Commit d86c390ffbf5746df9a3cc2c5f7b75d27704580f

Authored by Jan Kara
Committed by Linus Torvalds
1 parent 9223214e8d

[PATCH] reiserfs+acl+quota deadlock fix

When i_acl_default is set to some error we do not hold the lock (hence we
are not allowed to drop it and reacquire later).

Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <mason@suse.com>
Cc: <reiserfs-dev@namesys.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

Showing 1 changed file with 1 additions and 1 deletions Inline Diff

1 /* 1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */ 3 */
4 4
5 #include <linux/config.h> 5 #include <linux/config.h>
6 #include <linux/time.h> 6 #include <linux/time.h>
7 #include <linux/fs.h> 7 #include <linux/fs.h>
8 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_fs.h>
9 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_acl.h>
10 #include <linux/reiserfs_xattr.h> 10 #include <linux/reiserfs_xattr.h>
11 #include <linux/smp_lock.h> 11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h> 12 #include <linux/pagemap.h>
13 #include <linux/highmem.h> 13 #include <linux/highmem.h>
14 #include <asm/uaccess.h> 14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h> 15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h> 16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h> 17 #include <linux/mpage.h>
18 #include <linux/writeback.h> 18 #include <linux/writeback.h>
19 #include <linux/quotaops.h> 19 #include <linux/quotaops.h>
20 20
21 extern int reiserfs_default_io_size; /* default io size devuned in super.c */ 21 extern int reiserfs_default_io_size; /* default io size devuned in super.c */
22 22
23 static int reiserfs_commit_write(struct file *f, struct page *page, 23 static int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to); 24 unsigned from, unsigned to);
25 static int reiserfs_prepare_write(struct file *f, struct page *page, 25 static int reiserfs_prepare_write(struct file *f, struct page *page,
26 unsigned from, unsigned to); 26 unsigned from, unsigned to);
27 27
28 void reiserfs_delete_inode(struct inode *inode) 28 void reiserfs_delete_inode(struct inode *inode)
29 { 29 {
30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
31 int jbegin_count = 31 int jbegin_count =
32 JOURNAL_PER_BALANCE_CNT * 2 + 32 JOURNAL_PER_BALANCE_CNT * 2 +
33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
34 struct reiserfs_transaction_handle th; 34 struct reiserfs_transaction_handle th;
35 35
36 reiserfs_write_lock(inode->i_sb); 36 reiserfs_write_lock(inode->i_sb);
37 37
38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
40 down(&inode->i_sem); 40 down(&inode->i_sem);
41 41
42 reiserfs_delete_xattrs(inode); 42 reiserfs_delete_xattrs(inode);
43 43
44 if (journal_begin(&th, inode->i_sb, jbegin_count)) { 44 if (journal_begin(&th, inode->i_sb, jbegin_count)) {
45 up(&inode->i_sem); 45 up(&inode->i_sem);
46 goto out; 46 goto out;
47 } 47 }
48 reiserfs_update_inode_transaction(inode); 48 reiserfs_update_inode_transaction(inode);
49 49
50 if (reiserfs_delete_object(&th, inode)) { 50 if (reiserfs_delete_object(&th, inode)) {
51 up(&inode->i_sem); 51 up(&inode->i_sem);
52 goto out; 52 goto out;
53 } 53 }
54 54
55 /* Do quota update inside a transaction for journaled quotas. We must do that 55 /* Do quota update inside a transaction for journaled quotas. We must do that
56 * after delete_object so that quota updates go into the same transaction as 56 * after delete_object so that quota updates go into the same transaction as
57 * stat data deletion */ 57 * stat data deletion */
58 DQUOT_FREE_INODE(inode); 58 DQUOT_FREE_INODE(inode);
59 59
60 if (journal_end(&th, inode->i_sb, jbegin_count)) { 60 if (journal_end(&th, inode->i_sb, jbegin_count)) {
61 up(&inode->i_sem); 61 up(&inode->i_sem);
62 goto out; 62 goto out;
63 } 63 }
64 64
65 up(&inode->i_sem); 65 up(&inode->i_sem);
66 66
67 /* all items of file are deleted, so we can remove "save" link */ 67 /* all items of file are deleted, so we can remove "save" link */
68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 68 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
69 * about an error here */ 69 * about an error here */
70 } else { 70 } else {
71 /* no object items are in the tree */ 71 /* no object items are in the tree */
72 ; 72 ;
73 } 73 }
74 out: 74 out:
75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 75 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
76 inode->i_blocks = 0; 76 inode->i_blocks = 0;
77 reiserfs_write_unlock(inode->i_sb); 77 reiserfs_write_unlock(inode->i_sb);
78 } 78 }
79 79
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 __u32 objectid, loff_t offset, int type, int length) 81 __u32 objectid, loff_t offset, int type, int length)
82 { 82 {
83 key->version = version; 83 key->version = version;
84 84
85 key->on_disk_key.k_dir_id = dirid; 85 key->on_disk_key.k_dir_id = dirid;
86 key->on_disk_key.k_objectid = objectid; 86 key->on_disk_key.k_objectid = objectid;
87 set_cpu_key_k_offset(key, offset); 87 set_cpu_key_k_offset(key, offset);
88 set_cpu_key_k_type(key, type); 88 set_cpu_key_k_type(key, type);
89 key->key_length = length; 89 key->key_length = length;
90 } 90 }
91 91
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93 offset and type of key */ 93 offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 int type, int length) 95 int type, int length)
96 { 96 {
97 _make_cpu_key(key, get_inode_item_key_version(inode), 97 _make_cpu_key(key, get_inode_item_key_version(inode),
98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 98 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 99 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 length); 100 length);
101 } 101 }
102 102
103 // 103 //
104 // when key is 0, do not set version and short key 104 // when key is 0, do not set version and short key
105 // 105 //
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 int version, 107 int version,
108 loff_t offset, int type, int length, 108 loff_t offset, int type, int length,
109 int entry_count /*or ih_free_space */ ) 109 int entry_count /*or ih_free_space */ )
110 { 110 {
111 if (key) { 111 if (key) {
112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 112 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 ih->ih_key.k_objectid = 113 ih->ih_key.k_objectid =
114 cpu_to_le32(key->on_disk_key.k_objectid); 114 cpu_to_le32(key->on_disk_key.k_objectid);
115 } 115 }
116 put_ih_version(ih, version); 116 put_ih_version(ih, version);
117 set_le_ih_k_offset(ih, offset); 117 set_le_ih_k_offset(ih, offset);
118 set_le_ih_k_type(ih, type); 118 set_le_ih_k_type(ih, type);
119 put_ih_item_len(ih, length); 119 put_ih_item_len(ih, length);
120 /* set_ih_free_space (ih, 0); */ 120 /* set_ih_free_space (ih, 0); */
121 // for directory items it is entry count, for directs and stat 121 // for directory items it is entry count, for directs and stat
122 // datas - 0xffff, for indirects - 0 122 // datas - 0xffff, for indirects - 0
123 put_ih_entry_count(ih, entry_count); 123 put_ih_entry_count(ih, entry_count);
124 } 124 }
125 125
126 // 126 //
127 // FIXME: we might cache recently accessed indirect item 127 // FIXME: we might cache recently accessed indirect item
128 128
129 // Ugh. Not too eager for that.... 129 // Ugh. Not too eager for that....
130 // I cut the code until such time as I see a convincing argument (benchmark). 130 // I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity.... 131 // I don't want a bloated inode struct..., and I don't like code complexity....
132 132
133 /* cutting the code is fine, since it really isn't in use yet and is easy 133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in. But, Vladimir has a really good idea here. Think 134 ** to add back in. But, Vladimir has a really good idea here. Think
135 ** about what happens for reading a file. For each page, 135 ** about what happens for reading a file. For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item. This indirect item has X number of pointers, where 137 ** an indirect item. This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right. But, 138 ** X is a big number if we've done the block allocation right. But,
139 ** we only use one or two of these pointers during each call to readpage, 139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on. 140 ** needlessly researching again later on.
141 ** 141 **
142 ** The size of the cache could be dynamic based on the size of the file. 142 ** The size of the cache could be dynamic based on the size of the file.
143 ** 143 **
144 ** I'd also like to see us cache the location the stat data item, since 144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently. 145 ** we are needlessly researching for that frequently.
146 ** 146 **
147 ** --chris 147 ** --chris
148 */ 148 */
149 149
150 /* If this page has a file tail in it, and 150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid, 151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to 152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it. So, look through this page, and check all the mapped buffers 153 ** it. So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers. Any that don't need 154 ** to make sure they have valid block numbers. Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call 155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node 156 ** reiserfs_get_block to convert the tail into an unformatted node
157 */ 157 */
158 static inline void fix_tail_page_for_writing(struct page *page) 158 static inline void fix_tail_page_for_writing(struct page *page)
159 { 159 {
160 struct buffer_head *head, *next, *bh; 160 struct buffer_head *head, *next, *bh;
161 161
162 if (page && page_has_buffers(page)) { 162 if (page && page_has_buffers(page)) {
163 head = page_buffers(page); 163 head = page_buffers(page);
164 bh = head; 164 bh = head;
165 do { 165 do {
166 next = bh->b_this_page; 166 next = bh->b_this_page;
167 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 167 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 reiserfs_unmap_buffer(bh); 168 reiserfs_unmap_buffer(bh);
169 } 169 }
170 bh = next; 170 bh = next;
171 } while (bh != head); 171 } while (bh != head);
172 } 172 }
173 } 173 }
174 174
175 /* reiserfs_get_block does not need to allocate a block only if it has been 175 /* reiserfs_get_block does not need to allocate a block only if it has been
176 done already or non-hole position has been found in the indirect item */ 176 done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated, 177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 struct item_head *ih, 178 struct item_head *ih,
179 __le32 * item, int pos_in_item) 179 __le32 * item, int pos_in_item)
180 { 180 {
181 if (allocated) 181 if (allocated)
182 return 0; 182 return 0;
183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 183 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 get_block_num(item, pos_in_item)) 184 get_block_num(item, pos_in_item))
185 return 0; 185 return 0;
186 return 1; 186 return 1;
187 } 187 }
188 188
189 static inline int indirect_item_found(int retval, struct item_head *ih) 189 static inline int indirect_item_found(int retval, struct item_head *ih)
190 { 190 {
191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 191 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 } 192 }
193 193
194 static inline void set_block_dev_mapped(struct buffer_head *bh, 194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 b_blocknr_t block, struct inode *inode) 195 b_blocknr_t block, struct inode *inode)
196 { 196 {
197 map_bh(bh, inode->i_sb, block); 197 map_bh(bh, inode->i_sb, block);
198 } 198 }
199 199
200 // 200 //
201 // files which were created in the earlier version can not be longer, 201 // files which were created in the earlier version can not be longer,
202 // than 2 gb 202 // than 2 gb
203 // 203 //
204 static int file_capable(struct inode *inode, long block) 204 static int file_capable(struct inode *inode, long block)
205 { 205 {
206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 206 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 207 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
208 return 1; 208 return 1;
209 209
210 return 0; 210 return 0;
211 } 211 }
212 212
213 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th, 213 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
214 struct inode *inode, struct path *path) 214 struct inode *inode, struct path *path)
215 { 215 {
216 struct super_block *s = th->t_super; 216 struct super_block *s = th->t_super;
217 int len = th->t_blocks_allocated; 217 int len = th->t_blocks_allocated;
218 int err; 218 int err;
219 219
220 BUG_ON(!th->t_trans_id); 220 BUG_ON(!th->t_trans_id);
221 BUG_ON(!th->t_refcount); 221 BUG_ON(!th->t_refcount);
222 222
223 /* we cannot restart while nested */ 223 /* we cannot restart while nested */
224 if (th->t_refcount > 1) { 224 if (th->t_refcount > 1) {
225 return 0; 225 return 0;
226 } 226 }
227 pathrelse(path); 227 pathrelse(path);
228 reiserfs_update_sd(th, inode); 228 reiserfs_update_sd(th, inode);
229 err = journal_end(th, s, len); 229 err = journal_end(th, s, len);
230 if (!err) { 230 if (!err) {
231 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 231 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
232 if (!err) 232 if (!err)
233 reiserfs_update_inode_transaction(inode); 233 reiserfs_update_inode_transaction(inode);
234 } 234 }
235 return err; 235 return err;
236 } 236 }
237 237
238 // it is called by get_block when create == 0. Returns block number 238 // it is called by get_block when create == 0. Returns block number
239 // for 'block'-th logical block of file. When it hits direct item it 239 // for 'block'-th logical block of file. When it hits direct item it
240 // returns 0 (being called from bmap) or read direct item into piece 240 // returns 0 (being called from bmap) or read direct item into piece
241 // of page (bh_result) 241 // of page (bh_result)
242 242
243 // Please improve the english/clarity in the comment above, as it is 243 // Please improve the english/clarity in the comment above, as it is
244 // hard to understand. 244 // hard to understand.
245 245
246 static int _get_block_create_0(struct inode *inode, long block, 246 static int _get_block_create_0(struct inode *inode, long block,
247 struct buffer_head *bh_result, int args) 247 struct buffer_head *bh_result, int args)
248 { 248 {
249 INITIALIZE_PATH(path); 249 INITIALIZE_PATH(path);
250 struct cpu_key key; 250 struct cpu_key key;
251 struct buffer_head *bh; 251 struct buffer_head *bh;
252 struct item_head *ih, tmp_ih; 252 struct item_head *ih, tmp_ih;
253 int fs_gen; 253 int fs_gen;
254 int blocknr; 254 int blocknr;
255 char *p = NULL; 255 char *p = NULL;
256 int chars; 256 int chars;
257 int ret; 257 int ret;
258 int result; 258 int result;
259 int done = 0; 259 int done = 0;
260 unsigned long offset; 260 unsigned long offset;
261 261
262 // prepare the key to look for the 'block'-th block of file 262 // prepare the key to look for the 'block'-th block of file
263 make_cpu_key(&key, inode, 263 make_cpu_key(&key, inode,
264 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 264 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
265 3); 265 3);
266 266
267 research: 267 research:
268 result = search_for_position_by_key(inode->i_sb, &key, &path); 268 result = search_for_position_by_key(inode->i_sb, &key, &path);
269 if (result != POSITION_FOUND) { 269 if (result != POSITION_FOUND) {
270 pathrelse(&path); 270 pathrelse(&path);
271 if (p) 271 if (p)
272 kunmap(bh_result->b_page); 272 kunmap(bh_result->b_page);
273 if (result == IO_ERROR) 273 if (result == IO_ERROR)
274 return -EIO; 274 return -EIO;
275 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 275 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
276 // That there is some MMAPED data associated with it that is yet to be written to disk. 276 // That there is some MMAPED data associated with it that is yet to be written to disk.
277 if ((args & GET_BLOCK_NO_HOLE) 277 if ((args & GET_BLOCK_NO_HOLE)
278 && !PageUptodate(bh_result->b_page)) { 278 && !PageUptodate(bh_result->b_page)) {
279 return -ENOENT; 279 return -ENOENT;
280 } 280 }
281 return 0; 281 return 0;
282 } 282 }
283 // 283 //
284 bh = get_last_bh(&path); 284 bh = get_last_bh(&path);
285 ih = get_ih(&path); 285 ih = get_ih(&path);
286 if (is_indirect_le_ih(ih)) { 286 if (is_indirect_le_ih(ih)) {
287 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 287 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
288 288
289 /* FIXME: here we could cache indirect item or part of it in 289 /* FIXME: here we could cache indirect item or part of it in
290 the inode to avoid search_by_key in case of subsequent 290 the inode to avoid search_by_key in case of subsequent
291 access to file */ 291 access to file */
292 blocknr = get_block_num(ind_item, path.pos_in_item); 292 blocknr = get_block_num(ind_item, path.pos_in_item);
293 ret = 0; 293 ret = 0;
294 if (blocknr) { 294 if (blocknr) {
295 map_bh(bh_result, inode->i_sb, blocknr); 295 map_bh(bh_result, inode->i_sb, blocknr);
296 if (path.pos_in_item == 296 if (path.pos_in_item ==
297 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 297 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
298 set_buffer_boundary(bh_result); 298 set_buffer_boundary(bh_result);
299 } 299 }
300 } else 300 } else
301 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 301 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
302 // That there is some MMAPED data associated with it that is yet to be written to disk. 302 // That there is some MMAPED data associated with it that is yet to be written to disk.
303 if ((args & GET_BLOCK_NO_HOLE) 303 if ((args & GET_BLOCK_NO_HOLE)
304 && !PageUptodate(bh_result->b_page)) { 304 && !PageUptodate(bh_result->b_page)) {
305 ret = -ENOENT; 305 ret = -ENOENT;
306 } 306 }
307 307
308 pathrelse(&path); 308 pathrelse(&path);
309 if (p) 309 if (p)
310 kunmap(bh_result->b_page); 310 kunmap(bh_result->b_page);
311 return ret; 311 return ret;
312 } 312 }
313 // requested data are in direct item(s) 313 // requested data are in direct item(s)
314 if (!(args & GET_BLOCK_READ_DIRECT)) { 314 if (!(args & GET_BLOCK_READ_DIRECT)) {
315 // we are called by bmap. FIXME: we can not map block of file 315 // we are called by bmap. FIXME: we can not map block of file
316 // when it is stored in direct item(s) 316 // when it is stored in direct item(s)
317 pathrelse(&path); 317 pathrelse(&path);
318 if (p) 318 if (p)
319 kunmap(bh_result->b_page); 319 kunmap(bh_result->b_page);
320 return -ENOENT; 320 return -ENOENT;
321 } 321 }
322 322
323 /* if we've got a direct item, and the buffer or page was uptodate, 323 /* if we've got a direct item, and the buffer or page was uptodate,
324 ** we don't want to pull data off disk again. skip to the 324 ** we don't want to pull data off disk again. skip to the
325 ** end, where we map the buffer and return 325 ** end, where we map the buffer and return
326 */ 326 */
327 if (buffer_uptodate(bh_result)) { 327 if (buffer_uptodate(bh_result)) {
328 goto finished; 328 goto finished;
329 } else 329 } else
330 /* 330 /*
331 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 331 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
332 ** pages without any buffers. If the page is up to date, we don't want 332 ** pages without any buffers. If the page is up to date, we don't want
333 ** read old data off disk. Set the up to date bit on the buffer instead 333 ** read old data off disk. Set the up to date bit on the buffer instead
334 ** and jump to the end 334 ** and jump to the end
335 */ 335 */
336 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 336 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
337 set_buffer_uptodate(bh_result); 337 set_buffer_uptodate(bh_result);
338 goto finished; 338 goto finished;
339 } 339 }
340 // read file tail into part of page 340 // read file tail into part of page
341 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 341 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
342 fs_gen = get_generation(inode->i_sb); 342 fs_gen = get_generation(inode->i_sb);
343 copy_item_head(&tmp_ih, ih); 343 copy_item_head(&tmp_ih, ih);
344 344
345 /* we only want to kmap if we are reading the tail into the page. 345 /* we only want to kmap if we are reading the tail into the page.
346 ** this is not the common case, so we don't kmap until we are 346 ** this is not the common case, so we don't kmap until we are
347 ** sure we need to. But, this means the item might move if 347 ** sure we need to. But, this means the item might move if
348 ** kmap schedules 348 ** kmap schedules
349 */ 349 */
350 if (!p) { 350 if (!p) {
351 p = (char *)kmap(bh_result->b_page); 351 p = (char *)kmap(bh_result->b_page);
352 if (fs_changed(fs_gen, inode->i_sb) 352 if (fs_changed(fs_gen, inode->i_sb)
353 && item_moved(&tmp_ih, &path)) { 353 && item_moved(&tmp_ih, &path)) {
354 goto research; 354 goto research;
355 } 355 }
356 } 356 }
357 p += offset; 357 p += offset;
358 memset(p, 0, inode->i_sb->s_blocksize); 358 memset(p, 0, inode->i_sb->s_blocksize);
359 do { 359 do {
360 if (!is_direct_le_ih(ih)) { 360 if (!is_direct_le_ih(ih)) {
361 BUG(); 361 BUG();
362 } 362 }
363 /* make sure we don't read more bytes than actually exist in 363 /* make sure we don't read more bytes than actually exist in
364 ** the file. This can happen in odd cases where i_size isn't 364 ** the file. This can happen in odd cases where i_size isn't
365 ** correct, and when direct item padding results in a few 365 ** correct, and when direct item padding results in a few
366 ** extra bytes at the end of the direct item 366 ** extra bytes at the end of the direct item
367 */ 367 */
368 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 368 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
369 break; 369 break;
370 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 370 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
371 chars = 371 chars =
372 inode->i_size - (le_ih_k_offset(ih) - 1) - 372 inode->i_size - (le_ih_k_offset(ih) - 1) -
373 path.pos_in_item; 373 path.pos_in_item;
374 done = 1; 374 done = 1;
375 } else { 375 } else {
376 chars = ih_item_len(ih) - path.pos_in_item; 376 chars = ih_item_len(ih) - path.pos_in_item;
377 } 377 }
378 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 378 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
379 379
380 if (done) 380 if (done)
381 break; 381 break;
382 382
383 p += chars; 383 p += chars;
384 384
385 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 385 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
386 // we done, if read direct item is not the last item of 386 // we done, if read direct item is not the last item of
387 // node FIXME: we could try to check right delimiting key 387 // node FIXME: we could try to check right delimiting key
388 // to see whether direct item continues in the right 388 // to see whether direct item continues in the right
389 // neighbor or rely on i_size 389 // neighbor or rely on i_size
390 break; 390 break;
391 391
392 // update key to look for the next piece 392 // update key to look for the next piece
393 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 393 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
394 result = search_for_position_by_key(inode->i_sb, &key, &path); 394 result = search_for_position_by_key(inode->i_sb, &key, &path);
395 if (result != POSITION_FOUND) 395 if (result != POSITION_FOUND)
396 // i/o error most likely 396 // i/o error most likely
397 break; 397 break;
398 bh = get_last_bh(&path); 398 bh = get_last_bh(&path);
399 ih = get_ih(&path); 399 ih = get_ih(&path);
400 } while (1); 400 } while (1);
401 401
402 flush_dcache_page(bh_result->b_page); 402 flush_dcache_page(bh_result->b_page);
403 kunmap(bh_result->b_page); 403 kunmap(bh_result->b_page);
404 404
405 finished: 405 finished:
406 pathrelse(&path); 406 pathrelse(&path);
407 407
408 if (result == IO_ERROR) 408 if (result == IO_ERROR)
409 return -EIO; 409 return -EIO;
410 410
411 /* this buffer has valid data, but isn't valid for io. mapping it to 411 /* this buffer has valid data, but isn't valid for io. mapping it to
412 * block #0 tells the rest of reiserfs it just has a tail in it 412 * block #0 tells the rest of reiserfs it just has a tail in it
413 */ 413 */
414 map_bh(bh_result, inode->i_sb, 0); 414 map_bh(bh_result, inode->i_sb, 0);
415 set_buffer_uptodate(bh_result); 415 set_buffer_uptodate(bh_result);
416 return 0; 416 return 0;
417 } 417 }
418 418
419 // this is called to create file map. So, _get_block_create_0 will not 419 // this is called to create file map. So, _get_block_create_0 will not
420 // read direct item 420 // read direct item
421 static int reiserfs_bmap(struct inode *inode, sector_t block, 421 static int reiserfs_bmap(struct inode *inode, sector_t block,
422 struct buffer_head *bh_result, int create) 422 struct buffer_head *bh_result, int create)
423 { 423 {
424 if (!file_capable(inode, block)) 424 if (!file_capable(inode, block))
425 return -EFBIG; 425 return -EFBIG;
426 426
427 reiserfs_write_lock(inode->i_sb); 427 reiserfs_write_lock(inode->i_sb);
428 /* do not read the direct item */ 428 /* do not read the direct item */
429 _get_block_create_0(inode, block, bh_result, 0); 429 _get_block_create_0(inode, block, bh_result, 0);
430 reiserfs_write_unlock(inode->i_sb); 430 reiserfs_write_unlock(inode->i_sb);
431 return 0; 431 return 0;
432 } 432 }
433 433
434 /* special version of get_block that is only used by grab_tail_page right 434 /* special version of get_block that is only used by grab_tail_page right
435 ** now. It is sent to block_prepare_write, and when you try to get a 435 ** now. It is sent to block_prepare_write, and when you try to get a
436 ** block past the end of the file (or a block from a hole) it returns 436 ** block past the end of the file (or a block from a hole) it returns
437 ** -ENOENT instead of a valid buffer. block_prepare_write expects to 437 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
438 ** be able to do i/o on the buffers returned, unless an error value 438 ** be able to do i/o on the buffers returned, unless an error value
439 ** is also returned. 439 ** is also returned.
440 ** 440 **
441 ** So, this allows block_prepare_write to be used for reading a single block 441 ** So, this allows block_prepare_write to be used for reading a single block
442 ** in a page. Where it does not produce a valid page for holes, or past the 442 ** in a page. Where it does not produce a valid page for holes, or past the
443 ** end of the file. This turns out to be exactly what we need for reading 443 ** end of the file. This turns out to be exactly what we need for reading
444 ** tails for conversion. 444 ** tails for conversion.
445 ** 445 **
446 ** The point of the wrapper is forcing a certain value for create, even 446 ** The point of the wrapper is forcing a certain value for create, even
447 ** though the VFS layer is calling this function with create==1. If you 447 ** though the VFS layer is calling this function with create==1. If you
448 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 448 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
449 ** don't use this function. 449 ** don't use this function.
450 */ 450 */
451 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 451 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
452 struct buffer_head *bh_result, 452 struct buffer_head *bh_result,
453 int create) 453 int create)
454 { 454 {
455 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 455 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
456 } 456 }
457 457
458 /* This is special helper for reiserfs_get_block in case we are executing 458 /* This is special helper for reiserfs_get_block in case we are executing
459 direct_IO request. */ 459 direct_IO request. */
460 static int reiserfs_get_blocks_direct_io(struct inode *inode, 460 static int reiserfs_get_blocks_direct_io(struct inode *inode,
461 sector_t iblock, 461 sector_t iblock,
462 unsigned long max_blocks, 462 unsigned long max_blocks,
463 struct buffer_head *bh_result, 463 struct buffer_head *bh_result,
464 int create) 464 int create)
465 { 465 {
466 int ret; 466 int ret;
467 467
468 bh_result->b_page = NULL; 468 bh_result->b_page = NULL;
469 469
470 /* We set the b_size before reiserfs_get_block call since it is 470 /* We set the b_size before reiserfs_get_block call since it is
471 referenced in convert_tail_for_hole() that may be called from 471 referenced in convert_tail_for_hole() that may be called from
472 reiserfs_get_block() */ 472 reiserfs_get_block() */
473 bh_result->b_size = (1 << inode->i_blkbits); 473 bh_result->b_size = (1 << inode->i_blkbits);
474 474
475 ret = reiserfs_get_block(inode, iblock, bh_result, 475 ret = reiserfs_get_block(inode, iblock, bh_result,
476 create | GET_BLOCK_NO_DANGLE); 476 create | GET_BLOCK_NO_DANGLE);
477 if (ret) 477 if (ret)
478 goto out; 478 goto out;
479 479
480 /* don't allow direct io onto tail pages */ 480 /* don't allow direct io onto tail pages */
481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 481 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 /* make sure future calls to the direct io funcs for this offset 482 /* make sure future calls to the direct io funcs for this offset
483 ** in the file fail by unmapping the buffer 483 ** in the file fail by unmapping the buffer
484 */ 484 */
485 clear_buffer_mapped(bh_result); 485 clear_buffer_mapped(bh_result);
486 ret = -EINVAL; 486 ret = -EINVAL;
487 } 487 }
488 /* Possible unpacked tail. Flush the data before pages have 488 /* Possible unpacked tail. Flush the data before pages have
489 disappeared */ 489 disappeared */
490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 490 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 int err; 491 int err;
492 lock_kernel(); 492 lock_kernel();
493 err = reiserfs_commit_for_inode(inode); 493 err = reiserfs_commit_for_inode(inode);
494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 494 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 unlock_kernel(); 495 unlock_kernel();
496 if (err < 0) 496 if (err < 0)
497 ret = err; 497 ret = err;
498 } 498 }
499 out: 499 out:
500 return ret; 500 return ret;
501 } 501 }
502 502
503 /* 503 /*
504 ** helper function for when reiserfs_get_block is called for a hole 504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item 505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole 506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file 507 ** tail_offset is the offset of the start of the tail in the file
508 ** 508 **
509 ** This calls prepare_write, which will start a new transaction 509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you 510 ** you should not be in a transaction, or have any paths held when you
511 ** call this. 511 ** call this.
512 */ 512 */
513 static int convert_tail_for_hole(struct inode *inode, 513 static int convert_tail_for_hole(struct inode *inode,
514 struct buffer_head *bh_result, 514 struct buffer_head *bh_result,
515 loff_t tail_offset) 515 loff_t tail_offset)
516 { 516 {
517 unsigned long index; 517 unsigned long index;
518 unsigned long tail_end; 518 unsigned long tail_end;
519 unsigned long tail_start; 519 unsigned long tail_start;
520 struct page *tail_page; 520 struct page *tail_page;
521 struct page *hole_page = bh_result->b_page; 521 struct page *hole_page = bh_result->b_page;
522 int retval = 0; 522 int retval = 0;
523 523
524 if ((tail_offset & (bh_result->b_size - 1)) != 1) 524 if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 return -EIO; 525 return -EIO;
526 526
527 /* always try to read until the end of the block */ 527 /* always try to read until the end of the block */
528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 528 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 529 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
530 530
531 index = tail_offset >> PAGE_CACHE_SHIFT; 531 index = tail_offset >> PAGE_CACHE_SHIFT;
532 /* hole_page can be zero in case of direct_io, we are sure 532 /* hole_page can be zero in case of direct_io, we are sure
533 that we cannot get here if we write with O_DIRECT into 533 that we cannot get here if we write with O_DIRECT into
534 tail page */ 534 tail page */
535 if (!hole_page || index != hole_page->index) { 535 if (!hole_page || index != hole_page->index) {
536 tail_page = grab_cache_page(inode->i_mapping, index); 536 tail_page = grab_cache_page(inode->i_mapping, index);
537 retval = -ENOMEM; 537 retval = -ENOMEM;
538 if (!tail_page) { 538 if (!tail_page) {
539 goto out; 539 goto out;
540 } 540 }
541 } else { 541 } else {
542 tail_page = hole_page; 542 tail_page = hole_page;
543 } 543 }
544 544
545 /* we don't have to make sure the conversion did not happen while 545 /* we don't have to make sure the conversion did not happen while
546 ** we were locking the page because anyone that could convert 546 ** we were locking the page because anyone that could convert
547 ** must first take i_sem. 547 ** must first take i_sem.
548 ** 548 **
549 ** We must fix the tail page for writing because it might have buffers 549 ** We must fix the tail page for writing because it might have buffers
550 ** that are mapped, but have a block number of 0. This indicates tail 550 ** that are mapped, but have a block number of 0. This indicates tail
551 ** data that has been read directly into the page, and block_prepare_write 551 ** data that has been read directly into the page, and block_prepare_write
552 ** won't trigger a get_block in this case. 552 ** won't trigger a get_block in this case.
553 */ 553 */
554 fix_tail_page_for_writing(tail_page); 554 fix_tail_page_for_writing(tail_page);
555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 555 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 if (retval) 556 if (retval)
557 goto unlock; 557 goto unlock;
558 558
559 /* tail conversion might change the data in the page */ 559 /* tail conversion might change the data in the page */
560 flush_dcache_page(tail_page); 560 flush_dcache_page(tail_page);
561 561
562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 562 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
563 563
564 unlock: 564 unlock:
565 if (tail_page != hole_page) { 565 if (tail_page != hole_page) {
566 unlock_page(tail_page); 566 unlock_page(tail_page);
567 page_cache_release(tail_page); 567 page_cache_release(tail_page);
568 } 568 }
569 out: 569 out:
570 return retval; 570 return retval;
571 } 571 }
572 572
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 long block, 574 long block,
575 struct inode *inode, 575 struct inode *inode,
576 b_blocknr_t * allocated_block_nr, 576 b_blocknr_t * allocated_block_nr,
577 struct path *path, int flags) 577 struct path *path, int flags)
578 { 578 {
579 BUG_ON(!th->t_trans_id); 579 BUG_ON(!th->t_trans_id);
580 580
581 #ifdef REISERFS_PREALLOCATE 581 #ifdef REISERFS_PREALLOCATE
582 if (!(flags & GET_BLOCK_NO_ISEM)) { 582 if (!(flags & GET_BLOCK_NO_ISEM)) {
583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 583 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 path, block); 584 path, block);
585 } 585 }
586 #endif 586 #endif
587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 587 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 block); 588 block);
589 } 589 }
590 590
591 int reiserfs_get_block(struct inode *inode, sector_t block, 591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 struct buffer_head *bh_result, int create) 592 struct buffer_head *bh_result, int create)
593 { 593 {
594 int repeat, retval = 0; 594 int repeat, retval = 0;
595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 595 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
596 INITIALIZE_PATH(path); 596 INITIALIZE_PATH(path);
597 int pos_in_item; 597 int pos_in_item;
598 struct cpu_key key; 598 struct cpu_key key;
599 struct buffer_head *bh, *unbh = NULL; 599 struct buffer_head *bh, *unbh = NULL;
600 struct item_head *ih, tmp_ih; 600 struct item_head *ih, tmp_ih;
601 __le32 *item; 601 __le32 *item;
602 int done; 602 int done;
603 int fs_gen; 603 int fs_gen;
604 struct reiserfs_transaction_handle *th = NULL; 604 struct reiserfs_transaction_handle *th = NULL;
605 /* space reserved in transaction batch: 605 /* space reserved in transaction batch:
606 . 3 balancings in direct->indirect conversion 606 . 3 balancings in direct->indirect conversion
607 . 1 block involved into reiserfs_update_sd() 607 . 1 block involved into reiserfs_update_sd()
608 XXX in practically impossible worst case direct2indirect() 608 XXX in practically impossible worst case direct2indirect()
609 can incur (much) more than 3 balancings. 609 can incur (much) more than 3 balancings.
610 quota update for user, group */ 610 quota update for user, group */
611 int jbegin_count = 611 int jbegin_count =
612 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 612 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 613 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 int version; 614 int version;
615 int dangle = 1; 615 int dangle = 1;
616 loff_t new_offset = 616 loff_t new_offset =
617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 617 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
618 618
619 /* bad.... */ 619 /* bad.... */
620 reiserfs_write_lock(inode->i_sb); 620 reiserfs_write_lock(inode->i_sb);
621 version = get_inode_item_key_version(inode); 621 version = get_inode_item_key_version(inode);
622 622
623 if (block < 0) { 623 if (block < 0) {
624 reiserfs_write_unlock(inode->i_sb); 624 reiserfs_write_unlock(inode->i_sb);
625 return -EIO; 625 return -EIO;
626 } 626 }
627 627
628 if (!file_capable(inode, block)) { 628 if (!file_capable(inode, block)) {
629 reiserfs_write_unlock(inode->i_sb); 629 reiserfs_write_unlock(inode->i_sb);
630 return -EFBIG; 630 return -EFBIG;
631 } 631 }
632 632
633 /* if !create, we aren't changing the FS, so we don't need to 633 /* if !create, we aren't changing the FS, so we don't need to
634 ** log anything, so we don't need to start a transaction 634 ** log anything, so we don't need to start a transaction
635 */ 635 */
636 if (!(create & GET_BLOCK_CREATE)) { 636 if (!(create & GET_BLOCK_CREATE)) {
637 int ret; 637 int ret;
638 /* find number of block-th logical block of the file */ 638 /* find number of block-th logical block of the file */
639 ret = _get_block_create_0(inode, block, bh_result, 639 ret = _get_block_create_0(inode, block, bh_result,
640 create | GET_BLOCK_READ_DIRECT); 640 create | GET_BLOCK_READ_DIRECT);
641 reiserfs_write_unlock(inode->i_sb); 641 reiserfs_write_unlock(inode->i_sb);
642 return ret; 642 return ret;
643 } 643 }
644 /* 644 /*
645 * if we're already in a transaction, make sure to close 645 * if we're already in a transaction, make sure to close
646 * any new transactions we start in this func 646 * any new transactions we start in this func
647 */ 647 */
648 if ((create & GET_BLOCK_NO_DANGLE) || 648 if ((create & GET_BLOCK_NO_DANGLE) ||
649 reiserfs_transaction_running(inode->i_sb)) 649 reiserfs_transaction_running(inode->i_sb))
650 dangle = 0; 650 dangle = 0;
651 651
652 /* If file is of such a size, that it might have a tail and tails are enabled 652 /* If file is of such a size, that it might have a tail and tails are enabled
653 ** we should mark it as possibly needing tail packing on close 653 ** we should mark it as possibly needing tail packing on close
654 */ 654 */
655 if ((have_large_tails(inode->i_sb) 655 if ((have_large_tails(inode->i_sb)
656 && inode->i_size < i_block_size(inode) * 4) 656 && inode->i_size < i_block_size(inode) * 4)
657 || (have_small_tails(inode->i_sb) 657 || (have_small_tails(inode->i_sb)
658 && inode->i_size < i_block_size(inode))) 658 && inode->i_size < i_block_size(inode)))
659 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 659 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
660 660
661 /* set the key of the first byte in the 'block'-th block of file */ 661 /* set the key of the first byte in the 'block'-th block of file */
662 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 662 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
663 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 663 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
664 start_trans: 664 start_trans:
665 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 665 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
666 if (!th) { 666 if (!th) {
667 retval = -ENOMEM; 667 retval = -ENOMEM;
668 goto failure; 668 goto failure;
669 } 669 }
670 reiserfs_update_inode_transaction(inode); 670 reiserfs_update_inode_transaction(inode);
671 } 671 }
672 research: 672 research:
673 673
674 retval = search_for_position_by_key(inode->i_sb, &key, &path); 674 retval = search_for_position_by_key(inode->i_sb, &key, &path);
675 if (retval == IO_ERROR) { 675 if (retval == IO_ERROR) {
676 retval = -EIO; 676 retval = -EIO;
677 goto failure; 677 goto failure;
678 } 678 }
679 679
680 bh = get_last_bh(&path); 680 bh = get_last_bh(&path);
681 ih = get_ih(&path); 681 ih = get_ih(&path);
682 item = get_item(&path); 682 item = get_item(&path);
683 pos_in_item = path.pos_in_item; 683 pos_in_item = path.pos_in_item;
684 684
685 fs_gen = get_generation(inode->i_sb); 685 fs_gen = get_generation(inode->i_sb);
686 copy_item_head(&tmp_ih, ih); 686 copy_item_head(&tmp_ih, ih);
687 687
688 if (allocation_needed 688 if (allocation_needed
689 (retval, allocated_block_nr, ih, item, pos_in_item)) { 689 (retval, allocated_block_nr, ih, item, pos_in_item)) {
690 /* we have to allocate block for the unformatted node */ 690 /* we have to allocate block for the unformatted node */
691 if (!th) { 691 if (!th) {
692 pathrelse(&path); 692 pathrelse(&path);
693 goto start_trans; 693 goto start_trans;
694 } 694 }
695 695
696 repeat = 696 repeat =
697 _allocate_block(th, block, inode, &allocated_block_nr, 697 _allocate_block(th, block, inode, &allocated_block_nr,
698 &path, create); 698 &path, create);
699 699
700 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 700 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
701 /* restart the transaction to give the journal a chance to free 701 /* restart the transaction to give the journal a chance to free
702 ** some blocks. releases the path, so we have to go back to 702 ** some blocks. releases the path, so we have to go back to
703 ** research if we succeed on the second try 703 ** research if we succeed on the second try
704 */ 704 */
705 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 705 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
706 retval = restart_transaction(th, inode, &path); 706 retval = restart_transaction(th, inode, &path);
707 if (retval) 707 if (retval)
708 goto failure; 708 goto failure;
709 repeat = 709 repeat =
710 _allocate_block(th, block, inode, 710 _allocate_block(th, block, inode,
711 &allocated_block_nr, NULL, create); 711 &allocated_block_nr, NULL, create);
712 712
713 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 713 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
714 goto research; 714 goto research;
715 } 715 }
716 if (repeat == QUOTA_EXCEEDED) 716 if (repeat == QUOTA_EXCEEDED)
717 retval = -EDQUOT; 717 retval = -EDQUOT;
718 else 718 else
719 retval = -ENOSPC; 719 retval = -ENOSPC;
720 goto failure; 720 goto failure;
721 } 721 }
722 722
723 if (fs_changed(fs_gen, inode->i_sb) 723 if (fs_changed(fs_gen, inode->i_sb)
724 && item_moved(&tmp_ih, &path)) { 724 && item_moved(&tmp_ih, &path)) {
725 goto research; 725 goto research;
726 } 726 }
727 } 727 }
728 728
729 if (indirect_item_found(retval, ih)) { 729 if (indirect_item_found(retval, ih)) {
730 b_blocknr_t unfm_ptr; 730 b_blocknr_t unfm_ptr;
731 /* 'block'-th block is in the file already (there is 731 /* 'block'-th block is in the file already (there is
732 corresponding cell in some indirect item). But it may be 732 corresponding cell in some indirect item). But it may be
733 zero unformatted node pointer (hole) */ 733 zero unformatted node pointer (hole) */
734 unfm_ptr = get_block_num(item, pos_in_item); 734 unfm_ptr = get_block_num(item, pos_in_item);
735 if (unfm_ptr == 0) { 735 if (unfm_ptr == 0) {
736 /* use allocated block to plug the hole */ 736 /* use allocated block to plug the hole */
737 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 737 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
738 if (fs_changed(fs_gen, inode->i_sb) 738 if (fs_changed(fs_gen, inode->i_sb)
739 && item_moved(&tmp_ih, &path)) { 739 && item_moved(&tmp_ih, &path)) {
740 reiserfs_restore_prepared_buffer(inode->i_sb, 740 reiserfs_restore_prepared_buffer(inode->i_sb,
741 bh); 741 bh);
742 goto research; 742 goto research;
743 } 743 }
744 set_buffer_new(bh_result); 744 set_buffer_new(bh_result);
745 if (buffer_dirty(bh_result) 745 if (buffer_dirty(bh_result)
746 && reiserfs_data_ordered(inode->i_sb)) 746 && reiserfs_data_ordered(inode->i_sb))
747 reiserfs_add_ordered_list(inode, bh_result); 747 reiserfs_add_ordered_list(inode, bh_result);
748 put_block_num(item, pos_in_item, allocated_block_nr); 748 put_block_num(item, pos_in_item, allocated_block_nr);
749 unfm_ptr = allocated_block_nr; 749 unfm_ptr = allocated_block_nr;
750 journal_mark_dirty(th, inode->i_sb, bh); 750 journal_mark_dirty(th, inode->i_sb, bh);
751 reiserfs_update_sd(th, inode); 751 reiserfs_update_sd(th, inode);
752 } 752 }
753 set_block_dev_mapped(bh_result, unfm_ptr, inode); 753 set_block_dev_mapped(bh_result, unfm_ptr, inode);
754 pathrelse(&path); 754 pathrelse(&path);
755 retval = 0; 755 retval = 0;
756 if (!dangle && th) 756 if (!dangle && th)
757 retval = reiserfs_end_persistent_transaction(th); 757 retval = reiserfs_end_persistent_transaction(th);
758 758
759 reiserfs_write_unlock(inode->i_sb); 759 reiserfs_write_unlock(inode->i_sb);
760 760
761 /* the item was found, so new blocks were not added to the file 761 /* the item was found, so new blocks were not added to the file
762 ** there is no need to make sure the inode is updated with this 762 ** there is no need to make sure the inode is updated with this
763 ** transaction 763 ** transaction
764 */ 764 */
765 return retval; 765 return retval;
766 } 766 }
767 767
768 if (!th) { 768 if (!th) {
769 pathrelse(&path); 769 pathrelse(&path);
770 goto start_trans; 770 goto start_trans;
771 } 771 }
772 772
773 /* desired position is not found or is in the direct item. We have 773 /* desired position is not found or is in the direct item. We have
774 to append file with holes up to 'block'-th block converting 774 to append file with holes up to 'block'-th block converting
775 direct items to indirect one if necessary */ 775 direct items to indirect one if necessary */
776 done = 0; 776 done = 0;
777 do { 777 do {
778 if (is_statdata_le_ih(ih)) { 778 if (is_statdata_le_ih(ih)) {
779 __le32 unp = 0; 779 __le32 unp = 0;
780 struct cpu_key tmp_key; 780 struct cpu_key tmp_key;
781 781
782 /* indirect item has to be inserted */ 782 /* indirect item has to be inserted */
783 make_le_item_head(&tmp_ih, &key, version, 1, 783 make_le_item_head(&tmp_ih, &key, version, 1,
784 TYPE_INDIRECT, UNFM_P_SIZE, 784 TYPE_INDIRECT, UNFM_P_SIZE,
785 0 /* free_space */ ); 785 0 /* free_space */ );
786 786
787 if (cpu_key_k_offset(&key) == 1) { 787 if (cpu_key_k_offset(&key) == 1) {
788 /* we are going to add 'block'-th block to the file. Use 788 /* we are going to add 'block'-th block to the file. Use
789 allocated block for that */ 789 allocated block for that */
790 unp = cpu_to_le32(allocated_block_nr); 790 unp = cpu_to_le32(allocated_block_nr);
791 set_block_dev_mapped(bh_result, 791 set_block_dev_mapped(bh_result,
792 allocated_block_nr, inode); 792 allocated_block_nr, inode);
793 set_buffer_new(bh_result); 793 set_buffer_new(bh_result);
794 done = 1; 794 done = 1;
795 } 795 }
796 tmp_key = key; // ;) 796 tmp_key = key; // ;)
797 set_cpu_key_k_offset(&tmp_key, 1); 797 set_cpu_key_k_offset(&tmp_key, 1);
798 PATH_LAST_POSITION(&path)++; 798 PATH_LAST_POSITION(&path)++;
799 799
800 retval = 800 retval =
801 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 801 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
802 inode, (char *)&unp); 802 inode, (char *)&unp);
803 if (retval) { 803 if (retval) {
804 reiserfs_free_block(th, inode, 804 reiserfs_free_block(th, inode,
805 allocated_block_nr, 1); 805 allocated_block_nr, 1);
806 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 806 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
807 } 807 }
808 //mark_tail_converted (inode); 808 //mark_tail_converted (inode);
809 } else if (is_direct_le_ih(ih)) { 809 } else if (is_direct_le_ih(ih)) {
810 /* direct item has to be converted */ 810 /* direct item has to be converted */
811 loff_t tail_offset; 811 loff_t tail_offset;
812 812
813 tail_offset = 813 tail_offset =
814 ((le_ih_k_offset(ih) - 814 ((le_ih_k_offset(ih) -
815 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 815 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
816 if (tail_offset == cpu_key_k_offset(&key)) { 816 if (tail_offset == cpu_key_k_offset(&key)) {
817 /* direct item we just found fits into block we have 817 /* direct item we just found fits into block we have
818 to map. Convert it into unformatted node: use 818 to map. Convert it into unformatted node: use
819 bh_result for the conversion */ 819 bh_result for the conversion */
820 set_block_dev_mapped(bh_result, 820 set_block_dev_mapped(bh_result,
821 allocated_block_nr, inode); 821 allocated_block_nr, inode);
822 unbh = bh_result; 822 unbh = bh_result;
823 done = 1; 823 done = 1;
824 } else { 824 } else {
825 /* we have to padd file tail stored in direct item(s) 825 /* we have to padd file tail stored in direct item(s)
826 up to block size and convert it to unformatted 826 up to block size and convert it to unformatted
827 node. FIXME: this should also get into page cache */ 827 node. FIXME: this should also get into page cache */
828 828
829 pathrelse(&path); 829 pathrelse(&path);
830 /* 830 /*
831 * ugly, but we can only end the transaction if 831 * ugly, but we can only end the transaction if
832 * we aren't nested 832 * we aren't nested
833 */ 833 */
834 BUG_ON(!th->t_refcount); 834 BUG_ON(!th->t_refcount);
835 if (th->t_refcount == 1) { 835 if (th->t_refcount == 1) {
836 retval = 836 retval =
837 reiserfs_end_persistent_transaction 837 reiserfs_end_persistent_transaction
838 (th); 838 (th);
839 th = NULL; 839 th = NULL;
840 if (retval) 840 if (retval)
841 goto failure; 841 goto failure;
842 } 842 }
843 843
844 retval = 844 retval =
845 convert_tail_for_hole(inode, bh_result, 845 convert_tail_for_hole(inode, bh_result,
846 tail_offset); 846 tail_offset);
847 if (retval) { 847 if (retval) {
848 if (retval != -ENOSPC) 848 if (retval != -ENOSPC)
849 reiserfs_warning(inode->i_sb, 849 reiserfs_warning(inode->i_sb,
850 "clm-6004: convert tail failed inode %lu, error %d", 850 "clm-6004: convert tail failed inode %lu, error %d",
851 inode->i_ino, 851 inode->i_ino,
852 retval); 852 retval);
853 if (allocated_block_nr) { 853 if (allocated_block_nr) {
854 /* the bitmap, the super, and the stat data == 3 */ 854 /* the bitmap, the super, and the stat data == 3 */
855 if (!th) 855 if (!th)
856 th = reiserfs_persistent_transaction(inode->i_sb, 3); 856 th = reiserfs_persistent_transaction(inode->i_sb, 3);
857 if (th) 857 if (th)
858 reiserfs_free_block(th, 858 reiserfs_free_block(th,
859 inode, 859 inode,
860 allocated_block_nr, 860 allocated_block_nr,
861 1); 861 1);
862 } 862 }
863 goto failure; 863 goto failure;
864 } 864 }
865 goto research; 865 goto research;
866 } 866 }
867 retval = 867 retval =
868 direct2indirect(th, inode, &path, unbh, 868 direct2indirect(th, inode, &path, unbh,
869 tail_offset); 869 tail_offset);
870 if (retval) { 870 if (retval) {
871 reiserfs_unmap_buffer(unbh); 871 reiserfs_unmap_buffer(unbh);
872 reiserfs_free_block(th, inode, 872 reiserfs_free_block(th, inode,
873 allocated_block_nr, 1); 873 allocated_block_nr, 1);
874 goto failure; 874 goto failure;
875 } 875 }
876 /* it is important the set_buffer_uptodate is done after 876 /* it is important the set_buffer_uptodate is done after
877 ** the direct2indirect. The buffer might contain valid 877 ** the direct2indirect. The buffer might contain valid
878 ** data newer than the data on disk (read by readpage, changed, 878 ** data newer than the data on disk (read by readpage, changed,
879 ** and then sent here by writepage). direct2indirect needs 879 ** and then sent here by writepage). direct2indirect needs
880 ** to know if unbh was already up to date, so it can decide 880 ** to know if unbh was already up to date, so it can decide
881 ** if the data in unbh needs to be replaced with data from 881 ** if the data in unbh needs to be replaced with data from
882 ** the disk 882 ** the disk
883 */ 883 */
884 set_buffer_uptodate(unbh); 884 set_buffer_uptodate(unbh);
885 885
886 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 886 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
887 buffer will disappear shortly, so it should not be added to 887 buffer will disappear shortly, so it should not be added to
888 */ 888 */
889 if (unbh->b_page) { 889 if (unbh->b_page) {
890 /* we've converted the tail, so we must 890 /* we've converted the tail, so we must
891 ** flush unbh before the transaction commits 891 ** flush unbh before the transaction commits
892 */ 892 */
893 reiserfs_add_tail_list(inode, unbh); 893 reiserfs_add_tail_list(inode, unbh);
894 894
895 /* mark it dirty now to prevent commit_write from adding 895 /* mark it dirty now to prevent commit_write from adding
896 ** this buffer to the inode's dirty buffer list 896 ** this buffer to the inode's dirty buffer list
897 */ 897 */
898 /* 898 /*
899 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 899 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
900 * It's still atomic, but it sets the page dirty too, 900 * It's still atomic, but it sets the page dirty too,
901 * which makes it eligible for writeback at any time by the 901 * which makes it eligible for writeback at any time by the
902 * VM (which was also the case with __mark_buffer_dirty()) 902 * VM (which was also the case with __mark_buffer_dirty())
903 */ 903 */
904 mark_buffer_dirty(unbh); 904 mark_buffer_dirty(unbh);
905 } 905 }
906 } else { 906 } else {
907 /* append indirect item with holes if needed, when appending 907 /* append indirect item with holes if needed, when appending
908 pointer to 'block'-th block use block, which is already 908 pointer to 'block'-th block use block, which is already
909 allocated */ 909 allocated */
910 struct cpu_key tmp_key; 910 struct cpu_key tmp_key;
911 unp_t unf_single = 0; // We use this in case we need to allocate only 911 unp_t unf_single = 0; // We use this in case we need to allocate only
912 // one block which is a fastpath 912 // one block which is a fastpath
913 unp_t *un; 913 unp_t *un;
914 __u64 max_to_insert = 914 __u64 max_to_insert =
915 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 915 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
916 UNFM_P_SIZE; 916 UNFM_P_SIZE;
917 __u64 blocks_needed; 917 __u64 blocks_needed;
918 918
919 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 919 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
920 "vs-804: invalid position for append"); 920 "vs-804: invalid position for append");
921 /* indirect item has to be appended, set up key of that position */ 921 /* indirect item has to be appended, set up key of that position */
922 make_cpu_key(&tmp_key, inode, 922 make_cpu_key(&tmp_key, inode,
923 le_key_k_offset(version, 923 le_key_k_offset(version,
924 &(ih->ih_key)) + 924 &(ih->ih_key)) +
925 op_bytes_number(ih, 925 op_bytes_number(ih,
926 inode->i_sb->s_blocksize), 926 inode->i_sb->s_blocksize),
927 //pos_in_item * inode->i_sb->s_blocksize, 927 //pos_in_item * inode->i_sb->s_blocksize,
928 TYPE_INDIRECT, 3); // key type is unimportant 928 TYPE_INDIRECT, 3); // key type is unimportant
929 929
930 blocks_needed = 930 blocks_needed =
931 1 + 931 1 +
932 ((cpu_key_k_offset(&key) - 932 ((cpu_key_k_offset(&key) -
933 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 933 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
934 s_blocksize_bits); 934 s_blocksize_bits);
935 RFALSE(blocks_needed < 0, "green-805: invalid offset"); 935 RFALSE(blocks_needed < 0, "green-805: invalid offset");
936 936
937 if (blocks_needed == 1) { 937 if (blocks_needed == 1) {
938 un = &unf_single; 938 un = &unf_single;
939 } else { 939 } else {
940 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 940 un = kmalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
941 if (!un) { 941 if (!un) {
942 un = &unf_single; 942 un = &unf_single;
943 blocks_needed = 1; 943 blocks_needed = 1;
944 max_to_insert = 0; 944 max_to_insert = 0;
945 } else 945 } else
946 memset(un, 0, 946 memset(un, 0,
947 UNFM_P_SIZE * min(blocks_needed, 947 UNFM_P_SIZE * min(blocks_needed,
948 max_to_insert)); 948 max_to_insert));
949 } 949 }
950 if (blocks_needed <= max_to_insert) { 950 if (blocks_needed <= max_to_insert) {
951 /* we are going to add target block to the file. Use allocated 951 /* we are going to add target block to the file. Use allocated
952 block for that */ 952 block for that */
953 un[blocks_needed - 1] = 953 un[blocks_needed - 1] =
954 cpu_to_le32(allocated_block_nr); 954 cpu_to_le32(allocated_block_nr);
955 set_block_dev_mapped(bh_result, 955 set_block_dev_mapped(bh_result,
956 allocated_block_nr, inode); 956 allocated_block_nr, inode);
957 set_buffer_new(bh_result); 957 set_buffer_new(bh_result);
958 done = 1; 958 done = 1;
959 } else { 959 } else {
960 /* paste hole to the indirect item */ 960 /* paste hole to the indirect item */
961 /* If kmalloc failed, max_to_insert becomes zero and it means we 961 /* If kmalloc failed, max_to_insert becomes zero and it means we
962 only have space for one block */ 962 only have space for one block */
963 blocks_needed = 963 blocks_needed =
964 max_to_insert ? max_to_insert : 1; 964 max_to_insert ? max_to_insert : 1;
965 } 965 }
966 retval = 966 retval =
967 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 967 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
968 (char *)un, 968 (char *)un,
969 UNFM_P_SIZE * 969 UNFM_P_SIZE *
970 blocks_needed); 970 blocks_needed);
971 971
972 if (blocks_needed != 1) 972 if (blocks_needed != 1)
973 kfree(un); 973 kfree(un);
974 974
975 if (retval) { 975 if (retval) {
976 reiserfs_free_block(th, inode, 976 reiserfs_free_block(th, inode,
977 allocated_block_nr, 1); 977 allocated_block_nr, 1);
978 goto failure; 978 goto failure;
979 } 979 }
980 if (!done) { 980 if (!done) {
981 /* We need to mark new file size in case this function will be 981 /* We need to mark new file size in case this function will be
982 interrupted/aborted later on. And we may do this only for 982 interrupted/aborted later on. And we may do this only for
983 holes. */ 983 holes. */
984 inode->i_size += 984 inode->i_size +=
985 inode->i_sb->s_blocksize * blocks_needed; 985 inode->i_sb->s_blocksize * blocks_needed;
986 } 986 }
987 } 987 }
988 988
989 if (done == 1) 989 if (done == 1)
990 break; 990 break;
991 991
992 /* this loop could log more blocks than we had originally asked 992 /* this loop could log more blocks than we had originally asked
993 ** for. So, we have to allow the transaction to end if it is 993 ** for. So, we have to allow the transaction to end if it is
994 ** too big or too full. Update the inode so things are 994 ** too big or too full. Update the inode so things are
995 ** consistent if we crash before the function returns 995 ** consistent if we crash before the function returns
996 ** 996 **
997 ** release the path so that anybody waiting on the path before 997 ** release the path so that anybody waiting on the path before
998 ** ending their transaction will be able to continue. 998 ** ending their transaction will be able to continue.
999 */ 999 */
1000 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1000 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1001 retval = restart_transaction(th, inode, &path); 1001 retval = restart_transaction(th, inode, &path);
1002 if (retval) 1002 if (retval)
1003 goto failure; 1003 goto failure;
1004 } 1004 }
1005 /* inserting indirect pointers for a hole can take a 1005 /* inserting indirect pointers for a hole can take a
1006 ** long time. reschedule if needed 1006 ** long time. reschedule if needed
1007 */ 1007 */
1008 cond_resched(); 1008 cond_resched();
1009 1009
1010 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1010 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1011 if (retval == IO_ERROR) { 1011 if (retval == IO_ERROR) {
1012 retval = -EIO; 1012 retval = -EIO;
1013 goto failure; 1013 goto failure;
1014 } 1014 }
1015 if (retval == POSITION_FOUND) { 1015 if (retval == POSITION_FOUND) {
1016 reiserfs_warning(inode->i_sb, 1016 reiserfs_warning(inode->i_sb,
1017 "vs-825: reiserfs_get_block: " 1017 "vs-825: reiserfs_get_block: "
1018 "%K should not be found", &key); 1018 "%K should not be found", &key);
1019 retval = -EEXIST; 1019 retval = -EEXIST;
1020 if (allocated_block_nr) 1020 if (allocated_block_nr)
1021 reiserfs_free_block(th, inode, 1021 reiserfs_free_block(th, inode,
1022 allocated_block_nr, 1); 1022 allocated_block_nr, 1);
1023 pathrelse(&path); 1023 pathrelse(&path);
1024 goto failure; 1024 goto failure;
1025 } 1025 }
1026 bh = get_last_bh(&path); 1026 bh = get_last_bh(&path);
1027 ih = get_ih(&path); 1027 ih = get_ih(&path);
1028 item = get_item(&path); 1028 item = get_item(&path);
1029 pos_in_item = path.pos_in_item; 1029 pos_in_item = path.pos_in_item;
1030 } while (1); 1030 } while (1);
1031 1031
1032 retval = 0; 1032 retval = 0;
1033 1033
1034 failure: 1034 failure:
1035 if (th && (!dangle || (retval && !th->t_trans_id))) { 1035 if (th && (!dangle || (retval && !th->t_trans_id))) {
1036 int err; 1036 int err;
1037 if (th->t_trans_id) 1037 if (th->t_trans_id)
1038 reiserfs_update_sd(th, inode); 1038 reiserfs_update_sd(th, inode);
1039 err = reiserfs_end_persistent_transaction(th); 1039 err = reiserfs_end_persistent_transaction(th);
1040 if (err) 1040 if (err)
1041 retval = err; 1041 retval = err;
1042 } 1042 }
1043 1043
1044 reiserfs_write_unlock(inode->i_sb); 1044 reiserfs_write_unlock(inode->i_sb);
1045 reiserfs_check_path(&path); 1045 reiserfs_check_path(&path);
1046 return retval; 1046 return retval;
1047 } 1047 }
1048 1048
1049 static int 1049 static int
1050 reiserfs_readpages(struct file *file, struct address_space *mapping, 1050 reiserfs_readpages(struct file *file, struct address_space *mapping,
1051 struct list_head *pages, unsigned nr_pages) 1051 struct list_head *pages, unsigned nr_pages)
1052 { 1052 {
1053 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1053 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1054 } 1054 }
1055 1055
1056 /* Compute real number of used bytes by file 1056 /* Compute real number of used bytes by file
1057 * Following three functions can go away when we'll have enough space in stat item 1057 * Following three functions can go away when we'll have enough space in stat item
1058 */ 1058 */
1059 static int real_space_diff(struct inode *inode, int sd_size) 1059 static int real_space_diff(struct inode *inode, int sd_size)
1060 { 1060 {
1061 int bytes; 1061 int bytes;
1062 loff_t blocksize = inode->i_sb->s_blocksize; 1062 loff_t blocksize = inode->i_sb->s_blocksize;
1063 1063
1064 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1064 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1065 return sd_size; 1065 return sd_size;
1066 1066
1067 /* End of file is also in full block with indirect reference, so round 1067 /* End of file is also in full block with indirect reference, so round
1068 ** up to the next block. 1068 ** up to the next block.
1069 ** 1069 **
1070 ** there is just no way to know if the tail is actually packed 1070 ** there is just no way to know if the tail is actually packed
1071 ** on the file, so we have to assume it isn't. When we pack the 1071 ** on the file, so we have to assume it isn't. When we pack the
1072 ** tail, we add 4 bytes to pretend there really is an unformatted 1072 ** tail, we add 4 bytes to pretend there really is an unformatted
1073 ** node pointer 1073 ** node pointer
1074 */ 1074 */
1075 bytes = 1075 bytes =
1076 ((inode->i_size + 1076 ((inode->i_size +
1077 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1077 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1078 sd_size; 1078 sd_size;
1079 return bytes; 1079 return bytes;
1080 } 1080 }
1081 1081
1082 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1082 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1083 int sd_size) 1083 int sd_size)
1084 { 1084 {
1085 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1085 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1086 return inode->i_size + 1086 return inode->i_size +
1087 (loff_t) (real_space_diff(inode, sd_size)); 1087 (loff_t) (real_space_diff(inode, sd_size));
1088 } 1088 }
1089 return ((loff_t) real_space_diff(inode, sd_size)) + 1089 return ((loff_t) real_space_diff(inode, sd_size)) +
1090 (((loff_t) blocks) << 9); 1090 (((loff_t) blocks) << 9);
1091 } 1091 }
1092 1092
1093 /* Compute number of blocks used by file in ReiserFS counting */ 1093 /* Compute number of blocks used by file in ReiserFS counting */
1094 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1094 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1095 { 1095 {
1096 loff_t bytes = inode_get_bytes(inode); 1096 loff_t bytes = inode_get_bytes(inode);
1097 loff_t real_space = real_space_diff(inode, sd_size); 1097 loff_t real_space = real_space_diff(inode, sd_size);
1098 1098
1099 /* keeps fsck and non-quota versions of reiserfs happy */ 1099 /* keeps fsck and non-quota versions of reiserfs happy */
1100 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1100 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1101 bytes += (loff_t) 511; 1101 bytes += (loff_t) 511;
1102 } 1102 }
1103 1103
1104 /* files from before the quota patch might i_blocks such that 1104 /* files from before the quota patch might i_blocks such that
1105 ** bytes < real_space. Deal with that here to prevent it from 1105 ** bytes < real_space. Deal with that here to prevent it from
1106 ** going negative. 1106 ** going negative.
1107 */ 1107 */
1108 if (bytes < real_space) 1108 if (bytes < real_space)
1109 return 0; 1109 return 0;
1110 return (bytes - real_space) >> 9; 1110 return (bytes - real_space) >> 9;
1111 } 1111 }
1112 1112
1113 // 1113 //
1114 // BAD: new directories have stat data of new type and all other items 1114 // BAD: new directories have stat data of new type and all other items
1115 // of old type. Version stored in the inode says about body items, so 1115 // of old type. Version stored in the inode says about body items, so
1116 // in update_stat_data we can not rely on inode, but have to check 1116 // in update_stat_data we can not rely on inode, but have to check
1117 // item version directly 1117 // item version directly
1118 // 1118 //
1119 1119
1120 // called by read_locked_inode 1120 // called by read_locked_inode
1121 static void init_inode(struct inode *inode, struct path *path) 1121 static void init_inode(struct inode *inode, struct path *path)
1122 { 1122 {
1123 struct buffer_head *bh; 1123 struct buffer_head *bh;
1124 struct item_head *ih; 1124 struct item_head *ih;
1125 __u32 rdev; 1125 __u32 rdev;
1126 //int version = ITEM_VERSION_1; 1126 //int version = ITEM_VERSION_1;
1127 1127
1128 bh = PATH_PLAST_BUFFER(path); 1128 bh = PATH_PLAST_BUFFER(path);
1129 ih = PATH_PITEM_HEAD(path); 1129 ih = PATH_PITEM_HEAD(path);
1130 1130
1131 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1131 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1132 inode->i_blksize = reiserfs_default_io_size; 1132 inode->i_blksize = reiserfs_default_io_size;
1133 1133
1134 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1134 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1135 REISERFS_I(inode)->i_flags = 0; 1135 REISERFS_I(inode)->i_flags = 0;
1136 REISERFS_I(inode)->i_prealloc_block = 0; 1136 REISERFS_I(inode)->i_prealloc_block = 0;
1137 REISERFS_I(inode)->i_prealloc_count = 0; 1137 REISERFS_I(inode)->i_prealloc_count = 0;
1138 REISERFS_I(inode)->i_trans_id = 0; 1138 REISERFS_I(inode)->i_trans_id = 0;
1139 REISERFS_I(inode)->i_jl = NULL; 1139 REISERFS_I(inode)->i_jl = NULL;
1140 REISERFS_I(inode)->i_acl_access = NULL; 1140 REISERFS_I(inode)->i_acl_access = NULL;
1141 REISERFS_I(inode)->i_acl_default = NULL; 1141 REISERFS_I(inode)->i_acl_default = NULL;
1142 init_rwsem(&REISERFS_I(inode)->xattr_sem); 1142 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1143 1143
1144 if (stat_data_v1(ih)) { 1144 if (stat_data_v1(ih)) {
1145 struct stat_data_v1 *sd = 1145 struct stat_data_v1 *sd =
1146 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1146 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1147 unsigned long blocks; 1147 unsigned long blocks;
1148 1148
1149 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1149 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1150 set_inode_sd_version(inode, STAT_DATA_V1); 1150 set_inode_sd_version(inode, STAT_DATA_V1);
1151 inode->i_mode = sd_v1_mode(sd); 1151 inode->i_mode = sd_v1_mode(sd);
1152 inode->i_nlink = sd_v1_nlink(sd); 1152 inode->i_nlink = sd_v1_nlink(sd);
1153 inode->i_uid = sd_v1_uid(sd); 1153 inode->i_uid = sd_v1_uid(sd);
1154 inode->i_gid = sd_v1_gid(sd); 1154 inode->i_gid = sd_v1_gid(sd);
1155 inode->i_size = sd_v1_size(sd); 1155 inode->i_size = sd_v1_size(sd);
1156 inode->i_atime.tv_sec = sd_v1_atime(sd); 1156 inode->i_atime.tv_sec = sd_v1_atime(sd);
1157 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1157 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1158 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1158 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1159 inode->i_atime.tv_nsec = 0; 1159 inode->i_atime.tv_nsec = 0;
1160 inode->i_ctime.tv_nsec = 0; 1160 inode->i_ctime.tv_nsec = 0;
1161 inode->i_mtime.tv_nsec = 0; 1161 inode->i_mtime.tv_nsec = 0;
1162 1162
1163 inode->i_blocks = sd_v1_blocks(sd); 1163 inode->i_blocks = sd_v1_blocks(sd);
1164 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1164 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1165 blocks = (inode->i_size + 511) >> 9; 1165 blocks = (inode->i_size + 511) >> 9;
1166 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1166 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1167 if (inode->i_blocks > blocks) { 1167 if (inode->i_blocks > blocks) {
1168 // there was a bug in <=3.5.23 when i_blocks could take negative 1168 // there was a bug in <=3.5.23 when i_blocks could take negative
1169 // values. Starting from 3.5.17 this value could even be stored in 1169 // values. Starting from 3.5.17 this value could even be stored in
1170 // stat data. For such files we set i_blocks based on file 1170 // stat data. For such files we set i_blocks based on file
1171 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1171 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1172 // only updated if file's inode will ever change 1172 // only updated if file's inode will ever change
1173 inode->i_blocks = blocks; 1173 inode->i_blocks = blocks;
1174 } 1174 }
1175 1175
1176 rdev = sd_v1_rdev(sd); 1176 rdev = sd_v1_rdev(sd);
1177 REISERFS_I(inode)->i_first_direct_byte = 1177 REISERFS_I(inode)->i_first_direct_byte =
1178 sd_v1_first_direct_byte(sd); 1178 sd_v1_first_direct_byte(sd);
1179 /* an early bug in the quota code can give us an odd number for the 1179 /* an early bug in the quota code can give us an odd number for the
1180 ** block count. This is incorrect, fix it here. 1180 ** block count. This is incorrect, fix it here.
1181 */ 1181 */
1182 if (inode->i_blocks & 1) { 1182 if (inode->i_blocks & 1) {
1183 inode->i_blocks++; 1183 inode->i_blocks++;
1184 } 1184 }
1185 inode_set_bytes(inode, 1185 inode_set_bytes(inode,
1186 to_real_used_space(inode, inode->i_blocks, 1186 to_real_used_space(inode, inode->i_blocks,
1187 SD_V1_SIZE)); 1187 SD_V1_SIZE));
1188 /* nopack is initially zero for v1 objects. For v2 objects, 1188 /* nopack is initially zero for v1 objects. For v2 objects,
1189 nopack is initialised from sd_attrs */ 1189 nopack is initialised from sd_attrs */
1190 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1190 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1191 } else { 1191 } else {
1192 // new stat data found, but object may have old items 1192 // new stat data found, but object may have old items
1193 // (directories and symlinks) 1193 // (directories and symlinks)
1194 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1194 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1195 1195
1196 inode->i_mode = sd_v2_mode(sd); 1196 inode->i_mode = sd_v2_mode(sd);
1197 inode->i_nlink = sd_v2_nlink(sd); 1197 inode->i_nlink = sd_v2_nlink(sd);
1198 inode->i_uid = sd_v2_uid(sd); 1198 inode->i_uid = sd_v2_uid(sd);
1199 inode->i_size = sd_v2_size(sd); 1199 inode->i_size = sd_v2_size(sd);
1200 inode->i_gid = sd_v2_gid(sd); 1200 inode->i_gid = sd_v2_gid(sd);
1201 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1201 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1202 inode->i_atime.tv_sec = sd_v2_atime(sd); 1202 inode->i_atime.tv_sec = sd_v2_atime(sd);
1203 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1203 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1204 inode->i_ctime.tv_nsec = 0; 1204 inode->i_ctime.tv_nsec = 0;
1205 inode->i_mtime.tv_nsec = 0; 1205 inode->i_mtime.tv_nsec = 0;
1206 inode->i_atime.tv_nsec = 0; 1206 inode->i_atime.tv_nsec = 0;
1207 inode->i_blocks = sd_v2_blocks(sd); 1207 inode->i_blocks = sd_v2_blocks(sd);
1208 rdev = sd_v2_rdev(sd); 1208 rdev = sd_v2_rdev(sd);
1209 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1209 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1210 inode->i_generation = 1210 inode->i_generation =
1211 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1211 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1212 else 1212 else
1213 inode->i_generation = sd_v2_generation(sd); 1213 inode->i_generation = sd_v2_generation(sd);
1214 1214
1215 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1215 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1216 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1216 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1217 else 1217 else
1218 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1218 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1219 REISERFS_I(inode)->i_first_direct_byte = 0; 1219 REISERFS_I(inode)->i_first_direct_byte = 0;
1220 set_inode_sd_version(inode, STAT_DATA_V2); 1220 set_inode_sd_version(inode, STAT_DATA_V2);
1221 inode_set_bytes(inode, 1221 inode_set_bytes(inode,
1222 to_real_used_space(inode, inode->i_blocks, 1222 to_real_used_space(inode, inode->i_blocks,
1223 SD_V2_SIZE)); 1223 SD_V2_SIZE));
1224 /* read persistent inode attributes from sd and initalise 1224 /* read persistent inode attributes from sd and initalise
1225 generic inode flags from them */ 1225 generic inode flags from them */
1226 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1226 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1227 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1227 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1228 } 1228 }
1229 1229
1230 pathrelse(path); 1230 pathrelse(path);
1231 if (S_ISREG(inode->i_mode)) { 1231 if (S_ISREG(inode->i_mode)) {
1232 inode->i_op = &reiserfs_file_inode_operations; 1232 inode->i_op = &reiserfs_file_inode_operations;
1233 inode->i_fop = &reiserfs_file_operations; 1233 inode->i_fop = &reiserfs_file_operations;
1234 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1234 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1235 } else if (S_ISDIR(inode->i_mode)) { 1235 } else if (S_ISDIR(inode->i_mode)) {
1236 inode->i_op = &reiserfs_dir_inode_operations; 1236 inode->i_op = &reiserfs_dir_inode_operations;
1237 inode->i_fop = &reiserfs_dir_operations; 1237 inode->i_fop = &reiserfs_dir_operations;
1238 } else if (S_ISLNK(inode->i_mode)) { 1238 } else if (S_ISLNK(inode->i_mode)) {
1239 inode->i_op = &reiserfs_symlink_inode_operations; 1239 inode->i_op = &reiserfs_symlink_inode_operations;
1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1240 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1241 } else { 1241 } else {
1242 inode->i_blocks = 0; 1242 inode->i_blocks = 0;
1243 inode->i_op = &reiserfs_special_inode_operations; 1243 inode->i_op = &reiserfs_special_inode_operations;
1244 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1244 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1245 } 1245 }
1246 } 1246 }
1247 1247
1248 // update new stat data with inode fields 1248 // update new stat data with inode fields
1249 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1249 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1250 { 1250 {
1251 struct stat_data *sd_v2 = (struct stat_data *)sd; 1251 struct stat_data *sd_v2 = (struct stat_data *)sd;
1252 __u16 flags; 1252 __u16 flags;
1253 1253
1254 set_sd_v2_mode(sd_v2, inode->i_mode); 1254 set_sd_v2_mode(sd_v2, inode->i_mode);
1255 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1255 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1256 set_sd_v2_uid(sd_v2, inode->i_uid); 1256 set_sd_v2_uid(sd_v2, inode->i_uid);
1257 set_sd_v2_size(sd_v2, size); 1257 set_sd_v2_size(sd_v2, size);
1258 set_sd_v2_gid(sd_v2, inode->i_gid); 1258 set_sd_v2_gid(sd_v2, inode->i_gid);
1259 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1259 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1260 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1260 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1261 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1261 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1262 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1262 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1263 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1263 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1264 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1264 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1265 else 1265 else
1266 set_sd_v2_generation(sd_v2, inode->i_generation); 1266 set_sd_v2_generation(sd_v2, inode->i_generation);
1267 flags = REISERFS_I(inode)->i_attrs; 1267 flags = REISERFS_I(inode)->i_attrs;
1268 i_attrs_to_sd_attrs(inode, &flags); 1268 i_attrs_to_sd_attrs(inode, &flags);
1269 set_sd_v2_attrs(sd_v2, flags); 1269 set_sd_v2_attrs(sd_v2, flags);
1270 } 1270 }
1271 1271
1272 // used to copy inode's fields to old stat data 1272 // used to copy inode's fields to old stat data
1273 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1273 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1274 { 1274 {
1275 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1275 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1276 1276
1277 set_sd_v1_mode(sd_v1, inode->i_mode); 1277 set_sd_v1_mode(sd_v1, inode->i_mode);
1278 set_sd_v1_uid(sd_v1, inode->i_uid); 1278 set_sd_v1_uid(sd_v1, inode->i_uid);
1279 set_sd_v1_gid(sd_v1, inode->i_gid); 1279 set_sd_v1_gid(sd_v1, inode->i_gid);
1280 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1280 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1281 set_sd_v1_size(sd_v1, size); 1281 set_sd_v1_size(sd_v1, size);
1282 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1282 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1283 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1283 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1284 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1284 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1285 1285
1286 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1286 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1287 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1287 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1288 else 1288 else
1289 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1289 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1290 1290
1291 // Sigh. i_first_direct_byte is back 1291 // Sigh. i_first_direct_byte is back
1292 set_sd_v1_first_direct_byte(sd_v1, 1292 set_sd_v1_first_direct_byte(sd_v1,
1293 REISERFS_I(inode)->i_first_direct_byte); 1293 REISERFS_I(inode)->i_first_direct_byte);
1294 } 1294 }
1295 1295
1296 /* NOTE, you must prepare the buffer head before sending it here, 1296 /* NOTE, you must prepare the buffer head before sending it here,
1297 ** and then log it after the call 1297 ** and then log it after the call
1298 */ 1298 */
1299 static void update_stat_data(struct path *path, struct inode *inode, 1299 static void update_stat_data(struct path *path, struct inode *inode,
1300 loff_t size) 1300 loff_t size)
1301 { 1301 {
1302 struct buffer_head *bh; 1302 struct buffer_head *bh;
1303 struct item_head *ih; 1303 struct item_head *ih;
1304 1304
1305 bh = PATH_PLAST_BUFFER(path); 1305 bh = PATH_PLAST_BUFFER(path);
1306 ih = PATH_PITEM_HEAD(path); 1306 ih = PATH_PITEM_HEAD(path);
1307 1307
1308 if (!is_statdata_le_ih(ih)) 1308 if (!is_statdata_le_ih(ih))
1309 reiserfs_panic(inode->i_sb, 1309 reiserfs_panic(inode->i_sb,
1310 "vs-13065: update_stat_data: key %k, found item %h", 1310 "vs-13065: update_stat_data: key %k, found item %h",
1311 INODE_PKEY(inode), ih); 1311 INODE_PKEY(inode), ih);
1312 1312
1313 if (stat_data_v1(ih)) { 1313 if (stat_data_v1(ih)) {
1314 // path points to old stat data 1314 // path points to old stat data
1315 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1315 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1316 } else { 1316 } else {
1317 inode2sd(B_I_PITEM(bh, ih), inode, size); 1317 inode2sd(B_I_PITEM(bh, ih), inode, size);
1318 } 1318 }
1319 1319
1320 return; 1320 return;
1321 } 1321 }
1322 1322
1323 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1323 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1324 struct inode *inode, loff_t size) 1324 struct inode *inode, loff_t size)
1325 { 1325 {
1326 struct cpu_key key; 1326 struct cpu_key key;
1327 INITIALIZE_PATH(path); 1327 INITIALIZE_PATH(path);
1328 struct buffer_head *bh; 1328 struct buffer_head *bh;
1329 int fs_gen; 1329 int fs_gen;
1330 struct item_head *ih, tmp_ih; 1330 struct item_head *ih, tmp_ih;
1331 int retval; 1331 int retval;
1332 1332
1333 BUG_ON(!th->t_trans_id); 1333 BUG_ON(!th->t_trans_id);
1334 1334
1335 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1335 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1336 1336
1337 for (;;) { 1337 for (;;) {
1338 int pos; 1338 int pos;
1339 /* look for the object's stat data */ 1339 /* look for the object's stat data */
1340 retval = search_item(inode->i_sb, &key, &path); 1340 retval = search_item(inode->i_sb, &key, &path);
1341 if (retval == IO_ERROR) { 1341 if (retval == IO_ERROR) {
1342 reiserfs_warning(inode->i_sb, 1342 reiserfs_warning(inode->i_sb,
1343 "vs-13050: reiserfs_update_sd: " 1343 "vs-13050: reiserfs_update_sd: "
1344 "i/o failure occurred trying to update %K stat data", 1344 "i/o failure occurred trying to update %K stat data",
1345 &key); 1345 &key);
1346 return; 1346 return;
1347 } 1347 }
1348 if (retval == ITEM_NOT_FOUND) { 1348 if (retval == ITEM_NOT_FOUND) {
1349 pos = PATH_LAST_POSITION(&path); 1349 pos = PATH_LAST_POSITION(&path);
1350 pathrelse(&path); 1350 pathrelse(&path);
1351 if (inode->i_nlink == 0) { 1351 if (inode->i_nlink == 0) {
1352 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1352 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1353 return; 1353 return;
1354 } 1354 }
1355 reiserfs_warning(inode->i_sb, 1355 reiserfs_warning(inode->i_sb,
1356 "vs-13060: reiserfs_update_sd: " 1356 "vs-13060: reiserfs_update_sd: "
1357 "stat data of object %k (nlink == %d) not found (pos %d)", 1357 "stat data of object %k (nlink == %d) not found (pos %d)",
1358 INODE_PKEY(inode), inode->i_nlink, 1358 INODE_PKEY(inode), inode->i_nlink,
1359 pos); 1359 pos);
1360 reiserfs_check_path(&path); 1360 reiserfs_check_path(&path);
1361 return; 1361 return;
1362 } 1362 }
1363 1363
1364 /* sigh, prepare_for_journal might schedule. When it schedules the 1364 /* sigh, prepare_for_journal might schedule. When it schedules the
1365 ** FS might change. We have to detect that, and loop back to the 1365 ** FS might change. We have to detect that, and loop back to the
1366 ** search if the stat data item has moved 1366 ** search if the stat data item has moved
1367 */ 1367 */
1368 bh = get_last_bh(&path); 1368 bh = get_last_bh(&path);
1369 ih = get_ih(&path); 1369 ih = get_ih(&path);
1370 copy_item_head(&tmp_ih, ih); 1370 copy_item_head(&tmp_ih, ih);
1371 fs_gen = get_generation(inode->i_sb); 1371 fs_gen = get_generation(inode->i_sb);
1372 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1372 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1373 if (fs_changed(fs_gen, inode->i_sb) 1373 if (fs_changed(fs_gen, inode->i_sb)
1374 && item_moved(&tmp_ih, &path)) { 1374 && item_moved(&tmp_ih, &path)) {
1375 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1375 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1376 continue; /* Stat_data item has been moved after scheduling. */ 1376 continue; /* Stat_data item has been moved after scheduling. */
1377 } 1377 }
1378 break; 1378 break;
1379 } 1379 }
1380 update_stat_data(&path, inode, size); 1380 update_stat_data(&path, inode, size);
1381 journal_mark_dirty(th, th->t_super, bh); 1381 journal_mark_dirty(th, th->t_super, bh);
1382 pathrelse(&path); 1382 pathrelse(&path);
1383 return; 1383 return;
1384 } 1384 }
1385 1385
1386 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1386 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1387 ** does a make_bad_inode when things go wrong. But, we need to make sure 1387 ** does a make_bad_inode when things go wrong. But, we need to make sure
1388 ** and clear the key in the private portion of the inode, otherwise a 1388 ** and clear the key in the private portion of the inode, otherwise a
1389 ** corresponding iput might try to delete whatever object the inode last 1389 ** corresponding iput might try to delete whatever object the inode last
1390 ** represented. 1390 ** represented.
1391 */ 1391 */
1392 static void reiserfs_make_bad_inode(struct inode *inode) 1392 static void reiserfs_make_bad_inode(struct inode *inode)
1393 { 1393 {
1394 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1394 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1395 make_bad_inode(inode); 1395 make_bad_inode(inode);
1396 } 1396 }
1397 1397
1398 // 1398 //
1399 // initially this function was derived from minix or ext2's analog and 1399 // initially this function was derived from minix or ext2's analog and
1400 // evolved as the prototype did 1400 // evolved as the prototype did
1401 // 1401 //
1402 1402
1403 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1403 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1404 { 1404 {
1405 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1405 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1406 inode->i_ino = args->objectid; 1406 inode->i_ino = args->objectid;
1407 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1407 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1408 return 0; 1408 return 0;
1409 } 1409 }
1410 1410
1411 /* looks for stat data in the tree, and fills up the fields of in-core 1411 /* looks for stat data in the tree, and fills up the fields of in-core
1412 inode stat data fields */ 1412 inode stat data fields */
1413 void reiserfs_read_locked_inode(struct inode *inode, 1413 void reiserfs_read_locked_inode(struct inode *inode,
1414 struct reiserfs_iget_args *args) 1414 struct reiserfs_iget_args *args)
1415 { 1415 {
1416 INITIALIZE_PATH(path_to_sd); 1416 INITIALIZE_PATH(path_to_sd);
1417 struct cpu_key key; 1417 struct cpu_key key;
1418 unsigned long dirino; 1418 unsigned long dirino;
1419 int retval; 1419 int retval;
1420 1420
1421 dirino = args->dirid; 1421 dirino = args->dirid;
1422 1422
1423 /* set version 1, version 2 could be used too, because stat data 1423 /* set version 1, version 2 could be used too, because stat data
1424 key is the same in both versions */ 1424 key is the same in both versions */
1425 key.version = KEY_FORMAT_3_5; 1425 key.version = KEY_FORMAT_3_5;
1426 key.on_disk_key.k_dir_id = dirino; 1426 key.on_disk_key.k_dir_id = dirino;
1427 key.on_disk_key.k_objectid = inode->i_ino; 1427 key.on_disk_key.k_objectid = inode->i_ino;
1428 key.on_disk_key.k_offset = 0; 1428 key.on_disk_key.k_offset = 0;
1429 key.on_disk_key.k_type = 0; 1429 key.on_disk_key.k_type = 0;
1430 1430
1431 /* look for the object's stat data */ 1431 /* look for the object's stat data */
1432 retval = search_item(inode->i_sb, &key, &path_to_sd); 1432 retval = search_item(inode->i_sb, &key, &path_to_sd);
1433 if (retval == IO_ERROR) { 1433 if (retval == IO_ERROR) {
1434 reiserfs_warning(inode->i_sb, 1434 reiserfs_warning(inode->i_sb,
1435 "vs-13070: reiserfs_read_locked_inode: " 1435 "vs-13070: reiserfs_read_locked_inode: "
1436 "i/o failure occurred trying to find stat data of %K", 1436 "i/o failure occurred trying to find stat data of %K",
1437 &key); 1437 &key);
1438 reiserfs_make_bad_inode(inode); 1438 reiserfs_make_bad_inode(inode);
1439 return; 1439 return;
1440 } 1440 }
1441 if (retval != ITEM_FOUND) { 1441 if (retval != ITEM_FOUND) {
1442 /* a stale NFS handle can trigger this without it being an error */ 1442 /* a stale NFS handle can trigger this without it being an error */
1443 pathrelse(&path_to_sd); 1443 pathrelse(&path_to_sd);
1444 reiserfs_make_bad_inode(inode); 1444 reiserfs_make_bad_inode(inode);
1445 inode->i_nlink = 0; 1445 inode->i_nlink = 0;
1446 return; 1446 return;
1447 } 1447 }
1448 1448
1449 init_inode(inode, &path_to_sd); 1449 init_inode(inode, &path_to_sd);
1450 1450
1451 /* It is possible that knfsd is trying to access inode of a file 1451 /* It is possible that knfsd is trying to access inode of a file
1452 that is being removed from the disk by some other thread. As we 1452 that is being removed from the disk by some other thread. As we
1453 update sd on unlink all that is required is to check for nlink 1453 update sd on unlink all that is required is to check for nlink
1454 here. This bug was first found by Sizif when debugging 1454 here. This bug was first found by Sizif when debugging
1455 SquidNG/Butterfly, forgotten, and found again after Philippe 1455 SquidNG/Butterfly, forgotten, and found again after Philippe
1456 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1456 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1457 1457
1458 More logical fix would require changes in fs/inode.c:iput() to 1458 More logical fix would require changes in fs/inode.c:iput() to
1459 remove inode from hash-table _after_ fs cleaned disk stuff up and 1459 remove inode from hash-table _after_ fs cleaned disk stuff up and
1460 in iget() to return NULL if I_FREEING inode is found in 1460 in iget() to return NULL if I_FREEING inode is found in
1461 hash-table. */ 1461 hash-table. */
1462 /* Currently there is one place where it's ok to meet inode with 1462 /* Currently there is one place where it's ok to meet inode with
1463 nlink==0: processing of open-unlinked and half-truncated files 1463 nlink==0: processing of open-unlinked and half-truncated files
1464 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1464 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1465 if ((inode->i_nlink == 0) && 1465 if ((inode->i_nlink == 0) &&
1466 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1466 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1467 reiserfs_warning(inode->i_sb, 1467 reiserfs_warning(inode->i_sb,
1468 "vs-13075: reiserfs_read_locked_inode: " 1468 "vs-13075: reiserfs_read_locked_inode: "
1469 "dead inode read from disk %K. " 1469 "dead inode read from disk %K. "
1470 "This is likely to be race with knfsd. Ignore", 1470 "This is likely to be race with knfsd. Ignore",
1471 &key); 1471 &key);
1472 reiserfs_make_bad_inode(inode); 1472 reiserfs_make_bad_inode(inode);
1473 } 1473 }
1474 1474
1475 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1475 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1476 1476
1477 } 1477 }
1478 1478
1479 /** 1479 /**
1480 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1480 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1481 * 1481 *
1482 * @inode: inode from hash table to check 1482 * @inode: inode from hash table to check
1483 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1483 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1484 * 1484 *
1485 * This function is called by iget5_locked() to distinguish reiserfs inodes 1485 * This function is called by iget5_locked() to distinguish reiserfs inodes
1486 * having the same inode numbers. Such inodes can only exist due to some 1486 * having the same inode numbers. Such inodes can only exist due to some
1487 * error condition. One of them should be bad. Inodes with identical 1487 * error condition. One of them should be bad. Inodes with identical
1488 * inode numbers (objectids) are distinguished by parent directory ids. 1488 * inode numbers (objectids) are distinguished by parent directory ids.
1489 * 1489 *
1490 */ 1490 */
1491 int reiserfs_find_actor(struct inode *inode, void *opaque) 1491 int reiserfs_find_actor(struct inode *inode, void *opaque)
1492 { 1492 {
1493 struct reiserfs_iget_args *args; 1493 struct reiserfs_iget_args *args;
1494 1494
1495 args = opaque; 1495 args = opaque;
1496 /* args is already in CPU order */ 1496 /* args is already in CPU order */
1497 return (inode->i_ino == args->objectid) && 1497 return (inode->i_ino == args->objectid) &&
1498 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1498 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1499 } 1499 }
1500 1500
1501 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1501 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1502 { 1502 {
1503 struct inode *inode; 1503 struct inode *inode;
1504 struct reiserfs_iget_args args; 1504 struct reiserfs_iget_args args;
1505 1505
1506 args.objectid = key->on_disk_key.k_objectid; 1506 args.objectid = key->on_disk_key.k_objectid;
1507 args.dirid = key->on_disk_key.k_dir_id; 1507 args.dirid = key->on_disk_key.k_dir_id;
1508 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1508 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1509 reiserfs_find_actor, reiserfs_init_locked_inode, 1509 reiserfs_find_actor, reiserfs_init_locked_inode,
1510 (void *)(&args)); 1510 (void *)(&args));
1511 if (!inode) 1511 if (!inode)
1512 return ERR_PTR(-ENOMEM); 1512 return ERR_PTR(-ENOMEM);
1513 1513
1514 if (inode->i_state & I_NEW) { 1514 if (inode->i_state & I_NEW) {
1515 reiserfs_read_locked_inode(inode, &args); 1515 reiserfs_read_locked_inode(inode, &args);
1516 unlock_new_inode(inode); 1516 unlock_new_inode(inode);
1517 } 1517 }
1518 1518
1519 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1519 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1520 /* either due to i/o error or a stale NFS handle */ 1520 /* either due to i/o error or a stale NFS handle */
1521 iput(inode); 1521 iput(inode);
1522 inode = NULL; 1522 inode = NULL;
1523 } 1523 }
1524 return inode; 1524 return inode;
1525 } 1525 }
1526 1526
1527 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp) 1527 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1528 { 1528 {
1529 __u32 *data = vobjp; 1529 __u32 *data = vobjp;
1530 struct cpu_key key; 1530 struct cpu_key key;
1531 struct dentry *result; 1531 struct dentry *result;
1532 struct inode *inode; 1532 struct inode *inode;
1533 1533
1534 key.on_disk_key.k_objectid = data[0]; 1534 key.on_disk_key.k_objectid = data[0];
1535 key.on_disk_key.k_dir_id = data[1]; 1535 key.on_disk_key.k_dir_id = data[1];
1536 reiserfs_write_lock(sb); 1536 reiserfs_write_lock(sb);
1537 inode = reiserfs_iget(sb, &key); 1537 inode = reiserfs_iget(sb, &key);
1538 if (inode && !IS_ERR(inode) && data[2] != 0 && 1538 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1539 data[2] != inode->i_generation) { 1539 data[2] != inode->i_generation) {
1540 iput(inode); 1540 iput(inode);
1541 inode = NULL; 1541 inode = NULL;
1542 } 1542 }
1543 reiserfs_write_unlock(sb); 1543 reiserfs_write_unlock(sb);
1544 if (!inode) 1544 if (!inode)
1545 inode = ERR_PTR(-ESTALE); 1545 inode = ERR_PTR(-ESTALE);
1546 if (IS_ERR(inode)) 1546 if (IS_ERR(inode))
1547 return ERR_PTR(PTR_ERR(inode)); 1547 return ERR_PTR(PTR_ERR(inode));
1548 result = d_alloc_anon(inode); 1548 result = d_alloc_anon(inode);
1549 if (!result) { 1549 if (!result) {
1550 iput(inode); 1550 iput(inode);
1551 return ERR_PTR(-ENOMEM); 1551 return ERR_PTR(-ENOMEM);
1552 } 1552 }
1553 return result; 1553 return result;
1554 } 1554 }
1555 1555
1556 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data, 1556 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1557 int len, int fhtype, 1557 int len, int fhtype,
1558 int (*acceptable) (void *contect, 1558 int (*acceptable) (void *contect,
1559 struct dentry * de), 1559 struct dentry * de),
1560 void *context) 1560 void *context)
1561 { 1561 {
1562 __u32 obj[3], parent[3]; 1562 __u32 obj[3], parent[3];
1563 1563
1564 /* fhtype happens to reflect the number of u32s encoded. 1564 /* fhtype happens to reflect the number of u32s encoded.
1565 * due to a bug in earlier code, fhtype might indicate there 1565 * due to a bug in earlier code, fhtype might indicate there
1566 * are more u32s then actually fitted. 1566 * are more u32s then actually fitted.
1567 * so if fhtype seems to be more than len, reduce fhtype. 1567 * so if fhtype seems to be more than len, reduce fhtype.
1568 * Valid types are: 1568 * Valid types are:
1569 * 2 - objectid + dir_id - legacy support 1569 * 2 - objectid + dir_id - legacy support
1570 * 3 - objectid + dir_id + generation 1570 * 3 - objectid + dir_id + generation
1571 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1571 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1572 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1572 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1573 * 6 - as above plus generation of directory 1573 * 6 - as above plus generation of directory
1574 * 6 does not fit in NFSv2 handles 1574 * 6 does not fit in NFSv2 handles
1575 */ 1575 */
1576 if (fhtype > len) { 1576 if (fhtype > len) {
1577 if (fhtype != 6 || len != 5) 1577 if (fhtype != 6 || len != 5)
1578 reiserfs_warning(sb, 1578 reiserfs_warning(sb,
1579 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1579 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1580 fhtype, len); 1580 fhtype, len);
1581 fhtype = 5; 1581 fhtype = 5;
1582 } 1582 }
1583 1583
1584 obj[0] = data[0]; 1584 obj[0] = data[0];
1585 obj[1] = data[1]; 1585 obj[1] = data[1];
1586 if (fhtype == 3 || fhtype >= 5) 1586 if (fhtype == 3 || fhtype >= 5)
1587 obj[2] = data[2]; 1587 obj[2] = data[2];
1588 else 1588 else
1589 obj[2] = 0; /* generation number */ 1589 obj[2] = 0; /* generation number */
1590 1590
1591 if (fhtype >= 4) { 1591 if (fhtype >= 4) {
1592 parent[0] = data[fhtype >= 5 ? 3 : 2]; 1592 parent[0] = data[fhtype >= 5 ? 3 : 2];
1593 parent[1] = data[fhtype >= 5 ? 4 : 3]; 1593 parent[1] = data[fhtype >= 5 ? 4 : 3];
1594 if (fhtype == 6) 1594 if (fhtype == 6)
1595 parent[2] = data[5]; 1595 parent[2] = data[5];
1596 else 1596 else
1597 parent[2] = 0; 1597 parent[2] = 0;
1598 } 1598 }
1599 return sb->s_export_op->find_exported_dentry(sb, obj, 1599 return sb->s_export_op->find_exported_dentry(sb, obj,
1600 fhtype < 4 ? NULL : parent, 1600 fhtype < 4 ? NULL : parent,
1601 acceptable, context); 1601 acceptable, context);
1602 } 1602 }
1603 1603
1604 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1604 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1605 int need_parent) 1605 int need_parent)
1606 { 1606 {
1607 struct inode *inode = dentry->d_inode; 1607 struct inode *inode = dentry->d_inode;
1608 int maxlen = *lenp; 1608 int maxlen = *lenp;
1609 1609
1610 if (maxlen < 3) 1610 if (maxlen < 3)
1611 return 255; 1611 return 255;
1612 1612
1613 data[0] = inode->i_ino; 1613 data[0] = inode->i_ino;
1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1614 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1615 data[2] = inode->i_generation; 1615 data[2] = inode->i_generation;
1616 *lenp = 3; 1616 *lenp = 3;
1617 /* no room for directory info? return what we've stored so far */ 1617 /* no room for directory info? return what we've stored so far */
1618 if (maxlen < 5 || !need_parent) 1618 if (maxlen < 5 || !need_parent)
1619 return 3; 1619 return 3;
1620 1620
1621 spin_lock(&dentry->d_lock); 1621 spin_lock(&dentry->d_lock);
1622 inode = dentry->d_parent->d_inode; 1622 inode = dentry->d_parent->d_inode;
1623 data[3] = inode->i_ino; 1623 data[3] = inode->i_ino;
1624 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1624 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1625 *lenp = 5; 1625 *lenp = 5;
1626 if (maxlen >= 6) { 1626 if (maxlen >= 6) {
1627 data[5] = inode->i_generation; 1627 data[5] = inode->i_generation;
1628 *lenp = 6; 1628 *lenp = 6;
1629 } 1629 }
1630 spin_unlock(&dentry->d_lock); 1630 spin_unlock(&dentry->d_lock);
1631 return *lenp; 1631 return *lenp;
1632 } 1632 }
1633 1633
1634 /* looks for stat data, then copies fields to it, marks the buffer 1634 /* looks for stat data, then copies fields to it, marks the buffer
1635 containing stat data as dirty */ 1635 containing stat data as dirty */
1636 /* reiserfs inodes are never really dirty, since the dirty inode call 1636 /* reiserfs inodes are never really dirty, since the dirty inode call
1637 ** always logs them. This call allows the VFS inode marking routines 1637 ** always logs them. This call allows the VFS inode marking routines
1638 ** to properly mark inodes for datasync and such, but only actually 1638 ** to properly mark inodes for datasync and such, but only actually
1639 ** does something when called for a synchronous update. 1639 ** does something when called for a synchronous update.
1640 */ 1640 */
1641 int reiserfs_write_inode(struct inode *inode, int do_sync) 1641 int reiserfs_write_inode(struct inode *inode, int do_sync)
1642 { 1642 {
1643 struct reiserfs_transaction_handle th; 1643 struct reiserfs_transaction_handle th;
1644 int jbegin_count = 1; 1644 int jbegin_count = 1;
1645 1645
1646 if (inode->i_sb->s_flags & MS_RDONLY) 1646 if (inode->i_sb->s_flags & MS_RDONLY)
1647 return -EROFS; 1647 return -EROFS;
1648 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1648 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1649 ** these cases are just when the system needs ram, not when the 1649 ** these cases are just when the system needs ram, not when the
1650 ** inode needs to reach disk for safety, and they can safely be 1650 ** inode needs to reach disk for safety, and they can safely be
1651 ** ignored because the altered inode has already been logged. 1651 ** ignored because the altered inode has already been logged.
1652 */ 1652 */
1653 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1653 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1654 reiserfs_write_lock(inode->i_sb); 1654 reiserfs_write_lock(inode->i_sb);
1655 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1655 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1656 reiserfs_update_sd(&th, inode); 1656 reiserfs_update_sd(&th, inode);
1657 journal_end_sync(&th, inode->i_sb, jbegin_count); 1657 journal_end_sync(&th, inode->i_sb, jbegin_count);
1658 } 1658 }
1659 reiserfs_write_unlock(inode->i_sb); 1659 reiserfs_write_unlock(inode->i_sb);
1660 } 1660 }
1661 return 0; 1661 return 0;
1662 } 1662 }
1663 1663
1664 /* stat data of new object is inserted already, this inserts the item 1664 /* stat data of new object is inserted already, this inserts the item
1665 containing "." and ".." entries */ 1665 containing "." and ".." entries */
1666 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1666 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1667 struct inode *inode, 1667 struct inode *inode,
1668 struct item_head *ih, struct path *path, 1668 struct item_head *ih, struct path *path,
1669 struct inode *dir) 1669 struct inode *dir)
1670 { 1670 {
1671 struct super_block *sb = th->t_super; 1671 struct super_block *sb = th->t_super;
1672 char empty_dir[EMPTY_DIR_SIZE]; 1672 char empty_dir[EMPTY_DIR_SIZE];
1673 char *body = empty_dir; 1673 char *body = empty_dir;
1674 struct cpu_key key; 1674 struct cpu_key key;
1675 int retval; 1675 int retval;
1676 1676
1677 BUG_ON(!th->t_trans_id); 1677 BUG_ON(!th->t_trans_id);
1678 1678
1679 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1679 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1680 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1680 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1681 TYPE_DIRENTRY, 3 /*key length */ ); 1681 TYPE_DIRENTRY, 3 /*key length */ );
1682 1682
1683 /* compose item head for new item. Directories consist of items of 1683 /* compose item head for new item. Directories consist of items of
1684 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1684 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1685 is done by reiserfs_new_inode */ 1685 is done by reiserfs_new_inode */
1686 if (old_format_only(sb)) { 1686 if (old_format_only(sb)) {
1687 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1687 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1688 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1688 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1689 1689
1690 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1690 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1691 ih->ih_key.k_objectid, 1691 ih->ih_key.k_objectid,
1692 INODE_PKEY(dir)->k_dir_id, 1692 INODE_PKEY(dir)->k_dir_id,
1693 INODE_PKEY(dir)->k_objectid); 1693 INODE_PKEY(dir)->k_objectid);
1694 } else { 1694 } else {
1695 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1695 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1696 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1696 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1697 1697
1698 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1698 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1699 ih->ih_key.k_objectid, 1699 ih->ih_key.k_objectid,
1700 INODE_PKEY(dir)->k_dir_id, 1700 INODE_PKEY(dir)->k_dir_id,
1701 INODE_PKEY(dir)->k_objectid); 1701 INODE_PKEY(dir)->k_objectid);
1702 } 1702 }
1703 1703
1704 /* look for place in the tree for new item */ 1704 /* look for place in the tree for new item */
1705 retval = search_item(sb, &key, path); 1705 retval = search_item(sb, &key, path);
1706 if (retval == IO_ERROR) { 1706 if (retval == IO_ERROR) {
1707 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: " 1707 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1708 "i/o failure occurred creating new directory"); 1708 "i/o failure occurred creating new directory");
1709 return -EIO; 1709 return -EIO;
1710 } 1710 }
1711 if (retval == ITEM_FOUND) { 1711 if (retval == ITEM_FOUND) {
1712 pathrelse(path); 1712 pathrelse(path);
1713 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: " 1713 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1714 "object with this key exists (%k)", 1714 "object with this key exists (%k)",
1715 &(ih->ih_key)); 1715 &(ih->ih_key));
1716 return -EEXIST; 1716 return -EEXIST;
1717 } 1717 }
1718 1718
1719 /* insert item, that is empty directory item */ 1719 /* insert item, that is empty directory item */
1720 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1720 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1721 } 1721 }
1722 1722
1723 /* stat data of object has been inserted, this inserts the item 1723 /* stat data of object has been inserted, this inserts the item
1724 containing the body of symlink */ 1724 containing the body of symlink */
1725 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1725 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1726 struct item_head *ih, 1726 struct item_head *ih,
1727 struct path *path, const char *symname, 1727 struct path *path, const char *symname,
1728 int item_len) 1728 int item_len)
1729 { 1729 {
1730 struct super_block *sb = th->t_super; 1730 struct super_block *sb = th->t_super;
1731 struct cpu_key key; 1731 struct cpu_key key;
1732 int retval; 1732 int retval;
1733 1733
1734 BUG_ON(!th->t_trans_id); 1734 BUG_ON(!th->t_trans_id);
1735 1735
1736 _make_cpu_key(&key, KEY_FORMAT_3_5, 1736 _make_cpu_key(&key, KEY_FORMAT_3_5,
1737 le32_to_cpu(ih->ih_key.k_dir_id), 1737 le32_to_cpu(ih->ih_key.k_dir_id),
1738 le32_to_cpu(ih->ih_key.k_objectid), 1738 le32_to_cpu(ih->ih_key.k_objectid),
1739 1, TYPE_DIRECT, 3 /*key length */ ); 1739 1, TYPE_DIRECT, 3 /*key length */ );
1740 1740
1741 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1741 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1742 0 /*free_space */ ); 1742 0 /*free_space */ );
1743 1743
1744 /* look for place in the tree for new item */ 1744 /* look for place in the tree for new item */
1745 retval = search_item(sb, &key, path); 1745 retval = search_item(sb, &key, path);
1746 if (retval == IO_ERROR) { 1746 if (retval == IO_ERROR) {
1747 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: " 1747 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1748 "i/o failure occurred creating new symlink"); 1748 "i/o failure occurred creating new symlink");
1749 return -EIO; 1749 return -EIO;
1750 } 1750 }
1751 if (retval == ITEM_FOUND) { 1751 if (retval == ITEM_FOUND) {
1752 pathrelse(path); 1752 pathrelse(path);
1753 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: " 1753 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1754 "object with this key exists (%k)", 1754 "object with this key exists (%k)",
1755 &(ih->ih_key)); 1755 &(ih->ih_key));
1756 return -EEXIST; 1756 return -EEXIST;
1757 } 1757 }
1758 1758
1759 /* insert item, that is body of symlink */ 1759 /* insert item, that is body of symlink */
1760 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1760 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1761 } 1761 }
1762 1762
1763 /* inserts the stat data into the tree, and then calls 1763 /* inserts the stat data into the tree, and then calls
1764 reiserfs_new_directory (to insert ".", ".." item if new object is 1764 reiserfs_new_directory (to insert ".", ".." item if new object is
1765 directory) or reiserfs_new_symlink (to insert symlink body if new 1765 directory) or reiserfs_new_symlink (to insert symlink body if new
1766 object is symlink) or nothing (if new object is regular file) 1766 object is symlink) or nothing (if new object is regular file)
1767 1767
1768 NOTE! uid and gid must already be set in the inode. If we return 1768 NOTE! uid and gid must already be set in the inode. If we return
1769 non-zero due to an error, we have to drop the quota previously allocated 1769 non-zero due to an error, we have to drop the quota previously allocated
1770 for the fresh inode. This can only be done outside a transaction, so 1770 for the fresh inode. This can only be done outside a transaction, so
1771 if we return non-zero, we also end the transaction. */ 1771 if we return non-zero, we also end the transaction. */
1772 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1772 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1773 struct inode *dir, int mode, const char *symname, 1773 struct inode *dir, int mode, const char *symname,
1774 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1774 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1775 strlen (symname) for symlinks) */ 1775 strlen (symname) for symlinks) */
1776 loff_t i_size, struct dentry *dentry, 1776 loff_t i_size, struct dentry *dentry,
1777 struct inode *inode) 1777 struct inode *inode)
1778 { 1778 {
1779 struct super_block *sb; 1779 struct super_block *sb;
1780 INITIALIZE_PATH(path_to_key); 1780 INITIALIZE_PATH(path_to_key);
1781 struct cpu_key key; 1781 struct cpu_key key;
1782 struct item_head ih; 1782 struct item_head ih;
1783 struct stat_data sd; 1783 struct stat_data sd;
1784 int retval; 1784 int retval;
1785 int err; 1785 int err;
1786 1786
1787 BUG_ON(!th->t_trans_id); 1787 BUG_ON(!th->t_trans_id);
1788 1788
1789 if (DQUOT_ALLOC_INODE(inode)) { 1789 if (DQUOT_ALLOC_INODE(inode)) {
1790 err = -EDQUOT; 1790 err = -EDQUOT;
1791 goto out_end_trans; 1791 goto out_end_trans;
1792 } 1792 }
1793 if (!dir || !dir->i_nlink) { 1793 if (!dir || !dir->i_nlink) {
1794 err = -EPERM; 1794 err = -EPERM;
1795 goto out_bad_inode; 1795 goto out_bad_inode;
1796 } 1796 }
1797 1797
1798 sb = dir->i_sb; 1798 sb = dir->i_sb;
1799 1799
1800 /* item head of new item */ 1800 /* item head of new item */
1801 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1801 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1802 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1802 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1803 if (!ih.ih_key.k_objectid) { 1803 if (!ih.ih_key.k_objectid) {
1804 err = -ENOMEM; 1804 err = -ENOMEM;
1805 goto out_bad_inode; 1805 goto out_bad_inode;
1806 } 1806 }
1807 if (old_format_only(sb)) 1807 if (old_format_only(sb))
1808 /* not a perfect generation count, as object ids can be reused, but 1808 /* not a perfect generation count, as object ids can be reused, but
1809 ** this is as good as reiserfs can do right now. 1809 ** this is as good as reiserfs can do right now.
1810 ** note that the private part of inode isn't filled in yet, we have 1810 ** note that the private part of inode isn't filled in yet, we have
1811 ** to use the directory. 1811 ** to use the directory.
1812 */ 1812 */
1813 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1813 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1814 else 1814 else
1815 #if defined( USE_INODE_GENERATION_COUNTER ) 1815 #if defined( USE_INODE_GENERATION_COUNTER )
1816 inode->i_generation = 1816 inode->i_generation =
1817 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1817 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1818 #else 1818 #else
1819 inode->i_generation = ++event; 1819 inode->i_generation = ++event;
1820 #endif 1820 #endif
1821 1821
1822 /* fill stat data */ 1822 /* fill stat data */
1823 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1823 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1824 1824
1825 /* uid and gid must already be set by the caller for quota init */ 1825 /* uid and gid must already be set by the caller for quota init */
1826 1826
1827 /* symlink cannot be immutable or append only, right? */ 1827 /* symlink cannot be immutable or append only, right? */
1828 if (S_ISLNK(inode->i_mode)) 1828 if (S_ISLNK(inode->i_mode))
1829 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1829 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1830 1830
1831 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1831 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1832 inode->i_size = i_size; 1832 inode->i_size = i_size;
1833 inode->i_blocks = 0; 1833 inode->i_blocks = 0;
1834 inode->i_bytes = 0; 1834 inode->i_bytes = 0;
1835 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1835 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1836 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1836 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1837 1837
1838 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1838 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1839 REISERFS_I(inode)->i_flags = 0; 1839 REISERFS_I(inode)->i_flags = 0;
1840 REISERFS_I(inode)->i_prealloc_block = 0; 1840 REISERFS_I(inode)->i_prealloc_block = 0;
1841 REISERFS_I(inode)->i_prealloc_count = 0; 1841 REISERFS_I(inode)->i_prealloc_count = 0;
1842 REISERFS_I(inode)->i_trans_id = 0; 1842 REISERFS_I(inode)->i_trans_id = 0;
1843 REISERFS_I(inode)->i_jl = NULL; 1843 REISERFS_I(inode)->i_jl = NULL;
1844 REISERFS_I(inode)->i_attrs = 1844 REISERFS_I(inode)->i_attrs =
1845 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1845 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1846 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1846 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1847 REISERFS_I(inode)->i_acl_access = NULL; 1847 REISERFS_I(inode)->i_acl_access = NULL;
1848 REISERFS_I(inode)->i_acl_default = NULL; 1848 REISERFS_I(inode)->i_acl_default = NULL;
1849 init_rwsem(&REISERFS_I(inode)->xattr_sem); 1849 init_rwsem(&REISERFS_I(inode)->xattr_sem);
1850 1850
1851 if (old_format_only(sb)) 1851 if (old_format_only(sb))
1852 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1852 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1853 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1853 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1854 else 1854 else
1855 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1855 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1856 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1856 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1857 1857
1858 /* key to search for correct place for new stat data */ 1858 /* key to search for correct place for new stat data */
1859 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1859 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1860 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1860 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1861 TYPE_STAT_DATA, 3 /*key length */ ); 1861 TYPE_STAT_DATA, 3 /*key length */ );
1862 1862
1863 /* find proper place for inserting of stat data */ 1863 /* find proper place for inserting of stat data */
1864 retval = search_item(sb, &key, &path_to_key); 1864 retval = search_item(sb, &key, &path_to_key);
1865 if (retval == IO_ERROR) { 1865 if (retval == IO_ERROR) {
1866 err = -EIO; 1866 err = -EIO;
1867 goto out_bad_inode; 1867 goto out_bad_inode;
1868 } 1868 }
1869 if (retval == ITEM_FOUND) { 1869 if (retval == ITEM_FOUND) {
1870 pathrelse(&path_to_key); 1870 pathrelse(&path_to_key);
1871 err = -EEXIST; 1871 err = -EEXIST;
1872 goto out_bad_inode; 1872 goto out_bad_inode;
1873 } 1873 }
1874 if (old_format_only(sb)) { 1874 if (old_format_only(sb)) {
1875 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1875 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1876 pathrelse(&path_to_key); 1876 pathrelse(&path_to_key);
1877 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1877 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1878 err = -EINVAL; 1878 err = -EINVAL;
1879 goto out_bad_inode; 1879 goto out_bad_inode;
1880 } 1880 }
1881 inode2sd_v1(&sd, inode, inode->i_size); 1881 inode2sd_v1(&sd, inode, inode->i_size);
1882 } else { 1882 } else {
1883 inode2sd(&sd, inode, inode->i_size); 1883 inode2sd(&sd, inode, inode->i_size);
1884 } 1884 }
1885 // these do not go to on-disk stat data 1885 // these do not go to on-disk stat data
1886 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1886 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1887 inode->i_blksize = reiserfs_default_io_size; 1887 inode->i_blksize = reiserfs_default_io_size;
1888 1888
1889 // store in in-core inode the key of stat data and version all 1889 // store in in-core inode the key of stat data and version all
1890 // object items will have (directory items will have old offset 1890 // object items will have (directory items will have old offset
1891 // format, other new objects will consist of new items) 1891 // format, other new objects will consist of new items)
1892 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1892 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1893 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1893 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1894 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1894 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1895 else 1895 else
1896 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1896 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1897 if (old_format_only(sb)) 1897 if (old_format_only(sb))
1898 set_inode_sd_version(inode, STAT_DATA_V1); 1898 set_inode_sd_version(inode, STAT_DATA_V1);
1899 else 1899 else
1900 set_inode_sd_version(inode, STAT_DATA_V2); 1900 set_inode_sd_version(inode, STAT_DATA_V2);
1901 1901
1902 /* insert the stat data into the tree */ 1902 /* insert the stat data into the tree */
1903 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1903 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1904 if (REISERFS_I(dir)->new_packing_locality) 1904 if (REISERFS_I(dir)->new_packing_locality)
1905 th->displace_new_blocks = 1; 1905 th->displace_new_blocks = 1;
1906 #endif 1906 #endif
1907 retval = 1907 retval =
1908 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1908 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1909 (char *)(&sd)); 1909 (char *)(&sd));
1910 if (retval) { 1910 if (retval) {
1911 err = retval; 1911 err = retval;
1912 reiserfs_check_path(&path_to_key); 1912 reiserfs_check_path(&path_to_key);
1913 goto out_bad_inode; 1913 goto out_bad_inode;
1914 } 1914 }
1915 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1915 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1916 if (!th->displace_new_blocks) 1916 if (!th->displace_new_blocks)
1917 REISERFS_I(dir)->new_packing_locality = 0; 1917 REISERFS_I(dir)->new_packing_locality = 0;
1918 #endif 1918 #endif
1919 if (S_ISDIR(mode)) { 1919 if (S_ISDIR(mode)) {
1920 /* insert item with "." and ".." */ 1920 /* insert item with "." and ".." */
1921 retval = 1921 retval =
1922 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1922 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1923 } 1923 }
1924 1924
1925 if (S_ISLNK(mode)) { 1925 if (S_ISLNK(mode)) {
1926 /* insert body of symlink */ 1926 /* insert body of symlink */
1927 if (!old_format_only(sb)) 1927 if (!old_format_only(sb))
1928 i_size = ROUND_UP(i_size); 1928 i_size = ROUND_UP(i_size);
1929 retval = 1929 retval =
1930 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1930 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1931 i_size); 1931 i_size);
1932 } 1932 }
1933 if (retval) { 1933 if (retval) {
1934 err = retval; 1934 err = retval;
1935 reiserfs_check_path(&path_to_key); 1935 reiserfs_check_path(&path_to_key);
1936 journal_end(th, th->t_super, th->t_blocks_allocated); 1936 journal_end(th, th->t_super, th->t_blocks_allocated);
1937 goto out_inserted_sd; 1937 goto out_inserted_sd;
1938 } 1938 }
1939 1939
1940 /* XXX CHECK THIS */ 1940 /* XXX CHECK THIS */
1941 if (reiserfs_posixacl(inode->i_sb)) { 1941 if (reiserfs_posixacl(inode->i_sb)) {
1942 retval = reiserfs_inherit_default_acl(dir, dentry, inode); 1942 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1943 if (retval) { 1943 if (retval) {
1944 err = retval; 1944 err = retval;
1945 reiserfs_check_path(&path_to_key); 1945 reiserfs_check_path(&path_to_key);
1946 journal_end(th, th->t_super, th->t_blocks_allocated); 1946 journal_end(th, th->t_super, th->t_blocks_allocated);
1947 goto out_inserted_sd; 1947 goto out_inserted_sd;
1948 } 1948 }
1949 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1949 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1950 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, " 1950 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1951 "but vfs thinks they are!"); 1951 "but vfs thinks they are!");
1952 } else if (is_reiserfs_priv_object(dir)) { 1952 } else if (is_reiserfs_priv_object(dir)) {
1953 reiserfs_mark_inode_private(inode); 1953 reiserfs_mark_inode_private(inode);
1954 } 1954 }
1955 1955
1956 insert_inode_hash(inode); 1956 insert_inode_hash(inode);
1957 reiserfs_update_sd(th, inode); 1957 reiserfs_update_sd(th, inode);
1958 reiserfs_check_path(&path_to_key); 1958 reiserfs_check_path(&path_to_key);
1959 1959
1960 return 0; 1960 return 0;
1961 1961
1962 /* it looks like you can easily compress these two goto targets into 1962 /* it looks like you can easily compress these two goto targets into
1963 * one. Keeping it like this doesn't actually hurt anything, and they 1963 * one. Keeping it like this doesn't actually hurt anything, and they
1964 * are place holders for what the quota code actually needs. 1964 * are place holders for what the quota code actually needs.
1965 */ 1965 */
1966 out_bad_inode: 1966 out_bad_inode:
1967 /* Invalidate the object, nothing was inserted yet */ 1967 /* Invalidate the object, nothing was inserted yet */
1968 INODE_PKEY(inode)->k_objectid = 0; 1968 INODE_PKEY(inode)->k_objectid = 0;
1969 1969
1970 /* Quota change must be inside a transaction for journaling */ 1970 /* Quota change must be inside a transaction for journaling */
1971 DQUOT_FREE_INODE(inode); 1971 DQUOT_FREE_INODE(inode);
1972 1972
1973 out_end_trans: 1973 out_end_trans:
1974 journal_end(th, th->t_super, th->t_blocks_allocated); 1974 journal_end(th, th->t_super, th->t_blocks_allocated);
1975 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1975 /* Drop can be outside and it needs more credits so it's better to have it outside */
1976 DQUOT_DROP(inode); 1976 DQUOT_DROP(inode);
1977 inode->i_flags |= S_NOQUOTA; 1977 inode->i_flags |= S_NOQUOTA;
1978 make_bad_inode(inode); 1978 make_bad_inode(inode);
1979 1979
1980 out_inserted_sd: 1980 out_inserted_sd:
1981 inode->i_nlink = 0; 1981 inode->i_nlink = 0;
1982 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1982 th->t_trans_id = 0; /* so the caller can't use this handle later */
1983 1983
1984 /* If we were inheriting an ACL, we need to release the lock so that 1984 /* If we were inheriting an ACL, we need to release the lock so that
1985 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking 1985 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1986 * code really needs to be reworked, but this will take care of it 1986 * code really needs to be reworked, but this will take care of it
1987 * for now. -jeffm */ 1987 * for now. -jeffm */
1988 if (REISERFS_I(dir)->i_acl_default) { 1988 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1989 reiserfs_write_unlock_xattrs(dir->i_sb); 1989 reiserfs_write_unlock_xattrs(dir->i_sb);
1990 iput(inode); 1990 iput(inode);
1991 reiserfs_write_lock_xattrs(dir->i_sb); 1991 reiserfs_write_lock_xattrs(dir->i_sb);
1992 } else 1992 } else
1993 iput(inode); 1993 iput(inode);
1994 return err; 1994 return err;
1995 } 1995 }
1996 1996
1997 /* 1997 /*
1998 ** finds the tail page in the page cache, 1998 ** finds the tail page in the page cache,
1999 ** reads the last block in. 1999 ** reads the last block in.
2000 ** 2000 **
2001 ** On success, page_result is set to a locked, pinned page, and bh_result 2001 ** On success, page_result is set to a locked, pinned page, and bh_result
2002 ** is set to an up to date buffer for the last block in the file. returns 0. 2002 ** is set to an up to date buffer for the last block in the file. returns 0.
2003 ** 2003 **
2004 ** tail conversion is not done, so bh_result might not be valid for writing 2004 ** tail conversion is not done, so bh_result might not be valid for writing
2005 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2005 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2006 ** trying to write the block. 2006 ** trying to write the block.
2007 ** 2007 **
2008 ** on failure, nonzero is returned, page_result and bh_result are untouched. 2008 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2009 */ 2009 */
2010 static int grab_tail_page(struct inode *p_s_inode, 2010 static int grab_tail_page(struct inode *p_s_inode,
2011 struct page **page_result, 2011 struct page **page_result,
2012 struct buffer_head **bh_result) 2012 struct buffer_head **bh_result)
2013 { 2013 {
2014 2014
2015 /* we want the page with the last byte in the file, 2015 /* we want the page with the last byte in the file,
2016 ** not the page that will hold the next byte for appending 2016 ** not the page that will hold the next byte for appending
2017 */ 2017 */
2018 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2018 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2019 unsigned long pos = 0; 2019 unsigned long pos = 0;
2020 unsigned long start = 0; 2020 unsigned long start = 0;
2021 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2021 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2022 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2022 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2023 struct buffer_head *bh; 2023 struct buffer_head *bh;
2024 struct buffer_head *head; 2024 struct buffer_head *head;
2025 struct page *page; 2025 struct page *page;
2026 int error; 2026 int error;
2027 2027
2028 /* we know that we are only called with inode->i_size > 0. 2028 /* we know that we are only called with inode->i_size > 0.
2029 ** we also know that a file tail can never be as big as a block 2029 ** we also know that a file tail can never be as big as a block
2030 ** If i_size % blocksize == 0, our file is currently block aligned 2030 ** If i_size % blocksize == 0, our file is currently block aligned
2031 ** and it won't need converting or zeroing after a truncate. 2031 ** and it won't need converting or zeroing after a truncate.
2032 */ 2032 */
2033 if ((offset & (blocksize - 1)) == 0) { 2033 if ((offset & (blocksize - 1)) == 0) {
2034 return -ENOENT; 2034 return -ENOENT;
2035 } 2035 }
2036 page = grab_cache_page(p_s_inode->i_mapping, index); 2036 page = grab_cache_page(p_s_inode->i_mapping, index);
2037 error = -ENOMEM; 2037 error = -ENOMEM;
2038 if (!page) { 2038 if (!page) {
2039 goto out; 2039 goto out;
2040 } 2040 }
2041 /* start within the page of the last block in the file */ 2041 /* start within the page of the last block in the file */
2042 start = (offset / blocksize) * blocksize; 2042 start = (offset / blocksize) * blocksize;
2043 2043
2044 error = block_prepare_write(page, start, offset, 2044 error = block_prepare_write(page, start, offset,
2045 reiserfs_get_block_create_0); 2045 reiserfs_get_block_create_0);
2046 if (error) 2046 if (error)
2047 goto unlock; 2047 goto unlock;
2048 2048
2049 head = page_buffers(page); 2049 head = page_buffers(page);
2050 bh = head; 2050 bh = head;
2051 do { 2051 do {
2052 if (pos >= start) { 2052 if (pos >= start) {
2053 break; 2053 break;
2054 } 2054 }
2055 bh = bh->b_this_page; 2055 bh = bh->b_this_page;
2056 pos += blocksize; 2056 pos += blocksize;
2057 } while (bh != head); 2057 } while (bh != head);
2058 2058
2059 if (!buffer_uptodate(bh)) { 2059 if (!buffer_uptodate(bh)) {
2060 /* note, this should never happen, prepare_write should 2060 /* note, this should never happen, prepare_write should
2061 ** be taking care of this for us. If the buffer isn't up to date, 2061 ** be taking care of this for us. If the buffer isn't up to date,
2062 ** I've screwed up the code to find the buffer, or the code to 2062 ** I've screwed up the code to find the buffer, or the code to
2063 ** call prepare_write 2063 ** call prepare_write
2064 */ 2064 */
2065 reiserfs_warning(p_s_inode->i_sb, 2065 reiserfs_warning(p_s_inode->i_sb,
2066 "clm-6000: error reading block %lu on dev %s", 2066 "clm-6000: error reading block %lu on dev %s",
2067 bh->b_blocknr, 2067 bh->b_blocknr,
2068 reiserfs_bdevname(p_s_inode->i_sb)); 2068 reiserfs_bdevname(p_s_inode->i_sb));
2069 error = -EIO; 2069 error = -EIO;
2070 goto unlock; 2070 goto unlock;
2071 } 2071 }
2072 *bh_result = bh; 2072 *bh_result = bh;
2073 *page_result = page; 2073 *page_result = page;
2074 2074
2075 out: 2075 out:
2076 return error; 2076 return error;
2077 2077
2078 unlock: 2078 unlock:
2079 unlock_page(page); 2079 unlock_page(page);
2080 page_cache_release(page); 2080 page_cache_release(page);
2081 return error; 2081 return error;
2082 } 2082 }
2083 2083
2084 /* 2084 /*
2085 ** vfs version of truncate file. Must NOT be called with 2085 ** vfs version of truncate file. Must NOT be called with
2086 ** a transaction already started. 2086 ** a transaction already started.
2087 ** 2087 **
2088 ** some code taken from block_truncate_page 2088 ** some code taken from block_truncate_page
2089 */ 2089 */
2090 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2090 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2091 { 2091 {
2092 struct reiserfs_transaction_handle th; 2092 struct reiserfs_transaction_handle th;
2093 /* we want the offset for the first byte after the end of the file */ 2093 /* we want the offset for the first byte after the end of the file */
2094 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2094 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2095 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2095 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2096 unsigned length; 2096 unsigned length;
2097 struct page *page = NULL; 2097 struct page *page = NULL;
2098 int error; 2098 int error;
2099 struct buffer_head *bh = NULL; 2099 struct buffer_head *bh = NULL;
2100 2100
2101 reiserfs_write_lock(p_s_inode->i_sb); 2101 reiserfs_write_lock(p_s_inode->i_sb);
2102 2102
2103 if (p_s_inode->i_size > 0) { 2103 if (p_s_inode->i_size > 0) {
2104 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2104 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2105 // -ENOENT means we truncated past the end of the file, 2105 // -ENOENT means we truncated past the end of the file,
2106 // and get_block_create_0 could not find a block to read in, 2106 // and get_block_create_0 could not find a block to read in,
2107 // which is ok. 2107 // which is ok.
2108 if (error != -ENOENT) 2108 if (error != -ENOENT)
2109 reiserfs_warning(p_s_inode->i_sb, 2109 reiserfs_warning(p_s_inode->i_sb,
2110 "clm-6001: grab_tail_page failed %d", 2110 "clm-6001: grab_tail_page failed %d",
2111 error); 2111 error);
2112 page = NULL; 2112 page = NULL;
2113 bh = NULL; 2113 bh = NULL;
2114 } 2114 }
2115 } 2115 }
2116 2116
2117 /* so, if page != NULL, we have a buffer head for the offset at 2117 /* so, if page != NULL, we have a buffer head for the offset at
2118 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2118 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2119 ** then we have an unformatted node. Otherwise, we have a direct item, 2119 ** then we have an unformatted node. Otherwise, we have a direct item,
2120 ** and no zeroing is required on disk. We zero after the truncate, 2120 ** and no zeroing is required on disk. We zero after the truncate,
2121 ** because the truncate might pack the item anyway 2121 ** because the truncate might pack the item anyway
2122 ** (it will unmap bh if it packs). 2122 ** (it will unmap bh if it packs).
2123 */ 2123 */
2124 /* it is enough to reserve space in transaction for 2 balancings: 2124 /* it is enough to reserve space in transaction for 2 balancings:
2125 one for "save" link adding and another for the first 2125 one for "save" link adding and another for the first
2126 cut_from_item. 1 is for update_sd */ 2126 cut_from_item. 1 is for update_sd */
2127 error = journal_begin(&th, p_s_inode->i_sb, 2127 error = journal_begin(&th, p_s_inode->i_sb,
2128 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2128 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2129 if (error) 2129 if (error)
2130 goto out; 2130 goto out;
2131 reiserfs_update_inode_transaction(p_s_inode); 2131 reiserfs_update_inode_transaction(p_s_inode);
2132 if (update_timestamps) 2132 if (update_timestamps)
2133 /* we are doing real truncate: if the system crashes before the last 2133 /* we are doing real truncate: if the system crashes before the last
2134 transaction of truncating gets committed - on reboot the file 2134 transaction of truncating gets committed - on reboot the file
2135 either appears truncated properly or not truncated at all */ 2135 either appears truncated properly or not truncated at all */
2136 add_save_link(&th, p_s_inode, 1); 2136 add_save_link(&th, p_s_inode, 1);
2137 error = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2137 error = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2138 if (error) 2138 if (error)
2139 goto out; 2139 goto out;
2140 error = 2140 error =
2141 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2141 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2142 if (error) 2142 if (error)
2143 goto out; 2143 goto out;
2144 2144
2145 if (update_timestamps) { 2145 if (update_timestamps) {
2146 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2146 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2147 if (error) 2147 if (error)
2148 goto out; 2148 goto out;
2149 } 2149 }
2150 2150
2151 if (page) { 2151 if (page) {
2152 length = offset & (blocksize - 1); 2152 length = offset & (blocksize - 1);
2153 /* if we are not on a block boundary */ 2153 /* if we are not on a block boundary */
2154 if (length) { 2154 if (length) {
2155 char *kaddr; 2155 char *kaddr;
2156 2156
2157 length = blocksize - length; 2157 length = blocksize - length;
2158 kaddr = kmap_atomic(page, KM_USER0); 2158 kaddr = kmap_atomic(page, KM_USER0);
2159 memset(kaddr + offset, 0, length); 2159 memset(kaddr + offset, 0, length);
2160 flush_dcache_page(page); 2160 flush_dcache_page(page);
2161 kunmap_atomic(kaddr, KM_USER0); 2161 kunmap_atomic(kaddr, KM_USER0);
2162 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2162 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2163 mark_buffer_dirty(bh); 2163 mark_buffer_dirty(bh);
2164 } 2164 }
2165 } 2165 }
2166 unlock_page(page); 2166 unlock_page(page);
2167 page_cache_release(page); 2167 page_cache_release(page);
2168 } 2168 }
2169 2169
2170 reiserfs_write_unlock(p_s_inode->i_sb); 2170 reiserfs_write_unlock(p_s_inode->i_sb);
2171 return 0; 2171 return 0;
2172 out: 2172 out:
2173 if (page) { 2173 if (page) {
2174 unlock_page(page); 2174 unlock_page(page);
2175 page_cache_release(page); 2175 page_cache_release(page);
2176 } 2176 }
2177 reiserfs_write_unlock(p_s_inode->i_sb); 2177 reiserfs_write_unlock(p_s_inode->i_sb);
2178 return error; 2178 return error;
2179 } 2179 }
2180 2180
2181 static int map_block_for_writepage(struct inode *inode, 2181 static int map_block_for_writepage(struct inode *inode,
2182 struct buffer_head *bh_result, 2182 struct buffer_head *bh_result,
2183 unsigned long block) 2183 unsigned long block)
2184 { 2184 {
2185 struct reiserfs_transaction_handle th; 2185 struct reiserfs_transaction_handle th;
2186 int fs_gen; 2186 int fs_gen;
2187 struct item_head tmp_ih; 2187 struct item_head tmp_ih;
2188 struct item_head *ih; 2188 struct item_head *ih;
2189 struct buffer_head *bh; 2189 struct buffer_head *bh;
2190 __le32 *item; 2190 __le32 *item;
2191 struct cpu_key key; 2191 struct cpu_key key;
2192 INITIALIZE_PATH(path); 2192 INITIALIZE_PATH(path);
2193 int pos_in_item; 2193 int pos_in_item;
2194 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2194 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2195 loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1; 2195 loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1;
2196 int retval; 2196 int retval;
2197 int use_get_block = 0; 2197 int use_get_block = 0;
2198 int bytes_copied = 0; 2198 int bytes_copied = 0;
2199 int copy_size; 2199 int copy_size;
2200 int trans_running = 0; 2200 int trans_running = 0;
2201 2201
2202 /* catch places below that try to log something without starting a trans */ 2202 /* catch places below that try to log something without starting a trans */
2203 th.t_trans_id = 0; 2203 th.t_trans_id = 0;
2204 2204
2205 if (!buffer_uptodate(bh_result)) { 2205 if (!buffer_uptodate(bh_result)) {
2206 return -EIO; 2206 return -EIO;
2207 } 2207 }
2208 2208
2209 kmap(bh_result->b_page); 2209 kmap(bh_result->b_page);
2210 start_over: 2210 start_over:
2211 reiserfs_write_lock(inode->i_sb); 2211 reiserfs_write_lock(inode->i_sb);
2212 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2212 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2213 2213
2214 research: 2214 research:
2215 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2215 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2216 if (retval != POSITION_FOUND) { 2216 if (retval != POSITION_FOUND) {
2217 use_get_block = 1; 2217 use_get_block = 1;
2218 goto out; 2218 goto out;
2219 } 2219 }
2220 2220
2221 bh = get_last_bh(&path); 2221 bh = get_last_bh(&path);
2222 ih = get_ih(&path); 2222 ih = get_ih(&path);
2223 item = get_item(&path); 2223 item = get_item(&path);
2224 pos_in_item = path.pos_in_item; 2224 pos_in_item = path.pos_in_item;
2225 2225
2226 /* we've found an unformatted node */ 2226 /* we've found an unformatted node */
2227 if (indirect_item_found(retval, ih)) { 2227 if (indirect_item_found(retval, ih)) {
2228 if (bytes_copied > 0) { 2228 if (bytes_copied > 0) {
2229 reiserfs_warning(inode->i_sb, 2229 reiserfs_warning(inode->i_sb,
2230 "clm-6002: bytes_copied %d", 2230 "clm-6002: bytes_copied %d",
2231 bytes_copied); 2231 bytes_copied);
2232 } 2232 }
2233 if (!get_block_num(item, pos_in_item)) { 2233 if (!get_block_num(item, pos_in_item)) {
2234 /* crap, we are writing to a hole */ 2234 /* crap, we are writing to a hole */
2235 use_get_block = 1; 2235 use_get_block = 1;
2236 goto out; 2236 goto out;
2237 } 2237 }
2238 set_block_dev_mapped(bh_result, 2238 set_block_dev_mapped(bh_result,
2239 get_block_num(item, pos_in_item), inode); 2239 get_block_num(item, pos_in_item), inode);
2240 } else if (is_direct_le_ih(ih)) { 2240 } else if (is_direct_le_ih(ih)) {
2241 char *p; 2241 char *p;
2242 p = page_address(bh_result->b_page); 2242 p = page_address(bh_result->b_page);
2243 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2243 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2244 copy_size = ih_item_len(ih) - pos_in_item; 2244 copy_size = ih_item_len(ih) - pos_in_item;
2245 2245
2246 fs_gen = get_generation(inode->i_sb); 2246 fs_gen = get_generation(inode->i_sb);
2247 copy_item_head(&tmp_ih, ih); 2247 copy_item_head(&tmp_ih, ih);
2248 2248
2249 if (!trans_running) { 2249 if (!trans_running) {
2250 /* vs-3050 is gone, no need to drop the path */ 2250 /* vs-3050 is gone, no need to drop the path */
2251 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2251 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2252 if (retval) 2252 if (retval)
2253 goto out; 2253 goto out;
2254 reiserfs_update_inode_transaction(inode); 2254 reiserfs_update_inode_transaction(inode);
2255 trans_running = 1; 2255 trans_running = 1;
2256 if (fs_changed(fs_gen, inode->i_sb) 2256 if (fs_changed(fs_gen, inode->i_sb)
2257 && item_moved(&tmp_ih, &path)) { 2257 && item_moved(&tmp_ih, &path)) {
2258 reiserfs_restore_prepared_buffer(inode->i_sb, 2258 reiserfs_restore_prepared_buffer(inode->i_sb,
2259 bh); 2259 bh);
2260 goto research; 2260 goto research;
2261 } 2261 }
2262 } 2262 }
2263 2263
2264 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2264 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2265 2265
2266 if (fs_changed(fs_gen, inode->i_sb) 2266 if (fs_changed(fs_gen, inode->i_sb)
2267 && item_moved(&tmp_ih, &path)) { 2267 && item_moved(&tmp_ih, &path)) {
2268 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2268 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2269 goto research; 2269 goto research;
2270 } 2270 }
2271 2271
2272 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2272 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2273 copy_size); 2273 copy_size);
2274 2274
2275 journal_mark_dirty(&th, inode->i_sb, bh); 2275 journal_mark_dirty(&th, inode->i_sb, bh);
2276 bytes_copied += copy_size; 2276 bytes_copied += copy_size;
2277 set_block_dev_mapped(bh_result, 0, inode); 2277 set_block_dev_mapped(bh_result, 0, inode);
2278 2278
2279 /* are there still bytes left? */ 2279 /* are there still bytes left? */
2280 if (bytes_copied < bh_result->b_size && 2280 if (bytes_copied < bh_result->b_size &&
2281 (byte_offset + bytes_copied) < inode->i_size) { 2281 (byte_offset + bytes_copied) < inode->i_size) {
2282 set_cpu_key_k_offset(&key, 2282 set_cpu_key_k_offset(&key,
2283 cpu_key_k_offset(&key) + 2283 cpu_key_k_offset(&key) +
2284 copy_size); 2284 copy_size);
2285 goto research; 2285 goto research;
2286 } 2286 }
2287 } else { 2287 } else {
2288 reiserfs_warning(inode->i_sb, 2288 reiserfs_warning(inode->i_sb,
2289 "clm-6003: bad item inode %lu, device %s", 2289 "clm-6003: bad item inode %lu, device %s",
2290 inode->i_ino, reiserfs_bdevname(inode->i_sb)); 2290 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2291 retval = -EIO; 2291 retval = -EIO;
2292 goto out; 2292 goto out;
2293 } 2293 }
2294 retval = 0; 2294 retval = 0;
2295 2295
2296 out: 2296 out:
2297 pathrelse(&path); 2297 pathrelse(&path);
2298 if (trans_running) { 2298 if (trans_running) {
2299 int err = journal_end(&th, inode->i_sb, jbegin_count); 2299 int err = journal_end(&th, inode->i_sb, jbegin_count);
2300 if (err) 2300 if (err)
2301 retval = err; 2301 retval = err;
2302 trans_running = 0; 2302 trans_running = 0;
2303 } 2303 }
2304 reiserfs_write_unlock(inode->i_sb); 2304 reiserfs_write_unlock(inode->i_sb);
2305 2305
2306 /* this is where we fill in holes in the file. */ 2306 /* this is where we fill in holes in the file. */
2307 if (use_get_block) { 2307 if (use_get_block) {
2308 retval = reiserfs_get_block(inode, block, bh_result, 2308 retval = reiserfs_get_block(inode, block, bh_result,
2309 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM 2309 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM
2310 | GET_BLOCK_NO_DANGLE); 2310 | GET_BLOCK_NO_DANGLE);
2311 if (!retval) { 2311 if (!retval) {
2312 if (!buffer_mapped(bh_result) 2312 if (!buffer_mapped(bh_result)
2313 || bh_result->b_blocknr == 0) { 2313 || bh_result->b_blocknr == 0) {
2314 /* get_block failed to find a mapped unformatted node. */ 2314 /* get_block failed to find a mapped unformatted node. */
2315 use_get_block = 0; 2315 use_get_block = 0;
2316 goto start_over; 2316 goto start_over;
2317 } 2317 }
2318 } 2318 }
2319 } 2319 }
2320 kunmap(bh_result->b_page); 2320 kunmap(bh_result->b_page);
2321 2321
2322 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2322 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2323 /* we've copied data from the page into the direct item, so the 2323 /* we've copied data from the page into the direct item, so the
2324 * buffer in the page is now clean, mark it to reflect that. 2324 * buffer in the page is now clean, mark it to reflect that.
2325 */ 2325 */
2326 lock_buffer(bh_result); 2326 lock_buffer(bh_result);
2327 clear_buffer_dirty(bh_result); 2327 clear_buffer_dirty(bh_result);
2328 unlock_buffer(bh_result); 2328 unlock_buffer(bh_result);
2329 } 2329 }
2330 return retval; 2330 return retval;
2331 } 2331 }
2332 2332
2333 /* 2333 /*
2334 * mason@suse.com: updated in 2.5.54 to follow the same general io 2334 * mason@suse.com: updated in 2.5.54 to follow the same general io
2335 * start/recovery path as __block_write_full_page, along with special 2335 * start/recovery path as __block_write_full_page, along with special
2336 * code to handle reiserfs tails. 2336 * code to handle reiserfs tails.
2337 */ 2337 */
2338 static int reiserfs_write_full_page(struct page *page, 2338 static int reiserfs_write_full_page(struct page *page,
2339 struct writeback_control *wbc) 2339 struct writeback_control *wbc)
2340 { 2340 {
2341 struct inode *inode = page->mapping->host; 2341 struct inode *inode = page->mapping->host;
2342 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2342 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2343 int error = 0; 2343 int error = 0;
2344 unsigned long block; 2344 unsigned long block;
2345 struct buffer_head *head, *bh; 2345 struct buffer_head *head, *bh;
2346 int partial = 0; 2346 int partial = 0;
2347 int nr = 0; 2347 int nr = 0;
2348 int checked = PageChecked(page); 2348 int checked = PageChecked(page);
2349 struct reiserfs_transaction_handle th; 2349 struct reiserfs_transaction_handle th;
2350 struct super_block *s = inode->i_sb; 2350 struct super_block *s = inode->i_sb;
2351 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2351 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2352 th.t_trans_id = 0; 2352 th.t_trans_id = 0;
2353 2353
2354 /* The page dirty bit is cleared before writepage is called, which 2354 /* The page dirty bit is cleared before writepage is called, which
2355 * means we have to tell create_empty_buffers to make dirty buffers 2355 * means we have to tell create_empty_buffers to make dirty buffers
2356 * The page really should be up to date at this point, so tossing 2356 * The page really should be up to date at this point, so tossing
2357 * in the BH_Uptodate is just a sanity check. 2357 * in the BH_Uptodate is just a sanity check.
2358 */ 2358 */
2359 if (!page_has_buffers(page)) { 2359 if (!page_has_buffers(page)) {
2360 create_empty_buffers(page, s->s_blocksize, 2360 create_empty_buffers(page, s->s_blocksize,
2361 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2361 (1 << BH_Dirty) | (1 << BH_Uptodate));
2362 } 2362 }
2363 head = page_buffers(page); 2363 head = page_buffers(page);
2364 2364
2365 /* last page in the file, zero out any contents past the 2365 /* last page in the file, zero out any contents past the
2366 ** last byte in the file 2366 ** last byte in the file
2367 */ 2367 */
2368 if (page->index >= end_index) { 2368 if (page->index >= end_index) {
2369 char *kaddr; 2369 char *kaddr;
2370 unsigned last_offset; 2370 unsigned last_offset;
2371 2371
2372 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2372 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2373 /* no file contents in this page */ 2373 /* no file contents in this page */
2374 if (page->index >= end_index + 1 || !last_offset) { 2374 if (page->index >= end_index + 1 || !last_offset) {
2375 unlock_page(page); 2375 unlock_page(page);
2376 return 0; 2376 return 0;
2377 } 2377 }
2378 kaddr = kmap_atomic(page, KM_USER0); 2378 kaddr = kmap_atomic(page, KM_USER0);
2379 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset); 2379 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2380 flush_dcache_page(page); 2380 flush_dcache_page(page);
2381 kunmap_atomic(kaddr, KM_USER0); 2381 kunmap_atomic(kaddr, KM_USER0);
2382 } 2382 }
2383 bh = head; 2383 bh = head;
2384 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2384 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2385 /* first map all the buffers, logging any direct items we find */ 2385 /* first map all the buffers, logging any direct items we find */
2386 do { 2386 do {
2387 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) || 2387 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) ||
2388 (buffer_mapped(bh) 2388 (buffer_mapped(bh)
2389 && bh->b_blocknr == 2389 && bh->b_blocknr ==
2390 0))) { 2390 0))) {
2391 /* not mapped yet, or it points to a direct item, search 2391 /* not mapped yet, or it points to a direct item, search
2392 * the btree for the mapping info, and log any direct 2392 * the btree for the mapping info, and log any direct
2393 * items found 2393 * items found
2394 */ 2394 */
2395 if ((error = map_block_for_writepage(inode, bh, block))) { 2395 if ((error = map_block_for_writepage(inode, bh, block))) {
2396 goto fail; 2396 goto fail;
2397 } 2397 }
2398 } 2398 }
2399 bh = bh->b_this_page; 2399 bh = bh->b_this_page;
2400 block++; 2400 block++;
2401 } while (bh != head); 2401 } while (bh != head);
2402 2402
2403 /* 2403 /*
2404 * we start the transaction after map_block_for_writepage, 2404 * we start the transaction after map_block_for_writepage,
2405 * because it can create holes in the file (an unbounded operation). 2405 * because it can create holes in the file (an unbounded operation).
2406 * starting it here, we can make a reliable estimate for how many 2406 * starting it here, we can make a reliable estimate for how many
2407 * blocks we're going to log 2407 * blocks we're going to log
2408 */ 2408 */
2409 if (checked) { 2409 if (checked) {
2410 ClearPageChecked(page); 2410 ClearPageChecked(page);
2411 reiserfs_write_lock(s); 2411 reiserfs_write_lock(s);
2412 error = journal_begin(&th, s, bh_per_page + 1); 2412 error = journal_begin(&th, s, bh_per_page + 1);
2413 if (error) { 2413 if (error) {
2414 reiserfs_write_unlock(s); 2414 reiserfs_write_unlock(s);
2415 goto fail; 2415 goto fail;
2416 } 2416 }
2417 reiserfs_update_inode_transaction(inode); 2417 reiserfs_update_inode_transaction(inode);
2418 } 2418 }
2419 /* now go through and lock any dirty buffers on the page */ 2419 /* now go through and lock any dirty buffers on the page */
2420 do { 2420 do {
2421 get_bh(bh); 2421 get_bh(bh);
2422 if (!buffer_mapped(bh)) 2422 if (!buffer_mapped(bh))
2423 continue; 2423 continue;
2424 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2424 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2425 continue; 2425 continue;
2426 2426
2427 if (checked) { 2427 if (checked) {
2428 reiserfs_prepare_for_journal(s, bh, 1); 2428 reiserfs_prepare_for_journal(s, bh, 1);
2429 journal_mark_dirty(&th, s, bh); 2429 journal_mark_dirty(&th, s, bh);
2430 continue; 2430 continue;
2431 } 2431 }
2432 /* from this point on, we know the buffer is mapped to a 2432 /* from this point on, we know the buffer is mapped to a
2433 * real block and not a direct item 2433 * real block and not a direct item
2434 */ 2434 */
2435 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2435 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2436 lock_buffer(bh); 2436 lock_buffer(bh);
2437 } else { 2437 } else {
2438 if (test_set_buffer_locked(bh)) { 2438 if (test_set_buffer_locked(bh)) {
2439 redirty_page_for_writepage(wbc, page); 2439 redirty_page_for_writepage(wbc, page);
2440 continue; 2440 continue;
2441 } 2441 }
2442 } 2442 }
2443 if (test_clear_buffer_dirty(bh)) { 2443 if (test_clear_buffer_dirty(bh)) {
2444 mark_buffer_async_write(bh); 2444 mark_buffer_async_write(bh);
2445 } else { 2445 } else {
2446 unlock_buffer(bh); 2446 unlock_buffer(bh);
2447 } 2447 }
2448 } while ((bh = bh->b_this_page) != head); 2448 } while ((bh = bh->b_this_page) != head);
2449 2449
2450 if (checked) { 2450 if (checked) {
2451 error = journal_end(&th, s, bh_per_page + 1); 2451 error = journal_end(&th, s, bh_per_page + 1);
2452 reiserfs_write_unlock(s); 2452 reiserfs_write_unlock(s);
2453 if (error) 2453 if (error)
2454 goto fail; 2454 goto fail;
2455 } 2455 }
2456 BUG_ON(PageWriteback(page)); 2456 BUG_ON(PageWriteback(page));
2457 set_page_writeback(page); 2457 set_page_writeback(page);
2458 unlock_page(page); 2458 unlock_page(page);
2459 2459
2460 /* 2460 /*
2461 * since any buffer might be the only dirty buffer on the page, 2461 * since any buffer might be the only dirty buffer on the page,
2462 * the first submit_bh can bring the page out of writeback. 2462 * the first submit_bh can bring the page out of writeback.
2463 * be careful with the buffers. 2463 * be careful with the buffers.
2464 */ 2464 */
2465 do { 2465 do {
2466 struct buffer_head *next = bh->b_this_page; 2466 struct buffer_head *next = bh->b_this_page;
2467 if (buffer_async_write(bh)) { 2467 if (buffer_async_write(bh)) {
2468 submit_bh(WRITE, bh); 2468 submit_bh(WRITE, bh);
2469 nr++; 2469 nr++;
2470 } 2470 }
2471 put_bh(bh); 2471 put_bh(bh);
2472 bh = next; 2472 bh = next;
2473 } while (bh != head); 2473 } while (bh != head);
2474 2474
2475 error = 0; 2475 error = 0;
2476 done: 2476 done:
2477 if (nr == 0) { 2477 if (nr == 0) {
2478 /* 2478 /*
2479 * if this page only had a direct item, it is very possible for 2479 * if this page only had a direct item, it is very possible for
2480 * no io to be required without there being an error. Or, 2480 * no io to be required without there being an error. Or,
2481 * someone else could have locked them and sent them down the 2481 * someone else could have locked them and sent them down the
2482 * pipe without locking the page 2482 * pipe without locking the page
2483 */ 2483 */
2484 bh = head; 2484 bh = head;
2485 do { 2485 do {
2486 if (!buffer_uptodate(bh)) { 2486 if (!buffer_uptodate(bh)) {
2487 partial = 1; 2487 partial = 1;
2488 break; 2488 break;
2489 } 2489 }
2490 bh = bh->b_this_page; 2490 bh = bh->b_this_page;
2491 } while (bh != head); 2491 } while (bh != head);
2492 if (!partial) 2492 if (!partial)
2493 SetPageUptodate(page); 2493 SetPageUptodate(page);
2494 end_page_writeback(page); 2494 end_page_writeback(page);
2495 } 2495 }
2496 return error; 2496 return error;
2497 2497
2498 fail: 2498 fail:
2499 /* catches various errors, we need to make sure any valid dirty blocks 2499 /* catches various errors, we need to make sure any valid dirty blocks
2500 * get to the media. The page is currently locked and not marked for 2500 * get to the media. The page is currently locked and not marked for
2501 * writeback 2501 * writeback
2502 */ 2502 */
2503 ClearPageUptodate(page); 2503 ClearPageUptodate(page);
2504 bh = head; 2504 bh = head;
2505 do { 2505 do {
2506 get_bh(bh); 2506 get_bh(bh);
2507 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2507 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2508 lock_buffer(bh); 2508 lock_buffer(bh);
2509 mark_buffer_async_write(bh); 2509 mark_buffer_async_write(bh);
2510 } else { 2510 } else {
2511 /* 2511 /*
2512 * clear any dirty bits that might have come from getting 2512 * clear any dirty bits that might have come from getting
2513 * attached to a dirty page 2513 * attached to a dirty page
2514 */ 2514 */
2515 clear_buffer_dirty(bh); 2515 clear_buffer_dirty(bh);
2516 } 2516 }
2517 bh = bh->b_this_page; 2517 bh = bh->b_this_page;
2518 } while (bh != head); 2518 } while (bh != head);
2519 SetPageError(page); 2519 SetPageError(page);
2520 BUG_ON(PageWriteback(page)); 2520 BUG_ON(PageWriteback(page));
2521 set_page_writeback(page); 2521 set_page_writeback(page);
2522 unlock_page(page); 2522 unlock_page(page);
2523 do { 2523 do {
2524 struct buffer_head *next = bh->b_this_page; 2524 struct buffer_head *next = bh->b_this_page;
2525 if (buffer_async_write(bh)) { 2525 if (buffer_async_write(bh)) {
2526 clear_buffer_dirty(bh); 2526 clear_buffer_dirty(bh);
2527 submit_bh(WRITE, bh); 2527 submit_bh(WRITE, bh);
2528 nr++; 2528 nr++;
2529 } 2529 }
2530 put_bh(bh); 2530 put_bh(bh);
2531 bh = next; 2531 bh = next;
2532 } while (bh != head); 2532 } while (bh != head);
2533 goto done; 2533 goto done;
2534 } 2534 }
2535 2535
2536 static int reiserfs_readpage(struct file *f, struct page *page) 2536 static int reiserfs_readpage(struct file *f, struct page *page)
2537 { 2537 {
2538 return block_read_full_page(page, reiserfs_get_block); 2538 return block_read_full_page(page, reiserfs_get_block);
2539 } 2539 }
2540 2540
2541 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2541 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2542 { 2542 {
2543 struct inode *inode = page->mapping->host; 2543 struct inode *inode = page->mapping->host;
2544 reiserfs_wait_on_write_block(inode->i_sb); 2544 reiserfs_wait_on_write_block(inode->i_sb);
2545 return reiserfs_write_full_page(page, wbc); 2545 return reiserfs_write_full_page(page, wbc);
2546 } 2546 }
2547 2547
2548 static int reiserfs_prepare_write(struct file *f, struct page *page, 2548 static int reiserfs_prepare_write(struct file *f, struct page *page,
2549 unsigned from, unsigned to) 2549 unsigned from, unsigned to)
2550 { 2550 {
2551 struct inode *inode = page->mapping->host; 2551 struct inode *inode = page->mapping->host;
2552 int ret; 2552 int ret;
2553 int old_ref = 0; 2553 int old_ref = 0;
2554 2554
2555 reiserfs_wait_on_write_block(inode->i_sb); 2555 reiserfs_wait_on_write_block(inode->i_sb);
2556 fix_tail_page_for_writing(page); 2556 fix_tail_page_for_writing(page);
2557 if (reiserfs_transaction_running(inode->i_sb)) { 2557 if (reiserfs_transaction_running(inode->i_sb)) {
2558 struct reiserfs_transaction_handle *th; 2558 struct reiserfs_transaction_handle *th;
2559 th = (struct reiserfs_transaction_handle *)current-> 2559 th = (struct reiserfs_transaction_handle *)current->
2560 journal_info; 2560 journal_info;
2561 BUG_ON(!th->t_refcount); 2561 BUG_ON(!th->t_refcount);
2562 BUG_ON(!th->t_trans_id); 2562 BUG_ON(!th->t_trans_id);
2563 old_ref = th->t_refcount; 2563 old_ref = th->t_refcount;
2564 th->t_refcount++; 2564 th->t_refcount++;
2565 } 2565 }
2566 2566
2567 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2567 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2568 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2568 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2569 struct reiserfs_transaction_handle *th = current->journal_info; 2569 struct reiserfs_transaction_handle *th = current->journal_info;
2570 /* this gets a little ugly. If reiserfs_get_block returned an 2570 /* this gets a little ugly. If reiserfs_get_block returned an
2571 * error and left a transacstion running, we've got to close it, 2571 * error and left a transacstion running, we've got to close it,
2572 * and we've got to free handle if it was a persistent transaction. 2572 * and we've got to free handle if it was a persistent transaction.
2573 * 2573 *
2574 * But, if we had nested into an existing transaction, we need 2574 * But, if we had nested into an existing transaction, we need
2575 * to just drop the ref count on the handle. 2575 * to just drop the ref count on the handle.
2576 * 2576 *
2577 * If old_ref == 0, the transaction is from reiserfs_get_block, 2577 * If old_ref == 0, the transaction is from reiserfs_get_block,
2578 * and it was a persistent trans. Otherwise, it was nested above. 2578 * and it was a persistent trans. Otherwise, it was nested above.
2579 */ 2579 */
2580 if (th->t_refcount > old_ref) { 2580 if (th->t_refcount > old_ref) {
2581 if (old_ref) 2581 if (old_ref)
2582 th->t_refcount--; 2582 th->t_refcount--;
2583 else { 2583 else {
2584 int err; 2584 int err;
2585 reiserfs_write_lock(inode->i_sb); 2585 reiserfs_write_lock(inode->i_sb);
2586 err = reiserfs_end_persistent_transaction(th); 2586 err = reiserfs_end_persistent_transaction(th);
2587 reiserfs_write_unlock(inode->i_sb); 2587 reiserfs_write_unlock(inode->i_sb);
2588 if (err) 2588 if (err)
2589 ret = err; 2589 ret = err;
2590 } 2590 }
2591 } 2591 }
2592 } 2592 }
2593 return ret; 2593 return ret;
2594 2594
2595 } 2595 }
2596 2596
2597 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2597 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2598 { 2598 {
2599 return generic_block_bmap(as, block, reiserfs_bmap); 2599 return generic_block_bmap(as, block, reiserfs_bmap);
2600 } 2600 }
2601 2601
2602 static int reiserfs_commit_write(struct file *f, struct page *page, 2602 static int reiserfs_commit_write(struct file *f, struct page *page,
2603 unsigned from, unsigned to) 2603 unsigned from, unsigned to)
2604 { 2604 {
2605 struct inode *inode = page->mapping->host; 2605 struct inode *inode = page->mapping->host;
2606 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2606 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2607 int ret = 0; 2607 int ret = 0;
2608 int update_sd = 0; 2608 int update_sd = 0;
2609 struct reiserfs_transaction_handle *th = NULL; 2609 struct reiserfs_transaction_handle *th = NULL;
2610 2610
2611 reiserfs_wait_on_write_block(inode->i_sb); 2611 reiserfs_wait_on_write_block(inode->i_sb);
2612 if (reiserfs_transaction_running(inode->i_sb)) { 2612 if (reiserfs_transaction_running(inode->i_sb)) {
2613 th = current->journal_info; 2613 th = current->journal_info;
2614 } 2614 }
2615 reiserfs_commit_page(inode, page, from, to); 2615 reiserfs_commit_page(inode, page, from, to);
2616 2616
2617 /* generic_commit_write does this for us, but does not update the 2617 /* generic_commit_write does this for us, but does not update the
2618 ** transaction tracking stuff when the size changes. So, we have 2618 ** transaction tracking stuff when the size changes. So, we have
2619 ** to do the i_size updates here. 2619 ** to do the i_size updates here.
2620 */ 2620 */
2621 if (pos > inode->i_size) { 2621 if (pos > inode->i_size) {
2622 struct reiserfs_transaction_handle myth; 2622 struct reiserfs_transaction_handle myth;
2623 reiserfs_write_lock(inode->i_sb); 2623 reiserfs_write_lock(inode->i_sb);
2624 /* If the file have grown beyond the border where it 2624 /* If the file have grown beyond the border where it
2625 can have a tail, unmark it as needing a tail 2625 can have a tail, unmark it as needing a tail
2626 packing */ 2626 packing */
2627 if ((have_large_tails(inode->i_sb) 2627 if ((have_large_tails(inode->i_sb)
2628 && inode->i_size > i_block_size(inode) * 4) 2628 && inode->i_size > i_block_size(inode) * 4)
2629 || (have_small_tails(inode->i_sb) 2629 || (have_small_tails(inode->i_sb)
2630 && inode->i_size > i_block_size(inode))) 2630 && inode->i_size > i_block_size(inode)))
2631 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2631 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2632 2632
2633 ret = journal_begin(&myth, inode->i_sb, 1); 2633 ret = journal_begin(&myth, inode->i_sb, 1);
2634 if (ret) { 2634 if (ret) {
2635 reiserfs_write_unlock(inode->i_sb); 2635 reiserfs_write_unlock(inode->i_sb);
2636 goto journal_error; 2636 goto journal_error;
2637 } 2637 }
2638 reiserfs_update_inode_transaction(inode); 2638 reiserfs_update_inode_transaction(inode);
2639 inode->i_size = pos; 2639 inode->i_size = pos;
2640 reiserfs_update_sd(&myth, inode); 2640 reiserfs_update_sd(&myth, inode);
2641 update_sd = 1; 2641 update_sd = 1;
2642 ret = journal_end(&myth, inode->i_sb, 1); 2642 ret = journal_end(&myth, inode->i_sb, 1);
2643 reiserfs_write_unlock(inode->i_sb); 2643 reiserfs_write_unlock(inode->i_sb);
2644 if (ret) 2644 if (ret)
2645 goto journal_error; 2645 goto journal_error;
2646 } 2646 }
2647 if (th) { 2647 if (th) {
2648 reiserfs_write_lock(inode->i_sb); 2648 reiserfs_write_lock(inode->i_sb);
2649 if (!update_sd) 2649 if (!update_sd)
2650 reiserfs_update_sd(th, inode); 2650 reiserfs_update_sd(th, inode);
2651 ret = reiserfs_end_persistent_transaction(th); 2651 ret = reiserfs_end_persistent_transaction(th);
2652 reiserfs_write_unlock(inode->i_sb); 2652 reiserfs_write_unlock(inode->i_sb);
2653 if (ret) 2653 if (ret)
2654 goto out; 2654 goto out;
2655 } 2655 }
2656 2656
2657 /* we test for O_SYNC here so we can commit the transaction 2657 /* we test for O_SYNC here so we can commit the transaction
2658 ** for any packed tails the file might have had 2658 ** for any packed tails the file might have had
2659 */ 2659 */
2660 if (f && (f->f_flags & O_SYNC)) { 2660 if (f && (f->f_flags & O_SYNC)) {
2661 reiserfs_write_lock(inode->i_sb); 2661 reiserfs_write_lock(inode->i_sb);
2662 ret = reiserfs_commit_for_inode(inode); 2662 ret = reiserfs_commit_for_inode(inode);
2663 reiserfs_write_unlock(inode->i_sb); 2663 reiserfs_write_unlock(inode->i_sb);
2664 } 2664 }
2665 out: 2665 out:
2666 return ret; 2666 return ret;
2667 2667
2668 journal_error: 2668 journal_error:
2669 if (th) { 2669 if (th) {
2670 reiserfs_write_lock(inode->i_sb); 2670 reiserfs_write_lock(inode->i_sb);
2671 if (!update_sd) 2671 if (!update_sd)
2672 reiserfs_update_sd(th, inode); 2672 reiserfs_update_sd(th, inode);
2673 ret = reiserfs_end_persistent_transaction(th); 2673 ret = reiserfs_end_persistent_transaction(th);
2674 reiserfs_write_unlock(inode->i_sb); 2674 reiserfs_write_unlock(inode->i_sb);
2675 } 2675 }
2676 2676
2677 return ret; 2677 return ret;
2678 } 2678 }
2679 2679
2680 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2680 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2681 { 2681 {
2682 if (reiserfs_attrs(inode->i_sb)) { 2682 if (reiserfs_attrs(inode->i_sb)) {
2683 if (sd_attrs & REISERFS_SYNC_FL) 2683 if (sd_attrs & REISERFS_SYNC_FL)
2684 inode->i_flags |= S_SYNC; 2684 inode->i_flags |= S_SYNC;
2685 else 2685 else
2686 inode->i_flags &= ~S_SYNC; 2686 inode->i_flags &= ~S_SYNC;
2687 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2687 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2688 inode->i_flags |= S_IMMUTABLE; 2688 inode->i_flags |= S_IMMUTABLE;
2689 else 2689 else
2690 inode->i_flags &= ~S_IMMUTABLE; 2690 inode->i_flags &= ~S_IMMUTABLE;
2691 if (sd_attrs & REISERFS_APPEND_FL) 2691 if (sd_attrs & REISERFS_APPEND_FL)
2692 inode->i_flags |= S_APPEND; 2692 inode->i_flags |= S_APPEND;
2693 else 2693 else
2694 inode->i_flags &= ~S_APPEND; 2694 inode->i_flags &= ~S_APPEND;
2695 if (sd_attrs & REISERFS_NOATIME_FL) 2695 if (sd_attrs & REISERFS_NOATIME_FL)
2696 inode->i_flags |= S_NOATIME; 2696 inode->i_flags |= S_NOATIME;
2697 else 2697 else
2698 inode->i_flags &= ~S_NOATIME; 2698 inode->i_flags &= ~S_NOATIME;
2699 if (sd_attrs & REISERFS_NOTAIL_FL) 2699 if (sd_attrs & REISERFS_NOTAIL_FL)
2700 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2700 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2701 else 2701 else
2702 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2702 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2703 } 2703 }
2704 } 2704 }
2705 2705
2706 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2706 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2707 { 2707 {
2708 if (reiserfs_attrs(inode->i_sb)) { 2708 if (reiserfs_attrs(inode->i_sb)) {
2709 if (inode->i_flags & S_IMMUTABLE) 2709 if (inode->i_flags & S_IMMUTABLE)
2710 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2710 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2711 else 2711 else
2712 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2712 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2713 if (inode->i_flags & S_SYNC) 2713 if (inode->i_flags & S_SYNC)
2714 *sd_attrs |= REISERFS_SYNC_FL; 2714 *sd_attrs |= REISERFS_SYNC_FL;
2715 else 2715 else
2716 *sd_attrs &= ~REISERFS_SYNC_FL; 2716 *sd_attrs &= ~REISERFS_SYNC_FL;
2717 if (inode->i_flags & S_NOATIME) 2717 if (inode->i_flags & S_NOATIME)
2718 *sd_attrs |= REISERFS_NOATIME_FL; 2718 *sd_attrs |= REISERFS_NOATIME_FL;
2719 else 2719 else
2720 *sd_attrs &= ~REISERFS_NOATIME_FL; 2720 *sd_attrs &= ~REISERFS_NOATIME_FL;
2721 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2721 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2722 *sd_attrs |= REISERFS_NOTAIL_FL; 2722 *sd_attrs |= REISERFS_NOTAIL_FL;
2723 else 2723 else
2724 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2724 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2725 } 2725 }
2726 } 2726 }
2727 2727
2728 /* decide if this buffer needs to stay around for data logging or ordered 2728 /* decide if this buffer needs to stay around for data logging or ordered
2729 ** write purposes 2729 ** write purposes
2730 */ 2730 */
2731 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2731 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2732 { 2732 {
2733 int ret = 1; 2733 int ret = 1;
2734 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2734 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2735 2735
2736 spin_lock(&j->j_dirty_buffers_lock); 2736 spin_lock(&j->j_dirty_buffers_lock);
2737 if (!buffer_mapped(bh)) { 2737 if (!buffer_mapped(bh)) {
2738 goto free_jh; 2738 goto free_jh;
2739 } 2739 }
2740 /* the page is locked, and the only places that log a data buffer 2740 /* the page is locked, and the only places that log a data buffer
2741 * also lock the page. 2741 * also lock the page.
2742 */ 2742 */
2743 if (reiserfs_file_data_log(inode)) { 2743 if (reiserfs_file_data_log(inode)) {
2744 /* 2744 /*
2745 * very conservative, leave the buffer pinned if 2745 * very conservative, leave the buffer pinned if
2746 * anyone might need it. 2746 * anyone might need it.
2747 */ 2747 */
2748 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2748 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2749 ret = 0; 2749 ret = 0;
2750 } 2750 }
2751 } else if (buffer_dirty(bh) || buffer_locked(bh)) { 2751 } else if (buffer_dirty(bh) || buffer_locked(bh)) {
2752 struct reiserfs_journal_list *jl; 2752 struct reiserfs_journal_list *jl;
2753 struct reiserfs_jh *jh = bh->b_private; 2753 struct reiserfs_jh *jh = bh->b_private;
2754 2754
2755 /* why is this safe? 2755 /* why is this safe?
2756 * reiserfs_setattr updates i_size in the on disk 2756 * reiserfs_setattr updates i_size in the on disk
2757 * stat data before allowing vmtruncate to be called. 2757 * stat data before allowing vmtruncate to be called.
2758 * 2758 *
2759 * If buffer was put onto the ordered list for this 2759 * If buffer was put onto the ordered list for this
2760 * transaction, we know for sure either this transaction 2760 * transaction, we know for sure either this transaction
2761 * or an older one already has updated i_size on disk, 2761 * or an older one already has updated i_size on disk,
2762 * and this ordered data won't be referenced in the file 2762 * and this ordered data won't be referenced in the file
2763 * if we crash. 2763 * if we crash.
2764 * 2764 *
2765 * if the buffer was put onto the ordered list for an older 2765 * if the buffer was put onto the ordered list for an older
2766 * transaction, we need to leave it around 2766 * transaction, we need to leave it around
2767 */ 2767 */
2768 if (jh && (jl = jh->jl) 2768 if (jh && (jl = jh->jl)
2769 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2769 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2770 ret = 0; 2770 ret = 0;
2771 } 2771 }
2772 free_jh: 2772 free_jh:
2773 if (ret && bh->b_private) { 2773 if (ret && bh->b_private) {
2774 reiserfs_free_jh(bh); 2774 reiserfs_free_jh(bh);
2775 } 2775 }
2776 spin_unlock(&j->j_dirty_buffers_lock); 2776 spin_unlock(&j->j_dirty_buffers_lock);
2777 return ret; 2777 return ret;
2778 } 2778 }
2779 2779
2780 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2780 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2781 static int reiserfs_invalidatepage(struct page *page, unsigned long offset) 2781 static int reiserfs_invalidatepage(struct page *page, unsigned long offset)
2782 { 2782 {
2783 struct buffer_head *head, *bh, *next; 2783 struct buffer_head *head, *bh, *next;
2784 struct inode *inode = page->mapping->host; 2784 struct inode *inode = page->mapping->host;
2785 unsigned int curr_off = 0; 2785 unsigned int curr_off = 0;
2786 int ret = 1; 2786 int ret = 1;
2787 2787
2788 BUG_ON(!PageLocked(page)); 2788 BUG_ON(!PageLocked(page));
2789 2789
2790 if (offset == 0) 2790 if (offset == 0)
2791 ClearPageChecked(page); 2791 ClearPageChecked(page);
2792 2792
2793 if (!page_has_buffers(page)) 2793 if (!page_has_buffers(page))
2794 goto out; 2794 goto out;
2795 2795
2796 head = page_buffers(page); 2796 head = page_buffers(page);
2797 bh = head; 2797 bh = head;
2798 do { 2798 do {
2799 unsigned int next_off = curr_off + bh->b_size; 2799 unsigned int next_off = curr_off + bh->b_size;
2800 next = bh->b_this_page; 2800 next = bh->b_this_page;
2801 2801
2802 /* 2802 /*
2803 * is this block fully invalidated? 2803 * is this block fully invalidated?
2804 */ 2804 */
2805 if (offset <= curr_off) { 2805 if (offset <= curr_off) {
2806 if (invalidatepage_can_drop(inode, bh)) 2806 if (invalidatepage_can_drop(inode, bh))
2807 reiserfs_unmap_buffer(bh); 2807 reiserfs_unmap_buffer(bh);
2808 else 2808 else
2809 ret = 0; 2809 ret = 0;
2810 } 2810 }
2811 curr_off = next_off; 2811 curr_off = next_off;
2812 bh = next; 2812 bh = next;
2813 } while (bh != head); 2813 } while (bh != head);
2814 2814
2815 /* 2815 /*
2816 * We release buffers only if the entire page is being invalidated. 2816 * We release buffers only if the entire page is being invalidated.
2817 * The get_block cached value has been unconditionally invalidated, 2817 * The get_block cached value has been unconditionally invalidated,
2818 * so real IO is not possible anymore. 2818 * so real IO is not possible anymore.
2819 */ 2819 */
2820 if (!offset && ret) 2820 if (!offset && ret)
2821 ret = try_to_release_page(page, 0); 2821 ret = try_to_release_page(page, 0);
2822 out: 2822 out:
2823 return ret; 2823 return ret;
2824 } 2824 }
2825 2825
2826 static int reiserfs_set_page_dirty(struct page *page) 2826 static int reiserfs_set_page_dirty(struct page *page)
2827 { 2827 {
2828 struct inode *inode = page->mapping->host; 2828 struct inode *inode = page->mapping->host;
2829 if (reiserfs_file_data_log(inode)) { 2829 if (reiserfs_file_data_log(inode)) {
2830 SetPageChecked(page); 2830 SetPageChecked(page);
2831 return __set_page_dirty_nobuffers(page); 2831 return __set_page_dirty_nobuffers(page);
2832 } 2832 }
2833 return __set_page_dirty_buffers(page); 2833 return __set_page_dirty_buffers(page);
2834 } 2834 }
2835 2835
2836 /* 2836 /*
2837 * Returns 1 if the page's buffers were dropped. The page is locked. 2837 * Returns 1 if the page's buffers were dropped. The page is locked.
2838 * 2838 *
2839 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 2839 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2840 * in the buffers at page_buffers(page). 2840 * in the buffers at page_buffers(page).
2841 * 2841 *
2842 * even in -o notail mode, we can't be sure an old mount without -o notail 2842 * even in -o notail mode, we can't be sure an old mount without -o notail
2843 * didn't create files with tails. 2843 * didn't create files with tails.
2844 */ 2844 */
2845 static int reiserfs_releasepage(struct page *page, int unused_gfp_flags) 2845 static int reiserfs_releasepage(struct page *page, int unused_gfp_flags)
2846 { 2846 {
2847 struct inode *inode = page->mapping->host; 2847 struct inode *inode = page->mapping->host;
2848 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2848 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2849 struct buffer_head *head; 2849 struct buffer_head *head;
2850 struct buffer_head *bh; 2850 struct buffer_head *bh;
2851 int ret = 1; 2851 int ret = 1;
2852 2852
2853 WARN_ON(PageChecked(page)); 2853 WARN_ON(PageChecked(page));
2854 spin_lock(&j->j_dirty_buffers_lock); 2854 spin_lock(&j->j_dirty_buffers_lock);
2855 head = page_buffers(page); 2855 head = page_buffers(page);
2856 bh = head; 2856 bh = head;
2857 do { 2857 do {
2858 if (bh->b_private) { 2858 if (bh->b_private) {
2859 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 2859 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2860 reiserfs_free_jh(bh); 2860 reiserfs_free_jh(bh);
2861 } else { 2861 } else {
2862 ret = 0; 2862 ret = 0;
2863 break; 2863 break;
2864 } 2864 }
2865 } 2865 }
2866 bh = bh->b_this_page; 2866 bh = bh->b_this_page;
2867 } while (bh != head); 2867 } while (bh != head);
2868 if (ret) 2868 if (ret)
2869 ret = try_to_free_buffers(page); 2869 ret = try_to_free_buffers(page);
2870 spin_unlock(&j->j_dirty_buffers_lock); 2870 spin_unlock(&j->j_dirty_buffers_lock);
2871 return ret; 2871 return ret;
2872 } 2872 }
2873 2873
2874 /* We thank Mingming Cao for helping us understand in great detail what 2874 /* We thank Mingming Cao for helping us understand in great detail what
2875 to do in this section of the code. */ 2875 to do in this section of the code. */
2876 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 2876 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2877 const struct iovec *iov, loff_t offset, 2877 const struct iovec *iov, loff_t offset,
2878 unsigned long nr_segs) 2878 unsigned long nr_segs)
2879 { 2879 {
2880 struct file *file = iocb->ki_filp; 2880 struct file *file = iocb->ki_filp;
2881 struct inode *inode = file->f_mapping->host; 2881 struct inode *inode = file->f_mapping->host;
2882 2882
2883 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 2883 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2884 offset, nr_segs, 2884 offset, nr_segs,
2885 reiserfs_get_blocks_direct_io, NULL); 2885 reiserfs_get_blocks_direct_io, NULL);
2886 } 2886 }
2887 2887
2888 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 2888 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2889 { 2889 {
2890 struct inode *inode = dentry->d_inode; 2890 struct inode *inode = dentry->d_inode;
2891 int error; 2891 int error;
2892 unsigned int ia_valid = attr->ia_valid; 2892 unsigned int ia_valid = attr->ia_valid;
2893 reiserfs_write_lock(inode->i_sb); 2893 reiserfs_write_lock(inode->i_sb);
2894 if (attr->ia_valid & ATTR_SIZE) { 2894 if (attr->ia_valid & ATTR_SIZE) {
2895 /* version 2 items will be caught by the s_maxbytes check 2895 /* version 2 items will be caught by the s_maxbytes check
2896 ** done for us in vmtruncate 2896 ** done for us in vmtruncate
2897 */ 2897 */
2898 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 2898 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2899 attr->ia_size > MAX_NON_LFS) { 2899 attr->ia_size > MAX_NON_LFS) {
2900 error = -EFBIG; 2900 error = -EFBIG;
2901 goto out; 2901 goto out;
2902 } 2902 }
2903 /* fill in hole pointers in the expanding truncate case. */ 2903 /* fill in hole pointers in the expanding truncate case. */
2904 if (attr->ia_size > inode->i_size) { 2904 if (attr->ia_size > inode->i_size) {
2905 error = generic_cont_expand(inode, attr->ia_size); 2905 error = generic_cont_expand(inode, attr->ia_size);
2906 if (REISERFS_I(inode)->i_prealloc_count > 0) { 2906 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2907 int err; 2907 int err;
2908 struct reiserfs_transaction_handle th; 2908 struct reiserfs_transaction_handle th;
2909 /* we're changing at most 2 bitmaps, inode + super */ 2909 /* we're changing at most 2 bitmaps, inode + super */
2910 err = journal_begin(&th, inode->i_sb, 4); 2910 err = journal_begin(&th, inode->i_sb, 4);
2911 if (!err) { 2911 if (!err) {
2912 reiserfs_discard_prealloc(&th, inode); 2912 reiserfs_discard_prealloc(&th, inode);
2913 err = journal_end(&th, inode->i_sb, 4); 2913 err = journal_end(&th, inode->i_sb, 4);
2914 } 2914 }
2915 if (err) 2915 if (err)
2916 error = err; 2916 error = err;
2917 } 2917 }
2918 if (error) 2918 if (error)
2919 goto out; 2919 goto out;
2920 } 2920 }
2921 } 2921 }
2922 2922
2923 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 2923 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2924 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 2924 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2925 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 2925 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2926 /* stat data of format v3.5 has 16 bit uid and gid */ 2926 /* stat data of format v3.5 has 16 bit uid and gid */
2927 error = -EINVAL; 2927 error = -EINVAL;
2928 goto out; 2928 goto out;
2929 } 2929 }
2930 2930
2931 error = inode_change_ok(inode, attr); 2931 error = inode_change_ok(inode, attr);
2932 if (!error) { 2932 if (!error) {
2933 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 2933 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2934 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 2934 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2935 error = reiserfs_chown_xattrs(inode, attr); 2935 error = reiserfs_chown_xattrs(inode, attr);
2936 2936
2937 if (!error) { 2937 if (!error) {
2938 struct reiserfs_transaction_handle th; 2938 struct reiserfs_transaction_handle th;
2939 int jbegin_count = 2939 int jbegin_count =
2940 2 * 2940 2 *
2941 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 2941 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2942 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 2942 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2943 2; 2943 2;
2944 2944
2945 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 2945 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2946 error = 2946 error =
2947 journal_begin(&th, inode->i_sb, 2947 journal_begin(&th, inode->i_sb,
2948 jbegin_count); 2948 jbegin_count);
2949 if (error) 2949 if (error)
2950 goto out; 2950 goto out;
2951 error = 2951 error =
2952 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 2952 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2953 if (error) { 2953 if (error) {
2954 journal_end(&th, inode->i_sb, 2954 journal_end(&th, inode->i_sb,
2955 jbegin_count); 2955 jbegin_count);
2956 goto out; 2956 goto out;
2957 } 2957 }
2958 /* Update corresponding info in inode so that everything is in 2958 /* Update corresponding info in inode so that everything is in
2959 * one transaction */ 2959 * one transaction */
2960 if (attr->ia_valid & ATTR_UID) 2960 if (attr->ia_valid & ATTR_UID)
2961 inode->i_uid = attr->ia_uid; 2961 inode->i_uid = attr->ia_uid;
2962 if (attr->ia_valid & ATTR_GID) 2962 if (attr->ia_valid & ATTR_GID)
2963 inode->i_gid = attr->ia_gid; 2963 inode->i_gid = attr->ia_gid;
2964 mark_inode_dirty(inode); 2964 mark_inode_dirty(inode);
2965 error = 2965 error =
2966 journal_end(&th, inode->i_sb, jbegin_count); 2966 journal_end(&th, inode->i_sb, jbegin_count);
2967 } 2967 }
2968 } 2968 }
2969 if (!error) 2969 if (!error)
2970 error = inode_setattr(inode, attr); 2970 error = inode_setattr(inode, attr);
2971 } 2971 }
2972 2972
2973 if (!error && reiserfs_posixacl(inode->i_sb)) { 2973 if (!error && reiserfs_posixacl(inode->i_sb)) {
2974 if (attr->ia_valid & ATTR_MODE) 2974 if (attr->ia_valid & ATTR_MODE)
2975 error = reiserfs_acl_chmod(inode); 2975 error = reiserfs_acl_chmod(inode);
2976 } 2976 }
2977 2977
2978 out: 2978 out:
2979 reiserfs_write_unlock(inode->i_sb); 2979 reiserfs_write_unlock(inode->i_sb);
2980 return error; 2980 return error;
2981 } 2981 }
2982 2982
2983 struct address_space_operations reiserfs_address_space_operations = { 2983 struct address_space_operations reiserfs_address_space_operations = {
2984 .writepage = reiserfs_writepage, 2984 .writepage = reiserfs_writepage,
2985 .readpage = reiserfs_readpage, 2985 .readpage = reiserfs_readpage,
2986 .readpages = reiserfs_readpages, 2986 .readpages = reiserfs_readpages,
2987 .releasepage = reiserfs_releasepage, 2987 .releasepage = reiserfs_releasepage,
2988 .invalidatepage = reiserfs_invalidatepage, 2988 .invalidatepage = reiserfs_invalidatepage,
2989 .sync_page = block_sync_page, 2989 .sync_page = block_sync_page,
2990 .prepare_write = reiserfs_prepare_write, 2990 .prepare_write = reiserfs_prepare_write,
2991 .commit_write = reiserfs_commit_write, 2991 .commit_write = reiserfs_commit_write,
2992 .bmap = reiserfs_aop_bmap, 2992 .bmap = reiserfs_aop_bmap,
2993 .direct_IO = reiserfs_direct_IO, 2993 .direct_IO = reiserfs_direct_IO,
2994 .set_page_dirty = reiserfs_set_page_dirty, 2994 .set_page_dirty = reiserfs_set_page_dirty,
2995 }; 2995 };
2996 2996