Commit d73437ade6b00e559b73f805e272446e2afdd3b3

Authored by Oleg Nesterov
Committed by Greg Kroah-Hartman
1 parent 0324896e2e

exit: fix race between wait_consider_task() and wait_task_zombie()

commit 3245d6acab981a2388ffb877c7ecc97e763c59d4 upstream.

wait_consider_task() checks EXIT_ZOMBIE after EXIT_DEAD/EXIT_TRACE and
both checks can fail if we race with EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE
change in between, gcc needs to reload p->exit_state after
security_task_wait().  In this case ->notask_error will be wrongly
cleared and do_wait() can hang forever if it was the last eligible
child.

Many thanks to Arne who carefully investigated the problem.

Note: this bug is very old but it was pure theoretical until commit
b3ab03160dfa ("wait: completely ignore the EXIT_DEAD tasks").  Before
this commit "-O2" was probably enough to guarantee that compiler won't
read ->exit_state twice.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Arne Goedeke <el@laramies.com>
Tested-by: Arne Goedeke <el@laramies.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Showing 1 changed file with 9 additions and 3 deletions Inline Diff

1 /* 1 /*
2 * linux/kernel/exit.c 2 * linux/kernel/exit.c
3 * 3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */ 5 */
6 6
7 #include <linux/mm.h> 7 #include <linux/mm.h>
8 #include <linux/slab.h> 8 #include <linux/slab.h>
9 #include <linux/interrupt.h> 9 #include <linux/interrupt.h>
10 #include <linux/module.h> 10 #include <linux/module.h>
11 #include <linux/capability.h> 11 #include <linux/capability.h>
12 #include <linux/completion.h> 12 #include <linux/completion.h>
13 #include <linux/personality.h> 13 #include <linux/personality.h>
14 #include <linux/tty.h> 14 #include <linux/tty.h>
15 #include <linux/iocontext.h> 15 #include <linux/iocontext.h>
16 #include <linux/key.h> 16 #include <linux/key.h>
17 #include <linux/security.h> 17 #include <linux/security.h>
18 #include <linux/cpu.h> 18 #include <linux/cpu.h>
19 #include <linux/acct.h> 19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h> 20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h> 21 #include <linux/file.h>
22 #include <linux/fdtable.h> 22 #include <linux/fdtable.h>
23 #include <linux/freezer.h> 23 #include <linux/freezer.h>
24 #include <linux/binfmts.h> 24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h> 25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h> 26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h> 27 #include <linux/ptrace.h>
28 #include <linux/profile.h> 28 #include <linux/profile.h>
29 #include <linux/mount.h> 29 #include <linux/mount.h>
30 #include <linux/proc_fs.h> 30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h> 31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h> 32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h> 33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h> 34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h> 35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h> 36 #include <linux/syscalls.h>
37 #include <linux/signal.h> 37 #include <linux/signal.h>
38 #include <linux/posix-timers.h> 38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h> 39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h> 40 #include <linux/mutex.h>
41 #include <linux/futex.h> 41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h> 42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */ 43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h> 44 #include <linux/resource.h>
45 #include <linux/blkdev.h> 45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h> 46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h> 47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h> 48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h> 49 #include <linux/init_task.h>
50 #include <linux/perf_event.h> 50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h> 51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h> 52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h> 53 #include <linux/oom.h>
54 #include <linux/writeback.h> 54 #include <linux/writeback.h>
55 #include <linux/shm.h> 55 #include <linux/shm.h>
56 56
57 #include <asm/uaccess.h> 57 #include <asm/uaccess.h>
58 #include <asm/unistd.h> 58 #include <asm/unistd.h>
59 #include <asm/pgtable.h> 59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h> 60 #include <asm/mmu_context.h>
61 61
62 static void exit_mm(struct task_struct *tsk); 62 static void exit_mm(struct task_struct *tsk);
63 63
64 static void __unhash_process(struct task_struct *p, bool group_dead) 64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 { 65 {
66 nr_threads--; 66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID); 67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) { 68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID); 69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID); 70 detach_pid(p, PIDTYPE_SID);
71 71
72 list_del_rcu(&p->tasks); 72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling); 73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts); 74 __this_cpu_dec(process_counts);
75 } 75 }
76 list_del_rcu(&p->thread_group); 76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node); 77 list_del_rcu(&p->thread_node);
78 } 78 }
79 79
80 /* 80 /*
81 * This function expects the tasklist_lock write-locked. 81 * This function expects the tasklist_lock write-locked.
82 */ 82 */
83 static void __exit_signal(struct task_struct *tsk) 83 static void __exit_signal(struct task_struct *tsk)
84 { 84 {
85 struct signal_struct *sig = tsk->signal; 85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk); 86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand; 87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty); 88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime; 89 cputime_t utime, stime;
90 90
91 sighand = rcu_dereference_check(tsk->sighand, 91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held()); 92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock); 93 spin_lock(&sighand->siglock);
94 94
95 posix_cpu_timers_exit(tsk); 95 posix_cpu_timers_exit(tsk);
96 if (group_dead) { 96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk); 97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty; 98 tty = sig->tty;
99 sig->tty = NULL; 99 sig->tty = NULL;
100 } else { 100 } else {
101 /* 101 /*
102 * This can only happen if the caller is de_thread(). 102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach 103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly. 104 * posix-cpu-timers to handle this case correctly.
105 */ 105 */
106 if (unlikely(has_group_leader_pid(tsk))) 106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk); 107 posix_cpu_timers_exit_group(tsk);
108 108
109 /* 109 /*
110 * If there is any task waiting for the group exit 110 * If there is any task waiting for the group exit
111 * then notify it: 111 * then notify it:
112 */ 112 */
113 if (sig->notify_count > 0 && !--sig->notify_count) 113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task); 114 wake_up_process(sig->group_exit_task);
115 115
116 if (tsk == sig->curr_target) 116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk); 117 sig->curr_target = next_thread(tsk);
118 } 118 }
119 119
120 /* 120 /*
121 * Accumulate here the counters for all threads but the group leader 121 * Accumulate here the counters for all threads but the group leader
122 * as they die, so they can be added into the process-wide totals 122 * as they die, so they can be added into the process-wide totals
123 * when those are taken. The group leader stays around as a zombie as 123 * when those are taken. The group leader stays around as a zombie as
124 * long as there are other threads. When it gets reaped, the exit.c 124 * long as there are other threads. When it gets reaped, the exit.c
125 * code will add its counts into these totals. We won't ever get here 125 * code will add its counts into these totals. We won't ever get here
126 * for the group leader, since it will have been the last reference on 126 * for the group leader, since it will have been the last reference on
127 * the signal_struct. 127 * the signal_struct.
128 */ 128 */
129 task_cputime(tsk, &utime, &stime); 129 task_cputime(tsk, &utime, &stime);
130 write_seqlock(&sig->stats_lock); 130 write_seqlock(&sig->stats_lock);
131 sig->utime += utime; 131 sig->utime += utime;
132 sig->stime += stime; 132 sig->stime += stime;
133 sig->gtime += task_gtime(tsk); 133 sig->gtime += task_gtime(tsk);
134 sig->min_flt += tsk->min_flt; 134 sig->min_flt += tsk->min_flt;
135 sig->maj_flt += tsk->maj_flt; 135 sig->maj_flt += tsk->maj_flt;
136 sig->nvcsw += tsk->nvcsw; 136 sig->nvcsw += tsk->nvcsw;
137 sig->nivcsw += tsk->nivcsw; 137 sig->nivcsw += tsk->nivcsw;
138 sig->inblock += task_io_get_inblock(tsk); 138 sig->inblock += task_io_get_inblock(tsk);
139 sig->oublock += task_io_get_oublock(tsk); 139 sig->oublock += task_io_get_oublock(tsk);
140 task_io_accounting_add(&sig->ioac, &tsk->ioac); 140 task_io_accounting_add(&sig->ioac, &tsk->ioac);
141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime; 141 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--; 142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead); 143 __unhash_process(tsk, group_dead);
144 write_sequnlock(&sig->stats_lock); 144 write_sequnlock(&sig->stats_lock);
145 145
146 /* 146 /*
147 * Do this under ->siglock, we can race with another thread 147 * Do this under ->siglock, we can race with another thread
148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. 148 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 */ 149 */
150 flush_sigqueue(&tsk->pending); 150 flush_sigqueue(&tsk->pending);
151 tsk->sighand = NULL; 151 tsk->sighand = NULL;
152 spin_unlock(&sighand->siglock); 152 spin_unlock(&sighand->siglock);
153 153
154 __cleanup_sighand(sighand); 154 __cleanup_sighand(sighand);
155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING); 155 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
156 if (group_dead) { 156 if (group_dead) {
157 flush_sigqueue(&sig->shared_pending); 157 flush_sigqueue(&sig->shared_pending);
158 tty_kref_put(tty); 158 tty_kref_put(tty);
159 } 159 }
160 } 160 }
161 161
162 static void delayed_put_task_struct(struct rcu_head *rhp) 162 static void delayed_put_task_struct(struct rcu_head *rhp)
163 { 163 {
164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 164 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 165
166 perf_event_delayed_put(tsk); 166 perf_event_delayed_put(tsk);
167 trace_sched_process_free(tsk); 167 trace_sched_process_free(tsk);
168 put_task_struct(tsk); 168 put_task_struct(tsk);
169 } 169 }
170 170
171 171
172 void release_task(struct task_struct *p) 172 void release_task(struct task_struct *p)
173 { 173 {
174 struct task_struct *leader; 174 struct task_struct *leader;
175 int zap_leader; 175 int zap_leader;
176 repeat: 176 repeat:
177 /* don't need to get the RCU readlock here - the process is dead and 177 /* don't need to get the RCU readlock here - the process is dead and
178 * can't be modifying its own credentials. But shut RCU-lockdep up */ 178 * can't be modifying its own credentials. But shut RCU-lockdep up */
179 rcu_read_lock(); 179 rcu_read_lock();
180 atomic_dec(&__task_cred(p)->user->processes); 180 atomic_dec(&__task_cred(p)->user->processes);
181 rcu_read_unlock(); 181 rcu_read_unlock();
182 182
183 proc_flush_task(p); 183 proc_flush_task(p);
184 184
185 write_lock_irq(&tasklist_lock); 185 write_lock_irq(&tasklist_lock);
186 ptrace_release_task(p); 186 ptrace_release_task(p);
187 __exit_signal(p); 187 __exit_signal(p);
188 188
189 /* 189 /*
190 * If we are the last non-leader member of the thread 190 * If we are the last non-leader member of the thread
191 * group, and the leader is zombie, then notify the 191 * group, and the leader is zombie, then notify the
192 * group leader's parent process. (if it wants notification.) 192 * group leader's parent process. (if it wants notification.)
193 */ 193 */
194 zap_leader = 0; 194 zap_leader = 0;
195 leader = p->group_leader; 195 leader = p->group_leader;
196 if (leader != p && thread_group_empty(leader) 196 if (leader != p && thread_group_empty(leader)
197 && leader->exit_state == EXIT_ZOMBIE) { 197 && leader->exit_state == EXIT_ZOMBIE) {
198 /* 198 /*
199 * If we were the last child thread and the leader has 199 * If we were the last child thread and the leader has
200 * exited already, and the leader's parent ignores SIGCHLD, 200 * exited already, and the leader's parent ignores SIGCHLD,
201 * then we are the one who should release the leader. 201 * then we are the one who should release the leader.
202 */ 202 */
203 zap_leader = do_notify_parent(leader, leader->exit_signal); 203 zap_leader = do_notify_parent(leader, leader->exit_signal);
204 if (zap_leader) 204 if (zap_leader)
205 leader->exit_state = EXIT_DEAD; 205 leader->exit_state = EXIT_DEAD;
206 } 206 }
207 207
208 write_unlock_irq(&tasklist_lock); 208 write_unlock_irq(&tasklist_lock);
209 release_thread(p); 209 release_thread(p);
210 call_rcu(&p->rcu, delayed_put_task_struct); 210 call_rcu(&p->rcu, delayed_put_task_struct);
211 211
212 p = leader; 212 p = leader;
213 if (unlikely(zap_leader)) 213 if (unlikely(zap_leader))
214 goto repeat; 214 goto repeat;
215 } 215 }
216 216
217 /* 217 /*
218 * This checks not only the pgrp, but falls back on the pid if no 218 * This checks not only the pgrp, but falls back on the pid if no
219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly 219 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
220 * without this... 220 * without this...
221 * 221 *
222 * The caller must hold rcu lock or the tasklist lock. 222 * The caller must hold rcu lock or the tasklist lock.
223 */ 223 */
224 struct pid *session_of_pgrp(struct pid *pgrp) 224 struct pid *session_of_pgrp(struct pid *pgrp)
225 { 225 {
226 struct task_struct *p; 226 struct task_struct *p;
227 struct pid *sid = NULL; 227 struct pid *sid = NULL;
228 228
229 p = pid_task(pgrp, PIDTYPE_PGID); 229 p = pid_task(pgrp, PIDTYPE_PGID);
230 if (p == NULL) 230 if (p == NULL)
231 p = pid_task(pgrp, PIDTYPE_PID); 231 p = pid_task(pgrp, PIDTYPE_PID);
232 if (p != NULL) 232 if (p != NULL)
233 sid = task_session(p); 233 sid = task_session(p);
234 234
235 return sid; 235 return sid;
236 } 236 }
237 237
238 /* 238 /*
239 * Determine if a process group is "orphaned", according to the POSIX 239 * Determine if a process group is "orphaned", according to the POSIX
240 * definition in 2.2.2.52. Orphaned process groups are not to be affected 240 * definition in 2.2.2.52. Orphaned process groups are not to be affected
241 * by terminal-generated stop signals. Newly orphaned process groups are 241 * by terminal-generated stop signals. Newly orphaned process groups are
242 * to receive a SIGHUP and a SIGCONT. 242 * to receive a SIGHUP and a SIGCONT.
243 * 243 *
244 * "I ask you, have you ever known what it is to be an orphan?" 244 * "I ask you, have you ever known what it is to be an orphan?"
245 */ 245 */
246 static int will_become_orphaned_pgrp(struct pid *pgrp, 246 static int will_become_orphaned_pgrp(struct pid *pgrp,
247 struct task_struct *ignored_task) 247 struct task_struct *ignored_task)
248 { 248 {
249 struct task_struct *p; 249 struct task_struct *p;
250 250
251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 251 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
252 if ((p == ignored_task) || 252 if ((p == ignored_task) ||
253 (p->exit_state && thread_group_empty(p)) || 253 (p->exit_state && thread_group_empty(p)) ||
254 is_global_init(p->real_parent)) 254 is_global_init(p->real_parent))
255 continue; 255 continue;
256 256
257 if (task_pgrp(p->real_parent) != pgrp && 257 if (task_pgrp(p->real_parent) != pgrp &&
258 task_session(p->real_parent) == task_session(p)) 258 task_session(p->real_parent) == task_session(p))
259 return 0; 259 return 0;
260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 260 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 261
262 return 1; 262 return 1;
263 } 263 }
264 264
265 int is_current_pgrp_orphaned(void) 265 int is_current_pgrp_orphaned(void)
266 { 266 {
267 int retval; 267 int retval;
268 268
269 read_lock(&tasklist_lock); 269 read_lock(&tasklist_lock);
270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); 270 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
271 read_unlock(&tasklist_lock); 271 read_unlock(&tasklist_lock);
272 272
273 return retval; 273 return retval;
274 } 274 }
275 275
276 static bool has_stopped_jobs(struct pid *pgrp) 276 static bool has_stopped_jobs(struct pid *pgrp)
277 { 277 {
278 struct task_struct *p; 278 struct task_struct *p;
279 279
280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 280 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
281 if (p->signal->flags & SIGNAL_STOP_STOPPED) 281 if (p->signal->flags & SIGNAL_STOP_STOPPED)
282 return true; 282 return true;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 284
285 return false; 285 return false;
286 } 286 }
287 287
288 /* 288 /*
289 * Check to see if any process groups have become orphaned as 289 * Check to see if any process groups have become orphaned as
290 * a result of our exiting, and if they have any stopped jobs, 290 * a result of our exiting, and if they have any stopped jobs,
291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 291 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 */ 292 */
293 static void 293 static void
294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) 294 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 { 295 {
296 struct pid *pgrp = task_pgrp(tsk); 296 struct pid *pgrp = task_pgrp(tsk);
297 struct task_struct *ignored_task = tsk; 297 struct task_struct *ignored_task = tsk;
298 298
299 if (!parent) 299 if (!parent)
300 /* exit: our father is in a different pgrp than 300 /* exit: our father is in a different pgrp than
301 * we are and we were the only connection outside. 301 * we are and we were the only connection outside.
302 */ 302 */
303 parent = tsk->real_parent; 303 parent = tsk->real_parent;
304 else 304 else
305 /* reparent: our child is in a different pgrp than 305 /* reparent: our child is in a different pgrp than
306 * we are, and it was the only connection outside. 306 * we are, and it was the only connection outside.
307 */ 307 */
308 ignored_task = NULL; 308 ignored_task = NULL;
309 309
310 if (task_pgrp(parent) != pgrp && 310 if (task_pgrp(parent) != pgrp &&
311 task_session(parent) == task_session(tsk) && 311 task_session(parent) == task_session(tsk) &&
312 will_become_orphaned_pgrp(pgrp, ignored_task) && 312 will_become_orphaned_pgrp(pgrp, ignored_task) &&
313 has_stopped_jobs(pgrp)) { 313 has_stopped_jobs(pgrp)) {
314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); 314 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); 315 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 } 316 }
317 } 317 }
318 318
319 #ifdef CONFIG_MEMCG 319 #ifdef CONFIG_MEMCG
320 /* 320 /*
321 * A task is exiting. If it owned this mm, find a new owner for the mm. 321 * A task is exiting. If it owned this mm, find a new owner for the mm.
322 */ 322 */
323 void mm_update_next_owner(struct mm_struct *mm) 323 void mm_update_next_owner(struct mm_struct *mm)
324 { 324 {
325 struct task_struct *c, *g, *p = current; 325 struct task_struct *c, *g, *p = current;
326 326
327 retry: 327 retry:
328 /* 328 /*
329 * If the exiting or execing task is not the owner, it's 329 * If the exiting or execing task is not the owner, it's
330 * someone else's problem. 330 * someone else's problem.
331 */ 331 */
332 if (mm->owner != p) 332 if (mm->owner != p)
333 return; 333 return;
334 /* 334 /*
335 * The current owner is exiting/execing and there are no other 335 * The current owner is exiting/execing and there are no other
336 * candidates. Do not leave the mm pointing to a possibly 336 * candidates. Do not leave the mm pointing to a possibly
337 * freed task structure. 337 * freed task structure.
338 */ 338 */
339 if (atomic_read(&mm->mm_users) <= 1) { 339 if (atomic_read(&mm->mm_users) <= 1) {
340 mm->owner = NULL; 340 mm->owner = NULL;
341 return; 341 return;
342 } 342 }
343 343
344 read_lock(&tasklist_lock); 344 read_lock(&tasklist_lock);
345 /* 345 /*
346 * Search in the children 346 * Search in the children
347 */ 347 */
348 list_for_each_entry(c, &p->children, sibling) { 348 list_for_each_entry(c, &p->children, sibling) {
349 if (c->mm == mm) 349 if (c->mm == mm)
350 goto assign_new_owner; 350 goto assign_new_owner;
351 } 351 }
352 352
353 /* 353 /*
354 * Search in the siblings 354 * Search in the siblings
355 */ 355 */
356 list_for_each_entry(c, &p->real_parent->children, sibling) { 356 list_for_each_entry(c, &p->real_parent->children, sibling) {
357 if (c->mm == mm) 357 if (c->mm == mm)
358 goto assign_new_owner; 358 goto assign_new_owner;
359 } 359 }
360 360
361 /* 361 /*
362 * Search through everything else, we should not get here often. 362 * Search through everything else, we should not get here often.
363 */ 363 */
364 for_each_process(g) { 364 for_each_process(g) {
365 if (g->flags & PF_KTHREAD) 365 if (g->flags & PF_KTHREAD)
366 continue; 366 continue;
367 for_each_thread(g, c) { 367 for_each_thread(g, c) {
368 if (c->mm == mm) 368 if (c->mm == mm)
369 goto assign_new_owner; 369 goto assign_new_owner;
370 if (c->mm) 370 if (c->mm)
371 break; 371 break;
372 } 372 }
373 } 373 }
374 read_unlock(&tasklist_lock); 374 read_unlock(&tasklist_lock);
375 /* 375 /*
376 * We found no owner yet mm_users > 1: this implies that we are 376 * We found no owner yet mm_users > 1: this implies that we are
377 * most likely racing with swapoff (try_to_unuse()) or /proc or 377 * most likely racing with swapoff (try_to_unuse()) or /proc or
378 * ptrace or page migration (get_task_mm()). Mark owner as NULL. 378 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
379 */ 379 */
380 mm->owner = NULL; 380 mm->owner = NULL;
381 return; 381 return;
382 382
383 assign_new_owner: 383 assign_new_owner:
384 BUG_ON(c == p); 384 BUG_ON(c == p);
385 get_task_struct(c); 385 get_task_struct(c);
386 /* 386 /*
387 * The task_lock protects c->mm from changing. 387 * The task_lock protects c->mm from changing.
388 * We always want mm->owner->mm == mm 388 * We always want mm->owner->mm == mm
389 */ 389 */
390 task_lock(c); 390 task_lock(c);
391 /* 391 /*
392 * Delay read_unlock() till we have the task_lock() 392 * Delay read_unlock() till we have the task_lock()
393 * to ensure that c does not slip away underneath us 393 * to ensure that c does not slip away underneath us
394 */ 394 */
395 read_unlock(&tasklist_lock); 395 read_unlock(&tasklist_lock);
396 if (c->mm != mm) { 396 if (c->mm != mm) {
397 task_unlock(c); 397 task_unlock(c);
398 put_task_struct(c); 398 put_task_struct(c);
399 goto retry; 399 goto retry;
400 } 400 }
401 mm->owner = c; 401 mm->owner = c;
402 task_unlock(c); 402 task_unlock(c);
403 put_task_struct(c); 403 put_task_struct(c);
404 } 404 }
405 #endif /* CONFIG_MEMCG */ 405 #endif /* CONFIG_MEMCG */
406 406
407 /* 407 /*
408 * Turn us into a lazy TLB process if we 408 * Turn us into a lazy TLB process if we
409 * aren't already.. 409 * aren't already..
410 */ 410 */
411 static void exit_mm(struct task_struct *tsk) 411 static void exit_mm(struct task_struct *tsk)
412 { 412 {
413 struct mm_struct *mm = tsk->mm; 413 struct mm_struct *mm = tsk->mm;
414 struct core_state *core_state; 414 struct core_state *core_state;
415 415
416 mm_release(tsk, mm); 416 mm_release(tsk, mm);
417 if (!mm) 417 if (!mm)
418 return; 418 return;
419 sync_mm_rss(mm); 419 sync_mm_rss(mm);
420 /* 420 /*
421 * Serialize with any possible pending coredump. 421 * Serialize with any possible pending coredump.
422 * We must hold mmap_sem around checking core_state 422 * We must hold mmap_sem around checking core_state
423 * and clearing tsk->mm. The core-inducing thread 423 * and clearing tsk->mm. The core-inducing thread
424 * will increment ->nr_threads for each thread in the 424 * will increment ->nr_threads for each thread in the
425 * group with ->mm != NULL. 425 * group with ->mm != NULL.
426 */ 426 */
427 down_read(&mm->mmap_sem); 427 down_read(&mm->mmap_sem);
428 core_state = mm->core_state; 428 core_state = mm->core_state;
429 if (core_state) { 429 if (core_state) {
430 struct core_thread self; 430 struct core_thread self;
431 431
432 up_read(&mm->mmap_sem); 432 up_read(&mm->mmap_sem);
433 433
434 self.task = tsk; 434 self.task = tsk;
435 self.next = xchg(&core_state->dumper.next, &self); 435 self.next = xchg(&core_state->dumper.next, &self);
436 /* 436 /*
437 * Implies mb(), the result of xchg() must be visible 437 * Implies mb(), the result of xchg() must be visible
438 * to core_state->dumper. 438 * to core_state->dumper.
439 */ 439 */
440 if (atomic_dec_and_test(&core_state->nr_threads)) 440 if (atomic_dec_and_test(&core_state->nr_threads))
441 complete(&core_state->startup); 441 complete(&core_state->startup);
442 442
443 for (;;) { 443 for (;;) {
444 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 444 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
445 if (!self.task) /* see coredump_finish() */ 445 if (!self.task) /* see coredump_finish() */
446 break; 446 break;
447 freezable_schedule(); 447 freezable_schedule();
448 } 448 }
449 __set_task_state(tsk, TASK_RUNNING); 449 __set_task_state(tsk, TASK_RUNNING);
450 down_read(&mm->mmap_sem); 450 down_read(&mm->mmap_sem);
451 } 451 }
452 atomic_inc(&mm->mm_count); 452 atomic_inc(&mm->mm_count);
453 BUG_ON(mm != tsk->active_mm); 453 BUG_ON(mm != tsk->active_mm);
454 /* more a memory barrier than a real lock */ 454 /* more a memory barrier than a real lock */
455 task_lock(tsk); 455 task_lock(tsk);
456 tsk->mm = NULL; 456 tsk->mm = NULL;
457 up_read(&mm->mmap_sem); 457 up_read(&mm->mmap_sem);
458 enter_lazy_tlb(mm, current); 458 enter_lazy_tlb(mm, current);
459 task_unlock(tsk); 459 task_unlock(tsk);
460 mm_update_next_owner(mm); 460 mm_update_next_owner(mm);
461 mmput(mm); 461 mmput(mm);
462 clear_thread_flag(TIF_MEMDIE); 462 clear_thread_flag(TIF_MEMDIE);
463 } 463 }
464 464
465 /* 465 /*
466 * When we die, we re-parent all our children, and try to: 466 * When we die, we re-parent all our children, and try to:
467 * 1. give them to another thread in our thread group, if such a member exists 467 * 1. give them to another thread in our thread group, if such a member exists
468 * 2. give it to the first ancestor process which prctl'd itself as a 468 * 2. give it to the first ancestor process which prctl'd itself as a
469 * child_subreaper for its children (like a service manager) 469 * child_subreaper for its children (like a service manager)
470 * 3. give it to the init process (PID 1) in our pid namespace 470 * 3. give it to the init process (PID 1) in our pid namespace
471 */ 471 */
472 static struct task_struct *find_new_reaper(struct task_struct *father) 472 static struct task_struct *find_new_reaper(struct task_struct *father)
473 __releases(&tasklist_lock) 473 __releases(&tasklist_lock)
474 __acquires(&tasklist_lock) 474 __acquires(&tasklist_lock)
475 { 475 {
476 struct pid_namespace *pid_ns = task_active_pid_ns(father); 476 struct pid_namespace *pid_ns = task_active_pid_ns(father);
477 struct task_struct *thread; 477 struct task_struct *thread;
478 478
479 thread = father; 479 thread = father;
480 while_each_thread(father, thread) { 480 while_each_thread(father, thread) {
481 if (thread->flags & PF_EXITING) 481 if (thread->flags & PF_EXITING)
482 continue; 482 continue;
483 if (unlikely(pid_ns->child_reaper == father)) 483 if (unlikely(pid_ns->child_reaper == father))
484 pid_ns->child_reaper = thread; 484 pid_ns->child_reaper = thread;
485 return thread; 485 return thread;
486 } 486 }
487 487
488 if (unlikely(pid_ns->child_reaper == father)) { 488 if (unlikely(pid_ns->child_reaper == father)) {
489 write_unlock_irq(&tasklist_lock); 489 write_unlock_irq(&tasklist_lock);
490 if (unlikely(pid_ns == &init_pid_ns)) { 490 if (unlikely(pid_ns == &init_pid_ns)) {
491 panic("Attempted to kill init! exitcode=0x%08x\n", 491 panic("Attempted to kill init! exitcode=0x%08x\n",
492 father->signal->group_exit_code ?: 492 father->signal->group_exit_code ?:
493 father->exit_code); 493 father->exit_code);
494 } 494 }
495 495
496 zap_pid_ns_processes(pid_ns); 496 zap_pid_ns_processes(pid_ns);
497 write_lock_irq(&tasklist_lock); 497 write_lock_irq(&tasklist_lock);
498 } else if (father->signal->has_child_subreaper) { 498 } else if (father->signal->has_child_subreaper) {
499 struct task_struct *reaper; 499 struct task_struct *reaper;
500 500
501 /* 501 /*
502 * Find the first ancestor marked as child_subreaper. 502 * Find the first ancestor marked as child_subreaper.
503 * Note that the code below checks same_thread_group(reaper, 503 * Note that the code below checks same_thread_group(reaper,
504 * pid_ns->child_reaper). This is what we need to DTRT in a 504 * pid_ns->child_reaper). This is what we need to DTRT in a
505 * PID namespace. However we still need the check above, see 505 * PID namespace. However we still need the check above, see
506 * http://marc.info/?l=linux-kernel&m=131385460420380 506 * http://marc.info/?l=linux-kernel&m=131385460420380
507 */ 507 */
508 for (reaper = father->real_parent; 508 for (reaper = father->real_parent;
509 reaper != &init_task; 509 reaper != &init_task;
510 reaper = reaper->real_parent) { 510 reaper = reaper->real_parent) {
511 if (same_thread_group(reaper, pid_ns->child_reaper)) 511 if (same_thread_group(reaper, pid_ns->child_reaper))
512 break; 512 break;
513 if (!reaper->signal->is_child_subreaper) 513 if (!reaper->signal->is_child_subreaper)
514 continue; 514 continue;
515 thread = reaper; 515 thread = reaper;
516 do { 516 do {
517 if (!(thread->flags & PF_EXITING)) 517 if (!(thread->flags & PF_EXITING))
518 return reaper; 518 return reaper;
519 } while_each_thread(reaper, thread); 519 } while_each_thread(reaper, thread);
520 } 520 }
521 } 521 }
522 522
523 return pid_ns->child_reaper; 523 return pid_ns->child_reaper;
524 } 524 }
525 525
526 /* 526 /*
527 * Any that need to be release_task'd are put on the @dead list. 527 * Any that need to be release_task'd are put on the @dead list.
528 */ 528 */
529 static void reparent_leader(struct task_struct *father, struct task_struct *p, 529 static void reparent_leader(struct task_struct *father, struct task_struct *p,
530 struct list_head *dead) 530 struct list_head *dead)
531 { 531 {
532 list_move_tail(&p->sibling, &p->real_parent->children); 532 list_move_tail(&p->sibling, &p->real_parent->children);
533 533
534 if (p->exit_state == EXIT_DEAD) 534 if (p->exit_state == EXIT_DEAD)
535 return; 535 return;
536 /* 536 /*
537 * If this is a threaded reparent there is no need to 537 * If this is a threaded reparent there is no need to
538 * notify anyone anything has happened. 538 * notify anyone anything has happened.
539 */ 539 */
540 if (same_thread_group(p->real_parent, father)) 540 if (same_thread_group(p->real_parent, father))
541 return; 541 return;
542 542
543 /* We don't want people slaying init. */ 543 /* We don't want people slaying init. */
544 p->exit_signal = SIGCHLD; 544 p->exit_signal = SIGCHLD;
545 545
546 /* If it has exited notify the new parent about this child's death. */ 546 /* If it has exited notify the new parent about this child's death. */
547 if (!p->ptrace && 547 if (!p->ptrace &&
548 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { 548 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
549 if (do_notify_parent(p, p->exit_signal)) { 549 if (do_notify_parent(p, p->exit_signal)) {
550 p->exit_state = EXIT_DEAD; 550 p->exit_state = EXIT_DEAD;
551 list_move_tail(&p->sibling, dead); 551 list_move_tail(&p->sibling, dead);
552 } 552 }
553 } 553 }
554 554
555 kill_orphaned_pgrp(p, father); 555 kill_orphaned_pgrp(p, father);
556 } 556 }
557 557
558 static void forget_original_parent(struct task_struct *father) 558 static void forget_original_parent(struct task_struct *father)
559 { 559 {
560 struct task_struct *p, *n, *reaper; 560 struct task_struct *p, *n, *reaper;
561 LIST_HEAD(dead_children); 561 LIST_HEAD(dead_children);
562 562
563 write_lock_irq(&tasklist_lock); 563 write_lock_irq(&tasklist_lock);
564 /* 564 /*
565 * Note that exit_ptrace() and find_new_reaper() might 565 * Note that exit_ptrace() and find_new_reaper() might
566 * drop tasklist_lock and reacquire it. 566 * drop tasklist_lock and reacquire it.
567 */ 567 */
568 exit_ptrace(father); 568 exit_ptrace(father);
569 reaper = find_new_reaper(father); 569 reaper = find_new_reaper(father);
570 570
571 list_for_each_entry_safe(p, n, &father->children, sibling) { 571 list_for_each_entry_safe(p, n, &father->children, sibling) {
572 struct task_struct *t = p; 572 struct task_struct *t = p;
573 573
574 do { 574 do {
575 t->real_parent = reaper; 575 t->real_parent = reaper;
576 if (t->parent == father) { 576 if (t->parent == father) {
577 BUG_ON(t->ptrace); 577 BUG_ON(t->ptrace);
578 t->parent = t->real_parent; 578 t->parent = t->real_parent;
579 } 579 }
580 if (t->pdeath_signal) 580 if (t->pdeath_signal)
581 group_send_sig_info(t->pdeath_signal, 581 group_send_sig_info(t->pdeath_signal,
582 SEND_SIG_NOINFO, t); 582 SEND_SIG_NOINFO, t);
583 } while_each_thread(p, t); 583 } while_each_thread(p, t);
584 reparent_leader(father, p, &dead_children); 584 reparent_leader(father, p, &dead_children);
585 } 585 }
586 write_unlock_irq(&tasklist_lock); 586 write_unlock_irq(&tasklist_lock);
587 587
588 BUG_ON(!list_empty(&father->children)); 588 BUG_ON(!list_empty(&father->children));
589 589
590 list_for_each_entry_safe(p, n, &dead_children, sibling) { 590 list_for_each_entry_safe(p, n, &dead_children, sibling) {
591 list_del_init(&p->sibling); 591 list_del_init(&p->sibling);
592 release_task(p); 592 release_task(p);
593 } 593 }
594 } 594 }
595 595
596 /* 596 /*
597 * Send signals to all our closest relatives so that they know 597 * Send signals to all our closest relatives so that they know
598 * to properly mourn us.. 598 * to properly mourn us..
599 */ 599 */
600 static void exit_notify(struct task_struct *tsk, int group_dead) 600 static void exit_notify(struct task_struct *tsk, int group_dead)
601 { 601 {
602 bool autoreap; 602 bool autoreap;
603 603
604 /* 604 /*
605 * This does two things: 605 * This does two things:
606 * 606 *
607 * A. Make init inherit all the child processes 607 * A. Make init inherit all the child processes
608 * B. Check to see if any process groups have become orphaned 608 * B. Check to see if any process groups have become orphaned
609 * as a result of our exiting, and if they have any stopped 609 * as a result of our exiting, and if they have any stopped
610 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) 610 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
611 */ 611 */
612 forget_original_parent(tsk); 612 forget_original_parent(tsk);
613 613
614 write_lock_irq(&tasklist_lock); 614 write_lock_irq(&tasklist_lock);
615 if (group_dead) 615 if (group_dead)
616 kill_orphaned_pgrp(tsk->group_leader, NULL); 616 kill_orphaned_pgrp(tsk->group_leader, NULL);
617 617
618 if (unlikely(tsk->ptrace)) { 618 if (unlikely(tsk->ptrace)) {
619 int sig = thread_group_leader(tsk) && 619 int sig = thread_group_leader(tsk) &&
620 thread_group_empty(tsk) && 620 thread_group_empty(tsk) &&
621 !ptrace_reparented(tsk) ? 621 !ptrace_reparented(tsk) ?
622 tsk->exit_signal : SIGCHLD; 622 tsk->exit_signal : SIGCHLD;
623 autoreap = do_notify_parent(tsk, sig); 623 autoreap = do_notify_parent(tsk, sig);
624 } else if (thread_group_leader(tsk)) { 624 } else if (thread_group_leader(tsk)) {
625 autoreap = thread_group_empty(tsk) && 625 autoreap = thread_group_empty(tsk) &&
626 do_notify_parent(tsk, tsk->exit_signal); 626 do_notify_parent(tsk, tsk->exit_signal);
627 } else { 627 } else {
628 autoreap = true; 628 autoreap = true;
629 } 629 }
630 630
631 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; 631 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
632 632
633 /* mt-exec, de_thread() is waiting for group leader */ 633 /* mt-exec, de_thread() is waiting for group leader */
634 if (unlikely(tsk->signal->notify_count < 0)) 634 if (unlikely(tsk->signal->notify_count < 0))
635 wake_up_process(tsk->signal->group_exit_task); 635 wake_up_process(tsk->signal->group_exit_task);
636 write_unlock_irq(&tasklist_lock); 636 write_unlock_irq(&tasklist_lock);
637 637
638 /* If the process is dead, release it - nobody will wait for it */ 638 /* If the process is dead, release it - nobody will wait for it */
639 if (autoreap) 639 if (autoreap)
640 release_task(tsk); 640 release_task(tsk);
641 } 641 }
642 642
643 #ifdef CONFIG_DEBUG_STACK_USAGE 643 #ifdef CONFIG_DEBUG_STACK_USAGE
644 static void check_stack_usage(void) 644 static void check_stack_usage(void)
645 { 645 {
646 static DEFINE_SPINLOCK(low_water_lock); 646 static DEFINE_SPINLOCK(low_water_lock);
647 static int lowest_to_date = THREAD_SIZE; 647 static int lowest_to_date = THREAD_SIZE;
648 unsigned long free; 648 unsigned long free;
649 649
650 free = stack_not_used(current); 650 free = stack_not_used(current);
651 651
652 if (free >= lowest_to_date) 652 if (free >= lowest_to_date)
653 return; 653 return;
654 654
655 spin_lock(&low_water_lock); 655 spin_lock(&low_water_lock);
656 if (free < lowest_to_date) { 656 if (free < lowest_to_date) {
657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n", 657 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
658 current->comm, task_pid_nr(current), free); 658 current->comm, task_pid_nr(current), free);
659 lowest_to_date = free; 659 lowest_to_date = free;
660 } 660 }
661 spin_unlock(&low_water_lock); 661 spin_unlock(&low_water_lock);
662 } 662 }
663 #else 663 #else
664 static inline void check_stack_usage(void) {} 664 static inline void check_stack_usage(void) {}
665 #endif 665 #endif
666 666
667 void do_exit(long code) 667 void do_exit(long code)
668 { 668 {
669 struct task_struct *tsk = current; 669 struct task_struct *tsk = current;
670 int group_dead; 670 int group_dead;
671 TASKS_RCU(int tasks_rcu_i); 671 TASKS_RCU(int tasks_rcu_i);
672 672
673 profile_task_exit(tsk); 673 profile_task_exit(tsk);
674 674
675 WARN_ON(blk_needs_flush_plug(tsk)); 675 WARN_ON(blk_needs_flush_plug(tsk));
676 676
677 if (unlikely(in_interrupt())) 677 if (unlikely(in_interrupt()))
678 panic("Aiee, killing interrupt handler!"); 678 panic("Aiee, killing interrupt handler!");
679 if (unlikely(!tsk->pid)) 679 if (unlikely(!tsk->pid))
680 panic("Attempted to kill the idle task!"); 680 panic("Attempted to kill the idle task!");
681 681
682 /* 682 /*
683 * If do_exit is called because this processes oopsed, it's possible 683 * If do_exit is called because this processes oopsed, it's possible
684 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before 684 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
685 * continuing. Amongst other possible reasons, this is to prevent 685 * continuing. Amongst other possible reasons, this is to prevent
686 * mm_release()->clear_child_tid() from writing to a user-controlled 686 * mm_release()->clear_child_tid() from writing to a user-controlled
687 * kernel address. 687 * kernel address.
688 */ 688 */
689 set_fs(USER_DS); 689 set_fs(USER_DS);
690 690
691 ptrace_event(PTRACE_EVENT_EXIT, code); 691 ptrace_event(PTRACE_EVENT_EXIT, code);
692 692
693 validate_creds_for_do_exit(tsk); 693 validate_creds_for_do_exit(tsk);
694 694
695 /* 695 /*
696 * We're taking recursive faults here in do_exit. Safest is to just 696 * We're taking recursive faults here in do_exit. Safest is to just
697 * leave this task alone and wait for reboot. 697 * leave this task alone and wait for reboot.
698 */ 698 */
699 if (unlikely(tsk->flags & PF_EXITING)) { 699 if (unlikely(tsk->flags & PF_EXITING)) {
700 pr_alert("Fixing recursive fault but reboot is needed!\n"); 700 pr_alert("Fixing recursive fault but reboot is needed!\n");
701 /* 701 /*
702 * We can do this unlocked here. The futex code uses 702 * We can do this unlocked here. The futex code uses
703 * this flag just to verify whether the pi state 703 * this flag just to verify whether the pi state
704 * cleanup has been done or not. In the worst case it 704 * cleanup has been done or not. In the worst case it
705 * loops once more. We pretend that the cleanup was 705 * loops once more. We pretend that the cleanup was
706 * done as there is no way to return. Either the 706 * done as there is no way to return. Either the
707 * OWNER_DIED bit is set by now or we push the blocked 707 * OWNER_DIED bit is set by now or we push the blocked
708 * task into the wait for ever nirwana as well. 708 * task into the wait for ever nirwana as well.
709 */ 709 */
710 tsk->flags |= PF_EXITPIDONE; 710 tsk->flags |= PF_EXITPIDONE;
711 set_current_state(TASK_UNINTERRUPTIBLE); 711 set_current_state(TASK_UNINTERRUPTIBLE);
712 schedule(); 712 schedule();
713 } 713 }
714 714
715 exit_signals(tsk); /* sets PF_EXITING */ 715 exit_signals(tsk); /* sets PF_EXITING */
716 /* 716 /*
717 * tsk->flags are checked in the futex code to protect against 717 * tsk->flags are checked in the futex code to protect against
718 * an exiting task cleaning up the robust pi futexes. 718 * an exiting task cleaning up the robust pi futexes.
719 */ 719 */
720 smp_mb(); 720 smp_mb();
721 raw_spin_unlock_wait(&tsk->pi_lock); 721 raw_spin_unlock_wait(&tsk->pi_lock);
722 722
723 if (unlikely(in_atomic())) 723 if (unlikely(in_atomic()))
724 pr_info("note: %s[%d] exited with preempt_count %d\n", 724 pr_info("note: %s[%d] exited with preempt_count %d\n",
725 current->comm, task_pid_nr(current), 725 current->comm, task_pid_nr(current),
726 preempt_count()); 726 preempt_count());
727 727
728 acct_update_integrals(tsk); 728 acct_update_integrals(tsk);
729 /* sync mm's RSS info before statistics gathering */ 729 /* sync mm's RSS info before statistics gathering */
730 if (tsk->mm) 730 if (tsk->mm)
731 sync_mm_rss(tsk->mm); 731 sync_mm_rss(tsk->mm);
732 group_dead = atomic_dec_and_test(&tsk->signal->live); 732 group_dead = atomic_dec_and_test(&tsk->signal->live);
733 if (group_dead) { 733 if (group_dead) {
734 hrtimer_cancel(&tsk->signal->real_timer); 734 hrtimer_cancel(&tsk->signal->real_timer);
735 exit_itimers(tsk->signal); 735 exit_itimers(tsk->signal);
736 if (tsk->mm) 736 if (tsk->mm)
737 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); 737 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
738 } 738 }
739 acct_collect(code, group_dead); 739 acct_collect(code, group_dead);
740 if (group_dead) 740 if (group_dead)
741 tty_audit_exit(); 741 tty_audit_exit();
742 audit_free(tsk); 742 audit_free(tsk);
743 743
744 tsk->exit_code = code; 744 tsk->exit_code = code;
745 taskstats_exit(tsk, group_dead); 745 taskstats_exit(tsk, group_dead);
746 746
747 exit_mm(tsk); 747 exit_mm(tsk);
748 748
749 if (group_dead) 749 if (group_dead)
750 acct_process(); 750 acct_process();
751 trace_sched_process_exit(tsk); 751 trace_sched_process_exit(tsk);
752 752
753 exit_sem(tsk); 753 exit_sem(tsk);
754 exit_shm(tsk); 754 exit_shm(tsk);
755 exit_files(tsk); 755 exit_files(tsk);
756 exit_fs(tsk); 756 exit_fs(tsk);
757 if (group_dead) 757 if (group_dead)
758 disassociate_ctty(1); 758 disassociate_ctty(1);
759 exit_task_namespaces(tsk); 759 exit_task_namespaces(tsk);
760 exit_task_work(tsk); 760 exit_task_work(tsk);
761 exit_thread(); 761 exit_thread();
762 762
763 /* 763 /*
764 * Flush inherited counters to the parent - before the parent 764 * Flush inherited counters to the parent - before the parent
765 * gets woken up by child-exit notifications. 765 * gets woken up by child-exit notifications.
766 * 766 *
767 * because of cgroup mode, must be called before cgroup_exit() 767 * because of cgroup mode, must be called before cgroup_exit()
768 */ 768 */
769 perf_event_exit_task(tsk); 769 perf_event_exit_task(tsk);
770 770
771 cgroup_exit(tsk); 771 cgroup_exit(tsk);
772 772
773 module_put(task_thread_info(tsk)->exec_domain->module); 773 module_put(task_thread_info(tsk)->exec_domain->module);
774 774
775 /* 775 /*
776 * FIXME: do that only when needed, using sched_exit tracepoint 776 * FIXME: do that only when needed, using sched_exit tracepoint
777 */ 777 */
778 flush_ptrace_hw_breakpoint(tsk); 778 flush_ptrace_hw_breakpoint(tsk);
779 779
780 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu)); 780 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
781 exit_notify(tsk, group_dead); 781 exit_notify(tsk, group_dead);
782 proc_exit_connector(tsk); 782 proc_exit_connector(tsk);
783 #ifdef CONFIG_NUMA 783 #ifdef CONFIG_NUMA
784 task_lock(tsk); 784 task_lock(tsk);
785 mpol_put(tsk->mempolicy); 785 mpol_put(tsk->mempolicy);
786 tsk->mempolicy = NULL; 786 tsk->mempolicy = NULL;
787 task_unlock(tsk); 787 task_unlock(tsk);
788 #endif 788 #endif
789 #ifdef CONFIG_FUTEX 789 #ifdef CONFIG_FUTEX
790 if (unlikely(current->pi_state_cache)) 790 if (unlikely(current->pi_state_cache))
791 kfree(current->pi_state_cache); 791 kfree(current->pi_state_cache);
792 #endif 792 #endif
793 /* 793 /*
794 * Make sure we are holding no locks: 794 * Make sure we are holding no locks:
795 */ 795 */
796 debug_check_no_locks_held(); 796 debug_check_no_locks_held();
797 /* 797 /*
798 * We can do this unlocked here. The futex code uses this flag 798 * We can do this unlocked here. The futex code uses this flag
799 * just to verify whether the pi state cleanup has been done 799 * just to verify whether the pi state cleanup has been done
800 * or not. In the worst case it loops once more. 800 * or not. In the worst case it loops once more.
801 */ 801 */
802 tsk->flags |= PF_EXITPIDONE; 802 tsk->flags |= PF_EXITPIDONE;
803 803
804 if (tsk->io_context) 804 if (tsk->io_context)
805 exit_io_context(tsk); 805 exit_io_context(tsk);
806 806
807 if (tsk->splice_pipe) 807 if (tsk->splice_pipe)
808 free_pipe_info(tsk->splice_pipe); 808 free_pipe_info(tsk->splice_pipe);
809 809
810 if (tsk->task_frag.page) 810 if (tsk->task_frag.page)
811 put_page(tsk->task_frag.page); 811 put_page(tsk->task_frag.page);
812 812
813 validate_creds_for_do_exit(tsk); 813 validate_creds_for_do_exit(tsk);
814 814
815 check_stack_usage(); 815 check_stack_usage();
816 preempt_disable(); 816 preempt_disable();
817 if (tsk->nr_dirtied) 817 if (tsk->nr_dirtied)
818 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); 818 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
819 exit_rcu(); 819 exit_rcu();
820 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i)); 820 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
821 821
822 /* 822 /*
823 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed 823 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
824 * when the following two conditions become true. 824 * when the following two conditions become true.
825 * - There is race condition of mmap_sem (It is acquired by 825 * - There is race condition of mmap_sem (It is acquired by
826 * exit_mm()), and 826 * exit_mm()), and
827 * - SMI occurs before setting TASK_RUNINNG. 827 * - SMI occurs before setting TASK_RUNINNG.
828 * (or hypervisor of virtual machine switches to other guest) 828 * (or hypervisor of virtual machine switches to other guest)
829 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD 829 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
830 * 830 *
831 * To avoid it, we have to wait for releasing tsk->pi_lock which 831 * To avoid it, we have to wait for releasing tsk->pi_lock which
832 * is held by try_to_wake_up() 832 * is held by try_to_wake_up()
833 */ 833 */
834 smp_mb(); 834 smp_mb();
835 raw_spin_unlock_wait(&tsk->pi_lock); 835 raw_spin_unlock_wait(&tsk->pi_lock);
836 836
837 /* causes final put_task_struct in finish_task_switch(). */ 837 /* causes final put_task_struct in finish_task_switch(). */
838 tsk->state = TASK_DEAD; 838 tsk->state = TASK_DEAD;
839 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ 839 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
840 schedule(); 840 schedule();
841 BUG(); 841 BUG();
842 /* Avoid "noreturn function does return". */ 842 /* Avoid "noreturn function does return". */
843 for (;;) 843 for (;;)
844 cpu_relax(); /* For when BUG is null */ 844 cpu_relax(); /* For when BUG is null */
845 } 845 }
846 EXPORT_SYMBOL_GPL(do_exit); 846 EXPORT_SYMBOL_GPL(do_exit);
847 847
848 void complete_and_exit(struct completion *comp, long code) 848 void complete_and_exit(struct completion *comp, long code)
849 { 849 {
850 if (comp) 850 if (comp)
851 complete(comp); 851 complete(comp);
852 852
853 do_exit(code); 853 do_exit(code);
854 } 854 }
855 EXPORT_SYMBOL(complete_and_exit); 855 EXPORT_SYMBOL(complete_and_exit);
856 856
857 SYSCALL_DEFINE1(exit, int, error_code) 857 SYSCALL_DEFINE1(exit, int, error_code)
858 { 858 {
859 do_exit((error_code&0xff)<<8); 859 do_exit((error_code&0xff)<<8);
860 } 860 }
861 861
862 /* 862 /*
863 * Take down every thread in the group. This is called by fatal signals 863 * Take down every thread in the group. This is called by fatal signals
864 * as well as by sys_exit_group (below). 864 * as well as by sys_exit_group (below).
865 */ 865 */
866 void 866 void
867 do_group_exit(int exit_code) 867 do_group_exit(int exit_code)
868 { 868 {
869 struct signal_struct *sig = current->signal; 869 struct signal_struct *sig = current->signal;
870 870
871 BUG_ON(exit_code & 0x80); /* core dumps don't get here */ 871 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
872 872
873 if (signal_group_exit(sig)) 873 if (signal_group_exit(sig))
874 exit_code = sig->group_exit_code; 874 exit_code = sig->group_exit_code;
875 else if (!thread_group_empty(current)) { 875 else if (!thread_group_empty(current)) {
876 struct sighand_struct *const sighand = current->sighand; 876 struct sighand_struct *const sighand = current->sighand;
877 877
878 spin_lock_irq(&sighand->siglock); 878 spin_lock_irq(&sighand->siglock);
879 if (signal_group_exit(sig)) 879 if (signal_group_exit(sig))
880 /* Another thread got here before we took the lock. */ 880 /* Another thread got here before we took the lock. */
881 exit_code = sig->group_exit_code; 881 exit_code = sig->group_exit_code;
882 else { 882 else {
883 sig->group_exit_code = exit_code; 883 sig->group_exit_code = exit_code;
884 sig->flags = SIGNAL_GROUP_EXIT; 884 sig->flags = SIGNAL_GROUP_EXIT;
885 zap_other_threads(current); 885 zap_other_threads(current);
886 } 886 }
887 spin_unlock_irq(&sighand->siglock); 887 spin_unlock_irq(&sighand->siglock);
888 } 888 }
889 889
890 do_exit(exit_code); 890 do_exit(exit_code);
891 /* NOTREACHED */ 891 /* NOTREACHED */
892 } 892 }
893 893
894 /* 894 /*
895 * this kills every thread in the thread group. Note that any externally 895 * this kills every thread in the thread group. Note that any externally
896 * wait4()-ing process will get the correct exit code - even if this 896 * wait4()-ing process will get the correct exit code - even if this
897 * thread is not the thread group leader. 897 * thread is not the thread group leader.
898 */ 898 */
899 SYSCALL_DEFINE1(exit_group, int, error_code) 899 SYSCALL_DEFINE1(exit_group, int, error_code)
900 { 900 {
901 do_group_exit((error_code & 0xff) << 8); 901 do_group_exit((error_code & 0xff) << 8);
902 /* NOTREACHED */ 902 /* NOTREACHED */
903 return 0; 903 return 0;
904 } 904 }
905 905
906 struct wait_opts { 906 struct wait_opts {
907 enum pid_type wo_type; 907 enum pid_type wo_type;
908 int wo_flags; 908 int wo_flags;
909 struct pid *wo_pid; 909 struct pid *wo_pid;
910 910
911 struct siginfo __user *wo_info; 911 struct siginfo __user *wo_info;
912 int __user *wo_stat; 912 int __user *wo_stat;
913 struct rusage __user *wo_rusage; 913 struct rusage __user *wo_rusage;
914 914
915 wait_queue_t child_wait; 915 wait_queue_t child_wait;
916 int notask_error; 916 int notask_error;
917 }; 917 };
918 918
919 static inline 919 static inline
920 struct pid *task_pid_type(struct task_struct *task, enum pid_type type) 920 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
921 { 921 {
922 if (type != PIDTYPE_PID) 922 if (type != PIDTYPE_PID)
923 task = task->group_leader; 923 task = task->group_leader;
924 return task->pids[type].pid; 924 return task->pids[type].pid;
925 } 925 }
926 926
927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p) 927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
928 { 928 {
929 return wo->wo_type == PIDTYPE_MAX || 929 return wo->wo_type == PIDTYPE_MAX ||
930 task_pid_type(p, wo->wo_type) == wo->wo_pid; 930 task_pid_type(p, wo->wo_type) == wo->wo_pid;
931 } 931 }
932 932
933 static int eligible_child(struct wait_opts *wo, struct task_struct *p) 933 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
934 { 934 {
935 if (!eligible_pid(wo, p)) 935 if (!eligible_pid(wo, p))
936 return 0; 936 return 0;
937 /* Wait for all children (clone and not) if __WALL is set; 937 /* Wait for all children (clone and not) if __WALL is set;
938 * otherwise, wait for clone children *only* if __WCLONE is 938 * otherwise, wait for clone children *only* if __WCLONE is
939 * set; otherwise, wait for non-clone children *only*. (Note: 939 * set; otherwise, wait for non-clone children *only*. (Note:
940 * A "clone" child here is one that reports to its parent 940 * A "clone" child here is one that reports to its parent
941 * using a signal other than SIGCHLD.) */ 941 * using a signal other than SIGCHLD.) */
942 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) 942 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
943 && !(wo->wo_flags & __WALL)) 943 && !(wo->wo_flags & __WALL))
944 return 0; 944 return 0;
945 945
946 return 1; 946 return 1;
947 } 947 }
948 948
949 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, 949 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
950 pid_t pid, uid_t uid, int why, int status) 950 pid_t pid, uid_t uid, int why, int status)
951 { 951 {
952 struct siginfo __user *infop; 952 struct siginfo __user *infop;
953 int retval = wo->wo_rusage 953 int retval = wo->wo_rusage
954 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 954 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
955 955
956 put_task_struct(p); 956 put_task_struct(p);
957 infop = wo->wo_info; 957 infop = wo->wo_info;
958 if (infop) { 958 if (infop) {
959 if (!retval) 959 if (!retval)
960 retval = put_user(SIGCHLD, &infop->si_signo); 960 retval = put_user(SIGCHLD, &infop->si_signo);
961 if (!retval) 961 if (!retval)
962 retval = put_user(0, &infop->si_errno); 962 retval = put_user(0, &infop->si_errno);
963 if (!retval) 963 if (!retval)
964 retval = put_user((short)why, &infop->si_code); 964 retval = put_user((short)why, &infop->si_code);
965 if (!retval) 965 if (!retval)
966 retval = put_user(pid, &infop->si_pid); 966 retval = put_user(pid, &infop->si_pid);
967 if (!retval) 967 if (!retval)
968 retval = put_user(uid, &infop->si_uid); 968 retval = put_user(uid, &infop->si_uid);
969 if (!retval) 969 if (!retval)
970 retval = put_user(status, &infop->si_status); 970 retval = put_user(status, &infop->si_status);
971 } 971 }
972 if (!retval) 972 if (!retval)
973 retval = pid; 973 retval = pid;
974 return retval; 974 return retval;
975 } 975 }
976 976
977 /* 977 /*
978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold 978 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
979 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 979 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
980 * the lock and this task is uninteresting. If we return nonzero, we have 980 * the lock and this task is uninteresting. If we return nonzero, we have
981 * released the lock and the system call should return. 981 * released the lock and the system call should return.
982 */ 982 */
983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) 983 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
984 { 984 {
985 unsigned long state; 985 unsigned long state;
986 int retval, status, traced; 986 int retval, status, traced;
987 pid_t pid = task_pid_vnr(p); 987 pid_t pid = task_pid_vnr(p);
988 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); 988 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989 struct siginfo __user *infop; 989 struct siginfo __user *infop;
990 990
991 if (!likely(wo->wo_flags & WEXITED)) 991 if (!likely(wo->wo_flags & WEXITED))
992 return 0; 992 return 0;
993 993
994 if (unlikely(wo->wo_flags & WNOWAIT)) { 994 if (unlikely(wo->wo_flags & WNOWAIT)) {
995 int exit_code = p->exit_code; 995 int exit_code = p->exit_code;
996 int why; 996 int why;
997 997
998 get_task_struct(p); 998 get_task_struct(p);
999 read_unlock(&tasklist_lock); 999 read_unlock(&tasklist_lock);
1000 if ((exit_code & 0x7f) == 0) { 1000 if ((exit_code & 0x7f) == 0) {
1001 why = CLD_EXITED; 1001 why = CLD_EXITED;
1002 status = exit_code >> 8; 1002 status = exit_code >> 8;
1003 } else { 1003 } else {
1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; 1004 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1005 status = exit_code & 0x7f; 1005 status = exit_code & 0x7f;
1006 } 1006 }
1007 return wait_noreap_copyout(wo, p, pid, uid, why, status); 1007 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1008 } 1008 }
1009 1009
1010 traced = ptrace_reparented(p); 1010 traced = ptrace_reparented(p);
1011 /* 1011 /*
1012 * Move the task's state to DEAD/TRACE, only one thread can do this. 1012 * Move the task's state to DEAD/TRACE, only one thread can do this.
1013 */ 1013 */
1014 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD; 1014 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1015 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) 1015 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1016 return 0; 1016 return 0;
1017 /* 1017 /*
1018 * It can be ptraced but not reparented, check 1018 * It can be ptraced but not reparented, check
1019 * thread_group_leader() to filter out sub-threads. 1019 * thread_group_leader() to filter out sub-threads.
1020 */ 1020 */
1021 if (likely(!traced) && thread_group_leader(p)) { 1021 if (likely(!traced) && thread_group_leader(p)) {
1022 struct signal_struct *psig; 1022 struct signal_struct *psig;
1023 struct signal_struct *sig; 1023 struct signal_struct *sig;
1024 unsigned long maxrss; 1024 unsigned long maxrss;
1025 cputime_t tgutime, tgstime; 1025 cputime_t tgutime, tgstime;
1026 1026
1027 /* 1027 /*
1028 * The resource counters for the group leader are in its 1028 * The resource counters for the group leader are in its
1029 * own task_struct. Those for dead threads in the group 1029 * own task_struct. Those for dead threads in the group
1030 * are in its signal_struct, as are those for the child 1030 * are in its signal_struct, as are those for the child
1031 * processes it has previously reaped. All these 1031 * processes it has previously reaped. All these
1032 * accumulate in the parent's signal_struct c* fields. 1032 * accumulate in the parent's signal_struct c* fields.
1033 * 1033 *
1034 * We don't bother to take a lock here to protect these 1034 * We don't bother to take a lock here to protect these
1035 * p->signal fields, because they are only touched by 1035 * p->signal fields, because they are only touched by
1036 * __exit_signal, which runs with tasklist_lock 1036 * __exit_signal, which runs with tasklist_lock
1037 * write-locked anyway, and so is excluded here. We do 1037 * write-locked anyway, and so is excluded here. We do
1038 * need to protect the access to parent->signal fields, 1038 * need to protect the access to parent->signal fields,
1039 * as other threads in the parent group can be right 1039 * as other threads in the parent group can be right
1040 * here reaping other children at the same time. 1040 * here reaping other children at the same time.
1041 * 1041 *
1042 * We use thread_group_cputime_adjusted() to get times for 1042 * We use thread_group_cputime_adjusted() to get times for
1043 * the thread group, which consolidates times for all threads 1043 * the thread group, which consolidates times for all threads
1044 * in the group including the group leader. 1044 * in the group including the group leader.
1045 */ 1045 */
1046 thread_group_cputime_adjusted(p, &tgutime, &tgstime); 1046 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047 spin_lock_irq(&p->real_parent->sighand->siglock); 1047 spin_lock_irq(&p->real_parent->sighand->siglock);
1048 psig = p->real_parent->signal; 1048 psig = p->real_parent->signal;
1049 sig = p->signal; 1049 sig = p->signal;
1050 write_seqlock(&psig->stats_lock); 1050 write_seqlock(&psig->stats_lock);
1051 psig->cutime += tgutime + sig->cutime; 1051 psig->cutime += tgutime + sig->cutime;
1052 psig->cstime += tgstime + sig->cstime; 1052 psig->cstime += tgstime + sig->cstime;
1053 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; 1053 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1054 psig->cmin_flt += 1054 psig->cmin_flt +=
1055 p->min_flt + sig->min_flt + sig->cmin_flt; 1055 p->min_flt + sig->min_flt + sig->cmin_flt;
1056 psig->cmaj_flt += 1056 psig->cmaj_flt +=
1057 p->maj_flt + sig->maj_flt + sig->cmaj_flt; 1057 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1058 psig->cnvcsw += 1058 psig->cnvcsw +=
1059 p->nvcsw + sig->nvcsw + sig->cnvcsw; 1059 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1060 psig->cnivcsw += 1060 psig->cnivcsw +=
1061 p->nivcsw + sig->nivcsw + sig->cnivcsw; 1061 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1062 psig->cinblock += 1062 psig->cinblock +=
1063 task_io_get_inblock(p) + 1063 task_io_get_inblock(p) +
1064 sig->inblock + sig->cinblock; 1064 sig->inblock + sig->cinblock;
1065 psig->coublock += 1065 psig->coublock +=
1066 task_io_get_oublock(p) + 1066 task_io_get_oublock(p) +
1067 sig->oublock + sig->coublock; 1067 sig->oublock + sig->coublock;
1068 maxrss = max(sig->maxrss, sig->cmaxrss); 1068 maxrss = max(sig->maxrss, sig->cmaxrss);
1069 if (psig->cmaxrss < maxrss) 1069 if (psig->cmaxrss < maxrss)
1070 psig->cmaxrss = maxrss; 1070 psig->cmaxrss = maxrss;
1071 task_io_accounting_add(&psig->ioac, &p->ioac); 1071 task_io_accounting_add(&psig->ioac, &p->ioac);
1072 task_io_accounting_add(&psig->ioac, &sig->ioac); 1072 task_io_accounting_add(&psig->ioac, &sig->ioac);
1073 write_sequnlock(&psig->stats_lock); 1073 write_sequnlock(&psig->stats_lock);
1074 spin_unlock_irq(&p->real_parent->sighand->siglock); 1074 spin_unlock_irq(&p->real_parent->sighand->siglock);
1075 } 1075 }
1076 1076
1077 /* 1077 /*
1078 * Now we are sure this task is interesting, and no other 1078 * Now we are sure this task is interesting, and no other
1079 * thread can reap it because we its state == DEAD/TRACE. 1079 * thread can reap it because we its state == DEAD/TRACE.
1080 */ 1080 */
1081 read_unlock(&tasklist_lock); 1081 read_unlock(&tasklist_lock);
1082 1082
1083 retval = wo->wo_rusage 1083 retval = wo->wo_rusage
1084 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1084 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1085 status = (p->signal->flags & SIGNAL_GROUP_EXIT) 1085 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1086 ? p->signal->group_exit_code : p->exit_code; 1086 ? p->signal->group_exit_code : p->exit_code;
1087 if (!retval && wo->wo_stat) 1087 if (!retval && wo->wo_stat)
1088 retval = put_user(status, wo->wo_stat); 1088 retval = put_user(status, wo->wo_stat);
1089 1089
1090 infop = wo->wo_info; 1090 infop = wo->wo_info;
1091 if (!retval && infop) 1091 if (!retval && infop)
1092 retval = put_user(SIGCHLD, &infop->si_signo); 1092 retval = put_user(SIGCHLD, &infop->si_signo);
1093 if (!retval && infop) 1093 if (!retval && infop)
1094 retval = put_user(0, &infop->si_errno); 1094 retval = put_user(0, &infop->si_errno);
1095 if (!retval && infop) { 1095 if (!retval && infop) {
1096 int why; 1096 int why;
1097 1097
1098 if ((status & 0x7f) == 0) { 1098 if ((status & 0x7f) == 0) {
1099 why = CLD_EXITED; 1099 why = CLD_EXITED;
1100 status >>= 8; 1100 status >>= 8;
1101 } else { 1101 } else {
1102 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; 1102 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1103 status &= 0x7f; 1103 status &= 0x7f;
1104 } 1104 }
1105 retval = put_user((short)why, &infop->si_code); 1105 retval = put_user((short)why, &infop->si_code);
1106 if (!retval) 1106 if (!retval)
1107 retval = put_user(status, &infop->si_status); 1107 retval = put_user(status, &infop->si_status);
1108 } 1108 }
1109 if (!retval && infop) 1109 if (!retval && infop)
1110 retval = put_user(pid, &infop->si_pid); 1110 retval = put_user(pid, &infop->si_pid);
1111 if (!retval && infop) 1111 if (!retval && infop)
1112 retval = put_user(uid, &infop->si_uid); 1112 retval = put_user(uid, &infop->si_uid);
1113 if (!retval) 1113 if (!retval)
1114 retval = pid; 1114 retval = pid;
1115 1115
1116 if (state == EXIT_TRACE) { 1116 if (state == EXIT_TRACE) {
1117 write_lock_irq(&tasklist_lock); 1117 write_lock_irq(&tasklist_lock);
1118 /* We dropped tasklist, ptracer could die and untrace */ 1118 /* We dropped tasklist, ptracer could die and untrace */
1119 ptrace_unlink(p); 1119 ptrace_unlink(p);
1120 1120
1121 /* If parent wants a zombie, don't release it now */ 1121 /* If parent wants a zombie, don't release it now */
1122 state = EXIT_ZOMBIE; 1122 state = EXIT_ZOMBIE;
1123 if (do_notify_parent(p, p->exit_signal)) 1123 if (do_notify_parent(p, p->exit_signal))
1124 state = EXIT_DEAD; 1124 state = EXIT_DEAD;
1125 p->exit_state = state; 1125 p->exit_state = state;
1126 write_unlock_irq(&tasklist_lock); 1126 write_unlock_irq(&tasklist_lock);
1127 } 1127 }
1128 if (state == EXIT_DEAD) 1128 if (state == EXIT_DEAD)
1129 release_task(p); 1129 release_task(p);
1130 1130
1131 return retval; 1131 return retval;
1132 } 1132 }
1133 1133
1134 static int *task_stopped_code(struct task_struct *p, bool ptrace) 1134 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1135 { 1135 {
1136 if (ptrace) { 1136 if (ptrace) {
1137 if (task_is_stopped_or_traced(p) && 1137 if (task_is_stopped_or_traced(p) &&
1138 !(p->jobctl & JOBCTL_LISTENING)) 1138 !(p->jobctl & JOBCTL_LISTENING))
1139 return &p->exit_code; 1139 return &p->exit_code;
1140 } else { 1140 } else {
1141 if (p->signal->flags & SIGNAL_STOP_STOPPED) 1141 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1142 return &p->signal->group_exit_code; 1142 return &p->signal->group_exit_code;
1143 } 1143 }
1144 return NULL; 1144 return NULL;
1145 } 1145 }
1146 1146
1147 /** 1147 /**
1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED 1148 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1149 * @wo: wait options 1149 * @wo: wait options
1150 * @ptrace: is the wait for ptrace 1150 * @ptrace: is the wait for ptrace
1151 * @p: task to wait for 1151 * @p: task to wait for
1152 * 1152 *
1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. 1153 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1154 * 1154 *
1155 * CONTEXT: 1155 * CONTEXT:
1156 * read_lock(&tasklist_lock), which is released if return value is 1156 * read_lock(&tasklist_lock), which is released if return value is
1157 * non-zero. Also, grabs and releases @p->sighand->siglock. 1157 * non-zero. Also, grabs and releases @p->sighand->siglock.
1158 * 1158 *
1159 * RETURNS: 1159 * RETURNS:
1160 * 0 if wait condition didn't exist and search for other wait conditions 1160 * 0 if wait condition didn't exist and search for other wait conditions
1161 * should continue. Non-zero return, -errno on failure and @p's pid on 1161 * should continue. Non-zero return, -errno on failure and @p's pid on
1162 * success, implies that tasklist_lock is released and wait condition 1162 * success, implies that tasklist_lock is released and wait condition
1163 * search should terminate. 1163 * search should terminate.
1164 */ 1164 */
1165 static int wait_task_stopped(struct wait_opts *wo, 1165 static int wait_task_stopped(struct wait_opts *wo,
1166 int ptrace, struct task_struct *p) 1166 int ptrace, struct task_struct *p)
1167 { 1167 {
1168 struct siginfo __user *infop; 1168 struct siginfo __user *infop;
1169 int retval, exit_code, *p_code, why; 1169 int retval, exit_code, *p_code, why;
1170 uid_t uid = 0; /* unneeded, required by compiler */ 1170 uid_t uid = 0; /* unneeded, required by compiler */
1171 pid_t pid; 1171 pid_t pid;
1172 1172
1173 /* 1173 /*
1174 * Traditionally we see ptrace'd stopped tasks regardless of options. 1174 * Traditionally we see ptrace'd stopped tasks regardless of options.
1175 */ 1175 */
1176 if (!ptrace && !(wo->wo_flags & WUNTRACED)) 1176 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1177 return 0; 1177 return 0;
1178 1178
1179 if (!task_stopped_code(p, ptrace)) 1179 if (!task_stopped_code(p, ptrace))
1180 return 0; 1180 return 0;
1181 1181
1182 exit_code = 0; 1182 exit_code = 0;
1183 spin_lock_irq(&p->sighand->siglock); 1183 spin_lock_irq(&p->sighand->siglock);
1184 1184
1185 p_code = task_stopped_code(p, ptrace); 1185 p_code = task_stopped_code(p, ptrace);
1186 if (unlikely(!p_code)) 1186 if (unlikely(!p_code))
1187 goto unlock_sig; 1187 goto unlock_sig;
1188 1188
1189 exit_code = *p_code; 1189 exit_code = *p_code;
1190 if (!exit_code) 1190 if (!exit_code)
1191 goto unlock_sig; 1191 goto unlock_sig;
1192 1192
1193 if (!unlikely(wo->wo_flags & WNOWAIT)) 1193 if (!unlikely(wo->wo_flags & WNOWAIT))
1194 *p_code = 0; 1194 *p_code = 0;
1195 1195
1196 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1196 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1197 unlock_sig: 1197 unlock_sig:
1198 spin_unlock_irq(&p->sighand->siglock); 1198 spin_unlock_irq(&p->sighand->siglock);
1199 if (!exit_code) 1199 if (!exit_code)
1200 return 0; 1200 return 0;
1201 1201
1202 /* 1202 /*
1203 * Now we are pretty sure this task is interesting. 1203 * Now we are pretty sure this task is interesting.
1204 * Make sure it doesn't get reaped out from under us while we 1204 * Make sure it doesn't get reaped out from under us while we
1205 * give up the lock and then examine it below. We don't want to 1205 * give up the lock and then examine it below. We don't want to
1206 * keep holding onto the tasklist_lock while we call getrusage and 1206 * keep holding onto the tasklist_lock while we call getrusage and
1207 * possibly take page faults for user memory. 1207 * possibly take page faults for user memory.
1208 */ 1208 */
1209 get_task_struct(p); 1209 get_task_struct(p);
1210 pid = task_pid_vnr(p); 1210 pid = task_pid_vnr(p);
1211 why = ptrace ? CLD_TRAPPED : CLD_STOPPED; 1211 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1212 read_unlock(&tasklist_lock); 1212 read_unlock(&tasklist_lock);
1213 1213
1214 if (unlikely(wo->wo_flags & WNOWAIT)) 1214 if (unlikely(wo->wo_flags & WNOWAIT))
1215 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); 1215 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1216 1216
1217 retval = wo->wo_rusage 1217 retval = wo->wo_rusage
1218 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1218 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1219 if (!retval && wo->wo_stat) 1219 if (!retval && wo->wo_stat)
1220 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); 1220 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1221 1221
1222 infop = wo->wo_info; 1222 infop = wo->wo_info;
1223 if (!retval && infop) 1223 if (!retval && infop)
1224 retval = put_user(SIGCHLD, &infop->si_signo); 1224 retval = put_user(SIGCHLD, &infop->si_signo);
1225 if (!retval && infop) 1225 if (!retval && infop)
1226 retval = put_user(0, &infop->si_errno); 1226 retval = put_user(0, &infop->si_errno);
1227 if (!retval && infop) 1227 if (!retval && infop)
1228 retval = put_user((short)why, &infop->si_code); 1228 retval = put_user((short)why, &infop->si_code);
1229 if (!retval && infop) 1229 if (!retval && infop)
1230 retval = put_user(exit_code, &infop->si_status); 1230 retval = put_user(exit_code, &infop->si_status);
1231 if (!retval && infop) 1231 if (!retval && infop)
1232 retval = put_user(pid, &infop->si_pid); 1232 retval = put_user(pid, &infop->si_pid);
1233 if (!retval && infop) 1233 if (!retval && infop)
1234 retval = put_user(uid, &infop->si_uid); 1234 retval = put_user(uid, &infop->si_uid);
1235 if (!retval) 1235 if (!retval)
1236 retval = pid; 1236 retval = pid;
1237 put_task_struct(p); 1237 put_task_struct(p);
1238 1238
1239 BUG_ON(!retval); 1239 BUG_ON(!retval);
1240 return retval; 1240 return retval;
1241 } 1241 }
1242 1242
1243 /* 1243 /*
1244 * Handle do_wait work for one task in a live, non-stopped state. 1244 * Handle do_wait work for one task in a live, non-stopped state.
1245 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold 1245 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1246 * the lock and this task is uninteresting. If we return nonzero, we have 1246 * the lock and this task is uninteresting. If we return nonzero, we have
1247 * released the lock and the system call should return. 1247 * released the lock and the system call should return.
1248 */ 1248 */
1249 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) 1249 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1250 { 1250 {
1251 int retval; 1251 int retval;
1252 pid_t pid; 1252 pid_t pid;
1253 uid_t uid; 1253 uid_t uid;
1254 1254
1255 if (!unlikely(wo->wo_flags & WCONTINUED)) 1255 if (!unlikely(wo->wo_flags & WCONTINUED))
1256 return 0; 1256 return 0;
1257 1257
1258 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) 1258 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1259 return 0; 1259 return 0;
1260 1260
1261 spin_lock_irq(&p->sighand->siglock); 1261 spin_lock_irq(&p->sighand->siglock);
1262 /* Re-check with the lock held. */ 1262 /* Re-check with the lock held. */
1263 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { 1263 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1264 spin_unlock_irq(&p->sighand->siglock); 1264 spin_unlock_irq(&p->sighand->siglock);
1265 return 0; 1265 return 0;
1266 } 1266 }
1267 if (!unlikely(wo->wo_flags & WNOWAIT)) 1267 if (!unlikely(wo->wo_flags & WNOWAIT))
1268 p->signal->flags &= ~SIGNAL_STOP_CONTINUED; 1268 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1269 uid = from_kuid_munged(current_user_ns(), task_uid(p)); 1269 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1270 spin_unlock_irq(&p->sighand->siglock); 1270 spin_unlock_irq(&p->sighand->siglock);
1271 1271
1272 pid = task_pid_vnr(p); 1272 pid = task_pid_vnr(p);
1273 get_task_struct(p); 1273 get_task_struct(p);
1274 read_unlock(&tasklist_lock); 1274 read_unlock(&tasklist_lock);
1275 1275
1276 if (!wo->wo_info) { 1276 if (!wo->wo_info) {
1277 retval = wo->wo_rusage 1277 retval = wo->wo_rusage
1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; 1278 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1279 put_task_struct(p); 1279 put_task_struct(p);
1280 if (!retval && wo->wo_stat) 1280 if (!retval && wo->wo_stat)
1281 retval = put_user(0xffff, wo->wo_stat); 1281 retval = put_user(0xffff, wo->wo_stat);
1282 if (!retval) 1282 if (!retval)
1283 retval = pid; 1283 retval = pid;
1284 } else { 1284 } else {
1285 retval = wait_noreap_copyout(wo, p, pid, uid, 1285 retval = wait_noreap_copyout(wo, p, pid, uid,
1286 CLD_CONTINUED, SIGCONT); 1286 CLD_CONTINUED, SIGCONT);
1287 BUG_ON(retval == 0); 1287 BUG_ON(retval == 0);
1288 } 1288 }
1289 1289
1290 return retval; 1290 return retval;
1291 } 1291 }
1292 1292
1293 /* 1293 /*
1294 * Consider @p for a wait by @parent. 1294 * Consider @p for a wait by @parent.
1295 * 1295 *
1296 * -ECHILD should be in ->notask_error before the first call. 1296 * -ECHILD should be in ->notask_error before the first call.
1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1297 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1298 * Returns zero if the search for a child should continue; 1298 * Returns zero if the search for a child should continue;
1299 * then ->notask_error is 0 if @p is an eligible child, 1299 * then ->notask_error is 0 if @p is an eligible child,
1300 * or another error from security_task_wait(), or still -ECHILD. 1300 * or another error from security_task_wait(), or still -ECHILD.
1301 */ 1301 */
1302 static int wait_consider_task(struct wait_opts *wo, int ptrace, 1302 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1303 struct task_struct *p) 1303 struct task_struct *p)
1304 { 1304 {
1305 /*
1306 * We can race with wait_task_zombie() from another thread.
1307 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1308 * can't confuse the checks below.
1309 */
1310 int exit_state = ACCESS_ONCE(p->exit_state);
1305 int ret; 1311 int ret;
1306 1312
1307 if (unlikely(p->exit_state == EXIT_DEAD)) 1313 if (unlikely(exit_state == EXIT_DEAD))
1308 return 0; 1314 return 0;
1309 1315
1310 ret = eligible_child(wo, p); 1316 ret = eligible_child(wo, p);
1311 if (!ret) 1317 if (!ret)
1312 return ret; 1318 return ret;
1313 1319
1314 ret = security_task_wait(p); 1320 ret = security_task_wait(p);
1315 if (unlikely(ret < 0)) { 1321 if (unlikely(ret < 0)) {
1316 /* 1322 /*
1317 * If we have not yet seen any eligible child, 1323 * If we have not yet seen any eligible child,
1318 * then let this error code replace -ECHILD. 1324 * then let this error code replace -ECHILD.
1319 * A permission error will give the user a clue 1325 * A permission error will give the user a clue
1320 * to look for security policy problems, rather 1326 * to look for security policy problems, rather
1321 * than for mysterious wait bugs. 1327 * than for mysterious wait bugs.
1322 */ 1328 */
1323 if (wo->notask_error) 1329 if (wo->notask_error)
1324 wo->notask_error = ret; 1330 wo->notask_error = ret;
1325 return 0; 1331 return 0;
1326 } 1332 }
1327 1333
1328 if (unlikely(p->exit_state == EXIT_TRACE)) { 1334 if (unlikely(exit_state == EXIT_TRACE)) {
1329 /* 1335 /*
1330 * ptrace == 0 means we are the natural parent. In this case 1336 * ptrace == 0 means we are the natural parent. In this case
1331 * we should clear notask_error, debugger will notify us. 1337 * we should clear notask_error, debugger will notify us.
1332 */ 1338 */
1333 if (likely(!ptrace)) 1339 if (likely(!ptrace))
1334 wo->notask_error = 0; 1340 wo->notask_error = 0;
1335 return 0; 1341 return 0;
1336 } 1342 }
1337 1343
1338 if (likely(!ptrace) && unlikely(p->ptrace)) { 1344 if (likely(!ptrace) && unlikely(p->ptrace)) {
1339 /* 1345 /*
1340 * If it is traced by its real parent's group, just pretend 1346 * If it is traced by its real parent's group, just pretend
1341 * the caller is ptrace_do_wait() and reap this child if it 1347 * the caller is ptrace_do_wait() and reap this child if it
1342 * is zombie. 1348 * is zombie.
1343 * 1349 *
1344 * This also hides group stop state from real parent; otherwise 1350 * This also hides group stop state from real parent; otherwise
1345 * a single stop can be reported twice as group and ptrace stop. 1351 * a single stop can be reported twice as group and ptrace stop.
1346 * If a ptracer wants to distinguish these two events for its 1352 * If a ptracer wants to distinguish these two events for its
1347 * own children it should create a separate process which takes 1353 * own children it should create a separate process which takes
1348 * the role of real parent. 1354 * the role of real parent.
1349 */ 1355 */
1350 if (!ptrace_reparented(p)) 1356 if (!ptrace_reparented(p))
1351 ptrace = 1; 1357 ptrace = 1;
1352 } 1358 }
1353 1359
1354 /* slay zombie? */ 1360 /* slay zombie? */
1355 if (p->exit_state == EXIT_ZOMBIE) { 1361 if (exit_state == EXIT_ZOMBIE) {
1356 /* we don't reap group leaders with subthreads */ 1362 /* we don't reap group leaders with subthreads */
1357 if (!delay_group_leader(p)) { 1363 if (!delay_group_leader(p)) {
1358 /* 1364 /*
1359 * A zombie ptracee is only visible to its ptracer. 1365 * A zombie ptracee is only visible to its ptracer.
1360 * Notification and reaping will be cascaded to the 1366 * Notification and reaping will be cascaded to the
1361 * real parent when the ptracer detaches. 1367 * real parent when the ptracer detaches.
1362 */ 1368 */
1363 if (unlikely(ptrace) || likely(!p->ptrace)) 1369 if (unlikely(ptrace) || likely(!p->ptrace))
1364 return wait_task_zombie(wo, p); 1370 return wait_task_zombie(wo, p);
1365 } 1371 }
1366 1372
1367 /* 1373 /*
1368 * Allow access to stopped/continued state via zombie by 1374 * Allow access to stopped/continued state via zombie by
1369 * falling through. Clearing of notask_error is complex. 1375 * falling through. Clearing of notask_error is complex.
1370 * 1376 *
1371 * When !@ptrace: 1377 * When !@ptrace:
1372 * 1378 *
1373 * If WEXITED is set, notask_error should naturally be 1379 * If WEXITED is set, notask_error should naturally be
1374 * cleared. If not, subset of WSTOPPED|WCONTINUED is set, 1380 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1375 * so, if there are live subthreads, there are events to 1381 * so, if there are live subthreads, there are events to
1376 * wait for. If all subthreads are dead, it's still safe 1382 * wait for. If all subthreads are dead, it's still safe
1377 * to clear - this function will be called again in finite 1383 * to clear - this function will be called again in finite
1378 * amount time once all the subthreads are released and 1384 * amount time once all the subthreads are released and
1379 * will then return without clearing. 1385 * will then return without clearing.
1380 * 1386 *
1381 * When @ptrace: 1387 * When @ptrace:
1382 * 1388 *
1383 * Stopped state is per-task and thus can't change once the 1389 * Stopped state is per-task and thus can't change once the
1384 * target task dies. Only continued and exited can happen. 1390 * target task dies. Only continued and exited can happen.
1385 * Clear notask_error if WCONTINUED | WEXITED. 1391 * Clear notask_error if WCONTINUED | WEXITED.
1386 */ 1392 */
1387 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) 1393 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1388 wo->notask_error = 0; 1394 wo->notask_error = 0;
1389 } else { 1395 } else {
1390 /* 1396 /*
1391 * @p is alive and it's gonna stop, continue or exit, so 1397 * @p is alive and it's gonna stop, continue or exit, so
1392 * there always is something to wait for. 1398 * there always is something to wait for.
1393 */ 1399 */
1394 wo->notask_error = 0; 1400 wo->notask_error = 0;
1395 } 1401 }
1396 1402
1397 /* 1403 /*
1398 * Wait for stopped. Depending on @ptrace, different stopped state 1404 * Wait for stopped. Depending on @ptrace, different stopped state
1399 * is used and the two don't interact with each other. 1405 * is used and the two don't interact with each other.
1400 */ 1406 */
1401 ret = wait_task_stopped(wo, ptrace, p); 1407 ret = wait_task_stopped(wo, ptrace, p);
1402 if (ret) 1408 if (ret)
1403 return ret; 1409 return ret;
1404 1410
1405 /* 1411 /*
1406 * Wait for continued. There's only one continued state and the 1412 * Wait for continued. There's only one continued state and the
1407 * ptracer can consume it which can confuse the real parent. Don't 1413 * ptracer can consume it which can confuse the real parent. Don't
1408 * use WCONTINUED from ptracer. You don't need or want it. 1414 * use WCONTINUED from ptracer. You don't need or want it.
1409 */ 1415 */
1410 return wait_task_continued(wo, p); 1416 return wait_task_continued(wo, p);
1411 } 1417 }
1412 1418
1413 /* 1419 /*
1414 * Do the work of do_wait() for one thread in the group, @tsk. 1420 * Do the work of do_wait() for one thread in the group, @tsk.
1415 * 1421 *
1416 * -ECHILD should be in ->notask_error before the first call. 1422 * -ECHILD should be in ->notask_error before the first call.
1417 * Returns nonzero for a final return, when we have unlocked tasklist_lock. 1423 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1418 * Returns zero if the search for a child should continue; then 1424 * Returns zero if the search for a child should continue; then
1419 * ->notask_error is 0 if there were any eligible children, 1425 * ->notask_error is 0 if there were any eligible children,
1420 * or another error from security_task_wait(), or still -ECHILD. 1426 * or another error from security_task_wait(), or still -ECHILD.
1421 */ 1427 */
1422 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) 1428 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1423 { 1429 {
1424 struct task_struct *p; 1430 struct task_struct *p;
1425 1431
1426 list_for_each_entry(p, &tsk->children, sibling) { 1432 list_for_each_entry(p, &tsk->children, sibling) {
1427 int ret = wait_consider_task(wo, 0, p); 1433 int ret = wait_consider_task(wo, 0, p);
1428 1434
1429 if (ret) 1435 if (ret)
1430 return ret; 1436 return ret;
1431 } 1437 }
1432 1438
1433 return 0; 1439 return 0;
1434 } 1440 }
1435 1441
1436 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) 1442 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1437 { 1443 {
1438 struct task_struct *p; 1444 struct task_struct *p;
1439 1445
1440 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { 1446 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1441 int ret = wait_consider_task(wo, 1, p); 1447 int ret = wait_consider_task(wo, 1, p);
1442 1448
1443 if (ret) 1449 if (ret)
1444 return ret; 1450 return ret;
1445 } 1451 }
1446 1452
1447 return 0; 1453 return 0;
1448 } 1454 }
1449 1455
1450 static int child_wait_callback(wait_queue_t *wait, unsigned mode, 1456 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1451 int sync, void *key) 1457 int sync, void *key)
1452 { 1458 {
1453 struct wait_opts *wo = container_of(wait, struct wait_opts, 1459 struct wait_opts *wo = container_of(wait, struct wait_opts,
1454 child_wait); 1460 child_wait);
1455 struct task_struct *p = key; 1461 struct task_struct *p = key;
1456 1462
1457 if (!eligible_pid(wo, p)) 1463 if (!eligible_pid(wo, p))
1458 return 0; 1464 return 0;
1459 1465
1460 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) 1466 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1461 return 0; 1467 return 0;
1462 1468
1463 return default_wake_function(wait, mode, sync, key); 1469 return default_wake_function(wait, mode, sync, key);
1464 } 1470 }
1465 1471
1466 void __wake_up_parent(struct task_struct *p, struct task_struct *parent) 1472 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1467 { 1473 {
1468 __wake_up_sync_key(&parent->signal->wait_chldexit, 1474 __wake_up_sync_key(&parent->signal->wait_chldexit,
1469 TASK_INTERRUPTIBLE, 1, p); 1475 TASK_INTERRUPTIBLE, 1, p);
1470 } 1476 }
1471 1477
1472 static long do_wait(struct wait_opts *wo) 1478 static long do_wait(struct wait_opts *wo)
1473 { 1479 {
1474 struct task_struct *tsk; 1480 struct task_struct *tsk;
1475 int retval; 1481 int retval;
1476 1482
1477 trace_sched_process_wait(wo->wo_pid); 1483 trace_sched_process_wait(wo->wo_pid);
1478 1484
1479 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); 1485 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1480 wo->child_wait.private = current; 1486 wo->child_wait.private = current;
1481 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1487 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1482 repeat: 1488 repeat:
1483 /* 1489 /*
1484 * If there is nothing that can match our critiera just get out. 1490 * If there is nothing that can match our critiera just get out.
1485 * We will clear ->notask_error to zero if we see any child that 1491 * We will clear ->notask_error to zero if we see any child that
1486 * might later match our criteria, even if we are not able to reap 1492 * might later match our criteria, even if we are not able to reap
1487 * it yet. 1493 * it yet.
1488 */ 1494 */
1489 wo->notask_error = -ECHILD; 1495 wo->notask_error = -ECHILD;
1490 if ((wo->wo_type < PIDTYPE_MAX) && 1496 if ((wo->wo_type < PIDTYPE_MAX) &&
1491 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) 1497 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1492 goto notask; 1498 goto notask;
1493 1499
1494 set_current_state(TASK_INTERRUPTIBLE); 1500 set_current_state(TASK_INTERRUPTIBLE);
1495 read_lock(&tasklist_lock); 1501 read_lock(&tasklist_lock);
1496 tsk = current; 1502 tsk = current;
1497 do { 1503 do {
1498 retval = do_wait_thread(wo, tsk); 1504 retval = do_wait_thread(wo, tsk);
1499 if (retval) 1505 if (retval)
1500 goto end; 1506 goto end;
1501 1507
1502 retval = ptrace_do_wait(wo, tsk); 1508 retval = ptrace_do_wait(wo, tsk);
1503 if (retval) 1509 if (retval)
1504 goto end; 1510 goto end;
1505 1511
1506 if (wo->wo_flags & __WNOTHREAD) 1512 if (wo->wo_flags & __WNOTHREAD)
1507 break; 1513 break;
1508 } while_each_thread(current, tsk); 1514 } while_each_thread(current, tsk);
1509 read_unlock(&tasklist_lock); 1515 read_unlock(&tasklist_lock);
1510 1516
1511 notask: 1517 notask:
1512 retval = wo->notask_error; 1518 retval = wo->notask_error;
1513 if (!retval && !(wo->wo_flags & WNOHANG)) { 1519 if (!retval && !(wo->wo_flags & WNOHANG)) {
1514 retval = -ERESTARTSYS; 1520 retval = -ERESTARTSYS;
1515 if (!signal_pending(current)) { 1521 if (!signal_pending(current)) {
1516 schedule(); 1522 schedule();
1517 goto repeat; 1523 goto repeat;
1518 } 1524 }
1519 } 1525 }
1520 end: 1526 end:
1521 __set_current_state(TASK_RUNNING); 1527 __set_current_state(TASK_RUNNING);
1522 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait); 1528 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1523 return retval; 1529 return retval;
1524 } 1530 }
1525 1531
1526 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, 1532 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1527 infop, int, options, struct rusage __user *, ru) 1533 infop, int, options, struct rusage __user *, ru)
1528 { 1534 {
1529 struct wait_opts wo; 1535 struct wait_opts wo;
1530 struct pid *pid = NULL; 1536 struct pid *pid = NULL;
1531 enum pid_type type; 1537 enum pid_type type;
1532 long ret; 1538 long ret;
1533 1539
1534 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) 1540 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1535 return -EINVAL; 1541 return -EINVAL;
1536 if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) 1542 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1537 return -EINVAL; 1543 return -EINVAL;
1538 1544
1539 switch (which) { 1545 switch (which) {
1540 case P_ALL: 1546 case P_ALL:
1541 type = PIDTYPE_MAX; 1547 type = PIDTYPE_MAX;
1542 break; 1548 break;
1543 case P_PID: 1549 case P_PID:
1544 type = PIDTYPE_PID; 1550 type = PIDTYPE_PID;
1545 if (upid <= 0) 1551 if (upid <= 0)
1546 return -EINVAL; 1552 return -EINVAL;
1547 break; 1553 break;
1548 case P_PGID: 1554 case P_PGID:
1549 type = PIDTYPE_PGID; 1555 type = PIDTYPE_PGID;
1550 if (upid <= 0) 1556 if (upid <= 0)
1551 return -EINVAL; 1557 return -EINVAL;
1552 break; 1558 break;
1553 default: 1559 default:
1554 return -EINVAL; 1560 return -EINVAL;
1555 } 1561 }
1556 1562
1557 if (type < PIDTYPE_MAX) 1563 if (type < PIDTYPE_MAX)
1558 pid = find_get_pid(upid); 1564 pid = find_get_pid(upid);
1559 1565
1560 wo.wo_type = type; 1566 wo.wo_type = type;
1561 wo.wo_pid = pid; 1567 wo.wo_pid = pid;
1562 wo.wo_flags = options; 1568 wo.wo_flags = options;
1563 wo.wo_info = infop; 1569 wo.wo_info = infop;
1564 wo.wo_stat = NULL; 1570 wo.wo_stat = NULL;
1565 wo.wo_rusage = ru; 1571 wo.wo_rusage = ru;
1566 ret = do_wait(&wo); 1572 ret = do_wait(&wo);
1567 1573
1568 if (ret > 0) { 1574 if (ret > 0) {
1569 ret = 0; 1575 ret = 0;
1570 } else if (infop) { 1576 } else if (infop) {
1571 /* 1577 /*
1572 * For a WNOHANG return, clear out all the fields 1578 * For a WNOHANG return, clear out all the fields
1573 * we would set so the user can easily tell the 1579 * we would set so the user can easily tell the
1574 * difference. 1580 * difference.
1575 */ 1581 */
1576 if (!ret) 1582 if (!ret)
1577 ret = put_user(0, &infop->si_signo); 1583 ret = put_user(0, &infop->si_signo);
1578 if (!ret) 1584 if (!ret)
1579 ret = put_user(0, &infop->si_errno); 1585 ret = put_user(0, &infop->si_errno);
1580 if (!ret) 1586 if (!ret)
1581 ret = put_user(0, &infop->si_code); 1587 ret = put_user(0, &infop->si_code);
1582 if (!ret) 1588 if (!ret)
1583 ret = put_user(0, &infop->si_pid); 1589 ret = put_user(0, &infop->si_pid);
1584 if (!ret) 1590 if (!ret)
1585 ret = put_user(0, &infop->si_uid); 1591 ret = put_user(0, &infop->si_uid);
1586 if (!ret) 1592 if (!ret)
1587 ret = put_user(0, &infop->si_status); 1593 ret = put_user(0, &infop->si_status);
1588 } 1594 }
1589 1595
1590 put_pid(pid); 1596 put_pid(pid);
1591 return ret; 1597 return ret;
1592 } 1598 }
1593 1599
1594 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, 1600 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1595 int, options, struct rusage __user *, ru) 1601 int, options, struct rusage __user *, ru)
1596 { 1602 {
1597 struct wait_opts wo; 1603 struct wait_opts wo;
1598 struct pid *pid = NULL; 1604 struct pid *pid = NULL;
1599 enum pid_type type; 1605 enum pid_type type;
1600 long ret; 1606 long ret;
1601 1607
1602 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| 1608 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1603 __WNOTHREAD|__WCLONE|__WALL)) 1609 __WNOTHREAD|__WCLONE|__WALL))
1604 return -EINVAL; 1610 return -EINVAL;
1605 1611
1606 if (upid == -1) 1612 if (upid == -1)
1607 type = PIDTYPE_MAX; 1613 type = PIDTYPE_MAX;
1608 else if (upid < 0) { 1614 else if (upid < 0) {
1609 type = PIDTYPE_PGID; 1615 type = PIDTYPE_PGID;
1610 pid = find_get_pid(-upid); 1616 pid = find_get_pid(-upid);
1611 } else if (upid == 0) { 1617 } else if (upid == 0) {
1612 type = PIDTYPE_PGID; 1618 type = PIDTYPE_PGID;
1613 pid = get_task_pid(current, PIDTYPE_PGID); 1619 pid = get_task_pid(current, PIDTYPE_PGID);
1614 } else /* upid > 0 */ { 1620 } else /* upid > 0 */ {
1615 type = PIDTYPE_PID; 1621 type = PIDTYPE_PID;
1616 pid = find_get_pid(upid); 1622 pid = find_get_pid(upid);
1617 } 1623 }
1618 1624
1619 wo.wo_type = type; 1625 wo.wo_type = type;
1620 wo.wo_pid = pid; 1626 wo.wo_pid = pid;
1621 wo.wo_flags = options | WEXITED; 1627 wo.wo_flags = options | WEXITED;
1622 wo.wo_info = NULL; 1628 wo.wo_info = NULL;
1623 wo.wo_stat = stat_addr; 1629 wo.wo_stat = stat_addr;
1624 wo.wo_rusage = ru; 1630 wo.wo_rusage = ru;
1625 ret = do_wait(&wo); 1631 ret = do_wait(&wo);
1626 put_pid(pid); 1632 put_pid(pid);
1627 1633
1628 return ret; 1634 return ret;
1629 } 1635 }
1630 1636
1631 #ifdef __ARCH_WANT_SYS_WAITPID 1637 #ifdef __ARCH_WANT_SYS_WAITPID
1632 1638
1633 /* 1639 /*
1634 * sys_waitpid() remains for compatibility. waitpid() should be 1640 * sys_waitpid() remains for compatibility. waitpid() should be
1635 * implemented by calling sys_wait4() from libc.a. 1641 * implemented by calling sys_wait4() from libc.a.
1636 */ 1642 */
1637 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) 1643 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1638 { 1644 {
1639 return sys_wait4(pid, stat_addr, options, NULL); 1645 return sys_wait4(pid, stat_addr, options, NULL);
1640 } 1646 }
1641 1647
1642 #endif 1648 #endif
1643 1649