfs_set_node_key(c, &lower_key, 0);
3378 btrfs_set_node_blockptr(c, 0, lower->start); 3368 btrfs_set_node_blockptr(c, 0, lower->start);
3379 lower_gen = btrfs_header_generation(lower); 3369 lower_gen = btrfs_header_generation(lower);
3380 WARN_ON(lower_gen != trans->transid); 3370 WARN_ON(lower_gen != trans->transid);
3381 3371
3382 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3372 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383 3373
3384 btrfs_mark_buffer_dirty(c); 3374 btrfs_mark_buffer_dirty(c);
3385 3375
3386 old = root->node; 3376 old = root->node;
3387 tree_mod_log_set_root_pointer(root, c, 0); 3377 tree_mod_log_set_root_pointer(root, c, 0);
3388 rcu_assign_pointer(root->node, c); 3378 rcu_assign_pointer(root->node, c);
3389 3379
3390 /* the super has an extra ref to root->node */ 3380 /* the super has an extra ref to root->node */
3391 free_extent_buffer(old); 3381 free_extent_buffer(old);
3392 3382
3393 add_root_to_dirty_list(root); 3383 add_root_to_dirty_list(root);
3394 extent_buffer_get(c); 3384 extent_buffer_get(c);
3395 path->nodes[level] = c; 3385 path->nodes[level] = c;
3396 path->locks[level] = BTRFS_WRITE_LOCK; 3386 path->locks[level] = BTRFS_WRITE_LOCK;
3397 path->slots[level] = 0; 3387 path->slots[level] = 0;
3398 return 0; 3388 return 0;
3399 } 3389 }
3400 3390
3401 /* 3391 /*
3402 * worker function to insert a single pointer in a node. 3392 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already 3393 * the node should have enough room for the pointer already
3404 * 3394 *
3405 * slot and level indicate where you want the key to go, and 3395 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to. 3396 * blocknr is the block the key points to.
3407 */ 3397 */
3408 static void insert_ptr(struct btrfs_trans_handle *trans, 3398 static void insert_ptr(struct btrfs_trans_handle *trans,
3409 struct btrfs_root *root, struct btrfs_path *path, 3399 struct btrfs_root *root, struct btrfs_path *path,
3410 struct btrfs_disk_key *key, u64 bytenr, 3400 struct btrfs_disk_key *key, u64 bytenr,
3411 int slot, int level) 3401 int slot, int level)
3412 { 3402 {
3413 struct extent_buffer *lower; 3403 struct extent_buffer *lower;
3414 int nritems; 3404 int nritems;
3415 int ret; 3405 int ret;
3416 3406
3417 BUG_ON(!path->nodes[level]); 3407 BUG_ON(!path->nodes[level]);
3418 btrfs_assert_tree_locked(path->nodes[level]); 3408 btrfs_assert_tree_locked(path->nodes[level]);
3419 lower = path->nodes[level]; 3409 lower = path->nodes[level];
3420 nritems = btrfs_header_nritems(lower); 3410 nritems = btrfs_header_nritems(lower);
3421 BUG_ON(slot > nritems); 3411 BUG_ON(slot > nritems);
3422 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3412 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3423 if (slot != nritems) { 3413 if (slot != nritems) {
3424 if (level) 3414 if (level)
3425 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3415 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3426 slot, nritems - slot); 3416 slot, nritems - slot);
3427 memmove_extent_buffer(lower, 3417 memmove_extent_buffer(lower,
3428 btrfs_node_key_ptr_offset(slot + 1), 3418 btrfs_node_key_ptr_offset(slot + 1),
3429 btrfs_node_key_ptr_offset(slot), 3419 btrfs_node_key_ptr_offset(slot),
3430 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3420 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431 } 3421 }
3432 if (level) { 3422 if (level) {
3433 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3423 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3434 MOD_LOG_KEY_ADD, GFP_NOFS); 3424 MOD_LOG_KEY_ADD, GFP_NOFS);
3435 BUG_ON(ret < 0); 3425 BUG_ON(ret < 0);
3436 } 3426 }
3437 btrfs_set_node_key(lower, key, slot); 3427 btrfs_set_node_key(lower, key, slot);
3438 btrfs_set_node_blockptr(lower, slot, bytenr); 3428 btrfs_set_node_blockptr(lower, slot, bytenr);
3439 WARN_ON(trans->transid == 0); 3429 WARN_ON(trans->transid == 0);
3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3430 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441 btrfs_set_header_nritems(lower, nritems + 1); 3431 btrfs_set_header_nritems(lower, nritems + 1);
3442 btrfs_mark_buffer_dirty(lower); 3432 btrfs_mark_buffer_dirty(lower);
3443 } 3433 }
3444 3434
3445 /* 3435 /*
3446 * split the node at the specified level in path in two. 3436 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split 3437 * The path is corrected to point to the appropriate node after the split
3448 * 3438 *
3449 * Before splitting this tries to make some room in the node by pushing 3439 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away. 3440 * left and right, if either one works, it returns right away.
3451 * 3441 *
3452 * returns 0 on success and < 0 on failure 3442 * returns 0 on success and < 0 on failure
3453 */ 3443 */
3454 static noinline int split_node(struct btrfs_trans_handle *trans, 3444 static noinline int split_node(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root, 3445 struct btrfs_root *root,
3456 struct btrfs_path *path, int level) 3446 struct btrfs_path *path, int level)
3457 { 3447 {
3458 struct extent_buffer *c; 3448 struct extent_buffer *c;
3459 struct extent_buffer *split; 3449 struct extent_buffer *split;
3460 struct btrfs_disk_key disk_key; 3450 struct btrfs_disk_key disk_key;
3461 int mid; 3451 int mid;
3462 int ret; 3452 int ret;
3463 u32 c_nritems; 3453 u32 c_nritems;
3464 3454
3465 c = path->nodes[level]; 3455 c = path->nodes[level];
3466 WARN_ON(btrfs_header_generation(c) != trans->transid); 3456 WARN_ON(btrfs_header_generation(c) != trans->transid);
3467 if (c == root->node) { 3457 if (c == root->node) {
3468 /* 3458 /*
3469 * trying to split the root, lets make a new one 3459 * trying to split the root, lets make a new one
3470 * 3460 *
3471 * tree mod log: We don't log_removal old root in 3461 * tree mod log: We don't log_removal old root in
3472 * insert_new_root, because that root buffer will be kept as a 3462 * insert_new_root, because that root buffer will be kept as a
3473 * normal node. We are going to log removal of half of the 3463 * normal node. We are going to log removal of half of the
3474 * elements below with tree_mod_log_eb_copy. We're holding a 3464 * elements below with tree_mod_log_eb_copy. We're holding a
3475 * tree lock on the buffer, which is why we cannot race with 3465 * tree lock on the buffer, which is why we cannot race with
3476 * other tree_mod_log users. 3466 * other tree_mod_log users.
3477 */ 3467 */
3478 ret = insert_new_root(trans, root, path, level + 1); 3468 ret = insert_new_root(trans, root, path, level + 1);
3479 if (ret) 3469 if (ret)
3480 return ret; 3470 return ret;
3481 } else { 3471 } else {
3482 ret = push_nodes_for_insert(trans, root, path, level); 3472 ret = push_nodes_for_insert(trans, root, path, level);
3483 c = path->nodes[level]; 3473 c = path->nodes[level];
3484 if (!ret && btrfs_header_nritems(c) < 3474 if (!ret && btrfs_header_nritems(c) <
3485 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3475 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3486 return 0; 3476 return 0;
3487 if (ret < 0) 3477 if (ret < 0)
3488 return ret; 3478 return ret;
3489 } 3479 }
3490 3480
3491 c_nritems = btrfs_header_nritems(c); 3481 c_nritems = btrfs_header_nritems(c);
3492 mid = (c_nritems + 1) / 2; 3482 mid = (c_nritems + 1) / 2;
3493 btrfs_node_key(c, &disk_key, mid); 3483 btrfs_node_key(c, &disk_key, mid);
3494 3484
3495 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3485 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3496 &disk_key, level, c->start, 0); 3486 &disk_key, level, c->start, 0);
3497 if (IS_ERR(split)) 3487 if (IS_ERR(split))
3498 return PTR_ERR(split); 3488 return PTR_ERR(split);
3499 3489
3500 root_add_used(root, root->nodesize); 3490 root_add_used(root, root->nodesize);
3501 3491
3502 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3492 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3503 btrfs_set_header_level(split, btrfs_header_level(c)); 3493 btrfs_set_header_level(split, btrfs_header_level(c));
3504 btrfs_set_header_bytenr(split, split->start); 3494 btrfs_set_header_bytenr(split, split->start);
3505 btrfs_set_header_generation(split, trans->transid); 3495 btrfs_set_header_generation(split, trans->transid);
3506 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3496 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3507 btrfs_set_header_owner(split, root->root_key.objectid); 3497 btrfs_set_header_owner(split, root->root_key.objectid);
3508 write_extent_buffer(split, root->fs_info->fsid, 3498 write_extent_buffer(split, root->fs_info->fsid,
3509 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3499 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3510 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3500 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3511 btrfs_header_chunk_tree_uuid(split), 3501 btrfs_header_chunk_tree_uuid(split),
3512 BTRFS_UUID_SIZE); 3502 BTRFS_UUID_SIZE);
3513 3503
3514 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3504 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3515 mid, c_nritems - mid); 3505 mid, c_nritems - mid);
3516 if (ret) { 3506 if (ret) {
3517 btrfs_abort_transaction(trans, root, ret); 3507 btrfs_abort_transaction(trans, root, ret);
3518 return ret; 3508 return ret;
3519 } 3509 }
3520 copy_extent_buffer(split, c, 3510 copy_extent_buffer(split, c,
3521 btrfs_node_key_ptr_offset(0), 3511 btrfs_node_key_ptr_offset(0),
3522 btrfs_node_key_ptr_offset(mid), 3512 btrfs_node_key_ptr_offset(mid),
3523 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3513 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3524 btrfs_set_header_nritems(split, c_nritems - mid); 3514 btrfs_set_header_nritems(split, c_nritems - mid);
3525 btrfs_set_header_nritems(c, mid); 3515 btrfs_set_header_nritems(c, mid);
3526 ret = 0; 3516 ret = 0;
3527 3517
3528 btrfs_mark_buffer_dirty(c); 3518 btrfs_mark_buffer_dirty(c);
3529 btrfs_mark_buffer_dirty(split); 3519 btrfs_mark_buffer_dirty(split);
3530 3520
3531 insert_ptr(trans, root, path, &disk_key, split->start, 3521 insert_ptr(trans, root, path, &disk_key, split->start,
3532 path->slots[level + 1] + 1, level + 1); 3522 path->slots[level + 1] + 1, level + 1);
3533 3523
3534 if (path->slots[level] >= mid) { 3524 if (path->slots[level] >= mid) {
3535 path->slots[level] -= mid; 3525 path->slots[level] -= mid;
3536 btrfs_tree_unlock(c); 3526 btrfs_tree_unlock(c);
3537 free_extent_buffer(c); 3527 free_extent_buffer(c);
3538 path->nodes[level] = split; 3528 path->nodes[level] = split;
3539 path->slots[level + 1] += 1; 3529 path->slots[level + 1] += 1;
3540 } else { 3530 } else {
3541 btrfs_tree_unlock(split); 3531 btrfs_tree_unlock(split);
3542 free_extent_buffer(split); 3532 free_extent_buffer(split);
3543 } 3533 }
3544 return ret; 3534 return ret;
3545 } 3535 }
3546 3536
3547 /* 3537 /*
3548 * how many bytes are required to store the items in a leaf. start 3538 * how many bytes are required to store the items in a leaf. start
3549 * and nr indicate which items in the leaf to check. This totals up the 3539 * and nr indicate which items in the leaf to check. This totals up the
3550 * space used both by the item structs and the item data 3540 * space used both by the item structs and the item data
3551 */ 3541 */
3552 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3542 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3553 { 3543 {
3554 struct btrfs_item *start_item; 3544 struct btrfs_item *start_item;
3555 struct btrfs_item *end_item; 3545 struct btrfs_item *end_item;
3556 struct btrfs_map_token token; 3546 struct btrfs_map_token token;
3557 int data_len; 3547 int data_len;
3558 int nritems = btrfs_header_nritems(l); 3548 int nritems = btrfs_header_nritems(l);
3559 int end = min(nritems, start + nr) - 1; 3549 int end = min(nritems, start + nr) - 1;
3560 3550
3561 if (!nr) 3551 if (!nr)
3562 return 0; 3552 return 0;
3563 btrfs_init_map_token(&token); 3553 btrfs_init_map_token(&token);
3564 start_item = btrfs_item_nr(start); 3554 start_item = btrfs_item_nr(start);
3565 end_item = btrfs_item_nr(end); 3555 end_item = btrfs_item_nr(end);
3566 data_len = btrfs_token_item_offset(l, start_item, &token) + 3556 data_len = btrfs_token_item_offset(l, start_item, &token) +
3567 btrfs_token_item_size(l, start_item, &token); 3557 btrfs_token_item_size(l, start_item, &token);
3568 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3558 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3569 data_len += sizeof(struct btrfs_item) * nr; 3559 data_len += sizeof(struct btrfs_item) * nr;
3570 WARN_ON(data_len < 0); 3560 WARN_ON(data_len < 0);
3571 return data_len; 3561 return data_len;
3572 } 3562 }
3573 3563
3574 /* 3564 /*
3575 * The space between the end of the leaf items and 3565 * The space between the end of the leaf items and
3576 * the start of the leaf data. IOW, how much room 3566 * the start of the leaf data. IOW, how much room
3577 * the leaf has left for both items and data 3567 * the leaf has left for both items and data
3578 */ 3568 */
3579 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3569 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3580 struct extent_buffer *leaf) 3570 struct extent_buffer *leaf)
3581 { 3571 {
3582 int nritems = btrfs_header_nritems(leaf); 3572 int nritems = btrfs_header_nritems(leaf);
3583 int ret; 3573 int ret;
3584 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3574 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3585 if (ret < 0) { 3575 if (ret < 0) {
3586 btrfs_crit(root->fs_info, 3576 btrfs_crit(root->fs_info,
3587 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3577 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3588 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3578 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3589 leaf_space_used(leaf, 0, nritems), nritems); 3579 leaf_space_used(leaf, 0, nritems), nritems);
3590 } 3580 }
3591 return ret; 3581 return ret;
3592 } 3582 }
3593 3583
3594 /* 3584 /*
3595 * min slot controls the lowest index we're willing to push to the 3585 * min slot controls the lowest index we're willing to push to the
3596 * right. We'll push up to and including min_slot, but no lower 3586 * right. We'll push up to and including min_slot, but no lower
3597 */ 3587 */
3598 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3588 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3599 struct btrfs_root *root, 3589 struct btrfs_root *root,
3600 struct btrfs_path *path, 3590 struct btrfs_path *path,
3601 int data_size, int empty, 3591 int data_size, int empty,
3602 struct extent_buffer *right, 3592 struct extent_buffer *right,
3603 int free_space, u32 left_nritems, 3593 int free_space, u32 left_nritems,
3604 u32 min_slot) 3594 u32 min_slot)
3605 { 3595 {
3606 struct extent_buffer *left = path->nodes[0]; 3596 struct extent_buffer *left = path->nodes[0];
3607 struct extent_buffer *upper = path->nodes[1]; 3597 struct extent_buffer *upper = path->nodes[1];
3608 struct btrfs_map_token token; 3598 struct btrfs_map_token token;
3609 struct btrfs_disk_key disk_key; 3599 struct btrfs_disk_key disk_key;
3610 int slot; 3600 int slot;
3611 u32 i; 3601 u32 i;
3612 int push_space = 0; 3602 int push_space = 0;
3613 int push_items = 0; 3603 int push_items = 0;
3614 struct btrfs_item *item; 3604 struct btrfs_item *item;
3615 u32 nr; 3605 u32 nr;
3616 u32 right_nritems; 3606 u32 right_nritems;
3617 u32 data_end; 3607 u32 data_end;
3618 u32 this_item_size; 3608 u32 this_item_size;
3619 3609
3620 btrfs_init_map_token(&token); 3610 btrfs_init_map_token(&token);
3621 3611
3622 if (empty) 3612 if (empty)
3623 nr = 0; 3613 nr = 0;
3624 else 3614 else
3625 nr = max_t(u32, 1, min_slot); 3615 nr = max_t(u32, 1, min_slot);
3626 3616
3627 if (path->slots[0] >= left_nritems) 3617 if (path->slots[0] >= left_nritems)
3628 push_space += data_size; 3618 push_space += data_size;
3629 3619
3630 slot = path->slots[1]; 3620 slot = path->slots[1];
3631 i = left_nritems - 1; 3621 i = left_nritems - 1;
3632 while (i >= nr) { 3622 while (i >= nr) {
3633 item = btrfs_item_nr(i); 3623 item = btrfs_item_nr(i);
3634 3624
3635 if (!empty && push_items > 0) { 3625 if (!empty && push_items > 0) {
3636 if (path->slots[0] > i) 3626 if (path->slots[0] > i)
3637 break; 3627 break;
3638 if (path->slots[0] == i) { 3628 if (path->slots[0] == i) {
3639 int space = btrfs_leaf_free_space(root, left); 3629 int space = btrfs_leaf_free_space(root, left);
3640 if (space + push_space * 2 > free_space) 3630 if (space + push_space * 2 > free_space)
3641 break; 3631 break;
3642 } 3632 }
3643 } 3633 }
3644 3634
3645 if (path->slots[0] == i) 3635 if (path->slots[0] == i)
3646 push_space += data_size; 3636 push_space += data_size;
3647 3637
3648 this_item_size = btrfs_item_size(left, item); 3638 this_item_size = btrfs_item_size(left, item);
3649 if (this_item_size + sizeof(*item) + push_space > free_space) 3639 if (this_item_size + sizeof(*item) + push_space > free_space)
3650 break; 3640 break;
3651 3641
3652 push_items++; 3642 push_items++;
3653 push_space += this_item_size + sizeof(*item); 3643 push_space += this_item_size + sizeof(*item);
3654 if (i == 0) 3644 if (i == 0)
3655 break; 3645 break;
3656 i--; 3646 i--;
3657 } 3647 }
3658 3648
3659 if (push_items == 0) 3649 if (push_items == 0)
3660 goto out_unlock; 3650 goto out_unlock;
3661 3651
3662 WARN_ON(!empty && push_items == left_nritems); 3652 WARN_ON(!empty && push_items == left_nritems);
3663 3653
3664 /* push left to right */ 3654 /* push left to right */
3665 right_nritems = btrfs_header_nritems(right); 3655 right_nritems = btrfs_header_nritems(right);
3666 3656
3667 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3657 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3668 push_space -= leaf_data_end(root, left); 3658 push_space -= leaf_data_end(root, left);
3669 3659
3670 /* make room in the right data area */ 3660 /* make room in the right data area */
3671 data_end = leaf_data_end(root, right); 3661 data_end = leaf_data_end(root, right);
3672 memmove_extent_buffer(right, 3662 memmove_extent_buffer(right,
3673 btrfs_leaf_data(right) + data_end - push_space, 3663 btrfs_leaf_data(right) + data_end - push_space,
3674 btrfs_leaf_data(right) + data_end, 3664 btrfs_leaf_data(right) + data_end,
3675 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3665 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3676 3666
3677 /* copy from the left data area */ 3667 /* copy from the left data area */
3678 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3668 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3679 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3669 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3680 btrfs_leaf_data(left) + leaf_data_end(root, left), 3670 btrfs_leaf_data(left) + leaf_data_end(root, left),
3681 push_space); 3671 push_space);
3682 3672
3683 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3673 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3684 btrfs_item_nr_offset(0), 3674 btrfs_item_nr_offset(0),
3685 right_nritems * sizeof(struct btrfs_item)); 3675 right_nritems * sizeof(struct btrfs_item));
3686 3676
3687 /* copy the items from left to right */ 3677 /* copy the items from left to right */
3688 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3678 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3689 btrfs_item_nr_offset(left_nritems - push_items), 3679 btrfs_item_nr_offset(left_nritems - push_items),
3690 push_items * sizeof(struct btrfs_item)); 3680 push_items * sizeof(struct btrfs_item));
3691 3681
3692 /* update the item pointers */ 3682 /* update the item pointers */
3693 right_nritems += push_items; 3683 right_nritems += push_items;
3694 btrfs_set_header_nritems(right, right_nritems); 3684 btrfs_set_header_nritems(right, right_nritems);
3695 push_space = BTRFS_LEAF_DATA_SIZE(root); 3685 push_space = BTRFS_LEAF_DATA_SIZE(root);
3696 for (i = 0; i < right_nritems; i++) { 3686 for (i = 0; i < right_nritems; i++) {
3697 item = btrfs_item_nr(i); 3687 item = btrfs_item_nr(i);
3698 push_space -= btrfs_token_item_size(right, item, &token); 3688 push_space -= btrfs_token_item_size(right, item, &token);
3699 btrfs_set_token_item_offset(right, item, push_space, &token); 3689 btrfs_set_token_item_offset(right, item, push_space, &token);
3700 } 3690 }
3701 3691
3702 left_nritems -= push_items; 3692 left_nritems -= push_items;
3703 btrfs_set_header_nritems(left, left_nritems); 3693 btrfs_set_header_nritems(left, left_nritems);
3704 3694
3705 if (left_nritems) 3695 if (left_nritems)
3706 btrfs_mark_buffer_dirty(left); 3696 btrfs_mark_buffer_dirty(left);
3707 else 3697 else
3708 clean_tree_block(trans, root, left); 3698 clean_tree_block(trans, root, left);
3709 3699
3710 btrfs_mark_buffer_dirty(right); 3700 btrfs_mark_buffer_dirty(right);
3711 3701
3712 btrfs_item_key(right, &disk_key, 0); 3702 btrfs_item_key(right, &disk_key, 0);
3713 btrfs_set_node_key(upper, &disk_key, slot + 1); 3703 btrfs_set_node_key(upper, &disk_key, slot + 1);
3714 btrfs_mark_buffer_dirty(upper); 3704 btrfs_mark_buffer_dirty(upper);
3715 3705
3716 /* then fixup the leaf pointer in the path */ 3706 /* then fixup the leaf pointer in the path */
3717 if (path->slots[0] >= left_nritems) { 3707 if (path->slots[0] >= left_nritems) {
3718 path->slots[0] -= left_nritems; 3708 path->slots[0] -= left_nritems;
3719 if (btrfs_header_nritems(path->nodes[0]) == 0) 3709 if (btrfs_header_nritems(path->nodes[0]) == 0)
3720 clean_tree_block(trans, root, path->nodes[0]); 3710 clean_tree_block(trans, root, path->nodes[0]);
3721 btrfs_tree_unlock(path->nodes[0]); 3711 btrfs_tree_unlock(path->nodes[0]);
3722 free_extent_buffer(path->nodes[0]); 3712 free_extent_buffer(path->nodes[0]);
3723 path->nodes[0] = right; 3713 path->nodes[0] = right;
3724 path->slots[1] += 1; 3714 path->slots[1] += 1;
3725 } else { 3715 } else {
3726 btrfs_tree_unlock(right); 3716 btrfs_tree_unlock(right);
3727 free_extent_buffer(right); 3717 free_extent_buffer(right);
3728 } 3718 }
3729 return 0; 3719 return 0;
3730 3720
3731 out_unlock: 3721 out_unlock:
3732 btrfs_tree_unlock(right); 3722 btrfs_tree_unlock(right);
3733 free_extent_buffer(right); 3723 free_extent_buffer(right);
3734 return 1; 3724 return 1;
3735 } 3725 }
3736 3726
3737 /* 3727 /*
3738 * push some data in the path leaf to the right, trying to free up at 3728 * push some data in the path leaf to the right, trying to free up at
3739 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3729 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3740 * 3730 *
3741 * returns 1 if the push failed because the other node didn't have enough 3731 * returns 1 if the push failed because the other node didn't have enough
3742 * room, 0 if everything worked out and < 0 if there were major errors. 3732 * room, 0 if everything worked out and < 0 if there were major errors.
3743 * 3733 *
3744 * this will push starting from min_slot to the end of the leaf. It won't 3734 * this will push starting from min_slot to the end of the leaf. It won't
3745 * push any slot lower than min_slot 3735 * push any slot lower than min_slot
3746 */ 3736 */
3747 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3748 *root, struct btrfs_path *path, 3738 *root, struct btrfs_path *path,
3749 int min_data_size, int data_size, 3739 int min_data_size, int data_size,
3750 int empty, u32 min_slot) 3740 int empty, u32 min_slot)
3751 { 3741 {
3752 struct extent_buffer *left = path->nodes[0]; 3742 struct extent_buffer *left = path->nodes[0];
3753 struct extent_buffer *right; 3743 struct extent_buffer *right;
3754 struct extent_buffer *upper; 3744 struct extent_buffer *upper;
3755 int slot; 3745 int slot;
3756 int free_space; 3746 int free_space;
3757 u32 left_nritems; 3747 u32 left_nritems;
3758 int ret; 3748 int ret;
3759 3749
3760 if (!path->nodes[1]) 3750 if (!path->nodes[1])
3761 return 1; 3751 return 1;
3762 3752
3763 slot = path->slots[1]; 3753 slot = path->slots[1];
3764 upper = path->nodes[1]; 3754 upper = path->nodes[1];
3765 if (slot >= btrfs_header_nritems(upper) - 1) 3755 if (slot >= btrfs_header_nritems(upper) - 1)
3766 return 1; 3756 return 1;
3767 3757
3768 btrfs_assert_tree_locked(path->nodes[1]); 3758 btrfs_assert_tree_locked(path->nodes[1]);
3769 3759
3770 right = read_node_slot(root, upper, slot + 1); 3760 right = read_node_slot(root, upper, slot + 1);
3771 if (right == NULL) 3761 if (right == NULL)
3772 return 1; 3762 return 1;
3773 3763
3774 btrfs_tree_lock(right); 3764 btrfs_tree_lock(right);
3775 btrfs_set_lock_blocking(right); 3765 btrfs_set_lock_blocking(right);
3776 3766
3777 free_space = btrfs_leaf_free_space(root, right); 3767 free_space = btrfs_leaf_free_space(root, right);
3778 if (free_space < data_size) 3768 if (free_space < data_size)
3779 goto out_unlock; 3769 goto out_unlock;
3780 3770
3781 /* cow and double check */ 3771 /* cow and double check */
3782 ret = btrfs_cow_block(trans, root, right, upper, 3772 ret = btrfs_cow_block(trans, root, right, upper,
3783 slot + 1, &right); 3773 slot + 1, &right);
3784 if (ret) 3774 if (ret)
3785 goto out_unlock; 3775 goto out_unlock;
3786 3776
3787 free_space = btrfs_leaf_free_space(root, right); 3777 free_space = btrfs_leaf_free_space(root, right);
3788 if (free_space < data_size) 3778 if (free_space < data_size)
3789 goto out_unlock; 3779 goto out_unlock;
3790 3780
3791 left_nritems = btrfs_header_nritems(left); 3781 left_nritems = btrfs_header_nritems(left);
3792 if (left_nritems == 0) 3782 if (left_nritems == 0)
3793 goto out_unlock; 3783 goto out_unlock;
3794 3784
3795 if (path->slots[0] == left_nritems && !empty) { 3785 if (path->slots[0] == left_nritems && !empty) {
3796 /* Key greater than all keys in the leaf, right neighbor has 3786 /* Key greater than all keys in the leaf, right neighbor has
3797 * enough room for it and we're not emptying our leaf to delete 3787 * enough room for it and we're not emptying our leaf to delete
3798 * it, therefore use right neighbor to insert the new item and 3788 * it, therefore use right neighbor to insert the new item and
3799 * no need to touch/dirty our left leaft. */ 3789 * no need to touch/dirty our left leaft. */
3800 btrfs_tree_unlock(left); 3790 btrfs_tree_unlock(left);
3801 free_extent_buffer(left); 3791 free_extent_buffer(left);
3802 path->nodes[0] = right; 3792 path->nodes[0] = right;
3803 path->slots[0] = 0; 3793 path->slots[0] = 0;
3804 path->slots[1]++; 3794 path->slots[1]++;
3805 return 0; 3795 return 0;
3806 } 3796 }
3807 3797
3808 return __push_leaf_right(trans, root, path, min_data_size, empty, 3798 return __push_leaf_right(trans, root, path, min_data_size, empty,
3809 right, free_space, left_nritems, min_slot); 3799 right, free_space, left_nritems, min_slot);
3810 out_unlock: 3800 out_unlock:
3811 btrfs_tree_unlock(right); 3801 btrfs_tree_unlock(right);
3812 free_extent_buffer(right); 3802 free_extent_buffer(right);
3813 return 1; 3803 return 1;
3814 } 3804 }
3815 3805
3816 /* 3806 /*
3817 * push some data in the path leaf to the left, trying to free up at 3807 * push some data in the path leaf to the left, trying to free up at
3818 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3808 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3819 * 3809 *
3820 * max_slot can put a limit on how far into the leaf we'll push items. The 3810 * max_slot can put a limit on how far into the leaf we'll push items. The
3821 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3811 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3822 * items 3812 * items
3823 */ 3813 */
3824 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3814 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3825 struct btrfs_root *root, 3815 struct btrfs_root *root,
3826 struct btrfs_path *path, int data_size, 3816 struct btrfs_path *path, int data_size,
3827 int empty, struct extent_buffer *left, 3817 int empty, struct extent_buffer *left,
3828 int free_space, u32 right_nritems, 3818 int free_space, u32 right_nritems,
3829 u32 max_slot) 3819 u32 max_slot)
3830 { 3820 {
3831 struct btrfs_disk_key disk_key; 3821 struct btrfs_disk_key disk_key;
3832 struct extent_buffer *right = path->nodes[0]; 3822 struct extent_buffer *right = path->nodes[0];
3833 int i; 3823 int i;
3834 int push_space = 0; 3824 int push_space = 0;
3835 int push_items = 0; 3825 int push_items = 0;
3836 struct btrfs_item *item; 3826 struct btrfs_item *item;
3837 u32 old_left_nritems; 3827 u32 old_left_nritems;
3838 u32 nr; 3828 u32 nr;
3839 int ret = 0; 3829 int ret = 0;
3840 u32 this_item_size; 3830 u32 this_item_size;
3841 u32 old_left_item_size; 3831 u32 old_left_item_size;
3842 struct btrfs_map_token token; 3832 struct btrfs_map_token token;
3843 3833
3844 btrfs_init_map_token(&token); 3834 btrfs_init_map_token(&token);
3845 3835
3846 if (empty) 3836 if (empty)
3847 nr = min(right_nritems, max_slot); 3837 nr = min(right_nritems, max_slot);
3848 else 3838 else
3849 nr = min(right_nritems - 1, max_slot); 3839 nr = min(right_nritems - 1, max_slot);
3850 3840
3851 for (i = 0; i < nr; i++) { 3841 for (i = 0; i < nr; i++) {
3852 item = btrfs_item_nr(i); 3842 item = btrfs_item_nr(i);
3853 3843
3854 if (!empty && push_items > 0) { 3844 if (!empty && push_items > 0) {
3855 if (path->slots[0] < i) 3845 if (path->slots[0] < i)
3856 break; 3846 break;
3857 if (path->slots[0] == i) { 3847 if (path->slots[0] == i) {
3858 int space = btrfs_leaf_free_space(root, right); 3848 int space = btrfs_leaf_free_space(root, right);
3859 if (space + push_space * 2 > free_space) 3849 if (space + push_space * 2 > free_space)
3860 break; 3850 break;
3861 } 3851 }
3862 } 3852 }
3863 3853
3864 if (path->slots[0] == i) 3854 if (path->slots[0] == i)
3865 push_space += data_size; 3855 push_space += data_size;
3866 3856
3867 this_item_size = btrfs_item_size(right, item); 3857 this_item_size = btrfs_item_size(right, item);
3868 if (this_item_size + sizeof(*item) + push_space > free_space) 3858 if (this_item_size + sizeof(*item) + push_space > free_space)
3869 break; 3859 break;
3870 3860
3871 push_items++; 3861 push_items++;
3872 push_space += this_item_size + sizeof(*item); 3862 push_space += this_item_size + sizeof(*item);
3873 } 3863 }
3874 3864
3875 if (push_items == 0) { 3865 if (push_items == 0) {
3876 ret = 1; 3866 ret = 1;
3877 goto out; 3867 goto out;
3878 } 3868 }
3879 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3869 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3880 3870
3881 /* push data from right to left */ 3871 /* push data from right to left */
3882 copy_extent_buffer(left, right, 3872 copy_extent_buffer(left, right,
3883 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3873 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3884 btrfs_item_nr_offset(0), 3874 btrfs_item_nr_offset(0),
3885 push_items * sizeof(struct btrfs_item)); 3875 push_items * sizeof(struct btrfs_item));
3886 3876
3887 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3877 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3888 btrfs_item_offset_nr(right, push_items - 1); 3878 btrfs_item_offset_nr(right, push_items - 1);
3889 3879
3890 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3880 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3891 leaf_data_end(root, left) - push_space, 3881 leaf_data_end(root, left) - push_space,
3892 btrfs_leaf_data(right) + 3882 btrfs_leaf_data(right) +
3893 btrfs_item_offset_nr(right, push_items - 1), 3883 btrfs_item_offset_nr(right, push_items - 1),
3894 push_space); 3884 push_space);
3895 old_left_nritems = btrfs_header_nritems(left); 3885 old_left_nritems = btrfs_header_nritems(left);
3896 BUG_ON(old_left_nritems <= 0); 3886 BUG_ON(old_left_nritems <= 0);
3897 3887
3898 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3888 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3899 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3889 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3900 u32 ioff; 3890 u32 ioff;
3901 3891
3902 item = btrfs_item_nr(i); 3892 item = btrfs_item_nr(i);
3903 3893
3904 ioff = btrfs_token_item_offset(left, item, &token); 3894 ioff = btrfs_token_item_offset(left, item, &token);
3905 btrfs_set_token_item_offset(left, item, 3895 btrfs_set_token_item_offset(left, item,
3906 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3896 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3907 &token); 3897 &token);
3908 } 3898 }
3909 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3899 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3910 3900
3911 /* fixup right node */ 3901 /* fixup right node */
3912 if (push_items > right_nritems) 3902 if (push_items > right_nritems)
3913 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3903 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3914 right_nritems); 3904 right_nritems);
3915 3905
3916 if (push_items < right_nritems) { 3906 if (push_items < right_nritems) {
3917 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3907 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3918 leaf_data_end(root, right); 3908 leaf_data_end(root, right);
3919 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3909 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3920 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3910 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3921 btrfs_leaf_data(right) + 3911 btrfs_leaf_data(right) +
3922 leaf_data_end(root, right), push_space); 3912 leaf_data_end(root, right), push_space);
3923 3913
3924 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3914 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3925 btrfs_item_nr_offset(push_items), 3915 btrfs_item_nr_offset(push_items),
3926 (btrfs_header_nritems(right) - push_items) * 3916 (btrfs_header_nritems(right) - push_items) *
3927 sizeof(struct btrfs_item)); 3917 sizeof(struct btrfs_item));
3928 } 3918 }
3929 right_nritems -= push_items; 3919 right_nritems -= push_items;
3930 btrfs_set_header_nritems(right, right_nritems); 3920 btrfs_set_header_nritems(right, right_nritems);
3931 push_space = BTRFS_LEAF_DATA_SIZE(root); 3921 push_space = BTRFS_LEAF_DATA_SIZE(root);
3932 for (i = 0; i < right_nritems; i++) { 3922 for (i = 0; i < right_nritems; i++) {
3933 item = btrfs_item_nr(i); 3923 item = btrfs_item_nr(i);
3934 3924
3935 push_space = push_space - btrfs_token_item_size(right, 3925 push_space = push_space - btrfs_token_item_size(right,
3936 item, &token); 3926 item, &token);
3937 btrfs_set_token_item_offset(right, item, push_space, &token); 3927 btrfs_set_token_item_offset(right, item, push_space, &token);
3938 } 3928 }
3939 3929
3940 btrfs_mark_buffer_dirty(left); 3930 btrfs_mark_buffer_dirty(left);
3941 if (right_nritems) 3931 if (right_nritems)
3942 btrfs_mark_buffer_dirty(right); 3932 btrfs_mark_buffer_dirty(right);
3943 else 3933 else
3944 clean_tree_block(trans, root, right); 3934 clean_tree_block(trans, root, right);
3945 3935
3946 btrfs_item_key(right, &disk_key, 0); 3936 btrfs_item_key(right, &disk_key, 0);
3947 fixup_low_keys(root, path, &disk_key, 1); 3937 fixup_low_keys(root, path, &disk_key, 1);
3948 3938
3949 /* then fixup the leaf pointer in the path */ 3939 /* then fixup the leaf pointer in the path */
3950 if (path->slots[0] < push_items) { 3940 if (path->slots[0] < push_items) {
3951 path->slots[0] += old_left_nritems; 3941 path->slots[0] += old_left_nritems;
3952 btrfs_tree_unlock(path->nodes[0]); 3942 btrfs_tree_unlock(path->nodes[0]);
3953 free_extent_buffer(path->nodes[0]); 3943 free_extent_buffer(path->nodes[0]);
3954 path->nodes[0] = left; 3944 path->nodes[0] = left;
3955 path->slots[1] -= 1; 3945 path->slots[1] -= 1;
3956 } else { 3946 } else {
3957 btrfs_tree_unlock(left); 3947 btrfs_tree_unlock(left);
3958 free_extent_buffer(left); 3948 free_extent_buffer(left);
3959 path->slots[0] -= push_items; 3949 path->slots[0] -= push_items;
3960 } 3950 }
3961 BUG_ON(path->slots[0] < 0); 3951 BUG_ON(path->slots[0] < 0);
3962 return ret; 3952 return ret;
3963 out: 3953 out:
3964 btrfs_tree_unlock(left); 3954 btrfs_tree_unlock(left);
3965 free_extent_buffer(left); 3955 free_extent_buffer(left);
3966 return ret; 3956 return ret;
3967 } 3957 }
3968 3958
3969 /* 3959 /*
3970 * push some data in the path leaf to the left, trying to free up at 3960 * push some data in the path leaf to the left, trying to free up at
3971 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3961 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3972 * 3962 *
3973 * max_slot can put a limit on how far into the leaf we'll push items. The 3963 * max_slot can put a limit on how far into the leaf we'll push items. The
3974 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3964 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3975 * items 3965 * items
3976 */ 3966 */
3977 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3967 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3978 *root, struct btrfs_path *path, int min_data_size, 3968 *root, struct btrfs_path *path, int min_data_size,
3979 int data_size, int empty, u32 max_slot) 3969 int data_size, int empty, u32 max_slot)
3980 { 3970 {
3981 struct extent_buffer *right = path->nodes[0]; 3971 struct extent_buffer *right = path->nodes[0];
3982 struct extent_buffer *left; 3972 struct extent_buffer *left;
3983 int slot; 3973 int slot;
3984 int free_space; 3974 int free_space;
3985 u32 right_nritems; 3975 u32 right_nritems;
3986 int ret = 0; 3976 int ret = 0;
3987 3977
3988 slot = path->slots[1]; 3978 slot = path->slots[1];
3989 if (slot == 0) 3979 if (slot == 0)
3990 return 1; 3980 return 1;
3991 if (!path->nodes[1]) 3981 if (!path->nodes[1])
3992 return 1; 3982 return 1;
3993 3983
3994 right_nritems = btrfs_header_nritems(right); 3984 right_nritems = btrfs_header_nritems(right);
3995 if (right_nritems == 0) 3985 if (right_nritems == 0)
3996 return 1; 3986 return 1;
3997 3987
3998 btrfs_assert_tree_locked(path->nodes[1]); 3988 btrfs_assert_tree_locked(path->nodes[1]);
3999 3989
4000 left = read_node_slot(root, path->nodes[1], slot - 1); 3990 left = read_node_slot(root, path->nodes[1], slot - 1);
4001 if (left == NULL) 3991 if (left == NULL)
4002 return 1; 3992 return 1;
4003 3993
4004 btrfs_tree_lock(left); 3994 btrfs_tree_lock(left);
4005 btrfs_set_lock_blocking(left); 3995 btrfs_set_lock_blocking(left);
4006 3996
4007 free_space = btrfs_leaf_free_space(root, left); 3997 free_space = btrfs_leaf_free_space(root, left);
4008 if (free_space < data_size) { 3998 if (free_space < data_size) {
4009 ret = 1; 3999 ret = 1;
4010 goto out; 4000 goto out;
4011 } 4001 }
4012 4002
4013 /* cow and double check */ 4003 /* cow and double check */
4014 ret = btrfs_cow_block(trans, root, left, 4004 ret = btrfs_cow_block(trans, root, left,
4015 path->nodes[1], slot - 1, &left); 4005 path->nodes[1], slot - 1, &left);
4016 if (ret) { 4006 if (ret) {
4017 /* we hit -ENOSPC, but it isn't fatal here */ 4007 /* we hit -ENOSPC, but it isn't fatal here */
4018 if (ret == -ENOSPC) 4008 if (ret == -ENOSPC)
4019 ret = 1; 4009 ret = 1;
4020 goto out; 4010 goto out;
4021 } 4011 }
4022 4012
4023 free_space = btrfs_leaf_free_space(root, left); 4013 free_space = btrfs_leaf_free_space(root, left);
4024 if (free_space < data_size) { 4014 if (free_space < data_size) {
4025 ret = 1; 4015 ret = 1;
4026 goto out; 4016 goto out;
4027 } 4017 }
4028 4018
4029 return __push_leaf_left(trans, root, path, min_data_size, 4019 return __push_leaf_left(trans, root, path, min_data_size,
4030 empty, left, free_space, right_nritems, 4020 empty, left, free_space, right_nritems,
4031 max_slot); 4021 max_slot);
4032 out: 4022 out:
4033 btrfs_tree_unlock(left); 4023 btrfs_tree_unlock(left);
4034 free_extent_buffer(left); 4024 free_extent_buffer(left);
4035 return ret; 4025 return ret;
4036 } 4026 }
4037 4027
4038 /* 4028 /*
4039 * split the path's leaf in two, making sure there is at least data_size 4029 * split the path's leaf in two, making sure there is at least data_size
4040 * available for the resulting leaf level of the path. 4030 * available for the resulting leaf level of the path.
4041 */ 4031 */
4042 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4032 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4043 struct btrfs_root *root, 4033 struct btrfs_root *root,
4044 struct btrfs_path *path, 4034 struct btrfs_path *path,
4045 struct extent_buffer *l, 4035 struct extent_buffer *l,
4046 struct extent_buffer *right, 4036 struct extent_buffer *right,
4047 int slot, int mid, int nritems) 4037 int slot, int mid, int nritems)
4048 { 4038 {
4049 int data_copy_size; 4039 int data_copy_size;
4050 int rt_data_off; 4040 int rt_data_off;
4051 int i; 4041 int i;
4052 struct btrfs_disk_key disk_key; 4042 struct btrfs_disk_key disk_key;
4053 struct btrfs_map_token token; 4043 struct btrfs_map_token token;
4054 4044
4055 btrfs_init_map_token(&token); 4045 btrfs_init_map_token(&token);
4056 4046
4057 nritems = nritems - mid; 4047 nritems = nritems - mid;
4058 btrfs_set_header_nritems(right, nritems); 4048 btrfs_set_header_nritems(right, nritems);
4059 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4049 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4060 4050
4061 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4051 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4062 btrfs_item_nr_offset(mid), 4052 btrfs_item_nr_offset(mid),
4063 nritems * sizeof(struct btrfs_item)); 4053 nritems * sizeof(struct btrfs_item));
4064 4054
4065 copy_extent_buffer(right, l, 4055 copy_extent_buffer(right, l,
4066 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4056 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4067 data_copy_size, btrfs_leaf_data(l) + 4057 data_copy_size, btrfs_leaf_data(l) +
4068 leaf_data_end(root, l), data_copy_size); 4058 leaf_data_end(root, l), data_copy_size);
4069 4059
4070 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4060 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4071 btrfs_item_end_nr(l, mid); 4061 btrfs_item_end_nr(l, mid);
4072 4062
4073 for (i = 0; i < nritems; i++) { 4063 for (i = 0; i < nritems; i++) {
4074 struct btrfs_item *item = btrfs_item_nr(i); 4064 struct btrfs_item *item = btrfs_item_nr(i);
4075 u32 ioff; 4065 u32 ioff;
4076 4066
4077 ioff = btrfs_token_item_offset(right, item, &token); 4067 ioff = btrfs_token_item_offset(right, item, &token);
4078 btrfs_set_token_item_offset(right, item, 4068 btrfs_set_token_item_offset(right, item,
4079 ioff + rt_data_off, &token); 4069 ioff + rt_data_off, &token);
4080 } 4070 }
4081 4071
4082 btrfs_set_header_nritems(l, mid); 4072 btrfs_set_header_nritems(l, mid);
4083 btrfs_item_key(right, &disk_key, 0); 4073 btrfs_item_key(right, &disk_key, 0);
4084 insert_ptr(trans, root, path, &disk_key, right->start, 4074 insert_ptr(trans, root, path, &disk_key, right->start,
4085 path->slots[1] + 1, 1); 4075 path->slots[1] + 1, 1);
4086 4076
4087 btrfs_mark_buffer_dirty(right); 4077 btrfs_mark_buffer_dirty(right);
4088 btrfs_mark_buffer_dirty(l); 4078 btrfs_mark_buffer_dirty(l);
4089 BUG_ON(path->slots[0] != slot); 4079 BUG_ON(path->slots[0] != slot);
4090 4080
4091 if (mid <= slot) { 4081 if (mid <= slot) {
4092 btrfs_tree_unlock(path->nodes[0]); 4082 btrfs_tree_unlock(path->nodes[0]);
4093 free_extent_buffer(path->nodes[0]); 4083 free_extent_buffer(path->nodes[0]);
4094 path->nodes[0] = right; 4084 path->nodes[0] = right;
4095 path->slots[0] -= mid; 4085 path->slots[0] -= mid;
4096 path->slots[1] += 1; 4086 path->slots[1] += 1;
4097 } else { 4087 } else {
4098 btrfs_tree_unlock(right); 4088 btrfs_tree_unlock(right);
4099 free_extent_buffer(right); 4089 free_extent_buffer(right);
4100 } 4090 }
4101 4091
4102 BUG_ON(path->slots[0] < 0); 4092 BUG_ON(path->slots[0] < 0);
4103 } 4093 }
4104 4094
4105 /* 4095 /*
4106 * double splits happen when we need to insert a big item in the middle 4096 * double splits happen when we need to insert a big item in the middle
4107 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4097 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4108 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4098 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4109 * A B C 4099 * A B C
4110 * 4100 *
4111 * We avoid this by trying to push the items on either side of our target 4101 * We avoid this by trying to push the items on either side of our target
4112 * into the adjacent leaves. If all goes well we can avoid the double split 4102 * into the adjacent leaves. If all goes well we can avoid the double split
4113 * completely. 4103 * completely.
4114 */ 4104 */
4115 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4105 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4116 struct btrfs_root *root, 4106 struct btrfs_root *root,
4117 struct btrfs_path *path, 4107 struct btrfs_path *path,
4118 int data_size) 4108 int data_size)
4119 { 4109 {
4120 int ret; 4110 int ret;
4121 int progress = 0; 4111 int progress = 0;
4122 int slot; 4112 int slot;
4123 u32 nritems; 4113 u32 nritems;
4124 int space_needed = data_size; 4114 int space_needed = data_size;
4125 4115
4126 slot = path->slots[0]; 4116 slot = path->slots[0];
4127 if (slot < btrfs_header_nritems(path->nodes[0])) 4117 if (slot < btrfs_header_nritems(path->nodes[0]))
4128 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4118 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4129 4119
4130 /* 4120 /*
4131 * try to push all the items after our slot into the 4121 * try to push all the items after our slot into the
4132 * right leaf 4122 * right leaf
4133 */ 4123 */
4134 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4124 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4135 if (ret < 0) 4125 if (ret < 0)
4136 return ret; 4126 return ret;
4137 4127
4138 if (ret == 0) 4128 if (ret == 0)
4139 progress++; 4129 progress++;
4140 4130
4141 nritems = btrfs_header_nritems(path->nodes[0]); 4131 nritems = btrfs_header_nritems(path->nodes[0]);
4142 /* 4132 /*
4143 * our goal is to get our slot at the start or end of a leaf. If 4133 * our goal is to get our slot at the start or end of a leaf. If
4144 * we've done so we're done 4134 * we've done so we're done
4145 */ 4135 */
4146 if (path->slots[0] == 0 || path->slots[0] == nritems) 4136 if (path->slots[0] == 0 || path->slots[0] == nritems)
4147 return 0; 4137 return 0;
4148 4138
4149 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4139 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4150 return 0; 4140 return 0;
4151 4141
4152 /* try to push all the items before our slot into the next leaf */ 4142 /* try to push all the items before our slot into the next leaf */
4153 slot = path->slots[0]; 4143 slot = path->slots[0];
4154 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4144 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4155 if (ret < 0) 4145 if (ret < 0)
4156 return ret; 4146 return ret;
4157 4147
4158 if (ret == 0) 4148 if (ret == 0)
4159 progress++; 4149 progress++;
4160 4150
4161 if (progress) 4151 if (progress)
4162 return 0; 4152 return 0;
4163 return 1; 4153 return 1;
4164 } 4154 }
4165 4155
4166 /* 4156 /*
4167 * split the path's leaf in two, making sure there is at least data_size 4157 * split the path's leaf in two, making sure there is at least data_size
4168 * available for the resulting leaf level of the path. 4158 * available for the resulting leaf level of the path.
4169 * 4159 *
4170 * returns 0 if all went well and < 0 on failure. 4160 * returns 0 if all went well and < 0 on failure.
4171 */ 4161 */
4172 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4162 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *root, 4163 struct btrfs_root *root,
4174 struct btrfs_key *ins_key, 4164 struct btrfs_key *ins_key,
4175 struct btrfs_path *path, int data_size, 4165 struct btrfs_path *path, int data_size,
4176 int extend) 4166 int extend)
4177 { 4167 {
4178 struct btrfs_disk_key disk_key; 4168 struct btrfs_disk_key disk_key;
4179 struct extent_buffer *l; 4169 struct extent_buffer *l;
4180 u32 nritems; 4170 u32 nritems;
4181 int mid; 4171 int mid;
4182 int slot; 4172 int slot;
4183 struct extent_buffer *right; 4173 struct extent_buffer *right;
4184 int ret = 0; 4174 int ret = 0;
4185 int wret; 4175 int wret;
4186 int split; 4176 int split;
4187 int num_doubles = 0; 4177 int num_doubles = 0;
4188 int tried_avoid_double = 0; 4178 int tried_avoid_double = 0;
4189 4179
4190 l = path->nodes[0]; 4180 l = path->nodes[0];
4191 slot = path->slots[0]; 4181 slot = path->slots[0];
4192 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4182 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4193 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4183 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4194 return -EOVERFLOW; 4184 return -EOVERFLOW;
4195 4185
4196 /* first try to make some room by pushing left and right */ 4186 /* first try to make some room by pushing left and right */
4197 if (data_size && path->nodes[1]) { 4187 if (data_size && path->nodes[1]) {
4198 int space_needed = data_size; 4188 int space_needed = data_size;
4199 4189
4200 if (slot < btrfs_header_nritems(l)) 4190 if (slot < btrfs_header_nritems(l))
4201 space_needed -= btrfs_leaf_free_space(root, l); 4191 space_needed -= btrfs_leaf_free_space(root, l);
4202 4192
4203 wret = push_leaf_right(trans, root, path, space_needed, 4193 wret = push_leaf_right(trans, root, path, space_needed,
4204 space_needed, 0, 0); 4194 space_needed, 0, 0);
4205 if (wret < 0) 4195 if (wret < 0)
4206 return wret; 4196 return wret;
4207 if (wret) { 4197 if (wret) {
4208 wret = push_leaf_left(trans, root, path, space_needed, 4198 wret = push_leaf_left(trans, root, path, space_needed,
4209 space_needed, 0, (u32)-1); 4199 space_needed, 0, (u32)-1);
4210 if (wret < 0) 4200 if (wret < 0)
4211 return wret; 4201 return wret;
4212 } 4202 }
4213 l = path->nodes[0]; 4203 l = path->nodes[0];
4214 4204
4215 /* did the pushes work? */ 4205 /* did the pushes work? */
4216 if (btrfs_leaf_free_space(root, l) >= data_size) 4206 if (btrfs_leaf_free_space(root, l) >= data_size)
4217 return 0; 4207 return 0;
4218 } 4208 }
4219 4209
4220 if (!path->nodes[1]) { 4210 if (!path->nodes[1]) {
4221 ret = insert_new_root(trans, root, path, 1); 4211 ret = insert_new_root(trans, root, path, 1);
4222 if (ret) 4212 if (ret)
4223 return ret; 4213 return ret;
4224 } 4214 }
4225 again: 4215 again:
4226 split = 1; 4216 split = 1;
4227 l = path->nodes[0]; 4217 l = path->nodes[0];
4228 slot = path->slots[0]; 4218 slot = path->slots[0];
4229 nritems = btrfs_header_nritems(l); 4219 nritems = btrfs_header_nritems(l);
4230 mid = (nritems + 1) / 2; 4220 mid = (nritems + 1) / 2;
4231 4221
4232 if (mid <= slot) { 4222 if (mid <= slot) {
4233 if (nritems == 1 || 4223 if (nritems == 1 ||
4234 leaf_space_used(l, mid, nritems - mid) + data_size > 4224 leaf_space_used(l, mid, nritems - mid) + data_size >
4235 BTRFS_LEAF_DATA_SIZE(root)) { 4225 BTRFS_LEAF_DATA_SIZE(root)) {
4236 if (slot >= nritems) { 4226 if (slot >= nritems) {
4237 split = 0; 4227 split = 0;
4238 } else { 4228 } else {
4239 mid = slot; 4229 mid = slot;
4240 if (mid != nritems && 4230 if (mid != nritems &&
4241 leaf_space_used(l, mid, nritems - mid) + 4231 leaf_space_used(l, mid, nritems - mid) +
4242 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4232 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4243 if (data_size && !tried_avoid_double) 4233 if (data_size && !tried_avoid_double)
4244 goto push_for_double; 4234 goto push_for_double;
4245 split = 2; 4235 split = 2;
4246 } 4236 }
4247 } 4237 }
4248 } 4238 }
4249 } else { 4239 } else {
4250 if (leaf_space_used(l, 0, mid) + data_size > 4240 if (leaf_space_used(l, 0, mid) + data_size >
4251 BTRFS_LEAF_DATA_SIZE(root)) { 4241 BTRFS_LEAF_DATA_SIZE(root)) {
4252 if (!extend && data_size && slot == 0) { 4242 if (!extend && data_size && slot == 0) {
4253 split = 0; 4243 split = 0;
4254 } else if ((extend || !data_size) && slot == 0) { 4244 } else if ((extend || !data_size) && slot == 0) {
4255 mid = 1; 4245 mid = 1;
4256 } else { 4246 } else {
4257 mid = slot; 4247 mid = slot;
4258 if (mid != nritems && 4248 if (mid != nritems &&
4259 leaf_space_used(l, mid, nritems - mid) + 4249 leaf_space_used(l, mid, nritems - mid) +
4260 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4250 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4261 if (data_size && !tried_avoid_double) 4251 if (data_size && !tried_avoid_double)
4262 goto push_for_double; 4252 goto push_for_double;
4263 split = 2; 4253 split = 2;
4264 } 4254 }
4265 } 4255 }
4266 } 4256 }
4267 } 4257 }
4268 4258
4269 if (split == 0) 4259 if (split == 0)
4270 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4260 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4271 else 4261 else
4272 btrfs_item_key(l, &disk_key, mid); 4262 btrfs_item_key(l, &disk_key, mid);
4273 4263
4274 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4264 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4275 &disk_key, 0, l->start, 0); 4265 &disk_key, 0, l->start, 0);
4276 if (IS_ERR(right)) 4266 if (IS_ERR(right))
4277 return PTR_ERR(right); 4267 return PTR_ERR(right);
4278 4268
4279 root_add_used(root, root->nodesize); 4269 root_add_used(root, root->nodesize);
4280 4270
4281 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4271 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4282 btrfs_set_header_bytenr(right, right->start); 4272 btrfs_set_header_bytenr(right, right->start);
4283 btrfs_set_header_generation(right, trans->transid); 4273 btrfs_set_header_generation(right, trans->transid);
4284 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4274 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4285 btrfs_set_header_owner(right, root->root_key.objectid); 4275 btrfs_set_header_owner(right, root->root_key.objectid);
4286 btrfs_set_header_level(right, 0); 4276 btrfs_set_header_level(right, 0);
4287 write_extent_buffer(right, root->fs_info->fsid, 4277 write_extent_buffer(right, root->fs_info->fsid,
4288 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4278 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4289 4279
4290 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4280 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4291 btrfs_header_chunk_tree_uuid(right), 4281 btrfs_header_chunk_tree_uuid(right),
4292 BTRFS_UUID_SIZE); 4282 BTRFS_UUID_SIZE);
4293 4283
4294 if (split == 0) { 4284 if (split == 0) {
4295 if (mid <= slot) { 4285 if (mid <= slot) {
4296 btrfs_set_header_nritems(right, 0); 4286 btrfs_set_header_nritems(right, 0);
4297 insert_ptr(trans, root, path, &disk_key, right->start, 4287 insert_ptr(trans, root, path, &disk_key, right->start,
4298 path->slots[1] + 1, 1); 4288 path->slots[1] + 1, 1);
4299 btrfs_tree_unlock(path->nodes[0]); 4289 btrfs_tree_unlock(path->nodes[0]);
4300 free_extent_buffer(path->nodes[0]); 4290 free_extent_buffer(path->nodes[0]);
4301 path->nodes[0] = right; 4291 path->nodes[0] = right;
4302 path->slots[0] = 0; 4292 path->slots[0] = 0;
4303 path->slots[1] += 1; 4293 path->slots[1] += 1;
4304 } else { 4294 } else {
4305 btrfs_set_header_nritems(right, 0); 4295 btrfs_set_header_nritems(right, 0);
4306 insert_ptr(trans, root, path, &disk_key, right->start, 4296 insert_ptr(trans, root, path, &disk_key, right->start,
4307 path->slots[1], 1); 4297 path->slots[1], 1);
4308 btrfs_tree_unlock(path->nodes[0]); 4298 btrfs_tree_unlock(path->nodes[0]);
4309 free_extent_buffer(path->nodes[0]); 4299 free_extent_buffer(path->nodes[0]);
4310 path->nodes[0] = right; 4300 path->nodes[0] = right;
4311 path->slots[0] = 0; 4301 path->slots[0] = 0;
4312 if (path->slots[1] == 0) 4302 if (path->slots[1] == 0)
4313 fixup_low_keys(root, path, &disk_key, 1); 4303 fixup_low_keys(root, path, &disk_key, 1);
4314 } 4304 }
4315 btrfs_mark_buffer_dirty(right); 4305 btrfs_mark_buffer_dirty(right);
4316 return ret; 4306 return ret;
4317 } 4307 }
4318 4308
4319 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4309 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4320 4310
4321 if (split == 2) { 4311 if (split == 2) {
4322 BUG_ON(num_doubles != 0); 4312 BUG_ON(num_doubles != 0);
4323 num_doubles++; 4313 num_doubles++;
4324 goto again; 4314 goto again;
4325 } 4315 }
4326 4316
4327 return 0; 4317 return 0;
4328 4318
4329 push_for_double: 4319 push_for_double:
4330 push_for_double_split(trans, root, path, data_size); 4320 push_for_double_split(trans, root, path, data_size);
4331 tried_avoid_double = 1; 4321 tried_avoid_double = 1;
4332 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4322 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4333 return 0; 4323 return 0;
4334 goto again; 4324 goto again;
4335 } 4325 }
4336 4326
4337 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4327 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4338 struct btrfs_root *root, 4328 struct btrfs_root *root,
4339 struct btrfs_path *path, int ins_len) 4329 struct btrfs_path *path, int ins_len)
4340 { 4330 {
4341 struct btrfs_key key; 4331 struct btrfs_key key;
4342 struct extent_buffer *leaf; 4332 struct extent_buffer *leaf;
4343 struct btrfs_file_extent_item *fi; 4333 struct btrfs_file_extent_item *fi;
4344 u64 extent_len = 0; 4334 u64 extent_len = 0;
4345 u32 item_size; 4335 u32 item_size;
4346 int ret; 4336 int ret;
4347 4337
4348 leaf = path->nodes[0]; 4338 leaf = path->nodes[0];
4349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4350 4340
4351 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4341 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4352 key.type != BTRFS_EXTENT_CSUM_KEY); 4342 key.type != BTRFS_EXTENT_CSUM_KEY);
4353 4343
4354 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4344 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4355 return 0; 4345 return 0;
4356 4346
4357 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4347 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4358 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4348 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4359 fi = btrfs_item_ptr(leaf, path->slots[0], 4349 fi = btrfs_item_ptr(leaf, path->slots[0],
4360 struct btrfs_file_extent_item); 4350 struct btrfs_file_extent_item);
4361 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4351 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4362 } 4352 }
4363 btrfs_release_path(path); 4353 btrfs_release_path(path);
4364 4354
4365 path->keep_locks = 1; 4355 path->keep_locks = 1;
4366 path->search_for_split = 1; 4356 path->search_for_split = 1;
4367 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4357 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4368 path->search_for_split = 0; 4358 path->search_for_split = 0;
4369 if (ret < 0) 4359 if (ret < 0)
4370 goto err; 4360 goto err;
4371 4361
4372 ret = -EAGAIN; 4362 ret = -EAGAIN;
4373 leaf = path->nodes[0]; 4363 leaf = path->nodes[0];
4374 /* if our item isn't there or got smaller, return now */ 4364 /* if our item isn't there or got smaller, return now */
4375 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4365 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4376 goto err; 4366 goto err;
4377 4367
4378 /* the leaf has changed, it now has room. return now */ 4368 /* the leaf has changed, it now has room. return now */
4379 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4369 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4380 goto err; 4370 goto err;
4381 4371
4382 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4372 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4383 fi = btrfs_item_ptr(leaf, path->slots[0], 4373 fi = btrfs_item_ptr(leaf, path->slots[0],
4384 struct btrfs_file_extent_item); 4374 struct btrfs_file_extent_item);
4385 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4375 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4386 goto err; 4376 goto err;
4387 } 4377 }
4388 4378
4389 btrfs_set_path_blocking(path); 4379 btrfs_set_path_blocking(path);
4390 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4380 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4391 if (ret) 4381 if (ret)
4392 goto err; 4382 goto err;
4393 4383
4394 path->keep_locks = 0; 4384 path->keep_locks = 0;
4395 btrfs_unlock_up_safe(path, 1); 4385 btrfs_unlock_up_safe(path, 1);
4396 return 0; 4386 return 0;
4397 err: 4387 err:
4398 path->keep_locks = 0; 4388 path->keep_locks = 0;
4399 return ret; 4389 return ret;
4400 } 4390 }
4401 4391
4402 static noinline int split_item(struct btrfs_trans_handle *trans, 4392 static noinline int split_item(struct btrfs_trans_handle *trans,
4403 struct btrfs_root *root, 4393 struct btrfs_root *root,
4404 struct btrfs_path *path, 4394 struct btrfs_path *path,
4405 struct btrfs_key *new_key, 4395 struct btrfs_key *new_key,
4406 unsigned long split_offset) 4396 unsigned long split_offset)
4407 { 4397 {
4408 struct extent_buffer *leaf; 4398 struct extent_buffer *leaf;
4409 struct btrfs_item *item; 4399 struct btrfs_item *item;
4410 struct btrfs_item *new_item; 4400 struct btrfs_item *new_item;
4411 int slot; 4401 int slot;
4412 char *buf; 4402 char *buf;
4413 u32 nritems; 4403 u32 nritems;
4414 u32 item_size; 4404 u32 item_size;
4415 u32 orig_offset; 4405 u32 orig_offset;
4416 struct btrfs_disk_key disk_key; 4406 struct btrfs_disk_key disk_key;
4417 4407
4418 leaf = path->nodes[0]; 4408 leaf = path->nodes[0];
4419 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4409 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4420 4410
4421 btrfs_set_path_blocking(path); 4411 btrfs_set_path_blocking(path);
4422 4412
4423 item = btrfs_item_nr(path->slots[0]); 4413 item = btrfs_item_nr(path->slots[0]);
4424 orig_offset = btrfs_item_offset(leaf, item); 4414 orig_offset = btrfs_item_offset(leaf, item);
4425 item_size = btrfs_item_size(leaf, item); 4415 item_size = btrfs_item_size(leaf, item);
4426 4416
4427 buf = kmalloc(item_size, GFP_NOFS); 4417 buf = kmalloc(item_size, GFP_NOFS);
4428 if (!buf) 4418 if (!buf)
4429 return -ENOMEM; 4419 return -ENOMEM;
4430 4420
4431 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4421 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4432 path->slots[0]), item_size); 4422 path->slots[0]), item_size);
4433 4423
4434 slot = path->slots[0] + 1; 4424 slot = path->slots[0] + 1;
4435 nritems = btrfs_header_nritems(leaf); 4425 nritems = btrfs_header_nritems(leaf);
4436 if (slot != nritems) { 4426 if (slot != nritems) {
4437 /* shift the items */ 4427 /* shift the items */
4438 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4428 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4439 btrfs_item_nr_offset(slot), 4429 btrfs_item_nr_offset(slot),
4440 (nritems - slot) * sizeof(struct btrfs_item)); 4430 (nritems - slot) * sizeof(struct btrfs_item));
4441 } 4431 }
4442 4432
4443 btrfs_cpu_key_to_disk(&disk_key, new_key); 4433 btrfs_cpu_key_to_disk(&disk_key, new_key);
4444 btrfs_set_item_key(leaf, &disk_key, slot); 4434 btrfs_set_item_key(leaf, &disk_key, slot);
4445 4435
4446 new_item = btrfs_item_nr(slot); 4436 new_item = btrfs_item_nr(slot);
4447 4437
4448 btrfs_set_item_offset(leaf, new_item, orig_offset); 4438 btrfs_set_item_offset(leaf, new_item, orig_offset);
4449 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4439 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4450 4440
4451 btrfs_set_item_offset(leaf, item, 4441 btrfs_set_item_offset(leaf, item,
4452 orig_offset + item_size - split_offset); 4442 orig_offset + item_size - split_offset);
4453 btrfs_set_item_size(leaf, item, split_offset); 4443 btrfs_set_item_size(leaf, item, split_offset);
4454 4444
4455 btrfs_set_header_nritems(leaf, nritems + 1); 4445 btrfs_set_header_nritems(leaf, nritems + 1);
4456 4446
4457 /* write the data for the start of the original item */ 4447 /* write the data for the start of the original item */
4458 write_extent_buffer(leaf, buf, 4448 write_extent_buffer(leaf, buf,
4459 btrfs_item_ptr_offset(leaf, path->slots[0]), 4449 btrfs_item_ptr_offset(leaf, path->slots[0]),
4460 split_offset); 4450 split_offset);
4461 4451
4462 /* write the data for the new item */ 4452 /* write the data for the new item */
4463 write_extent_buffer(leaf, buf + split_offset, 4453 write_extent_buffer(leaf, buf + split_offset,
4464 btrfs_item_ptr_offset(leaf, slot), 4454 btrfs_item_ptr_offset(leaf, slot),
4465 item_size - split_offset); 4455 item_size - split_offset);
4466 btrfs_mark_buffer_dirty(leaf); 4456 btrfs_mark_buffer_dirty(leaf);
4467 4457
4468 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4458 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4469 kfree(buf); 4459 kfree(buf);
4470 return 0; 4460 return 0;
4471 } 4461 }
4472 4462
4473 /* 4463 /*
4474 * This function splits a single item into two items, 4464 * This function splits a single item into two items,
4475 * giving 'new_key' to the new item and splitting the 4465 * giving 'new_key' to the new item and splitting the
4476 * old one at split_offset (from the start of the item). 4466 * old one at split_offset (from the start of the item).
4477 * 4467 *
4478 * The path may be released by this operation. After 4468 * The path may be released by this operation. After
4479 * the split, the path is pointing to the old item. The 4469 * the split, the path is pointing to the old item. The
4480 * new item is going to be in the same node as the old one. 4470 * new item is going to be in the same node as the old one.
4481 * 4471 *
4482 * Note, the item being split must be smaller enough to live alone on 4472 * Note, the item being split must be smaller enough to live alone on
4483 * a tree block with room for one extra struct btrfs_item 4473 * a tree block with room for one extra struct btrfs_item
4484 * 4474 *
4485 * This allows us to split the item in place, keeping a lock on the 4475 * This allows us to split the item in place, keeping a lock on the
4486 * leaf the entire time. 4476 * leaf the entire time.
4487 */ 4477 */
4488 int btrfs_split_item(struct btrfs_trans_handle *trans, 4478 int btrfs_split_item(struct btrfs_trans_handle *trans,
4489 struct btrfs_root *root, 4479 struct btrfs_root *root,
4490 struct btrfs_path *path, 4480 struct btrfs_path *path,
4491 struct btrfs_key *new_key, 4481 struct btrfs_key *new_key,
4492 unsigned long split_offset) 4482 unsigned long split_offset)
4493 { 4483 {
4494 int ret; 4484 int ret;
4495 ret = setup_leaf_for_split(trans, root, path, 4485 ret = setup_leaf_for_split(trans, root, path,
4496 sizeof(struct btrfs_item)); 4486 sizeof(struct btrfs_item));
4497 if (ret) 4487 if (ret)
4498 return ret; 4488 return ret;
4499 4489
4500 ret = split_item(trans, root, path, new_key, split_offset); 4490 ret = split_item(trans, root, path, new_key, split_offset);
4501 return ret; 4491 return ret;
4502 } 4492 }
4503 4493
4504 /* 4494 /*
4505 * This function duplicate a item, giving 'new_key' to the new item. 4495 * This function duplicate a item, giving 'new_key' to the new item.
4506 * It guarantees both items live in the same tree leaf and the new item 4496 * It guarantees both items live in the same tree leaf and the new item
4507 * is contiguous with the original item. 4497 * is contiguous with the original item.
4508 * 4498 *
4509 * This allows us to split file extent in place, keeping a lock on the 4499 * This allows us to split file extent in place, keeping a lock on the
4510 * leaf the entire time. 4500 * leaf the entire time.
4511 */ 4501 */
4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4502 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4513 struct btrfs_root *root, 4503 struct btrfs_root *root,
4514 struct btrfs_path *path, 4504 struct btrfs_path *path,
4515 struct btrfs_key *new_key) 4505 struct btrfs_key *new_key)
4516 { 4506 {
4517 struct extent_buffer *leaf; 4507 struct extent_buffer *leaf;
4518 int ret; 4508 int ret;
4519 u32 item_size; 4509 u32 item_size;
4520 4510
4521 leaf = path->nodes[0]; 4511 leaf = path->nodes[0];
4522 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4512 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4523 ret = setup_leaf_for_split(trans, root, path, 4513 ret = setup_leaf_for_split(trans, root, path,
4524 item_size + sizeof(struct btrfs_item)); 4514 item_size + sizeof(struct btrfs_item));
4525 if (ret) 4515 if (ret)
4526 return ret; 4516 return ret;
4527 4517
4528 path->slots[0]++; 4518 path->slots[0]++;
4529 setup_items_for_insert(root, path, new_key, &item_size, 4519 setup_items_for_insert(root, path, new_key, &item_size,
4530 item_size, item_size + 4520 item_size, item_size +
4531 sizeof(struct btrfs_item), 1); 4521 sizeof(struct btrfs_item), 1);
4532 leaf = path->nodes[0]; 4522 leaf = path->nodes[0];
4533 memcpy_extent_buffer(leaf, 4523 memcpy_extent_buffer(leaf,
4534 btrfs_item_ptr_offset(leaf, path->slots[0]), 4524 btrfs_item_ptr_offset(leaf, path->slots[0]),
4535 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4525 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4536 item_size); 4526 item_size);
4537 return 0; 4527 return 0;
4538 } 4528 }
4539 4529
4540 /* 4530 /*
4541 * make the item pointed to by the path smaller. new_size indicates 4531 * make the item pointed to by the path smaller. new_size indicates
4542 * how small to make it, and from_end tells us if we just chop bytes 4532 * how small to make it, and from_end tells us if we just chop bytes
4543 * off the end of the item or if we shift the item to chop bytes off 4533 * off the end of the item or if we shift the item to chop bytes off
4544 * the front. 4534 * the front.
4545 */ 4535 */
4546 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4536 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4547 u32 new_size, int from_end) 4537 u32 new_size, int from_end)
4548 { 4538 {
4549 int slot; 4539 int slot;
4550 struct extent_buffer *leaf; 4540 struct extent_buffer *leaf;
4551 struct btrfs_item *item; 4541 struct btrfs_item *item;
4552 u32 nritems; 4542 u32 nritems;
4553 unsigned int data_end; 4543 unsigned int data_end;
4554 unsigned int old_data_start; 4544 unsigned int old_data_start;
4555 unsigned int old_size; 4545 unsigned int old_size;
4556 unsigned int size_diff; 4546 unsigned int size_diff;
4557 int i; 4547 int i;
4558 struct btrfs_map_token token; 4548 struct btrfs_map_token token;
4559 4549
4560 btrfs_init_map_token(&token); 4550 btrfs_init_map_token(&token);
4561 4551
4562 leaf = path->nodes[0]; 4552 leaf = path->nodes[0];
4563 slot = path->slots[0]; 4553 slot = path->slots[0];
4564 4554
4565 old_size = btrfs_item_size_nr(leaf, slot); 4555 old_size = btrfs_item_size_nr(leaf, slot);
4566 if (old_size == new_size) 4556 if (old_size == new_size)
4567 return; 4557 return;
4568 4558
4569 nritems = btrfs_header_nritems(leaf); 4559 nritems = btrfs_header_nritems(leaf);
4570 data_end = leaf_data_end(root, leaf); 4560 data_end = leaf_data_end(root, leaf);
4571 4561
4572 old_data_start = btrfs_item_offset_nr(leaf, slot); 4562 old_data_start = btrfs_item_offset_nr(leaf, slot);
4573 4563
4574 size_diff = old_size - new_size; 4564 size_diff = old_size - new_size;
4575 4565
4576 BUG_ON(slot < 0); 4566 BUG_ON(slot < 0);
4577 BUG_ON(slot >= nritems); 4567 BUG_ON(slot >= nritems);
4578 4568
4579 /* 4569 /*
4580 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4570 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4581 */ 4571 */
4582 /* first correct the data pointers */ 4572 /* first correct the data pointers */
4583 for (i = slot; i < nritems; i++) { 4573 for (i = slot; i < nritems; i++) {
4584 u32 ioff; 4574 u32 ioff;
4585 item = btrfs_item_nr(i); 4575 item = btrfs_item_nr(i);
4586 4576
4587 ioff = btrfs_token_item_offset(leaf, item, &token); 4577 ioff = btrfs_token_item_offset(leaf, item, &token);
4588 btrfs_set_token_item_offset(leaf, item, 4578 btrfs_set_token_item_offset(leaf, item,
4589 ioff + size_diff, &token); 4579 ioff + size_diff, &token);
4590 } 4580 }
4591 4581
4592 /* shift the data */ 4582 /* shift the data */
4593 if (from_end) { 4583 if (from_end) {
4594 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4584 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4595 data_end + size_diff, btrfs_leaf_data(leaf) + 4585 data_end + size_diff, btrfs_leaf_data(leaf) +
4596 data_end, old_data_start + new_size - data_end); 4586 data_end, old_data_start + new_size - data_end);
4597 } else { 4587 } else {
4598 struct btrfs_disk_key disk_key; 4588 struct btrfs_disk_key disk_key;
4599 u64 offset; 4589 u64 offset;
4600 4590
4601 btrfs_item_key(leaf, &disk_key, slot); 4591 btrfs_item_key(leaf, &disk_key, slot);
4602 4592
4603 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4593 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4604 unsigned long ptr; 4594 unsigned long ptr;
4605 struct btrfs_file_extent_item *fi; 4595 struct btrfs_file_extent_item *fi;
4606 4596
4607 fi = btrfs_item_ptr(leaf, slot, 4597 fi = btrfs_item_ptr(leaf, slot,
4608 struct btrfs_file_extent_item); 4598 struct btrfs_file_extent_item);
4609 fi = (struct btrfs_file_extent_item *)( 4599 fi = (struct btrfs_file_extent_item *)(
4610 (unsigned long)fi - size_diff); 4600 (unsigned long)fi - size_diff);
4611 4601
4612 if (btrfs_file_extent_type(leaf, fi) == 4602 if (btrfs_file_extent_type(leaf, fi) ==
4613 BTRFS_FILE_EXTENT_INLINE) { 4603 BTRFS_FILE_EXTENT_INLINE) {
4614 ptr = btrfs_item_ptr_offset(leaf, slot); 4604 ptr = btrfs_item_ptr_offset(leaf, slot);
4615 memmove_extent_buffer(leaf, ptr, 4605 memmove_extent_buffer(leaf, ptr,
4616 (unsigned long)fi, 4606 (unsigned long)fi,
4617 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4607 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4618 } 4608 }
4619 } 4609 }
4620 4610
4621 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4611 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4622 data_end + size_diff, btrfs_leaf_data(leaf) + 4612 data_end + size_diff, btrfs_leaf_data(leaf) +
4623 data_end, old_data_start - data_end); 4613 data_end, old_data_start - data_end);
4624 4614
4625 offset = btrfs_disk_key_offset(&disk_key); 4615 offset = btrfs_disk_key_offset(&disk_key);
4626 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4616 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4627 btrfs_set_item_key(leaf, &disk_key, slot); 4617 btrfs_set_item_key(leaf, &disk_key, slot);
4628 if (slot == 0) 4618 if (slot == 0)
4629 fixup_low_keys(root, path, &disk_key, 1); 4619 fixup_low_keys(root, path, &disk_key, 1);
4630 } 4620 }
4631 4621
4632 item = btrfs_item_nr(slot); 4622 item = btrfs_item_nr(slot);
4633 btrfs_set_item_size(leaf, item, new_size); 4623 btrfs_set_item_size(leaf, item, new_size);
4634 btrfs_mark_buffer_dirty(leaf); 4624 btrfs_mark_buffer_dirty(leaf);
4635 4625
4636 if (btrfs_leaf_free_space(root, leaf) < 0) { 4626 if (btrfs_leaf_free_space(root, leaf) < 0) {
4637 btrfs_print_leaf(root, leaf); 4627 btrfs_print_leaf(root, leaf);
4638 BUG(); 4628 BUG();
4639 } 4629 }
4640 } 4630 }
4641 4631
4642 /* 4632 /*
4643 * make the item pointed to by the path bigger, data_size is the added size. 4633 * make the item pointed to by the path bigger, data_size is the added size.
4644 */ 4634 */
4645 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4635 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4646 u32 data_size) 4636 u32 data_size)
4647 { 4637 {
4648 int slot; 4638 int slot;
4649 struct extent_buffer *leaf; 4639 struct extent_buffer *leaf;
4650 struct btrfs_item *item; 4640 struct btrfs_item *item;
4651 u32 nritems; 4641 u32 nritems;
4652 unsigned int data_end; 4642 unsigned int data_end;
4653 unsigned int old_data; 4643 unsigned int old_data;
4654 unsigned int old_size; 4644 unsigned int old_size;
4655 int i; 4645 int i;
4656 struct btrfs_map_token token; 4646 struct btrfs_map_token token;
4657 4647
4658 btrfs_init_map_token(&token); 4648 btrfs_init_map_token(&token);
4659 4649
4660 leaf = path->nodes[0]; 4650 leaf = path->nodes[0];
4661 4651
4662 nritems = btrfs_header_nritems(leaf); 4652 nritems = btrfs_header_nritems(leaf);
4663 data_end = leaf_data_end(root, leaf); 4653 data_end = leaf_data_end(root, leaf);
4664 4654
4665 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4655 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4666 btrfs_print_leaf(root, leaf); 4656 btrfs_print_leaf(root, leaf);
4667 BUG(); 4657 BUG();
4668 } 4658 }
4669 slot = path->slots[0]; 4659 slot = path->slots[0];
4670 old_data = btrfs_item_end_nr(leaf, slot); 4660 old_data = btrfs_item_end_nr(leaf, slot);
4671 4661
4672 BUG_ON(slot < 0); 4662 BUG_ON(slot < 0);
4673 if (slot >= nritems) { 4663 if (slot >= nritems) {
4674 btrfs_print_leaf(root, leaf); 4664 btrfs_print_leaf(root, leaf);
4675 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4665 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4676 slot, nritems); 4666 slot, nritems);
4677 BUG_ON(1); 4667 BUG_ON(1);
4678 } 4668 }
4679 4669
4680 /* 4670 /*
4681 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4671 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4682 */ 4672 */
4683 /* first correct the data pointers */ 4673 /* first correct the data pointers */
4684 for (i = slot; i < nritems; i++) { 4674 for (i = slot; i < nritems; i++) {
4685 u32 ioff; 4675 u32 ioff;
4686 item = btrfs_item_nr(i); 4676 item = btrfs_item_nr(i);
4687 4677
4688 ioff = btrfs_token_item_offset(leaf, item, &token); 4678 ioff = btrfs_token_item_offset(leaf, item, &token);
4689 btrfs_set_token_item_offset(leaf, item, 4679 btrfs_set_token_item_offset(leaf, item,
4690 ioff - data_size, &token); 4680 ioff - data_size, &token);
4691 } 4681 }
4692 4682
4693 /* shift the data */ 4683 /* shift the data */
4694 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4684 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4695 data_end - data_size, btrfs_leaf_data(leaf) + 4685 data_end - data_size, btrfs_leaf_data(leaf) +
4696 data_end, old_data - data_end); 4686 data_end, old_data - data_end);
4697 4687
4698 data_end = old_data; 4688 data_end = old_data;
4699 old_size = btrfs_item_size_nr(leaf, slot); 4689 old_size = btrfs_item_size_nr(leaf, slot);
4700 item = btrfs_item_nr(slot); 4690 item = btrfs_item_nr(slot);
4701 btrfs_set_item_size(leaf, item, old_size + data_size); 4691 btrfs_set_item_size(leaf, item, old_size + data_size);
4702 btrfs_mark_buffer_dirty(leaf); 4692 btrfs_mark_buffer_dirty(leaf);
4703 4693
4704 if (btrfs_leaf_free_space(root, leaf) < 0) { 4694 if (btrfs_leaf_free_space(root, leaf) < 0) {
4705 btrfs_print_leaf(root, leaf); 4695 btrfs_print_leaf(root, leaf);
4706 BUG(); 4696 BUG();
4707 } 4697 }
4708 } 4698 }
4709 4699
4710 /* 4700 /*
4711 * this is a helper for btrfs_insert_empty_items, the main goal here is 4701 * this is a helper for btrfs_insert_empty_items, the main goal here is
4712 * to save stack depth by doing the bulk of the work in a function 4702 * to save stack depth by doing the bulk of the work in a function
4713 * that doesn't call btrfs_search_slot 4703 * that doesn't call btrfs_search_slot
4714 */ 4704 */
4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4705 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4716 struct btrfs_key *cpu_key, u32 *data_size, 4706 struct btrfs_key *cpu_key, u32 *data_size,
4717 u32 total_data, u32 total_size, int nr) 4707 u32 total_data, u32 total_size, int nr)
4718 { 4708 {
4719 struct btrfs_item *item; 4709 struct btrfs_item *item;
4720 int i; 4710 int i;
4721 u32 nritems; 4711 u32 nritems;
4722 unsigned int data_end; 4712 unsigned int data_end;
4723 struct btrfs_disk_key disk_key; 4713 struct btrfs_disk_key disk_key;
4724 struct extent_buffer *leaf; 4714 struct extent_buffer *leaf;
4725 int slot; 4715 int slot;
4726 struct btrfs_map_token token; 4716 struct btrfs_map_token token;
4727 4717
4728 if (path->slots[0] == 0) { 4718 if (path->slots[0] == 0) {
4729 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4719 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4730 fixup_low_keys(root, path, &disk_key, 1); 4720 fixup_low_keys(root, path, &disk_key, 1);
4731 } 4721 }
4732 btrfs_unlock_up_safe(path, 1); 4722 btrfs_unlock_up_safe(path, 1);
4733 4723
4734 btrfs_init_map_token(&token); 4724 btrfs_init_map_token(&token);
4735 4725
4736 leaf = path->nodes[0]; 4726 leaf = path->nodes[0];
4737 slot = path->slots[0]; 4727 slot = path->slots[0];
4738 4728
4739 nritems = btrfs_header_nritems(leaf); 4729 nritems = btrfs_header_nritems(leaf);
4740 data_end = leaf_data_end(root, leaf); 4730 data_end = leaf_data_end(root, leaf);
4741 4731
4742 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4732 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4743 btrfs_print_leaf(root, leaf); 4733 btrfs_print_leaf(root, leaf);
4744 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4734 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4745 total_size, btrfs_leaf_free_space(root, leaf)); 4735 total_size, btrfs_leaf_free_space(root, leaf));
4746 BUG(); 4736 BUG();
4747 } 4737 }
4748 4738
4749 if (slot != nritems) { 4739 if (slot != nritems) {
4750 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4740 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4751 4741
4752 if (old_data < data_end) { 4742 if (old_data < data_end) {
4753 btrfs_print_leaf(root, leaf); 4743 btrfs_print_leaf(root, leaf);
4754 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4744 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4755 slot, old_data, data_end); 4745 slot, old_data, data_end);
4756 BUG_ON(1); 4746 BUG_ON(1);
4757 } 4747 }
4758 /* 4748 /*
4759 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4749 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4760 */ 4750 */
4761 /* first correct the data pointers */ 4751 /* first correct the data pointers */
4762 for (i = slot; i < nritems; i++) { 4752 for (i = slot; i < nritems; i++) {
4763 u32 ioff; 4753 u32 ioff;
4764 4754
4765 item = btrfs_item_nr( i); 4755 item = btrfs_item_nr( i);
4766 ioff = btrfs_token_item_offset(leaf, item, &token); 4756 ioff = btrfs_token_item_offset(leaf, item, &token);
4767 btrfs_set_token_item_offset(leaf, item, 4757 btrfs_set_token_item_offset(leaf, item,
4768 ioff - total_data, &token); 4758 ioff - total_data, &token);
4769 } 4759 }
4770 /* shift the items */ 4760 /* shift the items */
4771 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4761 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4772 btrfs_item_nr_offset(slot), 4762 btrfs_item_nr_offset(slot),
4773 (nritems - slot) * sizeof(struct btrfs_item)); 4763 (nritems - slot) * sizeof(struct btrfs_item));
4774 4764
4775 /* shift the data */ 4765 /* shift the data */
4776 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4766 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4777 data_end - total_data, btrfs_leaf_data(leaf) + 4767 data_end - total_data, btrfs_leaf_data(leaf) +
4778 data_end, old_data - data_end); 4768 data_end, old_data - data_end);
4779 data_end = old_data; 4769 data_end = old_data;
4780 } 4770 }
4781 4771
4782 /* setup the item for the new data */ 4772 /* setup the item for the new data */
4783 for (i = 0; i < nr; i++) { 4773 for (i = 0; i < nr; i++) {
4784 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4774 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4785 btrfs_set_item_key(leaf, &disk_key, slot + i); 4775 btrfs_set_item_key(leaf, &disk_key, slot + i);
4786 item = btrfs_item_nr(slot + i); 4776 item = btrfs_item_nr(slot + i);
4787 btrfs_set_token_item_offset(leaf, item, 4777 btrfs_set_token_item_offset(leaf, item,
4788 data_end - data_size[i], &token); 4778 data_end - data_size[i], &token);
4789 data_end -= data_size[i]; 4779 data_end -= data_size[i];
4790 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4780 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4791 } 4781 }
4792 4782
4793 btrfs_set_header_nritems(leaf, nritems + nr); 4783 btrfs_set_header_nritems(leaf, nritems + nr);
4794 btrfs_mark_buffer_dirty(leaf); 4784 btrfs_mark_buffer_dirty(leaf);
4795 4785
4796 if (btrfs_leaf_free_space(root, leaf) < 0) { 4786 if (btrfs_leaf_free_space(root, leaf) < 0) {
4797 btrfs_print_leaf(root, leaf); 4787 btrfs_print_leaf(root, leaf);
4798 BUG(); 4788 BUG();
4799 } 4789 }
4800 } 4790 }
4801 4791
4802 /* 4792 /*
4803 * Given a key and some data, insert items into the tree. 4793 * Given a key and some data, insert items into the tree.
4804 * This does all the path init required, making room in the tree if needed. 4794 * This does all the path init required, making room in the tree if needed.
4805 */ 4795 */
4806 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4796 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4807 struct btrfs_root *root, 4797 struct btrfs_root *root,
4808 struct btrfs_path *path, 4798 struct btrfs_path *path,
4809 struct btrfs_key *cpu_key, u32 *data_size, 4799 struct btrfs_key *cpu_key, u32 *data_size,
4810 int nr) 4800 int nr)
4811 { 4801 {
4812 int ret = 0; 4802 int ret = 0;
4813 int slot; 4803 int slot;
4814 int i; 4804 int i;
4815 u32 total_size = 0; 4805 u32 total_size = 0;
4816 u32 total_data = 0; 4806 u32 total_data = 0;
4817 4807
4818 for (i = 0; i < nr; i++) 4808 for (i = 0; i < nr; i++)
4819 total_data += data_size[i]; 4809 total_data += data_size[i];
4820 4810
4821 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4811 total_size = total_data + (nr * sizeof(struct btrfs_item));
4822 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4812 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4823 if (ret == 0) 4813 if (ret == 0)
4824 return -EEXIST; 4814 return -EEXIST;
4825 if (ret < 0) 4815 if (ret < 0)
4826 return ret; 4816 return ret;
4827 4817
4828 slot = path->slots[0]; 4818 slot = path->slots[0];
4829 BUG_ON(slot < 0); 4819 BUG_ON(slot < 0);
4830 4820
4831 setup_items_for_insert(root, path, cpu_key, data_size, 4821 setup_items_for_insert(root, path, cpu_key, data_size,
4832 total_data, total_size, nr); 4822 total_data, total_size, nr);
4833 return 0; 4823 return 0;
4834 } 4824 }
4835 4825
4836 /* 4826 /*
4837 * Given a key and some data, insert an item into the tree. 4827 * Given a key and some data, insert an item into the tree.
4838 * This does all the path init required, making room in the tree if needed. 4828 * This does all the path init required, making room in the tree if needed.
4839 */ 4829 */
4840 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4830 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4841 *root, struct btrfs_key *cpu_key, void *data, u32 4831 *root, struct btrfs_key *cpu_key, void *data, u32
4842 data_size) 4832 data_size)
4843 { 4833 {
4844 int ret = 0; 4834 int ret = 0;
4845 struct btrfs_path *path; 4835 struct btrfs_path *path;
4846 struct extent_buffer *leaf; 4836 struct extent_buffer *leaf;
4847 unsigned long ptr; 4837 unsigned long ptr;
4848 4838
4849 path = btrfs_alloc_path(); 4839 path = btrfs_alloc_path();
4850 if (!path) 4840 if (!path)
4851 return -ENOMEM; 4841 return -ENOMEM;
4852 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4842 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4853 if (!ret) { 4843 if (!ret) {
4854 leaf = path->nodes[0]; 4844 leaf = path->nodes[0];
4855 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4856 write_extent_buffer(leaf, data, ptr, data_size); 4846 write_extent_buffer(leaf, data, ptr, data_size);
4857 btrfs_mark_buffer_dirty(leaf); 4847 btrfs_mark_buffer_dirty(leaf);
4858 } 4848 }
4859 btrfs_free_path(path); 4849 btrfs_free_path(path);
4860 return ret; 4850 return ret;
4861 } 4851 }
4862 4852
4863 /* 4853 /*
4864 * delete the pointer from a given node. 4854 * delete the pointer from a given node.
4865 * 4855 *
4866 * the tree should have been previously balanced so the deletion does not 4856 * the tree should have been previously balanced so the deletion does not
4867 * empty a node. 4857 * empty a node.
4868 */ 4858 */
4869 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4859 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4870 int level, int slot) 4860 int level, int slot)
4871 { 4861 {
4872 struct extent_buffer *parent = path->nodes[level]; 4862 struct extent_buffer *parent = path->nodes[level];
4873 u32 nritems; 4863 u32 nritems;
4874 int ret; 4864 int ret;
4875 4865
4876 nritems = btrfs_header_nritems(parent); 4866 nritems = btrfs_header_nritems(parent);
4877 if (slot != nritems - 1) { 4867 if (slot != nritems - 1) {
4878 if (level) 4868 if (level)
4879 tree_mod_log_eb_move(root->fs_info, parent, slot, 4869 tree_mod_log_eb_move(root->fs_info, parent, slot,
4880 slot + 1, nritems - slot - 1); 4870 slot + 1, nritems - slot - 1);
4881 memmove_extent_buffer(parent, 4871 memmove_extent_buffer(parent,
4882 btrfs_node_key_ptr_offset(slot), 4872 btrfs_node_key_ptr_offset(slot),
4883 btrfs_node_key_ptr_offset(slot + 1), 4873 btrfs_node_key_ptr_offset(slot + 1),
4884 sizeof(struct btrfs_key_ptr) * 4874 sizeof(struct btrfs_key_ptr) *
4885 (nritems - slot - 1)); 4875 (nritems - slot - 1));
4886 } else if (level) { 4876 } else if (level) {
4887 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4877 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4888 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4878 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4889 BUG_ON(ret < 0); 4879 BUG_ON(ret < 0);
4890 } 4880 }
4891 4881
4892 nritems--; 4882 nritems--;
4893 btrfs_set_header_nritems(parent, nritems); 4883 btrfs_set_header_nritems(parent, nritems);
4894 if (nritems == 0 && parent == root->node) { 4884 if (nritems == 0 && parent == root->node) {
4895 BUG_ON(btrfs_header_level(root->node) != 1); 4885 BUG_ON(btrfs_header_level(root->node) != 1);
4896 /* just turn the root into a leaf and break */ 4886 /* just turn the root into a leaf and break */
4897 btrfs_set_header_level(root->node, 0); 4887 btrfs_set_header_level(root->node, 0);
4898 } else if (slot == 0) { 4888 } else if (slot == 0) {
4899 struct btrfs_disk_key disk_key; 4889 struct btrfs_disk_key disk_key;
4900 4890
4901 btrfs_node_key(parent, &disk_key, 0); 4891 btrfs_node_key(parent, &disk_key, 0);
4902 fixup_low_keys(root, path, &disk_key, level + 1); 4892 fixup_low_keys(root, path, &disk_key, level + 1);
4903 } 4893 }
4904 btrfs_mark_buffer_dirty(parent); 4894 btrfs_mark_buffer_dirty(parent);
4905 } 4895 }
4906 4896
4907 /* 4897 /*
4908 * a helper function to delete the leaf pointed to by path->slots[1] and 4898 * a helper function to delete the leaf pointed to by path->slots[1] and
4909 * path->nodes[1]. 4899 * path->nodes[1].
4910 * 4900 *
4911 * This deletes the pointer in path->nodes[1] and frees the leaf 4901 * This deletes the pointer in path->nodes[1] and frees the leaf
4912 * block extent. zero is returned if it all worked out, < 0 otherwise. 4902 * block extent. zero is returned if it all worked out, < 0 otherwise.
4913 * 4903 *
4914 * The path must have already been setup for deleting the leaf, including 4904 * The path must have already been setup for deleting the leaf, including
4915 * all the proper balancing. path->nodes[1] must be locked. 4905 * all the proper balancing. path->nodes[1] must be locked.
4916 */ 4906 */
4917 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4907 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4918 struct btrfs_root *root, 4908 struct btrfs_root *root,
4919 struct btrfs_path *path, 4909 struct btrfs_path *path,
4920 struct extent_buffer *leaf) 4910 struct extent_buffer *leaf)
4921 { 4911 {
4922 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4912 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4923 del_ptr(root, path, 1, path->slots[1]); 4913 del_ptr(root, path, 1, path->slots[1]);
4924 4914
4925 /* 4915 /*
4926 * btrfs_free_extent is expensive, we want to make sure we 4916 * btrfs_free_extent is expensive, we want to make sure we
4927 * aren't holding any locks when we call it 4917 * aren't holding any locks when we call it
4928 */ 4918 */
4929 btrfs_unlock_up_safe(path, 0); 4919 btrfs_unlock_up_safe(path, 0);
4930 4920
4931 root_sub_used(root, leaf->len); 4921 root_sub_used(root, leaf->len);
4932 4922
4933 extent_buffer_get(leaf); 4923 extent_buffer_get(leaf);
4934 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4924 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4935 free_extent_buffer_stale(leaf); 4925 free_extent_buffer_stale(leaf);
4936 } 4926 }
4937 /* 4927 /*
4938 * delete the item at the leaf level in path. If that empties 4928 * delete the item at the leaf level in path. If that empties
4939 * the leaf, remove it from the tree 4929 * the leaf, remove it from the tree
4940 */ 4930 */
4941 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4931 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4942 struct btrfs_path *path, int slot, int nr) 4932 struct btrfs_path *path, int slot, int nr)
4943 { 4933 {
4944 struct extent_buffer *leaf; 4934 struct extent_buffer *leaf;
4945 struct btrfs_item *item; 4935 struct btrfs_item *item;
4946 int last_off; 4936 int last_off;
4947 int dsize = 0; 4937 int dsize = 0;
4948 int ret = 0; 4938 int ret = 0;
4949 int wret; 4939 int wret;
4950 int i; 4940 int i;
4951 u32 nritems; 4941 u32 nritems;
4952 struct btrfs_map_token token; 4942 struct btrfs_map_token token;
4953 4943
4954 btrfs_init_map_token(&token); 4944 btrfs_init_map_token(&token);
4955 4945
4956 leaf = path->nodes[0]; 4946 leaf = path->nodes[0];
4957 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4947 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4958 4948
4959 for (i = 0; i < nr; i++) 4949 for (i = 0; i < nr; i++)
4960 dsize += btrfs_item_size_nr(leaf, slot + i); 4950 dsize += btrfs_item_size_nr(leaf, slot + i);
4961 4951
4962 nritems = btrfs_header_nritems(leaf); 4952 nritems = btrfs_header_nritems(leaf);
4963 4953
4964 if (slot + nr != nritems) { 4954 if (slot + nr != nritems) {
4965 int data_end = leaf_data_end(root, leaf); 4955 int data_end = leaf_data_end(root, leaf);
4966 4956
4967 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4957 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4968 data_end + dsize, 4958 data_end + dsize,
4969 btrfs_leaf_data(leaf) + data_end, 4959 btrfs_leaf_data(leaf) + data_end,
4970 last_off - data_end); 4960 last_off - data_end);
4971 4961
4972 for (i = slot + nr; i < nritems; i++) { 4962 for (i = slot + nr; i < nritems; i++) {
4973 u32 ioff; 4963 u32 ioff;
4974 4964
4975 item = btrfs_item_nr(i); 4965 item = btrfs_item_nr(i);
4976 ioff = btrfs_token_item_offset(leaf, item, &token); 4966 ioff = btrfs_token_item_offset(leaf, item, &token);
4977 btrfs_set_token_item_offset(leaf, item, 4967 btrfs_set_token_item_offset(leaf, item,
4978 ioff + dsize, &token); 4968 ioff + dsize, &token);
4979 } 4969 }
4980 4970
4981 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4971 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4982 btrfs_item_nr_offset(slot + nr), 4972 btrfs_item_nr_offset(slot + nr),
4983 sizeof(struct btrfs_item) * 4973 sizeof(struct btrfs_item) *
4984 (nritems - slot - nr)); 4974 (nritems - slot - nr));
4985 } 4975 }
4986 btrfs_set_header_nritems(leaf, nritems - nr); 4976 btrfs_set_header_nritems(leaf, nritems - nr);
4987 nritems -= nr; 4977 nritems -= nr;
4988 4978
4989 /* delete the leaf if we've emptied it */ 4979 /* delete the leaf if we've emptied it */
4990 if (nritems == 0) { 4980 if (nritems == 0) {
4991 if (leaf == root->node) { 4981 if (leaf == root->node) {
4992 btrfs_set_header_level(leaf, 0); 4982 btrfs_set_header_level(leaf, 0);
4993 } else { 4983 } else {
4994 btrfs_set_path_blocking(path); 4984 btrfs_set_path_blocking(path);
4995 clean_tree_block(trans, root, leaf); 4985 clean_tree_block(trans, root, leaf);
4996 btrfs_del_leaf(trans, root, path, leaf); 4986 btrfs_del_leaf(trans, root, path, leaf);
4997 } 4987 }
4998 } else { 4988 } else {
4999 int used = leaf_space_used(leaf, 0, nritems); 4989 int used = leaf_space_used(leaf, 0, nritems);
5000 if (slot == 0) { 4990 if (slot == 0) {
5001 struct btrfs_disk_key disk_key; 4991 struct btrfs_disk_key disk_key;
5002 4992
5003 btrfs_item_key(leaf, &disk_key, 0); 4993 btrfs_item_key(leaf, &disk_key, 0);
5004 fixup_low_keys(root, path, &disk_key, 1); 4994 fixup_low_keys(root, path, &disk_key, 1);
5005 } 4995 }
5006 4996
5007 /* delete the leaf if it is mostly empty */ 4997 /* delete the leaf if it is mostly empty */
5008 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4998 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5009 /* push_leaf_left fixes the path. 4999 /* push_leaf_left fixes the path.
5010 * make sure the path still points to our leaf 5000 * make sure the path still points to our leaf
5011 * for possible call to del_ptr below 5001 * for possible call to del_ptr below
5012 */ 5002 */
5013 slot = path->slots[1]; 5003 slot = path->slots[1];
5014 extent_buffer_get(leaf); 5004 extent_buffer_get(leaf);
5015 5005
5016 btrfs_set_path_blocking(path); 5006 btrfs_set_path_blocking(path);
5017 wret = push_leaf_left(trans, root, path, 1, 1, 5007 wret = push_leaf_left(trans, root, path, 1, 1,
5018 1, (u32)-1); 5008 1, (u32)-1);
5019 if (wret < 0 && wret != -ENOSPC) 5009 if (wret < 0 && wret != -ENOSPC)
5020 ret = wret; 5010 ret = wret;
5021 5011
5022 if (path->nodes[0] == leaf && 5012 if (path->nodes[0] == leaf &&
5023 btrfs_header_nritems(leaf)) { 5013 btrfs_header_nritems(leaf)) {
5024 wret = push_leaf_right(trans, root, path, 1, 5014 wret = push_leaf_right(trans, root, path, 1,
5025 1, 1, 0); 5015 1, 1, 0);
5026 if (wret < 0 && wret != -ENOSPC) 5016 if (wret < 0 && wret != -ENOSPC)
5027 ret = wret; 5017 ret = wret;
5028 } 5018 }
5029 5019
5030 if (btrfs_header_nritems(leaf) == 0) { 5020 if (btrfs_header_nritems(leaf) == 0) {
5031 path->slots[1] = slot; 5021 path->slots[1] = slot;
5032 btrfs_del_leaf(trans, root, path, leaf); 5022 btrfs_del_leaf(trans, root, path, leaf);
5033 free_extent_buffer(leaf); 5023 free_extent_buffer(leaf);
5034 ret = 0; 5024 ret = 0;
5035 } else { 5025 } else {
5036 /* if we're still in the path, make sure 5026 /* if we're still in the path, make sure
5037 * we're dirty. Otherwise, one of the 5027 * we're dirty. Otherwise, one of the
5038 * push_leaf functions must have already 5028 * push_leaf functions must have already
5039 * dirtied this buffer 5029 * dirtied this buffer
5040 */ 5030 */
5041 if (path->nodes[0] == leaf) 5031 if (path->nodes[0] == leaf)
5042 btrfs_mark_buffer_dirty(leaf); 5032 btrfs_mark_buffer_dirty(leaf);
5043 free_extent_buffer(leaf); 5033 free_extent_buffer(leaf);
5044 } 5034 }
5045 } else { 5035 } else {
5046 btrfs_mark_buffer_dirty(leaf); 5036 btrfs_mark_buffer_dirty(leaf);
5047 } 5037 }
5048 } 5038 }
5049 return ret; 5039 return ret;
5050 } 5040 }
5051 5041
5052 /* 5042 /*
5053 * search the tree again to find a leaf with lesser keys 5043 * search the tree again to find a leaf with lesser keys
5054 * returns 0 if it found something or 1 if there are no lesser leaves. 5044 * returns 0 if it found something or 1 if there are no lesser leaves.
5055 * returns < 0 on io errors. 5045 * returns < 0 on io errors.
5056 * 5046 *
5057 * This may release the path, and so you may lose any locks held at the 5047 * This may release the path, and so you may lose any locks held at the
5058 * time you call it. 5048 * time you call it.
5059 */ 5049 */
5060 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5050 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5061 { 5051 {
5062 struct btrfs_key key; 5052 struct btrfs_key key;
5063 struct btrfs_disk_key found_key; 5053 struct btrfs_disk_key found_key;
5064 int ret; 5054 int ret;
5065 5055
5066 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5056 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5067 5057
5068 if (key.offset > 0) { 5058 if (key.offset > 0) {
5069 key.offset--; 5059 key.offset--;
5070 } else if (key.type > 0) { 5060 } else if (key.type > 0) {
5071 key.type--; 5061 key.type--;
5072 key.offset = (u64)-1; 5062 key.offset = (u64)-1;
5073 } else if (key.objectid > 0) { 5063 } else if (key.objectid > 0) {
5074 key.objectid--; 5064 key.objectid--;
5075 key.type = (u8)-1; 5065 key.type = (u8)-1;
5076 key.offset = (u64)-1; 5066 key.offset = (u64)-1;
5077 } else { 5067 } else {
5078 return 1; 5068 return 1;
5079 } 5069 }
5080 5070
5081 btrfs_release_path(path); 5071 btrfs_release_path(path);
5082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5083 if (ret < 0) 5073 if (ret < 0)
5084 return ret; 5074 return ret;
5085 btrfs_item_key(path->nodes[0], &found_key, 0); 5075 btrfs_item_key(path->nodes[0], &found_key, 0);
5086 ret = comp_keys(&found_key, &key); 5076 ret = comp_keys(&found_key, &key);
5087 /* 5077 /*
5088 * We might have had an item with the previous key in the tree right 5078 * We might have had an item with the previous key in the tree right
5089 * before we released our path. And after we released our path, that 5079 * before we released our path. And after we released our path, that
5090 * item might have been pushed to the first slot (0) of the leaf we 5080 * item might have been pushed to the first slot (0) of the leaf we
5091 * were holding due to a tree balance. Alternatively, an item with the 5081 * were holding due to a tree balance. Alternatively, an item with the
5092 * previous key can exist as the only element of a leaf (big fat item). 5082 * previous key can exist as the only element of a leaf (big fat item).
5093 * Therefore account for these 2 cases, so that our callers (like 5083 * Therefore account for these 2 cases, so that our callers (like
5094 * btrfs_previous_item) don't miss an existing item with a key matching 5084 * btrfs_previous_item) don't miss an existing item with a key matching
5095 * the previous key we computed above. 5085 * the previous key we computed above.
5096 */ 5086 */
5097 if (ret <= 0) 5087 if (ret <= 0)
5098 return 0; 5088 return 0;
5099 return 1; 5089 return 1;
5100 } 5090 }
5101 5091
5102 /* 5092 /*
5103 * A helper function to walk down the tree starting at min_key, and looking 5093 * A helper function to walk down the tree starting at min_key, and looking
5104 * for nodes or leaves that are have a minimum transaction id. 5094 * for nodes or leaves that are have a minimum transaction id.
5105 * This is used by the btree defrag code, and tree logging 5095 * This is used by the btree defrag code, and tree logging
5106 * 5096 *
5107 * This does not cow, but it does stuff the starting key it finds back 5097 * This does not cow, but it does stuff the starting key it finds back
5108 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5098 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5109 * key and get a writable path. 5099 * key and get a writable path.
5110 * 5100 *
5111 * This does lock as it descends, and path->keep_locks should be set 5101 * This does lock as it descends, and path->keep_locks should be set
5112 * to 1 by the caller. 5102 * to 1 by the caller.
5113 * 5103 *
5114 * This honors path->lowest_level to prevent descent past a given level 5104 * This honors path->lowest_level to prevent descent past a given level
5115 * of the tree. 5105 * of the tree.
5116 * 5106 *
5117 * min_trans indicates the oldest transaction that you are interested 5107 * min_trans indicates the oldest transaction that you are interested
5118 * in walking through. Any nodes or leaves older than min_trans are 5108 * in walking through. Any nodes or leaves older than min_trans are
5119 * skipped over (without reading them). 5109 * skipped over (without reading them).
5120 * 5110 *
5121 * returns zero if something useful was found, < 0 on error and 1 if there 5111 * returns zero if something useful was found, < 0 on error and 1 if there
5122 * was nothing in the tree that matched the search criteria. 5112 * was nothing in the tree that matched the search criteria.
5123 */ 5113 */
5124 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5114 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5125 struct btrfs_path *path, 5115 struct btrfs_path *path,
5126 u64 min_trans) 5116 u64 min_trans)
5127 { 5117 {
5128 struct extent_buffer *cur; 5118 struct extent_buffer *cur;
5129 struct btrfs_key found_key; 5119 struct btrfs_key found_key;
5130 int slot; 5120 int slot;
5131 int sret; 5121 int sret;
5132 u32 nritems; 5122 u32 nritems;
5133 int level; 5123 int level;
5134 int ret = 1; 5124 int ret = 1;
5135 int keep_locks = path->keep_locks; 5125 int keep_locks = path->keep_locks;
5136 5126
5137 path->keep_locks = 1; 5127 path->keep_locks = 1;
5138 again: 5128 again:
5139 cur = btrfs_read_lock_root_node(root); 5129 cur = btrfs_read_lock_root_node(root);
5140 level = btrfs_header_level(cur); 5130 level = btrfs_header_level(cur);
5141 WARN_ON(path->nodes[level]); 5131 WARN_ON(path->nodes[level]);
5142 path->nodes[level] = cur; 5132 path->nodes[level] = cur;
5143 path->locks[level] = BTRFS_READ_LOCK; 5133 path->locks[level] = BTRFS_READ_LOCK;
5144 5134
5145 if (btrfs_header_generation(cur) < min_trans) { 5135 if (btrfs_header_generation(cur) < min_trans) {
5146 ret = 1; 5136 ret = 1;
5147 goto out; 5137 goto out;
5148 } 5138 }
5149 while (1) { 5139 while (1) {
5150 nritems = btrfs_header_nritems(cur); 5140 nritems = btrfs_header_nritems(cur);
5151 level = btrfs_header_level(cur); 5141 level = btrfs_header_level(cur);
5152 sret = bin_search(cur, min_key, level, &slot); 5142 sret = bin_search(cur, min_key, level, &slot);
5153 5143
5154 /* at the lowest level, we're done, setup the path and exit */ 5144 /* at the lowest level, we're done, setup the path and exit */
5155 if (level == path->lowest_level) { 5145 if (level == path->lowest_level) {
5156 if (slot >= nritems) 5146 if (slot >= nritems)
5157 goto find_next_key; 5147 goto find_next_key;
5158 ret = 0; 5148 ret = 0;
5159 path->slots[level] = slot; 5149 path->slots[level] = slot;
5160 btrfs_item_key_to_cpu(cur, &found_key, slot); 5150 btrfs_item_key_to_cpu(cur, &found_key, slot);
5161 goto out; 5151 goto out;
5162 } 5152 }
5163 if (sret && slot > 0) 5153 if (sret && slot > 0)
5164 slot--; 5154 slot--;
5165 /* 5155 /*
5166 * check this node pointer against the min_trans parameters. 5156 * check this node pointer against the min_trans parameters.
5167 * If it is too old, old, skip to the next one. 5157 * If it is too old, old, skip to the next one.
5168 */ 5158 */
5169 while (slot < nritems) { 5159 while (slot < nritems) {
5170 u64 gen; 5160 u64 gen;
5171 5161
5172 gen = btrfs_node_ptr_generation(cur, slot); 5162 gen = btrfs_node_ptr_generation(cur, slot);
5173 if (gen < min_trans) { 5163 if (gen < min_trans) {
5174 slot++; 5164 slot++;
5175 continue; 5165 continue;
5176 } 5166 }
5177 break; 5167 break;
5178 } 5168 }
5179 find_next_key: 5169 find_next_key:
5180 /* 5170 /*
5181 * we didn't find a candidate key in this node, walk forward 5171 * we didn't find a candidate key in this node, walk forward
5182 * and find another one 5172 * and find another one
5183 */ 5173 */
5184 if (slot >= nritems) { 5174 if (slot >= nritems) {
5185 path->slots[level] = slot; 5175 path->slots[level] = slot;
5186 btrfs_set_path_blocking(path); 5176 btrfs_set_path_blocking(path);
5187 sret = btrfs_find_next_key(root, path, min_key, level, 5177 sret = btrfs_find_next_key(root, path, min_key, level,
5188 min_trans); 5178 min_trans);
5189 if (sret == 0) { 5179 if (sret == 0) {
5190 btrfs_release_path(path); 5180 btrfs_release_path(path);
5191 goto again; 5181 goto again;
5192 } else { 5182 } else {
5193 goto out; 5183 goto out;
5194 } 5184 }
5195 } 5185 }
5196 /* save our key for returning back */ 5186 /* save our key for returning back */
5197 btrfs_node_key_to_cpu(cur, &found_key, slot); 5187 btrfs_node_key_to_cpu(cur, &found_key, slot);
5198 path->slots[level] = slot; 5188 path->slots[level] = slot;
5199 if (level == path->lowest_level) { 5189 if (level == path->lowest_level) {
5200 ret = 0; 5190 ret = 0;
5201 goto out; 5191 goto out;
5202 } 5192 }
5203 btrfs_set_path_blocking(path); 5193 btrfs_set_path_blocking(path);
5204 cur = read_node_slot(root, cur, slot); 5194 cur = read_node_slot(root, cur, slot);
5205 BUG_ON(!cur); /* -ENOMEM */ 5195 BUG_ON(!cur); /* -ENOMEM */
5206 5196
5207 btrfs_tree_read_lock(cur); 5197 btrfs_tree_read_lock(cur);
5208 5198
5209 path->locks[level - 1] = BTRFS_READ_LOCK; 5199 path->locks[level - 1] = BTRFS_READ_LOCK;
5210 path->nodes[level - 1] = cur; 5200 path->nodes[level - 1] = cur;
5211 unlock_up(path, level, 1, 0, NULL); 5201 unlock_up(path, level, 1, 0, NULL);
5212 btrfs_clear_path_blocking(path, NULL, 0); 5202 btrfs_clear_path_blocking(path, NULL, 0);
5213 } 5203 }
5214 out: 5204 out:
5215 path->keep_locks = keep_locks; 5205 path->keep_locks = keep_locks;
5216 if (ret == 0) { 5206 if (ret == 0) {
5217 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5207 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5218 btrfs_set_path_blocking(path); 5208 btrfs_set_path_blocking(path);
5219 memcpy(min_key, &found_key, sizeof(found_key)); 5209 memcpy(min_key, &found_key, sizeof(found_key));
5220 } 5210 }
5221 return ret; 5211 return ret;
5222 } 5212 }
5223 5213
5224 static void tree_move_down(struct btrfs_root *root, 5214 static void tree_move_down(struct btrfs_root *root,
5225 struct btrfs_path *path, 5215 struct btrfs_path *path,
5226 int *level, int root_level) 5216 int *level, int root_level)
5227 { 5217 {
5228 BUG_ON(*level == 0); 5218 BUG_ON(*level == 0);
5229 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5219 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5230 path->slots[*level]); 5220 path->slots[*level]);
5231 path->slots[*level - 1] = 0; 5221 path->slots[*level - 1] = 0;
5232 (*level)--; 5222 (*level)--;
5233 } 5223 }
5234 5224
5235 static int tree_move_next_or_upnext(struct btrfs_root *root, 5225 static int tree_move_next_or_upnext(struct btrfs_root *root,
5236 struct btrfs_path *path, 5226 struct btrfs_path *path,
5237 int *level, int root_level) 5227 int *level, int root_level)
5238 { 5228 {
5239 int ret = 0; 5229 int ret = 0;
5240 int nritems; 5230 int nritems;
5241 nritems = btrfs_header_nritems(path->nodes[*level]); 5231 nritems = btrfs_header_nritems(path->nodes[*level]);
5242 5232
5243 path->slots[*level]++; 5233 path->slots[*level]++;
5244 5234
5245 while (path->slots[*level] >= nritems) { 5235 while (path->slots[*level] >= nritems) {
5246 if (*level == root_level) 5236 if (*level == root_level)
5247 return -1; 5237 return -1;
5248 5238
5249 /* move upnext */ 5239 /* move upnext */
5250 path->slots[*level] = 0; 5240 path->slots[*level] = 0;
5251 free_extent_buffer(path->nodes[*level]); 5241 free_extent_buffer(path->nodes[*level]);
5252 path->nodes[*level] = NULL; 5242 path->nodes[*level] = NULL;
5253 (*level)++; 5243 (*level)++;
5254 path->slots[*level]++; 5244 path->slots[*level]++;
5255 5245
5256 nritems = btrfs_header_nritems(path->nodes[*level]); 5246 nritems = btrfs_header_nritems(path->nodes[*level]);
5257 ret = 1; 5247 ret = 1;
5258 } 5248 }
5259 return ret; 5249 return ret;
5260 } 5250 }
5261 5251
5262 /* 5252 /*
5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5253 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5264 * or down. 5254 * or down.
5265 */ 5255 */
5266 static int tree_advance(struct btrfs_root *root, 5256 static int tree_advance(struct btrfs_root *root,
5267 struct btrfs_path *path, 5257 struct btrfs_path *path,
5268 int *level, int root_level, 5258 int *level, int root_level,
5269 int allow_down, 5259 int allow_down,
5270 struct btrfs_key *key) 5260 struct btrfs_key *key)
5271 { 5261 {
5272 int ret; 5262 int ret;
5273 5263
5274 if (*level == 0 || !allow_down) { 5264 if (*level == 0 || !allow_down) {
5275 ret = tree_move_next_or_upnext(root, path, level, root_level); 5265 ret = tree_move_next_or_upnext(root, path, level, root_level);
5276 } else { 5266 } else {
5277 tree_move_down(root, path, level, root_level); 5267 tree_move_down(root, path, level, root_level);
5278 ret = 0; 5268 ret = 0;
5279 } 5269 }
5280 if (ret >= 0) { 5270 if (ret >= 0) {
5281 if (*level == 0) 5271 if (*level == 0)
5282 btrfs_item_key_to_cpu(path->nodes[*level], key, 5272 btrfs_item_key_to_cpu(path->nodes[*level], key,
5283 path->slots[*level]); 5273 path->slots[*level]);
5284 else 5274 else
5285 btrfs_node_key_to_cpu(path->nodes[*level], key, 5275 btrfs_node_key_to_cpu(path->nodes[*level], key,
5286 path->slots[*level]); 5276 path->slots[*level]);
5287 } 5277 }
5288 return ret; 5278 return ret;
5289 } 5279 }
5290 5280
5291 static int tree_compare_item(struct btrfs_root *left_root, 5281 static int tree_compare_item(struct btrfs_root *left_root,
5292 struct btrfs_path *left_path, 5282 struct btrfs_path *left_path,
5293 struct btrfs_path *right_path, 5283 struct btrfs_path *right_path,
5294 char *tmp_buf) 5284 char *tmp_buf)
5295 { 5285 {
5296 int cmp; 5286 int cmp;
5297 int len1, len2; 5287 int len1, len2;
5298 unsigned long off1, off2; 5288 unsigned long off1, off2;
5299 5289
5300 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5290 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5301 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5291 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5302 if (len1 != len2) 5292 if (len1 != len2)
5303 return 1; 5293 return 1;
5304 5294
5305 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5295 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5306 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5296 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5307 right_path->slots[0]); 5297 right_path->slots[0]);
5308 5298
5309 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5299 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5310 5300
5311 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5301 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5312 if (cmp) 5302 if (cmp)
5313 return 1; 5303 return 1;
5314 return 0; 5304 return 0;
5315 } 5305 }
5316 5306
5317 #define ADVANCE 1 5307 #define ADVANCE 1
5318 #define ADVANCE_ONLY_NEXT -1 5308 #define ADVANCE_ONLY_NEXT -1
5319 5309
5320 /* 5310 /*
5321 * This function compares two trees and calls the provided callback for 5311 * This function compares two trees and calls the provided callback for
5322 * every changed/new/deleted item it finds. 5312 * every changed/new/deleted item it finds.
5323 * If shared tree blocks are encountered, whole subtrees are skipped, making 5313 * If shared tree blocks are encountered, whole subtrees are skipped, making
5324 * the compare pretty fast on snapshotted subvolumes. 5314 * the compare pretty fast on snapshotted subvolumes.
5325 * 5315 *
5326 * This currently works on commit roots only. As commit roots are read only, 5316 * This currently works on commit roots only. As commit roots are read only,
5327 * we don't do any locking. The commit roots are protected with transactions. 5317 * we don't do any locking. The commit roots are protected with transactions.
5328 * Transactions are ended and rejoined when a commit is tried in between. 5318 * Transactions are ended and rejoined when a commit is tried in between.
5329 * 5319 *
5330 * This function checks for modifications done to the trees while comparing. 5320 * This function checks for modifications done to the trees while comparing.
5331 * If it detects a change, it aborts immediately. 5321 * If it detects a change, it aborts immediately.
5332 */ 5322 */
5333 int btrfs_compare_trees(struct btrfs_root *left_root, 5323 int btrfs_compare_trees(struct btrfs_root *left_root,
5334 struct btrfs_root *right_root, 5324 struct btrfs_root *right_root,
5335 btrfs_changed_cb_t changed_cb, void *ctx) 5325 btrfs_changed_cb_t changed_cb, void *ctx)
5336 { 5326 {
5337 int ret; 5327 int ret;
5338 int cmp; 5328 int cmp;
5339 struct btrfs_path *left_path = NULL; 5329 struct btrfs_path *left_path = NULL;
5340 struct btrfs_path *right_path = NULL; 5330 struct btrfs_path *right_path = NULL;
5341 struct btrfs_key left_key; 5331 struct btrfs_key left_key;
5342 struct btrfs_key right_key; 5332 struct btrfs_key right_key;
5343 char *tmp_buf = NULL; 5333 char *tmp_buf = NULL;
5344 int left_root_level; 5334 int left_root_level;
5345 int right_root_level; 5335 int right_root_level;
5346 int left_level; 5336 int left_level;
5347 int right_level; 5337 int right_level;
5348 int left_end_reached; 5338 int left_end_reached;
5349 int right_end_reached; 5339 int right_end_reached;
5350 int advance_left; 5340 int advance_left;
5351 int advance_right; 5341 int advance_right;
5352 u64 left_blockptr; 5342 u64 left_blockptr;
5353 u64 right_blockptr; 5343 u64 right_blockptr;
5354 u64 left_gen; 5344 u64 left_gen;
5355 u64 right_gen; 5345 u64 right_gen;
5356 5346
5357 left_path = btrfs_alloc_path(); 5347 left_path = btrfs_alloc_path();
5358 if (!left_path) { 5348 if (!left_path) {
5359 ret = -ENOMEM; 5349 ret = -ENOMEM;
5360 goto out; 5350 goto out;
5361 } 5351 }
5362 right_path = btrfs_alloc_path(); 5352 right_path = btrfs_alloc_path();
5363 if (!right_path) { 5353 if (!right_path) {
5364 ret = -ENOMEM; 5354 ret = -ENOMEM;
5365 goto out; 5355 goto out;
5366 } 5356 }
5367 5357
5368 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS); 5358 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5369 if (!tmp_buf) { 5359 if (!tmp_buf) {
5370 ret = -ENOMEM; 5360 ret = -ENOMEM;
5371 goto out; 5361 goto out;
5372 } 5362 }
5373 5363
5374 left_path->search_commit_root = 1; 5364 left_path->search_commit_root = 1;
5375 left_path->skip_locking = 1; 5365 left_path->skip_locking = 1;
5376 right_path->search_commit_root = 1; 5366 right_path->search_commit_root = 1;
5377 right_path->skip_locking = 1; 5367 right_path->skip_locking = 1;
5378 5368
5379 /* 5369 /*
5380 * Strategy: Go to the first items of both trees. Then do 5370 * Strategy: Go to the first items of both trees. Then do
5381 * 5371 *
5382 * If both trees are at level 0 5372 * If both trees are at level 0
5383 * Compare keys of current items 5373 * Compare keys of current items
5384 * If left < right treat left item as new, advance left tree 5374 * If left < right treat left item as new, advance left tree
5385 * and repeat 5375 * and repeat
5386 * If left > right treat right item as deleted, advance right tree 5376 * If left > right treat right item as deleted, advance right tree
5387 * and repeat 5377 * and repeat
5388 * If left == right do deep compare of items, treat as changed if 5378 * If left == right do deep compare of items, treat as changed if
5389 * needed, advance both trees and repeat 5379 * needed, advance both trees and repeat
5390 * If both trees are at the same level but not at level 0 5380 * If both trees are at the same level but not at level 0
5391 * Compare keys of current nodes/leafs 5381 * Compare keys of current nodes/leafs
5392 * If left < right advance left tree and repeat 5382 * If left < right advance left tree and repeat
5393 * If left > right advance right tree and repeat 5383 * If left > right advance right tree and repeat
5394 * If left == right compare blockptrs of the next nodes/leafs 5384 * If left == right compare blockptrs of the next nodes/leafs
5395 * If they match advance both trees but stay at the same level 5385 * If they match advance both trees but stay at the same level
5396 * and repeat 5386 * and repeat
5397 * If they don't match advance both trees while allowing to go 5387 * If they don't match advance both trees while allowing to go
5398 * deeper and repeat 5388 * deeper and repeat
5399 * If tree levels are different 5389 * If tree levels are different
5400 * Advance the tree that needs it and repeat 5390 * Advance the tree that needs it and repeat
5401 * 5391 *
5402 * Advancing a tree means: 5392 * Advancing a tree means:
5403 * If we are at level 0, try to go to the next slot. If that's not 5393 * If we are at level 0, try to go to the next slot. If that's not
5404 * possible, go one level up and repeat. Stop when we found a level 5394 * possible, go one level up and repeat. Stop when we found a level
5405 * where we could go to the next slot. We may at this point be on a 5395 * where we could go to the next slot. We may at this point be on a
5406 * node or a leaf. 5396 * node or a leaf.
5407 * 5397 *
5408 * If we are not at level 0 and not on shared tree blocks, go one 5398 * If we are not at level 0 and not on shared tree blocks, go one
5409 * level deeper. 5399 * level deeper.
5410 * 5400 *
5411 * If we are not at level 0 and on shared tree blocks, go one slot to 5401 * If we are not at level 0 and on shared tree blocks, go one slot to
5412 * the right if possible or go up and right. 5402 * the right if possible or go up and right.
5413 */ 5403 */
5414 5404
5415 down_read(&left_root->fs_info->commit_root_sem); 5405 down_read(&left_root->fs_info->commit_root_sem);
5416 left_level = btrfs_header_level(left_root->commit_root); 5406 left_level = btrfs_header_level(left_root->commit_root);
5417 left_root_level = left_level; 5407 left_root_level = left_level;
5418 left_path->nodes[left_level] = left_root->commit_root; 5408 left_path->nodes[left_level] = left_root->commit_root;
5419 extent_buffer_get(left_path->nodes[left_level]); 5409 extent_buffer_get(left_path->nodes[left_level]);
5420 5410
5421 right_level = btrfs_header_level(right_root->commit_root); 5411 right_level = btrfs_header_level(right_root->commit_root);
5422 right_root_level = right_level; 5412 right_root_level = right_level;
5423 right_path->nodes[right_level] = right_root->commit_root; 5413 right_path->nodes[right_level] = right_root->commit_root;
5424 extent_buffer_get(right_path->nodes[right_level]); 5414 extent_buffer_get(right_path->nodes[right_level]);
5425 up_read(&left_root->fs_info->commit_root_sem); 5415 up_read(&left_root->fs_info->commit_root_sem);
5426 5416
5427 if (left_level == 0) 5417 if (left_level == 0)
5428 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5418 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429 &left_key, left_path->slots[left_level]); 5419 &left_key, left_path->slots[left_level]);
5430 else 5420 else
5431 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5421 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432 &left_key, left_path->slots[left_level]); 5422 &left_key, left_path->slots[left_level]);
5433 if (right_level == 0) 5423 if (right_level == 0)
5434 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5424 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435 &right_key, right_path->slots[right_level]); 5425 &right_key, right_path->slots[right_level]);
5436 else 5426 else
5437 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5427 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438 &right_key, right_path->slots[right_level]); 5428 &right_key, right_path->slots[right_level]);
5439 5429
5440 left_end_reached = right_end_reached = 0; 5430 left_end_reached = right_end_reached = 0;
5441 advance_left = advance_right = 0; 5431 advance_left = advance_right = 0;
5442 5432
5443 while (1) { 5433 while (1) {
5444 if (advance_left && !left_end_reached) { 5434 if (advance_left && !left_end_reached) {
5445 ret = tree_advance(left_root, left_path, &left_level, 5435 ret = tree_advance(left_root, left_path, &left_level,
5446 left_root_level, 5436 left_root_level,
5447 advance_left != ADVANCE_ONLY_NEXT, 5437 advance_left != ADVANCE_ONLY_NEXT,
5448 &left_key); 5438 &left_key);
5449 if (ret < 0) 5439 if (ret < 0)
5450 left_end_reached = ADVANCE; 5440 left_end_reached = ADVANCE;
5451 advance_left = 0; 5441 advance_left = 0;
5452 } 5442 }
5453 if (advance_right && !right_end_reached) { 5443 if (advance_right && !right_end_reached) {
5454 ret = tree_advance(right_root, right_path, &right_level, 5444 ret = tree_advance(right_root, right_path, &right_level,
5455 right_root_level, 5445 right_root_level,
5456 advance_right != ADVANCE_ONLY_NEXT, 5446 advance_right != ADVANCE_ONLY_NEXT,
5457 &right_key); 5447 &right_key);
5458 if (ret < 0) 5448 if (ret < 0)
5459 right_end_reached = ADVANCE; 5449 right_end_reached = ADVANCE;
5460 advance_right = 0; 5450 advance_right = 0;
5461 } 5451 }
5462 5452
5463 if (left_end_reached && right_end_reached) { 5453 if (left_end_reached && right_end_reached) {
5464 ret = 0; 5454 ret = 0;
5465 goto out; 5455 goto out;
5466 } else if (left_end_reached) { 5456 } else if (left_end_reached) {
5467 if (right_level == 0) { 5457 if (right_level == 0) {
5468 ret = changed_cb(left_root, right_root, 5458 ret = changed_cb(left_root, right_root,
5469 left_path, right_path, 5459 left_path, right_path,
5470 &right_key, 5460 &right_key,
5471 BTRFS_COMPARE_TREE_DELETED, 5461 BTRFS_COMPARE_TREE_DELETED,
5472 ctx); 5462 ctx);
5473 if (ret < 0) 5463 if (ret < 0)
5474 goto out; 5464 goto out;
5475 } 5465 }
5476 advance_right = ADVANCE; 5466 advance_right = ADVANCE;
5477 continue; 5467 continue;
5478 } else if (right_end_reached) { 5468 } else if (right_end_reached) {
5479 if (left_level == 0) { 5469 if (left_level == 0) {
5480 ret = changed_cb(left_root, right_root, 5470 ret = changed_cb(left_root, right_root,
5481 left_path, right_path, 5471 left_path, right_path,
5482 &left_key, 5472 &left_key,
5483 BTRFS_COMPARE_TREE_NEW, 5473 BTRFS_COMPARE_TREE_NEW,
5484 ctx); 5474 ctx);
5485 if (ret < 0) 5475 if (ret < 0)
5486 goto out; 5476 goto out;
5487 } 5477 }
5488 advance_left = ADVANCE; 5478 advance_left = ADVANCE;
5489 continue; 5479 continue;
5490 } 5480 }
5491 5481
5492 if (left_level == 0 && right_level == 0) { 5482 if (left_level == 0 && right_level == 0) {
5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5483 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494 if (cmp < 0) { 5484 if (cmp < 0) {
5495 ret = changed_cb(left_root, right_root, 5485 ret = changed_cb(left_root, right_root,
5496 left_path, right_path, 5486 left_path, right_path,
5497 &left_key, 5487 &left_key,
5498 BTRFS_COMPARE_TREE_NEW, 5488 BTRFS_COMPARE_TREE_NEW,
5499 ctx); 5489 ctx);
5500 if (ret < 0) 5490 if (ret < 0)
5501 goto out; 5491 goto out;
5502 advance_left = ADVANCE; 5492 advance_left = ADVANCE;
5503 } else if (cmp > 0) { 5493 } else if (cmp > 0) {
5504 ret = changed_cb(left_root, right_root, 5494 ret = changed_cb(left_root, right_root,
5505 left_path, right_path, 5495 left_path, right_path,
5506 &right_key, 5496 &right_key,
5507 BTRFS_COMPARE_TREE_DELETED, 5497 BTRFS_COMPARE_TREE_DELETED,
5508 ctx); 5498 ctx);
5509 if (ret < 0) 5499 if (ret < 0)
5510 goto out; 5500 goto out;
5511 advance_right = ADVANCE; 5501 advance_right = ADVANCE;
5512 } else { 5502 } else {
5513 enum btrfs_compare_tree_result result; 5503 enum btrfs_compare_tree_result result;
5514 5504
5515 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5505 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516 ret = tree_compare_item(left_root, left_path, 5506 ret = tree_compare_item(left_root, left_path,
5517 right_path, tmp_buf); 5507 right_path, tmp_buf);
5518 if (ret) 5508 if (ret)
5519 result = BTRFS_COMPARE_TREE_CHANGED; 5509 result = BTRFS_COMPARE_TREE_CHANGED;
5520 else 5510 else
5521 result = BTRFS_COMPARE_TREE_SAME; 5511 result = BTRFS_COMPARE_TREE_SAME;
5522 ret = changed_cb(left_root, right_root, 5512 ret = changed_cb(left_root, right_root,
5523 left_path, right_path, 5513 left_path, right_path,
5524 &left_key, result, ctx); 5514 &left_key, result, ctx);
5525 if (ret < 0) 5515 if (ret < 0)
5526 goto out; 5516 goto out;
5527 advance_left = ADVANCE; 5517 advance_left = ADVANCE;
5528 advance_right = ADVANCE; 5518 advance_right = ADVANCE;
5529 } 5519 }
5530 } else if (left_level == right_level) { 5520 } else if (left_level == right_level) {
5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5521 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532 if (cmp < 0) { 5522 if (cmp < 0) {
5533 advance_left = ADVANCE; 5523 advance_left = ADVANCE;
5534 } else if (cmp > 0) { 5524 } else if (cmp > 0) {
5535 advance_right = ADVANCE; 5525 advance_right = ADVANCE;
5536 } else { 5526 } else {
5537 left_blockptr = btrfs_node_blockptr( 5527 left_blockptr = btrfs_node_blockptr(
5538 left_path->nodes[left_level], 5528 left_path->nodes[left_level],
5539 left_path->slots[left_level]); 5529 left_path->slots[left_level]);
5540 right_blockptr = btrfs_node_blockptr( 5530 right_blockptr = btrfs_node_blockptr(
5541 right_path->nodes[right_level], 5531 right_path->nodes[right_level],
5542 right_path->slots[right_level]); 5532 right_path->slots[right_level]);
5543 left_gen = btrfs_node_ptr_generation( 5533 left_gen = btrfs_node_ptr_generation(
5544 left_path->nodes[left_level], 5534 left_path->nodes[left_level],
5545 left_path->slots[left_level]); 5535 left_path->slots[left_level]);
5546 right_gen = btrfs_node_ptr_generation( 5536 right_gen = btrfs_node_ptr_generation(
5547 right_path->nodes[right_level], 5537 right_path->nodes[right_level],
5548 right_path->slots[right_level]); 5538 right_path->slots[right_level]);
5549 if (left_blockptr == right_blockptr && 5539 if (left_blockptr == right_blockptr &&
5550 left_gen == right_gen) { 5540 left_gen == right_gen) {
5551 /* 5541 /*
5552 * As we're on a shared block, don't 5542 * As we're on a shared block, don't
5553 * allow to go deeper. 5543 * allow to go deeper.
5554 */ 5544 */
5555 advance_left = ADVANCE_ONLY_NEXT; 5545 advance_left = ADVANCE_ONLY_NEXT;
5556 advance_right = ADVANCE_ONLY_NEXT; 5546 advance_right = ADVANCE_ONLY_NEXT;
5557 } else { 5547 } else {
5558 advance_left = ADVANCE; 5548 advance_left = ADVANCE;
5559 advance_right = ADVANCE; 5549 advance_right = ADVANCE;
5560 } 5550 }
5561 } 5551 }
5562 } else if (left_level < right_level) { 5552 } else if (left_level < right_level) {
5563 advance_right = ADVANCE; 5553 advance_right = ADVANCE;
5564 } else { 5554 } else {
5565 advance_left = ADVANCE; 5555 advance_left = ADVANCE;
5566 } 5556 }
5567 } 5557 }
5568 5558
5569 out: 5559 out:
5570 btrfs_free_path(left_path); 5560 btrfs_free_path(left_path);
5571 btrfs_free_path(right_path); 5561 btrfs_free_path(right_path);
5572 kfree(tmp_buf); 5562 kfree(tmp_buf);
5573 return ret; 5563 return ret;
5574 } 5564 }
5575 5565
5576 /* 5566 /*
5577 * this is similar to btrfs_next_leaf, but does not try to preserve 5567 * this is similar to btrfs_next_leaf, but does not try to preserve
5578 * and fixup the path. It looks for and returns the next key in the 5568 * and fixup the path. It looks for and returns the next key in the
5579 * tree based on the current path and the min_trans parameters. 5569 * tree based on the current path and the min_trans parameters.
5580 * 5570 *
5581 * 0 is returned if another key is found, < 0 if there are any errors 5571 * 0 is returned if another key is found, < 0 if there are any errors
5582 * and 1 is returned if there are no higher keys in the tree 5572 * and 1 is returned if there are no higher keys in the tree
5583 * 5573 *
5584 * path->keep_locks should be set to 1 on the search made before 5574 * path->keep_locks should be set to 1 on the search made before
5585 * calling this function. 5575 * calling this function.
5586 */ 5576 */
5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5577 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588 struct btrfs_key *key, int level, u64 min_trans) 5578 struct btrfs_key *key, int level, u64 min_trans)
5589 { 5579 {
5590 int slot; 5580 int slot;
5591 struct extent_buffer *c; 5581 struct extent_buffer *c;
5592 5582
5593 WARN_ON(!path->keep_locks); 5583 WARN_ON(!path->keep_locks);
5594 while (level < BTRFS_MAX_LEVEL) { 5584 while (level < BTRFS_MAX_LEVEL) {
5595 if (!path->nodes[level]) 5585 if (!path->nodes[level])
5596 return 1; 5586 return 1;
5597 5587
5598 slot = path->slots[level] + 1; 5588 slot = path->slots[level] + 1;
5599 c = path->nodes[level]; 5589 c = path->nodes[level];
5600 next: 5590 next:
5601 if (slot >= btrfs_header_nritems(c)) { 5591 if (slot >= btrfs_header_nritems(c)) {
5602 int ret; 5592 int ret;
5603 int orig_lowest; 5593 int orig_lowest;
5604 struct btrfs_key cur_key; 5594 struct btrfs_key cur_key;
5605 if (level + 1 >= BTRFS_MAX_LEVEL || 5595 if (level + 1 >= BTRFS_MAX_LEVEL ||
5606 !path->nodes[level + 1]) 5596 !path->nodes[level + 1])
5607 return 1; 5597 return 1;
5608 5598
5609 if (path->locks[level + 1]) { 5599 if (path->locks[level + 1]) {
5610 level++; 5600 level++;
5611 continue; 5601 continue;
5612 } 5602 }
5613 5603
5614 slot = btrfs_header_nritems(c) - 1; 5604 slot = btrfs_header_nritems(c) - 1;
5615 if (level == 0) 5605 if (level == 0)
5616 btrfs_item_key_to_cpu(c, &cur_key, slot); 5606 btrfs_item_key_to_cpu(c, &cur_key, slot);
5617 else 5607 else
5618 btrfs_node_key_to_cpu(c, &cur_key, slot); 5608 btrfs_node_key_to_cpu(c, &cur_key, slot);
5619 5609
5620 orig_lowest = path->lowest_level; 5610 orig_lowest = path->lowest_level;
5621 btrfs_release_path(path); 5611 btrfs_release_path(path);
5622 path->lowest_level = level; 5612 path->lowest_level = level;
5623 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5613 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624 0, 0); 5614 0, 0);
5625 path->lowest_level = orig_lowest; 5615 path->lowest_level = orig_lowest;
5626 if (ret < 0) 5616 if (ret < 0)
5627 return ret; 5617 return ret;
5628 5618
5629 c = path->nodes[level]; 5619 c = path->nodes[level];
5630 slot = path->slots[level]; 5620 slot = path->slots[level];
5631 if (ret == 0) 5621 if (ret == 0)
5632 slot++; 5622 slot++;
5633 goto next; 5623 goto next;
5634 } 5624 }
5635 5625
5636 if (level == 0) 5626 if (level == 0)
5637 btrfs_item_key_to_cpu(c, key, slot); 5627 btrfs_item_key_to_cpu(c, key, slot);
5638 else { 5628 else {
5639 u64 gen = btrfs_node_ptr_generation(c, slot); 5629 u64 gen = btrfs_node_ptr_generation(c, slot);
5640 5630
5641 if (gen < min_trans) { 5631 if (gen < min_trans) {
5642 slot++; 5632 slot++;
5643 goto next; 5633 goto next;
5644 } 5634 }
5645 btrfs_node_key_to_cpu(c, key, slot); 5635 btrfs_node_key_to_cpu(c, key, slot);
5646 } 5636 }
5647 return 0; 5637 return 0;
5648 } 5638 }
5649 return 1; 5639 return 1;
5650 } 5640 }
5651 5641
5652 /* 5642 /*
5653 * search the tree again to find a leaf with greater keys 5643 * search the tree again to find a leaf with greater keys
5654 * returns 0 if it found something or 1 if there are no greater leaves. 5644 * returns 0 if it found something or 1 if there are no greater leaves.
5655 * returns < 0 on io errors. 5645 * returns < 0 on io errors.
5656 */ 5646 */
5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5647 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658 { 5648 {
5659 return btrfs_next_old_leaf(root, path, 0); 5649 return btrfs_next_old_leaf(root, path, 0);
5660 } 5650 }
5661 5651
5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5652 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663 u64 time_seq) 5653 u64 time_seq)
5664 { 5654 {
5665 int slot; 5655 int slot;
5666 int level; 5656 int level;
5667 struct extent_buffer *c; 5657 struct extent_buffer *c;
5668 struct extent_buffer *next; 5658 struct extent_buffer *next;
5669 struct btrfs_key key; 5659 struct btrfs_key key;
5670 u32 nritems; 5660 u32 nritems;
5671 int ret; 5661 int ret;
5672 int old_spinning = path->leave_spinning; 5662 int old_spinning = path->leave_spinning;
5673 int next_rw_lock = 0; 5663 int next_rw_lock = 0;
5674 5664
5675 nritems = btrfs_header_nritems(path->nodes[0]); 5665 nritems = btrfs_header_nritems(path->nodes[0]);
5676 if (nritems == 0) 5666 if (nritems == 0)
5677 return 1; 5667 return 1;
5678 5668
5679 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5669 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680 again: 5670 again:
5681 level = 1; 5671 level = 1;
5682 next = NULL; 5672 next = NULL;
5683 next_rw_lock = 0; 5673 next_rw_lock = 0;
5684 btrfs_release_path(path); 5674 btrfs_release_path(path);
5685 5675
5686 path->keep_locks = 1; 5676 path->keep_locks = 1;
5687 path->leave_spinning = 1; 5677 path->leave_spinning = 1;
5688 5678
5689 if (time_seq) 5679 if (time_seq)
5690 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5680 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691 else 5681 else
5692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5682 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693 path->keep_locks = 0; 5683 path->keep_locks = 0;
5694 5684
5695 if (ret < 0) 5685 if (ret < 0)
5696 return ret; 5686 return ret;
5697 5687
5698 nritems = btrfs_header_nritems(path->nodes[0]); 5688 nritems = btrfs_header_nritems(path->nodes[0]);
5699 /* 5689 /*
5700 * by releasing the path above we dropped all our locks. A balance 5690 * by releasing the path above we dropped all our locks. A balance
5701 * could have added more items next to the key that used to be 5691 * could have added more items next to the key that used to be
5702 * at the very end of the block. So, check again here and 5692 * at the very end of the block. So, check again here and
5703 * advance the path if there are now more items available. 5693 * advance the path if there are now more items available.
5704 */ 5694 */
5705 if (nritems > 0 && path->slots[0] < nritems - 1) { 5695 if (nritems > 0 && path->slots[0] < nritems - 1) {
5706 if (ret == 0) 5696 if (ret == 0)
5707 path->slots[0]++; 5697 path->slots[0]++;
5708 ret = 0; 5698 ret = 0;
5709 goto done; 5699 goto done;
5710 } 5700 }
5711 /* 5701 /*
5712 * So the above check misses one case: 5702 * So the above check misses one case:
5713 * - after releasing the path above, someone has removed the item that 5703 * - after releasing the path above, someone has removed the item that
5714 * used to be at the very end of the block, and balance between leafs 5704 * used to be at the very end of the block, and balance between leafs
5715 * gets another one with bigger key.offset to replace it. 5705 * gets another one with bigger key.offset to replace it.
5716 * 5706 *
5717 * This one should be returned as well, or we can get leaf corruption 5707 * This one should be returned as well, or we can get leaf corruption
5718 * later(esp. in __btrfs_drop_extents()). 5708 * later(esp. in __btrfs_drop_extents()).
5719 * 5709 *
5720 * And a bit more explanation about this check, 5710 * And a bit more explanation about this check,
5721 * with ret > 0, the key isn't found, the path points to the slot 5711 * with ret > 0, the key isn't found, the path points to the slot
5722 * where it should be inserted, so the path->slots[0] item must be the 5712 * where it should be inserted, so the path->slots[0] item must be the
5723 * bigger one. 5713 * bigger one.
5724 */ 5714 */
5725 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5715 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726 ret = 0; 5716 ret = 0;
5727 goto done; 5717 goto done;
5728 } 5718 }
5729 5719
5730 while (level < BTRFS_MAX_LEVEL) { 5720 while (level < BTRFS_MAX_LEVEL) {
5731 if (!path->nodes[level]) { 5721 if (!path->nodes[level]) {
5732 ret = 1; 5722 ret = 1;
5733 goto done; 5723 goto done;
5734 } 5724 }
5735 5725
5736 slot = path->slots[level] + 1; 5726 slot = path->slots[level] + 1;
5737 c = path->nodes[level]; 5727 c = path->nodes[level];
5738 if (slot >= btrfs_header_nritems(c)) { 5728 if (slot >= btrfs_header_nritems(c)) {
5739 level++; 5729 level++;
5740 if (level == BTRFS_MAX_LEVEL) { 5730 if (level == BTRFS_MAX_LEVEL) {
5741 ret = 1; 5731 ret = 1;
5742 goto done; 5732 goto done;
5743 } 5733 }
5744 continue; 5734 continue;
5745 } 5735 }
5746 5736
5747 if (next) { 5737 if (next) {
5748 btrfs_tree_unlock_rw(next, next_rw_lock); 5738 btrfs_tree_unlock_rw(next, next_rw_lock);
5749 free_extent_buffer(next); 5739 free_extent_buffer(next);
5750 } 5740 }
5751 5741
5752 next = c; 5742 next = c;
5753 next_rw_lock = path->locks[level]; 5743 next_rw_lock = path->locks[level];
5754 ret = read_block_for_search(NULL, root, path, &next, level, 5744 ret = read_block_for_search(NULL, root, path, &next, level,
5755 slot, &key, 0); 5745 slot, &key, 0);
5756 if (ret == -EAGAIN) 5746 if (ret == -EAGAIN)
5757 goto again; 5747 goto again;
5758 5748
5759 if (ret < 0) { 5749 if (ret < 0) {
5760 btrfs_release_path(path); 5750 btrfs_release_path(path);
5761 goto done; 5751 goto done;
5762 } 5752 }
5763 5753
5764 if (!path->skip_locking) { 5754 if (!path->skip_locking) {
5765 ret = btrfs_try_tree_read_lock(next); 5755 ret = btrfs_try_tree_read_lock(next);
5766 if (!ret && time_seq) { 5756 if (!ret && time_seq) {
5767 /* 5757 /*
5768 * If we don't get the lock, we may be racing 5758 * If we don't get the lock, we may be racing
5769 * with push_leaf_left, holding that lock while 5759 * with push_leaf_left, holding that lock while
5770 * itself waiting for the leaf we've currently 5760 * itself waiting for the leaf we've currently
5771 * locked. To solve this situation, we give up 5761 * locked. To solve this situation, we give up
5772 * on our lock and cycle. 5762 * on our lock and cycle.
5773 */ 5763 */
5774 free_extent_buffer(next); 5764 free_extent_buffer(next);
5775 btrfs_release_path(path); 5765 btrfs_release_path(path);
5776 cond_resched(); 5766 cond_resched();
5777 goto again; 5767 goto again;
5778 } 5768 }
5779 if (!ret) { 5769 if (!ret) {
5780 btrfs_set_path_blocking(path); 5770 btrfs_set_path_blocking(path);
5781 btrfs_tree_read_lock(next); 5771 btrfs_tree_read_lock(next);
5782 btrfs_clear_path_blocking(path, next, 5772 btrfs_clear_path_blocking(path, next,
5783 BTRFS_READ_LOCK); 5773 BTRFS_READ_LOCK);
5784 } 5774 }
5785 next_rw_lock = BTRFS_READ_LOCK; 5775 next_rw_lock = BTRFS_READ_LOCK;
5786 } 5776 }
5787 break; 5777 break;
5788 } 5778 }
5789 path->slots[level] = slot; 5779 path->slots[level] = slot;
5790 while (1) { 5780 while (1) {
5791 level--; 5781 level--;
5792 c = path->nodes[level]; 5782 c = path->nodes[level];
5793 if (path->locks[level]) 5783 if (path->locks[level])
5794 btrfs_tree_unlock_rw(c, path->locks[level]); 5784 btrfs_tree_unlock_rw(c, path->locks[level]);
5795 5785
5796 free_extent_buffer(c); 5786 free_extent_buffer(c);
5797 path->nodes[level] = next; 5787 path->nodes[level] = next;
5798 path->slots[level] = 0; 5788 path->slots[level] = 0;
5799 if (!path->skip_locking) 5789 if (!path->skip_locking)
5800 path->locks[level] = next_rw_lock; 5790 path->locks[level] = next_rw_lock;
5801 if (!level) 5791 if (!level)
5802 break; 5792 break;
5803 5793
5804 ret = read_block_for_search(NULL, root, path, &next, level, 5794 ret = read_block_for_search(NULL, root, path, &next, level,
5805 0, &key, 0); 5795 0, &key, 0);
5806 if (ret == -EAGAIN) 5796 if (ret == -EAGAIN)
5807 goto again; 5797 goto again;
5808 5798
5809 if (ret < 0) { 5799 if (ret < 0) {
5810 btrfs_release_path(path); 5800 btrfs_release_path(path);
5811 goto done; 5801 goto done;
5812 } 5802 }
5813 5803
5814 if (!path->skip_locking) { 5804 if (!path->skip_locking) {
5815 ret = btrfs_try_tree_read_lock(next); 5805 ret = btrfs_try_tree_read_lock(next);
5816 if (!ret) { 5806 if (!ret) {
5817 btrfs_set_path_blocking(path); 5807 btrfs_set_path_blocking(path);
5818 btrfs_tree_read_lock(next); 5808 btrfs_tree_read_lock(next);
5819 btrfs_clear_path_blocking(path, next, 5809 btrfs_clear_path_blocking(path, next,
5820 BTRFS_READ_LOCK); 5810 BTRFS_READ_LOCK);
5821 } 5811 }
5822 next_rw_lock = BTRFS_READ_LOCK; 5812 next_rw_lock = BTRFS_READ_LOCK;
5823 } 5813 }
5824 } 5814 }
5825 ret = 0; 5815 ret = 0;
5826 done: 5816 done:
5827 unlock_up(path, 0, 1, 0, NULL); 5817 unlock_up(path, 0, 1, 0, NULL);
5828 path->leave_spinning = old_spinning; 5818 path->leave_spinning = old_spinning;
5829 if (!old_spinning) 5819 if (!old_spinning)
5830 btrfs_set_path_blocking(path); 5820 btrfs_set_path_blocking(path);
5831 5821
5832 return ret; 5822 return ret;
5833 } 5823 }
5834 5824
5835 /* 5825 /*
5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5826 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837 * searching until it gets past min_objectid or finds an item of 'type' 5827 * searching until it gets past min_objectid or finds an item of 'type'
5838 * 5828 *
5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5829 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840 */ 5830 */
5841 int btrfs_previous_item(struct btrfs_root *root, 5831 int btrfs_previous_item(struct btrfs_root *root,
5842 struct btrfs_path *path, u64 min_objectid, 5832 struct btrfs_path *path, u64 min_objectid,
5843 int type) 5833 int type)
5844 { 5834 {
5845 struct btrfs_key found_key; 5835 struct btrfs_key found_key;
5846 struct extent_buffer *leaf; 5836 struct extent_buffer *leaf;
5847 u32 nritems; 5837 u32 nritems;
5848 int ret; 5838 int ret;
5849 5839
5850 while (1) { 5840 while (1) {
5851 if (path->slots[0] == 0) { 5841 if (path->slots[0] == 0) {
5852 btrfs_set_path_blocking(path); 5842 btrfs_set_path_blocking(path);
5853 ret = btrfs_prev_leaf(root, path); 5843 ret = btrfs_prev_leaf(root, path);
5854 if (ret != 0) 5844 if (ret != 0)
5855 return ret; 5845 return ret;
5856 } else { 5846 } else {
5857 path->slots[0]--; 5847 path->slots[0]--;
5858 } 5848 }
5859 leaf = path->nodes[0]; 5849 leaf = path->nodes[0];
5860 nritems = btrfs_header_nritems(leaf); 5850 nritems = btrfs_header_nritems(leaf);
5861 if (nritems == 0) 5851 if (nritems == 0)
5862 return 1; 5852 return 1;
5863 if (path->slots[0] == nritems) 5853 if (path->slots[0] == nritems)
5864 path->slots[0]--; 5854 path->slots[0]--;
5865 5855
5866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5856 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867 if (found_key.objectid < min_objectid) 5857 if (found_key.objectid < min_objectid)
5868 break; 5858 break;
5869 if (found_key.type == type) 5859 if (found_key.type == type)
5870 return 0; 5860 return 0;
5871 if (found_key.objectid == min_objectid && 5861 if (found_key.objectid == min_objectid &&
5872 found_key.type < type) 5862 found_key.type < type)
5873 break; 5863 break;
5874 } 5864 }
5875 return 1; 5865 return 1;
5876 } 5866 }
5877 5867
5878 /* 5868 /*
5879 * search in extent tree to find a previous Metadata/Data extent item with 5869 * search in extent tree to find a previous Metadata/Data extent item with
5880 * min objecitd. 5870 * min objecitd.
5881 * 5871 *
5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883 */ 5873 */
5884 int btrfs_previous_extent_item(struct btrfs_root *root, 5874 int btrfs_previous_extent_item(struct btrfs_root *root,
5885 struct btrfs_path *path, u64 min_objectid) 5875 struct btrfs_path *path, u64 min_objectid)
5886 { 5876 {
5887 struct btrfs_key found_key; 5877 struct btrfs_key found_key;
5888 struct extent_buffer *leaf; 5878 struct extent_buffer *leaf;
5889 u32 nritems; 5879 u32 nritems;
5890 int ret; 5880 int ret;
5891 5881
5892 while (1) { 5882 while (1) {
5893 if (path->slots[0] == 0) { 5883 if (path->slots[0] == 0) {
5894 btrfs_set_path_blocking(path); 5884 btrfs_set_path_blocking(path);
5895 ret = btrfs_prev_leaf(root, path); 5885 ret = btrfs_prev_leaf(root, path);
5896 if (ret != 0) 5886 if (ret != 0)
5897 return ret; 5887 return ret;
5898 } else { 5888 } else {
5899 path->slots[0]--; 5889 path->slots[0]--;
5900 } 5890 }
5901 leaf = path->nodes[0]; 5891 leaf = path->nodes[0];
5902 nritems = btrfs_header_nritems(leaf); 5892 nritems = btrfs_header_nritems(leaf);
5903 if (nritems == 0) 5893 if (nritems == 0)
5904 return 1; 5894 return 1;
5905 if (path->slots[0] == nritems) 5895 if (path->slots[0] == nritems)
5906 path->slots[0]--; 5896 path->slots[0]--;
5907 5897
5908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5898 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909 if (found_key.objectid < min_objectid) 5899 if (found_key.objectid < min_objectid)
5910 break; 5900 break;
5911 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5901 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912 found_key.type == BTRFS_METADATA_ITEM_KEY) 5902 found_key.type == BTRFS_METADATA_ITEM_KEY)
5913 return 0; 5903 return 0;
5914 if (found_key.objectid == min_objectid && 5904 if (found_key.objectid == min_objectid &&
5915 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5905 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916 break; 5906 break;
5917 } 5907 }
5918 return 1; 5908 return 1;
5919 } 5909 }
5920 5910
1 /* 1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved. 2 * Copyright (C) 2008 Oracle. All rights reserved.
3 * 3 *
4 * This program is free software; you can redistribute it and/or 4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public 5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation. 6 * License v2 as published by the Free Software Foundation.
7 * 7 *
8 * This program is distributed in the hope that it will be useful, 8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details. 11 * General Public License for more details.
12 * 12 *
13 * You should have received a copy of the GNU General Public 13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the 14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA. 16 * Boston, MA 021110-1307, USA.
17 */ 17 */
18 #include <linux/sched.h> 18 #include <linux/sched.h>
19 #include <linux/pagemap.h> 19 #include <linux/pagemap.h>
20 #include <linux/spinlock.h> 20 #include <linux/spinlock.h>
21 #include <linux/page-flags.h> 21 #include <linux/page-flags.h>
22 #include <asm/bug.h> 22 #include <asm/bug.h>
23 #include "ctree.h" 23 #include "ctree.h"
24 #include "extent_io.h" 24 #include "extent_io.h"
25 #include "locking.h" 25 #include "locking.h"
26 26
27 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb); 27 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
28 28
29 /* 29 /*
30 * if we currently have a spinning reader or writer lock 30 * if we currently have a spinning reader or writer lock
31 * (indicated by the rw flag) this will bump the count 31 * (indicated by the rw flag) this will bump the count
32 * of blocking holders and drop the spinlock. 32 * of blocking holders and drop the spinlock.
33 */ 33 */
34 void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw) 34 void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
35 { 35 {
36 /* 36 /*
37 * no lock is required. The lock owner may change if 37 * no lock is required. The lock owner may change if
38 * we have a read lock, but it won't change to or away 38 * we have a read lock, but it won't change to or away
39 * from us. If we have the write lock, we are the owner 39 * from us. If we have the write lock, we are the owner
40 * and it'll never change. 40 * and it'll never change.
41 */ 41 */
42 if (eb->lock_nested && current->pid == eb->lock_owner) 42 if (eb->lock_nested && current->pid == eb->lock_owner)
43 return; 43 return;
44 if (rw == BTRFS_WRITE_LOCK) { 44 if (rw == BTRFS_WRITE_LOCK) {
45 if (atomic_read(&eb->blocking_writers) == 0) { 45 if (atomic_read(&eb->blocking_writers) == 0) {
46 WARN_ON(atomic_read(&eb->spinning_writers) != 1); 46 WARN_ON(atomic_read(&eb->spinning_writers) != 1);
47 atomic_dec(&eb->spinning_writers); 47 atomic_dec(&eb->spinning_writers);
48 btrfs_assert_tree_locked(eb); 48 btrfs_assert_tree_locked(eb);
49 atomic_inc(&eb->blocking_writers); 49 atomic_inc(&eb->blocking_writers);
50 write_unlock(&eb->lock); 50 write_unlock(&eb->lock);
51 } 51 }
52 } else if (rw == BTRFS_READ_LOCK) { 52 } else if (rw == BTRFS_READ_LOCK) {
53 btrfs_assert_tree_read_locked(eb); 53 btrfs_assert_tree_read_locked(eb);
54 atomic_inc(&eb->blocking_readers); 54 atomic_inc(&eb->blocking_readers);
55 WARN_ON(atomic_read(&eb->spinning_readers) == 0); 55 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
56 atomic_dec(&eb->spinning_readers); 56 atomic_dec(&eb->spinning_readers);
57 read_unlock(&eb->lock); 57 read_unlock(&eb->lock);
58 } 58 }
59 return; 59 return;
60 } 60 }
61 61
62 /* 62 /*
63 * if we currently have a blocking lock, take the spinlock 63 * if we currently have a blocking lock, take the spinlock
64 * and drop our blocking count 64 * and drop our blocking count
65 */ 65 */
66 void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw) 66 void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
67 { 67 {
68 /* 68 /*
69 * no lock is required. The lock owner may change if 69 * no lock is required. The lock owner may change if
70 * we have a read lock, but it won't change to or away 70 * we have a read lock, but it won't change to or away
71 * from us. If we have the write lock, we are the owner 71 * from us. If we have the write lock, we are the owner
72 * and it'll never change. 72 * and it'll never change.
73 */ 73 */
74 if (eb->lock_nested && current->pid == eb->lock_owner) 74 if (eb->lock_nested && current->pid == eb->lock_owner)
75 return; 75 return;
76 76
77 if (rw == BTRFS_WRITE_LOCK_BLOCKING) { 77 if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
78 BUG_ON(atomic_read(&eb->blocking_writers) != 1); 78 BUG_ON(atomic_read(&eb->blocking_writers) != 1);
79 write_lock(&eb->lock); 79 write_lock(&eb->lock);
80 WARN_ON(atomic_read(&eb->spinning_writers)); 80 WARN_ON(atomic_read(&eb->spinning_writers));
81 atomic_inc(&eb->spinning_writers); 81 atomic_inc(&eb->spinning_writers);
82 if (atomic_dec_and_test(&eb->blocking_writers) && 82 if (atomic_dec_and_test(&eb->blocking_writers) &&
83 waitqueue_active(&eb->write_lock_wq)) 83 waitqueue_active(&eb->write_lock_wq))
84 wake_up(&eb->write_lock_wq); 84 wake_up(&eb->write_lock_wq);
85 } else if (rw == BTRFS_READ_LOCK_BLOCKING) { 85 } else if (rw == BTRFS_READ_LOCK_BLOCKING) {
86 BUG_ON(atomic_read(&eb->blocking_readers) == 0); 86 BUG_ON(atomic_read(&eb->blocking_readers) == 0);
87 read_lock(&eb->lock); 87 read_lock(&eb->lock);
88 atomic_inc(&eb->spinning_readers); 88 atomic_inc(&eb->spinning_readers);
89 if (atomic_dec_and_test(&eb->blocking_readers) && 89 if (atomic_dec_and_test(&eb->blocking_readers) &&
90 waitqueue_active(&eb->read_lock_wq)) 90 waitqueue_active(&eb->read_lock_wq))
91 wake_up(&eb->read_lock_wq); 91 wake_up(&eb->read_lock_wq);
92 } 92 }
93 return; 93 return;
94 } 94 }
95 95
96 /* 96 /*
97 * take a spinning read lock. This will wait for any blocking 97 * take a spinning read lock. This will wait for any blocking
98 * writers 98 * writers
99 */ 99 */
100 void btrfs_tree_read_lock(struct extent_buffer *eb) 100 void btrfs_tree_read_lock(struct extent_buffer *eb)
101 { 101 {
102 again: 102 again:
103 BUG_ON(!atomic_read(&eb->blocking_writers) && 103 BUG_ON(!atomic_read(&eb->blocking_writers) &&
104 current->pid == eb->lock_owner); 104 current->pid == eb->lock_owner);
105 105
106 read_lock(&eb->lock); 106 read_lock(&eb->lock);
107 if (atomic_read(&eb->blocking_writers) && 107 if (atomic_read(&eb->blocking_writers) &&
108 current->pid == eb->lock_owner) { 108 current->pid == eb->lock_owner) {
109 /* 109 /*
110 * This extent is already write-locked by our thread. We allow 110 * This extent is already write-locked by our thread. We allow
111 * an additional read lock to be added because it's for the same 111 * an additional read lock to be added because it's for the same
112 * thread. btrfs_find_all_roots() depends on this as it may be 112 * thread. btrfs_find_all_roots() depends on this as it may be
113 * called on a partly (write-)locked tree. 113 * called on a partly (write-)locked tree.
114 */ 114 */
115 BUG_ON(eb->lock_nested); 115 BUG_ON(eb->lock_nested);
116 eb->lock_nested = 1; 116 eb->lock_nested = 1;
117 read_unlock(&eb->lock); 117 read_unlock(&eb->lock);
118 return; 118 return;
119 } 119 }
120 if (atomic_read(&eb->blocking_writers)) { 120 if (atomic_read(&eb->blocking_writers)) {
121 read_unlock(&eb->lock); 121 read_unlock(&eb->lock);
122 wait_event(eb->write_lock_wq, 122 wait_event(eb->write_lock_wq,
123 atomic_read(&eb->blocking_writers) == 0); 123 atomic_read(&eb->blocking_writers) == 0);
124 goto again; 124 goto again;
125 } 125 }
126 atomic_inc(&eb->read_locks); 126 atomic_inc(&eb->read_locks);
127 atomic_inc(&eb->spinning_readers); 127 atomic_inc(&eb->spinning_readers);
128 } 128 }
129 129
130 /* 130 /*
131 * take a spinning read lock.
131 * returns 1 if we get the read lock and 0 if we don't 132 * returns 1 if we get the read lock and 0 if we don't
132 * this won't wait for blocking writers 133 * this won't wait for blocking writers
133 */ 134 */
135 int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
136 {
137 if (atomic_read(&eb->blocking_writers))
138 return 0;
139
140 read_lock(&eb->lock);
141 if (atomic_read(&eb->blocking_writers)) {
142 read_unlock(&eb->lock);
143 return 0;
144 }
145 atomic_inc(&eb->read_locks);
146 atomic_inc(&eb->spinning_readers);
147 return 1;
148 }
149
150 /*
151 * returns 1 if we get the read lock and 0 if we don't
152 * this won't wait for blocking writers
153 */
134 int btrfs_try_tree_read_lock(struct extent_buffer *eb) 154 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
135 { 155 {
136 if (atomic_read(&eb->blocking_writers)) 156 if (atomic_read(&eb->blocking_writers))
137 return 0; 157 return 0;
138 158
139 if (!read_trylock(&eb->lock)) 159 if (!read_trylock(&eb->lock))
140 return 0; 160 return 0;
141 161
142 if (atomic_read(&eb->blocking_writers)) { 162 if (atomic_read(&eb->blocking_writers)) {
143 read_unlock(&eb->lock); 163 read_unlock(&eb->lock);
144 return 0; 164 return 0;
145 } 165 }
146 atomic_inc(&eb->read_locks); 166 atomic_inc(&eb->read_locks);
147 atomic_inc(&eb->spinning_readers); 167 atomic_inc(&eb->spinning_readers);
148 return 1; 168 return 1;
149 } 169 }
150 170
151 /* 171 /*
152 * returns 1 if we get the read lock and 0 if we don't 172 * returns 1 if we get the read lock and 0 if we don't
153 * this won't wait for blocking writers or readers 173 * this won't wait for blocking writers or readers
154 */ 174 */
155 int btrfs_try_tree_write_lock(struct extent_buffer *eb) 175 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
156 { 176 {
157 if (atomic_read(&eb->blocking_writers) || 177 if (atomic_read(&eb->blocking_writers) ||
158 atomic_read(&eb->blocking_readers)) 178 atomic_read(&eb->blocking_readers))
159 return 0; 179 return 0;
160 180
161 if (!write_trylock(&eb->lock)) 181 write_lock(&eb->lock);
162 return 0;
163
164 if (atomic_read(&eb->blocking_writers) || 182 if (atomic_read(&eb->blocking_writers) ||
165 atomic_read(&eb->blocking_readers)) { 183 atomic_read(&eb->blocking_readers)) {
166 write_unlock(&eb->lock); 184 write_unlock(&eb->lock);
167 return 0; 185 return 0;
168 } 186 }
169 atomic_inc(&eb->write_locks); 187 atomic_inc(&eb->write_locks);
170 atomic_inc(&eb->spinning_writers); 188 atomic_inc(&eb->spinning_writers);
171 eb->lock_owner = current->pid; 189 eb->lock_owner = current->pid;
172 return 1; 190 return 1;
173 } 191 }
174 192
175 /* 193 /*
176 * drop a spinning read lock 194 * drop a spinning read lock
177 */ 195 */
178 void btrfs_tree_read_unlock(struct extent_buffer *eb) 196 void btrfs_tree_read_unlock(struct extent_buffer *eb)
179 { 197 {
180 /* 198 /*
181 * if we're nested, we have the write lock. No new locking 199 * if we're nested, we have the write lock. No new locking
182 * is needed as long as we are the lock owner. 200 * is needed as long as we are the lock owner.
183 * The write unlock will do a barrier for us, and the lock_nested 201 * The write unlock will do a barrier for us, and the lock_nested
184 * field only matters to the lock owner. 202 * field only matters to the lock owner.
185 */ 203 */
186 if (eb->lock_nested && current->pid == eb->lock_owner) { 204 if (eb->lock_nested && current->pid == eb->lock_owner) {
187 eb->lock_nested = 0; 205 eb->lock_nested = 0;
188 return; 206 return;
189 } 207 }
190 btrfs_assert_tree_read_locked(eb); 208 btrfs_assert_tree_read_locked(eb);
191 WARN_ON(atomic_read(&eb->spinning_readers) == 0); 209 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
192 atomic_dec(&eb->spinning_readers); 210 atomic_dec(&eb->spinning_readers);
193 atomic_dec(&eb->read_locks); 211 atomic_dec(&eb->read_locks);
194 read_unlock(&eb->lock); 212 read_unlock(&eb->lock);
195 } 213 }
196 214
197 /* 215 /*
198 * drop a blocking read lock 216 * drop a blocking read lock
199 */ 217 */
200 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb) 218 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
201 { 219 {
202 /* 220 /*
203 * if we're nested, we have the write lock. No new locking 221 * if we're nested, we have the write lock. No new locking
204 * is needed as long as we are the lock owner. 222 * is needed as long as we are the lock owner.
205 * The write unlock will do a barrier for us, and the lock_nested 223 * The write unlock will do a barrier for us, and the lock_nested
206 * field only matters to the lock owner. 224 * field only matters to the lock owner.
207 */ 225 */
208 if (eb->lock_nested && current->pid == eb->lock_owner) { 226 if (eb->lock_nested && current->pid == eb->lock_owner) {
209 eb->lock_nested = 0; 227 eb->lock_nested = 0;
210 return; 228 return;
211 } 229 }
212 btrfs_assert_tree_read_locked(eb); 230 btrfs_assert_tree_read_locked(eb);
213 WARN_ON(atomic_read(&eb->blocking_readers) == 0); 231 WARN_ON(atomic_read(&eb->blocking_readers) == 0);
214 if (atomic_dec_and_test(&eb->blocking_readers) && 232 if (atomic_dec_and_test(&eb->blocking_readers) &&
215 waitqueue_active(&eb->read_lock_wq)) 233 waitqueue_active(&eb->read_lock_wq))
216 wake_up(&eb->read_lock_wq); 234 wake_up(&eb->read_lock_wq);
217 atomic_dec(&eb->read_locks); 235 atomic_dec(&eb->read_locks);
218 } 236 }
219 237
220 /* 238 /*
221 * take a spinning write lock. This will wait for both 239 * take a spinning write lock. This will wait for both
222 * blocking readers or writers 240 * blocking readers or writers
223 */ 241 */
224 void btrfs_tree_lock(struct extent_buffer *eb) 242 void btrfs_tree_lock(struct extent_buffer *eb)
225 { 243 {
226 again: 244 again:
227 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0); 245 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
228 wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0); 246 wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
229 write_lock(&eb->lock); 247 write_lock(&eb->lock);
230 if (atomic_read(&eb->blocking_readers)) { 248 if (atomic_read(&eb->blocking_readers)) {
231 write_unlock(&eb->lock); 249 write_unlock(&eb->lock);
232 wait_event(eb->read_lock_wq, 250 wait_event(eb->read_lock_wq,
233 atomic_read(&eb->blocking_readers) == 0); 251 atomic_read(&eb->blocking_readers) == 0);
234 goto again; 252 goto again;
235 } 253 }
236 if (atomic_read(&eb->blocking_writers)) { 254 if (atomic_read(&eb->blocking_writers)) {
237 write_unlock(&eb->lock); 255 write_unlock(&eb->lock);
238 wait_event(eb->write_lock_wq, 256 wait_event(eb->write_lock_wq,
239 atomic_read(&eb->blocking_writers) == 0); 257 atomic_read(&eb->blocking_writers) == 0);
240 goto again; 258 goto again;
241 } 259 }
242 WARN_ON(atomic_read(&eb->spinning_writers)); 260 WARN_ON(atomic_read(&eb->spinning_writers));
243 atomic_inc(&eb->spinning_writers); 261 atomic_inc(&eb->spinning_writers);
244 atomic_inc(&eb->write_locks); 262 atomic_inc(&eb->write_locks);
245 eb->lock_owner = current->pid; 263 eb->lock_owner = current->pid;
246 } 264 }
247 265
248 /* 266 /*
249 * drop a spinning or a blocking write lock. 267 * drop a spinning or a blocking write lock.
250 */ 268 */
251 void btrfs_tree_unlock(struct extent_buffer *eb) 269 void btrfs_tree_unlock(struct extent_buffer *eb)
252 { 270 {
253 int blockers = atomic_read(&eb->blocking_writers); 271 int blockers = atomic_read(&eb->blocking_writers);
254 272
255 BUG_ON(blockers > 1); 273 BUG_ON(blockers > 1);
256 274
257 btrfs_assert_tree_locked(eb); 275 btrfs_assert_tree_locked(eb);
258 eb->lock_owner = 0; 276 eb->lock_owner = 0;
259 atomic_dec(&eb->write_locks); 277 atomic_dec(&eb->write_locks);
260 278
261 if (blockers) { 279 if (blockers) {
262 WARN_ON(atomic_read(&eb->spinning_writers)); 280 WARN_ON(atomic_read(&eb->spinning_writers));
263 atomic_dec(&eb->blocking_writers); 281 atomic_dec(&eb->blocking_writers);
264 smp_mb(); 282 smp_mb();
265 if (waitqueue_active(&eb->write_lock_wq)) 283 if (waitqueue_active(&eb->write_lock_wq))
266 wake_up(&eb->write_lock_wq); 284 wake_up(&eb->write_lock_wq);
267 } else { 285 } else {
268 WARN_ON(atomic_read(&eb->spinning_writers) != 1); 286 WARN_ON(atomic_read(&eb->spinning_writers) != 1);
269 atomic_dec(&eb->spinning_writers); 287 atomic_dec(&eb->spinning_writers);
270 write_unlock(&eb->lock); 288 write_unlock(&eb->lock);
271 } 289 }
272 } 290 }
273 291
274 void btrfs_assert_tree_locked(struct extent_buffer *eb) 292 void btrfs_assert_tree_locked(struct extent_buffer *eb)
275 { 293 {
276 BUG_ON(!atomic_read(&eb->write_locks)); 294 BUG_ON(!atomic_read(&eb->write_locks));
277 } 295 }
278 296
279 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) 297 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
280 { 298 {
281 BUG_ON(!atomic_read(&eb->read_locks)); 299 BUG_ON(!atomic_read(&eb->read_locks));
1 /* 1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved. 2 * Copyright (C) 2008 Oracle. All rights reserved.
3 * 3 *
4 * This program is free software; you can redistribute it and/or 4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public 5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation. 6 * License v2 as published by the Free Software Foundation.
7 * 7 *
8 * This program is distributed in the hope that it will be useful, 8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details. 11 * General Public License for more details.
12 * 12 *
13 * You should have received a copy of the GNU General Public 13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the 14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA. 16 * Boston, MA 021110-1307, USA.
17 */ 17 */
18 18
19 #ifndef __BTRFS_LOCKING_ 19 #ifndef __BTRFS_LOCKING_
20 #define __BTRFS_LOCKING_ 20 #define __BTRFS_LOCKING_
21 21
22 #define BTRFS_WRITE_LOCK 1 22 #define BTRFS_WRITE_LOCK 1
23 #define BTRFS_READ_LOCK 2 23 #define BTRFS_READ_LOCK 2
24 #define BTRFS_WRITE_LOCK_BLOCKING 3 24 #define BTRFS_WRITE_LOCK_BLOCKING 3
25 #define BTRFS_READ_LOCK_BLOCKING 4 25 #define BTRFS_READ_LOCK_BLOCKING 4
26 26
27 void btrfs_tree_lock(struct extent_buffer *eb); 27 void btrfs_tree_lock(struct extent_buffer *eb);
28 void btrfs_tree_unlock(struct extent_buffer *eb); 28 void btrfs_tree_unlock(struct extent_buffer *eb);
29 29
30 void btrfs_tree_read_lock(struct extent_buffer *eb); 30 void btrfs_tree_read_lock(struct extent_buffer *eb);
31 void btrfs_tree_read_unlock(struct extent_buffer *eb); 31 void btrfs_tree_read_unlock(struct extent_buffer *eb);
32 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb); 32 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb);
33 void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw); 33 void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw);
34 void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw); 34 void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw);
35 void btrfs_assert_tree_locked(struct extent_buffer *eb); 35 void btrfs_assert_tree_locked(struct extent_buffer *eb);
36 int btrfs_try_tree_read_lock(struct extent_buffer *eb); 36 int btrfs_try_tree_read_lock(struct extent_buffer *eb);
37 int btrfs_try_tree_write_lock(struct extent_buffer *eb); 37 int btrfs_try_tree_write_lock(struct extent_buffer *eb);
38 int btrfs_tree_read_lock_atomic(struct extent_buffer *eb);
39
38 40
39 static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw) 41 static inline void btrfs_tree_unlock_rw(struct extent_buffer *eb, int rw)
40 { 42 {
41 if (rw == BTRFS_WRITE_LOCK || rw == BTRFS_WRITE_LOCK_BLOCKING) 43 if (rw == BTRFS_WRITE_LOCK || rw == BTRFS_WRITE_LOCK_BLOCKING)
42 btrfs_tree_unlock(eb); 44 btrfs_tree_unlock(eb);
43 else if (rw == BTRFS_READ_LOCK_BLOCKING) 45 else if (rw == BTRFS_READ_LOCK_BLOCKING)
44 btrfs_tree_read_unlock_blocking(eb); 46 btrfs_tree_read_unlock_blocking(eb);
45 else if (rw == BTRFS_READ_LOCK) 47 else if (rw == BTRFS_READ_LOCK)
46 btrfs_tree_read_unlock(eb); 48 btrfs_tree_read_unlock(eb);
47 else 49 else
48 BUG(); 50 BUG();
49 } 51 }
50 52
51 static inline void btrfs_set_lock_blocking(struct extent_buffer *eb) 53 static inline void btrfs_set_lock_blocking(struct extent_buffer *eb)
52 { 54 {
53 btrfs_set_lock_blocking_rw(eb, BTRFS_WRITE_LOCK); 55 btrfs_set_lock_blocking_rw(eb, BTRFS_WRITE_LOCK);
54 } 56 }
55 57
56 static inline void btrfs_clear_lock_blocking(struct extent_buffer *eb) 58 static inline void btrfs_clear_lock_blocking(struct extent_buffer *eb)
57 { 59 {
58 btrfs_clear_lock_blocking_rw(eb, BTRFS_WRITE_LOCK_BLOCKING); 60 btrfs_clear_lock_blocking_rw(eb, BTRFS_WRITE_LOCK_BLOCKING);
59 } 61 }
60 #endif 62 #endif
61 63