Commit fd5e1b5dbaa8b4aacc0e251d74182eda37062194

Authored by Li Zefan
Committed by Ingo Molnar
1 parent 84599f8a59

sched: Remove unneeded __ref tag

Those two functions no longer call alloc_bootmmem_cpumask_var(),
so no need to tag them with __init_refok.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
LKML-Reference: <4A35DD5B.9050106@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>

Showing 2 changed files with 2 additions and 2 deletions Inline Diff

1 /* 1 /*
2 * kernel/sched.c 2 * kernel/sched.c
3 * 3 *
4 * Kernel scheduler and related syscalls 4 * Kernel scheduler and related syscalls
5 * 5 *
6 * Copyright (C) 1991-2002 Linus Torvalds 6 * Copyright (C) 1991-2002 Linus Torvalds
7 * 7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and 8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe 9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff 10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli 11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: 12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with 13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices 14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions 15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love. 16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas. 17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin 18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a 19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas. 20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements 21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams 22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith 23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri 24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, 25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz 26 * Thomas Gleixner, Mike Kravetz
27 */ 27 */
28 28
29 #include <linux/mm.h> 29 #include <linux/mm.h>
30 #include <linux/module.h> 30 #include <linux/module.h>
31 #include <linux/nmi.h> 31 #include <linux/nmi.h>
32 #include <linux/init.h> 32 #include <linux/init.h>
33 #include <linux/uaccess.h> 33 #include <linux/uaccess.h>
34 #include <linux/highmem.h> 34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h> 35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h> 36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h> 37 #include <linux/interrupt.h>
38 #include <linux/capability.h> 38 #include <linux/capability.h>
39 #include <linux/completion.h> 39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h> 40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h> 41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h> 42 #include <linux/perf_counter.h>
43 #include <linux/security.h> 43 #include <linux/security.h>
44 #include <linux/notifier.h> 44 #include <linux/notifier.h>
45 #include <linux/profile.h> 45 #include <linux/profile.h>
46 #include <linux/freezer.h> 46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h> 47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h> 48 #include <linux/blkdev.h>
49 #include <linux/delay.h> 49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h> 50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h> 51 #include <linux/smp.h>
52 #include <linux/threads.h> 52 #include <linux/threads.h>
53 #include <linux/timer.h> 53 #include <linux/timer.h>
54 #include <linux/rcupdate.h> 54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h> 55 #include <linux/cpu.h>
56 #include <linux/cpuset.h> 56 #include <linux/cpuset.h>
57 #include <linux/percpu.h> 57 #include <linux/percpu.h>
58 #include <linux/kthread.h> 58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h> 59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h> 60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h> 61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h> 62 #include <linux/syscalls.h>
63 #include <linux/times.h> 63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h> 64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h> 65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h> 66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h> 67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h> 68 #include <linux/unistd.h>
69 #include <linux/pagemap.h> 69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h> 70 #include <linux/hrtimer.h>
71 #include <linux/tick.h> 71 #include <linux/tick.h>
72 #include <linux/debugfs.h> 72 #include <linux/debugfs.h>
73 #include <linux/ctype.h> 73 #include <linux/ctype.h>
74 #include <linux/ftrace.h> 74 #include <linux/ftrace.h>
75 75
76 #include <asm/tlb.h> 76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h> 77 #include <asm/irq_regs.h>
78 78
79 #include "sched_cpupri.h" 79 #include "sched_cpupri.h"
80 80
81 #define CREATE_TRACE_POINTS 81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h> 82 #include <trace/events/sched.h>
83 83
84 /* 84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ] 85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back. 87 * and back.
88 */ 88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 92
93 /* 93 /*
94 * 'User priority' is the nice value converted to something we 94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters, 95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range. 96 * it's a [ 0 ... 39 ] range.
97 */ 97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 101
102 /* 102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution 103 * Helpers for converting nanosecond timing to jiffy resolution
104 */ 104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE 107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 109
110 /* 110 /*
111 * These are the 'tuning knobs' of the scheduler: 111 * These are the 'tuning knobs' of the scheduler:
112 * 112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire. 114 * Timeslices get refilled after they expire.
115 */ 115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000) 116 #define DEF_TIMESLICE (100 * HZ / 1000)
117 117
118 /* 118 /*
119 * single value that denotes runtime == period, ie unlimited time. 119 * single value that denotes runtime == period, ie unlimited time.
120 */ 120 */
121 #define RUNTIME_INF ((u64)~0ULL) 121 #define RUNTIME_INF ((u64)~0ULL)
122 122
123 #ifdef CONFIG_SMP 123 #ifdef CONFIG_SMP
124 124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2); 125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126 126
127 /* 127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) 128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide. 129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */ 130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) 131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 { 132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power); 133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 } 134 }
135 135
136 /* 136 /*
137 * Each time a sched group cpu_power is changed, 137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value 138 * we must compute its reciprocal value
139 */ 139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) 140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 { 141 {
142 sg->__cpu_power += val; 142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); 143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 } 144 }
145 #endif 145 #endif
146 146
147 static inline int rt_policy(int policy) 147 static inline int rt_policy(int policy)
148 { 148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1; 150 return 1;
151 return 0; 151 return 0;
152 } 152 }
153 153
154 static inline int task_has_rt_policy(struct task_struct *p) 154 static inline int task_has_rt_policy(struct task_struct *p)
155 { 155 {
156 return rt_policy(p->policy); 156 return rt_policy(p->policy);
157 } 157 }
158 158
159 /* 159 /*
160 * This is the priority-queue data structure of the RT scheduling class: 160 * This is the priority-queue data structure of the RT scheduling class:
161 */ 161 */
162 struct rt_prio_array { 162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO]; 164 struct list_head queue[MAX_RT_PRIO];
165 }; 165 };
166 166
167 struct rt_bandwidth { 167 struct rt_bandwidth {
168 /* nests inside the rq lock: */ 168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock; 169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period; 170 ktime_t rt_period;
171 u64 rt_runtime; 171 u64 rt_runtime;
172 struct hrtimer rt_period_timer; 172 struct hrtimer rt_period_timer;
173 }; 173 };
174 174
175 static struct rt_bandwidth def_rt_bandwidth; 175 static struct rt_bandwidth def_rt_bandwidth;
176 176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178 178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 { 180 {
181 struct rt_bandwidth *rt_b = 181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer); 182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now; 183 ktime_t now;
184 int overrun; 184 int overrun;
185 int idle = 0; 185 int idle = 0;
186 186
187 for (;;) { 187 for (;;) {
188 now = hrtimer_cb_get_time(timer); 188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190 190
191 if (!overrun) 191 if (!overrun)
192 break; 192 break;
193 193
194 idle = do_sched_rt_period_timer(rt_b, overrun); 194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 } 195 }
196 196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 } 198 }
199 199
200 static 200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 { 202 {
203 rt_b->rt_period = ns_to_ktime(period); 203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime; 204 rt_b->rt_runtime = runtime;
205 205
206 spin_lock_init(&rt_b->rt_runtime_lock); 206 spin_lock_init(&rt_b->rt_runtime_lock);
207 207
208 hrtimer_init(&rt_b->rt_period_timer, 208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer; 210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 } 211 }
212 212
213 static inline int rt_bandwidth_enabled(void) 213 static inline int rt_bandwidth_enabled(void)
214 { 214 {
215 return sysctl_sched_rt_runtime >= 0; 215 return sysctl_sched_rt_runtime >= 0;
216 } 216 }
217 217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 { 219 {
220 ktime_t now; 220 ktime_t now;
221 221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return; 223 return;
224 224
225 if (hrtimer_active(&rt_b->rt_period_timer)) 225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return; 226 return;
227 227
228 spin_lock(&rt_b->rt_runtime_lock); 228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) { 229 for (;;) {
230 unsigned long delta; 230 unsigned long delta;
231 ktime_t soft, hard; 231 ktime_t soft, hard;
232 232
233 if (hrtimer_active(&rt_b->rt_period_timer)) 233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break; 234 break;
235 235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer); 236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); 237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); 239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer); 240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft)); 241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, 242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS_PINNED, 0); 243 HRTIMER_MODE_ABS_PINNED, 0);
244 } 244 }
245 spin_unlock(&rt_b->rt_runtime_lock); 245 spin_unlock(&rt_b->rt_runtime_lock);
246 } 246 }
247 247
248 #ifdef CONFIG_RT_GROUP_SCHED 248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 { 250 {
251 hrtimer_cancel(&rt_b->rt_period_timer); 251 hrtimer_cancel(&rt_b->rt_period_timer);
252 } 252 }
253 #endif 253 #endif
254 254
255 /* 255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains, 256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains. 257 * detach_destroy_domains and partition_sched_domains.
258 */ 258 */
259 static DEFINE_MUTEX(sched_domains_mutex); 259 static DEFINE_MUTEX(sched_domains_mutex);
260 260
261 #ifdef CONFIG_GROUP_SCHED 261 #ifdef CONFIG_GROUP_SCHED
262 262
263 #include <linux/cgroup.h> 263 #include <linux/cgroup.h>
264 264
265 struct cfs_rq; 265 struct cfs_rq;
266 266
267 static LIST_HEAD(task_groups); 267 static LIST_HEAD(task_groups);
268 268
269 /* task group related information */ 269 /* task group related information */
270 struct task_group { 270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED 271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css; 272 struct cgroup_subsys_state css;
273 #endif 273 #endif
274 274
275 #ifdef CONFIG_USER_SCHED 275 #ifdef CONFIG_USER_SCHED
276 uid_t uid; 276 uid_t uid;
277 #endif 277 #endif
278 278
279 #ifdef CONFIG_FAIR_GROUP_SCHED 279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */ 280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se; 281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */ 282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq; 283 struct cfs_rq **cfs_rq;
284 unsigned long shares; 284 unsigned long shares;
285 #endif 285 #endif
286 286
287 #ifdef CONFIG_RT_GROUP_SCHED 287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se; 288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq; 289 struct rt_rq **rt_rq;
290 290
291 struct rt_bandwidth rt_bandwidth; 291 struct rt_bandwidth rt_bandwidth;
292 #endif 292 #endif
293 293
294 struct rcu_head rcu; 294 struct rcu_head rcu;
295 struct list_head list; 295 struct list_head list;
296 296
297 struct task_group *parent; 297 struct task_group *parent;
298 struct list_head siblings; 298 struct list_head siblings;
299 struct list_head children; 299 struct list_head children;
300 }; 300 };
301 301
302 #ifdef CONFIG_USER_SCHED 302 #ifdef CONFIG_USER_SCHED
303 303
304 /* Helper function to pass uid information to create_sched_user() */ 304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user) 305 void set_tg_uid(struct user_struct *user)
306 { 306 {
307 user->tg->uid = user->uid; 307 user->tg->uid = user->uid;
308 } 308 }
309 309
310 /* 310 /*
311 * Root task group. 311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will 312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group. 313 * be a child to this group.
314 */ 314 */
315 struct task_group root_task_group; 315 struct task_group root_task_group;
316 316
317 #ifdef CONFIG_FAIR_GROUP_SCHED 317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */ 318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); 319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */ 320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; 321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */ 322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323 323
324 #ifdef CONFIG_RT_GROUP_SCHED 324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); 325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; 326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */ 327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */ 328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group 329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */ 330 #endif /* CONFIG_USER_SCHED */
331 331
332 /* task_group_lock serializes add/remove of task groups and also changes to 332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares. 333 * a task group's cpu shares.
334 */ 334 */
335 static DEFINE_SPINLOCK(task_group_lock); 335 static DEFINE_SPINLOCK(task_group_lock);
336 336
337 #ifdef CONFIG_SMP 337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void) 338 static int root_task_group_empty(void)
339 { 339 {
340 return list_empty(&root_task_group.children); 340 return list_empty(&root_task_group.children);
341 } 341 }
342 #endif 342 #endif
343 343
344 #ifdef CONFIG_FAIR_GROUP_SCHED 344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED 345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) 346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */ 347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD 348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */ 349 #endif /* CONFIG_USER_SCHED */
350 350
351 /* 351 /*
352 * A weight of 0 or 1 can cause arithmetics problems. 352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities 353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be 354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group. 355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical 356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.) 357 * limitation from this.)
358 */ 358 */
359 #define MIN_SHARES 2 359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18) 360 #define MAX_SHARES (1UL << 18)
361 361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD; 362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif 363 #endif
364 364
365 /* Default task group. 365 /* Default task group.
366 * Every task in system belong to this group at bootup. 366 * Every task in system belong to this group at bootup.
367 */ 367 */
368 struct task_group init_task_group; 368 struct task_group init_task_group;
369 369
370 /* return group to which a task belongs */ 370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p) 371 static inline struct task_group *task_group(struct task_struct *p)
372 { 372 {
373 struct task_group *tg; 373 struct task_group *tg;
374 374
375 #ifdef CONFIG_USER_SCHED 375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock(); 376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg; 377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock(); 378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED) 379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), 380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css); 381 struct task_group, css);
382 #else 382 #else
383 tg = &init_task_group; 383 tg = &init_task_group;
384 #endif 384 #endif
385 return tg; 385 return tg;
386 } 386 }
387 387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 { 390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED 391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; 392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu]; 393 p->se.parent = task_group(p)->se[cpu];
394 #endif 394 #endif
395 395
396 #ifdef CONFIG_RT_GROUP_SCHED 396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu]; 397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu]; 398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif 399 #endif
400 } 400 }
401 401
402 #else 402 #else
403 403
404 #ifdef CONFIG_SMP 404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void) 405 static int root_task_group_empty(void)
406 { 406 {
407 return 1; 407 return 1;
408 } 408 }
409 #endif 409 #endif
410 410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p) 412 static inline struct task_group *task_group(struct task_struct *p)
413 { 413 {
414 return NULL; 414 return NULL;
415 } 415 }
416 416
417 #endif /* CONFIG_GROUP_SCHED */ 417 #endif /* CONFIG_GROUP_SCHED */
418 418
419 /* CFS-related fields in a runqueue */ 419 /* CFS-related fields in a runqueue */
420 struct cfs_rq { 420 struct cfs_rq {
421 struct load_weight load; 421 struct load_weight load;
422 unsigned long nr_running; 422 unsigned long nr_running;
423 423
424 u64 exec_clock; 424 u64 exec_clock;
425 u64 min_vruntime; 425 u64 min_vruntime;
426 426
427 struct rb_root tasks_timeline; 427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost; 428 struct rb_node *rb_leftmost;
429 429
430 struct list_head tasks; 430 struct list_head tasks;
431 struct list_head *balance_iterator; 431 struct list_head *balance_iterator;
432 432
433 /* 433 /*
434 * 'curr' points to currently running entity on this cfs_rq. 434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running). 435 * It is set to NULL otherwise (i.e when none are currently running).
436 */ 436 */
437 struct sched_entity *curr, *next, *last; 437 struct sched_entity *curr, *next, *last;
438 438
439 unsigned int nr_spread_over; 439 unsigned int nr_spread_over;
440 440
441 #ifdef CONFIG_FAIR_GROUP_SCHED 441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443 443
444 /* 444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.) 447 * (like users, containers etc.)
448 * 448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance. 450 * list is used during load balance.
451 */ 451 */
452 struct list_head leaf_cfs_rq_list; 452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */ 453 struct task_group *tg; /* group that "owns" this runqueue */
454 454
455 #ifdef CONFIG_SMP 455 #ifdef CONFIG_SMP
456 /* 456 /*
457 * the part of load.weight contributed by tasks 457 * the part of load.weight contributed by tasks
458 */ 458 */
459 unsigned long task_weight; 459 unsigned long task_weight;
460 460
461 /* 461 /*
462 * h_load = weight * f(tg) 462 * h_load = weight * f(tg)
463 * 463 *
464 * Where f(tg) is the recursive weight fraction assigned to 464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group. 465 * this group.
466 */ 466 */
467 unsigned long h_load; 467 unsigned long h_load;
468 468
469 /* 469 /*
470 * this cpu's part of tg->shares 470 * this cpu's part of tg->shares
471 */ 471 */
472 unsigned long shares; 472 unsigned long shares;
473 473
474 /* 474 /*
475 * load.weight at the time we set shares 475 * load.weight at the time we set shares
476 */ 476 */
477 unsigned long rq_weight; 477 unsigned long rq_weight;
478 #endif 478 #endif
479 #endif 479 #endif
480 }; 480 };
481 481
482 /* Real-Time classes' related field in a runqueue: */ 482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq { 483 struct rt_rq {
484 struct rt_prio_array active; 484 struct rt_prio_array active;
485 unsigned long rt_nr_running; 485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct { 487 struct {
488 int curr; /* highest queued rt task prio */ 488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP 489 #ifdef CONFIG_SMP
490 int next; /* next highest */ 490 int next; /* next highest */
491 #endif 491 #endif
492 } highest_prio; 492 } highest_prio;
493 #endif 493 #endif
494 #ifdef CONFIG_SMP 494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory; 495 unsigned long rt_nr_migratory;
496 int overloaded; 496 int overloaded;
497 struct plist_head pushable_tasks; 497 struct plist_head pushable_tasks;
498 #endif 498 #endif
499 int rt_throttled; 499 int rt_throttled;
500 u64 rt_time; 500 u64 rt_time;
501 u64 rt_runtime; 501 u64 rt_runtime;
502 /* Nests inside the rq lock: */ 502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock; 503 spinlock_t rt_runtime_lock;
504 504
505 #ifdef CONFIG_RT_GROUP_SCHED 505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted; 506 unsigned long rt_nr_boosted;
507 507
508 struct rq *rq; 508 struct rq *rq;
509 struct list_head leaf_rt_rq_list; 509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg; 510 struct task_group *tg;
511 struct sched_rt_entity *rt_se; 511 struct sched_rt_entity *rt_se;
512 #endif 512 #endif
513 }; 513 };
514 514
515 #ifdef CONFIG_SMP 515 #ifdef CONFIG_SMP
516 516
517 /* 517 /*
518 * We add the notion of a root-domain which will be used to define per-domain 518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by 519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new 520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain 521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object. 522 * object.
523 * 523 *
524 */ 524 */
525 struct root_domain { 525 struct root_domain {
526 atomic_t refcount; 526 atomic_t refcount;
527 cpumask_var_t span; 527 cpumask_var_t span;
528 cpumask_var_t online; 528 cpumask_var_t online;
529 529
530 /* 530 /*
531 * The "RT overload" flag: it gets set if a CPU has more than 531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task. 532 * one runnable RT task.
533 */ 533 */
534 cpumask_var_t rto_mask; 534 cpumask_var_t rto_mask;
535 atomic_t rto_count; 535 atomic_t rto_count;
536 #ifdef CONFIG_SMP 536 #ifdef CONFIG_SMP
537 struct cpupri cpupri; 537 struct cpupri cpupri;
538 #endif 538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /* 540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be 541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very 542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) 543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */ 544 */
545 unsigned int sched_mc_preferred_wakeup_cpu; 545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif 546 #endif
547 }; 547 };
548 548
549 /* 549 /*
550 * By default the system creates a single root-domain with all cpus as 550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today). 551 * members (mimicking the global state we have today).
552 */ 552 */
553 static struct root_domain def_root_domain; 553 static struct root_domain def_root_domain;
554 554
555 #endif 555 #endif
556 556
557 /* 557 /*
558 * This is the main, per-CPU runqueue data structure. 558 * This is the main, per-CPU runqueue data structure.
559 * 559 *
560 * Locking rule: those places that want to lock multiple runqueues 560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock 561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue. 562 * acquire operations must be ordered by ascending &runqueue.
563 */ 563 */
564 struct rq { 564 struct rq {
565 /* runqueue lock: */ 565 /* runqueue lock: */
566 spinlock_t lock; 566 spinlock_t lock;
567 567
568 /* 568 /*
569 * nr_running and cpu_load should be in the same cacheline because 569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation. 570 * remote CPUs use both these fields when doing load calculation.
571 */ 571 */
572 unsigned long nr_running; 572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5 573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ 575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen; 576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently; 577 unsigned char in_nohz_recently;
578 #endif 578 #endif
579 /* capture load from *all* tasks on this cpu: */ 579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load; 580 struct load_weight load;
581 unsigned long nr_load_updates; 581 unsigned long nr_load_updates;
582 u64 nr_switches; 582 u64 nr_switches;
583 u64 nr_migrations_in; 583 u64 nr_migrations_in;
584 584
585 struct cfs_rq cfs; 585 struct cfs_rq cfs;
586 struct rt_rq rt; 586 struct rt_rq rt;
587 587
588 #ifdef CONFIG_FAIR_GROUP_SCHED 588 #ifdef CONFIG_FAIR_GROUP_SCHED
589 /* list of leaf cfs_rq on this cpu: */ 589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list; 590 struct list_head leaf_cfs_rq_list;
591 #endif 591 #endif
592 #ifdef CONFIG_RT_GROUP_SCHED 592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct list_head leaf_rt_rq_list; 593 struct list_head leaf_rt_rq_list;
594 #endif 594 #endif
595 595
596 /* 596 /*
597 * This is part of a global counter where only the total sum 597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on 598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease 599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock: 600 * it on another CPU. Always updated under the runqueue lock:
601 */ 601 */
602 unsigned long nr_uninterruptible; 602 unsigned long nr_uninterruptible;
603 603
604 struct task_struct *curr, *idle; 604 struct task_struct *curr, *idle;
605 unsigned long next_balance; 605 unsigned long next_balance;
606 struct mm_struct *prev_mm; 606 struct mm_struct *prev_mm;
607 607
608 u64 clock; 608 u64 clock;
609 609
610 atomic_t nr_iowait; 610 atomic_t nr_iowait;
611 611
612 #ifdef CONFIG_SMP 612 #ifdef CONFIG_SMP
613 struct root_domain *rd; 613 struct root_domain *rd;
614 struct sched_domain *sd; 614 struct sched_domain *sd;
615 615
616 unsigned char idle_at_tick; 616 unsigned char idle_at_tick;
617 /* For active balancing */ 617 /* For active balancing */
618 int active_balance; 618 int active_balance;
619 int push_cpu; 619 int push_cpu;
620 /* cpu of this runqueue: */ 620 /* cpu of this runqueue: */
621 int cpu; 621 int cpu;
622 int online; 622 int online;
623 623
624 unsigned long avg_load_per_task; 624 unsigned long avg_load_per_task;
625 625
626 struct task_struct *migration_thread; 626 struct task_struct *migration_thread;
627 struct list_head migration_queue; 627 struct list_head migration_queue;
628 #endif 628 #endif
629 629
630 /* calc_load related fields */ 630 /* calc_load related fields */
631 unsigned long calc_load_update; 631 unsigned long calc_load_update;
632 long calc_load_active; 632 long calc_load_active;
633 633
634 #ifdef CONFIG_SCHED_HRTICK 634 #ifdef CONFIG_SCHED_HRTICK
635 #ifdef CONFIG_SMP 635 #ifdef CONFIG_SMP
636 int hrtick_csd_pending; 636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd; 637 struct call_single_data hrtick_csd;
638 #endif 638 #endif
639 struct hrtimer hrtick_timer; 639 struct hrtimer hrtick_timer;
640 #endif 640 #endif
641 641
642 #ifdef CONFIG_SCHEDSTATS 642 #ifdef CONFIG_SCHEDSTATS
643 /* latency stats */ 643 /* latency stats */
644 struct sched_info rq_sched_info; 644 struct sched_info rq_sched_info;
645 unsigned long long rq_cpu_time; 645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 647
648 /* sys_sched_yield() stats */ 648 /* sys_sched_yield() stats */
649 unsigned int yld_count; 649 unsigned int yld_count;
650 650
651 /* schedule() stats */ 651 /* schedule() stats */
652 unsigned int sched_switch; 652 unsigned int sched_switch;
653 unsigned int sched_count; 653 unsigned int sched_count;
654 unsigned int sched_goidle; 654 unsigned int sched_goidle;
655 655
656 /* try_to_wake_up() stats */ 656 /* try_to_wake_up() stats */
657 unsigned int ttwu_count; 657 unsigned int ttwu_count;
658 unsigned int ttwu_local; 658 unsigned int ttwu_local;
659 659
660 /* BKL stats */ 660 /* BKL stats */
661 unsigned int bkl_count; 661 unsigned int bkl_count;
662 #endif 662 #endif
663 }; 663 };
664 664
665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 665 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 666
667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) 667 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 { 668 {
669 rq->curr->sched_class->check_preempt_curr(rq, p, sync); 669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
670 } 670 }
671 671
672 static inline int cpu_of(struct rq *rq) 672 static inline int cpu_of(struct rq *rq)
673 { 673 {
674 #ifdef CONFIG_SMP 674 #ifdef CONFIG_SMP
675 return rq->cpu; 675 return rq->cpu;
676 #else 676 #else
677 return 0; 677 return 0;
678 #endif 678 #endif
679 } 679 }
680 680
681 /* 681 /*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683 * See detach_destroy_domains: synchronize_sched for details. 683 * See detach_destroy_domains: synchronize_sched for details.
684 * 684 *
685 * The domain tree of any CPU may only be accessed from within 685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections. 686 * preempt-disabled sections.
687 */ 687 */
688 #define for_each_domain(cpu, __sd) \ 688 #define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) 689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 690
691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 691 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692 #define this_rq() (&__get_cpu_var(runqueues)) 692 #define this_rq() (&__get_cpu_var(runqueues))
693 #define task_rq(p) cpu_rq(task_cpu(p)) 693 #define task_rq(p) cpu_rq(task_cpu(p))
694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 694 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 695
696 inline void update_rq_clock(struct rq *rq) 696 inline void update_rq_clock(struct rq *rq)
697 { 697 {
698 rq->clock = sched_clock_cpu(cpu_of(rq)); 698 rq->clock = sched_clock_cpu(cpu_of(rq));
699 } 699 }
700 700
701 /* 701 /*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */ 703 */
704 #ifdef CONFIG_SCHED_DEBUG 704 #ifdef CONFIG_SCHED_DEBUG
705 # define const_debug __read_mostly 705 # define const_debug __read_mostly
706 #else 706 #else
707 # define const_debug static const 707 # define const_debug static const
708 #endif 708 #endif
709 709
710 /** 710 /**
711 * runqueue_is_locked 711 * runqueue_is_locked
712 * 712 *
713 * Returns true if the current cpu runqueue is locked. 713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock 714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd. 715 * held and know whether or not it is OK to wake up the klogd.
716 */ 716 */
717 int runqueue_is_locked(void) 717 int runqueue_is_locked(void)
718 { 718 {
719 int cpu = get_cpu(); 719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu); 720 struct rq *rq = cpu_rq(cpu);
721 int ret; 721 int ret;
722 722
723 ret = spin_is_locked(&rq->lock); 723 ret = spin_is_locked(&rq->lock);
724 put_cpu(); 724 put_cpu();
725 return ret; 725 return ret;
726 } 726 }
727 727
728 /* 728 /*
729 * Debugging: various feature bits 729 * Debugging: various feature bits
730 */ 730 */
731 731
732 #define SCHED_FEAT(name, enabled) \ 732 #define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name , 733 __SCHED_FEAT_##name ,
734 734
735 enum { 735 enum {
736 #include "sched_features.h" 736 #include "sched_features.h"
737 }; 737 };
738 738
739 #undef SCHED_FEAT 739 #undef SCHED_FEAT
740 740
741 #define SCHED_FEAT(name, enabled) \ 741 #define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled | 742 (1UL << __SCHED_FEAT_##name) * enabled |
743 743
744 const_debug unsigned int sysctl_sched_features = 744 const_debug unsigned int sysctl_sched_features =
745 #include "sched_features.h" 745 #include "sched_features.h"
746 0; 746 0;
747 747
748 #undef SCHED_FEAT 748 #undef SCHED_FEAT
749 749
750 #ifdef CONFIG_SCHED_DEBUG 750 #ifdef CONFIG_SCHED_DEBUG
751 #define SCHED_FEAT(name, enabled) \ 751 #define SCHED_FEAT(name, enabled) \
752 #name , 752 #name ,
753 753
754 static __read_mostly char *sched_feat_names[] = { 754 static __read_mostly char *sched_feat_names[] = {
755 #include "sched_features.h" 755 #include "sched_features.h"
756 NULL 756 NULL
757 }; 757 };
758 758
759 #undef SCHED_FEAT 759 #undef SCHED_FEAT
760 760
761 static int sched_feat_show(struct seq_file *m, void *v) 761 static int sched_feat_show(struct seq_file *m, void *v)
762 { 762 {
763 int i; 763 int i;
764 764
765 for (i = 0; sched_feat_names[i]; i++) { 765 for (i = 0; sched_feat_names[i]; i++) {
766 if (!(sysctl_sched_features & (1UL << i))) 766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_"); 767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]); 768 seq_printf(m, "%s ", sched_feat_names[i]);
769 } 769 }
770 seq_puts(m, "\n"); 770 seq_puts(m, "\n");
771 771
772 return 0; 772 return 0;
773 } 773 }
774 774
775 static ssize_t 775 static ssize_t
776 sched_feat_write(struct file *filp, const char __user *ubuf, 776 sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos) 777 size_t cnt, loff_t *ppos)
778 { 778 {
779 char buf[64]; 779 char buf[64];
780 char *cmp = buf; 780 char *cmp = buf;
781 int neg = 0; 781 int neg = 0;
782 int i; 782 int i;
783 783
784 if (cnt > 63) 784 if (cnt > 63)
785 cnt = 63; 785 cnt = 63;
786 786
787 if (copy_from_user(&buf, ubuf, cnt)) 787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT; 788 return -EFAULT;
789 789
790 buf[cnt] = 0; 790 buf[cnt] = 0;
791 791
792 if (strncmp(buf, "NO_", 3) == 0) { 792 if (strncmp(buf, "NO_", 3) == 0) {
793 neg = 1; 793 neg = 1;
794 cmp += 3; 794 cmp += 3;
795 } 795 }
796 796
797 for (i = 0; sched_feat_names[i]; i++) { 797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]); 798 int len = strlen(sched_feat_names[i]);
799 799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) { 800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg) 801 if (neg)
802 sysctl_sched_features &= ~(1UL << i); 802 sysctl_sched_features &= ~(1UL << i);
803 else 803 else
804 sysctl_sched_features |= (1UL << i); 804 sysctl_sched_features |= (1UL << i);
805 break; 805 break;
806 } 806 }
807 } 807 }
808 808
809 if (!sched_feat_names[i]) 809 if (!sched_feat_names[i])
810 return -EINVAL; 810 return -EINVAL;
811 811
812 filp->f_pos += cnt; 812 filp->f_pos += cnt;
813 813
814 return cnt; 814 return cnt;
815 } 815 }
816 816
817 static int sched_feat_open(struct inode *inode, struct file *filp) 817 static int sched_feat_open(struct inode *inode, struct file *filp)
818 { 818 {
819 return single_open(filp, sched_feat_show, NULL); 819 return single_open(filp, sched_feat_show, NULL);
820 } 820 }
821 821
822 static struct file_operations sched_feat_fops = { 822 static struct file_operations sched_feat_fops = {
823 .open = sched_feat_open, 823 .open = sched_feat_open,
824 .write = sched_feat_write, 824 .write = sched_feat_write,
825 .read = seq_read, 825 .read = seq_read,
826 .llseek = seq_lseek, 826 .llseek = seq_lseek,
827 .release = single_release, 827 .release = single_release,
828 }; 828 };
829 829
830 static __init int sched_init_debug(void) 830 static __init int sched_init_debug(void)
831 { 831 {
832 debugfs_create_file("sched_features", 0644, NULL, NULL, 832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops); 833 &sched_feat_fops);
834 834
835 return 0; 835 return 0;
836 } 836 }
837 late_initcall(sched_init_debug); 837 late_initcall(sched_init_debug);
838 838
839 #endif 839 #endif
840 840
841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 841 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
842 842
843 /* 843 /*
844 * Number of tasks to iterate in a single balance run. 844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled. 845 * Limited because this is done with IRQs disabled.
846 */ 846 */
847 const_debug unsigned int sysctl_sched_nr_migrate = 32; 847 const_debug unsigned int sysctl_sched_nr_migrate = 32;
848 848
849 /* 849 /*
850 * ratelimit for updating the group shares. 850 * ratelimit for updating the group shares.
851 * default: 0.25ms 851 * default: 0.25ms
852 */ 852 */
853 unsigned int sysctl_sched_shares_ratelimit = 250000; 853 unsigned int sysctl_sched_shares_ratelimit = 250000;
854 854
855 /* 855 /*
856 * Inject some fuzzyness into changing the per-cpu group shares 856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness. 857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4 858 * default: 4
859 */ 859 */
860 unsigned int sysctl_sched_shares_thresh = 4; 860 unsigned int sysctl_sched_shares_thresh = 4;
861 861
862 /* 862 /*
863 * period over which we measure -rt task cpu usage in us. 863 * period over which we measure -rt task cpu usage in us.
864 * default: 1s 864 * default: 1s
865 */ 865 */
866 unsigned int sysctl_sched_rt_period = 1000000; 866 unsigned int sysctl_sched_rt_period = 1000000;
867 867
868 static __read_mostly int scheduler_running; 868 static __read_mostly int scheduler_running;
869 869
870 /* 870 /*
871 * part of the period that we allow rt tasks to run in us. 871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s 872 * default: 0.95s
873 */ 873 */
874 int sysctl_sched_rt_runtime = 950000; 874 int sysctl_sched_rt_runtime = 950000;
875 875
876 static inline u64 global_rt_period(void) 876 static inline u64 global_rt_period(void)
877 { 877 {
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879 } 879 }
880 880
881 static inline u64 global_rt_runtime(void) 881 static inline u64 global_rt_runtime(void)
882 { 882 {
883 if (sysctl_sched_rt_runtime < 0) 883 if (sysctl_sched_rt_runtime < 0)
884 return RUNTIME_INF; 884 return RUNTIME_INF;
885 885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887 } 887 }
888 888
889 #ifndef prepare_arch_switch 889 #ifndef prepare_arch_switch
890 # define prepare_arch_switch(next) do { } while (0) 890 # define prepare_arch_switch(next) do { } while (0)
891 #endif 891 #endif
892 #ifndef finish_arch_switch 892 #ifndef finish_arch_switch
893 # define finish_arch_switch(prev) do { } while (0) 893 # define finish_arch_switch(prev) do { } while (0)
894 #endif 894 #endif
895 895
896 static inline int task_current(struct rq *rq, struct task_struct *p) 896 static inline int task_current(struct rq *rq, struct task_struct *p)
897 { 897 {
898 return rq->curr == p; 898 return rq->curr == p;
899 } 899 }
900 900
901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
902 static inline int task_running(struct rq *rq, struct task_struct *p) 902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 { 903 {
904 return task_current(rq, p); 904 return task_current(rq, p);
905 } 905 }
906 906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 { 908 {
909 } 909 }
910 910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 { 912 {
913 #ifdef CONFIG_DEBUG_SPINLOCK 913 #ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */ 914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current; 915 rq->lock.owner = current;
916 #endif 916 #endif
917 /* 917 /*
918 * If we are tracking spinlock dependencies then we have to 918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from 919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current: 920 * prev into current:
921 */ 921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 923
924 spin_unlock_irq(&rq->lock); 924 spin_unlock_irq(&rq->lock);
925 } 925 }
926 926
927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 927 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
928 static inline int task_running(struct rq *rq, struct task_struct *p) 928 static inline int task_running(struct rq *rq, struct task_struct *p)
929 { 929 {
930 #ifdef CONFIG_SMP 930 #ifdef CONFIG_SMP
931 return p->oncpu; 931 return p->oncpu;
932 #else 932 #else
933 return task_current(rq, p); 933 return task_current(rq, p);
934 #endif 934 #endif
935 } 935 }
936 936
937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 937 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 { 938 {
939 #ifdef CONFIG_SMP 939 #ifdef CONFIG_SMP
940 /* 940 /*
941 * We can optimise this out completely for !SMP, because the 941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares 942 * SMP rebalancing from interrupt is the only thing that cares
943 * here. 943 * here.
944 */ 944 */
945 next->oncpu = 1; 945 next->oncpu = 1;
946 #endif 946 #endif
947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 947 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock); 948 spin_unlock_irq(&rq->lock);
949 #else 949 #else
950 spin_unlock(&rq->lock); 950 spin_unlock(&rq->lock);
951 #endif 951 #endif
952 } 952 }
953 953
954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 954 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 { 955 {
956 #ifdef CONFIG_SMP 956 #ifdef CONFIG_SMP
957 /* 957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU. 958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely 959 * We must ensure this doesn't happen until the switch is completely
960 * finished. 960 * finished.
961 */ 961 */
962 smp_wmb(); 962 smp_wmb();
963 prev->oncpu = 0; 963 prev->oncpu = 0;
964 #endif 964 #endif
965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW 965 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable(); 966 local_irq_enable();
967 #endif 967 #endif
968 } 968 }
969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 969 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
970 970
971 /* 971 /*
972 * __task_rq_lock - lock the runqueue a given task resides on. 972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled. 973 * Must be called interrupts disabled.
974 */ 974 */
975 static inline struct rq *__task_rq_lock(struct task_struct *p) 975 static inline struct rq *__task_rq_lock(struct task_struct *p)
976 __acquires(rq->lock) 976 __acquires(rq->lock)
977 { 977 {
978 for (;;) { 978 for (;;) {
979 struct rq *rq = task_rq(p); 979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock); 980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p))) 981 if (likely(rq == task_rq(p)))
982 return rq; 982 return rq;
983 spin_unlock(&rq->lock); 983 spin_unlock(&rq->lock);
984 } 984 }
985 } 985 }
986 986
987 /* 987 /*
988 * task_rq_lock - lock the runqueue a given task resides on and disable 988 * task_rq_lock - lock the runqueue a given task resides on and disable
989 * interrupts. Note the ordering: we can safely lookup the task_rq without 989 * interrupts. Note the ordering: we can safely lookup the task_rq without
990 * explicitly disabling preemption. 990 * explicitly disabling preemption.
991 */ 991 */
992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 992 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
993 __acquires(rq->lock) 993 __acquires(rq->lock)
994 { 994 {
995 struct rq *rq; 995 struct rq *rq;
996 996
997 for (;;) { 997 for (;;) {
998 local_irq_save(*flags); 998 local_irq_save(*flags);
999 rq = task_rq(p); 999 rq = task_rq(p);
1000 spin_lock(&rq->lock); 1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p))) 1001 if (likely(rq == task_rq(p)))
1002 return rq; 1002 return rq;
1003 spin_unlock_irqrestore(&rq->lock, *flags); 1003 spin_unlock_irqrestore(&rq->lock, *flags);
1004 } 1004 }
1005 } 1005 }
1006 1006
1007 void task_rq_unlock_wait(struct task_struct *p) 1007 void task_rq_unlock_wait(struct task_struct *p)
1008 { 1008 {
1009 struct rq *rq = task_rq(p); 1009 struct rq *rq = task_rq(p);
1010 1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */ 1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock); 1012 spin_unlock_wait(&rq->lock);
1013 } 1013 }
1014 1014
1015 static void __task_rq_unlock(struct rq *rq) 1015 static void __task_rq_unlock(struct rq *rq)
1016 __releases(rq->lock) 1016 __releases(rq->lock)
1017 { 1017 {
1018 spin_unlock(&rq->lock); 1018 spin_unlock(&rq->lock);
1019 } 1019 }
1020 1020
1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) 1021 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1022 __releases(rq->lock) 1022 __releases(rq->lock)
1023 { 1023 {
1024 spin_unlock_irqrestore(&rq->lock, *flags); 1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025 } 1025 }
1026 1026
1027 /* 1027 /*
1028 * this_rq_lock - lock this runqueue and disable interrupts. 1028 * this_rq_lock - lock this runqueue and disable interrupts.
1029 */ 1029 */
1030 static struct rq *this_rq_lock(void) 1030 static struct rq *this_rq_lock(void)
1031 __acquires(rq->lock) 1031 __acquires(rq->lock)
1032 { 1032 {
1033 struct rq *rq; 1033 struct rq *rq;
1034 1034
1035 local_irq_disable(); 1035 local_irq_disable();
1036 rq = this_rq(); 1036 rq = this_rq();
1037 spin_lock(&rq->lock); 1037 spin_lock(&rq->lock);
1038 1038
1039 return rq; 1039 return rq;
1040 } 1040 }
1041 1041
1042 #ifdef CONFIG_SCHED_HRTICK 1042 #ifdef CONFIG_SCHED_HRTICK
1043 /* 1043 /*
1044 * Use HR-timers to deliver accurate preemption points. 1044 * Use HR-timers to deliver accurate preemption points.
1045 * 1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the 1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a 1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event. 1048 * reschedule event.
1049 * 1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the 1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock. 1051 * rq->lock.
1052 */ 1052 */
1053 1053
1054 /* 1054 /*
1055 * Use hrtick when: 1055 * Use hrtick when:
1056 * - enabled by features 1056 * - enabled by features
1057 * - hrtimer is actually high res 1057 * - hrtimer is actually high res
1058 */ 1058 */
1059 static inline int hrtick_enabled(struct rq *rq) 1059 static inline int hrtick_enabled(struct rq *rq)
1060 { 1060 {
1061 if (!sched_feat(HRTICK)) 1061 if (!sched_feat(HRTICK))
1062 return 0; 1062 return 0;
1063 if (!cpu_active(cpu_of(rq))) 1063 if (!cpu_active(cpu_of(rq)))
1064 return 0; 1064 return 0;
1065 return hrtimer_is_hres_active(&rq->hrtick_timer); 1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066 } 1066 }
1067 1067
1068 static void hrtick_clear(struct rq *rq) 1068 static void hrtick_clear(struct rq *rq)
1069 { 1069 {
1070 if (hrtimer_active(&rq->hrtick_timer)) 1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer); 1071 hrtimer_cancel(&rq->hrtick_timer);
1072 } 1072 }
1073 1073
1074 /* 1074 /*
1075 * High-resolution timer tick. 1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled. 1076 * Runs from hardirq context with interrupts disabled.
1077 */ 1077 */
1078 static enum hrtimer_restart hrtick(struct hrtimer *timer) 1078 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 { 1079 {
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 1083
1084 spin_lock(&rq->lock); 1084 spin_lock(&rq->lock);
1085 update_rq_clock(rq); 1085 update_rq_clock(rq);
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1); 1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock); 1087 spin_unlock(&rq->lock);
1088 1088
1089 return HRTIMER_NORESTART; 1089 return HRTIMER_NORESTART;
1090 } 1090 }
1091 1091
1092 #ifdef CONFIG_SMP 1092 #ifdef CONFIG_SMP
1093 /* 1093 /*
1094 * called from hardirq (IPI) context 1094 * called from hardirq (IPI) context
1095 */ 1095 */
1096 static void __hrtick_start(void *arg) 1096 static void __hrtick_start(void *arg)
1097 { 1097 {
1098 struct rq *rq = arg; 1098 struct rq *rq = arg;
1099 1099
1100 spin_lock(&rq->lock); 1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer); 1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0; 1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock); 1103 spin_unlock(&rq->lock);
1104 } 1104 }
1105 1105
1106 /* 1106 /*
1107 * Called to set the hrtick timer state. 1107 * Called to set the hrtick timer state.
1108 * 1108 *
1109 * called with rq->lock held and irqs disabled 1109 * called with rq->lock held and irqs disabled
1110 */ 1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay) 1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 { 1112 {
1113 struct hrtimer *timer = &rq->hrtick_timer; 1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay); 1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 1115
1116 hrtimer_set_expires(timer, time); 1116 hrtimer_set_expires(timer, time);
1117 1117
1118 if (rq == this_rq()) { 1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer); 1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) { 1120 } else if (!rq->hrtick_csd_pending) {
1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); 1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 rq->hrtick_csd_pending = 1; 1122 rq->hrtick_csd_pending = 1;
1123 } 1123 }
1124 } 1124 }
1125 1125
1126 static int 1126 static int
1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) 1127 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 { 1128 {
1129 int cpu = (int)(long)hcpu; 1129 int cpu = (int)(long)hcpu;
1130 1130
1131 switch (action) { 1131 switch (action) {
1132 case CPU_UP_CANCELED: 1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN: 1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE: 1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN: 1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD: 1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN: 1137 case CPU_DEAD_FROZEN:
1138 hrtick_clear(cpu_rq(cpu)); 1138 hrtick_clear(cpu_rq(cpu));
1139 return NOTIFY_OK; 1139 return NOTIFY_OK;
1140 } 1140 }
1141 1141
1142 return NOTIFY_DONE; 1142 return NOTIFY_DONE;
1143 } 1143 }
1144 1144
1145 static __init void init_hrtick(void) 1145 static __init void init_hrtick(void)
1146 { 1146 {
1147 hotcpu_notifier(hotplug_hrtick, 0); 1147 hotcpu_notifier(hotplug_hrtick, 0);
1148 } 1148 }
1149 #else 1149 #else
1150 /* 1150 /*
1151 * Called to set the hrtick timer state. 1151 * Called to set the hrtick timer state.
1152 * 1152 *
1153 * called with rq->lock held and irqs disabled 1153 * called with rq->lock held and irqs disabled
1154 */ 1154 */
1155 static void hrtick_start(struct rq *rq, u64 delay) 1155 static void hrtick_start(struct rq *rq, u64 delay)
1156 { 1156 {
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, 1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL_PINNED, 0); 1158 HRTIMER_MODE_REL_PINNED, 0);
1159 } 1159 }
1160 1160
1161 static inline void init_hrtick(void) 1161 static inline void init_hrtick(void)
1162 { 1162 {
1163 } 1163 }
1164 #endif /* CONFIG_SMP */ 1164 #endif /* CONFIG_SMP */
1165 1165
1166 static void init_rq_hrtick(struct rq *rq) 1166 static void init_rq_hrtick(struct rq *rq)
1167 { 1167 {
1168 #ifdef CONFIG_SMP 1168 #ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0; 1169 rq->hrtick_csd_pending = 0;
1170 1170
1171 rq->hrtick_csd.flags = 0; 1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start; 1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq; 1173 rq->hrtick_csd.info = rq;
1174 #endif 1174 #endif
1175 1175
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick; 1177 rq->hrtick_timer.function = hrtick;
1178 } 1178 }
1179 #else /* CONFIG_SCHED_HRTICK */ 1179 #else /* CONFIG_SCHED_HRTICK */
1180 static inline void hrtick_clear(struct rq *rq) 1180 static inline void hrtick_clear(struct rq *rq)
1181 { 1181 {
1182 } 1182 }
1183 1183
1184 static inline void init_rq_hrtick(struct rq *rq) 1184 static inline void init_rq_hrtick(struct rq *rq)
1185 { 1185 {
1186 } 1186 }
1187 1187
1188 static inline void init_hrtick(void) 1188 static inline void init_hrtick(void)
1189 { 1189 {
1190 } 1190 }
1191 #endif /* CONFIG_SCHED_HRTICK */ 1191 #endif /* CONFIG_SCHED_HRTICK */
1192 1192
1193 /* 1193 /*
1194 * resched_task - mark a task 'to be rescheduled now'. 1194 * resched_task - mark a task 'to be rescheduled now'.
1195 * 1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it 1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on 1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU. 1198 * the target CPU.
1199 */ 1199 */
1200 #ifdef CONFIG_SMP 1200 #ifdef CONFIG_SMP
1201 1201
1202 #ifndef tsk_is_polling 1202 #ifndef tsk_is_polling
1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) 1203 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204 #endif 1204 #endif
1205 1205
1206 static void resched_task(struct task_struct *p) 1206 static void resched_task(struct task_struct *p)
1207 { 1207 {
1208 int cpu; 1208 int cpu;
1209 1209
1210 assert_spin_locked(&task_rq(p)->lock); 1210 assert_spin_locked(&task_rq(p)->lock);
1211 1211
1212 if (test_tsk_need_resched(p)) 1212 if (test_tsk_need_resched(p))
1213 return; 1213 return;
1214 1214
1215 set_tsk_need_resched(p); 1215 set_tsk_need_resched(p);
1216 1216
1217 cpu = task_cpu(p); 1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id()) 1218 if (cpu == smp_processor_id())
1219 return; 1219 return;
1220 1220
1221 /* NEED_RESCHED must be visible before we test polling */ 1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb(); 1222 smp_mb();
1223 if (!tsk_is_polling(p)) 1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu); 1224 smp_send_reschedule(cpu);
1225 } 1225 }
1226 1226
1227 static void resched_cpu(int cpu) 1227 static void resched_cpu(int cpu)
1228 { 1228 {
1229 struct rq *rq = cpu_rq(cpu); 1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags; 1230 unsigned long flags;
1231 1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags)) 1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return; 1233 return;
1234 resched_task(cpu_curr(cpu)); 1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags); 1235 spin_unlock_irqrestore(&rq->lock, flags);
1236 } 1236 }
1237 1237
1238 #ifdef CONFIG_NO_HZ 1238 #ifdef CONFIG_NO_HZ
1239 /* 1239 /*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an 1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event 1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely 1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the 1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into 1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer 1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event. 1247 * wheel for the next timer event.
1248 */ 1248 */
1249 void wake_up_idle_cpu(int cpu) 1249 void wake_up_idle_cpu(int cpu)
1250 { 1250 {
1251 struct rq *rq = cpu_rq(cpu); 1251 struct rq *rq = cpu_rq(cpu);
1252 1252
1253 if (cpu == smp_processor_id()) 1253 if (cpu == smp_processor_id())
1254 return; 1254 return;
1255 1255
1256 /* 1256 /*
1257 * This is safe, as this function is called with the timer 1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way 1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will 1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new 1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically. 1261 * timer into account automatically.
1262 */ 1262 */
1263 if (rq->curr != rq->idle) 1263 if (rq->curr != rq->idle)
1264 return; 1264 return;
1265 1265
1266 /* 1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU 1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the 1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule() 1269 * idle task through an additional NOOP schedule()
1270 */ 1270 */
1271 set_tsk_need_resched(rq->idle); 1271 set_tsk_need_resched(rq->idle);
1272 1272
1273 /* NEED_RESCHED must be visible before we test polling */ 1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb(); 1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle)) 1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu); 1276 smp_send_reschedule(cpu);
1277 } 1277 }
1278 #endif /* CONFIG_NO_HZ */ 1278 #endif /* CONFIG_NO_HZ */
1279 1279
1280 #else /* !CONFIG_SMP */ 1280 #else /* !CONFIG_SMP */
1281 static void resched_task(struct task_struct *p) 1281 static void resched_task(struct task_struct *p)
1282 { 1282 {
1283 assert_spin_locked(&task_rq(p)->lock); 1283 assert_spin_locked(&task_rq(p)->lock);
1284 set_tsk_need_resched(p); 1284 set_tsk_need_resched(p);
1285 } 1285 }
1286 #endif /* CONFIG_SMP */ 1286 #endif /* CONFIG_SMP */
1287 1287
1288 #if BITS_PER_LONG == 32 1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL) 1289 # define WMULT_CONST (~0UL)
1290 #else 1290 #else
1291 # define WMULT_CONST (1UL << 32) 1291 # define WMULT_CONST (1UL << 32)
1292 #endif 1292 #endif
1293 1293
1294 #define WMULT_SHIFT 32 1294 #define WMULT_SHIFT 32
1295 1295
1296 /* 1296 /*
1297 * Shift right and round: 1297 * Shift right and round:
1298 */ 1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300 1300
1301 /* 1301 /*
1302 * delta *= weight / lw 1302 * delta *= weight / lw
1303 */ 1303 */
1304 static unsigned long 1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw) 1306 struct load_weight *lw)
1307 { 1307 {
1308 u64 tmp; 1308 u64 tmp;
1309 1309
1310 if (!lw->inv_weight) { 1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) 1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1; 1312 lw->inv_weight = 1;
1313 else 1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) 1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1); 1315 / (lw->weight+1);
1316 } 1316 }
1317 1317
1318 tmp = (u64)delta_exec * weight; 1318 tmp = (u64)delta_exec * weight;
1319 /* 1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication: 1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */ 1321 */
1322 if (unlikely(tmp > WMULT_CONST)) 1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2); 1324 WMULT_SHIFT/2);
1325 else 1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 } 1329 }
1330 1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 { 1332 {
1333 lw->weight += inc; 1333 lw->weight += inc;
1334 lw->inv_weight = 0; 1334 lw->inv_weight = 0;
1335 } 1335 }
1336 1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 { 1338 {
1339 lw->weight -= dec; 1339 lw->weight -= dec;
1340 lw->inv_weight = 0; 1340 lw->inv_weight = 0;
1341 } 1341 }
1342 1342
1343 /* 1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that 1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its 1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time 1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc. 1349 * slice expiry etc.
1350 */ 1350 */
1351 1351
1352 #define WEIGHT_IDLEPRIO 3 1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765 1353 #define WMULT_IDLEPRIO 1431655765
1354 1354
1355 /* 1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every 1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0. 1359 * that remained on nice 0.
1360 * 1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level, 1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then 1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.) 1365 * the relative distance between them is ~25%.)
1366 */ 1366 */
1367 static const int prio_to_weight[40] = { 1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423, 1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137, 1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45, 1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15, 1375 /* 15 */ 36, 29, 23, 18, 15,
1376 }; 1376 };
1377 1377
1378 /* 1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * 1380 *
1381 * In cases where the weight does not change often, we can use the 1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions 1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications: 1383 * into multiplications:
1384 */ 1384 */
1385 static const u32 prio_to_wmult[40] = { 1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 }; 1394 };
1395 1395
1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); 1396 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397 1397
1398 /* 1398 /*
1399 * runqueue iterator, to support SMP load-balancing between different 1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data 1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper: 1401 * structures to the load-balancing proper:
1402 */ 1402 */
1403 struct rq_iterator { 1403 struct rq_iterator {
1404 void *arg; 1404 void *arg;
1405 struct task_struct *(*start)(void *); 1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *); 1406 struct task_struct *(*next)(void *);
1407 }; 1407 };
1408 1408
1409 #ifdef CONFIG_SMP 1409 #ifdef CONFIG_SMP
1410 static unsigned long 1410 static unsigned long
1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 1411 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd, 1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned, 1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator); 1414 int *this_best_prio, struct rq_iterator *iterator);
1415 1415
1416 static int 1416 static int
1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, 1417 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle, 1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator); 1419 struct rq_iterator *iterator);
1420 #endif 1420 #endif
1421 1421
1422 /* Time spent by the tasks of the cpu accounting group executing in ... */ 1422 /* Time spent by the tasks of the cpu accounting group executing in ... */
1423 enum cpuacct_stat_index { 1423 enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */ 1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */ 1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426 1426
1427 CPUACCT_STAT_NSTATS, 1427 CPUACCT_STAT_NSTATS,
1428 }; 1428 };
1429 1429
1430 #ifdef CONFIG_CGROUP_CPUACCT 1430 #ifdef CONFIG_CGROUP_CPUACCT
1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime); 1431 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 static void cpuacct_update_stats(struct task_struct *tsk, 1432 static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val); 1433 enum cpuacct_stat_index idx, cputime_t val);
1434 #else 1434 #else
1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 1435 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 static inline void cpuacct_update_stats(struct task_struct *tsk, 1436 static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {} 1437 enum cpuacct_stat_index idx, cputime_t val) {}
1438 #endif 1438 #endif
1439 1439
1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load) 1440 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441 { 1441 {
1442 update_load_add(&rq->load, load); 1442 update_load_add(&rq->load, load);
1443 } 1443 }
1444 1444
1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load) 1445 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446 { 1446 {
1447 update_load_sub(&rq->load, load); 1447 update_load_sub(&rq->load, load);
1448 } 1448 }
1449 1449
1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) 1450 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1451 typedef int (*tg_visitor)(struct task_group *, void *); 1451 typedef int (*tg_visitor)(struct task_group *, void *);
1452 1452
1453 /* 1453 /*
1454 * Iterate the full tree, calling @down when first entering a node and @up when 1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time. 1455 * leaving it for the final time.
1456 */ 1456 */
1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 1457 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 { 1458 {
1459 struct task_group *parent, *child; 1459 struct task_group *parent, *child;
1460 int ret; 1460 int ret;
1461 1461
1462 rcu_read_lock(); 1462 rcu_read_lock();
1463 parent = &root_task_group; 1463 parent = &root_task_group;
1464 down: 1464 down:
1465 ret = (*down)(parent, data); 1465 ret = (*down)(parent, data);
1466 if (ret) 1466 if (ret)
1467 goto out_unlock; 1467 goto out_unlock;
1468 list_for_each_entry_rcu(child, &parent->children, siblings) { 1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child; 1469 parent = child;
1470 goto down; 1470 goto down;
1471 1471
1472 up: 1472 up:
1473 continue; 1473 continue;
1474 } 1474 }
1475 ret = (*up)(parent, data); 1475 ret = (*up)(parent, data);
1476 if (ret) 1476 if (ret)
1477 goto out_unlock; 1477 goto out_unlock;
1478 1478
1479 child = parent; 1479 child = parent;
1480 parent = parent->parent; 1480 parent = parent->parent;
1481 if (parent) 1481 if (parent)
1482 goto up; 1482 goto up;
1483 out_unlock: 1483 out_unlock:
1484 rcu_read_unlock(); 1484 rcu_read_unlock();
1485 1485
1486 return ret; 1486 return ret;
1487 } 1487 }
1488 1488
1489 static int tg_nop(struct task_group *tg, void *data) 1489 static int tg_nop(struct task_group *tg, void *data)
1490 { 1490 {
1491 return 0; 1491 return 0;
1492 } 1492 }
1493 #endif 1493 #endif
1494 1494
1495 #ifdef CONFIG_SMP 1495 #ifdef CONFIG_SMP
1496 static unsigned long source_load(int cpu, int type); 1496 static unsigned long source_load(int cpu, int type);
1497 static unsigned long target_load(int cpu, int type); 1497 static unsigned long target_load(int cpu, int type);
1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); 1498 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499 1499
1500 static unsigned long cpu_avg_load_per_task(int cpu) 1500 static unsigned long cpu_avg_load_per_task(int cpu)
1501 { 1501 {
1502 struct rq *rq = cpu_rq(cpu); 1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1504 1504
1505 if (nr_running) 1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running; 1506 rq->avg_load_per_task = rq->load.weight / nr_running;
1507 else 1507 else
1508 rq->avg_load_per_task = 0; 1508 rq->avg_load_per_task = 0;
1509 1509
1510 return rq->avg_load_per_task; 1510 return rq->avg_load_per_task;
1511 } 1511 }
1512 1512
1513 #ifdef CONFIG_FAIR_GROUP_SCHED 1513 #ifdef CONFIG_FAIR_GROUP_SCHED
1514 1514
1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares); 1515 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516 1516
1517 /* 1517 /*
1518 * Calculate and set the cpu's group shares. 1518 * Calculate and set the cpu's group shares.
1519 */ 1519 */
1520 static void 1520 static void
1521 update_group_shares_cpu(struct task_group *tg, int cpu, 1521 update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight) 1522 unsigned long sd_shares, unsigned long sd_rq_weight)
1523 { 1523 {
1524 unsigned long shares; 1524 unsigned long shares;
1525 unsigned long rq_weight; 1525 unsigned long rq_weight;
1526 1526
1527 if (!tg->se[cpu]) 1527 if (!tg->se[cpu])
1528 return; 1528 return;
1529 1529
1530 rq_weight = tg->cfs_rq[cpu]->rq_weight; 1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531 1531
1532 /* 1532 /*
1533 * \Sum shares * rq_weight 1533 * \Sum shares * rq_weight
1534 * shares = ----------------------- 1534 * shares = -----------------------
1535 * \Sum rq_weight 1535 * \Sum rq_weight
1536 * 1536 *
1537 */ 1537 */
1538 shares = (sd_shares * rq_weight) / sd_rq_weight; 1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); 1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540 1540
1541 if (abs(shares - tg->se[cpu]->load.weight) > 1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) { 1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu); 1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags; 1544 unsigned long flags;
1545 1545
1546 spin_lock_irqsave(&rq->lock, flags); 1546 spin_lock_irqsave(&rq->lock, flags);
1547 tg->cfs_rq[cpu]->shares = shares; 1547 tg->cfs_rq[cpu]->shares = shares;
1548 1548
1549 __set_se_shares(tg->se[cpu], shares); 1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags); 1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 } 1551 }
1552 } 1552 }
1553 1553
1554 /* 1554 /*
1555 * Re-compute the task group their per cpu shares over the given domain. 1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a 1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups. 1557 * parent group depends on the shares of its child groups.
1558 */ 1558 */
1559 static int tg_shares_up(struct task_group *tg, void *data) 1559 static int tg_shares_up(struct task_group *tg, void *data)
1560 { 1560 {
1561 unsigned long weight, rq_weight = 0; 1561 unsigned long weight, rq_weight = 0;
1562 unsigned long shares = 0; 1562 unsigned long shares = 0;
1563 struct sched_domain *sd = data; 1563 struct sched_domain *sd = data;
1564 int i; 1564 int i;
1565 1565
1566 for_each_cpu(i, sched_domain_span(sd)) { 1566 for_each_cpu(i, sched_domain_span(sd)) {
1567 /* 1567 /*
1568 * If there are currently no tasks on the cpu pretend there 1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to 1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation. 1570 * run here it will not get delayed by group starvation.
1571 */ 1571 */
1572 weight = tg->cfs_rq[i]->load.weight; 1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight) 1573 if (!weight)
1574 weight = NICE_0_LOAD; 1574 weight = NICE_0_LOAD;
1575 1575
1576 tg->cfs_rq[i]->rq_weight = weight; 1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight; 1577 rq_weight += weight;
1578 shares += tg->cfs_rq[i]->shares; 1578 shares += tg->cfs_rq[i]->shares;
1579 } 1579 }
1580 1580
1581 if ((!shares && rq_weight) || shares > tg->shares) 1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares; 1582 shares = tg->shares;
1583 1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) 1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares; 1585 shares = tg->shares;
1586 1586
1587 for_each_cpu(i, sched_domain_span(sd)) 1587 for_each_cpu(i, sched_domain_span(sd))
1588 update_group_shares_cpu(tg, i, shares, rq_weight); 1588 update_group_shares_cpu(tg, i, shares, rq_weight);
1589 1589
1590 return 0; 1590 return 0;
1591 } 1591 }
1592 1592
1593 /* 1593 /*
1594 * Compute the cpu's hierarchical load factor for each task group. 1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child 1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load. 1596 * group is a fraction of its parents load.
1597 */ 1597 */
1598 static int tg_load_down(struct task_group *tg, void *data) 1598 static int tg_load_down(struct task_group *tg, void *data)
1599 { 1599 {
1600 unsigned long load; 1600 unsigned long load;
1601 long cpu = (long)data; 1601 long cpu = (long)data;
1602 1602
1603 if (!tg->parent) { 1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight; 1604 load = cpu_rq(cpu)->load.weight;
1605 } else { 1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load; 1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares; 1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 } 1609 }
1610 1610
1611 tg->cfs_rq[cpu]->h_load = load; 1611 tg->cfs_rq[cpu]->h_load = load;
1612 1612
1613 return 0; 1613 return 0;
1614 } 1614 }
1615 1615
1616 static void update_shares(struct sched_domain *sd) 1616 static void update_shares(struct sched_domain *sd)
1617 { 1617 {
1618 u64 now = cpu_clock(raw_smp_processor_id()); 1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update; 1619 s64 elapsed = now - sd->last_update;
1620 1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { 1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now; 1622 sd->last_update = now;
1623 walk_tg_tree(tg_nop, tg_shares_up, sd); 1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
1624 } 1624 }
1625 } 1625 }
1626 1626
1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd) 1627 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628 { 1628 {
1629 spin_unlock(&rq->lock); 1629 spin_unlock(&rq->lock);
1630 update_shares(sd); 1630 update_shares(sd);
1631 spin_lock(&rq->lock); 1631 spin_lock(&rq->lock);
1632 } 1632 }
1633 1633
1634 static void update_h_load(long cpu) 1634 static void update_h_load(long cpu)
1635 { 1635 {
1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 } 1637 }
1638 1638
1639 #else 1639 #else
1640 1640
1641 static inline void update_shares(struct sched_domain *sd) 1641 static inline void update_shares(struct sched_domain *sd)
1642 { 1642 {
1643 } 1643 }
1644 1644
1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) 1645 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646 { 1646 {
1647 } 1647 }
1648 1648
1649 #endif 1649 #endif
1650 1650
1651 #ifdef CONFIG_PREEMPT 1651 #ifdef CONFIG_PREEMPT
1652 1652
1653 /* 1653 /*
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all 1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the 1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which 1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it 1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput. 1659 * also adds more overhead and therefore may reduce throughput.
1660 */ 1660 */
1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1661 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock) 1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock) 1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock) 1664 __acquires(this_rq->lock)
1665 { 1665 {
1666 spin_unlock(&this_rq->lock); 1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest); 1667 double_rq_lock(this_rq, busiest);
1668 1668
1669 return 1; 1669 return 1;
1670 } 1670 }
1671 1671
1672 #else 1672 #else
1673 /* 1673 /*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of 1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are 1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will 1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention, 1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function. 1678 * regardless of entry order into the function.
1679 */ 1679 */
1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1680 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 __releases(this_rq->lock) 1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock) 1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock) 1683 __acquires(this_rq->lock)
1684 { 1684 {
1685 int ret = 0; 1685 int ret = 0;
1686 1686
1687 if (unlikely(!spin_trylock(&busiest->lock))) { 1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) { 1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock); 1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock); 1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); 1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1; 1692 ret = 1;
1693 } else 1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); 1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 } 1695 }
1696 return ret; 1696 return ret;
1697 } 1697 }
1698 1698
1699 #endif /* CONFIG_PREEMPT */ 1699 #endif /* CONFIG_PREEMPT */
1700 1700
1701 /* 1701 /*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */ 1703 */
1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1704 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 { 1705 {
1706 if (unlikely(!irqs_disabled())) { 1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */ 1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock); 1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1); 1709 BUG_ON(1);
1710 } 1710 }
1711 1711
1712 return _double_lock_balance(this_rq, busiest); 1712 return _double_lock_balance(this_rq, busiest);
1713 } 1713 }
1714 1714
1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1715 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock) 1716 __releases(busiest->lock)
1717 { 1717 {
1718 spin_unlock(&busiest->lock); 1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720 } 1720 }
1721 #endif 1721 #endif
1722 1722
1723 #ifdef CONFIG_FAIR_GROUP_SCHED 1723 #ifdef CONFIG_FAIR_GROUP_SCHED
1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) 1724 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725 { 1725 {
1726 #ifdef CONFIG_SMP 1726 #ifdef CONFIG_SMP
1727 cfs_rq->shares = shares; 1727 cfs_rq->shares = shares;
1728 #endif 1728 #endif
1729 } 1729 }
1730 #endif 1730 #endif
1731 1731
1732 static void calc_load_account_active(struct rq *this_rq); 1732 static void calc_load_account_active(struct rq *this_rq);
1733 1733
1734 #include "sched_stats.h" 1734 #include "sched_stats.h"
1735 #include "sched_idletask.c" 1735 #include "sched_idletask.c"
1736 #include "sched_fair.c" 1736 #include "sched_fair.c"
1737 #include "sched_rt.c" 1737 #include "sched_rt.c"
1738 #ifdef CONFIG_SCHED_DEBUG 1738 #ifdef CONFIG_SCHED_DEBUG
1739 # include "sched_debug.c" 1739 # include "sched_debug.c"
1740 #endif 1740 #endif
1741 1741
1742 #define sched_class_highest (&rt_sched_class) 1742 #define sched_class_highest (&rt_sched_class)
1743 #define for_each_class(class) \ 1743 #define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next) 1744 for (class = sched_class_highest; class; class = class->next)
1745 1745
1746 static void inc_nr_running(struct rq *rq) 1746 static void inc_nr_running(struct rq *rq)
1747 { 1747 {
1748 rq->nr_running++; 1748 rq->nr_running++;
1749 } 1749 }
1750 1750
1751 static void dec_nr_running(struct rq *rq) 1751 static void dec_nr_running(struct rq *rq)
1752 { 1752 {
1753 rq->nr_running--; 1753 rq->nr_running--;
1754 } 1754 }
1755 1755
1756 static void set_load_weight(struct task_struct *p) 1756 static void set_load_weight(struct task_struct *p)
1757 { 1757 {
1758 if (task_has_rt_policy(p)) { 1758 if (task_has_rt_policy(p)) {
1759 p->se.load.weight = prio_to_weight[0] * 2; 1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1; 1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return; 1761 return;
1762 } 1762 }
1763 1763
1764 /* 1764 /*
1765 * SCHED_IDLE tasks get minimal weight: 1765 * SCHED_IDLE tasks get minimal weight:
1766 */ 1766 */
1767 if (p->policy == SCHED_IDLE) { 1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO; 1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO; 1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return; 1770 return;
1771 } 1771 }
1772 1772
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; 1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; 1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 } 1775 }
1776 1776
1777 static void update_avg(u64 *avg, u64 sample) 1777 static void update_avg(u64 *avg, u64 sample)
1778 { 1778 {
1779 s64 diff = sample - *avg; 1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3; 1780 *avg += diff >> 3;
1781 } 1781 }
1782 1782
1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) 1783 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 { 1784 {
1785 if (wakeup) 1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime; 1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787 1787
1788 sched_info_queued(p); 1788 sched_info_queued(p);
1789 p->sched_class->enqueue_task(rq, p, wakeup); 1789 p->sched_class->enqueue_task(rq, p, wakeup);
1790 p->se.on_rq = 1; 1790 p->se.on_rq = 1;
1791 } 1791 }
1792 1792
1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) 1793 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 { 1794 {
1795 if (sleep) { 1795 if (sleep) {
1796 if (p->se.last_wakeup) { 1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap, 1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup); 1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0; 1799 p->se.last_wakeup = 0;
1800 } else { 1800 } else {
1801 update_avg(&p->se.avg_wakeup, 1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity); 1802 sysctl_sched_wakeup_granularity);
1803 } 1803 }
1804 } 1804 }
1805 1805
1806 sched_info_dequeued(p); 1806 sched_info_dequeued(p);
1807 p->sched_class->dequeue_task(rq, p, sleep); 1807 p->sched_class->dequeue_task(rq, p, sleep);
1808 p->se.on_rq = 0; 1808 p->se.on_rq = 0;
1809 } 1809 }
1810 1810
1811 /* 1811 /*
1812 * __normal_prio - return the priority that is based on the static prio 1812 * __normal_prio - return the priority that is based on the static prio
1813 */ 1813 */
1814 static inline int __normal_prio(struct task_struct *p) 1814 static inline int __normal_prio(struct task_struct *p)
1815 { 1815 {
1816 return p->static_prio; 1816 return p->static_prio;
1817 } 1817 }
1818 1818
1819 /* 1819 /*
1820 * Calculate the expected normal priority: i.e. priority 1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be 1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork, 1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity 1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates. 1824 * estimator recalculates.
1825 */ 1825 */
1826 static inline int normal_prio(struct task_struct *p) 1826 static inline int normal_prio(struct task_struct *p)
1827 { 1827 {
1828 int prio; 1828 int prio;
1829 1829
1830 if (task_has_rt_policy(p)) 1830 if (task_has_rt_policy(p))
1831 prio = MAX_RT_PRIO-1 - p->rt_priority; 1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else 1832 else
1833 prio = __normal_prio(p); 1833 prio = __normal_prio(p);
1834 return prio; 1834 return prio;
1835 } 1835 }
1836 1836
1837 /* 1837 /*
1838 * Calculate the current priority, i.e. the priority 1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might 1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by 1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got 1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio. 1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */ 1843 */
1844 static int effective_prio(struct task_struct *p) 1844 static int effective_prio(struct task_struct *p)
1845 { 1845 {
1846 p->normal_prio = normal_prio(p); 1846 p->normal_prio = normal_prio(p);
1847 /* 1847 /*
1848 * If we are RT tasks or we were boosted to RT priority, 1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority 1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority: 1850 * to the normal priority:
1851 */ 1851 */
1852 if (!rt_prio(p->prio)) 1852 if (!rt_prio(p->prio))
1853 return p->normal_prio; 1853 return p->normal_prio;
1854 return p->prio; 1854 return p->prio;
1855 } 1855 }
1856 1856
1857 /* 1857 /*
1858 * activate_task - move a task to the runqueue. 1858 * activate_task - move a task to the runqueue.
1859 */ 1859 */
1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) 1860 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 { 1861 {
1862 if (task_contributes_to_load(p)) 1862 if (task_contributes_to_load(p))
1863 rq->nr_uninterruptible--; 1863 rq->nr_uninterruptible--;
1864 1864
1865 enqueue_task(rq, p, wakeup); 1865 enqueue_task(rq, p, wakeup);
1866 inc_nr_running(rq); 1866 inc_nr_running(rq);
1867 } 1867 }
1868 1868
1869 /* 1869 /*
1870 * deactivate_task - remove a task from the runqueue. 1870 * deactivate_task - remove a task from the runqueue.
1871 */ 1871 */
1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) 1872 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 { 1873 {
1874 if (task_contributes_to_load(p)) 1874 if (task_contributes_to_load(p))
1875 rq->nr_uninterruptible++; 1875 rq->nr_uninterruptible++;
1876 1876
1877 dequeue_task(rq, p, sleep); 1877 dequeue_task(rq, p, sleep);
1878 dec_nr_running(rq); 1878 dec_nr_running(rq);
1879 } 1879 }
1880 1880
1881 /** 1881 /**
1882 * task_curr - is this task currently executing on a CPU? 1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question. 1883 * @p: the task in question.
1884 */ 1884 */
1885 inline int task_curr(const struct task_struct *p) 1885 inline int task_curr(const struct task_struct *p)
1886 { 1886 {
1887 return cpu_curr(task_cpu(p)) == p; 1887 return cpu_curr(task_cpu(p)) == p;
1888 } 1888 }
1889 1889
1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1890 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 { 1891 {
1892 set_task_rq(p, cpu); 1892 set_task_rq(p, cpu);
1893 #ifdef CONFIG_SMP 1893 #ifdef CONFIG_SMP
1894 /* 1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of 1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment. 1897 * per-task data have been completed by this moment.
1898 */ 1898 */
1899 smp_wmb(); 1899 smp_wmb();
1900 task_thread_info(p)->cpu = cpu; 1900 task_thread_info(p)->cpu = cpu;
1901 #endif 1901 #endif
1902 } 1902 }
1903 1903
1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p, 1904 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class, 1905 const struct sched_class *prev_class,
1906 int oldprio, int running) 1906 int oldprio, int running)
1907 { 1907 {
1908 if (prev_class != p->sched_class) { 1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from) 1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running); 1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running); 1911 p->sched_class->switched_to(rq, p, running);
1912 } else 1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running); 1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914 } 1914 }
1915 1915
1916 #ifdef CONFIG_SMP 1916 #ifdef CONFIG_SMP
1917 1917
1918 /* Used instead of source_load when we know the type == 0 */ 1918 /* Used instead of source_load when we know the type == 0 */
1919 static unsigned long weighted_cpuload(const int cpu) 1919 static unsigned long weighted_cpuload(const int cpu)
1920 { 1920 {
1921 return cpu_rq(cpu)->load.weight; 1921 return cpu_rq(cpu)->load.weight;
1922 } 1922 }
1923 1923
1924 /* 1924 /*
1925 * Is this task likely cache-hot: 1925 * Is this task likely cache-hot:
1926 */ 1926 */
1927 static int 1927 static int
1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 1928 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 { 1929 {
1930 s64 delta; 1930 s64 delta;
1931 1931
1932 /* 1932 /*
1933 * Buddy candidates are cache hot: 1933 * Buddy candidates are cache hot:
1934 */ 1934 */
1935 if (sched_feat(CACHE_HOT_BUDDY) && 1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next || 1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last)) 1937 &p->se == cfs_rq_of(&p->se)->last))
1938 return 1; 1938 return 1;
1939 1939
1940 if (p->sched_class != &fair_sched_class) 1940 if (p->sched_class != &fair_sched_class)
1941 return 0; 1941 return 0;
1942 1942
1943 if (sysctl_sched_migration_cost == -1) 1943 if (sysctl_sched_migration_cost == -1)
1944 return 1; 1944 return 1;
1945 if (sysctl_sched_migration_cost == 0) 1945 if (sysctl_sched_migration_cost == 0)
1946 return 0; 1946 return 0;
1947 1947
1948 delta = now - p->se.exec_start; 1948 delta = now - p->se.exec_start;
1949 1949
1950 return delta < (s64)sysctl_sched_migration_cost; 1950 return delta < (s64)sysctl_sched_migration_cost;
1951 } 1951 }
1952 1952
1953 1953
1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 1954 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 { 1955 {
1956 int old_cpu = task_cpu(p); 1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); 1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p), 1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); 1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960 u64 clock_offset; 1960 u64 clock_offset;
1961 1961
1962 clock_offset = old_rq->clock - new_rq->clock; 1962 clock_offset = old_rq->clock - new_rq->clock;
1963 1963
1964 trace_sched_migrate_task(p, new_cpu); 1964 trace_sched_migrate_task(p, new_cpu);
1965 1965
1966 #ifdef CONFIG_SCHEDSTATS 1966 #ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start) 1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset; 1968 p->se.wait_start -= clock_offset;
1969 if (p->se.sleep_start) 1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset; 1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start) 1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset; 1972 p->se.block_start -= clock_offset;
1973 #endif 1973 #endif
1974 if (old_cpu != new_cpu) { 1974 if (old_cpu != new_cpu) {
1975 p->se.nr_migrations++; 1975 p->se.nr_migrations++;
1976 new_rq->nr_migrations_in++; 1976 new_rq->nr_migrations_in++;
1977 #ifdef CONFIG_SCHEDSTATS 1977 #ifdef CONFIG_SCHEDSTATS
1978 if (task_hot(p, old_rq->clock, NULL)) 1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations); 1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 #endif 1980 #endif
1981 perf_counter_task_migration(p, new_cpu); 1981 perf_counter_task_migration(p, new_cpu);
1982 } 1982 }
1983 p->se.vruntime -= old_cfsrq->min_vruntime - 1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime; 1984 new_cfsrq->min_vruntime;
1985 1985
1986 __set_task_cpu(p, new_cpu); 1986 __set_task_cpu(p, new_cpu);
1987 } 1987 }
1988 1988
1989 struct migration_req { 1989 struct migration_req {
1990 struct list_head list; 1990 struct list_head list;
1991 1991
1992 struct task_struct *task; 1992 struct task_struct *task;
1993 int dest_cpu; 1993 int dest_cpu;
1994 1994
1995 struct completion done; 1995 struct completion done;
1996 }; 1996 };
1997 1997
1998 /* 1998 /*
1999 * The task's runqueue lock must be held. 1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread. 2000 * Returns true if you have to wait for migration thread.
2001 */ 2001 */
2002 static int 2002 static int
2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) 2003 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2004 { 2004 {
2005 struct rq *rq = task_rq(p); 2005 struct rq *rq = task_rq(p);
2006 2006
2007 /* 2007 /*
2008 * If the task is not on a runqueue (and not running), then 2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field. 2009 * it is sufficient to simply update the task's cpu field.
2010 */ 2010 */
2011 if (!p->se.on_rq && !task_running(rq, p)) { 2011 if (!p->se.on_rq && !task_running(rq, p)) {
2012 set_task_cpu(p, dest_cpu); 2012 set_task_cpu(p, dest_cpu);
2013 return 0; 2013 return 0;
2014 } 2014 }
2015 2015
2016 init_completion(&req->done); 2016 init_completion(&req->done);
2017 req->task = p; 2017 req->task = p;
2018 req->dest_cpu = dest_cpu; 2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue); 2019 list_add(&req->list, &rq->migration_queue);
2020 2020
2021 return 1; 2021 return 1;
2022 } 2022 }
2023 2023
2024 /* 2024 /*
2025 * wait_task_context_switch - wait for a thread to complete at least one 2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch. 2026 * context switch.
2027 * 2027 *
2028 * @p must not be current. 2028 * @p must not be current.
2029 */ 2029 */
2030 void wait_task_context_switch(struct task_struct *p) 2030 void wait_task_context_switch(struct task_struct *p)
2031 { 2031 {
2032 unsigned long nvcsw, nivcsw, flags; 2032 unsigned long nvcsw, nivcsw, flags;
2033 int running; 2033 int running;
2034 struct rq *rq; 2034 struct rq *rq;
2035 2035
2036 nvcsw = p->nvcsw; 2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw; 2037 nivcsw = p->nivcsw;
2038 for (;;) { 2038 for (;;) {
2039 /* 2039 /*
2040 * The runqueue is assigned before the actual context 2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock. 2041 * switch. We need to take the runqueue lock.
2042 * 2042 *
2043 * We could check initially without the lock but it is 2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every 2044 * very likely that we need to take the lock in every
2045 * iteration. 2045 * iteration.
2046 */ 2046 */
2047 rq = task_rq_lock(p, &flags); 2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p); 2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags); 2049 task_rq_unlock(rq, &flags);
2050 2050
2051 if (likely(!running)) 2051 if (likely(!running))
2052 break; 2052 break;
2053 /* 2053 /*
2054 * The switch count is incremented before the actual 2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be 2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed. 2056 * sure at least one completed.
2057 */ 2057 */
2058 if ((p->nvcsw - nvcsw) > 1) 2058 if ((p->nvcsw - nvcsw) > 1)
2059 break; 2059 break;
2060 if ((p->nivcsw - nivcsw) > 1) 2060 if ((p->nivcsw - nivcsw) > 1)
2061 break; 2061 break;
2062 2062
2063 cpu_relax(); 2063 cpu_relax();
2064 } 2064 }
2065 } 2065 }
2066 2066
2067 /* 2067 /*
2068 * wait_task_inactive - wait for a thread to unschedule. 2068 * wait_task_inactive - wait for a thread to unschedule.
2069 * 2069 *
2070 * If @match_state is nonzero, it's the @p->state value just checked and 2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up, 2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU, 2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call 2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that 2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time. 2075 * @p has remained unscheduled the whole time.
2076 * 2076 *
2077 * The caller must ensure that the task *will* unschedule sometime soon, 2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't 2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with 2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are 2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive. 2081 * waiting to become inactive.
2082 */ 2082 */
2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state) 2083 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2084 { 2084 {
2085 unsigned long flags; 2085 unsigned long flags;
2086 int running, on_rq; 2086 int running, on_rq;
2087 unsigned long ncsw; 2087 unsigned long ncsw;
2088 struct rq *rq; 2088 struct rq *rq;
2089 2089
2090 for (;;) { 2090 for (;;) {
2091 /* 2091 /*
2092 * We do the initial early heuristics without holding 2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get 2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will 2094 * the runqueue lock when things look like they will
2095 * work out! 2095 * work out!
2096 */ 2096 */
2097 rq = task_rq(p); 2097 rq = task_rq(p);
2098 2098
2099 /* 2099 /*
2100 * If the task is actively running on another CPU 2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding 2101 * still, just relax and busy-wait without holding
2102 * any locks. 2102 * any locks.
2103 * 2103 *
2104 * NOTE! Since we don't hold any locks, it's not 2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue! 2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will 2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p 2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else! 2108 * is actually now running somewhere else!
2109 */ 2109 */
2110 while (task_running(rq, p)) { 2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state)) 2111 if (match_state && unlikely(p->state != match_state))
2112 return 0; 2112 return 0;
2113 cpu_relax(); 2113 cpu_relax();
2114 } 2114 }
2115 2115
2116 /* 2116 /*
2117 * Ok, time to look more closely! We need the rq 2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll 2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat. 2119 * just go back and repeat.
2120 */ 2120 */
2121 rq = task_rq_lock(p, &flags); 2121 rq = task_rq_lock(p, &flags);
2122 trace_sched_wait_task(rq, p); 2122 trace_sched_wait_task(rq, p);
2123 running = task_running(rq, p); 2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq; 2124 on_rq = p->se.on_rq;
2125 ncsw = 0; 2125 ncsw = 0;
2126 if (!match_state || p->state == match_state) 2126 if (!match_state || p->state == match_state)
2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128 task_rq_unlock(rq, &flags); 2128 task_rq_unlock(rq, &flags);
2129 2129
2130 /* 2130 /*
2131 * If it changed from the expected state, bail out now. 2131 * If it changed from the expected state, bail out now.
2132 */ 2132 */
2133 if (unlikely(!ncsw)) 2133 if (unlikely(!ncsw))
2134 break; 2134 break;
2135 2135
2136 /* 2136 /*
2137 * Was it really running after all now that we 2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held? 2138 * checked with the proper locks actually held?
2139 * 2139 *
2140 * Oops. Go back and try again.. 2140 * Oops. Go back and try again..
2141 */ 2141 */
2142 if (unlikely(running)) { 2142 if (unlikely(running)) {
2143 cpu_relax(); 2143 cpu_relax();
2144 continue; 2144 continue;
2145 } 2145 }
2146 2146
2147 /* 2147 /*
2148 * It's not enough that it's not actively running, 2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not 2149 * it must be off the runqueue _entirely_, and not
2150 * preempted! 2150 * preempted!
2151 * 2151 *
2152 * So if it was still runnable (but just not actively 2152 * So if it was still runnable (but just not actively
2153 * running right now), it's preempted, and we should 2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while. 2154 * yield - it could be a while.
2155 */ 2155 */
2156 if (unlikely(on_rq)) { 2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1); 2157 schedule_timeout_uninterruptible(1);
2158 continue; 2158 continue;
2159 } 2159 }
2160 2160
2161 /* 2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't 2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become 2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done! 2164 * running in the future either. We're all done!
2165 */ 2165 */
2166 break; 2166 break;
2167 } 2167 }
2168 2168
2169 return ncsw; 2169 return ncsw;
2170 } 2170 }
2171 2171
2172 /*** 2172 /***
2173 * kick_process - kick a running thread to enter/exit the kernel 2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread 2174 * @p: the to-be-kicked thread
2175 * 2175 *
2176 * Cause a process which is running on another CPU to enter 2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.) 2177 * kernel-mode, without any delay. (to get signals handled.)
2178 * 2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock, 2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters 2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated 2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been 2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well. 2183 * achieved as well.
2184 */ 2184 */
2185 void kick_process(struct task_struct *p) 2185 void kick_process(struct task_struct *p)
2186 { 2186 {
2187 int cpu; 2187 int cpu;
2188 2188
2189 preempt_disable(); 2189 preempt_disable();
2190 cpu = task_cpu(p); 2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p)) 2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu); 2192 smp_send_reschedule(cpu);
2193 preempt_enable(); 2193 preempt_enable();
2194 } 2194 }
2195 EXPORT_SYMBOL_GPL(kick_process); 2195 EXPORT_SYMBOL_GPL(kick_process);
2196 2196
2197 /* 2197 /*
2198 * Return a low guess at the load of a migration-source cpu weighted 2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value. 2199 * according to the scheduling class and "nice" value.
2200 * 2200 *
2201 * We want to under-estimate the load of migration sources, to 2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively. 2202 * balance conservatively.
2203 */ 2203 */
2204 static unsigned long source_load(int cpu, int type) 2204 static unsigned long source_load(int cpu, int type)
2205 { 2205 {
2206 struct rq *rq = cpu_rq(cpu); 2206 struct rq *rq = cpu_rq(cpu);
2207 unsigned long total = weighted_cpuload(cpu); 2207 unsigned long total = weighted_cpuload(cpu);
2208 2208
2209 if (type == 0 || !sched_feat(LB_BIAS)) 2209 if (type == 0 || !sched_feat(LB_BIAS))
2210 return total; 2210 return total;
2211 2211
2212 return min(rq->cpu_load[type-1], total); 2212 return min(rq->cpu_load[type-1], total);
2213 } 2213 }
2214 2214
2215 /* 2215 /*
2216 * Return a high guess at the load of a migration-target cpu weighted 2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value. 2217 * according to the scheduling class and "nice" value.
2218 */ 2218 */
2219 static unsigned long target_load(int cpu, int type) 2219 static unsigned long target_load(int cpu, int type)
2220 { 2220 {
2221 struct rq *rq = cpu_rq(cpu); 2221 struct rq *rq = cpu_rq(cpu);
2222 unsigned long total = weighted_cpuload(cpu); 2222 unsigned long total = weighted_cpuload(cpu);
2223 2223
2224 if (type == 0 || !sched_feat(LB_BIAS)) 2224 if (type == 0 || !sched_feat(LB_BIAS))
2225 return total; 2225 return total;
2226 2226
2227 return max(rq->cpu_load[type-1], total); 2227 return max(rq->cpu_load[type-1], total);
2228 } 2228 }
2229 2229
2230 /* 2230 /*
2231 * find_idlest_group finds and returns the least busy CPU group within the 2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain. 2232 * domain.
2233 */ 2233 */
2234 static struct sched_group * 2234 static struct sched_group *
2235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 2235 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2236 { 2236 {
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; 2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0; 2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx; 2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2; 2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2241 2241
2242 do { 2242 do {
2243 unsigned long load, avg_load; 2243 unsigned long load, avg_load;
2244 int local_group; 2244 int local_group;
2245 int i; 2245 int i;
2246 2246
2247 /* Skip over this group if it has no CPUs allowed */ 2247 /* Skip over this group if it has no CPUs allowed */
2248 if (!cpumask_intersects(sched_group_cpus(group), 2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed)) 2249 &p->cpus_allowed))
2250 continue; 2250 continue;
2251 2251
2252 local_group = cpumask_test_cpu(this_cpu, 2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group)); 2253 sched_group_cpus(group));
2254 2254
2255 /* Tally up the load of all CPUs in the group */ 2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0; 2256 avg_load = 0;
2257 2257
2258 for_each_cpu(i, sched_group_cpus(group)) { 2258 for_each_cpu(i, sched_group_cpus(group)) {
2259 /* Bias balancing toward cpus of our domain */ 2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group) 2260 if (local_group)
2261 load = source_load(i, load_idx); 2261 load = source_load(i, load_idx);
2262 else 2262 else
2263 load = target_load(i, load_idx); 2263 load = target_load(i, load_idx);
2264 2264
2265 avg_load += load; 2265 avg_load += load;
2266 } 2266 }
2267 2267
2268 /* Adjust by relative CPU power of the group */ 2268 /* Adjust by relative CPU power of the group */
2269 avg_load = sg_div_cpu_power(group, 2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE); 2270 avg_load * SCHED_LOAD_SCALE);
2271 2271
2272 if (local_group) { 2272 if (local_group) {
2273 this_load = avg_load; 2273 this_load = avg_load;
2274 this = group; 2274 this = group;
2275 } else if (avg_load < min_load) { 2275 } else if (avg_load < min_load) {
2276 min_load = avg_load; 2276 min_load = avg_load;
2277 idlest = group; 2277 idlest = group;
2278 } 2278 }
2279 } while (group = group->next, group != sd->groups); 2279 } while (group = group->next, group != sd->groups);
2280 2280
2281 if (!idlest || 100*this_load < imbalance*min_load) 2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL; 2282 return NULL;
2283 return idlest; 2283 return idlest;
2284 } 2284 }
2285 2285
2286 /* 2286 /*
2287 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2288 */ 2288 */
2289 static int 2289 static int
2290 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 2290 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2291 { 2291 {
2292 unsigned long load, min_load = ULONG_MAX; 2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1; 2293 int idlest = -1;
2294 int i; 2294 int i;
2295 2295
2296 /* Traverse only the allowed CPUs */ 2296 /* Traverse only the allowed CPUs */
2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { 2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298 load = weighted_cpuload(i); 2298 load = weighted_cpuload(i);
2299 2299
2300 if (load < min_load || (load == min_load && i == this_cpu)) { 2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load; 2301 min_load = load;
2302 idlest = i; 2302 idlest = i;
2303 } 2303 }
2304 } 2304 }
2305 2305
2306 return idlest; 2306 return idlest;
2307 } 2307 }
2308 2308
2309 /* 2309 /*
2310 * sched_balance_self: balance the current task (running on cpu) in domains 2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC. 2312 * SD_BALANCE_EXEC.
2313 * 2313 *
2314 * Balance, ie. select the least loaded group. 2314 * Balance, ie. select the least loaded group.
2315 * 2315 *
2316 * Returns the target CPU number, or the same CPU if no balancing is needed. 2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 * 2317 *
2318 * preempt must be disabled. 2318 * preempt must be disabled.
2319 */ 2319 */
2320 static int sched_balance_self(int cpu, int flag) 2320 static int sched_balance_self(int cpu, int flag)
2321 { 2321 {
2322 struct task_struct *t = current; 2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL; 2323 struct sched_domain *tmp, *sd = NULL;
2324 2324
2325 for_each_domain(cpu, tmp) { 2325 for_each_domain(cpu, tmp) {
2326 /* 2326 /*
2327 * If power savings logic is enabled for a domain, stop there. 2327 * If power savings logic is enabled for a domain, stop there.
2328 */ 2328 */
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE) 2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break; 2330 break;
2331 if (tmp->flags & flag) 2331 if (tmp->flags & flag)
2332 sd = tmp; 2332 sd = tmp;
2333 } 2333 }
2334 2334
2335 if (sd) 2335 if (sd)
2336 update_shares(sd); 2336 update_shares(sd);
2337 2337
2338 while (sd) { 2338 while (sd) {
2339 struct sched_group *group; 2339 struct sched_group *group;
2340 int new_cpu, weight; 2340 int new_cpu, weight;
2341 2341
2342 if (!(sd->flags & flag)) { 2342 if (!(sd->flags & flag)) {
2343 sd = sd->child; 2343 sd = sd->child;
2344 continue; 2344 continue;
2345 } 2345 }
2346 2346
2347 group = find_idlest_group(sd, t, cpu); 2347 group = find_idlest_group(sd, t, cpu);
2348 if (!group) { 2348 if (!group) {
2349 sd = sd->child; 2349 sd = sd->child;
2350 continue; 2350 continue;
2351 } 2351 }
2352 2352
2353 new_cpu = find_idlest_cpu(group, t, cpu); 2353 new_cpu = find_idlest_cpu(group, t, cpu);
2354 if (new_cpu == -1 || new_cpu == cpu) { 2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */ 2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child; 2356 sd = sd->child;
2357 continue; 2357 continue;
2358 } 2358 }
2359 2359
2360 /* Now try balancing at a lower domain level of new_cpu */ 2360 /* Now try balancing at a lower domain level of new_cpu */
2361 cpu = new_cpu; 2361 cpu = new_cpu;
2362 weight = cpumask_weight(sched_domain_span(sd)); 2362 weight = cpumask_weight(sched_domain_span(sd));
2363 sd = NULL; 2363 sd = NULL;
2364 for_each_domain(cpu, tmp) { 2364 for_each_domain(cpu, tmp) {
2365 if (weight <= cpumask_weight(sched_domain_span(tmp))) 2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2366 break; 2366 break;
2367 if (tmp->flags & flag) 2367 if (tmp->flags & flag)
2368 sd = tmp; 2368 sd = tmp;
2369 } 2369 }
2370 /* while loop will break here if sd == NULL */ 2370 /* while loop will break here if sd == NULL */
2371 } 2371 }
2372 2372
2373 return cpu; 2373 return cpu;
2374 } 2374 }
2375 2375
2376 #endif /* CONFIG_SMP */ 2376 #endif /* CONFIG_SMP */
2377 2377
2378 /** 2378 /**
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs 2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate 2380 * @p: the task to evaluate
2381 * @func: the function to be called 2381 * @func: the function to be called
2382 * @info: the function call argument 2382 * @info: the function call argument
2383 * 2383 *
2384 * Calls the function @func when the task is currently running. This might 2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly 2385 * be on the current CPU, which just calls the function directly
2386 */ 2386 */
2387 void task_oncpu_function_call(struct task_struct *p, 2387 void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info) 2388 void (*func) (void *info), void *info)
2389 { 2389 {
2390 int cpu; 2390 int cpu;
2391 2391
2392 preempt_disable(); 2392 preempt_disable();
2393 cpu = task_cpu(p); 2393 cpu = task_cpu(p);
2394 if (task_curr(p)) 2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1); 2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable(); 2396 preempt_enable();
2397 } 2397 }
2398 2398
2399 /*** 2399 /***
2400 * try_to_wake_up - wake up a thread 2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread 2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken 2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup? 2403 * @sync: do a synchronous wakeup?
2404 * 2404 *
2405 * Put it on the run-queue if it's not already there. The "current" 2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual 2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do 2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself 2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this. 2409 * runnable without the overhead of this.
2410 * 2410 *
2411 * returns failure only if the task is already active. 2411 * returns failure only if the task is already active.
2412 */ 2412 */
2413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) 2413 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2414 { 2414 {
2415 int cpu, orig_cpu, this_cpu, success = 0; 2415 int cpu, orig_cpu, this_cpu, success = 0;
2416 unsigned long flags; 2416 unsigned long flags;
2417 long old_state; 2417 long old_state;
2418 struct rq *rq; 2418 struct rq *rq;
2419 2419
2420 if (!sched_feat(SYNC_WAKEUPS)) 2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0; 2421 sync = 0;
2422 2422
2423 #ifdef CONFIG_SMP 2423 #ifdef CONFIG_SMP
2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { 2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2425 struct sched_domain *sd; 2425 struct sched_domain *sd;
2426 2426
2427 this_cpu = raw_smp_processor_id(); 2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p); 2428 cpu = task_cpu(p);
2429 2429
2430 for_each_domain(this_cpu, sd) { 2430 for_each_domain(this_cpu, sd) {
2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 update_shares(sd); 2432 update_shares(sd);
2433 break; 2433 break;
2434 } 2434 }
2435 } 2435 }
2436 } 2436 }
2437 #endif 2437 #endif
2438 2438
2439 smp_wmb(); 2439 smp_wmb();
2440 rq = task_rq_lock(p, &flags); 2440 rq = task_rq_lock(p, &flags);
2441 update_rq_clock(rq); 2441 update_rq_clock(rq);
2442 old_state = p->state; 2442 old_state = p->state;
2443 if (!(old_state & state)) 2443 if (!(old_state & state))
2444 goto out; 2444 goto out;
2445 2445
2446 if (p->se.on_rq) 2446 if (p->se.on_rq)
2447 goto out_running; 2447 goto out_running;
2448 2448
2449 cpu = task_cpu(p); 2449 cpu = task_cpu(p);
2450 orig_cpu = cpu; 2450 orig_cpu = cpu;
2451 this_cpu = smp_processor_id(); 2451 this_cpu = smp_processor_id();
2452 2452
2453 #ifdef CONFIG_SMP 2453 #ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p))) 2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate; 2455 goto out_activate;
2456 2456
2457 cpu = p->sched_class->select_task_rq(p, sync); 2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) { 2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu); 2459 set_task_cpu(p, cpu);
2460 task_rq_unlock(rq, &flags); 2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */ 2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags); 2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state; 2463 old_state = p->state;
2464 if (!(old_state & state)) 2464 if (!(old_state & state))
2465 goto out; 2465 goto out;
2466 if (p->se.on_rq) 2466 if (p->se.on_rq)
2467 goto out_running; 2467 goto out_running;
2468 2468
2469 this_cpu = smp_processor_id(); 2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p); 2470 cpu = task_cpu(p);
2471 } 2471 }
2472 2472
2473 #ifdef CONFIG_SCHEDSTATS 2473 #ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count); 2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu) 2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local); 2476 schedstat_inc(rq, ttwu_local);
2477 else { 2477 else {
2478 struct sched_domain *sd; 2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) { 2479 for_each_domain(this_cpu, sd) {
2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 schedstat_inc(sd, ttwu_wake_remote); 2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break; 2482 break;
2483 } 2483 }
2484 } 2484 }
2485 } 2485 }
2486 #endif /* CONFIG_SCHEDSTATS */ 2486 #endif /* CONFIG_SCHEDSTATS */
2487 2487
2488 out_activate: 2488 out_activate:
2489 #endif /* CONFIG_SMP */ 2489 #endif /* CONFIG_SMP */
2490 schedstat_inc(p, se.nr_wakeups); 2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync) 2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync); 2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu) 2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate); 2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu) 2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local); 2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else 2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote); 2498 schedstat_inc(p, se.nr_wakeups_remote);
2499 activate_task(rq, p, 1); 2499 activate_task(rq, p, 1);
2500 success = 1; 2500 success = 1;
2501 2501
2502 /* 2502 /*
2503 * Only attribute actual wakeups done by this task. 2503 * Only attribute actual wakeups done by this task.
2504 */ 2504 */
2505 if (!in_interrupt()) { 2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se; 2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime; 2507 u64 sample = se->sum_exec_runtime;
2508 2508
2509 if (se->last_wakeup) 2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup; 2510 sample -= se->last_wakeup;
2511 else 2511 else
2512 sample -= se->start_runtime; 2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample); 2513 update_avg(&se->avg_wakeup, sample);
2514 2514
2515 se->last_wakeup = se->sum_exec_runtime; 2515 se->last_wakeup = se->sum_exec_runtime;
2516 } 2516 }
2517 2517
2518 out_running: 2518 out_running:
2519 trace_sched_wakeup(rq, p, success); 2519 trace_sched_wakeup(rq, p, success);
2520 check_preempt_curr(rq, p, sync); 2520 check_preempt_curr(rq, p, sync);
2521 2521
2522 p->state = TASK_RUNNING; 2522 p->state = TASK_RUNNING;
2523 #ifdef CONFIG_SMP 2523 #ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up) 2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p); 2525 p->sched_class->task_wake_up(rq, p);
2526 #endif 2526 #endif
2527 out: 2527 out:
2528 task_rq_unlock(rq, &flags); 2528 task_rq_unlock(rq, &flags);
2529 2529
2530 return success; 2530 return success;
2531 } 2531 }
2532 2532
2533 /** 2533 /**
2534 * wake_up_process - Wake up a specific process 2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up. 2535 * @p: The process to be woken up.
2536 * 2536 *
2537 * Attempt to wake up the nominated process and move it to the set of runnable 2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already 2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running. 2539 * running.
2540 * 2540 *
2541 * It may be assumed that this function implies a write memory barrier before 2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up. 2542 * changing the task state if and only if any tasks are woken up.
2543 */ 2543 */
2544 int wake_up_process(struct task_struct *p) 2544 int wake_up_process(struct task_struct *p)
2545 { 2545 {
2546 return try_to_wake_up(p, TASK_ALL, 0); 2546 return try_to_wake_up(p, TASK_ALL, 0);
2547 } 2547 }
2548 EXPORT_SYMBOL(wake_up_process); 2548 EXPORT_SYMBOL(wake_up_process);
2549 2549
2550 int wake_up_state(struct task_struct *p, unsigned int state) 2550 int wake_up_state(struct task_struct *p, unsigned int state)
2551 { 2551 {
2552 return try_to_wake_up(p, state, 0); 2552 return try_to_wake_up(p, state, 0);
2553 } 2553 }
2554 2554
2555 /* 2555 /*
2556 * Perform scheduler related setup for a newly forked process p. 2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current. 2557 * p is forked by current.
2558 * 2558 *
2559 * __sched_fork() is basic setup used by init_idle() too: 2559 * __sched_fork() is basic setup used by init_idle() too:
2560 */ 2560 */
2561 static void __sched_fork(struct task_struct *p) 2561 static void __sched_fork(struct task_struct *p)
2562 { 2562 {
2563 p->se.exec_start = 0; 2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0; 2564 p->se.sum_exec_runtime = 0;
2565 p->se.prev_sum_exec_runtime = 0; 2565 p->se.prev_sum_exec_runtime = 0;
2566 p->se.nr_migrations = 0; 2566 p->se.nr_migrations = 0;
2567 p->se.last_wakeup = 0; 2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0; 2568 p->se.avg_overlap = 0;
2569 p->se.start_runtime = 0; 2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity; 2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2571 2571
2572 #ifdef CONFIG_SCHEDSTATS 2572 #ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0; 2573 p->se.wait_start = 0;
2574 p->se.sum_sleep_runtime = 0; 2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0; 2575 p->se.sleep_start = 0;
2576 p->se.block_start = 0; 2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0; 2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0; 2578 p->se.block_max = 0;
2579 p->se.exec_max = 0; 2579 p->se.exec_max = 0;
2580 p->se.slice_max = 0; 2580 p->se.slice_max = 0;
2581 p->se.wait_max = 0; 2581 p->se.wait_max = 0;
2582 #endif 2582 #endif
2583 2583
2584 INIT_LIST_HEAD(&p->rt.run_list); 2584 INIT_LIST_HEAD(&p->rt.run_list);
2585 p->se.on_rq = 0; 2585 p->se.on_rq = 0;
2586 INIT_LIST_HEAD(&p->se.group_node); 2586 INIT_LIST_HEAD(&p->se.group_node);
2587 2587
2588 #ifdef CONFIG_PREEMPT_NOTIFIERS 2588 #ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers); 2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590 #endif 2590 #endif
2591 2591
2592 /* 2592 /*
2593 * We mark the process as running here, but have not actually 2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that 2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external 2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either. 2596 * event cannot wake it up and insert it on the runqueue either.
2597 */ 2597 */
2598 p->state = TASK_RUNNING; 2598 p->state = TASK_RUNNING;
2599 } 2599 }
2600 2600
2601 /* 2601 /*
2602 * fork()/clone()-time setup: 2602 * fork()/clone()-time setup:
2603 */ 2603 */
2604 void sched_fork(struct task_struct *p, int clone_flags) 2604 void sched_fork(struct task_struct *p, int clone_flags)
2605 { 2605 {
2606 int cpu = get_cpu(); 2606 int cpu = get_cpu();
2607 2607
2608 __sched_fork(p); 2608 __sched_fork(p);
2609 2609
2610 #ifdef CONFIG_SMP 2610 #ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK); 2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612 #endif 2612 #endif
2613 set_task_cpu(p, cpu); 2613 set_task_cpu(p, cpu);
2614 2614
2615 /* 2615 /*
2616 * Make sure we do not leak PI boosting priority to the child: 2616 * Make sure we do not leak PI boosting priority to the child:
2617 */ 2617 */
2618 p->prio = current->normal_prio; 2618 p->prio = current->normal_prio;
2619 if (!rt_prio(p->prio)) 2619 if (!rt_prio(p->prio))
2620 p->sched_class = &fair_sched_class; 2620 p->sched_class = &fair_sched_class;
2621 2621
2622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 2622 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2623 if (likely(sched_info_on())) 2623 if (likely(sched_info_on()))
2624 memset(&p->sched_info, 0, sizeof(p->sched_info)); 2624 memset(&p->sched_info, 0, sizeof(p->sched_info));
2625 #endif 2625 #endif
2626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 2626 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2627 p->oncpu = 0; 2627 p->oncpu = 0;
2628 #endif 2628 #endif
2629 #ifdef CONFIG_PREEMPT 2629 #ifdef CONFIG_PREEMPT
2630 /* Want to start with kernel preemption disabled. */ 2630 /* Want to start with kernel preemption disabled. */
2631 task_thread_info(p)->preempt_count = 1; 2631 task_thread_info(p)->preempt_count = 1;
2632 #endif 2632 #endif
2633 plist_node_init(&p->pushable_tasks, MAX_PRIO); 2633 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2634 2634
2635 put_cpu(); 2635 put_cpu();
2636 } 2636 }
2637 2637
2638 /* 2638 /*
2639 * wake_up_new_task - wake up a newly created task for the first time. 2639 * wake_up_new_task - wake up a newly created task for the first time.
2640 * 2640 *
2641 * This function will do some initial scheduler statistics housekeeping 2641 * This function will do some initial scheduler statistics housekeeping
2642 * that must be done for every newly created context, then puts the task 2642 * that must be done for every newly created context, then puts the task
2643 * on the runqueue and wakes it. 2643 * on the runqueue and wakes it.
2644 */ 2644 */
2645 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) 2645 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2646 { 2646 {
2647 unsigned long flags; 2647 unsigned long flags;
2648 struct rq *rq; 2648 struct rq *rq;
2649 2649
2650 rq = task_rq_lock(p, &flags); 2650 rq = task_rq_lock(p, &flags);
2651 BUG_ON(p->state != TASK_RUNNING); 2651 BUG_ON(p->state != TASK_RUNNING);
2652 update_rq_clock(rq); 2652 update_rq_clock(rq);
2653 2653
2654 p->prio = effective_prio(p); 2654 p->prio = effective_prio(p);
2655 2655
2656 if (!p->sched_class->task_new || !current->se.on_rq) { 2656 if (!p->sched_class->task_new || !current->se.on_rq) {
2657 activate_task(rq, p, 0); 2657 activate_task(rq, p, 0);
2658 } else { 2658 } else {
2659 /* 2659 /*
2660 * Let the scheduling class do new task startup 2660 * Let the scheduling class do new task startup
2661 * management (if any): 2661 * management (if any):
2662 */ 2662 */
2663 p->sched_class->task_new(rq, p); 2663 p->sched_class->task_new(rq, p);
2664 inc_nr_running(rq); 2664 inc_nr_running(rq);
2665 } 2665 }
2666 trace_sched_wakeup_new(rq, p, 1); 2666 trace_sched_wakeup_new(rq, p, 1);
2667 check_preempt_curr(rq, p, 0); 2667 check_preempt_curr(rq, p, 0);
2668 #ifdef CONFIG_SMP 2668 #ifdef CONFIG_SMP
2669 if (p->sched_class->task_wake_up) 2669 if (p->sched_class->task_wake_up)
2670 p->sched_class->task_wake_up(rq, p); 2670 p->sched_class->task_wake_up(rq, p);
2671 #endif 2671 #endif
2672 task_rq_unlock(rq, &flags); 2672 task_rq_unlock(rq, &flags);
2673 } 2673 }
2674 2674
2675 #ifdef CONFIG_PREEMPT_NOTIFIERS 2675 #ifdef CONFIG_PREEMPT_NOTIFIERS
2676 2676
2677 /** 2677 /**
2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled 2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2679 * @notifier: notifier struct to register 2679 * @notifier: notifier struct to register
2680 */ 2680 */
2681 void preempt_notifier_register(struct preempt_notifier *notifier) 2681 void preempt_notifier_register(struct preempt_notifier *notifier)
2682 { 2682 {
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers); 2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2684 } 2684 }
2685 EXPORT_SYMBOL_GPL(preempt_notifier_register); 2685 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2686 2686
2687 /** 2687 /**
2688 * preempt_notifier_unregister - no longer interested in preemption notifications 2688 * preempt_notifier_unregister - no longer interested in preemption notifications
2689 * @notifier: notifier struct to unregister 2689 * @notifier: notifier struct to unregister
2690 * 2690 *
2691 * This is safe to call from within a preemption notifier. 2691 * This is safe to call from within a preemption notifier.
2692 */ 2692 */
2693 void preempt_notifier_unregister(struct preempt_notifier *notifier) 2693 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2694 { 2694 {
2695 hlist_del(&notifier->link); 2695 hlist_del(&notifier->link);
2696 } 2696 }
2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2698 2698
2699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700 { 2700 {
2701 struct preempt_notifier *notifier; 2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node; 2702 struct hlist_node *node;
2703 2703
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2706 } 2706 }
2707 2707
2708 static void 2708 static void
2709 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next) 2710 struct task_struct *next)
2711 { 2711 {
2712 struct preempt_notifier *notifier; 2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node; 2713 struct hlist_node *node;
2714 2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) 2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next); 2716 notifier->ops->sched_out(notifier, next);
2717 } 2717 }
2718 2718
2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2720 2720
2721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr) 2721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2722 { 2722 {
2723 } 2723 }
2724 2724
2725 static void 2725 static void
2726 fire_sched_out_preempt_notifiers(struct task_struct *curr, 2726 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next) 2727 struct task_struct *next)
2728 { 2728 {
2729 } 2729 }
2730 2730
2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2732 2732
2733 /** 2733 /**
2734 * prepare_task_switch - prepare to switch tasks 2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch 2735 * @rq: the runqueue preparing to switch
2736 * @prev: the current task that is being switched out 2736 * @prev: the current task that is being switched out
2737 * @next: the task we are going to switch to. 2737 * @next: the task we are going to switch to.
2738 * 2738 *
2739 * This is called with the rq lock held and interrupts off. It must 2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context 2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch. 2741 * switch.
2742 * 2742 *
2743 * prepare_task_switch sets up locking and calls architecture specific 2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks. 2744 * hooks.
2745 */ 2745 */
2746 static inline void 2746 static inline void
2747 prepare_task_switch(struct rq *rq, struct task_struct *prev, 2747 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next) 2748 struct task_struct *next)
2749 { 2749 {
2750 fire_sched_out_preempt_notifiers(prev, next); 2750 fire_sched_out_preempt_notifiers(prev, next);
2751 prepare_lock_switch(rq, next); 2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next); 2752 prepare_arch_switch(next);
2753 } 2753 }
2754 2754
2755 /** 2755 /**
2756 * finish_task_switch - clean up after a task-switch 2756 * finish_task_switch - clean up after a task-switch
2757 * @rq: runqueue associated with task-switch 2757 * @rq: runqueue associated with task-switch
2758 * @prev: the thread we just switched away from. 2758 * @prev: the thread we just switched away from.
2759 * 2759 *
2760 * finish_task_switch must be called after the context switch, paired 2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch. 2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch, 2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions. 2763 * and do any other architecture-specific cleanup actions.
2764 * 2764 *
2765 * Note that we may have delayed dropping an mm in context_switch(). If 2765 * Note that we may have delayed dropping an mm in context_switch(). If
2766 * so, we finish that here outside of the runqueue lock. (Doing it 2766 * so, we finish that here outside of the runqueue lock. (Doing it
2767 * with the lock held can cause deadlocks; see schedule() for 2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.) 2768 * details.)
2769 */ 2769 */
2770 static void finish_task_switch(struct rq *rq, struct task_struct *prev) 2770 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2771 __releases(rq->lock) 2771 __releases(rq->lock)
2772 { 2772 {
2773 struct mm_struct *mm = rq->prev_mm; 2773 struct mm_struct *mm = rq->prev_mm;
2774 long prev_state; 2774 long prev_state;
2775 #ifdef CONFIG_SMP 2775 #ifdef CONFIG_SMP
2776 int post_schedule = 0; 2776 int post_schedule = 0;
2777 2777
2778 if (current->sched_class->needs_post_schedule) 2778 if (current->sched_class->needs_post_schedule)
2779 post_schedule = current->sched_class->needs_post_schedule(rq); 2779 post_schedule = current->sched_class->needs_post_schedule(rq);
2780 #endif 2780 #endif
2781 2781
2782 rq->prev_mm = NULL; 2782 rq->prev_mm = NULL;
2783 2783
2784 /* 2784 /*
2785 * A task struct has one reference for the use as "current". 2785 * A task struct has one reference for the use as "current".
2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 2786 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2787 * schedule one last time. The schedule call will never return, and 2787 * schedule one last time. The schedule call will never return, and
2788 * the scheduled task must drop that reference. 2788 * the scheduled task must drop that reference.
2789 * The test for TASK_DEAD must occur while the runqueue locks are 2789 * The test for TASK_DEAD must occur while the runqueue locks are
2790 * still held, otherwise prev could be scheduled on another cpu, die 2790 * still held, otherwise prev could be scheduled on another cpu, die
2791 * there before we look at prev->state, and then the reference would 2791 * there before we look at prev->state, and then the reference would
2792 * be dropped twice. 2792 * be dropped twice.
2793 * Manfred Spraul <manfred@colorfullife.com> 2793 * Manfred Spraul <manfred@colorfullife.com>
2794 */ 2794 */
2795 prev_state = prev->state; 2795 prev_state = prev->state;
2796 finish_arch_switch(prev); 2796 finish_arch_switch(prev);
2797 perf_counter_task_sched_in(current, cpu_of(rq)); 2797 perf_counter_task_sched_in(current, cpu_of(rq));
2798 finish_lock_switch(rq, prev); 2798 finish_lock_switch(rq, prev);
2799 #ifdef CONFIG_SMP 2799 #ifdef CONFIG_SMP
2800 if (post_schedule) 2800 if (post_schedule)
2801 current->sched_class->post_schedule(rq); 2801 current->sched_class->post_schedule(rq);
2802 #endif 2802 #endif
2803 2803
2804 fire_sched_in_preempt_notifiers(current); 2804 fire_sched_in_preempt_notifiers(current);
2805 if (mm) 2805 if (mm)
2806 mmdrop(mm); 2806 mmdrop(mm);
2807 if (unlikely(prev_state == TASK_DEAD)) { 2807 if (unlikely(prev_state == TASK_DEAD)) {
2808 /* 2808 /*
2809 * Remove function-return probe instances associated with this 2809 * Remove function-return probe instances associated with this
2810 * task and put them back on the free list. 2810 * task and put them back on the free list.
2811 */ 2811 */
2812 kprobe_flush_task(prev); 2812 kprobe_flush_task(prev);
2813 put_task_struct(prev); 2813 put_task_struct(prev);
2814 } 2814 }
2815 } 2815 }
2816 2816
2817 /** 2817 /**
2818 * schedule_tail - first thing a freshly forked thread must call. 2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from. 2819 * @prev: the thread we just switched away from.
2820 */ 2820 */
2821 asmlinkage void schedule_tail(struct task_struct *prev) 2821 asmlinkage void schedule_tail(struct task_struct *prev)
2822 __releases(rq->lock) 2822 __releases(rq->lock)
2823 { 2823 {
2824 struct rq *rq = this_rq(); 2824 struct rq *rq = this_rq();
2825 2825
2826 finish_task_switch(rq, prev); 2826 finish_task_switch(rq, prev);
2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 2827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2828 /* In this case, finish_task_switch does not reenable preemption */ 2828 /* In this case, finish_task_switch does not reenable preemption */
2829 preempt_enable(); 2829 preempt_enable();
2830 #endif 2830 #endif
2831 if (current->set_child_tid) 2831 if (current->set_child_tid)
2832 put_user(task_pid_vnr(current), current->set_child_tid); 2832 put_user(task_pid_vnr(current), current->set_child_tid);
2833 } 2833 }
2834 2834
2835 /* 2835 /*
2836 * context_switch - switch to the new MM and the new 2836 * context_switch - switch to the new MM and the new
2837 * thread's register state. 2837 * thread's register state.
2838 */ 2838 */
2839 static inline void 2839 static inline void
2840 context_switch(struct rq *rq, struct task_struct *prev, 2840 context_switch(struct rq *rq, struct task_struct *prev,
2841 struct task_struct *next) 2841 struct task_struct *next)
2842 { 2842 {
2843 struct mm_struct *mm, *oldmm; 2843 struct mm_struct *mm, *oldmm;
2844 2844
2845 prepare_task_switch(rq, prev, next); 2845 prepare_task_switch(rq, prev, next);
2846 trace_sched_switch(rq, prev, next); 2846 trace_sched_switch(rq, prev, next);
2847 mm = next->mm; 2847 mm = next->mm;
2848 oldmm = prev->active_mm; 2848 oldmm = prev->active_mm;
2849 /* 2849 /*
2850 * For paravirt, this is coupled with an exit in switch_to to 2850 * For paravirt, this is coupled with an exit in switch_to to
2851 * combine the page table reload and the switch backend into 2851 * combine the page table reload and the switch backend into
2852 * one hypercall. 2852 * one hypercall.
2853 */ 2853 */
2854 arch_start_context_switch(prev); 2854 arch_start_context_switch(prev);
2855 2855
2856 if (unlikely(!mm)) { 2856 if (unlikely(!mm)) {
2857 next->active_mm = oldmm; 2857 next->active_mm = oldmm;
2858 atomic_inc(&oldmm->mm_count); 2858 atomic_inc(&oldmm->mm_count);
2859 enter_lazy_tlb(oldmm, next); 2859 enter_lazy_tlb(oldmm, next);
2860 } else 2860 } else
2861 switch_mm(oldmm, mm, next); 2861 switch_mm(oldmm, mm, next);
2862 2862
2863 if (unlikely(!prev->mm)) { 2863 if (unlikely(!prev->mm)) {
2864 prev->active_mm = NULL; 2864 prev->active_mm = NULL;
2865 rq->prev_mm = oldmm; 2865 rq->prev_mm = oldmm;
2866 } 2866 }
2867 /* 2867 /*
2868 * Since the runqueue lock will be released by the next 2868 * Since the runqueue lock will be released by the next
2869 * task (which is an invalid locking op but in the case 2869 * task (which is an invalid locking op but in the case
2870 * of the scheduler it's an obvious special-case), so we 2870 * of the scheduler it's an obvious special-case), so we
2871 * do an early lockdep release here: 2871 * do an early lockdep release here:
2872 */ 2872 */
2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 2873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 2874 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875 #endif 2875 #endif
2876 2876
2877 /* Here we just switch the register state and the stack. */ 2877 /* Here we just switch the register state and the stack. */
2878 switch_to(prev, next, prev); 2878 switch_to(prev, next, prev);
2879 2879
2880 barrier(); 2880 barrier();
2881 /* 2881 /*
2882 * this_rq must be evaluated again because prev may have moved 2882 * this_rq must be evaluated again because prev may have moved
2883 * CPUs since it called schedule(), thus the 'rq' on its stack 2883 * CPUs since it called schedule(), thus the 'rq' on its stack
2884 * frame will be invalid. 2884 * frame will be invalid.
2885 */ 2885 */
2886 finish_task_switch(this_rq(), prev); 2886 finish_task_switch(this_rq(), prev);
2887 } 2887 }
2888 2888
2889 /* 2889 /*
2890 * nr_running, nr_uninterruptible and nr_context_switches: 2890 * nr_running, nr_uninterruptible and nr_context_switches:
2891 * 2891 *
2892 * externally visible scheduler statistics: current number of runnable 2892 * externally visible scheduler statistics: current number of runnable
2893 * threads, current number of uninterruptible-sleeping threads, total 2893 * threads, current number of uninterruptible-sleeping threads, total
2894 * number of context switches performed since bootup. 2894 * number of context switches performed since bootup.
2895 */ 2895 */
2896 unsigned long nr_running(void) 2896 unsigned long nr_running(void)
2897 { 2897 {
2898 unsigned long i, sum = 0; 2898 unsigned long i, sum = 0;
2899 2899
2900 for_each_online_cpu(i) 2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running; 2901 sum += cpu_rq(i)->nr_running;
2902 2902
2903 return sum; 2903 return sum;
2904 } 2904 }
2905 2905
2906 unsigned long nr_uninterruptible(void) 2906 unsigned long nr_uninterruptible(void)
2907 { 2907 {
2908 unsigned long i, sum = 0; 2908 unsigned long i, sum = 0;
2909 2909
2910 for_each_possible_cpu(i) 2910 for_each_possible_cpu(i)
2911 sum += cpu_rq(i)->nr_uninterruptible; 2911 sum += cpu_rq(i)->nr_uninterruptible;
2912 2912
2913 /* 2913 /*
2914 * Since we read the counters lockless, it might be slightly 2914 * Since we read the counters lockless, it might be slightly
2915 * inaccurate. Do not allow it to go below zero though: 2915 * inaccurate. Do not allow it to go below zero though:
2916 */ 2916 */
2917 if (unlikely((long)sum < 0)) 2917 if (unlikely((long)sum < 0))
2918 sum = 0; 2918 sum = 0;
2919 2919
2920 return sum; 2920 return sum;
2921 } 2921 }
2922 2922
2923 unsigned long long nr_context_switches(void) 2923 unsigned long long nr_context_switches(void)
2924 { 2924 {
2925 int i; 2925 int i;
2926 unsigned long long sum = 0; 2926 unsigned long long sum = 0;
2927 2927
2928 for_each_possible_cpu(i) 2928 for_each_possible_cpu(i)
2929 sum += cpu_rq(i)->nr_switches; 2929 sum += cpu_rq(i)->nr_switches;
2930 2930
2931 return sum; 2931 return sum;
2932 } 2932 }
2933 2933
2934 unsigned long nr_iowait(void) 2934 unsigned long nr_iowait(void)
2935 { 2935 {
2936 unsigned long i, sum = 0; 2936 unsigned long i, sum = 0;
2937 2937
2938 for_each_possible_cpu(i) 2938 for_each_possible_cpu(i)
2939 sum += atomic_read(&cpu_rq(i)->nr_iowait); 2939 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2940 2940
2941 return sum; 2941 return sum;
2942 } 2942 }
2943 2943
2944 /* Variables and functions for calc_load */ 2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks; 2945 static atomic_long_t calc_load_tasks;
2946 static unsigned long calc_load_update; 2946 static unsigned long calc_load_update;
2947 unsigned long avenrun[3]; 2947 unsigned long avenrun[3];
2948 EXPORT_SYMBOL(avenrun); 2948 EXPORT_SYMBOL(avenrun);
2949 2949
2950 /** 2950 /**
2951 * get_avenrun - get the load average array 2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array 2952 * @loads: pointer to dest load array
2953 * @offset: offset to add 2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left 2954 * @shift: shift count to shift the result left
2955 * 2955 *
2956 * These values are estimates at best, so no need for locking. 2956 * These values are estimates at best, so no need for locking.
2957 */ 2957 */
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift) 2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959 { 2959 {
2960 loads[0] = (avenrun[0] + offset) << shift; 2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift; 2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift; 2962 loads[2] = (avenrun[2] + offset) << shift;
2963 } 2963 }
2964 2964
2965 static unsigned long 2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active) 2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967 { 2967 {
2968 load *= exp; 2968 load *= exp;
2969 load += active * (FIXED_1 - exp); 2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT; 2970 return load >> FSHIFT;
2971 } 2971 }
2972 2972
2973 /* 2973 /*
2974 * calc_load - update the avenrun load estimates 10 ticks after the 2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks. 2975 * CPUs have updated calc_load_tasks.
2976 */ 2976 */
2977 void calc_global_load(void) 2977 void calc_global_load(void)
2978 { 2978 {
2979 unsigned long upd = calc_load_update + 10; 2979 unsigned long upd = calc_load_update + 10;
2980 long active; 2980 long active;
2981 2981
2982 if (time_before(jiffies, upd)) 2982 if (time_before(jiffies, upd))
2983 return; 2983 return;
2984 2984
2985 active = atomic_long_read(&calc_load_tasks); 2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0; 2986 active = active > 0 ? active * FIXED_1 : 0;
2987 2987
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active); 2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active); 2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active); 2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2991 2991
2992 calc_load_update += LOAD_FREQ; 2992 calc_load_update += LOAD_FREQ;
2993 } 2993 }
2994 2994
2995 /* 2995 /*
2996 * Either called from update_cpu_load() or from a cpu going idle 2996 * Either called from update_cpu_load() or from a cpu going idle
2997 */ 2997 */
2998 static void calc_load_account_active(struct rq *this_rq) 2998 static void calc_load_account_active(struct rq *this_rq)
2999 { 2999 {
3000 long nr_active, delta; 3000 long nr_active, delta;
3001 3001
3002 nr_active = this_rq->nr_running; 3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible; 3003 nr_active += (long) this_rq->nr_uninterruptible;
3004 3004
3005 if (nr_active != this_rq->calc_load_active) { 3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active; 3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active; 3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks); 3008 atomic_long_add(delta, &calc_load_tasks);
3009 } 3009 }
3010 } 3010 }
3011 3011
3012 /* 3012 /*
3013 * Externally visible per-cpu scheduler statistics: 3013 * Externally visible per-cpu scheduler statistics:
3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu 3014 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3015 */ 3015 */
3016 u64 cpu_nr_migrations(int cpu) 3016 u64 cpu_nr_migrations(int cpu)
3017 { 3017 {
3018 return cpu_rq(cpu)->nr_migrations_in; 3018 return cpu_rq(cpu)->nr_migrations_in;
3019 } 3019 }
3020 3020
3021 /* 3021 /*
3022 * Update rq->cpu_load[] statistics. This function is usually called every 3022 * Update rq->cpu_load[] statistics. This function is usually called every
3023 * scheduler tick (TICK_NSEC). 3023 * scheduler tick (TICK_NSEC).
3024 */ 3024 */
3025 static void update_cpu_load(struct rq *this_rq) 3025 static void update_cpu_load(struct rq *this_rq)
3026 { 3026 {
3027 unsigned long this_load = this_rq->load.weight; 3027 unsigned long this_load = this_rq->load.weight;
3028 int i, scale; 3028 int i, scale;
3029 3029
3030 this_rq->nr_load_updates++; 3030 this_rq->nr_load_updates++;
3031 3031
3032 /* Update our load: */ 3032 /* Update our load: */
3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 3033 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3034 unsigned long old_load, new_load; 3034 unsigned long old_load, new_load;
3035 3035
3036 /* scale is effectively 1 << i now, and >> i divides by scale */ 3036 /* scale is effectively 1 << i now, and >> i divides by scale */
3037 3037
3038 old_load = this_rq->cpu_load[i]; 3038 old_load = this_rq->cpu_load[i];
3039 new_load = this_load; 3039 new_load = this_load;
3040 /* 3040 /*
3041 * Round up the averaging division if load is increasing. This 3041 * Round up the averaging division if load is increasing. This
3042 * prevents us from getting stuck on 9 if the load is 10, for 3042 * prevents us from getting stuck on 9 if the load is 10, for
3043 * example. 3043 * example.
3044 */ 3044 */
3045 if (new_load > old_load) 3045 if (new_load > old_load)
3046 new_load += scale-1; 3046 new_load += scale-1;
3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; 3047 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3048 } 3048 }
3049 3049
3050 if (time_after_eq(jiffies, this_rq->calc_load_update)) { 3050 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3051 this_rq->calc_load_update += LOAD_FREQ; 3051 this_rq->calc_load_update += LOAD_FREQ;
3052 calc_load_account_active(this_rq); 3052 calc_load_account_active(this_rq);
3053 } 3053 }
3054 } 3054 }
3055 3055
3056 #ifdef CONFIG_SMP 3056 #ifdef CONFIG_SMP
3057 3057
3058 /* 3058 /*
3059 * double_rq_lock - safely lock two runqueues 3059 * double_rq_lock - safely lock two runqueues
3060 * 3060 *
3061 * Note this does not disable interrupts like task_rq_lock, 3061 * Note this does not disable interrupts like task_rq_lock,
3062 * you need to do so manually before calling. 3062 * you need to do so manually before calling.
3063 */ 3063 */
3064 static void double_rq_lock(struct rq *rq1, struct rq *rq2) 3064 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3065 __acquires(rq1->lock) 3065 __acquires(rq1->lock)
3066 __acquires(rq2->lock) 3066 __acquires(rq2->lock)
3067 { 3067 {
3068 BUG_ON(!irqs_disabled()); 3068 BUG_ON(!irqs_disabled());
3069 if (rq1 == rq2) { 3069 if (rq1 == rq2) {
3070 spin_lock(&rq1->lock); 3070 spin_lock(&rq1->lock);
3071 __acquire(rq2->lock); /* Fake it out ;) */ 3071 __acquire(rq2->lock); /* Fake it out ;) */
3072 } else { 3072 } else {
3073 if (rq1 < rq2) { 3073 if (rq1 < rq2) {
3074 spin_lock(&rq1->lock); 3074 spin_lock(&rq1->lock);
3075 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 3075 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3076 } else { 3076 } else {
3077 spin_lock(&rq2->lock); 3077 spin_lock(&rq2->lock);
3078 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 3078 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3079 } 3079 }
3080 } 3080 }
3081 update_rq_clock(rq1); 3081 update_rq_clock(rq1);
3082 update_rq_clock(rq2); 3082 update_rq_clock(rq2);
3083 } 3083 }
3084 3084
3085 /* 3085 /*
3086 * double_rq_unlock - safely unlock two runqueues 3086 * double_rq_unlock - safely unlock two runqueues
3087 * 3087 *
3088 * Note this does not restore interrupts like task_rq_unlock, 3088 * Note this does not restore interrupts like task_rq_unlock,
3089 * you need to do so manually after calling. 3089 * you need to do so manually after calling.
3090 */ 3090 */
3091 static void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3091 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3092 __releases(rq1->lock) 3092 __releases(rq1->lock)
3093 __releases(rq2->lock) 3093 __releases(rq2->lock)
3094 { 3094 {
3095 spin_unlock(&rq1->lock); 3095 spin_unlock(&rq1->lock);
3096 if (rq1 != rq2) 3096 if (rq1 != rq2)
3097 spin_unlock(&rq2->lock); 3097 spin_unlock(&rq2->lock);
3098 else 3098 else
3099 __release(rq2->lock); 3099 __release(rq2->lock);
3100 } 3100 }
3101 3101
3102 /* 3102 /*
3103 * If dest_cpu is allowed for this process, migrate the task to it. 3103 * If dest_cpu is allowed for this process, migrate the task to it.
3104 * This is accomplished by forcing the cpu_allowed mask to only 3104 * This is accomplished by forcing the cpu_allowed mask to only
3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then 3105 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3106 * the cpu_allowed mask is restored. 3106 * the cpu_allowed mask is restored.
3107 */ 3107 */
3108 static void sched_migrate_task(struct task_struct *p, int dest_cpu) 3108 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3109 { 3109 {
3110 struct migration_req req; 3110 struct migration_req req;
3111 unsigned long flags; 3111 unsigned long flags;
3112 struct rq *rq; 3112 struct rq *rq;
3113 3113
3114 rq = task_rq_lock(p, &flags); 3114 rq = task_rq_lock(p, &flags);
3115 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) 3115 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3116 || unlikely(!cpu_active(dest_cpu))) 3116 || unlikely(!cpu_active(dest_cpu)))
3117 goto out; 3117 goto out;
3118 3118
3119 /* force the process onto the specified CPU */ 3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p, dest_cpu, &req)) { 3120 if (migrate_task(p, dest_cpu, &req)) {
3121 /* Need to wait for migration thread (might exit: take ref). */ 3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct *mt = rq->migration_thread; 3122 struct task_struct *mt = rq->migration_thread;
3123 3123
3124 get_task_struct(mt); 3124 get_task_struct(mt);
3125 task_rq_unlock(rq, &flags); 3125 task_rq_unlock(rq, &flags);
3126 wake_up_process(mt); 3126 wake_up_process(mt);
3127 put_task_struct(mt); 3127 put_task_struct(mt);
3128 wait_for_completion(&req.done); 3128 wait_for_completion(&req.done);
3129 3129
3130 return; 3130 return;
3131 } 3131 }
3132 out: 3132 out:
3133 task_rq_unlock(rq, &flags); 3133 task_rq_unlock(rq, &flags);
3134 } 3134 }
3135 3135
3136 /* 3136 /*
3137 * sched_exec - execve() is a valuable balancing opportunity, because at 3137 * sched_exec - execve() is a valuable balancing opportunity, because at
3138 * this point the task has the smallest effective memory and cache footprint. 3138 * this point the task has the smallest effective memory and cache footprint.
3139 */ 3139 */
3140 void sched_exec(void) 3140 void sched_exec(void)
3141 { 3141 {
3142 int new_cpu, this_cpu = get_cpu(); 3142 int new_cpu, this_cpu = get_cpu();
3143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); 3143 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3144 put_cpu(); 3144 put_cpu();
3145 if (new_cpu != this_cpu) 3145 if (new_cpu != this_cpu)
3146 sched_migrate_task(current, new_cpu); 3146 sched_migrate_task(current, new_cpu);
3147 } 3147 }
3148 3148
3149 /* 3149 /*
3150 * pull_task - move a task from a remote runqueue to the local runqueue. 3150 * pull_task - move a task from a remote runqueue to the local runqueue.
3151 * Both runqueues must be locked. 3151 * Both runqueues must be locked.
3152 */ 3152 */
3153 static void pull_task(struct rq *src_rq, struct task_struct *p, 3153 static void pull_task(struct rq *src_rq, struct task_struct *p,
3154 struct rq *this_rq, int this_cpu) 3154 struct rq *this_rq, int this_cpu)
3155 { 3155 {
3156 deactivate_task(src_rq, p, 0); 3156 deactivate_task(src_rq, p, 0);
3157 set_task_cpu(p, this_cpu); 3157 set_task_cpu(p, this_cpu);
3158 activate_task(this_rq, p, 0); 3158 activate_task(this_rq, p, 0);
3159 /* 3159 /*
3160 * Note that idle threads have a prio of MAX_PRIO, for this test 3160 * Note that idle threads have a prio of MAX_PRIO, for this test
3161 * to be always true for them. 3161 * to be always true for them.
3162 */ 3162 */
3163 check_preempt_curr(this_rq, p, 0); 3163 check_preempt_curr(this_rq, p, 0);
3164 } 3164 }
3165 3165
3166 /* 3166 /*
3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3167 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3168 */ 3168 */
3169 static 3169 static
3170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, 3170 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3171 struct sched_domain *sd, enum cpu_idle_type idle, 3171 struct sched_domain *sd, enum cpu_idle_type idle,
3172 int *all_pinned) 3172 int *all_pinned)
3173 { 3173 {
3174 int tsk_cache_hot = 0; 3174 int tsk_cache_hot = 0;
3175 /* 3175 /*
3176 * We do not migrate tasks that are: 3176 * We do not migrate tasks that are:
3177 * 1) running (obviously), or 3177 * 1) running (obviously), or
3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3179 * 3) are cache-hot on their current CPU. 3179 * 3) are cache-hot on their current CPU.
3180 */ 3180 */
3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { 3181 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182 schedstat_inc(p, se.nr_failed_migrations_affine); 3182 schedstat_inc(p, se.nr_failed_migrations_affine);
3183 return 0; 3183 return 0;
3184 } 3184 }
3185 *all_pinned = 0; 3185 *all_pinned = 0;
3186 3186
3187 if (task_running(rq, p)) { 3187 if (task_running(rq, p)) {
3188 schedstat_inc(p, se.nr_failed_migrations_running); 3188 schedstat_inc(p, se.nr_failed_migrations_running);
3189 return 0; 3189 return 0;
3190 } 3190 }
3191 3191
3192 /* 3192 /*
3193 * Aggressive migration if: 3193 * Aggressive migration if:
3194 * 1) task is cache cold, or 3194 * 1) task is cache cold, or
3195 * 2) too many balance attempts have failed. 3195 * 2) too many balance attempts have failed.
3196 */ 3196 */
3197 3197
3198 tsk_cache_hot = task_hot(p, rq->clock, sd); 3198 tsk_cache_hot = task_hot(p, rq->clock, sd);
3199 if (!tsk_cache_hot || 3199 if (!tsk_cache_hot ||
3200 sd->nr_balance_failed > sd->cache_nice_tries) { 3200 sd->nr_balance_failed > sd->cache_nice_tries) {
3201 #ifdef CONFIG_SCHEDSTATS 3201 #ifdef CONFIG_SCHEDSTATS
3202 if (tsk_cache_hot) { 3202 if (tsk_cache_hot) {
3203 schedstat_inc(sd, lb_hot_gained[idle]); 3203 schedstat_inc(sd, lb_hot_gained[idle]);
3204 schedstat_inc(p, se.nr_forced_migrations); 3204 schedstat_inc(p, se.nr_forced_migrations);
3205 } 3205 }
3206 #endif 3206 #endif
3207 return 1; 3207 return 1;
3208 } 3208 }
3209 3209
3210 if (tsk_cache_hot) { 3210 if (tsk_cache_hot) {
3211 schedstat_inc(p, se.nr_failed_migrations_hot); 3211 schedstat_inc(p, se.nr_failed_migrations_hot);
3212 return 0; 3212 return 0;
3213 } 3213 }
3214 return 1; 3214 return 1;
3215 } 3215 }
3216 3216
3217 static unsigned long 3217 static unsigned long
3218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3218 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 unsigned long max_load_move, struct sched_domain *sd, 3219 unsigned long max_load_move, struct sched_domain *sd,
3220 enum cpu_idle_type idle, int *all_pinned, 3220 enum cpu_idle_type idle, int *all_pinned,
3221 int *this_best_prio, struct rq_iterator *iterator) 3221 int *this_best_prio, struct rq_iterator *iterator)
3222 { 3222 {
3223 int loops = 0, pulled = 0, pinned = 0; 3223 int loops = 0, pulled = 0, pinned = 0;
3224 struct task_struct *p; 3224 struct task_struct *p;
3225 long rem_load_move = max_load_move; 3225 long rem_load_move = max_load_move;
3226 3226
3227 if (max_load_move == 0) 3227 if (max_load_move == 0)
3228 goto out; 3228 goto out;
3229 3229
3230 pinned = 1; 3230 pinned = 1;
3231 3231
3232 /* 3232 /*
3233 * Start the load-balancing iterator: 3233 * Start the load-balancing iterator:
3234 */ 3234 */
3235 p = iterator->start(iterator->arg); 3235 p = iterator->start(iterator->arg);
3236 next: 3236 next:
3237 if (!p || loops++ > sysctl_sched_nr_migrate) 3237 if (!p || loops++ > sysctl_sched_nr_migrate)
3238 goto out; 3238 goto out;
3239 3239
3240 if ((p->se.load.weight >> 1) > rem_load_move || 3240 if ((p->se.load.weight >> 1) > rem_load_move ||
3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { 3241 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3242 p = iterator->next(iterator->arg); 3242 p = iterator->next(iterator->arg);
3243 goto next; 3243 goto next;
3244 } 3244 }
3245 3245
3246 pull_task(busiest, p, this_rq, this_cpu); 3246 pull_task(busiest, p, this_rq, this_cpu);
3247 pulled++; 3247 pulled++;
3248 rem_load_move -= p->se.load.weight; 3248 rem_load_move -= p->se.load.weight;
3249 3249
3250 #ifdef CONFIG_PREEMPT 3250 #ifdef CONFIG_PREEMPT
3251 /* 3251 /*
3252 * NEWIDLE balancing is a source of latency, so preemptible kernels 3252 * NEWIDLE balancing is a source of latency, so preemptible kernels
3253 * will stop after the first task is pulled to minimize the critical 3253 * will stop after the first task is pulled to minimize the critical
3254 * section. 3254 * section.
3255 */ 3255 */
3256 if (idle == CPU_NEWLY_IDLE) 3256 if (idle == CPU_NEWLY_IDLE)
3257 goto out; 3257 goto out;
3258 #endif 3258 #endif
3259 3259
3260 /* 3260 /*
3261 * We only want to steal up to the prescribed amount of weighted load. 3261 * We only want to steal up to the prescribed amount of weighted load.
3262 */ 3262 */
3263 if (rem_load_move > 0) { 3263 if (rem_load_move > 0) {
3264 if (p->prio < *this_best_prio) 3264 if (p->prio < *this_best_prio)
3265 *this_best_prio = p->prio; 3265 *this_best_prio = p->prio;
3266 p = iterator->next(iterator->arg); 3266 p = iterator->next(iterator->arg);
3267 goto next; 3267 goto next;
3268 } 3268 }
3269 out: 3269 out:
3270 /* 3270 /*
3271 * Right now, this is one of only two places pull_task() is called, 3271 * Right now, this is one of only two places pull_task() is called,
3272 * so we can safely collect pull_task() stats here rather than 3272 * so we can safely collect pull_task() stats here rather than
3273 * inside pull_task(). 3273 * inside pull_task().
3274 */ 3274 */
3275 schedstat_add(sd, lb_gained[idle], pulled); 3275 schedstat_add(sd, lb_gained[idle], pulled);
3276 3276
3277 if (all_pinned) 3277 if (all_pinned)
3278 *all_pinned = pinned; 3278 *all_pinned = pinned;
3279 3279
3280 return max_load_move - rem_load_move; 3280 return max_load_move - rem_load_move;
3281 } 3281 }
3282 3282
3283 /* 3283 /*
3284 * move_tasks tries to move up to max_load_move weighted load from busiest to 3284 * move_tasks tries to move up to max_load_move weighted load from busiest to
3285 * this_rq, as part of a balancing operation within domain "sd". 3285 * this_rq, as part of a balancing operation within domain "sd".
3286 * Returns 1 if successful and 0 otherwise. 3286 * Returns 1 if successful and 0 otherwise.
3287 * 3287 *
3288 * Called with both runqueues locked. 3288 * Called with both runqueues locked.
3289 */ 3289 */
3290 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3290 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 unsigned long max_load_move, 3291 unsigned long max_load_move,
3292 struct sched_domain *sd, enum cpu_idle_type idle, 3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *all_pinned) 3293 int *all_pinned)
3294 { 3294 {
3295 const struct sched_class *class = sched_class_highest; 3295 const struct sched_class *class = sched_class_highest;
3296 unsigned long total_load_moved = 0; 3296 unsigned long total_load_moved = 0;
3297 int this_best_prio = this_rq->curr->prio; 3297 int this_best_prio = this_rq->curr->prio;
3298 3298
3299 do { 3299 do {
3300 total_load_moved += 3300 total_load_moved +=
3301 class->load_balance(this_rq, this_cpu, busiest, 3301 class->load_balance(this_rq, this_cpu, busiest,
3302 max_load_move - total_load_moved, 3302 max_load_move - total_load_moved,
3303 sd, idle, all_pinned, &this_best_prio); 3303 sd, idle, all_pinned, &this_best_prio);
3304 class = class->next; 3304 class = class->next;
3305 3305
3306 #ifdef CONFIG_PREEMPT 3306 #ifdef CONFIG_PREEMPT
3307 /* 3307 /*
3308 * NEWIDLE balancing is a source of latency, so preemptible 3308 * NEWIDLE balancing is a source of latency, so preemptible
3309 * kernels will stop after the first task is pulled to minimize 3309 * kernels will stop after the first task is pulled to minimize
3310 * the critical section. 3310 * the critical section.
3311 */ 3311 */
3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) 3312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3313 break; 3313 break;
3314 #endif 3314 #endif
3315 } while (class && max_load_move > total_load_moved); 3315 } while (class && max_load_move > total_load_moved);
3316 3316
3317 return total_load_moved > 0; 3317 return total_load_moved > 0;
3318 } 3318 }
3319 3319
3320 static int 3320 static int
3321 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, 3321 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3322 struct sched_domain *sd, enum cpu_idle_type idle, 3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 struct rq_iterator *iterator) 3323 struct rq_iterator *iterator)
3324 { 3324 {
3325 struct task_struct *p = iterator->start(iterator->arg); 3325 struct task_struct *p = iterator->start(iterator->arg);
3326 int pinned = 0; 3326 int pinned = 0;
3327 3327
3328 while (p) { 3328 while (p) {
3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { 3329 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3330 pull_task(busiest, p, this_rq, this_cpu); 3330 pull_task(busiest, p, this_rq, this_cpu);
3331 /* 3331 /*
3332 * Right now, this is only the second place pull_task() 3332 * Right now, this is only the second place pull_task()
3333 * is called, so we can safely collect pull_task() 3333 * is called, so we can safely collect pull_task()
3334 * stats here rather than inside pull_task(). 3334 * stats here rather than inside pull_task().
3335 */ 3335 */
3336 schedstat_inc(sd, lb_gained[idle]); 3336 schedstat_inc(sd, lb_gained[idle]);
3337 3337
3338 return 1; 3338 return 1;
3339 } 3339 }
3340 p = iterator->next(iterator->arg); 3340 p = iterator->next(iterator->arg);
3341 } 3341 }
3342 3342
3343 return 0; 3343 return 0;
3344 } 3344 }
3345 3345
3346 /* 3346 /*
3347 * move_one_task tries to move exactly one task from busiest to this_rq, as 3347 * move_one_task tries to move exactly one task from busiest to this_rq, as
3348 * part of active balancing operations within "domain". 3348 * part of active balancing operations within "domain".
3349 * Returns 1 if successful and 0 otherwise. 3349 * Returns 1 if successful and 0 otherwise.
3350 * 3350 *
3351 * Called with both runqueues locked. 3351 * Called with both runqueues locked.
3352 */ 3352 */
3353 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, 3353 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3354 struct sched_domain *sd, enum cpu_idle_type idle) 3354 struct sched_domain *sd, enum cpu_idle_type idle)
3355 { 3355 {
3356 const struct sched_class *class; 3356 const struct sched_class *class;
3357 3357
3358 for (class = sched_class_highest; class; class = class->next) 3358 for (class = sched_class_highest; class; class = class->next)
3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) 3359 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3360 return 1; 3360 return 1;
3361 3361
3362 return 0; 3362 return 0;
3363 } 3363 }
3364 /********** Helpers for find_busiest_group ************************/ 3364 /********** Helpers for find_busiest_group ************************/
3365 /* 3365 /*
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain 3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing. 3367 * during load balancing.
3368 */ 3368 */
3369 struct sd_lb_stats { 3369 struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */ 3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */ 3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */ 3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */ 3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */ 3374 unsigned long avg_load; /* Average load across all groups in sd */
3375 3375
3376 /** Statistics of this group */ 3376 /** Statistics of this group */
3377 unsigned long this_load; 3377 unsigned long this_load;
3378 unsigned long this_load_per_task; 3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running; 3379 unsigned long this_nr_running;
3380 3380
3381 /* Statistics of the busiest group */ 3381 /* Statistics of the busiest group */
3382 unsigned long max_load; 3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task; 3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running; 3384 unsigned long busiest_nr_running;
3385 3385
3386 int group_imb; /* Is there imbalance in this sd */ 3386 int group_imb; /* Is there imbalance in this sd */
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance; /* Is powersave balance needed for this sd */ 3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */ 3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */ 3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */ 3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */ 3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */ 3393 unsigned long min_nr_running; /* Nr running of group_min */
3394 #endif 3394 #endif
3395 }; 3395 };
3396 3396
3397 /* 3397 /*
3398 * sg_lb_stats - stats of a sched_group required for load_balancing 3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */ 3399 */
3400 struct sg_lb_stats { 3400 struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */ 3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */ 3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */ 3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity; 3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */ 3406 int group_imb; /* Is there an imbalance in the group ? */
3407 }; 3407 };
3408 3408
3409 /** 3409 /**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned. 3411 * @group: The group whose first cpu is to be returned.
3412 */ 3412 */
3413 static inline unsigned int group_first_cpu(struct sched_group *group) 3413 static inline unsigned int group_first_cpu(struct sched_group *group)
3414 { 3414 {
3415 return cpumask_first(sched_group_cpus(group)); 3415 return cpumask_first(sched_group_cpus(group));
3416 } 3416 }
3417 3417
3418 /** 3418 /**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain. 3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained. 3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */ 3422 */
3423 static inline int get_sd_load_idx(struct sched_domain *sd, 3423 static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle) 3424 enum cpu_idle_type idle)
3425 { 3425 {
3426 int load_idx; 3426 int load_idx;
3427 3427
3428 switch (idle) { 3428 switch (idle) {
3429 case CPU_NOT_IDLE: 3429 case CPU_NOT_IDLE:
3430 load_idx = sd->busy_idx; 3430 load_idx = sd->busy_idx;
3431 break; 3431 break;
3432 3432
3433 case CPU_NEWLY_IDLE: 3433 case CPU_NEWLY_IDLE:
3434 load_idx = sd->newidle_idx; 3434 load_idx = sd->newidle_idx;
3435 break; 3435 break;
3436 default: 3436 default:
3437 load_idx = sd->idle_idx; 3437 load_idx = sd->idle_idx;
3438 break; 3438 break;
3439 } 3439 }
3440 3440
3441 return load_idx; 3441 return load_idx;
3442 } 3442 }
3443 3443
3444 3444
3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446 /** 3446 /**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for 3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing. 3448 * the given sched_domain, during load balancing.
3449 * 3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized. 3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd. 3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing. 3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */ 3453 */
3454 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3454 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456 { 3456 {
3457 /* 3457 /*
3458 * Busy processors will not participate in power savings 3458 * Busy processors will not participate in power savings
3459 * balance. 3459 * balance.
3460 */ 3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) 3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0; 3462 sds->power_savings_balance = 0;
3463 else { 3463 else {
3464 sds->power_savings_balance = 1; 3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX; 3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0; 3466 sds->leader_nr_running = 0;
3467 } 3467 }
3468 } 3468 }
3469 3469
3470 /** 3470 /**
3471 * update_sd_power_savings_stats - Update the power saving stats for a 3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing. 3472 * sched_domain while performing load balancing.
3473 * 3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration. 3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain 3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing 3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ? 3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group. 3478 * @sgs: Variable containing the statistics of the group.
3479 */ 3479 */
3480 static inline void update_sd_power_savings_stats(struct sched_group *group, 3480 static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482 { 3482 {
3483 3483
3484 if (!sds->power_savings_balance) 3484 if (!sds->power_savings_balance)
3485 return; 3485 return;
3486 3486
3487 /* 3487 /*
3488 * If the local group is idle or completely loaded 3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain 3489 * no need to do power savings balance at this domain
3490 */ 3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity || 3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running)) 3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0; 3493 sds->power_savings_balance = 0;
3494 3494
3495 /* 3495 /*
3496 * If a group is already running at full capacity or idle, 3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations 3497 * don't include that group in power savings calculations
3498 */ 3498 */
3499 if (!sds->power_savings_balance || 3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity || 3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running) 3501 !sgs->sum_nr_running)
3502 return; 3502 return;
3503 3503
3504 /* 3504 /*
3505 * Calculate the group which has the least non-idle load. 3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load 3506 * This is the group from where we need to pick up the load
3507 * for saving power 3507 * for saving power
3508 */ 3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) || 3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running && 3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) { 3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group; 3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running; 3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load / 3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running; 3515 sgs->sum_nr_running;
3516 } 3516 }
3517 3517
3518 /* 3518 /*
3519 * Calculate the group which is almost near its 3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load 3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power 3521 * from other group and save more power
3522 */ 3522 */
3523 if (sgs->sum_nr_running > sgs->group_capacity - 1) 3523 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3524 return; 3524 return;
3525 3525
3526 if (sgs->sum_nr_running > sds->leader_nr_running || 3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running && 3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) { 3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group; 3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running; 3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 } 3531 }
3532 } 3532 }
3533 3533
3534 /** 3534 /**
3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance 3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 * @sds: Variable containing the statistics of the sched_domain 3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration. 3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing. 3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance. 3539 * @imbalance: Variable to store the imbalance.
3540 * 3540 *
3541 * Description: 3541 * Description:
3542 * Check if we have potential to perform some power-savings balance. 3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the 3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle. 3544 * sched_domain, so that it's CPUs can be put to idle.
3545 * 3545 *
3546 * Returns 1 if there is potential to perform power-savings balance. 3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0. 3547 * Else returns 0.
3548 */ 3548 */
3549 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3549 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance) 3550 int this_cpu, unsigned long *imbalance)
3551 { 3551 {
3552 if (!sds->power_savings_balance) 3552 if (!sds->power_savings_balance)
3553 return 0; 3553 return 0;
3554 3554
3555 if (sds->this != sds->group_leader || 3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min) 3556 sds->group_leader == sds->group_min)
3557 return 0; 3557 return 0;
3558 3558
3559 *imbalance = sds->min_load_per_task; 3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min; 3560 sds->busiest = sds->group_min;
3561 3561
3562 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { 3562 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3563 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = 3563 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3564 group_first_cpu(sds->group_leader); 3564 group_first_cpu(sds->group_leader);
3565 } 3565 }
3566 3566
3567 return 1; 3567 return 1;
3568 3568
3569 } 3569 }
3570 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3570 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3571 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3571 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3572 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3572 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3573 { 3573 {
3574 return; 3574 return;
3575 } 3575 }
3576 3576
3577 static inline void update_sd_power_savings_stats(struct sched_group *group, 3577 static inline void update_sd_power_savings_stats(struct sched_group *group,
3578 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3578 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3579 { 3579 {
3580 return; 3580 return;
3581 } 3581 }
3582 3582
3583 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3583 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3584 int this_cpu, unsigned long *imbalance) 3584 int this_cpu, unsigned long *imbalance)
3585 { 3585 {
3586 return 0; 3586 return 0;
3587 } 3587 }
3588 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3588 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3589 3589
3590 3590
3591 /** 3591 /**
3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3592 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3593 * @group: sched_group whose statistics are to be updated. 3593 * @group: sched_group whose statistics are to be updated.
3594 * @this_cpu: Cpu for which load balance is currently performed. 3594 * @this_cpu: Cpu for which load balance is currently performed.
3595 * @idle: Idle status of this_cpu 3595 * @idle: Idle status of this_cpu
3596 * @load_idx: Load index of sched_domain of this_cpu for load calc. 3596 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3597 * @sd_idle: Idle status of the sched_domain containing group. 3597 * @sd_idle: Idle status of the sched_domain containing group.
3598 * @local_group: Does group contain this_cpu. 3598 * @local_group: Does group contain this_cpu.
3599 * @cpus: Set of cpus considered for load balancing. 3599 * @cpus: Set of cpus considered for load balancing.
3600 * @balance: Should we balance. 3600 * @balance: Should we balance.
3601 * @sgs: variable to hold the statistics for this group. 3601 * @sgs: variable to hold the statistics for this group.
3602 */ 3602 */
3603 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, 3603 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3604 enum cpu_idle_type idle, int load_idx, int *sd_idle, 3604 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3605 int local_group, const struct cpumask *cpus, 3605 int local_group, const struct cpumask *cpus,
3606 int *balance, struct sg_lb_stats *sgs) 3606 int *balance, struct sg_lb_stats *sgs)
3607 { 3607 {
3608 unsigned long load, max_cpu_load, min_cpu_load; 3608 unsigned long load, max_cpu_load, min_cpu_load;
3609 int i; 3609 int i;
3610 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3610 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3611 unsigned long sum_avg_load_per_task; 3611 unsigned long sum_avg_load_per_task;
3612 unsigned long avg_load_per_task; 3612 unsigned long avg_load_per_task;
3613 3613
3614 if (local_group) 3614 if (local_group)
3615 balance_cpu = group_first_cpu(group); 3615 balance_cpu = group_first_cpu(group);
3616 3616
3617 /* Tally up the load of all CPUs in the group */ 3617 /* Tally up the load of all CPUs in the group */
3618 sum_avg_load_per_task = avg_load_per_task = 0; 3618 sum_avg_load_per_task = avg_load_per_task = 0;
3619 max_cpu_load = 0; 3619 max_cpu_load = 0;
3620 min_cpu_load = ~0UL; 3620 min_cpu_load = ~0UL;
3621 3621
3622 for_each_cpu_and(i, sched_group_cpus(group), cpus) { 3622 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3623 struct rq *rq = cpu_rq(i); 3623 struct rq *rq = cpu_rq(i);
3624 3624
3625 if (*sd_idle && rq->nr_running) 3625 if (*sd_idle && rq->nr_running)
3626 *sd_idle = 0; 3626 *sd_idle = 0;
3627 3627
3628 /* Bias balancing toward cpus of our domain */ 3628 /* Bias balancing toward cpus of our domain */
3629 if (local_group) { 3629 if (local_group) {
3630 if (idle_cpu(i) && !first_idle_cpu) { 3630 if (idle_cpu(i) && !first_idle_cpu) {
3631 first_idle_cpu = 1; 3631 first_idle_cpu = 1;
3632 balance_cpu = i; 3632 balance_cpu = i;
3633 } 3633 }
3634 3634
3635 load = target_load(i, load_idx); 3635 load = target_load(i, load_idx);
3636 } else { 3636 } else {
3637 load = source_load(i, load_idx); 3637 load = source_load(i, load_idx);
3638 if (load > max_cpu_load) 3638 if (load > max_cpu_load)
3639 max_cpu_load = load; 3639 max_cpu_load = load;
3640 if (min_cpu_load > load) 3640 if (min_cpu_load > load)
3641 min_cpu_load = load; 3641 min_cpu_load = load;
3642 } 3642 }
3643 3643
3644 sgs->group_load += load; 3644 sgs->group_load += load;
3645 sgs->sum_nr_running += rq->nr_running; 3645 sgs->sum_nr_running += rq->nr_running;
3646 sgs->sum_weighted_load += weighted_cpuload(i); 3646 sgs->sum_weighted_load += weighted_cpuload(i);
3647 3647
3648 sum_avg_load_per_task += cpu_avg_load_per_task(i); 3648 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3649 } 3649 }
3650 3650
3651 /* 3651 /*
3652 * First idle cpu or the first cpu(busiest) in this sched group 3652 * First idle cpu or the first cpu(busiest) in this sched group
3653 * is eligible for doing load balancing at this and above 3653 * is eligible for doing load balancing at this and above
3654 * domains. In the newly idle case, we will allow all the cpu's 3654 * domains. In the newly idle case, we will allow all the cpu's
3655 * to do the newly idle load balance. 3655 * to do the newly idle load balance.
3656 */ 3656 */
3657 if (idle != CPU_NEWLY_IDLE && local_group && 3657 if (idle != CPU_NEWLY_IDLE && local_group &&
3658 balance_cpu != this_cpu && balance) { 3658 balance_cpu != this_cpu && balance) {
3659 *balance = 0; 3659 *balance = 0;
3660 return; 3660 return;
3661 } 3661 }
3662 3662
3663 /* Adjust by relative CPU power of the group */ 3663 /* Adjust by relative CPU power of the group */
3664 sgs->avg_load = sg_div_cpu_power(group, 3664 sgs->avg_load = sg_div_cpu_power(group,
3665 sgs->group_load * SCHED_LOAD_SCALE); 3665 sgs->group_load * SCHED_LOAD_SCALE);
3666 3666
3667 3667
3668 /* 3668 /*
3669 * Consider the group unbalanced when the imbalance is larger 3669 * Consider the group unbalanced when the imbalance is larger
3670 * than the average weight of two tasks. 3670 * than the average weight of two tasks.
3671 * 3671 *
3672 * APZ: with cgroup the avg task weight can vary wildly and 3672 * APZ: with cgroup the avg task weight can vary wildly and
3673 * might not be a suitable number - should we keep a 3673 * might not be a suitable number - should we keep a
3674 * normalized nr_running number somewhere that negates 3674 * normalized nr_running number somewhere that negates
3675 * the hierarchy? 3675 * the hierarchy?
3676 */ 3676 */
3677 avg_load_per_task = sg_div_cpu_power(group, 3677 avg_load_per_task = sg_div_cpu_power(group,
3678 sum_avg_load_per_task * SCHED_LOAD_SCALE); 3678 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3679 3679
3680 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) 3680 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3681 sgs->group_imb = 1; 3681 sgs->group_imb = 1;
3682 3682
3683 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; 3683 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3684 3684
3685 } 3685 }
3686 3686
3687 /** 3687 /**
3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing. 3688 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3689 * @sd: sched_domain whose statistics are to be updated. 3689 * @sd: sched_domain whose statistics are to be updated.
3690 * @this_cpu: Cpu for which load balance is currently performed. 3690 * @this_cpu: Cpu for which load balance is currently performed.
3691 * @idle: Idle status of this_cpu 3691 * @idle: Idle status of this_cpu
3692 * @sd_idle: Idle status of the sched_domain containing group. 3692 * @sd_idle: Idle status of the sched_domain containing group.
3693 * @cpus: Set of cpus considered for load balancing. 3693 * @cpus: Set of cpus considered for load balancing.
3694 * @balance: Should we balance. 3694 * @balance: Should we balance.
3695 * @sds: variable to hold the statistics for this sched_domain. 3695 * @sds: variable to hold the statistics for this sched_domain.
3696 */ 3696 */
3697 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, 3697 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3698 enum cpu_idle_type idle, int *sd_idle, 3698 enum cpu_idle_type idle, int *sd_idle,
3699 const struct cpumask *cpus, int *balance, 3699 const struct cpumask *cpus, int *balance,
3700 struct sd_lb_stats *sds) 3700 struct sd_lb_stats *sds)
3701 { 3701 {
3702 struct sched_group *group = sd->groups; 3702 struct sched_group *group = sd->groups;
3703 struct sg_lb_stats sgs; 3703 struct sg_lb_stats sgs;
3704 int load_idx; 3704 int load_idx;
3705 3705
3706 init_sd_power_savings_stats(sd, sds, idle); 3706 init_sd_power_savings_stats(sd, sds, idle);
3707 load_idx = get_sd_load_idx(sd, idle); 3707 load_idx = get_sd_load_idx(sd, idle);
3708 3708
3709 do { 3709 do {
3710 int local_group; 3710 int local_group;
3711 3711
3712 local_group = cpumask_test_cpu(this_cpu, 3712 local_group = cpumask_test_cpu(this_cpu,
3713 sched_group_cpus(group)); 3713 sched_group_cpus(group));
3714 memset(&sgs, 0, sizeof(sgs)); 3714 memset(&sgs, 0, sizeof(sgs));
3715 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, 3715 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3716 local_group, cpus, balance, &sgs); 3716 local_group, cpus, balance, &sgs);
3717 3717
3718 if (local_group && balance && !(*balance)) 3718 if (local_group && balance && !(*balance))
3719 return; 3719 return;
3720 3720
3721 sds->total_load += sgs.group_load; 3721 sds->total_load += sgs.group_load;
3722 sds->total_pwr += group->__cpu_power; 3722 sds->total_pwr += group->__cpu_power;
3723 3723
3724 if (local_group) { 3724 if (local_group) {
3725 sds->this_load = sgs.avg_load; 3725 sds->this_load = sgs.avg_load;
3726 sds->this = group; 3726 sds->this = group;
3727 sds->this_nr_running = sgs.sum_nr_running; 3727 sds->this_nr_running = sgs.sum_nr_running;
3728 sds->this_load_per_task = sgs.sum_weighted_load; 3728 sds->this_load_per_task = sgs.sum_weighted_load;
3729 } else if (sgs.avg_load > sds->max_load && 3729 } else if (sgs.avg_load > sds->max_load &&
3730 (sgs.sum_nr_running > sgs.group_capacity || 3730 (sgs.sum_nr_running > sgs.group_capacity ||
3731 sgs.group_imb)) { 3731 sgs.group_imb)) {
3732 sds->max_load = sgs.avg_load; 3732 sds->max_load = sgs.avg_load;
3733 sds->busiest = group; 3733 sds->busiest = group;
3734 sds->busiest_nr_running = sgs.sum_nr_running; 3734 sds->busiest_nr_running = sgs.sum_nr_running;
3735 sds->busiest_load_per_task = sgs.sum_weighted_load; 3735 sds->busiest_load_per_task = sgs.sum_weighted_load;
3736 sds->group_imb = sgs.group_imb; 3736 sds->group_imb = sgs.group_imb;
3737 } 3737 }
3738 3738
3739 update_sd_power_savings_stats(group, sds, local_group, &sgs); 3739 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3740 group = group->next; 3740 group = group->next;
3741 } while (group != sd->groups); 3741 } while (group != sd->groups);
3742 3742
3743 } 3743 }
3744 3744
3745 /** 3745 /**
3746 * fix_small_imbalance - Calculate the minor imbalance that exists 3746 * fix_small_imbalance - Calculate the minor imbalance that exists
3747 * amongst the groups of a sched_domain, during 3747 * amongst the groups of a sched_domain, during
3748 * load balancing. 3748 * load balancing.
3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 3749 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance. 3750 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3751 * @imbalance: Variable to store the imbalance. 3751 * @imbalance: Variable to store the imbalance.
3752 */ 3752 */
3753 static inline void fix_small_imbalance(struct sd_lb_stats *sds, 3753 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3754 int this_cpu, unsigned long *imbalance) 3754 int this_cpu, unsigned long *imbalance)
3755 { 3755 {
3756 unsigned long tmp, pwr_now = 0, pwr_move = 0; 3756 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3757 unsigned int imbn = 2; 3757 unsigned int imbn = 2;
3758 3758
3759 if (sds->this_nr_running) { 3759 if (sds->this_nr_running) {
3760 sds->this_load_per_task /= sds->this_nr_running; 3760 sds->this_load_per_task /= sds->this_nr_running;
3761 if (sds->busiest_load_per_task > 3761 if (sds->busiest_load_per_task >
3762 sds->this_load_per_task) 3762 sds->this_load_per_task)
3763 imbn = 1; 3763 imbn = 1;
3764 } else 3764 } else
3765 sds->this_load_per_task = 3765 sds->this_load_per_task =
3766 cpu_avg_load_per_task(this_cpu); 3766 cpu_avg_load_per_task(this_cpu);
3767 3767
3768 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= 3768 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3769 sds->busiest_load_per_task * imbn) { 3769 sds->busiest_load_per_task * imbn) {
3770 *imbalance = sds->busiest_load_per_task; 3770 *imbalance = sds->busiest_load_per_task;
3771 return; 3771 return;
3772 } 3772 }
3773 3773
3774 /* 3774 /*
3775 * OK, we don't have enough imbalance to justify moving tasks, 3775 * OK, we don't have enough imbalance to justify moving tasks,
3776 * however we may be able to increase total CPU power used by 3776 * however we may be able to increase total CPU power used by
3777 * moving them. 3777 * moving them.
3778 */ 3778 */
3779 3779
3780 pwr_now += sds->busiest->__cpu_power * 3780 pwr_now += sds->busiest->__cpu_power *
3781 min(sds->busiest_load_per_task, sds->max_load); 3781 min(sds->busiest_load_per_task, sds->max_load);
3782 pwr_now += sds->this->__cpu_power * 3782 pwr_now += sds->this->__cpu_power *
3783 min(sds->this_load_per_task, sds->this_load); 3783 min(sds->this_load_per_task, sds->this_load);
3784 pwr_now /= SCHED_LOAD_SCALE; 3784 pwr_now /= SCHED_LOAD_SCALE;
3785 3785
3786 /* Amount of load we'd subtract */ 3786 /* Amount of load we'd subtract */
3787 tmp = sg_div_cpu_power(sds->busiest, 3787 tmp = sg_div_cpu_power(sds->busiest,
3788 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 3788 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3789 if (sds->max_load > tmp) 3789 if (sds->max_load > tmp)
3790 pwr_move += sds->busiest->__cpu_power * 3790 pwr_move += sds->busiest->__cpu_power *
3791 min(sds->busiest_load_per_task, sds->max_load - tmp); 3791 min(sds->busiest_load_per_task, sds->max_load - tmp);
3792 3792
3793 /* Amount of load we'd add */ 3793 /* Amount of load we'd add */
3794 if (sds->max_load * sds->busiest->__cpu_power < 3794 if (sds->max_load * sds->busiest->__cpu_power <
3795 sds->busiest_load_per_task * SCHED_LOAD_SCALE) 3795 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3796 tmp = sg_div_cpu_power(sds->this, 3796 tmp = sg_div_cpu_power(sds->this,
3797 sds->max_load * sds->busiest->__cpu_power); 3797 sds->max_load * sds->busiest->__cpu_power);
3798 else 3798 else
3799 tmp = sg_div_cpu_power(sds->this, 3799 tmp = sg_div_cpu_power(sds->this,
3800 sds->busiest_load_per_task * SCHED_LOAD_SCALE); 3800 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3801 pwr_move += sds->this->__cpu_power * 3801 pwr_move += sds->this->__cpu_power *
3802 min(sds->this_load_per_task, sds->this_load + tmp); 3802 min(sds->this_load_per_task, sds->this_load + tmp);
3803 pwr_move /= SCHED_LOAD_SCALE; 3803 pwr_move /= SCHED_LOAD_SCALE;
3804 3804
3805 /* Move if we gain throughput */ 3805 /* Move if we gain throughput */
3806 if (pwr_move > pwr_now) 3806 if (pwr_move > pwr_now)
3807 *imbalance = sds->busiest_load_per_task; 3807 *imbalance = sds->busiest_load_per_task;
3808 } 3808 }
3809 3809
3810 /** 3810 /**
3811 * calculate_imbalance - Calculate the amount of imbalance present within the 3811 * calculate_imbalance - Calculate the amount of imbalance present within the
3812 * groups of a given sched_domain during load balance. 3812 * groups of a given sched_domain during load balance.
3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 3813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3814 * @this_cpu: Cpu for which currently load balance is being performed. 3814 * @this_cpu: Cpu for which currently load balance is being performed.
3815 * @imbalance: The variable to store the imbalance. 3815 * @imbalance: The variable to store the imbalance.
3816 */ 3816 */
3817 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, 3817 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3818 unsigned long *imbalance) 3818 unsigned long *imbalance)
3819 { 3819 {
3820 unsigned long max_pull; 3820 unsigned long max_pull;
3821 /* 3821 /*
3822 * In the presence of smp nice balancing, certain scenarios can have 3822 * In the presence of smp nice balancing, certain scenarios can have
3823 * max load less than avg load(as we skip the groups at or below 3823 * max load less than avg load(as we skip the groups at or below
3824 * its cpu_power, while calculating max_load..) 3824 * its cpu_power, while calculating max_load..)
3825 */ 3825 */
3826 if (sds->max_load < sds->avg_load) { 3826 if (sds->max_load < sds->avg_load) {
3827 *imbalance = 0; 3827 *imbalance = 0;
3828 return fix_small_imbalance(sds, this_cpu, imbalance); 3828 return fix_small_imbalance(sds, this_cpu, imbalance);
3829 } 3829 }
3830 3830
3831 /* Don't want to pull so many tasks that a group would go idle */ 3831 /* Don't want to pull so many tasks that a group would go idle */
3832 max_pull = min(sds->max_load - sds->avg_load, 3832 max_pull = min(sds->max_load - sds->avg_load,
3833 sds->max_load - sds->busiest_load_per_task); 3833 sds->max_load - sds->busiest_load_per_task);
3834 3834
3835 /* How much load to actually move to equalise the imbalance */ 3835 /* How much load to actually move to equalise the imbalance */
3836 *imbalance = min(max_pull * sds->busiest->__cpu_power, 3836 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3837 (sds->avg_load - sds->this_load) * sds->this->__cpu_power) 3837 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3838 / SCHED_LOAD_SCALE; 3838 / SCHED_LOAD_SCALE;
3839 3839
3840 /* 3840 /*
3841 * if *imbalance is less than the average load per runnable task 3841 * if *imbalance is less than the average load per runnable task
3842 * there is no gaurantee that any tasks will be moved so we'll have 3842 * there is no gaurantee that any tasks will be moved so we'll have
3843 * a think about bumping its value to force at least one task to be 3843 * a think about bumping its value to force at least one task to be
3844 * moved 3844 * moved
3845 */ 3845 */
3846 if (*imbalance < sds->busiest_load_per_task) 3846 if (*imbalance < sds->busiest_load_per_task)
3847 return fix_small_imbalance(sds, this_cpu, imbalance); 3847 return fix_small_imbalance(sds, this_cpu, imbalance);
3848 3848
3849 } 3849 }
3850 /******* find_busiest_group() helpers end here *********************/ 3850 /******* find_busiest_group() helpers end here *********************/
3851 3851
3852 /** 3852 /**
3853 * find_busiest_group - Returns the busiest group within the sched_domain 3853 * find_busiest_group - Returns the busiest group within the sched_domain
3854 * if there is an imbalance. If there isn't an imbalance, and 3854 * if there is an imbalance. If there isn't an imbalance, and
3855 * the user has opted for power-savings, it returns a group whose 3855 * the user has opted for power-savings, it returns a group whose
3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 3856 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3857 * such a group exists. 3857 * such a group exists.
3858 * 3858 *
3859 * Also calculates the amount of weighted load which should be moved 3859 * Also calculates the amount of weighted load which should be moved
3860 * to restore balance. 3860 * to restore balance.
3861 * 3861 *
3862 * @sd: The sched_domain whose busiest group is to be returned. 3862 * @sd: The sched_domain whose busiest group is to be returned.
3863 * @this_cpu: The cpu for which load balancing is currently being performed. 3863 * @this_cpu: The cpu for which load balancing is currently being performed.
3864 * @imbalance: Variable which stores amount of weighted load which should 3864 * @imbalance: Variable which stores amount of weighted load which should
3865 * be moved to restore balance/put a group to idle. 3865 * be moved to restore balance/put a group to idle.
3866 * @idle: The idle status of this_cpu. 3866 * @idle: The idle status of this_cpu.
3867 * @sd_idle: The idleness of sd 3867 * @sd_idle: The idleness of sd
3868 * @cpus: The set of CPUs under consideration for load-balancing. 3868 * @cpus: The set of CPUs under consideration for load-balancing.
3869 * @balance: Pointer to a variable indicating if this_cpu 3869 * @balance: Pointer to a variable indicating if this_cpu
3870 * is the appropriate cpu to perform load balancing at this_level. 3870 * is the appropriate cpu to perform load balancing at this_level.
3871 * 3871 *
3872 * Returns: - the busiest group if imbalance exists. 3872 * Returns: - the busiest group if imbalance exists.
3873 * - If no imbalance and user has opted for power-savings balance, 3873 * - If no imbalance and user has opted for power-savings balance,
3874 * return the least loaded group whose CPUs can be 3874 * return the least loaded group whose CPUs can be
3875 * put to idle by rebalancing its tasks onto our group. 3875 * put to idle by rebalancing its tasks onto our group.
3876 */ 3876 */
3877 static struct sched_group * 3877 static struct sched_group *
3878 find_busiest_group(struct sched_domain *sd, int this_cpu, 3878 find_busiest_group(struct sched_domain *sd, int this_cpu,
3879 unsigned long *imbalance, enum cpu_idle_type idle, 3879 unsigned long *imbalance, enum cpu_idle_type idle,
3880 int *sd_idle, const struct cpumask *cpus, int *balance) 3880 int *sd_idle, const struct cpumask *cpus, int *balance)
3881 { 3881 {
3882 struct sd_lb_stats sds; 3882 struct sd_lb_stats sds;
3883 3883
3884 memset(&sds, 0, sizeof(sds)); 3884 memset(&sds, 0, sizeof(sds));
3885 3885
3886 /* 3886 /*
3887 * Compute the various statistics relavent for load balancing at 3887 * Compute the various statistics relavent for load balancing at
3888 * this level. 3888 * this level.
3889 */ 3889 */
3890 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, 3890 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3891 balance, &sds); 3891 balance, &sds);
3892 3892
3893 /* Cases where imbalance does not exist from POV of this_cpu */ 3893 /* Cases where imbalance does not exist from POV of this_cpu */
3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing 3894 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3895 * at this level. 3895 * at this level.
3896 * 2) There is no busy sibling group to pull from. 3896 * 2) There is no busy sibling group to pull from.
3897 * 3) This group is the busiest group. 3897 * 3) This group is the busiest group.
3898 * 4) This group is more busy than the avg busieness at this 3898 * 4) This group is more busy than the avg busieness at this
3899 * sched_domain. 3899 * sched_domain.
3900 * 5) The imbalance is within the specified limit. 3900 * 5) The imbalance is within the specified limit.
3901 * 6) Any rebalance would lead to ping-pong 3901 * 6) Any rebalance would lead to ping-pong
3902 */ 3902 */
3903 if (balance && !(*balance)) 3903 if (balance && !(*balance))
3904 goto ret; 3904 goto ret;
3905 3905
3906 if (!sds.busiest || sds.busiest_nr_running == 0) 3906 if (!sds.busiest || sds.busiest_nr_running == 0)
3907 goto out_balanced; 3907 goto out_balanced;
3908 3908
3909 if (sds.this_load >= sds.max_load) 3909 if (sds.this_load >= sds.max_load)
3910 goto out_balanced; 3910 goto out_balanced;
3911 3911
3912 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; 3912 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3913 3913
3914 if (sds.this_load >= sds.avg_load) 3914 if (sds.this_load >= sds.avg_load)
3915 goto out_balanced; 3915 goto out_balanced;
3916 3916
3917 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) 3917 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3918 goto out_balanced; 3918 goto out_balanced;
3919 3919
3920 sds.busiest_load_per_task /= sds.busiest_nr_running; 3920 sds.busiest_load_per_task /= sds.busiest_nr_running;
3921 if (sds.group_imb) 3921 if (sds.group_imb)
3922 sds.busiest_load_per_task = 3922 sds.busiest_load_per_task =
3923 min(sds.busiest_load_per_task, sds.avg_load); 3923 min(sds.busiest_load_per_task, sds.avg_load);
3924 3924
3925 /* 3925 /*
3926 * We're trying to get all the cpus to the average_load, so we don't 3926 * We're trying to get all the cpus to the average_load, so we don't
3927 * want to push ourselves above the average load, nor do we wish to 3927 * want to push ourselves above the average load, nor do we wish to
3928 * reduce the max loaded cpu below the average load, as either of these 3928 * reduce the max loaded cpu below the average load, as either of these
3929 * actions would just result in more rebalancing later, and ping-pong 3929 * actions would just result in more rebalancing later, and ping-pong
3930 * tasks around. Thus we look for the minimum possible imbalance. 3930 * tasks around. Thus we look for the minimum possible imbalance.
3931 * Negative imbalances (*we* are more loaded than anyone else) will 3931 * Negative imbalances (*we* are more loaded than anyone else) will
3932 * be counted as no imbalance for these purposes -- we can't fix that 3932 * be counted as no imbalance for these purposes -- we can't fix that
3933 * by pulling tasks to us. Be careful of negative numbers as they'll 3933 * by pulling tasks to us. Be careful of negative numbers as they'll
3934 * appear as very large values with unsigned longs. 3934 * appear as very large values with unsigned longs.
3935 */ 3935 */
3936 if (sds.max_load <= sds.busiest_load_per_task) 3936 if (sds.max_load <= sds.busiest_load_per_task)
3937 goto out_balanced; 3937 goto out_balanced;
3938 3938
3939 /* Looks like there is an imbalance. Compute it */ 3939 /* Looks like there is an imbalance. Compute it */
3940 calculate_imbalance(&sds, this_cpu, imbalance); 3940 calculate_imbalance(&sds, this_cpu, imbalance);
3941 return sds.busiest; 3941 return sds.busiest;
3942 3942
3943 out_balanced: 3943 out_balanced:
3944 /* 3944 /*
3945 * There is no obvious imbalance. But check if we can do some balancing 3945 * There is no obvious imbalance. But check if we can do some balancing
3946 * to save power. 3946 * to save power.
3947 */ 3947 */
3948 if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) 3948 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3949 return sds.busiest; 3949 return sds.busiest;
3950 ret: 3950 ret:
3951 *imbalance = 0; 3951 *imbalance = 0;
3952 return NULL; 3952 return NULL;
3953 } 3953 }
3954 3954
3955 /* 3955 /*
3956 * find_busiest_queue - find the busiest runqueue among the cpus in group. 3956 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3957 */ 3957 */
3958 static struct rq * 3958 static struct rq *
3959 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, 3959 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3960 unsigned long imbalance, const struct cpumask *cpus) 3960 unsigned long imbalance, const struct cpumask *cpus)
3961 { 3961 {
3962 struct rq *busiest = NULL, *rq; 3962 struct rq *busiest = NULL, *rq;
3963 unsigned long max_load = 0; 3963 unsigned long max_load = 0;
3964 int i; 3964 int i;
3965 3965
3966 for_each_cpu(i, sched_group_cpus(group)) { 3966 for_each_cpu(i, sched_group_cpus(group)) {
3967 unsigned long wl; 3967 unsigned long wl;
3968 3968
3969 if (!cpumask_test_cpu(i, cpus)) 3969 if (!cpumask_test_cpu(i, cpus))
3970 continue; 3970 continue;
3971 3971
3972 rq = cpu_rq(i); 3972 rq = cpu_rq(i);
3973 wl = weighted_cpuload(i); 3973 wl = weighted_cpuload(i);
3974 3974
3975 if (rq->nr_running == 1 && wl > imbalance) 3975 if (rq->nr_running == 1 && wl > imbalance)
3976 continue; 3976 continue;
3977 3977
3978 if (wl > max_load) { 3978 if (wl > max_load) {
3979 max_load = wl; 3979 max_load = wl;
3980 busiest = rq; 3980 busiest = rq;
3981 } 3981 }
3982 } 3982 }
3983 3983
3984 return busiest; 3984 return busiest;
3985 } 3985 }
3986 3986
3987 /* 3987 /*
3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 3988 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3989 * so long as it is large enough. 3989 * so long as it is large enough.
3990 */ 3990 */
3991 #define MAX_PINNED_INTERVAL 512 3991 #define MAX_PINNED_INTERVAL 512
3992 3992
3993 /* Working cpumask for load_balance and load_balance_newidle. */ 3993 /* Working cpumask for load_balance and load_balance_newidle. */
3994 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 3994 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3995 3995
3996 /* 3996 /*
3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move 3997 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3998 * tasks if there is an imbalance. 3998 * tasks if there is an imbalance.
3999 */ 3999 */
4000 static int load_balance(int this_cpu, struct rq *this_rq, 4000 static int load_balance(int this_cpu, struct rq *this_rq,
4001 struct sched_domain *sd, enum cpu_idle_type idle, 4001 struct sched_domain *sd, enum cpu_idle_type idle,
4002 int *balance) 4002 int *balance)
4003 { 4003 {
4004 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; 4004 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4005 struct sched_group *group; 4005 struct sched_group *group;
4006 unsigned long imbalance; 4006 unsigned long imbalance;
4007 struct rq *busiest; 4007 struct rq *busiest;
4008 unsigned long flags; 4008 unsigned long flags;
4009 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4009 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4010 4010
4011 cpumask_setall(cpus); 4011 cpumask_setall(cpus);
4012 4012
4013 /* 4013 /*
4014 * When power savings policy is enabled for the parent domain, idle 4014 * When power savings policy is enabled for the parent domain, idle
4015 * sibling can pick up load irrespective of busy siblings. In this case, 4015 * sibling can pick up load irrespective of busy siblings. In this case,
4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of 4016 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4017 * portraying it as CPU_NOT_IDLE. 4017 * portraying it as CPU_NOT_IDLE.
4018 */ 4018 */
4019 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && 4019 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4020 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4020 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4021 sd_idle = 1; 4021 sd_idle = 1;
4022 4022
4023 schedstat_inc(sd, lb_count[idle]); 4023 schedstat_inc(sd, lb_count[idle]);
4024 4024
4025 redo: 4025 redo:
4026 update_shares(sd); 4026 update_shares(sd);
4027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, 4027 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4028 cpus, balance); 4028 cpus, balance);
4029 4029
4030 if (*balance == 0) 4030 if (*balance == 0)
4031 goto out_balanced; 4031 goto out_balanced;
4032 4032
4033 if (!group) { 4033 if (!group) {
4034 schedstat_inc(sd, lb_nobusyg[idle]); 4034 schedstat_inc(sd, lb_nobusyg[idle]);
4035 goto out_balanced; 4035 goto out_balanced;
4036 } 4036 }
4037 4037
4038 busiest = find_busiest_queue(group, idle, imbalance, cpus); 4038 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4039 if (!busiest) { 4039 if (!busiest) {
4040 schedstat_inc(sd, lb_nobusyq[idle]); 4040 schedstat_inc(sd, lb_nobusyq[idle]);
4041 goto out_balanced; 4041 goto out_balanced;
4042 } 4042 }
4043 4043
4044 BUG_ON(busiest == this_rq); 4044 BUG_ON(busiest == this_rq);
4045 4045
4046 schedstat_add(sd, lb_imbalance[idle], imbalance); 4046 schedstat_add(sd, lb_imbalance[idle], imbalance);
4047 4047
4048 ld_moved = 0; 4048 ld_moved = 0;
4049 if (busiest->nr_running > 1) { 4049 if (busiest->nr_running > 1) {
4050 /* 4050 /*
4051 * Attempt to move tasks. If find_busiest_group has found 4051 * Attempt to move tasks. If find_busiest_group has found
4052 * an imbalance but busiest->nr_running <= 1, the group is 4052 * an imbalance but busiest->nr_running <= 1, the group is
4053 * still unbalanced. ld_moved simply stays zero, so it is 4053 * still unbalanced. ld_moved simply stays zero, so it is
4054 * correctly treated as an imbalance. 4054 * correctly treated as an imbalance.
4055 */ 4055 */
4056 local_irq_save(flags); 4056 local_irq_save(flags);
4057 double_rq_lock(this_rq, busiest); 4057 double_rq_lock(this_rq, busiest);
4058 ld_moved = move_tasks(this_rq, this_cpu, busiest, 4058 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4059 imbalance, sd, idle, &all_pinned); 4059 imbalance, sd, idle, &all_pinned);
4060 double_rq_unlock(this_rq, busiest); 4060 double_rq_unlock(this_rq, busiest);
4061 local_irq_restore(flags); 4061 local_irq_restore(flags);
4062 4062
4063 /* 4063 /*
4064 * some other cpu did the load balance for us. 4064 * some other cpu did the load balance for us.
4065 */ 4065 */
4066 if (ld_moved && this_cpu != smp_processor_id()) 4066 if (ld_moved && this_cpu != smp_processor_id())
4067 resched_cpu(this_cpu); 4067 resched_cpu(this_cpu);
4068 4068
4069 /* All tasks on this runqueue were pinned by CPU affinity */ 4069 /* All tasks on this runqueue were pinned by CPU affinity */
4070 if (unlikely(all_pinned)) { 4070 if (unlikely(all_pinned)) {
4071 cpumask_clear_cpu(cpu_of(busiest), cpus); 4071 cpumask_clear_cpu(cpu_of(busiest), cpus);
4072 if (!cpumask_empty(cpus)) 4072 if (!cpumask_empty(cpus))
4073 goto redo; 4073 goto redo;
4074 goto out_balanced; 4074 goto out_balanced;
4075 } 4075 }
4076 } 4076 }
4077 4077
4078 if (!ld_moved) { 4078 if (!ld_moved) {
4079 schedstat_inc(sd, lb_failed[idle]); 4079 schedstat_inc(sd, lb_failed[idle]);
4080 sd->nr_balance_failed++; 4080 sd->nr_balance_failed++;
4081 4081
4082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { 4082 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4083 4083
4084 spin_lock_irqsave(&busiest->lock, flags); 4084 spin_lock_irqsave(&busiest->lock, flags);
4085 4085
4086 /* don't kick the migration_thread, if the curr 4086 /* don't kick the migration_thread, if the curr
4087 * task on busiest cpu can't be moved to this_cpu 4087 * task on busiest cpu can't be moved to this_cpu
4088 */ 4088 */
4089 if (!cpumask_test_cpu(this_cpu, 4089 if (!cpumask_test_cpu(this_cpu,
4090 &busiest->curr->cpus_allowed)) { 4090 &busiest->curr->cpus_allowed)) {
4091 spin_unlock_irqrestore(&busiest->lock, flags); 4091 spin_unlock_irqrestore(&busiest->lock, flags);
4092 all_pinned = 1; 4092 all_pinned = 1;
4093 goto out_one_pinned; 4093 goto out_one_pinned;
4094 } 4094 }
4095 4095
4096 if (!busiest->active_balance) { 4096 if (!busiest->active_balance) {
4097 busiest->active_balance = 1; 4097 busiest->active_balance = 1;
4098 busiest->push_cpu = this_cpu; 4098 busiest->push_cpu = this_cpu;
4099 active_balance = 1; 4099 active_balance = 1;
4100 } 4100 }
4101 spin_unlock_irqrestore(&busiest->lock, flags); 4101 spin_unlock_irqrestore(&busiest->lock, flags);
4102 if (active_balance) 4102 if (active_balance)
4103 wake_up_process(busiest->migration_thread); 4103 wake_up_process(busiest->migration_thread);
4104 4104
4105 /* 4105 /*
4106 * We've kicked active balancing, reset the failure 4106 * We've kicked active balancing, reset the failure
4107 * counter. 4107 * counter.
4108 */ 4108 */
4109 sd->nr_balance_failed = sd->cache_nice_tries+1; 4109 sd->nr_balance_failed = sd->cache_nice_tries+1;
4110 } 4110 }
4111 } else 4111 } else
4112 sd->nr_balance_failed = 0; 4112 sd->nr_balance_failed = 0;
4113 4113
4114 if (likely(!active_balance)) { 4114 if (likely(!active_balance)) {
4115 /* We were unbalanced, so reset the balancing interval */ 4115 /* We were unbalanced, so reset the balancing interval */
4116 sd->balance_interval = sd->min_interval; 4116 sd->balance_interval = sd->min_interval;
4117 } else { 4117 } else {
4118 /* 4118 /*
4119 * If we've begun active balancing, start to back off. This 4119 * If we've begun active balancing, start to back off. This
4120 * case may not be covered by the all_pinned logic if there 4120 * case may not be covered by the all_pinned logic if there
4121 * is only 1 task on the busy runqueue (because we don't call 4121 * is only 1 task on the busy runqueue (because we don't call
4122 * move_tasks). 4122 * move_tasks).
4123 */ 4123 */
4124 if (sd->balance_interval < sd->max_interval) 4124 if (sd->balance_interval < sd->max_interval)
4125 sd->balance_interval *= 2; 4125 sd->balance_interval *= 2;
4126 } 4126 }
4127 4127
4128 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && 4128 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 ld_moved = -1; 4130 ld_moved = -1;
4131 4131
4132 goto out; 4132 goto out;
4133 4133
4134 out_balanced: 4134 out_balanced:
4135 schedstat_inc(sd, lb_balanced[idle]); 4135 schedstat_inc(sd, lb_balanced[idle]);
4136 4136
4137 sd->nr_balance_failed = 0; 4137 sd->nr_balance_failed = 0;
4138 4138
4139 out_one_pinned: 4139 out_one_pinned:
4140 /* tune up the balancing interval */ 4140 /* tune up the balancing interval */
4141 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || 4141 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4142 (sd->balance_interval < sd->max_interval)) 4142 (sd->balance_interval < sd->max_interval))
4143 sd->balance_interval *= 2; 4143 sd->balance_interval *= 2;
4144 4144
4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 4145 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4146 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 ld_moved = -1; 4147 ld_moved = -1;
4148 else 4148 else
4149 ld_moved = 0; 4149 ld_moved = 0;
4150 out: 4150 out:
4151 if (ld_moved) 4151 if (ld_moved)
4152 update_shares(sd); 4152 update_shares(sd);
4153 return ld_moved; 4153 return ld_moved;
4154 } 4154 }
4155 4155
4156 /* 4156 /*
4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4157 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4158 * tasks if there is an imbalance. 4158 * tasks if there is an imbalance.
4159 * 4159 *
4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). 4160 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4161 * this_rq is locked. 4161 * this_rq is locked.
4162 */ 4162 */
4163 static int 4163 static int
4164 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd) 4164 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4165 { 4165 {
4166 struct sched_group *group; 4166 struct sched_group *group;
4167 struct rq *busiest = NULL; 4167 struct rq *busiest = NULL;
4168 unsigned long imbalance; 4168 unsigned long imbalance;
4169 int ld_moved = 0; 4169 int ld_moved = 0;
4170 int sd_idle = 0; 4170 int sd_idle = 0;
4171 int all_pinned = 0; 4171 int all_pinned = 0;
4172 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4172 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4173 4173
4174 cpumask_setall(cpus); 4174 cpumask_setall(cpus);
4175 4175
4176 /* 4176 /*
4177 * When power savings policy is enabled for the parent domain, idle 4177 * When power savings policy is enabled for the parent domain, idle
4178 * sibling can pick up load irrespective of busy siblings. In this case, 4178 * sibling can pick up load irrespective of busy siblings. In this case,
4179 * let the state of idle sibling percolate up as IDLE, instead of 4179 * let the state of idle sibling percolate up as IDLE, instead of
4180 * portraying it as CPU_NOT_IDLE. 4180 * portraying it as CPU_NOT_IDLE.
4181 */ 4181 */
4182 if (sd->flags & SD_SHARE_CPUPOWER && 4182 if (sd->flags & SD_SHARE_CPUPOWER &&
4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4184 sd_idle = 1; 4184 sd_idle = 1;
4185 4185
4186 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); 4186 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4187 redo: 4187 redo:
4188 update_shares_locked(this_rq, sd); 4188 update_shares_locked(this_rq, sd);
4189 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, 4189 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4190 &sd_idle, cpus, NULL); 4190 &sd_idle, cpus, NULL);
4191 if (!group) { 4191 if (!group) {
4192 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); 4192 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4193 goto out_balanced; 4193 goto out_balanced;
4194 } 4194 }
4195 4195
4196 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); 4196 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4197 if (!busiest) { 4197 if (!busiest) {
4198 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); 4198 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4199 goto out_balanced; 4199 goto out_balanced;
4200 } 4200 }
4201 4201
4202 BUG_ON(busiest == this_rq); 4202 BUG_ON(busiest == this_rq);
4203 4203
4204 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); 4204 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4205 4205
4206 ld_moved = 0; 4206 ld_moved = 0;
4207 if (busiest->nr_running > 1) { 4207 if (busiest->nr_running > 1) {
4208 /* Attempt to move tasks */ 4208 /* Attempt to move tasks */
4209 double_lock_balance(this_rq, busiest); 4209 double_lock_balance(this_rq, busiest);
4210 /* this_rq->clock is already updated */ 4210 /* this_rq->clock is already updated */
4211 update_rq_clock(busiest); 4211 update_rq_clock(busiest);
4212 ld_moved = move_tasks(this_rq, this_cpu, busiest, 4212 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4213 imbalance, sd, CPU_NEWLY_IDLE, 4213 imbalance, sd, CPU_NEWLY_IDLE,
4214 &all_pinned); 4214 &all_pinned);
4215 double_unlock_balance(this_rq, busiest); 4215 double_unlock_balance(this_rq, busiest);
4216 4216
4217 if (unlikely(all_pinned)) { 4217 if (unlikely(all_pinned)) {
4218 cpumask_clear_cpu(cpu_of(busiest), cpus); 4218 cpumask_clear_cpu(cpu_of(busiest), cpus);
4219 if (!cpumask_empty(cpus)) 4219 if (!cpumask_empty(cpus))
4220 goto redo; 4220 goto redo;
4221 } 4221 }
4222 } 4222 }
4223 4223
4224 if (!ld_moved) { 4224 if (!ld_moved) {
4225 int active_balance = 0; 4225 int active_balance = 0;
4226 4226
4227 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); 4227 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 4228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4230 return -1; 4230 return -1;
4231 4231
4232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) 4232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4233 return -1; 4233 return -1;
4234 4234
4235 if (sd->nr_balance_failed++ < 2) 4235 if (sd->nr_balance_failed++ < 2)
4236 return -1; 4236 return -1;
4237 4237
4238 /* 4238 /*
4239 * The only task running in a non-idle cpu can be moved to this 4239 * The only task running in a non-idle cpu can be moved to this
4240 * cpu in an attempt to completely freeup the other CPU 4240 * cpu in an attempt to completely freeup the other CPU
4241 * package. The same method used to move task in load_balance() 4241 * package. The same method used to move task in load_balance()
4242 * have been extended for load_balance_newidle() to speedup 4242 * have been extended for load_balance_newidle() to speedup
4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2) 4243 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4244 * 4244 *
4245 * The package power saving logic comes from 4245 * The package power saving logic comes from
4246 * find_busiest_group(). If there are no imbalance, then 4246 * find_busiest_group(). If there are no imbalance, then
4247 * f_b_g() will return NULL. However when sched_mc={1,2} then 4247 * f_b_g() will return NULL. However when sched_mc={1,2} then
4248 * f_b_g() will select a group from which a running task may be 4248 * f_b_g() will select a group from which a running task may be
4249 * pulled to this cpu in order to make the other package idle. 4249 * pulled to this cpu in order to make the other package idle.
4250 * If there is no opportunity to make a package idle and if 4250 * If there is no opportunity to make a package idle and if
4251 * there are no imbalance, then f_b_g() will return NULL and no 4251 * there are no imbalance, then f_b_g() will return NULL and no
4252 * action will be taken in load_balance_newidle(). 4252 * action will be taken in load_balance_newidle().
4253 * 4253 *
4254 * Under normal task pull operation due to imbalance, there 4254 * Under normal task pull operation due to imbalance, there
4255 * will be more than one task in the source run queue and 4255 * will be more than one task in the source run queue and
4256 * move_tasks() will succeed. ld_moved will be true and this 4256 * move_tasks() will succeed. ld_moved will be true and this
4257 * active balance code will not be triggered. 4257 * active balance code will not be triggered.
4258 */ 4258 */
4259 4259
4260 /* Lock busiest in correct order while this_rq is held */ 4260 /* Lock busiest in correct order while this_rq is held */
4261 double_lock_balance(this_rq, busiest); 4261 double_lock_balance(this_rq, busiest);
4262 4262
4263 /* 4263 /*
4264 * don't kick the migration_thread, if the curr 4264 * don't kick the migration_thread, if the curr
4265 * task on busiest cpu can't be moved to this_cpu 4265 * task on busiest cpu can't be moved to this_cpu
4266 */ 4266 */
4267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 4267 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4268 double_unlock_balance(this_rq, busiest); 4268 double_unlock_balance(this_rq, busiest);
4269 all_pinned = 1; 4269 all_pinned = 1;
4270 return ld_moved; 4270 return ld_moved;
4271 } 4271 }
4272 4272
4273 if (!busiest->active_balance) { 4273 if (!busiest->active_balance) {
4274 busiest->active_balance = 1; 4274 busiest->active_balance = 1;
4275 busiest->push_cpu = this_cpu; 4275 busiest->push_cpu = this_cpu;
4276 active_balance = 1; 4276 active_balance = 1;
4277 } 4277 }
4278 4278
4279 double_unlock_balance(this_rq, busiest); 4279 double_unlock_balance(this_rq, busiest);
4280 /* 4280 /*
4281 * Should not call ttwu while holding a rq->lock 4281 * Should not call ttwu while holding a rq->lock
4282 */ 4282 */
4283 spin_unlock(&this_rq->lock); 4283 spin_unlock(&this_rq->lock);
4284 if (active_balance) 4284 if (active_balance)
4285 wake_up_process(busiest->migration_thread); 4285 wake_up_process(busiest->migration_thread);
4286 spin_lock(&this_rq->lock); 4286 spin_lock(&this_rq->lock);
4287 4287
4288 } else 4288 } else
4289 sd->nr_balance_failed = 0; 4289 sd->nr_balance_failed = 0;
4290 4290
4291 update_shares_locked(this_rq, sd); 4291 update_shares_locked(this_rq, sd);
4292 return ld_moved; 4292 return ld_moved;
4293 4293
4294 out_balanced: 4294 out_balanced:
4295 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); 4295 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && 4296 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) 4297 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4298 return -1; 4298 return -1;
4299 sd->nr_balance_failed = 0; 4299 sd->nr_balance_failed = 0;
4300 4300
4301 return 0; 4301 return 0;
4302 } 4302 }
4303 4303
4304 /* 4304 /*
4305 * idle_balance is called by schedule() if this_cpu is about to become 4305 * idle_balance is called by schedule() if this_cpu is about to become
4306 * idle. Attempts to pull tasks from other CPUs. 4306 * idle. Attempts to pull tasks from other CPUs.
4307 */ 4307 */
4308 static void idle_balance(int this_cpu, struct rq *this_rq) 4308 static void idle_balance(int this_cpu, struct rq *this_rq)
4309 { 4309 {
4310 struct sched_domain *sd; 4310 struct sched_domain *sd;
4311 int pulled_task = 0; 4311 int pulled_task = 0;
4312 unsigned long next_balance = jiffies + HZ; 4312 unsigned long next_balance = jiffies + HZ;
4313 4313
4314 for_each_domain(this_cpu, sd) { 4314 for_each_domain(this_cpu, sd) {
4315 unsigned long interval; 4315 unsigned long interval;
4316 4316
4317 if (!(sd->flags & SD_LOAD_BALANCE)) 4317 if (!(sd->flags & SD_LOAD_BALANCE))
4318 continue; 4318 continue;
4319 4319
4320 if (sd->flags & SD_BALANCE_NEWIDLE) 4320 if (sd->flags & SD_BALANCE_NEWIDLE)
4321 /* If we've pulled tasks over stop searching: */ 4321 /* If we've pulled tasks over stop searching: */
4322 pulled_task = load_balance_newidle(this_cpu, this_rq, 4322 pulled_task = load_balance_newidle(this_cpu, this_rq,
4323 sd); 4323 sd);
4324 4324
4325 interval = msecs_to_jiffies(sd->balance_interval); 4325 interval = msecs_to_jiffies(sd->balance_interval);
4326 if (time_after(next_balance, sd->last_balance + interval)) 4326 if (time_after(next_balance, sd->last_balance + interval))
4327 next_balance = sd->last_balance + interval; 4327 next_balance = sd->last_balance + interval;
4328 if (pulled_task) 4328 if (pulled_task)
4329 break; 4329 break;
4330 } 4330 }
4331 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4331 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4332 /* 4332 /*
4333 * We are going idle. next_balance may be set based on 4333 * We are going idle. next_balance may be set based on
4334 * a busy processor. So reset next_balance. 4334 * a busy processor. So reset next_balance.
4335 */ 4335 */
4336 this_rq->next_balance = next_balance; 4336 this_rq->next_balance = next_balance;
4337 } 4337 }
4338 } 4338 }
4339 4339
4340 /* 4340 /*
4341 * active_load_balance is run by migration threads. It pushes running tasks 4341 * active_load_balance is run by migration threads. It pushes running tasks
4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be 4342 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4343 * running on each physical CPU where possible, and avoids physical / 4343 * running on each physical CPU where possible, and avoids physical /
4344 * logical imbalances. 4344 * logical imbalances.
4345 * 4345 *
4346 * Called with busiest_rq locked. 4346 * Called with busiest_rq locked.
4347 */ 4347 */
4348 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) 4348 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4349 { 4349 {
4350 int target_cpu = busiest_rq->push_cpu; 4350 int target_cpu = busiest_rq->push_cpu;
4351 struct sched_domain *sd; 4351 struct sched_domain *sd;
4352 struct rq *target_rq; 4352 struct rq *target_rq;
4353 4353
4354 /* Is there any task to move? */ 4354 /* Is there any task to move? */
4355 if (busiest_rq->nr_running <= 1) 4355 if (busiest_rq->nr_running <= 1)
4356 return; 4356 return;
4357 4357
4358 target_rq = cpu_rq(target_cpu); 4358 target_rq = cpu_rq(target_cpu);
4359 4359
4360 /* 4360 /*
4361 * This condition is "impossible", if it occurs 4361 * This condition is "impossible", if it occurs
4362 * we need to fix it. Originally reported by 4362 * we need to fix it. Originally reported by
4363 * Bjorn Helgaas on a 128-cpu setup. 4363 * Bjorn Helgaas on a 128-cpu setup.
4364 */ 4364 */
4365 BUG_ON(busiest_rq == target_rq); 4365 BUG_ON(busiest_rq == target_rq);
4366 4366
4367 /* move a task from busiest_rq to target_rq */ 4367 /* move a task from busiest_rq to target_rq */
4368 double_lock_balance(busiest_rq, target_rq); 4368 double_lock_balance(busiest_rq, target_rq);
4369 update_rq_clock(busiest_rq); 4369 update_rq_clock(busiest_rq);
4370 update_rq_clock(target_rq); 4370 update_rq_clock(target_rq);
4371 4371
4372 /* Search for an sd spanning us and the target CPU. */ 4372 /* Search for an sd spanning us and the target CPU. */
4373 for_each_domain(target_cpu, sd) { 4373 for_each_domain(target_cpu, sd) {
4374 if ((sd->flags & SD_LOAD_BALANCE) && 4374 if ((sd->flags & SD_LOAD_BALANCE) &&
4375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 4375 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4376 break; 4376 break;
4377 } 4377 }
4378 4378
4379 if (likely(sd)) { 4379 if (likely(sd)) {
4380 schedstat_inc(sd, alb_count); 4380 schedstat_inc(sd, alb_count);
4381 4381
4382 if (move_one_task(target_rq, target_cpu, busiest_rq, 4382 if (move_one_task(target_rq, target_cpu, busiest_rq,
4383 sd, CPU_IDLE)) 4383 sd, CPU_IDLE))
4384 schedstat_inc(sd, alb_pushed); 4384 schedstat_inc(sd, alb_pushed);
4385 else 4385 else
4386 schedstat_inc(sd, alb_failed); 4386 schedstat_inc(sd, alb_failed);
4387 } 4387 }
4388 double_unlock_balance(busiest_rq, target_rq); 4388 double_unlock_balance(busiest_rq, target_rq);
4389 } 4389 }
4390 4390
4391 #ifdef CONFIG_NO_HZ 4391 #ifdef CONFIG_NO_HZ
4392 static struct { 4392 static struct {
4393 atomic_t load_balancer; 4393 atomic_t load_balancer;
4394 cpumask_var_t cpu_mask; 4394 cpumask_var_t cpu_mask;
4395 cpumask_var_t ilb_grp_nohz_mask; 4395 cpumask_var_t ilb_grp_nohz_mask;
4396 } nohz ____cacheline_aligned = { 4396 } nohz ____cacheline_aligned = {
4397 .load_balancer = ATOMIC_INIT(-1), 4397 .load_balancer = ATOMIC_INIT(-1),
4398 }; 4398 };
4399 4399
4400 int get_nohz_load_balancer(void) 4400 int get_nohz_load_balancer(void)
4401 { 4401 {
4402 return atomic_read(&nohz.load_balancer); 4402 return atomic_read(&nohz.load_balancer);
4403 } 4403 }
4404 4404
4405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 4405 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4406 /** 4406 /**
4407 * lowest_flag_domain - Return lowest sched_domain containing flag. 4407 * lowest_flag_domain - Return lowest sched_domain containing flag.
4408 * @cpu: The cpu whose lowest level of sched domain is to 4408 * @cpu: The cpu whose lowest level of sched domain is to
4409 * be returned. 4409 * be returned.
4410 * @flag: The flag to check for the lowest sched_domain 4410 * @flag: The flag to check for the lowest sched_domain
4411 * for the given cpu. 4411 * for the given cpu.
4412 * 4412 *
4413 * Returns the lowest sched_domain of a cpu which contains the given flag. 4413 * Returns the lowest sched_domain of a cpu which contains the given flag.
4414 */ 4414 */
4415 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 4415 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4416 { 4416 {
4417 struct sched_domain *sd; 4417 struct sched_domain *sd;
4418 4418
4419 for_each_domain(cpu, sd) 4419 for_each_domain(cpu, sd)
4420 if (sd && (sd->flags & flag)) 4420 if (sd && (sd->flags & flag))
4421 break; 4421 break;
4422 4422
4423 return sd; 4423 return sd;
4424 } 4424 }
4425 4425
4426 /** 4426 /**
4427 * for_each_flag_domain - Iterates over sched_domains containing the flag. 4427 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4428 * @cpu: The cpu whose domains we're iterating over. 4428 * @cpu: The cpu whose domains we're iterating over.
4429 * @sd: variable holding the value of the power_savings_sd 4429 * @sd: variable holding the value of the power_savings_sd
4430 * for cpu. 4430 * for cpu.
4431 * @flag: The flag to filter the sched_domains to be iterated. 4431 * @flag: The flag to filter the sched_domains to be iterated.
4432 * 4432 *
4433 * Iterates over all the scheduler domains for a given cpu that has the 'flag' 4433 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4434 * set, starting from the lowest sched_domain to the highest. 4434 * set, starting from the lowest sched_domain to the highest.
4435 */ 4435 */
4436 #define for_each_flag_domain(cpu, sd, flag) \ 4436 #define for_each_flag_domain(cpu, sd, flag) \
4437 for (sd = lowest_flag_domain(cpu, flag); \ 4437 for (sd = lowest_flag_domain(cpu, flag); \
4438 (sd && (sd->flags & flag)); sd = sd->parent) 4438 (sd && (sd->flags & flag)); sd = sd->parent)
4439 4439
4440 /** 4440 /**
4441 * is_semi_idle_group - Checks if the given sched_group is semi-idle. 4441 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4442 * @ilb_group: group to be checked for semi-idleness 4442 * @ilb_group: group to be checked for semi-idleness
4443 * 4443 *
4444 * Returns: 1 if the group is semi-idle. 0 otherwise. 4444 * Returns: 1 if the group is semi-idle. 0 otherwise.
4445 * 4445 *
4446 * We define a sched_group to be semi idle if it has atleast one idle-CPU 4446 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4447 * and atleast one non-idle CPU. This helper function checks if the given 4447 * and atleast one non-idle CPU. This helper function checks if the given
4448 * sched_group is semi-idle or not. 4448 * sched_group is semi-idle or not.
4449 */ 4449 */
4450 static inline int is_semi_idle_group(struct sched_group *ilb_group) 4450 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4451 { 4451 {
4452 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask, 4452 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4453 sched_group_cpus(ilb_group)); 4453 sched_group_cpus(ilb_group));
4454 4454
4455 /* 4455 /*
4456 * A sched_group is semi-idle when it has atleast one busy cpu 4456 * A sched_group is semi-idle when it has atleast one busy cpu
4457 * and atleast one idle cpu. 4457 * and atleast one idle cpu.
4458 */ 4458 */
4459 if (cpumask_empty(nohz.ilb_grp_nohz_mask)) 4459 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4460 return 0; 4460 return 0;
4461 4461
4462 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group))) 4462 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4463 return 0; 4463 return 0;
4464 4464
4465 return 1; 4465 return 1;
4466 } 4466 }
4467 /** 4467 /**
4468 * find_new_ilb - Finds the optimum idle load balancer for nomination. 4468 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4469 * @cpu: The cpu which is nominating a new idle_load_balancer. 4469 * @cpu: The cpu which is nominating a new idle_load_balancer.
4470 * 4470 *
4471 * Returns: Returns the id of the idle load balancer if it exists, 4471 * Returns: Returns the id of the idle load balancer if it exists,
4472 * Else, returns >= nr_cpu_ids. 4472 * Else, returns >= nr_cpu_ids.
4473 * 4473 *
4474 * This algorithm picks the idle load balancer such that it belongs to a 4474 * This algorithm picks the idle load balancer such that it belongs to a
4475 * semi-idle powersavings sched_domain. The idea is to try and avoid 4475 * semi-idle powersavings sched_domain. The idea is to try and avoid
4476 * completely idle packages/cores just for the purpose of idle load balancing 4476 * completely idle packages/cores just for the purpose of idle load balancing
4477 * when there are other idle cpu's which are better suited for that job. 4477 * when there are other idle cpu's which are better suited for that job.
4478 */ 4478 */
4479 static int find_new_ilb(int cpu) 4479 static int find_new_ilb(int cpu)
4480 { 4480 {
4481 struct sched_domain *sd; 4481 struct sched_domain *sd;
4482 struct sched_group *ilb_group; 4482 struct sched_group *ilb_group;
4483 4483
4484 /* 4484 /*
4485 * Have idle load balancer selection from semi-idle packages only 4485 * Have idle load balancer selection from semi-idle packages only
4486 * when power-aware load balancing is enabled 4486 * when power-aware load balancing is enabled
4487 */ 4487 */
4488 if (!(sched_smt_power_savings || sched_mc_power_savings)) 4488 if (!(sched_smt_power_savings || sched_mc_power_savings))
4489 goto out_done; 4489 goto out_done;
4490 4490
4491 /* 4491 /*
4492 * Optimize for the case when we have no idle CPUs or only one 4492 * Optimize for the case when we have no idle CPUs or only one
4493 * idle CPU. Don't walk the sched_domain hierarchy in such cases 4493 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4494 */ 4494 */
4495 if (cpumask_weight(nohz.cpu_mask) < 2) 4495 if (cpumask_weight(nohz.cpu_mask) < 2)
4496 goto out_done; 4496 goto out_done;
4497 4497
4498 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { 4498 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4499 ilb_group = sd->groups; 4499 ilb_group = sd->groups;
4500 4500
4501 do { 4501 do {
4502 if (is_semi_idle_group(ilb_group)) 4502 if (is_semi_idle_group(ilb_group))
4503 return cpumask_first(nohz.ilb_grp_nohz_mask); 4503 return cpumask_first(nohz.ilb_grp_nohz_mask);
4504 4504
4505 ilb_group = ilb_group->next; 4505 ilb_group = ilb_group->next;
4506 4506
4507 } while (ilb_group != sd->groups); 4507 } while (ilb_group != sd->groups);
4508 } 4508 }
4509 4509
4510 out_done: 4510 out_done:
4511 return cpumask_first(nohz.cpu_mask); 4511 return cpumask_first(nohz.cpu_mask);
4512 } 4512 }
4513 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ 4513 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4514 static inline int find_new_ilb(int call_cpu) 4514 static inline int find_new_ilb(int call_cpu)
4515 { 4515 {
4516 return cpumask_first(nohz.cpu_mask); 4516 return cpumask_first(nohz.cpu_mask);
4517 } 4517 }
4518 #endif 4518 #endif
4519 4519
4520 /* 4520 /*
4521 * This routine will try to nominate the ilb (idle load balancing) 4521 * This routine will try to nominate the ilb (idle load balancing)
4522 * owner among the cpus whose ticks are stopped. ilb owner will do the idle 4522 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4523 * load balancing on behalf of all those cpus. If all the cpus in the system 4523 * load balancing on behalf of all those cpus. If all the cpus in the system
4524 * go into this tickless mode, then there will be no ilb owner (as there is 4524 * go into this tickless mode, then there will be no ilb owner (as there is
4525 * no need for one) and all the cpus will sleep till the next wakeup event 4525 * no need for one) and all the cpus will sleep till the next wakeup event
4526 * arrives... 4526 * arrives...
4527 * 4527 *
4528 * For the ilb owner, tick is not stopped. And this tick will be used 4528 * For the ilb owner, tick is not stopped. And this tick will be used
4529 * for idle load balancing. ilb owner will still be part of 4529 * for idle load balancing. ilb owner will still be part of
4530 * nohz.cpu_mask.. 4530 * nohz.cpu_mask..
4531 * 4531 *
4532 * While stopping the tick, this cpu will become the ilb owner if there 4532 * While stopping the tick, this cpu will become the ilb owner if there
4533 * is no other owner. And will be the owner till that cpu becomes busy 4533 * is no other owner. And will be the owner till that cpu becomes busy
4534 * or if all cpus in the system stop their ticks at which point 4534 * or if all cpus in the system stop their ticks at which point
4535 * there is no need for ilb owner. 4535 * there is no need for ilb owner.
4536 * 4536 *
4537 * When the ilb owner becomes busy, it nominates another owner, during the 4537 * When the ilb owner becomes busy, it nominates another owner, during the
4538 * next busy scheduler_tick() 4538 * next busy scheduler_tick()
4539 */ 4539 */
4540 int select_nohz_load_balancer(int stop_tick) 4540 int select_nohz_load_balancer(int stop_tick)
4541 { 4541 {
4542 int cpu = smp_processor_id(); 4542 int cpu = smp_processor_id();
4543 4543
4544 if (stop_tick) { 4544 if (stop_tick) {
4545 cpu_rq(cpu)->in_nohz_recently = 1; 4545 cpu_rq(cpu)->in_nohz_recently = 1;
4546 4546
4547 if (!cpu_active(cpu)) { 4547 if (!cpu_active(cpu)) {
4548 if (atomic_read(&nohz.load_balancer) != cpu) 4548 if (atomic_read(&nohz.load_balancer) != cpu)
4549 return 0; 4549 return 0;
4550 4550
4551 /* 4551 /*
4552 * If we are going offline and still the leader, 4552 * If we are going offline and still the leader,
4553 * give up! 4553 * give up!
4554 */ 4554 */
4555 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 4555 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4556 BUG(); 4556 BUG();
4557 4557
4558 return 0; 4558 return 0;
4559 } 4559 }
4560 4560
4561 cpumask_set_cpu(cpu, nohz.cpu_mask); 4561 cpumask_set_cpu(cpu, nohz.cpu_mask);
4562 4562
4563 /* time for ilb owner also to sleep */ 4563 /* time for ilb owner also to sleep */
4564 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { 4564 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4565 if (atomic_read(&nohz.load_balancer) == cpu) 4565 if (atomic_read(&nohz.load_balancer) == cpu)
4566 atomic_set(&nohz.load_balancer, -1); 4566 atomic_set(&nohz.load_balancer, -1);
4567 return 0; 4567 return 0;
4568 } 4568 }
4569 4569
4570 if (atomic_read(&nohz.load_balancer) == -1) { 4570 if (atomic_read(&nohz.load_balancer) == -1) {
4571 /* make me the ilb owner */ 4571 /* make me the ilb owner */
4572 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) 4572 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4573 return 1; 4573 return 1;
4574 } else if (atomic_read(&nohz.load_balancer) == cpu) { 4574 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4575 int new_ilb; 4575 int new_ilb;
4576 4576
4577 if (!(sched_smt_power_savings || 4577 if (!(sched_smt_power_savings ||
4578 sched_mc_power_savings)) 4578 sched_mc_power_savings))
4579 return 1; 4579 return 1;
4580 /* 4580 /*
4581 * Check to see if there is a more power-efficient 4581 * Check to see if there is a more power-efficient
4582 * ilb. 4582 * ilb.
4583 */ 4583 */
4584 new_ilb = find_new_ilb(cpu); 4584 new_ilb = find_new_ilb(cpu);
4585 if (new_ilb < nr_cpu_ids && new_ilb != cpu) { 4585 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4586 atomic_set(&nohz.load_balancer, -1); 4586 atomic_set(&nohz.load_balancer, -1);
4587 resched_cpu(new_ilb); 4587 resched_cpu(new_ilb);
4588 return 0; 4588 return 0;
4589 } 4589 }
4590 return 1; 4590 return 1;
4591 } 4591 }
4592 } else { 4592 } else {
4593 if (!cpumask_test_cpu(cpu, nohz.cpu_mask)) 4593 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4594 return 0; 4594 return 0;
4595 4595
4596 cpumask_clear_cpu(cpu, nohz.cpu_mask); 4596 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4597 4597
4598 if (atomic_read(&nohz.load_balancer) == cpu) 4598 if (atomic_read(&nohz.load_balancer) == cpu)
4599 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) 4599 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4600 BUG(); 4600 BUG();
4601 } 4601 }
4602 return 0; 4602 return 0;
4603 } 4603 }
4604 #endif 4604 #endif
4605 4605
4606 static DEFINE_SPINLOCK(balancing); 4606 static DEFINE_SPINLOCK(balancing);
4607 4607
4608 /* 4608 /*
4609 * It checks each scheduling domain to see if it is due to be balanced, 4609 * It checks each scheduling domain to see if it is due to be balanced,
4610 * and initiates a balancing operation if so. 4610 * and initiates a balancing operation if so.
4611 * 4611 *
4612 * Balancing parameters are set up in arch_init_sched_domains. 4612 * Balancing parameters are set up in arch_init_sched_domains.
4613 */ 4613 */
4614 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 4614 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4615 { 4615 {
4616 int balance = 1; 4616 int balance = 1;
4617 struct rq *rq = cpu_rq(cpu); 4617 struct rq *rq = cpu_rq(cpu);
4618 unsigned long interval; 4618 unsigned long interval;
4619 struct sched_domain *sd; 4619 struct sched_domain *sd;
4620 /* Earliest time when we have to do rebalance again */ 4620 /* Earliest time when we have to do rebalance again */
4621 unsigned long next_balance = jiffies + 60*HZ; 4621 unsigned long next_balance = jiffies + 60*HZ;
4622 int update_next_balance = 0; 4622 int update_next_balance = 0;
4623 int need_serialize; 4623 int need_serialize;
4624 4624
4625 for_each_domain(cpu, sd) { 4625 for_each_domain(cpu, sd) {
4626 if (!(sd->flags & SD_LOAD_BALANCE)) 4626 if (!(sd->flags & SD_LOAD_BALANCE))
4627 continue; 4627 continue;
4628 4628
4629 interval = sd->balance_interval; 4629 interval = sd->balance_interval;
4630 if (idle != CPU_IDLE) 4630 if (idle != CPU_IDLE)
4631 interval *= sd->busy_factor; 4631 interval *= sd->busy_factor;
4632 4632
4633 /* scale ms to jiffies */ 4633 /* scale ms to jiffies */
4634 interval = msecs_to_jiffies(interval); 4634 interval = msecs_to_jiffies(interval);
4635 if (unlikely(!interval)) 4635 if (unlikely(!interval))
4636 interval = 1; 4636 interval = 1;
4637 if (interval > HZ*NR_CPUS/10) 4637 if (interval > HZ*NR_CPUS/10)
4638 interval = HZ*NR_CPUS/10; 4638 interval = HZ*NR_CPUS/10;
4639 4639
4640 need_serialize = sd->flags & SD_SERIALIZE; 4640 need_serialize = sd->flags & SD_SERIALIZE;
4641 4641
4642 if (need_serialize) { 4642 if (need_serialize) {
4643 if (!spin_trylock(&balancing)) 4643 if (!spin_trylock(&balancing))
4644 goto out; 4644 goto out;
4645 } 4645 }
4646 4646
4647 if (time_after_eq(jiffies, sd->last_balance + interval)) { 4647 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4648 if (load_balance(cpu, rq, sd, idle, &balance)) { 4648 if (load_balance(cpu, rq, sd, idle, &balance)) {
4649 /* 4649 /*
4650 * We've pulled tasks over so either we're no 4650 * We've pulled tasks over so either we're no
4651 * longer idle, or one of our SMT siblings is 4651 * longer idle, or one of our SMT siblings is
4652 * not idle. 4652 * not idle.
4653 */ 4653 */
4654 idle = CPU_NOT_IDLE; 4654 idle = CPU_NOT_IDLE;
4655 } 4655 }
4656 sd->last_balance = jiffies; 4656 sd->last_balance = jiffies;
4657 } 4657 }
4658 if (need_serialize) 4658 if (need_serialize)
4659 spin_unlock(&balancing); 4659 spin_unlock(&balancing);
4660 out: 4660 out:
4661 if (time_after(next_balance, sd->last_balance + interval)) { 4661 if (time_after(next_balance, sd->last_balance + interval)) {
4662 next_balance = sd->last_balance + interval; 4662 next_balance = sd->last_balance + interval;
4663 update_next_balance = 1; 4663 update_next_balance = 1;
4664 } 4664 }
4665 4665
4666 /* 4666 /*
4667 * Stop the load balance at this level. There is another 4667 * Stop the load balance at this level. There is another
4668 * CPU in our sched group which is doing load balancing more 4668 * CPU in our sched group which is doing load balancing more
4669 * actively. 4669 * actively.
4670 */ 4670 */
4671 if (!balance) 4671 if (!balance)
4672 break; 4672 break;
4673 } 4673 }
4674 4674
4675 /* 4675 /*
4676 * next_balance will be updated only when there is a need. 4676 * next_balance will be updated only when there is a need.
4677 * When the cpu is attached to null domain for ex, it will not be 4677 * When the cpu is attached to null domain for ex, it will not be
4678 * updated. 4678 * updated.
4679 */ 4679 */
4680 if (likely(update_next_balance)) 4680 if (likely(update_next_balance))
4681 rq->next_balance = next_balance; 4681 rq->next_balance = next_balance;
4682 } 4682 }
4683 4683
4684 /* 4684 /*
4685 * run_rebalance_domains is triggered when needed from the scheduler tick. 4685 * run_rebalance_domains is triggered when needed from the scheduler tick.
4686 * In CONFIG_NO_HZ case, the idle load balance owner will do the 4686 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4687 * rebalancing for all the cpus for whom scheduler ticks are stopped. 4687 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4688 */ 4688 */
4689 static void run_rebalance_domains(struct softirq_action *h) 4689 static void run_rebalance_domains(struct softirq_action *h)
4690 { 4690 {
4691 int this_cpu = smp_processor_id(); 4691 int this_cpu = smp_processor_id();
4692 struct rq *this_rq = cpu_rq(this_cpu); 4692 struct rq *this_rq = cpu_rq(this_cpu);
4693 enum cpu_idle_type idle = this_rq->idle_at_tick ? 4693 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4694 CPU_IDLE : CPU_NOT_IDLE; 4694 CPU_IDLE : CPU_NOT_IDLE;
4695 4695
4696 rebalance_domains(this_cpu, idle); 4696 rebalance_domains(this_cpu, idle);
4697 4697
4698 #ifdef CONFIG_NO_HZ 4698 #ifdef CONFIG_NO_HZ
4699 /* 4699 /*
4700 * If this cpu is the owner for idle load balancing, then do the 4700 * If this cpu is the owner for idle load balancing, then do the
4701 * balancing on behalf of the other idle cpus whose ticks are 4701 * balancing on behalf of the other idle cpus whose ticks are
4702 * stopped. 4702 * stopped.
4703 */ 4703 */
4704 if (this_rq->idle_at_tick && 4704 if (this_rq->idle_at_tick &&
4705 atomic_read(&nohz.load_balancer) == this_cpu) { 4705 atomic_read(&nohz.load_balancer) == this_cpu) {
4706 struct rq *rq; 4706 struct rq *rq;
4707 int balance_cpu; 4707 int balance_cpu;
4708 4708
4709 for_each_cpu(balance_cpu, nohz.cpu_mask) { 4709 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4710 if (balance_cpu == this_cpu) 4710 if (balance_cpu == this_cpu)
4711 continue; 4711 continue;
4712 4712
4713 /* 4713 /*
4714 * If this cpu gets work to do, stop the load balancing 4714 * If this cpu gets work to do, stop the load balancing
4715 * work being done for other cpus. Next load 4715 * work being done for other cpus. Next load
4716 * balancing owner will pick it up. 4716 * balancing owner will pick it up.
4717 */ 4717 */
4718 if (need_resched()) 4718 if (need_resched())
4719 break; 4719 break;
4720 4720
4721 rebalance_domains(balance_cpu, CPU_IDLE); 4721 rebalance_domains(balance_cpu, CPU_IDLE);
4722 4722
4723 rq = cpu_rq(balance_cpu); 4723 rq = cpu_rq(balance_cpu);
4724 if (time_after(this_rq->next_balance, rq->next_balance)) 4724 if (time_after(this_rq->next_balance, rq->next_balance))
4725 this_rq->next_balance = rq->next_balance; 4725 this_rq->next_balance = rq->next_balance;
4726 } 4726 }
4727 } 4727 }
4728 #endif 4728 #endif
4729 } 4729 }
4730 4730
4731 static inline int on_null_domain(int cpu) 4731 static inline int on_null_domain(int cpu)
4732 { 4732 {
4733 return !rcu_dereference(cpu_rq(cpu)->sd); 4733 return !rcu_dereference(cpu_rq(cpu)->sd);
4734 } 4734 }
4735 4735
4736 /* 4736 /*
4737 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 4737 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4738 * 4738 *
4739 * In case of CONFIG_NO_HZ, this is the place where we nominate a new 4739 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4740 * idle load balancing owner or decide to stop the periodic load balancing, 4740 * idle load balancing owner or decide to stop the periodic load balancing,
4741 * if the whole system is idle. 4741 * if the whole system is idle.
4742 */ 4742 */
4743 static inline void trigger_load_balance(struct rq *rq, int cpu) 4743 static inline void trigger_load_balance(struct rq *rq, int cpu)
4744 { 4744 {
4745 #ifdef CONFIG_NO_HZ 4745 #ifdef CONFIG_NO_HZ
4746 /* 4746 /*
4747 * If we were in the nohz mode recently and busy at the current 4747 * If we were in the nohz mode recently and busy at the current
4748 * scheduler tick, then check if we need to nominate new idle 4748 * scheduler tick, then check if we need to nominate new idle
4749 * load balancer. 4749 * load balancer.
4750 */ 4750 */
4751 if (rq->in_nohz_recently && !rq->idle_at_tick) { 4751 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4752 rq->in_nohz_recently = 0; 4752 rq->in_nohz_recently = 0;
4753 4753
4754 if (atomic_read(&nohz.load_balancer) == cpu) { 4754 if (atomic_read(&nohz.load_balancer) == cpu) {
4755 cpumask_clear_cpu(cpu, nohz.cpu_mask); 4755 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4756 atomic_set(&nohz.load_balancer, -1); 4756 atomic_set(&nohz.load_balancer, -1);
4757 } 4757 }
4758 4758
4759 if (atomic_read(&nohz.load_balancer) == -1) { 4759 if (atomic_read(&nohz.load_balancer) == -1) {
4760 int ilb = find_new_ilb(cpu); 4760 int ilb = find_new_ilb(cpu);
4761 4761
4762 if (ilb < nr_cpu_ids) 4762 if (ilb < nr_cpu_ids)
4763 resched_cpu(ilb); 4763 resched_cpu(ilb);
4764 } 4764 }
4765 } 4765 }
4766 4766
4767 /* 4767 /*
4768 * If this cpu is idle and doing idle load balancing for all the 4768 * If this cpu is idle and doing idle load balancing for all the
4769 * cpus with ticks stopped, is it time for that to stop? 4769 * cpus with ticks stopped, is it time for that to stop?
4770 */ 4770 */
4771 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && 4771 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4772 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) { 4772 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4773 resched_cpu(cpu); 4773 resched_cpu(cpu);
4774 return; 4774 return;
4775 } 4775 }
4776 4776
4777 /* 4777 /*
4778 * If this cpu is idle and the idle load balancing is done by 4778 * If this cpu is idle and the idle load balancing is done by
4779 * someone else, then no need raise the SCHED_SOFTIRQ 4779 * someone else, then no need raise the SCHED_SOFTIRQ
4780 */ 4780 */
4781 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && 4781 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4782 cpumask_test_cpu(cpu, nohz.cpu_mask)) 4782 cpumask_test_cpu(cpu, nohz.cpu_mask))
4783 return; 4783 return;
4784 #endif 4784 #endif
4785 /* Don't need to rebalance while attached to NULL domain */ 4785 /* Don't need to rebalance while attached to NULL domain */
4786 if (time_after_eq(jiffies, rq->next_balance) && 4786 if (time_after_eq(jiffies, rq->next_balance) &&
4787 likely(!on_null_domain(cpu))) 4787 likely(!on_null_domain(cpu)))
4788 raise_softirq(SCHED_SOFTIRQ); 4788 raise_softirq(SCHED_SOFTIRQ);
4789 } 4789 }
4790 4790
4791 #else /* CONFIG_SMP */ 4791 #else /* CONFIG_SMP */
4792 4792
4793 /* 4793 /*
4794 * on UP we do not need to balance between CPUs: 4794 * on UP we do not need to balance between CPUs:
4795 */ 4795 */
4796 static inline void idle_balance(int cpu, struct rq *rq) 4796 static inline void idle_balance(int cpu, struct rq *rq)
4797 { 4797 {
4798 } 4798 }
4799 4799
4800 #endif 4800 #endif
4801 4801
4802 DEFINE_PER_CPU(struct kernel_stat, kstat); 4802 DEFINE_PER_CPU(struct kernel_stat, kstat);
4803 4803
4804 EXPORT_PER_CPU_SYMBOL(kstat); 4804 EXPORT_PER_CPU_SYMBOL(kstat);
4805 4805
4806 /* 4806 /*
4807 * Return any ns on the sched_clock that have not yet been accounted in 4807 * Return any ns on the sched_clock that have not yet been accounted in
4808 * @p in case that task is currently running. 4808 * @p in case that task is currently running.
4809 * 4809 *
4810 * Called with task_rq_lock() held on @rq. 4810 * Called with task_rq_lock() held on @rq.
4811 */ 4811 */
4812 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) 4812 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4813 { 4813 {
4814 u64 ns = 0; 4814 u64 ns = 0;
4815 4815
4816 if (task_current(rq, p)) { 4816 if (task_current(rq, p)) {
4817 update_rq_clock(rq); 4817 update_rq_clock(rq);
4818 ns = rq->clock - p->se.exec_start; 4818 ns = rq->clock - p->se.exec_start;
4819 if ((s64)ns < 0) 4819 if ((s64)ns < 0)
4820 ns = 0; 4820 ns = 0;
4821 } 4821 }
4822 4822
4823 return ns; 4823 return ns;
4824 } 4824 }
4825 4825
4826 unsigned long long task_delta_exec(struct task_struct *p) 4826 unsigned long long task_delta_exec(struct task_struct *p)
4827 { 4827 {
4828 unsigned long flags; 4828 unsigned long flags;
4829 struct rq *rq; 4829 struct rq *rq;
4830 u64 ns = 0; 4830 u64 ns = 0;
4831 4831
4832 rq = task_rq_lock(p, &flags); 4832 rq = task_rq_lock(p, &flags);
4833 ns = do_task_delta_exec(p, rq); 4833 ns = do_task_delta_exec(p, rq);
4834 task_rq_unlock(rq, &flags); 4834 task_rq_unlock(rq, &flags);
4835 4835
4836 return ns; 4836 return ns;
4837 } 4837 }
4838 4838
4839 /* 4839 /*
4840 * Return accounted runtime for the task. 4840 * Return accounted runtime for the task.
4841 * In case the task is currently running, return the runtime plus current's 4841 * In case the task is currently running, return the runtime plus current's
4842 * pending runtime that have not been accounted yet. 4842 * pending runtime that have not been accounted yet.
4843 */ 4843 */
4844 unsigned long long task_sched_runtime(struct task_struct *p) 4844 unsigned long long task_sched_runtime(struct task_struct *p)
4845 { 4845 {
4846 unsigned long flags; 4846 unsigned long flags;
4847 struct rq *rq; 4847 struct rq *rq;
4848 u64 ns = 0; 4848 u64 ns = 0;
4849 4849
4850 rq = task_rq_lock(p, &flags); 4850 rq = task_rq_lock(p, &flags);
4851 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); 4851 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4852 task_rq_unlock(rq, &flags); 4852 task_rq_unlock(rq, &flags);
4853 4853
4854 return ns; 4854 return ns;
4855 } 4855 }
4856 4856
4857 /* 4857 /*
4858 * Return sum_exec_runtime for the thread group. 4858 * Return sum_exec_runtime for the thread group.
4859 * In case the task is currently running, return the sum plus current's 4859 * In case the task is currently running, return the sum plus current's
4860 * pending runtime that have not been accounted yet. 4860 * pending runtime that have not been accounted yet.
4861 * 4861 *
4862 * Note that the thread group might have other running tasks as well, 4862 * Note that the thread group might have other running tasks as well,
4863 * so the return value not includes other pending runtime that other 4863 * so the return value not includes other pending runtime that other
4864 * running tasks might have. 4864 * running tasks might have.
4865 */ 4865 */
4866 unsigned long long thread_group_sched_runtime(struct task_struct *p) 4866 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4867 { 4867 {
4868 struct task_cputime totals; 4868 struct task_cputime totals;
4869 unsigned long flags; 4869 unsigned long flags;
4870 struct rq *rq; 4870 struct rq *rq;
4871 u64 ns; 4871 u64 ns;
4872 4872
4873 rq = task_rq_lock(p, &flags); 4873 rq = task_rq_lock(p, &flags);
4874 thread_group_cputime(p, &totals); 4874 thread_group_cputime(p, &totals);
4875 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); 4875 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4876 task_rq_unlock(rq, &flags); 4876 task_rq_unlock(rq, &flags);
4877 4877
4878 return ns; 4878 return ns;
4879 } 4879 }
4880 4880
4881 /* 4881 /*
4882 * Account user cpu time to a process. 4882 * Account user cpu time to a process.
4883 * @p: the process that the cpu time gets accounted to 4883 * @p: the process that the cpu time gets accounted to
4884 * @cputime: the cpu time spent in user space since the last update 4884 * @cputime: the cpu time spent in user space since the last update
4885 * @cputime_scaled: cputime scaled by cpu frequency 4885 * @cputime_scaled: cputime scaled by cpu frequency
4886 */ 4886 */
4887 void account_user_time(struct task_struct *p, cputime_t cputime, 4887 void account_user_time(struct task_struct *p, cputime_t cputime,
4888 cputime_t cputime_scaled) 4888 cputime_t cputime_scaled)
4889 { 4889 {
4890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4890 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4891 cputime64_t tmp; 4891 cputime64_t tmp;
4892 4892
4893 /* Add user time to process. */ 4893 /* Add user time to process. */
4894 p->utime = cputime_add(p->utime, cputime); 4894 p->utime = cputime_add(p->utime, cputime);
4895 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); 4895 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4896 account_group_user_time(p, cputime); 4896 account_group_user_time(p, cputime);
4897 4897
4898 /* Add user time to cpustat. */ 4898 /* Add user time to cpustat. */
4899 tmp = cputime_to_cputime64(cputime); 4899 tmp = cputime_to_cputime64(cputime);
4900 if (TASK_NICE(p) > 0) 4900 if (TASK_NICE(p) > 0)
4901 cpustat->nice = cputime64_add(cpustat->nice, tmp); 4901 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4902 else 4902 else
4903 cpustat->user = cputime64_add(cpustat->user, tmp); 4903 cpustat->user = cputime64_add(cpustat->user, tmp);
4904 4904
4905 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); 4905 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4906 /* Account for user time used */ 4906 /* Account for user time used */
4907 acct_update_integrals(p); 4907 acct_update_integrals(p);
4908 } 4908 }
4909 4909
4910 /* 4910 /*
4911 * Account guest cpu time to a process. 4911 * Account guest cpu time to a process.
4912 * @p: the process that the cpu time gets accounted to 4912 * @p: the process that the cpu time gets accounted to
4913 * @cputime: the cpu time spent in virtual machine since the last update 4913 * @cputime: the cpu time spent in virtual machine since the last update
4914 * @cputime_scaled: cputime scaled by cpu frequency 4914 * @cputime_scaled: cputime scaled by cpu frequency
4915 */ 4915 */
4916 static void account_guest_time(struct task_struct *p, cputime_t cputime, 4916 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4917 cputime_t cputime_scaled) 4917 cputime_t cputime_scaled)
4918 { 4918 {
4919 cputime64_t tmp; 4919 cputime64_t tmp;
4920 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4920 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4921 4921
4922 tmp = cputime_to_cputime64(cputime); 4922 tmp = cputime_to_cputime64(cputime);
4923 4923
4924 /* Add guest time to process. */ 4924 /* Add guest time to process. */
4925 p->utime = cputime_add(p->utime, cputime); 4925 p->utime = cputime_add(p->utime, cputime);
4926 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); 4926 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4927 account_group_user_time(p, cputime); 4927 account_group_user_time(p, cputime);
4928 p->gtime = cputime_add(p->gtime, cputime); 4928 p->gtime = cputime_add(p->gtime, cputime);
4929 4929
4930 /* Add guest time to cpustat. */ 4930 /* Add guest time to cpustat. */
4931 cpustat->user = cputime64_add(cpustat->user, tmp); 4931 cpustat->user = cputime64_add(cpustat->user, tmp);
4932 cpustat->guest = cputime64_add(cpustat->guest, tmp); 4932 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4933 } 4933 }
4934 4934
4935 /* 4935 /*
4936 * Account system cpu time to a process. 4936 * Account system cpu time to a process.
4937 * @p: the process that the cpu time gets accounted to 4937 * @p: the process that the cpu time gets accounted to
4938 * @hardirq_offset: the offset to subtract from hardirq_count() 4938 * @hardirq_offset: the offset to subtract from hardirq_count()
4939 * @cputime: the cpu time spent in kernel space since the last update 4939 * @cputime: the cpu time spent in kernel space since the last update
4940 * @cputime_scaled: cputime scaled by cpu frequency 4940 * @cputime_scaled: cputime scaled by cpu frequency
4941 */ 4941 */
4942 void account_system_time(struct task_struct *p, int hardirq_offset, 4942 void account_system_time(struct task_struct *p, int hardirq_offset,
4943 cputime_t cputime, cputime_t cputime_scaled) 4943 cputime_t cputime, cputime_t cputime_scaled)
4944 { 4944 {
4945 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4945 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4946 cputime64_t tmp; 4946 cputime64_t tmp;
4947 4947
4948 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { 4948 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4949 account_guest_time(p, cputime, cputime_scaled); 4949 account_guest_time(p, cputime, cputime_scaled);
4950 return; 4950 return;
4951 } 4951 }
4952 4952
4953 /* Add system time to process. */ 4953 /* Add system time to process. */
4954 p->stime = cputime_add(p->stime, cputime); 4954 p->stime = cputime_add(p->stime, cputime);
4955 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); 4955 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4956 account_group_system_time(p, cputime); 4956 account_group_system_time(p, cputime);
4957 4957
4958 /* Add system time to cpustat. */ 4958 /* Add system time to cpustat. */
4959 tmp = cputime_to_cputime64(cputime); 4959 tmp = cputime_to_cputime64(cputime);
4960 if (hardirq_count() - hardirq_offset) 4960 if (hardirq_count() - hardirq_offset)
4961 cpustat->irq = cputime64_add(cpustat->irq, tmp); 4961 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4962 else if (softirq_count()) 4962 else if (softirq_count())
4963 cpustat->softirq = cputime64_add(cpustat->softirq, tmp); 4963 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4964 else 4964 else
4965 cpustat->system = cputime64_add(cpustat->system, tmp); 4965 cpustat->system = cputime64_add(cpustat->system, tmp);
4966 4966
4967 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); 4967 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4968 4968
4969 /* Account for system time used */ 4969 /* Account for system time used */
4970 acct_update_integrals(p); 4970 acct_update_integrals(p);
4971 } 4971 }
4972 4972
4973 /* 4973 /*
4974 * Account for involuntary wait time. 4974 * Account for involuntary wait time.
4975 * @steal: the cpu time spent in involuntary wait 4975 * @steal: the cpu time spent in involuntary wait
4976 */ 4976 */
4977 void account_steal_time(cputime_t cputime) 4977 void account_steal_time(cputime_t cputime)
4978 { 4978 {
4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4980 cputime64_t cputime64 = cputime_to_cputime64(cputime); 4980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4981 4981
4982 cpustat->steal = cputime64_add(cpustat->steal, cputime64); 4982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4983 } 4983 }
4984 4984
4985 /* 4985 /*
4986 * Account for idle time. 4986 * Account for idle time.
4987 * @cputime: the cpu time spent in idle wait 4987 * @cputime: the cpu time spent in idle wait
4988 */ 4988 */
4989 void account_idle_time(cputime_t cputime) 4989 void account_idle_time(cputime_t cputime)
4990 { 4990 {
4991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; 4991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4992 cputime64_t cputime64 = cputime_to_cputime64(cputime); 4992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4993 struct rq *rq = this_rq(); 4993 struct rq *rq = this_rq();
4994 4994
4995 if (atomic_read(&rq->nr_iowait) > 0) 4995 if (atomic_read(&rq->nr_iowait) > 0)
4996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); 4996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4997 else 4997 else
4998 cpustat->idle = cputime64_add(cpustat->idle, cputime64); 4998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4999 } 4999 }
5000 5000
5001 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 5001 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5002 5002
5003 /* 5003 /*
5004 * Account a single tick of cpu time. 5004 * Account a single tick of cpu time.
5005 * @p: the process that the cpu time gets accounted to 5005 * @p: the process that the cpu time gets accounted to
5006 * @user_tick: indicates if the tick is a user or a system tick 5006 * @user_tick: indicates if the tick is a user or a system tick
5007 */ 5007 */
5008 void account_process_tick(struct task_struct *p, int user_tick) 5008 void account_process_tick(struct task_struct *p, int user_tick)
5009 { 5009 {
5010 cputime_t one_jiffy = jiffies_to_cputime(1); 5010 cputime_t one_jiffy = jiffies_to_cputime(1);
5011 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); 5011 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5012 struct rq *rq = this_rq(); 5012 struct rq *rq = this_rq();
5013 5013
5014 if (user_tick) 5014 if (user_tick)
5015 account_user_time(p, one_jiffy, one_jiffy_scaled); 5015 account_user_time(p, one_jiffy, one_jiffy_scaled);
5016 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) 5016 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5017 account_system_time(p, HARDIRQ_OFFSET, one_jiffy, 5017 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5018 one_jiffy_scaled); 5018 one_jiffy_scaled);
5019 else 5019 else
5020 account_idle_time(one_jiffy); 5020 account_idle_time(one_jiffy);
5021 } 5021 }
5022 5022
5023 /* 5023 /*
5024 * Account multiple ticks of steal time. 5024 * Account multiple ticks of steal time.
5025 * @p: the process from which the cpu time has been stolen 5025 * @p: the process from which the cpu time has been stolen
5026 * @ticks: number of stolen ticks 5026 * @ticks: number of stolen ticks
5027 */ 5027 */
5028 void account_steal_ticks(unsigned long ticks) 5028 void account_steal_ticks(unsigned long ticks)
5029 { 5029 {
5030 account_steal_time(jiffies_to_cputime(ticks)); 5030 account_steal_time(jiffies_to_cputime(ticks));
5031 } 5031 }
5032 5032
5033 /* 5033 /*
5034 * Account multiple ticks of idle time. 5034 * Account multiple ticks of idle time.
5035 * @ticks: number of stolen ticks 5035 * @ticks: number of stolen ticks
5036 */ 5036 */
5037 void account_idle_ticks(unsigned long ticks) 5037 void account_idle_ticks(unsigned long ticks)
5038 { 5038 {
5039 account_idle_time(jiffies_to_cputime(ticks)); 5039 account_idle_time(jiffies_to_cputime(ticks));
5040 } 5040 }
5041 5041
5042 #endif 5042 #endif
5043 5043
5044 /* 5044 /*
5045 * Use precise platform statistics if available: 5045 * Use precise platform statistics if available:
5046 */ 5046 */
5047 #ifdef CONFIG_VIRT_CPU_ACCOUNTING 5047 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5048 cputime_t task_utime(struct task_struct *p) 5048 cputime_t task_utime(struct task_struct *p)
5049 { 5049 {
5050 return p->utime; 5050 return p->utime;
5051 } 5051 }
5052 5052
5053 cputime_t task_stime(struct task_struct *p) 5053 cputime_t task_stime(struct task_struct *p)
5054 { 5054 {
5055 return p->stime; 5055 return p->stime;
5056 } 5056 }
5057 #else 5057 #else
5058 cputime_t task_utime(struct task_struct *p) 5058 cputime_t task_utime(struct task_struct *p)
5059 { 5059 {
5060 clock_t utime = cputime_to_clock_t(p->utime), 5060 clock_t utime = cputime_to_clock_t(p->utime),
5061 total = utime + cputime_to_clock_t(p->stime); 5061 total = utime + cputime_to_clock_t(p->stime);
5062 u64 temp; 5062 u64 temp;
5063 5063
5064 /* 5064 /*
5065 * Use CFS's precise accounting: 5065 * Use CFS's precise accounting:
5066 */ 5066 */
5067 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); 5067 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5068 5068
5069 if (total) { 5069 if (total) {
5070 temp *= utime; 5070 temp *= utime;
5071 do_div(temp, total); 5071 do_div(temp, total);
5072 } 5072 }
5073 utime = (clock_t)temp; 5073 utime = (clock_t)temp;
5074 5074
5075 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); 5075 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5076 return p->prev_utime; 5076 return p->prev_utime;
5077 } 5077 }
5078 5078
5079 cputime_t task_stime(struct task_struct *p) 5079 cputime_t task_stime(struct task_struct *p)
5080 { 5080 {
5081 clock_t stime; 5081 clock_t stime;
5082 5082
5083 /* 5083 /*
5084 * Use CFS's precise accounting. (we subtract utime from 5084 * Use CFS's precise accounting. (we subtract utime from
5085 * the total, to make sure the total observed by userspace 5085 * the total, to make sure the total observed by userspace
5086 * grows monotonically - apps rely on that): 5086 * grows monotonically - apps rely on that):
5087 */ 5087 */
5088 stime = nsec_to_clock_t(p->se.sum_exec_runtime) - 5088 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5089 cputime_to_clock_t(task_utime(p)); 5089 cputime_to_clock_t(task_utime(p));
5090 5090
5091 if (stime >= 0) 5091 if (stime >= 0)
5092 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); 5092 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5093 5093
5094 return p->prev_stime; 5094 return p->prev_stime;
5095 } 5095 }
5096 #endif 5096 #endif
5097 5097
5098 inline cputime_t task_gtime(struct task_struct *p) 5098 inline cputime_t task_gtime(struct task_struct *p)
5099 { 5099 {
5100 return p->gtime; 5100 return p->gtime;
5101 } 5101 }
5102 5102
5103 /* 5103 /*
5104 * This function gets called by the timer code, with HZ frequency. 5104 * This function gets called by the timer code, with HZ frequency.
5105 * We call it with interrupts disabled. 5105 * We call it with interrupts disabled.
5106 * 5106 *
5107 * It also gets called by the fork code, when changing the parent's 5107 * It also gets called by the fork code, when changing the parent's
5108 * timeslices. 5108 * timeslices.
5109 */ 5109 */
5110 void scheduler_tick(void) 5110 void scheduler_tick(void)
5111 { 5111 {
5112 int cpu = smp_processor_id(); 5112 int cpu = smp_processor_id();
5113 struct rq *rq = cpu_rq(cpu); 5113 struct rq *rq = cpu_rq(cpu);
5114 struct task_struct *curr = rq->curr; 5114 struct task_struct *curr = rq->curr;
5115 5115
5116 sched_clock_tick(); 5116 sched_clock_tick();
5117 5117
5118 spin_lock(&rq->lock); 5118 spin_lock(&rq->lock);
5119 update_rq_clock(rq); 5119 update_rq_clock(rq);
5120 update_cpu_load(rq); 5120 update_cpu_load(rq);
5121 curr->sched_class->task_tick(rq, curr, 0); 5121 curr->sched_class->task_tick(rq, curr, 0);
5122 spin_unlock(&rq->lock); 5122 spin_unlock(&rq->lock);
5123 5123
5124 perf_counter_task_tick(curr, cpu); 5124 perf_counter_task_tick(curr, cpu);
5125 5125
5126 #ifdef CONFIG_SMP 5126 #ifdef CONFIG_SMP
5127 rq->idle_at_tick = idle_cpu(cpu); 5127 rq->idle_at_tick = idle_cpu(cpu);
5128 trigger_load_balance(rq, cpu); 5128 trigger_load_balance(rq, cpu);
5129 #endif 5129 #endif
5130 } 5130 }
5131 5131
5132 notrace unsigned long get_parent_ip(unsigned long addr) 5132 notrace unsigned long get_parent_ip(unsigned long addr)
5133 { 5133 {
5134 if (in_lock_functions(addr)) { 5134 if (in_lock_functions(addr)) {
5135 addr = CALLER_ADDR2; 5135 addr = CALLER_ADDR2;
5136 if (in_lock_functions(addr)) 5136 if (in_lock_functions(addr))
5137 addr = CALLER_ADDR3; 5137 addr = CALLER_ADDR3;
5138 } 5138 }
5139 return addr; 5139 return addr;
5140 } 5140 }
5141 5141
5142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5142 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5143 defined(CONFIG_PREEMPT_TRACER)) 5143 defined(CONFIG_PREEMPT_TRACER))
5144 5144
5145 void __kprobes add_preempt_count(int val) 5145 void __kprobes add_preempt_count(int val)
5146 { 5146 {
5147 #ifdef CONFIG_DEBUG_PREEMPT 5147 #ifdef CONFIG_DEBUG_PREEMPT
5148 /* 5148 /*
5149 * Underflow? 5149 * Underflow?
5150 */ 5150 */
5151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5152 return; 5152 return;
5153 #endif 5153 #endif
5154 preempt_count() += val; 5154 preempt_count() += val;
5155 #ifdef CONFIG_DEBUG_PREEMPT 5155 #ifdef CONFIG_DEBUG_PREEMPT
5156 /* 5156 /*
5157 * Spinlock count overflowing soon? 5157 * Spinlock count overflowing soon?
5158 */ 5158 */
5159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5160 PREEMPT_MASK - 10); 5160 PREEMPT_MASK - 10);
5161 #endif 5161 #endif
5162 if (preempt_count() == val) 5162 if (preempt_count() == val)
5163 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 5163 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5164 } 5164 }
5165 EXPORT_SYMBOL(add_preempt_count); 5165 EXPORT_SYMBOL(add_preempt_count);
5166 5166
5167 void __kprobes sub_preempt_count(int val) 5167 void __kprobes sub_preempt_count(int val)
5168 { 5168 {
5169 #ifdef CONFIG_DEBUG_PREEMPT 5169 #ifdef CONFIG_DEBUG_PREEMPT
5170 /* 5170 /*
5171 * Underflow? 5171 * Underflow?
5172 */ 5172 */
5173 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5173 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5174 return; 5174 return;
5175 /* 5175 /*
5176 * Is the spinlock portion underflowing? 5176 * Is the spinlock portion underflowing?
5177 */ 5177 */
5178 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5178 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5179 !(preempt_count() & PREEMPT_MASK))) 5179 !(preempt_count() & PREEMPT_MASK)))
5180 return; 5180 return;
5181 #endif 5181 #endif
5182 5182
5183 if (preempt_count() == val) 5183 if (preempt_count() == val)
5184 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); 5184 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5185 preempt_count() -= val; 5185 preempt_count() -= val;
5186 } 5186 }
5187 EXPORT_SYMBOL(sub_preempt_count); 5187 EXPORT_SYMBOL(sub_preempt_count);
5188 5188
5189 #endif 5189 #endif
5190 5190
5191 /* 5191 /*
5192 * Print scheduling while atomic bug: 5192 * Print scheduling while atomic bug:
5193 */ 5193 */
5194 static noinline void __schedule_bug(struct task_struct *prev) 5194 static noinline void __schedule_bug(struct task_struct *prev)
5195 { 5195 {
5196 struct pt_regs *regs = get_irq_regs(); 5196 struct pt_regs *regs = get_irq_regs();
5197 5197
5198 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5198 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5199 prev->comm, prev->pid, preempt_count()); 5199 prev->comm, prev->pid, preempt_count());
5200 5200
5201 debug_show_held_locks(prev); 5201 debug_show_held_locks(prev);
5202 print_modules(); 5202 print_modules();
5203 if (irqs_disabled()) 5203 if (irqs_disabled())
5204 print_irqtrace_events(prev); 5204 print_irqtrace_events(prev);
5205 5205
5206 if (regs) 5206 if (regs)
5207 show_regs(regs); 5207 show_regs(regs);
5208 else 5208 else
5209 dump_stack(); 5209 dump_stack();
5210 } 5210 }
5211 5211
5212 /* 5212 /*
5213 * Various schedule()-time debugging checks and statistics: 5213 * Various schedule()-time debugging checks and statistics:
5214 */ 5214 */
5215 static inline void schedule_debug(struct task_struct *prev) 5215 static inline void schedule_debug(struct task_struct *prev)
5216 { 5216 {
5217 /* 5217 /*
5218 * Test if we are atomic. Since do_exit() needs to call into 5218 * Test if we are atomic. Since do_exit() needs to call into
5219 * schedule() atomically, we ignore that path for now. 5219 * schedule() atomically, we ignore that path for now.
5220 * Otherwise, whine if we are scheduling when we should not be. 5220 * Otherwise, whine if we are scheduling when we should not be.
5221 */ 5221 */
5222 if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) 5222 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5223 __schedule_bug(prev); 5223 __schedule_bug(prev);
5224 5224
5225 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5225 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5226 5226
5227 schedstat_inc(this_rq(), sched_count); 5227 schedstat_inc(this_rq(), sched_count);
5228 #ifdef CONFIG_SCHEDSTATS 5228 #ifdef CONFIG_SCHEDSTATS
5229 if (unlikely(prev->lock_depth >= 0)) { 5229 if (unlikely(prev->lock_depth >= 0)) {
5230 schedstat_inc(this_rq(), bkl_count); 5230 schedstat_inc(this_rq(), bkl_count);
5231 schedstat_inc(prev, sched_info.bkl_count); 5231 schedstat_inc(prev, sched_info.bkl_count);
5232 } 5232 }
5233 #endif 5233 #endif
5234 } 5234 }
5235 5235
5236 static void put_prev_task(struct rq *rq, struct task_struct *prev) 5236 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5237 { 5237 {
5238 if (prev->state == TASK_RUNNING) { 5238 if (prev->state == TASK_RUNNING) {
5239 u64 runtime = prev->se.sum_exec_runtime; 5239 u64 runtime = prev->se.sum_exec_runtime;
5240 5240
5241 runtime -= prev->se.prev_sum_exec_runtime; 5241 runtime -= prev->se.prev_sum_exec_runtime;
5242 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); 5242 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5243 5243
5244 /* 5244 /*
5245 * In order to avoid avg_overlap growing stale when we are 5245 * In order to avoid avg_overlap growing stale when we are
5246 * indeed overlapping and hence not getting put to sleep, grow 5246 * indeed overlapping and hence not getting put to sleep, grow
5247 * the avg_overlap on preemption. 5247 * the avg_overlap on preemption.
5248 * 5248 *
5249 * We use the average preemption runtime because that 5249 * We use the average preemption runtime because that
5250 * correlates to the amount of cache footprint a task can 5250 * correlates to the amount of cache footprint a task can
5251 * build up. 5251 * build up.
5252 */ 5252 */
5253 update_avg(&prev->se.avg_overlap, runtime); 5253 update_avg(&prev->se.avg_overlap, runtime);
5254 } 5254 }
5255 prev->sched_class->put_prev_task(rq, prev); 5255 prev->sched_class->put_prev_task(rq, prev);
5256 } 5256 }
5257 5257
5258 /* 5258 /*
5259 * Pick up the highest-prio task: 5259 * Pick up the highest-prio task:
5260 */ 5260 */
5261 static inline struct task_struct * 5261 static inline struct task_struct *
5262 pick_next_task(struct rq *rq) 5262 pick_next_task(struct rq *rq)
5263 { 5263 {
5264 const struct sched_class *class; 5264 const struct sched_class *class;
5265 struct task_struct *p; 5265 struct task_struct *p;
5266 5266
5267 /* 5267 /*
5268 * Optimization: we know that if all tasks are in 5268 * Optimization: we know that if all tasks are in
5269 * the fair class we can call that function directly: 5269 * the fair class we can call that function directly:
5270 */ 5270 */
5271 if (likely(rq->nr_running == rq->cfs.nr_running)) { 5271 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5272 p = fair_sched_class.pick_next_task(rq); 5272 p = fair_sched_class.pick_next_task(rq);
5273 if (likely(p)) 5273 if (likely(p))
5274 return p; 5274 return p;
5275 } 5275 }
5276 5276
5277 class = sched_class_highest; 5277 class = sched_class_highest;
5278 for ( ; ; ) { 5278 for ( ; ; ) {
5279 p = class->pick_next_task(rq); 5279 p = class->pick_next_task(rq);
5280 if (p) 5280 if (p)
5281 return p; 5281 return p;
5282 /* 5282 /*
5283 * Will never be NULL as the idle class always 5283 * Will never be NULL as the idle class always
5284 * returns a non-NULL p: 5284 * returns a non-NULL p:
5285 */ 5285 */
5286 class = class->next; 5286 class = class->next;
5287 } 5287 }
5288 } 5288 }
5289 5289
5290 /* 5290 /*
5291 * schedule() is the main scheduler function. 5291 * schedule() is the main scheduler function.
5292 */ 5292 */
5293 asmlinkage void __sched schedule(void) 5293 asmlinkage void __sched schedule(void)
5294 { 5294 {
5295 struct task_struct *prev, *next; 5295 struct task_struct *prev, *next;
5296 unsigned long *switch_count; 5296 unsigned long *switch_count;
5297 struct rq *rq; 5297 struct rq *rq;
5298 int cpu; 5298 int cpu;
5299 5299
5300 need_resched: 5300 need_resched:
5301 preempt_disable(); 5301 preempt_disable();
5302 cpu = smp_processor_id(); 5302 cpu = smp_processor_id();
5303 rq = cpu_rq(cpu); 5303 rq = cpu_rq(cpu);
5304 rcu_qsctr_inc(cpu); 5304 rcu_qsctr_inc(cpu);
5305 prev = rq->curr; 5305 prev = rq->curr;
5306 switch_count = &prev->nivcsw; 5306 switch_count = &prev->nivcsw;
5307 5307
5308 release_kernel_lock(prev); 5308 release_kernel_lock(prev);
5309 need_resched_nonpreemptible: 5309 need_resched_nonpreemptible:
5310 5310
5311 schedule_debug(prev); 5311 schedule_debug(prev);
5312 5312
5313 if (sched_feat(HRTICK)) 5313 if (sched_feat(HRTICK))
5314 hrtick_clear(rq); 5314 hrtick_clear(rq);
5315 5315
5316 spin_lock_irq(&rq->lock); 5316 spin_lock_irq(&rq->lock);
5317 update_rq_clock(rq); 5317 update_rq_clock(rq);
5318 clear_tsk_need_resched(prev); 5318 clear_tsk_need_resched(prev);
5319 5319
5320 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { 5320 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5321 if (unlikely(signal_pending_state(prev->state, prev))) 5321 if (unlikely(signal_pending_state(prev->state, prev)))
5322 prev->state = TASK_RUNNING; 5322 prev->state = TASK_RUNNING;
5323 else 5323 else
5324 deactivate_task(rq, prev, 1); 5324 deactivate_task(rq, prev, 1);
5325 switch_count = &prev->nvcsw; 5325 switch_count = &prev->nvcsw;
5326 } 5326 }
5327 5327
5328 #ifdef CONFIG_SMP 5328 #ifdef CONFIG_SMP
5329 if (prev->sched_class->pre_schedule) 5329 if (prev->sched_class->pre_schedule)
5330 prev->sched_class->pre_schedule(rq, prev); 5330 prev->sched_class->pre_schedule(rq, prev);
5331 #endif 5331 #endif
5332 5332
5333 if (unlikely(!rq->nr_running)) 5333 if (unlikely(!rq->nr_running))
5334 idle_balance(cpu, rq); 5334 idle_balance(cpu, rq);
5335 5335
5336 put_prev_task(rq, prev); 5336 put_prev_task(rq, prev);
5337 next = pick_next_task(rq); 5337 next = pick_next_task(rq);
5338 5338
5339 if (likely(prev != next)) { 5339 if (likely(prev != next)) {
5340 sched_info_switch(prev, next); 5340 sched_info_switch(prev, next);
5341 perf_counter_task_sched_out(prev, next, cpu); 5341 perf_counter_task_sched_out(prev, next, cpu);
5342 5342
5343 rq->nr_switches++; 5343 rq->nr_switches++;
5344 rq->curr = next; 5344 rq->curr = next;
5345 ++*switch_count; 5345 ++*switch_count;
5346 5346
5347 context_switch(rq, prev, next); /* unlocks the rq */ 5347 context_switch(rq, prev, next); /* unlocks the rq */
5348 /* 5348 /*
5349 * the context switch might have flipped the stack from under 5349 * the context switch might have flipped the stack from under
5350 * us, hence refresh the local variables. 5350 * us, hence refresh the local variables.
5351 */ 5351 */
5352 cpu = smp_processor_id(); 5352 cpu = smp_processor_id();
5353 rq = cpu_rq(cpu); 5353 rq = cpu_rq(cpu);
5354 } else 5354 } else
5355 spin_unlock_irq(&rq->lock); 5355 spin_unlock_irq(&rq->lock);
5356 5356
5357 if (unlikely(reacquire_kernel_lock(current) < 0)) 5357 if (unlikely(reacquire_kernel_lock(current) < 0))
5358 goto need_resched_nonpreemptible; 5358 goto need_resched_nonpreemptible;
5359 5359
5360 preempt_enable_no_resched(); 5360 preempt_enable_no_resched();
5361 if (need_resched()) 5361 if (need_resched())
5362 goto need_resched; 5362 goto need_resched;
5363 } 5363 }
5364 EXPORT_SYMBOL(schedule); 5364 EXPORT_SYMBOL(schedule);
5365 5365
5366 #ifdef CONFIG_SMP 5366 #ifdef CONFIG_SMP
5367 /* 5367 /*
5368 * Look out! "owner" is an entirely speculative pointer 5368 * Look out! "owner" is an entirely speculative pointer
5369 * access and not reliable. 5369 * access and not reliable.
5370 */ 5370 */
5371 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) 5371 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5372 { 5372 {
5373 unsigned int cpu; 5373 unsigned int cpu;
5374 struct rq *rq; 5374 struct rq *rq;
5375 5375
5376 if (!sched_feat(OWNER_SPIN)) 5376 if (!sched_feat(OWNER_SPIN))
5377 return 0; 5377 return 0;
5378 5378
5379 #ifdef CONFIG_DEBUG_PAGEALLOC 5379 #ifdef CONFIG_DEBUG_PAGEALLOC
5380 /* 5380 /*
5381 * Need to access the cpu field knowing that 5381 * Need to access the cpu field knowing that
5382 * DEBUG_PAGEALLOC could have unmapped it if 5382 * DEBUG_PAGEALLOC could have unmapped it if
5383 * the mutex owner just released it and exited. 5383 * the mutex owner just released it and exited.
5384 */ 5384 */
5385 if (probe_kernel_address(&owner->cpu, cpu)) 5385 if (probe_kernel_address(&owner->cpu, cpu))
5386 goto out; 5386 goto out;
5387 #else 5387 #else
5388 cpu = owner->cpu; 5388 cpu = owner->cpu;
5389 #endif 5389 #endif
5390 5390
5391 /* 5391 /*
5392 * Even if the access succeeded (likely case), 5392 * Even if the access succeeded (likely case),
5393 * the cpu field may no longer be valid. 5393 * the cpu field may no longer be valid.
5394 */ 5394 */
5395 if (cpu >= nr_cpumask_bits) 5395 if (cpu >= nr_cpumask_bits)
5396 goto out; 5396 goto out;
5397 5397
5398 /* 5398 /*
5399 * We need to validate that we can do a 5399 * We need to validate that we can do a
5400 * get_cpu() and that we have the percpu area. 5400 * get_cpu() and that we have the percpu area.
5401 */ 5401 */
5402 if (!cpu_online(cpu)) 5402 if (!cpu_online(cpu))
5403 goto out; 5403 goto out;
5404 5404
5405 rq = cpu_rq(cpu); 5405 rq = cpu_rq(cpu);
5406 5406
5407 for (;;) { 5407 for (;;) {
5408 /* 5408 /*
5409 * Owner changed, break to re-assess state. 5409 * Owner changed, break to re-assess state.
5410 */ 5410 */
5411 if (lock->owner != owner) 5411 if (lock->owner != owner)
5412 break; 5412 break;
5413 5413
5414 /* 5414 /*
5415 * Is that owner really running on that cpu? 5415 * Is that owner really running on that cpu?
5416 */ 5416 */
5417 if (task_thread_info(rq->curr) != owner || need_resched()) 5417 if (task_thread_info(rq->curr) != owner || need_resched())
5418 return 0; 5418 return 0;
5419 5419
5420 cpu_relax(); 5420 cpu_relax();
5421 } 5421 }
5422 out: 5422 out:
5423 return 1; 5423 return 1;
5424 } 5424 }
5425 #endif 5425 #endif
5426 5426
5427 #ifdef CONFIG_PREEMPT 5427 #ifdef CONFIG_PREEMPT
5428 /* 5428 /*
5429 * this is the entry point to schedule() from in-kernel preemption 5429 * this is the entry point to schedule() from in-kernel preemption
5430 * off of preempt_enable. Kernel preemptions off return from interrupt 5430 * off of preempt_enable. Kernel preemptions off return from interrupt
5431 * occur there and call schedule directly. 5431 * occur there and call schedule directly.
5432 */ 5432 */
5433 asmlinkage void __sched preempt_schedule(void) 5433 asmlinkage void __sched preempt_schedule(void)
5434 { 5434 {
5435 struct thread_info *ti = current_thread_info(); 5435 struct thread_info *ti = current_thread_info();
5436 5436
5437 /* 5437 /*
5438 * If there is a non-zero preempt_count or interrupts are disabled, 5438 * If there is a non-zero preempt_count or interrupts are disabled,
5439 * we do not want to preempt the current task. Just return.. 5439 * we do not want to preempt the current task. Just return..
5440 */ 5440 */
5441 if (likely(ti->preempt_count || irqs_disabled())) 5441 if (likely(ti->preempt_count || irqs_disabled()))
5442 return; 5442 return;
5443 5443
5444 do { 5444 do {
5445 add_preempt_count(PREEMPT_ACTIVE); 5445 add_preempt_count(PREEMPT_ACTIVE);
5446 schedule(); 5446 schedule();
5447 sub_preempt_count(PREEMPT_ACTIVE); 5447 sub_preempt_count(PREEMPT_ACTIVE);
5448 5448
5449 /* 5449 /*
5450 * Check again in case we missed a preemption opportunity 5450 * Check again in case we missed a preemption opportunity
5451 * between schedule and now. 5451 * between schedule and now.
5452 */ 5452 */
5453 barrier(); 5453 barrier();
5454 } while (need_resched()); 5454 } while (need_resched());
5455 } 5455 }
5456 EXPORT_SYMBOL(preempt_schedule); 5456 EXPORT_SYMBOL(preempt_schedule);
5457 5457
5458 /* 5458 /*
5459 * this is the entry point to schedule() from kernel preemption 5459 * this is the entry point to schedule() from kernel preemption
5460 * off of irq context. 5460 * off of irq context.
5461 * Note, that this is called and return with irqs disabled. This will 5461 * Note, that this is called and return with irqs disabled. This will
5462 * protect us against recursive calling from irq. 5462 * protect us against recursive calling from irq.
5463 */ 5463 */
5464 asmlinkage void __sched preempt_schedule_irq(void) 5464 asmlinkage void __sched preempt_schedule_irq(void)
5465 { 5465 {
5466 struct thread_info *ti = current_thread_info(); 5466 struct thread_info *ti = current_thread_info();
5467 5467
5468 /* Catch callers which need to be fixed */ 5468 /* Catch callers which need to be fixed */
5469 BUG_ON(ti->preempt_count || !irqs_disabled()); 5469 BUG_ON(ti->preempt_count || !irqs_disabled());
5470 5470
5471 do { 5471 do {
5472 add_preempt_count(PREEMPT_ACTIVE); 5472 add_preempt_count(PREEMPT_ACTIVE);
5473 local_irq_enable(); 5473 local_irq_enable();
5474 schedule(); 5474 schedule();
5475 local_irq_disable(); 5475 local_irq_disable();
5476 sub_preempt_count(PREEMPT_ACTIVE); 5476 sub_preempt_count(PREEMPT_ACTIVE);
5477 5477
5478 /* 5478 /*
5479 * Check again in case we missed a preemption opportunity 5479 * Check again in case we missed a preemption opportunity
5480 * between schedule and now. 5480 * between schedule and now.
5481 */ 5481 */
5482 barrier(); 5482 barrier();
5483 } while (need_resched()); 5483 } while (need_resched());
5484 } 5484 }
5485 5485
5486 #endif /* CONFIG_PREEMPT */ 5486 #endif /* CONFIG_PREEMPT */
5487 5487
5488 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, 5488 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5489 void *key) 5489 void *key)
5490 { 5490 {
5491 return try_to_wake_up(curr->private, mode, sync); 5491 return try_to_wake_up(curr->private, mode, sync);
5492 } 5492 }
5493 EXPORT_SYMBOL(default_wake_function); 5493 EXPORT_SYMBOL(default_wake_function);
5494 5494
5495 /* 5495 /*
5496 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just 5496 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5497 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve 5497 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5498 * number) then we wake all the non-exclusive tasks and one exclusive task. 5498 * number) then we wake all the non-exclusive tasks and one exclusive task.
5499 * 5499 *
5500 * There are circumstances in which we can try to wake a task which has already 5500 * There are circumstances in which we can try to wake a task which has already
5501 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns 5501 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5502 * zero in this (rare) case, and we handle it by continuing to scan the queue. 5502 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5503 */ 5503 */
5504 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, 5504 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5505 int nr_exclusive, int sync, void *key) 5505 int nr_exclusive, int sync, void *key)
5506 { 5506 {
5507 wait_queue_t *curr, *next; 5507 wait_queue_t *curr, *next;
5508 5508
5509 list_for_each_entry_safe(curr, next, &q->task_list, task_list) { 5509 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5510 unsigned flags = curr->flags; 5510 unsigned flags = curr->flags;
5511 5511
5512 if (curr->func(curr, mode, sync, key) && 5512 if (curr->func(curr, mode, sync, key) &&
5513 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 5513 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5514 break; 5514 break;
5515 } 5515 }
5516 } 5516 }
5517 5517
5518 /** 5518 /**
5519 * __wake_up - wake up threads blocked on a waitqueue. 5519 * __wake_up - wake up threads blocked on a waitqueue.
5520 * @q: the waitqueue 5520 * @q: the waitqueue
5521 * @mode: which threads 5521 * @mode: which threads
5522 * @nr_exclusive: how many wake-one or wake-many threads to wake up 5522 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5523 * @key: is directly passed to the wakeup function 5523 * @key: is directly passed to the wakeup function
5524 * 5524 *
5525 * It may be assumed that this function implies a write memory barrier before 5525 * It may be assumed that this function implies a write memory barrier before
5526 * changing the task state if and only if any tasks are woken up. 5526 * changing the task state if and only if any tasks are woken up.
5527 */ 5527 */
5528 void __wake_up(wait_queue_head_t *q, unsigned int mode, 5528 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5529 int nr_exclusive, void *key) 5529 int nr_exclusive, void *key)
5530 { 5530 {
5531 unsigned long flags; 5531 unsigned long flags;
5532 5532
5533 spin_lock_irqsave(&q->lock, flags); 5533 spin_lock_irqsave(&q->lock, flags);
5534 __wake_up_common(q, mode, nr_exclusive, 0, key); 5534 __wake_up_common(q, mode, nr_exclusive, 0, key);
5535 spin_unlock_irqrestore(&q->lock, flags); 5535 spin_unlock_irqrestore(&q->lock, flags);
5536 } 5536 }
5537 EXPORT_SYMBOL(__wake_up); 5537 EXPORT_SYMBOL(__wake_up);
5538 5538
5539 /* 5539 /*
5540 * Same as __wake_up but called with the spinlock in wait_queue_head_t held. 5540 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5541 */ 5541 */
5542 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) 5542 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5543 { 5543 {
5544 __wake_up_common(q, mode, 1, 0, NULL); 5544 __wake_up_common(q, mode, 1, 0, NULL);
5545 } 5545 }
5546 5546
5547 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) 5547 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5548 { 5548 {
5549 __wake_up_common(q, mode, 1, 0, key); 5549 __wake_up_common(q, mode, 1, 0, key);
5550 } 5550 }
5551 5551
5552 /** 5552 /**
5553 * __wake_up_sync_key - wake up threads blocked on a waitqueue. 5553 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5554 * @q: the waitqueue 5554 * @q: the waitqueue
5555 * @mode: which threads 5555 * @mode: which threads
5556 * @nr_exclusive: how many wake-one or wake-many threads to wake up 5556 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5557 * @key: opaque value to be passed to wakeup targets 5557 * @key: opaque value to be passed to wakeup targets
5558 * 5558 *
5559 * The sync wakeup differs that the waker knows that it will schedule 5559 * The sync wakeup differs that the waker knows that it will schedule
5560 * away soon, so while the target thread will be woken up, it will not 5560 * away soon, so while the target thread will be woken up, it will not
5561 * be migrated to another CPU - ie. the two threads are 'synchronized' 5561 * be migrated to another CPU - ie. the two threads are 'synchronized'
5562 * with each other. This can prevent needless bouncing between CPUs. 5562 * with each other. This can prevent needless bouncing between CPUs.
5563 * 5563 *
5564 * On UP it can prevent extra preemption. 5564 * On UP it can prevent extra preemption.
5565 * 5565 *
5566 * It may be assumed that this function implies a write memory barrier before 5566 * It may be assumed that this function implies a write memory barrier before
5567 * changing the task state if and only if any tasks are woken up. 5567 * changing the task state if and only if any tasks are woken up.
5568 */ 5568 */
5569 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, 5569 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5570 int nr_exclusive, void *key) 5570 int nr_exclusive, void *key)
5571 { 5571 {
5572 unsigned long flags; 5572 unsigned long flags;
5573 int sync = 1; 5573 int sync = 1;
5574 5574
5575 if (unlikely(!q)) 5575 if (unlikely(!q))
5576 return; 5576 return;
5577 5577
5578 if (unlikely(!nr_exclusive)) 5578 if (unlikely(!nr_exclusive))
5579 sync = 0; 5579 sync = 0;
5580 5580
5581 spin_lock_irqsave(&q->lock, flags); 5581 spin_lock_irqsave(&q->lock, flags);
5582 __wake_up_common(q, mode, nr_exclusive, sync, key); 5582 __wake_up_common(q, mode, nr_exclusive, sync, key);
5583 spin_unlock_irqrestore(&q->lock, flags); 5583 spin_unlock_irqrestore(&q->lock, flags);
5584 } 5584 }
5585 EXPORT_SYMBOL_GPL(__wake_up_sync_key); 5585 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5586 5586
5587 /* 5587 /*
5588 * __wake_up_sync - see __wake_up_sync_key() 5588 * __wake_up_sync - see __wake_up_sync_key()
5589 */ 5589 */
5590 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) 5590 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5591 { 5591 {
5592 __wake_up_sync_key(q, mode, nr_exclusive, NULL); 5592 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5593 } 5593 }
5594 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ 5594 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5595 5595
5596 /** 5596 /**
5597 * complete: - signals a single thread waiting on this completion 5597 * complete: - signals a single thread waiting on this completion
5598 * @x: holds the state of this particular completion 5598 * @x: holds the state of this particular completion
5599 * 5599 *
5600 * This will wake up a single thread waiting on this completion. Threads will be 5600 * This will wake up a single thread waiting on this completion. Threads will be
5601 * awakened in the same order in which they were queued. 5601 * awakened in the same order in which they were queued.
5602 * 5602 *
5603 * See also complete_all(), wait_for_completion() and related routines. 5603 * See also complete_all(), wait_for_completion() and related routines.
5604 * 5604 *
5605 * It may be assumed that this function implies a write memory barrier before 5605 * It may be assumed that this function implies a write memory barrier before
5606 * changing the task state if and only if any tasks are woken up. 5606 * changing the task state if and only if any tasks are woken up.
5607 */ 5607 */
5608 void complete(struct completion *x) 5608 void complete(struct completion *x)
5609 { 5609 {
5610 unsigned long flags; 5610 unsigned long flags;
5611 5611
5612 spin_lock_irqsave(&x->wait.lock, flags); 5612 spin_lock_irqsave(&x->wait.lock, flags);
5613 x->done++; 5613 x->done++;
5614 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); 5614 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5615 spin_unlock_irqrestore(&x->wait.lock, flags); 5615 spin_unlock_irqrestore(&x->wait.lock, flags);
5616 } 5616 }
5617 EXPORT_SYMBOL(complete); 5617 EXPORT_SYMBOL(complete);
5618 5618
5619 /** 5619 /**
5620 * complete_all: - signals all threads waiting on this completion 5620 * complete_all: - signals all threads waiting on this completion
5621 * @x: holds the state of this particular completion 5621 * @x: holds the state of this particular completion
5622 * 5622 *
5623 * This will wake up all threads waiting on this particular completion event. 5623 * This will wake up all threads waiting on this particular completion event.
5624 * 5624 *
5625 * It may be assumed that this function implies a write memory barrier before 5625 * It may be assumed that this function implies a write memory barrier before
5626 * changing the task state if and only if any tasks are woken up. 5626 * changing the task state if and only if any tasks are woken up.
5627 */ 5627 */
5628 void complete_all(struct completion *x) 5628 void complete_all(struct completion *x)
5629 { 5629 {
5630 unsigned long flags; 5630 unsigned long flags;
5631 5631
5632 spin_lock_irqsave(&x->wait.lock, flags); 5632 spin_lock_irqsave(&x->wait.lock, flags);
5633 x->done += UINT_MAX/2; 5633 x->done += UINT_MAX/2;
5634 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); 5634 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5635 spin_unlock_irqrestore(&x->wait.lock, flags); 5635 spin_unlock_irqrestore(&x->wait.lock, flags);
5636 } 5636 }
5637 EXPORT_SYMBOL(complete_all); 5637 EXPORT_SYMBOL(complete_all);
5638 5638
5639 static inline long __sched 5639 static inline long __sched
5640 do_wait_for_common(struct completion *x, long timeout, int state) 5640 do_wait_for_common(struct completion *x, long timeout, int state)
5641 { 5641 {
5642 if (!x->done) { 5642 if (!x->done) {
5643 DECLARE_WAITQUEUE(wait, current); 5643 DECLARE_WAITQUEUE(wait, current);
5644 5644
5645 wait.flags |= WQ_FLAG_EXCLUSIVE; 5645 wait.flags |= WQ_FLAG_EXCLUSIVE;
5646 __add_wait_queue_tail(&x->wait, &wait); 5646 __add_wait_queue_tail(&x->wait, &wait);
5647 do { 5647 do {
5648 if (signal_pending_state(state, current)) { 5648 if (signal_pending_state(state, current)) {
5649 timeout = -ERESTARTSYS; 5649 timeout = -ERESTARTSYS;
5650 break; 5650 break;
5651 } 5651 }
5652 __set_current_state(state); 5652 __set_current_state(state);
5653 spin_unlock_irq(&x->wait.lock); 5653 spin_unlock_irq(&x->wait.lock);
5654 timeout = schedule_timeout(timeout); 5654 timeout = schedule_timeout(timeout);
5655 spin_lock_irq(&x->wait.lock); 5655 spin_lock_irq(&x->wait.lock);
5656 } while (!x->done && timeout); 5656 } while (!x->done && timeout);
5657 __remove_wait_queue(&x->wait, &wait); 5657 __remove_wait_queue(&x->wait, &wait);
5658 if (!x->done) 5658 if (!x->done)
5659 return timeout; 5659 return timeout;
5660 } 5660 }
5661 x->done--; 5661 x->done--;
5662 return timeout ?: 1; 5662 return timeout ?: 1;
5663 } 5663 }
5664 5664
5665 static long __sched 5665 static long __sched
5666 wait_for_common(struct completion *x, long timeout, int state) 5666 wait_for_common(struct completion *x, long timeout, int state)
5667 { 5667 {
5668 might_sleep(); 5668 might_sleep();
5669 5669
5670 spin_lock_irq(&x->wait.lock); 5670 spin_lock_irq(&x->wait.lock);
5671 timeout = do_wait_for_common(x, timeout, state); 5671 timeout = do_wait_for_common(x, timeout, state);
5672 spin_unlock_irq(&x->wait.lock); 5672 spin_unlock_irq(&x->wait.lock);
5673 return timeout; 5673 return timeout;
5674 } 5674 }
5675 5675
5676 /** 5676 /**
5677 * wait_for_completion: - waits for completion of a task 5677 * wait_for_completion: - waits for completion of a task
5678 * @x: holds the state of this particular completion 5678 * @x: holds the state of this particular completion
5679 * 5679 *
5680 * This waits to be signaled for completion of a specific task. It is NOT 5680 * This waits to be signaled for completion of a specific task. It is NOT
5681 * interruptible and there is no timeout. 5681 * interruptible and there is no timeout.
5682 * 5682 *
5683 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout 5683 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5684 * and interrupt capability. Also see complete(). 5684 * and interrupt capability. Also see complete().
5685 */ 5685 */
5686 void __sched wait_for_completion(struct completion *x) 5686 void __sched wait_for_completion(struct completion *x)
5687 { 5687 {
5688 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); 5688 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5689 } 5689 }
5690 EXPORT_SYMBOL(wait_for_completion); 5690 EXPORT_SYMBOL(wait_for_completion);
5691 5691
5692 /** 5692 /**
5693 * wait_for_completion_timeout: - waits for completion of a task (w/timeout) 5693 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5694 * @x: holds the state of this particular completion 5694 * @x: holds the state of this particular completion
5695 * @timeout: timeout value in jiffies 5695 * @timeout: timeout value in jiffies
5696 * 5696 *
5697 * This waits for either a completion of a specific task to be signaled or for a 5697 * This waits for either a completion of a specific task to be signaled or for a
5698 * specified timeout to expire. The timeout is in jiffies. It is not 5698 * specified timeout to expire. The timeout is in jiffies. It is not
5699 * interruptible. 5699 * interruptible.
5700 */ 5700 */
5701 unsigned long __sched 5701 unsigned long __sched
5702 wait_for_completion_timeout(struct completion *x, unsigned long timeout) 5702 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5703 { 5703 {
5704 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); 5704 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5705 } 5705 }
5706 EXPORT_SYMBOL(wait_for_completion_timeout); 5706 EXPORT_SYMBOL(wait_for_completion_timeout);
5707 5707
5708 /** 5708 /**
5709 * wait_for_completion_interruptible: - waits for completion of a task (w/intr) 5709 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5710 * @x: holds the state of this particular completion 5710 * @x: holds the state of this particular completion
5711 * 5711 *
5712 * This waits for completion of a specific task to be signaled. It is 5712 * This waits for completion of a specific task to be signaled. It is
5713 * interruptible. 5713 * interruptible.
5714 */ 5714 */
5715 int __sched wait_for_completion_interruptible(struct completion *x) 5715 int __sched wait_for_completion_interruptible(struct completion *x)
5716 { 5716 {
5717 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); 5717 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5718 if (t == -ERESTARTSYS) 5718 if (t == -ERESTARTSYS)
5719 return t; 5719 return t;
5720 return 0; 5720 return 0;
5721 } 5721 }
5722 EXPORT_SYMBOL(wait_for_completion_interruptible); 5722 EXPORT_SYMBOL(wait_for_completion_interruptible);
5723 5723
5724 /** 5724 /**
5725 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) 5725 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5726 * @x: holds the state of this particular completion 5726 * @x: holds the state of this particular completion
5727 * @timeout: timeout value in jiffies 5727 * @timeout: timeout value in jiffies
5728 * 5728 *
5729 * This waits for either a completion of a specific task to be signaled or for a 5729 * This waits for either a completion of a specific task to be signaled or for a
5730 * specified timeout to expire. It is interruptible. The timeout is in jiffies. 5730 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5731 */ 5731 */
5732 unsigned long __sched 5732 unsigned long __sched
5733 wait_for_completion_interruptible_timeout(struct completion *x, 5733 wait_for_completion_interruptible_timeout(struct completion *x,
5734 unsigned long timeout) 5734 unsigned long timeout)
5735 { 5735 {
5736 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); 5736 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5737 } 5737 }
5738 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); 5738 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5739 5739
5740 /** 5740 /**
5741 * wait_for_completion_killable: - waits for completion of a task (killable) 5741 * wait_for_completion_killable: - waits for completion of a task (killable)
5742 * @x: holds the state of this particular completion 5742 * @x: holds the state of this particular completion
5743 * 5743 *
5744 * This waits to be signaled for completion of a specific task. It can be 5744 * This waits to be signaled for completion of a specific task. It can be
5745 * interrupted by a kill signal. 5745 * interrupted by a kill signal.
5746 */ 5746 */
5747 int __sched wait_for_completion_killable(struct completion *x) 5747 int __sched wait_for_completion_killable(struct completion *x)
5748 { 5748 {
5749 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); 5749 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5750 if (t == -ERESTARTSYS) 5750 if (t == -ERESTARTSYS)
5751 return t; 5751 return t;
5752 return 0; 5752 return 0;
5753 } 5753 }
5754 EXPORT_SYMBOL(wait_for_completion_killable); 5754 EXPORT_SYMBOL(wait_for_completion_killable);
5755 5755
5756 /** 5756 /**
5757 * try_wait_for_completion - try to decrement a completion without blocking 5757 * try_wait_for_completion - try to decrement a completion without blocking
5758 * @x: completion structure 5758 * @x: completion structure
5759 * 5759 *
5760 * Returns: 0 if a decrement cannot be done without blocking 5760 * Returns: 0 if a decrement cannot be done without blocking
5761 * 1 if a decrement succeeded. 5761 * 1 if a decrement succeeded.
5762 * 5762 *
5763 * If a completion is being used as a counting completion, 5763 * If a completion is being used as a counting completion,
5764 * attempt to decrement the counter without blocking. This 5764 * attempt to decrement the counter without blocking. This
5765 * enables us to avoid waiting if the resource the completion 5765 * enables us to avoid waiting if the resource the completion
5766 * is protecting is not available. 5766 * is protecting is not available.
5767 */ 5767 */
5768 bool try_wait_for_completion(struct completion *x) 5768 bool try_wait_for_completion(struct completion *x)
5769 { 5769 {
5770 int ret = 1; 5770 int ret = 1;
5771 5771
5772 spin_lock_irq(&x->wait.lock); 5772 spin_lock_irq(&x->wait.lock);
5773 if (!x->done) 5773 if (!x->done)
5774 ret = 0; 5774 ret = 0;
5775 else 5775 else
5776 x->done--; 5776 x->done--;
5777 spin_unlock_irq(&x->wait.lock); 5777 spin_unlock_irq(&x->wait.lock);
5778 return ret; 5778 return ret;
5779 } 5779 }
5780 EXPORT_SYMBOL(try_wait_for_completion); 5780 EXPORT_SYMBOL(try_wait_for_completion);
5781 5781
5782 /** 5782 /**
5783 * completion_done - Test to see if a completion has any waiters 5783 * completion_done - Test to see if a completion has any waiters
5784 * @x: completion structure 5784 * @x: completion structure
5785 * 5785 *
5786 * Returns: 0 if there are waiters (wait_for_completion() in progress) 5786 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5787 * 1 if there are no waiters. 5787 * 1 if there are no waiters.
5788 * 5788 *
5789 */ 5789 */
5790 bool completion_done(struct completion *x) 5790 bool completion_done(struct completion *x)
5791 { 5791 {
5792 int ret = 1; 5792 int ret = 1;
5793 5793
5794 spin_lock_irq(&x->wait.lock); 5794 spin_lock_irq(&x->wait.lock);
5795 if (!x->done) 5795 if (!x->done)
5796 ret = 0; 5796 ret = 0;
5797 spin_unlock_irq(&x->wait.lock); 5797 spin_unlock_irq(&x->wait.lock);
5798 return ret; 5798 return ret;
5799 } 5799 }
5800 EXPORT_SYMBOL(completion_done); 5800 EXPORT_SYMBOL(completion_done);
5801 5801
5802 static long __sched 5802 static long __sched
5803 sleep_on_common(wait_queue_head_t *q, int state, long timeout) 5803 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5804 { 5804 {
5805 unsigned long flags; 5805 unsigned long flags;
5806 wait_queue_t wait; 5806 wait_queue_t wait;
5807 5807
5808 init_waitqueue_entry(&wait, current); 5808 init_waitqueue_entry(&wait, current);
5809 5809
5810 __set_current_state(state); 5810 __set_current_state(state);
5811 5811
5812 spin_lock_irqsave(&q->lock, flags); 5812 spin_lock_irqsave(&q->lock, flags);
5813 __add_wait_queue(q, &wait); 5813 __add_wait_queue(q, &wait);
5814 spin_unlock(&q->lock); 5814 spin_unlock(&q->lock);
5815 timeout = schedule_timeout(timeout); 5815 timeout = schedule_timeout(timeout);
5816 spin_lock_irq(&q->lock); 5816 spin_lock_irq(&q->lock);
5817 __remove_wait_queue(q, &wait); 5817 __remove_wait_queue(q, &wait);
5818 spin_unlock_irqrestore(&q->lock, flags); 5818 spin_unlock_irqrestore(&q->lock, flags);
5819 5819
5820 return timeout; 5820 return timeout;
5821 } 5821 }
5822 5822
5823 void __sched interruptible_sleep_on(wait_queue_head_t *q) 5823 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5824 { 5824 {
5825 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 5825 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5826 } 5826 }
5827 EXPORT_SYMBOL(interruptible_sleep_on); 5827 EXPORT_SYMBOL(interruptible_sleep_on);
5828 5828
5829 long __sched 5829 long __sched
5830 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) 5830 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5831 { 5831 {
5832 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); 5832 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5833 } 5833 }
5834 EXPORT_SYMBOL(interruptible_sleep_on_timeout); 5834 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5835 5835
5836 void __sched sleep_on(wait_queue_head_t *q) 5836 void __sched sleep_on(wait_queue_head_t *q)
5837 { 5837 {
5838 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 5838 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5839 } 5839 }
5840 EXPORT_SYMBOL(sleep_on); 5840 EXPORT_SYMBOL(sleep_on);
5841 5841
5842 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) 5842 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5843 { 5843 {
5844 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); 5844 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5845 } 5845 }
5846 EXPORT_SYMBOL(sleep_on_timeout); 5846 EXPORT_SYMBOL(sleep_on_timeout);
5847 5847
5848 #ifdef CONFIG_RT_MUTEXES 5848 #ifdef CONFIG_RT_MUTEXES
5849 5849
5850 /* 5850 /*
5851 * rt_mutex_setprio - set the current priority of a task 5851 * rt_mutex_setprio - set the current priority of a task
5852 * @p: task 5852 * @p: task
5853 * @prio: prio value (kernel-internal form) 5853 * @prio: prio value (kernel-internal form)
5854 * 5854 *
5855 * This function changes the 'effective' priority of a task. It does 5855 * This function changes the 'effective' priority of a task. It does
5856 * not touch ->normal_prio like __setscheduler(). 5856 * not touch ->normal_prio like __setscheduler().
5857 * 5857 *
5858 * Used by the rt_mutex code to implement priority inheritance logic. 5858 * Used by the rt_mutex code to implement priority inheritance logic.
5859 */ 5859 */
5860 void rt_mutex_setprio(struct task_struct *p, int prio) 5860 void rt_mutex_setprio(struct task_struct *p, int prio)
5861 { 5861 {
5862 unsigned long flags; 5862 unsigned long flags;
5863 int oldprio, on_rq, running; 5863 int oldprio, on_rq, running;
5864 struct rq *rq; 5864 struct rq *rq;
5865 const struct sched_class *prev_class = p->sched_class; 5865 const struct sched_class *prev_class = p->sched_class;
5866 5866
5867 BUG_ON(prio < 0 || prio > MAX_PRIO); 5867 BUG_ON(prio < 0 || prio > MAX_PRIO);
5868 5868
5869 rq = task_rq_lock(p, &flags); 5869 rq = task_rq_lock(p, &flags);
5870 update_rq_clock(rq); 5870 update_rq_clock(rq);
5871 5871
5872 oldprio = p->prio; 5872 oldprio = p->prio;
5873 on_rq = p->se.on_rq; 5873 on_rq = p->se.on_rq;
5874 running = task_current(rq, p); 5874 running = task_current(rq, p);
5875 if (on_rq) 5875 if (on_rq)
5876 dequeue_task(rq, p, 0); 5876 dequeue_task(rq, p, 0);
5877 if (running) 5877 if (running)
5878 p->sched_class->put_prev_task(rq, p); 5878 p->sched_class->put_prev_task(rq, p);
5879 5879
5880 if (rt_prio(prio)) 5880 if (rt_prio(prio))
5881 p->sched_class = &rt_sched_class; 5881 p->sched_class = &rt_sched_class;
5882 else 5882 else
5883 p->sched_class = &fair_sched_class; 5883 p->sched_class = &fair_sched_class;
5884 5884
5885 p->prio = prio; 5885 p->prio = prio;
5886 5886
5887 if (running) 5887 if (running)
5888 p->sched_class->set_curr_task(rq); 5888 p->sched_class->set_curr_task(rq);
5889 if (on_rq) { 5889 if (on_rq) {
5890 enqueue_task(rq, p, 0); 5890 enqueue_task(rq, p, 0);
5891 5891
5892 check_class_changed(rq, p, prev_class, oldprio, running); 5892 check_class_changed(rq, p, prev_class, oldprio, running);
5893 } 5893 }
5894 task_rq_unlock(rq, &flags); 5894 task_rq_unlock(rq, &flags);
5895 } 5895 }
5896 5896
5897 #endif 5897 #endif
5898 5898
5899 void set_user_nice(struct task_struct *p, long nice) 5899 void set_user_nice(struct task_struct *p, long nice)
5900 { 5900 {
5901 int old_prio, delta, on_rq; 5901 int old_prio, delta, on_rq;
5902 unsigned long flags; 5902 unsigned long flags;
5903 struct rq *rq; 5903 struct rq *rq;
5904 5904
5905 if (TASK_NICE(p) == nice || nice < -20 || nice > 19) 5905 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5906 return; 5906 return;
5907 /* 5907 /*
5908 * We have to be careful, if called from sys_setpriority(), 5908 * We have to be careful, if called from sys_setpriority(),
5909 * the task might be in the middle of scheduling on another CPU. 5909 * the task might be in the middle of scheduling on another CPU.
5910 */ 5910 */
5911 rq = task_rq_lock(p, &flags); 5911 rq = task_rq_lock(p, &flags);
5912 update_rq_clock(rq); 5912 update_rq_clock(rq);
5913 /* 5913 /*
5914 * The RT priorities are set via sched_setscheduler(), but we still 5914 * The RT priorities are set via sched_setscheduler(), but we still
5915 * allow the 'normal' nice value to be set - but as expected 5915 * allow the 'normal' nice value to be set - but as expected
5916 * it wont have any effect on scheduling until the task is 5916 * it wont have any effect on scheduling until the task is
5917 * SCHED_FIFO/SCHED_RR: 5917 * SCHED_FIFO/SCHED_RR:
5918 */ 5918 */
5919 if (task_has_rt_policy(p)) { 5919 if (task_has_rt_policy(p)) {
5920 p->static_prio = NICE_TO_PRIO(nice); 5920 p->static_prio = NICE_TO_PRIO(nice);
5921 goto out_unlock; 5921 goto out_unlock;
5922 } 5922 }
5923 on_rq = p->se.on_rq; 5923 on_rq = p->se.on_rq;
5924 if (on_rq) 5924 if (on_rq)
5925 dequeue_task(rq, p, 0); 5925 dequeue_task(rq, p, 0);
5926 5926
5927 p->static_prio = NICE_TO_PRIO(nice); 5927 p->static_prio = NICE_TO_PRIO(nice);
5928 set_load_weight(p); 5928 set_load_weight(p);
5929 old_prio = p->prio; 5929 old_prio = p->prio;
5930 p->prio = effective_prio(p); 5930 p->prio = effective_prio(p);
5931 delta = p->prio - old_prio; 5931 delta = p->prio - old_prio;
5932 5932
5933 if (on_rq) { 5933 if (on_rq) {
5934 enqueue_task(rq, p, 0); 5934 enqueue_task(rq, p, 0);
5935 /* 5935 /*
5936 * If the task increased its priority or is running and 5936 * If the task increased its priority or is running and
5937 * lowered its priority, then reschedule its CPU: 5937 * lowered its priority, then reschedule its CPU:
5938 */ 5938 */
5939 if (delta < 0 || (delta > 0 && task_running(rq, p))) 5939 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5940 resched_task(rq->curr); 5940 resched_task(rq->curr);
5941 } 5941 }
5942 out_unlock: 5942 out_unlock:
5943 task_rq_unlock(rq, &flags); 5943 task_rq_unlock(rq, &flags);
5944 } 5944 }
5945 EXPORT_SYMBOL(set_user_nice); 5945 EXPORT_SYMBOL(set_user_nice);
5946 5946
5947 /* 5947 /*
5948 * can_nice - check if a task can reduce its nice value 5948 * can_nice - check if a task can reduce its nice value
5949 * @p: task 5949 * @p: task
5950 * @nice: nice value 5950 * @nice: nice value
5951 */ 5951 */
5952 int can_nice(const struct task_struct *p, const int nice) 5952 int can_nice(const struct task_struct *p, const int nice)
5953 { 5953 {
5954 /* convert nice value [19,-20] to rlimit style value [1,40] */ 5954 /* convert nice value [19,-20] to rlimit style value [1,40] */
5955 int nice_rlim = 20 - nice; 5955 int nice_rlim = 20 - nice;
5956 5956
5957 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || 5957 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5958 capable(CAP_SYS_NICE)); 5958 capable(CAP_SYS_NICE));
5959 } 5959 }
5960 5960
5961 #ifdef __ARCH_WANT_SYS_NICE 5961 #ifdef __ARCH_WANT_SYS_NICE
5962 5962
5963 /* 5963 /*
5964 * sys_nice - change the priority of the current process. 5964 * sys_nice - change the priority of the current process.
5965 * @increment: priority increment 5965 * @increment: priority increment
5966 * 5966 *
5967 * sys_setpriority is a more generic, but much slower function that 5967 * sys_setpriority is a more generic, but much slower function that
5968 * does similar things. 5968 * does similar things.
5969 */ 5969 */
5970 SYSCALL_DEFINE1(nice, int, increment) 5970 SYSCALL_DEFINE1(nice, int, increment)
5971 { 5971 {
5972 long nice, retval; 5972 long nice, retval;
5973 5973
5974 /* 5974 /*
5975 * Setpriority might change our priority at the same moment. 5975 * Setpriority might change our priority at the same moment.
5976 * We don't have to worry. Conceptually one call occurs first 5976 * We don't have to worry. Conceptually one call occurs first
5977 * and we have a single winner. 5977 * and we have a single winner.
5978 */ 5978 */
5979 if (increment < -40) 5979 if (increment < -40)
5980 increment = -40; 5980 increment = -40;
5981 if (increment > 40) 5981 if (increment > 40)
5982 increment = 40; 5982 increment = 40;
5983 5983
5984 nice = TASK_NICE(current) + increment; 5984 nice = TASK_NICE(current) + increment;
5985 if (nice < -20) 5985 if (nice < -20)
5986 nice = -20; 5986 nice = -20;
5987 if (nice > 19) 5987 if (nice > 19)
5988 nice = 19; 5988 nice = 19;
5989 5989
5990 if (increment < 0 && !can_nice(current, nice)) 5990 if (increment < 0 && !can_nice(current, nice))
5991 return -EPERM; 5991 return -EPERM;
5992 5992
5993 retval = security_task_setnice(current, nice); 5993 retval = security_task_setnice(current, nice);
5994 if (retval) 5994 if (retval)
5995 return retval; 5995 return retval;
5996 5996
5997 set_user_nice(current, nice); 5997 set_user_nice(current, nice);
5998 return 0; 5998 return 0;
5999 } 5999 }
6000 6000
6001 #endif 6001 #endif
6002 6002
6003 /** 6003 /**
6004 * task_prio - return the priority value of a given task. 6004 * task_prio - return the priority value of a given task.
6005 * @p: the task in question. 6005 * @p: the task in question.
6006 * 6006 *
6007 * This is the priority value as seen by users in /proc. 6007 * This is the priority value as seen by users in /proc.
6008 * RT tasks are offset by -200. Normal tasks are centered 6008 * RT tasks are offset by -200. Normal tasks are centered
6009 * around 0, value goes from -16 to +15. 6009 * around 0, value goes from -16 to +15.
6010 */ 6010 */
6011 int task_prio(const struct task_struct *p) 6011 int task_prio(const struct task_struct *p)
6012 { 6012 {
6013 return p->prio - MAX_RT_PRIO; 6013 return p->prio - MAX_RT_PRIO;
6014 } 6014 }
6015 6015
6016 /** 6016 /**
6017 * task_nice - return the nice value of a given task. 6017 * task_nice - return the nice value of a given task.
6018 * @p: the task in question. 6018 * @p: the task in question.
6019 */ 6019 */
6020 int task_nice(const struct task_struct *p) 6020 int task_nice(const struct task_struct *p)
6021 { 6021 {
6022 return TASK_NICE(p); 6022 return TASK_NICE(p);
6023 } 6023 }
6024 EXPORT_SYMBOL(task_nice); 6024 EXPORT_SYMBOL(task_nice);
6025 6025
6026 /** 6026 /**
6027 * idle_cpu - is a given cpu idle currently? 6027 * idle_cpu - is a given cpu idle currently?
6028 * @cpu: the processor in question. 6028 * @cpu: the processor in question.
6029 */ 6029 */
6030 int idle_cpu(int cpu) 6030 int idle_cpu(int cpu)
6031 { 6031 {
6032 return cpu_curr(cpu) == cpu_rq(cpu)->idle; 6032 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6033 } 6033 }
6034 6034
6035 /** 6035 /**
6036 * idle_task - return the idle task for a given cpu. 6036 * idle_task - return the idle task for a given cpu.
6037 * @cpu: the processor in question. 6037 * @cpu: the processor in question.
6038 */ 6038 */
6039 struct task_struct *idle_task(int cpu) 6039 struct task_struct *idle_task(int cpu)
6040 { 6040 {
6041 return cpu_rq(cpu)->idle; 6041 return cpu_rq(cpu)->idle;
6042 } 6042 }
6043 6043
6044 /** 6044 /**
6045 * find_process_by_pid - find a process with a matching PID value. 6045 * find_process_by_pid - find a process with a matching PID value.
6046 * @pid: the pid in question. 6046 * @pid: the pid in question.
6047 */ 6047 */
6048 static struct task_struct *find_process_by_pid(pid_t pid) 6048 static struct task_struct *find_process_by_pid(pid_t pid)
6049 { 6049 {
6050 return pid ? find_task_by_vpid(pid) : current; 6050 return pid ? find_task_by_vpid(pid) : current;
6051 } 6051 }
6052 6052
6053 /* Actually do priority change: must hold rq lock. */ 6053 /* Actually do priority change: must hold rq lock. */
6054 static void 6054 static void
6055 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) 6055 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6056 { 6056 {
6057 BUG_ON(p->se.on_rq); 6057 BUG_ON(p->se.on_rq);
6058 6058
6059 p->policy = policy; 6059 p->policy = policy;
6060 switch (p->policy) { 6060 switch (p->policy) {
6061 case SCHED_NORMAL: 6061 case SCHED_NORMAL:
6062 case SCHED_BATCH: 6062 case SCHED_BATCH:
6063 case SCHED_IDLE: 6063 case SCHED_IDLE:
6064 p->sched_class = &fair_sched_class; 6064 p->sched_class = &fair_sched_class;
6065 break; 6065 break;
6066 case SCHED_FIFO: 6066 case SCHED_FIFO:
6067 case SCHED_RR: 6067 case SCHED_RR:
6068 p->sched_class = &rt_sched_class; 6068 p->sched_class = &rt_sched_class;
6069 break; 6069 break;
6070 } 6070 }
6071 6071
6072 p->rt_priority = prio; 6072 p->rt_priority = prio;
6073 p->normal_prio = normal_prio(p); 6073 p->normal_prio = normal_prio(p);
6074 /* we are holding p->pi_lock already */ 6074 /* we are holding p->pi_lock already */
6075 p->prio = rt_mutex_getprio(p); 6075 p->prio = rt_mutex_getprio(p);
6076 set_load_weight(p); 6076 set_load_weight(p);
6077 } 6077 }
6078 6078
6079 /* 6079 /*
6080 * check the target process has a UID that matches the current process's 6080 * check the target process has a UID that matches the current process's
6081 */ 6081 */
6082 static bool check_same_owner(struct task_struct *p) 6082 static bool check_same_owner(struct task_struct *p)
6083 { 6083 {
6084 const struct cred *cred = current_cred(), *pcred; 6084 const struct cred *cred = current_cred(), *pcred;
6085 bool match; 6085 bool match;
6086 6086
6087 rcu_read_lock(); 6087 rcu_read_lock();
6088 pcred = __task_cred(p); 6088 pcred = __task_cred(p);
6089 match = (cred->euid == pcred->euid || 6089 match = (cred->euid == pcred->euid ||
6090 cred->euid == pcred->uid); 6090 cred->euid == pcred->uid);
6091 rcu_read_unlock(); 6091 rcu_read_unlock();
6092 return match; 6092 return match;
6093 } 6093 }
6094 6094
6095 static int __sched_setscheduler(struct task_struct *p, int policy, 6095 static int __sched_setscheduler(struct task_struct *p, int policy,
6096 struct sched_param *param, bool user) 6096 struct sched_param *param, bool user)
6097 { 6097 {
6098 int retval, oldprio, oldpolicy = -1, on_rq, running; 6098 int retval, oldprio, oldpolicy = -1, on_rq, running;
6099 unsigned long flags; 6099 unsigned long flags;
6100 const struct sched_class *prev_class = p->sched_class; 6100 const struct sched_class *prev_class = p->sched_class;
6101 struct rq *rq; 6101 struct rq *rq;
6102 6102
6103 /* may grab non-irq protected spin_locks */ 6103 /* may grab non-irq protected spin_locks */
6104 BUG_ON(in_interrupt()); 6104 BUG_ON(in_interrupt());
6105 recheck: 6105 recheck:
6106 /* double check policy once rq lock held */ 6106 /* double check policy once rq lock held */
6107 if (policy < 0) 6107 if (policy < 0)
6108 policy = oldpolicy = p->policy; 6108 policy = oldpolicy = p->policy;
6109 else if (policy != SCHED_FIFO && policy != SCHED_RR && 6109 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
6110 policy != SCHED_NORMAL && policy != SCHED_BATCH && 6110 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6111 policy != SCHED_IDLE) 6111 policy != SCHED_IDLE)
6112 return -EINVAL; 6112 return -EINVAL;
6113 /* 6113 /*
6114 * Valid priorities for SCHED_FIFO and SCHED_RR are 6114 * Valid priorities for SCHED_FIFO and SCHED_RR are
6115 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, 6115 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6116 * SCHED_BATCH and SCHED_IDLE is 0. 6116 * SCHED_BATCH and SCHED_IDLE is 0.
6117 */ 6117 */
6118 if (param->sched_priority < 0 || 6118 if (param->sched_priority < 0 ||
6119 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || 6119 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6120 (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) 6120 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6121 return -EINVAL; 6121 return -EINVAL;
6122 if (rt_policy(policy) != (param->sched_priority != 0)) 6122 if (rt_policy(policy) != (param->sched_priority != 0))
6123 return -EINVAL; 6123 return -EINVAL;
6124 6124
6125 /* 6125 /*
6126 * Allow unprivileged RT tasks to decrease priority: 6126 * Allow unprivileged RT tasks to decrease priority:
6127 */ 6127 */
6128 if (user && !capable(CAP_SYS_NICE)) { 6128 if (user && !capable(CAP_SYS_NICE)) {
6129 if (rt_policy(policy)) { 6129 if (rt_policy(policy)) {
6130 unsigned long rlim_rtprio; 6130 unsigned long rlim_rtprio;
6131 6131
6132 if (!lock_task_sighand(p, &flags)) 6132 if (!lock_task_sighand(p, &flags))
6133 return -ESRCH; 6133 return -ESRCH;
6134 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; 6134 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6135 unlock_task_sighand(p, &flags); 6135 unlock_task_sighand(p, &flags);
6136 6136
6137 /* can't set/change the rt policy */ 6137 /* can't set/change the rt policy */
6138 if (policy != p->policy && !rlim_rtprio) 6138 if (policy != p->policy && !rlim_rtprio)
6139 return -EPERM; 6139 return -EPERM;
6140 6140
6141 /* can't increase priority */ 6141 /* can't increase priority */
6142 if (param->sched_priority > p->rt_priority && 6142 if (param->sched_priority > p->rt_priority &&
6143 param->sched_priority > rlim_rtprio) 6143 param->sched_priority > rlim_rtprio)
6144 return -EPERM; 6144 return -EPERM;
6145 } 6145 }
6146 /* 6146 /*
6147 * Like positive nice levels, dont allow tasks to 6147 * Like positive nice levels, dont allow tasks to
6148 * move out of SCHED_IDLE either: 6148 * move out of SCHED_IDLE either:
6149 */ 6149 */
6150 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) 6150 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6151 return -EPERM; 6151 return -EPERM;
6152 6152
6153 /* can't change other user's priorities */ 6153 /* can't change other user's priorities */
6154 if (!check_same_owner(p)) 6154 if (!check_same_owner(p))
6155 return -EPERM; 6155 return -EPERM;
6156 } 6156 }
6157 6157
6158 if (user) { 6158 if (user) {
6159 #ifdef CONFIG_RT_GROUP_SCHED 6159 #ifdef CONFIG_RT_GROUP_SCHED
6160 /* 6160 /*
6161 * Do not allow realtime tasks into groups that have no runtime 6161 * Do not allow realtime tasks into groups that have no runtime
6162 * assigned. 6162 * assigned.
6163 */ 6163 */
6164 if (rt_bandwidth_enabled() && rt_policy(policy) && 6164 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6165 task_group(p)->rt_bandwidth.rt_runtime == 0) 6165 task_group(p)->rt_bandwidth.rt_runtime == 0)
6166 return -EPERM; 6166 return -EPERM;
6167 #endif 6167 #endif
6168 6168
6169 retval = security_task_setscheduler(p, policy, param); 6169 retval = security_task_setscheduler(p, policy, param);
6170 if (retval) 6170 if (retval)
6171 return retval; 6171 return retval;
6172 } 6172 }
6173 6173
6174 /* 6174 /*
6175 * make sure no PI-waiters arrive (or leave) while we are 6175 * make sure no PI-waiters arrive (or leave) while we are
6176 * changing the priority of the task: 6176 * changing the priority of the task:
6177 */ 6177 */
6178 spin_lock_irqsave(&p->pi_lock, flags); 6178 spin_lock_irqsave(&p->pi_lock, flags);
6179 /* 6179 /*
6180 * To be able to change p->policy safely, the apropriate 6180 * To be able to change p->policy safely, the apropriate
6181 * runqueue lock must be held. 6181 * runqueue lock must be held.
6182 */ 6182 */
6183 rq = __task_rq_lock(p); 6183 rq = __task_rq_lock(p);
6184 /* recheck policy now with rq lock held */ 6184 /* recheck policy now with rq lock held */
6185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 6185 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6186 policy = oldpolicy = -1; 6186 policy = oldpolicy = -1;
6187 __task_rq_unlock(rq); 6187 __task_rq_unlock(rq);
6188 spin_unlock_irqrestore(&p->pi_lock, flags); 6188 spin_unlock_irqrestore(&p->pi_lock, flags);
6189 goto recheck; 6189 goto recheck;
6190 } 6190 }
6191 update_rq_clock(rq); 6191 update_rq_clock(rq);
6192 on_rq = p->se.on_rq; 6192 on_rq = p->se.on_rq;
6193 running = task_current(rq, p); 6193 running = task_current(rq, p);
6194 if (on_rq) 6194 if (on_rq)
6195 deactivate_task(rq, p, 0); 6195 deactivate_task(rq, p, 0);
6196 if (running) 6196 if (running)
6197 p->sched_class->put_prev_task(rq, p); 6197 p->sched_class->put_prev_task(rq, p);
6198 6198
6199 oldprio = p->prio; 6199 oldprio = p->prio;
6200 __setscheduler(rq, p, policy, param->sched_priority); 6200 __setscheduler(rq, p, policy, param->sched_priority);
6201 6201
6202 if (running) 6202 if (running)
6203 p->sched_class->set_curr_task(rq); 6203 p->sched_class->set_curr_task(rq);
6204 if (on_rq) { 6204 if (on_rq) {
6205 activate_task(rq, p, 0); 6205 activate_task(rq, p, 0);
6206 6206
6207 check_class_changed(rq, p, prev_class, oldprio, running); 6207 check_class_changed(rq, p, prev_class, oldprio, running);
6208 } 6208 }
6209 __task_rq_unlock(rq); 6209 __task_rq_unlock(rq);
6210 spin_unlock_irqrestore(&p->pi_lock, flags); 6210 spin_unlock_irqrestore(&p->pi_lock, flags);
6211 6211
6212 rt_mutex_adjust_pi(p); 6212 rt_mutex_adjust_pi(p);
6213 6213
6214 return 0; 6214 return 0;
6215 } 6215 }
6216 6216
6217 /** 6217 /**
6218 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 6218 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6219 * @p: the task in question. 6219 * @p: the task in question.
6220 * @policy: new policy. 6220 * @policy: new policy.
6221 * @param: structure containing the new RT priority. 6221 * @param: structure containing the new RT priority.
6222 * 6222 *
6223 * NOTE that the task may be already dead. 6223 * NOTE that the task may be already dead.
6224 */ 6224 */
6225 int sched_setscheduler(struct task_struct *p, int policy, 6225 int sched_setscheduler(struct task_struct *p, int policy,
6226 struct sched_param *param) 6226 struct sched_param *param)
6227 { 6227 {
6228 return __sched_setscheduler(p, policy, param, true); 6228 return __sched_setscheduler(p, policy, param, true);
6229 } 6229 }
6230 EXPORT_SYMBOL_GPL(sched_setscheduler); 6230 EXPORT_SYMBOL_GPL(sched_setscheduler);
6231 6231
6232 /** 6232 /**
6233 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. 6233 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6234 * @p: the task in question. 6234 * @p: the task in question.
6235 * @policy: new policy. 6235 * @policy: new policy.
6236 * @param: structure containing the new RT priority. 6236 * @param: structure containing the new RT priority.
6237 * 6237 *
6238 * Just like sched_setscheduler, only don't bother checking if the 6238 * Just like sched_setscheduler, only don't bother checking if the
6239 * current context has permission. For example, this is needed in 6239 * current context has permission. For example, this is needed in
6240 * stop_machine(): we create temporary high priority worker threads, 6240 * stop_machine(): we create temporary high priority worker threads,
6241 * but our caller might not have that capability. 6241 * but our caller might not have that capability.
6242 */ 6242 */
6243 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 6243 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6244 struct sched_param *param) 6244 struct sched_param *param)
6245 { 6245 {
6246 return __sched_setscheduler(p, policy, param, false); 6246 return __sched_setscheduler(p, policy, param, false);
6247 } 6247 }
6248 6248
6249 static int 6249 static int
6250 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 6250 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6251 { 6251 {
6252 struct sched_param lparam; 6252 struct sched_param lparam;
6253 struct task_struct *p; 6253 struct task_struct *p;
6254 int retval; 6254 int retval;
6255 6255
6256 if (!param || pid < 0) 6256 if (!param || pid < 0)
6257 return -EINVAL; 6257 return -EINVAL;
6258 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 6258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6259 return -EFAULT; 6259 return -EFAULT;
6260 6260
6261 rcu_read_lock(); 6261 rcu_read_lock();
6262 retval = -ESRCH; 6262 retval = -ESRCH;
6263 p = find_process_by_pid(pid); 6263 p = find_process_by_pid(pid);
6264 if (p != NULL) 6264 if (p != NULL)
6265 retval = sched_setscheduler(p, policy, &lparam); 6265 retval = sched_setscheduler(p, policy, &lparam);
6266 rcu_read_unlock(); 6266 rcu_read_unlock();
6267 6267
6268 return retval; 6268 return retval;
6269 } 6269 }
6270 6270
6271 /** 6271 /**
6272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 6272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6273 * @pid: the pid in question. 6273 * @pid: the pid in question.
6274 * @policy: new policy. 6274 * @policy: new policy.
6275 * @param: structure containing the new RT priority. 6275 * @param: structure containing the new RT priority.
6276 */ 6276 */
6277 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, 6277 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6278 struct sched_param __user *, param) 6278 struct sched_param __user *, param)
6279 { 6279 {
6280 /* negative values for policy are not valid */ 6280 /* negative values for policy are not valid */
6281 if (policy < 0) 6281 if (policy < 0)
6282 return -EINVAL; 6282 return -EINVAL;
6283 6283
6284 return do_sched_setscheduler(pid, policy, param); 6284 return do_sched_setscheduler(pid, policy, param);
6285 } 6285 }
6286 6286
6287 /** 6287 /**
6288 * sys_sched_setparam - set/change the RT priority of a thread 6288 * sys_sched_setparam - set/change the RT priority of a thread
6289 * @pid: the pid in question. 6289 * @pid: the pid in question.
6290 * @param: structure containing the new RT priority. 6290 * @param: structure containing the new RT priority.
6291 */ 6291 */
6292 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 6292 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6293 { 6293 {
6294 return do_sched_setscheduler(pid, -1, param); 6294 return do_sched_setscheduler(pid, -1, param);
6295 } 6295 }
6296 6296
6297 /** 6297 /**
6298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 6298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6299 * @pid: the pid in question. 6299 * @pid: the pid in question.
6300 */ 6300 */
6301 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 6301 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6302 { 6302 {
6303 struct task_struct *p; 6303 struct task_struct *p;
6304 int retval; 6304 int retval;
6305 6305
6306 if (pid < 0) 6306 if (pid < 0)
6307 return -EINVAL; 6307 return -EINVAL;
6308 6308
6309 retval = -ESRCH; 6309 retval = -ESRCH;
6310 read_lock(&tasklist_lock); 6310 read_lock(&tasklist_lock);
6311 p = find_process_by_pid(pid); 6311 p = find_process_by_pid(pid);
6312 if (p) { 6312 if (p) {
6313 retval = security_task_getscheduler(p); 6313 retval = security_task_getscheduler(p);
6314 if (!retval) 6314 if (!retval)
6315 retval = p->policy; 6315 retval = p->policy;
6316 } 6316 }
6317 read_unlock(&tasklist_lock); 6317 read_unlock(&tasklist_lock);
6318 return retval; 6318 return retval;
6319 } 6319 }
6320 6320
6321 /** 6321 /**
6322 * sys_sched_getscheduler - get the RT priority of a thread 6322 * sys_sched_getscheduler - get the RT priority of a thread
6323 * @pid: the pid in question. 6323 * @pid: the pid in question.
6324 * @param: structure containing the RT priority. 6324 * @param: structure containing the RT priority.
6325 */ 6325 */
6326 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 6326 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6327 { 6327 {
6328 struct sched_param lp; 6328 struct sched_param lp;
6329 struct task_struct *p; 6329 struct task_struct *p;
6330 int retval; 6330 int retval;
6331 6331
6332 if (!param || pid < 0) 6332 if (!param || pid < 0)
6333 return -EINVAL; 6333 return -EINVAL;
6334 6334
6335 read_lock(&tasklist_lock); 6335 read_lock(&tasklist_lock);
6336 p = find_process_by_pid(pid); 6336 p = find_process_by_pid(pid);
6337 retval = -ESRCH; 6337 retval = -ESRCH;
6338 if (!p) 6338 if (!p)
6339 goto out_unlock; 6339 goto out_unlock;
6340 6340
6341 retval = security_task_getscheduler(p); 6341 retval = security_task_getscheduler(p);
6342 if (retval) 6342 if (retval)
6343 goto out_unlock; 6343 goto out_unlock;
6344 6344
6345 lp.sched_priority = p->rt_priority; 6345 lp.sched_priority = p->rt_priority;
6346 read_unlock(&tasklist_lock); 6346 read_unlock(&tasklist_lock);
6347 6347
6348 /* 6348 /*
6349 * This one might sleep, we cannot do it with a spinlock held ... 6349 * This one might sleep, we cannot do it with a spinlock held ...
6350 */ 6350 */
6351 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 6351 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6352 6352
6353 return retval; 6353 return retval;
6354 6354
6355 out_unlock: 6355 out_unlock:
6356 read_unlock(&tasklist_lock); 6356 read_unlock(&tasklist_lock);
6357 return retval; 6357 return retval;
6358 } 6358 }
6359 6359
6360 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 6360 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6361 { 6361 {
6362 cpumask_var_t cpus_allowed, new_mask; 6362 cpumask_var_t cpus_allowed, new_mask;
6363 struct task_struct *p; 6363 struct task_struct *p;
6364 int retval; 6364 int retval;
6365 6365
6366 get_online_cpus(); 6366 get_online_cpus();
6367 read_lock(&tasklist_lock); 6367 read_lock(&tasklist_lock);
6368 6368
6369 p = find_process_by_pid(pid); 6369 p = find_process_by_pid(pid);
6370 if (!p) { 6370 if (!p) {
6371 read_unlock(&tasklist_lock); 6371 read_unlock(&tasklist_lock);
6372 put_online_cpus(); 6372 put_online_cpus();
6373 return -ESRCH; 6373 return -ESRCH;
6374 } 6374 }
6375 6375
6376 /* 6376 /*
6377 * It is not safe to call set_cpus_allowed with the 6377 * It is not safe to call set_cpus_allowed with the
6378 * tasklist_lock held. We will bump the task_struct's 6378 * tasklist_lock held. We will bump the task_struct's
6379 * usage count and then drop tasklist_lock. 6379 * usage count and then drop tasklist_lock.
6380 */ 6380 */
6381 get_task_struct(p); 6381 get_task_struct(p);
6382 read_unlock(&tasklist_lock); 6382 read_unlock(&tasklist_lock);
6383 6383
6384 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { 6384 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6385 retval = -ENOMEM; 6385 retval = -ENOMEM;
6386 goto out_put_task; 6386 goto out_put_task;
6387 } 6387 }
6388 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 6388 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6389 retval = -ENOMEM; 6389 retval = -ENOMEM;
6390 goto out_free_cpus_allowed; 6390 goto out_free_cpus_allowed;
6391 } 6391 }
6392 retval = -EPERM; 6392 retval = -EPERM;
6393 if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) 6393 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6394 goto out_unlock; 6394 goto out_unlock;
6395 6395
6396 retval = security_task_setscheduler(p, 0, NULL); 6396 retval = security_task_setscheduler(p, 0, NULL);
6397 if (retval) 6397 if (retval)
6398 goto out_unlock; 6398 goto out_unlock;
6399 6399
6400 cpuset_cpus_allowed(p, cpus_allowed); 6400 cpuset_cpus_allowed(p, cpus_allowed);
6401 cpumask_and(new_mask, in_mask, cpus_allowed); 6401 cpumask_and(new_mask, in_mask, cpus_allowed);
6402 again: 6402 again:
6403 retval = set_cpus_allowed_ptr(p, new_mask); 6403 retval = set_cpus_allowed_ptr(p, new_mask);
6404 6404
6405 if (!retval) { 6405 if (!retval) {
6406 cpuset_cpus_allowed(p, cpus_allowed); 6406 cpuset_cpus_allowed(p, cpus_allowed);
6407 if (!cpumask_subset(new_mask, cpus_allowed)) { 6407 if (!cpumask_subset(new_mask, cpus_allowed)) {
6408 /* 6408 /*
6409 * We must have raced with a concurrent cpuset 6409 * We must have raced with a concurrent cpuset
6410 * update. Just reset the cpus_allowed to the 6410 * update. Just reset the cpus_allowed to the
6411 * cpuset's cpus_allowed 6411 * cpuset's cpus_allowed
6412 */ 6412 */
6413 cpumask_copy(new_mask, cpus_allowed); 6413 cpumask_copy(new_mask, cpus_allowed);
6414 goto again; 6414 goto again;
6415 } 6415 }
6416 } 6416 }
6417 out_unlock: 6417 out_unlock:
6418 free_cpumask_var(new_mask); 6418 free_cpumask_var(new_mask);
6419 out_free_cpus_allowed: 6419 out_free_cpus_allowed:
6420 free_cpumask_var(cpus_allowed); 6420 free_cpumask_var(cpus_allowed);
6421 out_put_task: 6421 out_put_task:
6422 put_task_struct(p); 6422 put_task_struct(p);
6423 put_online_cpus(); 6423 put_online_cpus();
6424 return retval; 6424 return retval;
6425 } 6425 }
6426 6426
6427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 6427 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6428 struct cpumask *new_mask) 6428 struct cpumask *new_mask)
6429 { 6429 {
6430 if (len < cpumask_size()) 6430 if (len < cpumask_size())
6431 cpumask_clear(new_mask); 6431 cpumask_clear(new_mask);
6432 else if (len > cpumask_size()) 6432 else if (len > cpumask_size())
6433 len = cpumask_size(); 6433 len = cpumask_size();
6434 6434
6435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 6435 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6436 } 6436 }
6437 6437
6438 /** 6438 /**
6439 * sys_sched_setaffinity - set the cpu affinity of a process 6439 * sys_sched_setaffinity - set the cpu affinity of a process
6440 * @pid: pid of the process 6440 * @pid: pid of the process
6441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6441 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6442 * @user_mask_ptr: user-space pointer to the new cpu mask 6442 * @user_mask_ptr: user-space pointer to the new cpu mask
6443 */ 6443 */
6444 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 6444 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6445 unsigned long __user *, user_mask_ptr) 6445 unsigned long __user *, user_mask_ptr)
6446 { 6446 {
6447 cpumask_var_t new_mask; 6447 cpumask_var_t new_mask;
6448 int retval; 6448 int retval;
6449 6449
6450 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 6450 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6451 return -ENOMEM; 6451 return -ENOMEM;
6452 6452
6453 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 6453 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6454 if (retval == 0) 6454 if (retval == 0)
6455 retval = sched_setaffinity(pid, new_mask); 6455 retval = sched_setaffinity(pid, new_mask);
6456 free_cpumask_var(new_mask); 6456 free_cpumask_var(new_mask);
6457 return retval; 6457 return retval;
6458 } 6458 }
6459 6459
6460 long sched_getaffinity(pid_t pid, struct cpumask *mask) 6460 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6461 { 6461 {
6462 struct task_struct *p; 6462 struct task_struct *p;
6463 int retval; 6463 int retval;
6464 6464
6465 get_online_cpus(); 6465 get_online_cpus();
6466 read_lock(&tasklist_lock); 6466 read_lock(&tasklist_lock);
6467 6467
6468 retval = -ESRCH; 6468 retval = -ESRCH;
6469 p = find_process_by_pid(pid); 6469 p = find_process_by_pid(pid);
6470 if (!p) 6470 if (!p)
6471 goto out_unlock; 6471 goto out_unlock;
6472 6472
6473 retval = security_task_getscheduler(p); 6473 retval = security_task_getscheduler(p);
6474 if (retval) 6474 if (retval)
6475 goto out_unlock; 6475 goto out_unlock;
6476 6476
6477 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); 6477 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6478 6478
6479 out_unlock: 6479 out_unlock:
6480 read_unlock(&tasklist_lock); 6480 read_unlock(&tasklist_lock);
6481 put_online_cpus(); 6481 put_online_cpus();
6482 6482
6483 return retval; 6483 return retval;
6484 } 6484 }
6485 6485
6486 /** 6486 /**
6487 * sys_sched_getaffinity - get the cpu affinity of a process 6487 * sys_sched_getaffinity - get the cpu affinity of a process
6488 * @pid: pid of the process 6488 * @pid: pid of the process
6489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 6489 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6490 * @user_mask_ptr: user-space pointer to hold the current cpu mask 6490 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6491 */ 6491 */
6492 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 6492 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6493 unsigned long __user *, user_mask_ptr) 6493 unsigned long __user *, user_mask_ptr)
6494 { 6494 {
6495 int ret; 6495 int ret;
6496 cpumask_var_t mask; 6496 cpumask_var_t mask;
6497 6497
6498 if (len < cpumask_size()) 6498 if (len < cpumask_size())
6499 return -EINVAL; 6499 return -EINVAL;
6500 6500
6501 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 6501 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6502 return -ENOMEM; 6502 return -ENOMEM;
6503 6503
6504 ret = sched_getaffinity(pid, mask); 6504 ret = sched_getaffinity(pid, mask);
6505 if (ret == 0) { 6505 if (ret == 0) {
6506 if (copy_to_user(user_mask_ptr, mask, cpumask_size())) 6506 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6507 ret = -EFAULT; 6507 ret = -EFAULT;
6508 else 6508 else
6509 ret = cpumask_size(); 6509 ret = cpumask_size();
6510 } 6510 }
6511 free_cpumask_var(mask); 6511 free_cpumask_var(mask);
6512 6512
6513 return ret; 6513 return ret;
6514 } 6514 }
6515 6515
6516 /** 6516 /**
6517 * sys_sched_yield - yield the current processor to other threads. 6517 * sys_sched_yield - yield the current processor to other threads.
6518 * 6518 *
6519 * This function yields the current CPU to other tasks. If there are no 6519 * This function yields the current CPU to other tasks. If there are no
6520 * other threads running on this CPU then this function will return. 6520 * other threads running on this CPU then this function will return.
6521 */ 6521 */
6522 SYSCALL_DEFINE0(sched_yield) 6522 SYSCALL_DEFINE0(sched_yield)
6523 { 6523 {
6524 struct rq *rq = this_rq_lock(); 6524 struct rq *rq = this_rq_lock();
6525 6525
6526 schedstat_inc(rq, yld_count); 6526 schedstat_inc(rq, yld_count);
6527 current->sched_class->yield_task(rq); 6527 current->sched_class->yield_task(rq);
6528 6528
6529 /* 6529 /*
6530 * Since we are going to call schedule() anyway, there's 6530 * Since we are going to call schedule() anyway, there's
6531 * no need to preempt or enable interrupts: 6531 * no need to preempt or enable interrupts:
6532 */ 6532 */
6533 __release(rq->lock); 6533 __release(rq->lock);
6534 spin_release(&rq->lock.dep_map, 1, _THIS_IP_); 6534 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6535 _raw_spin_unlock(&rq->lock); 6535 _raw_spin_unlock(&rq->lock);
6536 preempt_enable_no_resched(); 6536 preempt_enable_no_resched();
6537 6537
6538 schedule(); 6538 schedule();
6539 6539
6540 return 0; 6540 return 0;
6541 } 6541 }
6542 6542
6543 static void __cond_resched(void) 6543 static void __cond_resched(void)
6544 { 6544 {
6545 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 6545 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6546 __might_sleep(__FILE__, __LINE__); 6546 __might_sleep(__FILE__, __LINE__);
6547 #endif 6547 #endif
6548 /* 6548 /*
6549 * The BKS might be reacquired before we have dropped 6549 * The BKS might be reacquired before we have dropped
6550 * PREEMPT_ACTIVE, which could trigger a second 6550 * PREEMPT_ACTIVE, which could trigger a second
6551 * cond_resched() call. 6551 * cond_resched() call.
6552 */ 6552 */
6553 do { 6553 do {
6554 add_preempt_count(PREEMPT_ACTIVE); 6554 add_preempt_count(PREEMPT_ACTIVE);
6555 schedule(); 6555 schedule();
6556 sub_preempt_count(PREEMPT_ACTIVE); 6556 sub_preempt_count(PREEMPT_ACTIVE);
6557 } while (need_resched()); 6557 } while (need_resched());
6558 } 6558 }
6559 6559
6560 int __sched _cond_resched(void) 6560 int __sched _cond_resched(void)
6561 { 6561 {
6562 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && 6562 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6563 system_state == SYSTEM_RUNNING) { 6563 system_state == SYSTEM_RUNNING) {
6564 __cond_resched(); 6564 __cond_resched();
6565 return 1; 6565 return 1;
6566 } 6566 }
6567 return 0; 6567 return 0;
6568 } 6568 }
6569 EXPORT_SYMBOL(_cond_resched); 6569 EXPORT_SYMBOL(_cond_resched);
6570 6570
6571 /* 6571 /*
6572 * cond_resched_lock() - if a reschedule is pending, drop the given lock, 6572 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6573 * call schedule, and on return reacquire the lock. 6573 * call schedule, and on return reacquire the lock.
6574 * 6574 *
6575 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level 6575 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6576 * operations here to prevent schedule() from being called twice (once via 6576 * operations here to prevent schedule() from being called twice (once via
6577 * spin_unlock(), once by hand). 6577 * spin_unlock(), once by hand).
6578 */ 6578 */
6579 int cond_resched_lock(spinlock_t *lock) 6579 int cond_resched_lock(spinlock_t *lock)
6580 { 6580 {
6581 int resched = need_resched() && system_state == SYSTEM_RUNNING; 6581 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6582 int ret = 0; 6582 int ret = 0;
6583 6583
6584 if (spin_needbreak(lock) || resched) { 6584 if (spin_needbreak(lock) || resched) {
6585 spin_unlock(lock); 6585 spin_unlock(lock);
6586 if (resched && need_resched()) 6586 if (resched && need_resched())
6587 __cond_resched(); 6587 __cond_resched();
6588 else 6588 else
6589 cpu_relax(); 6589 cpu_relax();
6590 ret = 1; 6590 ret = 1;
6591 spin_lock(lock); 6591 spin_lock(lock);
6592 } 6592 }
6593 return ret; 6593 return ret;
6594 } 6594 }
6595 EXPORT_SYMBOL(cond_resched_lock); 6595 EXPORT_SYMBOL(cond_resched_lock);
6596 6596
6597 int __sched cond_resched_softirq(void) 6597 int __sched cond_resched_softirq(void)
6598 { 6598 {
6599 BUG_ON(!in_softirq()); 6599 BUG_ON(!in_softirq());
6600 6600
6601 if (need_resched() && system_state == SYSTEM_RUNNING) { 6601 if (need_resched() && system_state == SYSTEM_RUNNING) {
6602 local_bh_enable(); 6602 local_bh_enable();
6603 __cond_resched(); 6603 __cond_resched();
6604 local_bh_disable(); 6604 local_bh_disable();
6605 return 1; 6605 return 1;
6606 } 6606 }
6607 return 0; 6607 return 0;
6608 } 6608 }
6609 EXPORT_SYMBOL(cond_resched_softirq); 6609 EXPORT_SYMBOL(cond_resched_softirq);
6610 6610
6611 /** 6611 /**
6612 * yield - yield the current processor to other threads. 6612 * yield - yield the current processor to other threads.
6613 * 6613 *
6614 * This is a shortcut for kernel-space yielding - it marks the 6614 * This is a shortcut for kernel-space yielding - it marks the
6615 * thread runnable and calls sys_sched_yield(). 6615 * thread runnable and calls sys_sched_yield().
6616 */ 6616 */
6617 void __sched yield(void) 6617 void __sched yield(void)
6618 { 6618 {
6619 set_current_state(TASK_RUNNING); 6619 set_current_state(TASK_RUNNING);
6620 sys_sched_yield(); 6620 sys_sched_yield();
6621 } 6621 }
6622 EXPORT_SYMBOL(yield); 6622 EXPORT_SYMBOL(yield);
6623 6623
6624 /* 6624 /*
6625 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 6625 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6626 * that process accounting knows that this is a task in IO wait state. 6626 * that process accounting knows that this is a task in IO wait state.
6627 * 6627 *
6628 * But don't do that if it is a deliberate, throttling IO wait (this task 6628 * But don't do that if it is a deliberate, throttling IO wait (this task
6629 * has set its backing_dev_info: the queue against which it should throttle) 6629 * has set its backing_dev_info: the queue against which it should throttle)
6630 */ 6630 */
6631 void __sched io_schedule(void) 6631 void __sched io_schedule(void)
6632 { 6632 {
6633 struct rq *rq = &__raw_get_cpu_var(runqueues); 6633 struct rq *rq = &__raw_get_cpu_var(runqueues);
6634 6634
6635 delayacct_blkio_start(); 6635 delayacct_blkio_start();
6636 atomic_inc(&rq->nr_iowait); 6636 atomic_inc(&rq->nr_iowait);
6637 schedule(); 6637 schedule();
6638 atomic_dec(&rq->nr_iowait); 6638 atomic_dec(&rq->nr_iowait);
6639 delayacct_blkio_end(); 6639 delayacct_blkio_end();
6640 } 6640 }
6641 EXPORT_SYMBOL(io_schedule); 6641 EXPORT_SYMBOL(io_schedule);
6642 6642
6643 long __sched io_schedule_timeout(long timeout) 6643 long __sched io_schedule_timeout(long timeout)
6644 { 6644 {
6645 struct rq *rq = &__raw_get_cpu_var(runqueues); 6645 struct rq *rq = &__raw_get_cpu_var(runqueues);
6646 long ret; 6646 long ret;
6647 6647
6648 delayacct_blkio_start(); 6648 delayacct_blkio_start();
6649 atomic_inc(&rq->nr_iowait); 6649 atomic_inc(&rq->nr_iowait);
6650 ret = schedule_timeout(timeout); 6650 ret = schedule_timeout(timeout);
6651 atomic_dec(&rq->nr_iowait); 6651 atomic_dec(&rq->nr_iowait);
6652 delayacct_blkio_end(); 6652 delayacct_blkio_end();
6653 return ret; 6653 return ret;
6654 } 6654 }
6655 6655
6656 /** 6656 /**
6657 * sys_sched_get_priority_max - return maximum RT priority. 6657 * sys_sched_get_priority_max - return maximum RT priority.
6658 * @policy: scheduling class. 6658 * @policy: scheduling class.
6659 * 6659 *
6660 * this syscall returns the maximum rt_priority that can be used 6660 * this syscall returns the maximum rt_priority that can be used
6661 * by a given scheduling class. 6661 * by a given scheduling class.
6662 */ 6662 */
6663 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 6663 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6664 { 6664 {
6665 int ret = -EINVAL; 6665 int ret = -EINVAL;
6666 6666
6667 switch (policy) { 6667 switch (policy) {
6668 case SCHED_FIFO: 6668 case SCHED_FIFO:
6669 case SCHED_RR: 6669 case SCHED_RR:
6670 ret = MAX_USER_RT_PRIO-1; 6670 ret = MAX_USER_RT_PRIO-1;
6671 break; 6671 break;
6672 case SCHED_NORMAL: 6672 case SCHED_NORMAL:
6673 case SCHED_BATCH: 6673 case SCHED_BATCH:
6674 case SCHED_IDLE: 6674 case SCHED_IDLE:
6675 ret = 0; 6675 ret = 0;
6676 break; 6676 break;
6677 } 6677 }
6678 return ret; 6678 return ret;
6679 } 6679 }
6680 6680
6681 /** 6681 /**
6682 * sys_sched_get_priority_min - return minimum RT priority. 6682 * sys_sched_get_priority_min - return minimum RT priority.
6683 * @policy: scheduling class. 6683 * @policy: scheduling class.
6684 * 6684 *
6685 * this syscall returns the minimum rt_priority that can be used 6685 * this syscall returns the minimum rt_priority that can be used
6686 * by a given scheduling class. 6686 * by a given scheduling class.
6687 */ 6687 */
6688 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 6688 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6689 { 6689 {
6690 int ret = -EINVAL; 6690 int ret = -EINVAL;
6691 6691
6692 switch (policy) { 6692 switch (policy) {
6693 case SCHED_FIFO: 6693 case SCHED_FIFO:
6694 case SCHED_RR: 6694 case SCHED_RR:
6695 ret = 1; 6695 ret = 1;
6696 break; 6696 break;
6697 case SCHED_NORMAL: 6697 case SCHED_NORMAL:
6698 case SCHED_BATCH: 6698 case SCHED_BATCH:
6699 case SCHED_IDLE: 6699 case SCHED_IDLE:
6700 ret = 0; 6700 ret = 0;
6701 } 6701 }
6702 return ret; 6702 return ret;
6703 } 6703 }
6704 6704
6705 /** 6705 /**
6706 * sys_sched_rr_get_interval - return the default timeslice of a process. 6706 * sys_sched_rr_get_interval - return the default timeslice of a process.
6707 * @pid: pid of the process. 6707 * @pid: pid of the process.
6708 * @interval: userspace pointer to the timeslice value. 6708 * @interval: userspace pointer to the timeslice value.
6709 * 6709 *
6710 * this syscall writes the default timeslice value of a given process 6710 * this syscall writes the default timeslice value of a given process
6711 * into the user-space timespec buffer. A value of '0' means infinity. 6711 * into the user-space timespec buffer. A value of '0' means infinity.
6712 */ 6712 */
6713 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 6713 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6714 struct timespec __user *, interval) 6714 struct timespec __user *, interval)
6715 { 6715 {
6716 struct task_struct *p; 6716 struct task_struct *p;
6717 unsigned int time_slice; 6717 unsigned int time_slice;
6718 int retval; 6718 int retval;
6719 struct timespec t; 6719 struct timespec t;
6720 6720
6721 if (pid < 0) 6721 if (pid < 0)
6722 return -EINVAL; 6722 return -EINVAL;
6723 6723
6724 retval = -ESRCH; 6724 retval = -ESRCH;
6725 read_lock(&tasklist_lock); 6725 read_lock(&tasklist_lock);
6726 p = find_process_by_pid(pid); 6726 p = find_process_by_pid(pid);
6727 if (!p) 6727 if (!p)
6728 goto out_unlock; 6728 goto out_unlock;
6729 6729
6730 retval = security_task_getscheduler(p); 6730 retval = security_task_getscheduler(p);
6731 if (retval) 6731 if (retval)
6732 goto out_unlock; 6732 goto out_unlock;
6733 6733
6734 /* 6734 /*
6735 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER 6735 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6736 * tasks that are on an otherwise idle runqueue: 6736 * tasks that are on an otherwise idle runqueue:
6737 */ 6737 */
6738 time_slice = 0; 6738 time_slice = 0;
6739 if (p->policy == SCHED_RR) { 6739 if (p->policy == SCHED_RR) {
6740 time_slice = DEF_TIMESLICE; 6740 time_slice = DEF_TIMESLICE;
6741 } else if (p->policy != SCHED_FIFO) { 6741 } else if (p->policy != SCHED_FIFO) {
6742 struct sched_entity *se = &p->se; 6742 struct sched_entity *se = &p->se;
6743 unsigned long flags; 6743 unsigned long flags;
6744 struct rq *rq; 6744 struct rq *rq;
6745 6745
6746 rq = task_rq_lock(p, &flags); 6746 rq = task_rq_lock(p, &flags);
6747 if (rq->cfs.load.weight) 6747 if (rq->cfs.load.weight)
6748 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 6748 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6749 task_rq_unlock(rq, &flags); 6749 task_rq_unlock(rq, &flags);
6750 } 6750 }
6751 read_unlock(&tasklist_lock); 6751 read_unlock(&tasklist_lock);
6752 jiffies_to_timespec(time_slice, &t); 6752 jiffies_to_timespec(time_slice, &t);
6753 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; 6753 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6754 return retval; 6754 return retval;
6755 6755
6756 out_unlock: 6756 out_unlock:
6757 read_unlock(&tasklist_lock); 6757 read_unlock(&tasklist_lock);
6758 return retval; 6758 return retval;
6759 } 6759 }
6760 6760
6761 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; 6761 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6762 6762
6763 void sched_show_task(struct task_struct *p) 6763 void sched_show_task(struct task_struct *p)
6764 { 6764 {
6765 unsigned long free = 0; 6765 unsigned long free = 0;
6766 unsigned state; 6766 unsigned state;
6767 6767
6768 state = p->state ? __ffs(p->state) + 1 : 0; 6768 state = p->state ? __ffs(p->state) + 1 : 0;
6769 printk(KERN_INFO "%-13.13s %c", p->comm, 6769 printk(KERN_INFO "%-13.13s %c", p->comm,
6770 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); 6770 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6771 #if BITS_PER_LONG == 32 6771 #if BITS_PER_LONG == 32
6772 if (state == TASK_RUNNING) 6772 if (state == TASK_RUNNING)
6773 printk(KERN_CONT " running "); 6773 printk(KERN_CONT " running ");
6774 else 6774 else
6775 printk(KERN_CONT " %08lx ", thread_saved_pc(p)); 6775 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6776 #else 6776 #else
6777 if (state == TASK_RUNNING) 6777 if (state == TASK_RUNNING)
6778 printk(KERN_CONT " running task "); 6778 printk(KERN_CONT " running task ");
6779 else 6779 else
6780 printk(KERN_CONT " %016lx ", thread_saved_pc(p)); 6780 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6781 #endif 6781 #endif
6782 #ifdef CONFIG_DEBUG_STACK_USAGE 6782 #ifdef CONFIG_DEBUG_STACK_USAGE
6783 free = stack_not_used(p); 6783 free = stack_not_used(p);
6784 #endif 6784 #endif
6785 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, 6785 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6786 task_pid_nr(p), task_pid_nr(p->real_parent), 6786 task_pid_nr(p), task_pid_nr(p->real_parent),
6787 (unsigned long)task_thread_info(p)->flags); 6787 (unsigned long)task_thread_info(p)->flags);
6788 6788
6789 show_stack(p, NULL); 6789 show_stack(p, NULL);
6790 } 6790 }
6791 6791
6792 void show_state_filter(unsigned long state_filter) 6792 void show_state_filter(unsigned long state_filter)
6793 { 6793 {
6794 struct task_struct *g, *p; 6794 struct task_struct *g, *p;
6795 6795
6796 #if BITS_PER_LONG == 32 6796 #if BITS_PER_LONG == 32
6797 printk(KERN_INFO 6797 printk(KERN_INFO
6798 " task PC stack pid father\n"); 6798 " task PC stack pid father\n");
6799 #else 6799 #else
6800 printk(KERN_INFO 6800 printk(KERN_INFO
6801 " task PC stack pid father\n"); 6801 " task PC stack pid father\n");
6802 #endif 6802 #endif
6803 read_lock(&tasklist_lock); 6803 read_lock(&tasklist_lock);
6804 do_each_thread(g, p) { 6804 do_each_thread(g, p) {
6805 /* 6805 /*
6806 * reset the NMI-timeout, listing all files on a slow 6806 * reset the NMI-timeout, listing all files on a slow
6807 * console might take alot of time: 6807 * console might take alot of time:
6808 */ 6808 */
6809 touch_nmi_watchdog(); 6809 touch_nmi_watchdog();
6810 if (!state_filter || (p->state & state_filter)) 6810 if (!state_filter || (p->state & state_filter))
6811 sched_show_task(p); 6811 sched_show_task(p);
6812 } while_each_thread(g, p); 6812 } while_each_thread(g, p);
6813 6813
6814 touch_all_softlockup_watchdogs(); 6814 touch_all_softlockup_watchdogs();
6815 6815
6816 #ifdef CONFIG_SCHED_DEBUG 6816 #ifdef CONFIG_SCHED_DEBUG
6817 sysrq_sched_debug_show(); 6817 sysrq_sched_debug_show();
6818 #endif 6818 #endif
6819 read_unlock(&tasklist_lock); 6819 read_unlock(&tasklist_lock);
6820 /* 6820 /*
6821 * Only show locks if all tasks are dumped: 6821 * Only show locks if all tasks are dumped:
6822 */ 6822 */
6823 if (state_filter == -1) 6823 if (state_filter == -1)
6824 debug_show_all_locks(); 6824 debug_show_all_locks();
6825 } 6825 }
6826 6826
6827 void __cpuinit init_idle_bootup_task(struct task_struct *idle) 6827 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6828 { 6828 {
6829 idle->sched_class = &idle_sched_class; 6829 idle->sched_class = &idle_sched_class;
6830 } 6830 }
6831 6831
6832 /** 6832 /**
6833 * init_idle - set up an idle thread for a given CPU 6833 * init_idle - set up an idle thread for a given CPU
6834 * @idle: task in question 6834 * @idle: task in question
6835 * @cpu: cpu the idle task belongs to 6835 * @cpu: cpu the idle task belongs to
6836 * 6836 *
6837 * NOTE: this function does not set the idle thread's NEED_RESCHED 6837 * NOTE: this function does not set the idle thread's NEED_RESCHED
6838 * flag, to make booting more robust. 6838 * flag, to make booting more robust.
6839 */ 6839 */
6840 void __cpuinit init_idle(struct task_struct *idle, int cpu) 6840 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6841 { 6841 {
6842 struct rq *rq = cpu_rq(cpu); 6842 struct rq *rq = cpu_rq(cpu);
6843 unsigned long flags; 6843 unsigned long flags;
6844 6844
6845 spin_lock_irqsave(&rq->lock, flags); 6845 spin_lock_irqsave(&rq->lock, flags);
6846 6846
6847 __sched_fork(idle); 6847 __sched_fork(idle);
6848 idle->se.exec_start = sched_clock(); 6848 idle->se.exec_start = sched_clock();
6849 6849
6850 idle->prio = idle->normal_prio = MAX_PRIO; 6850 idle->prio = idle->normal_prio = MAX_PRIO;
6851 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); 6851 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6852 __set_task_cpu(idle, cpu); 6852 __set_task_cpu(idle, cpu);
6853 6853
6854 rq->curr = rq->idle = idle; 6854 rq->curr = rq->idle = idle;
6855 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 6855 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6856 idle->oncpu = 1; 6856 idle->oncpu = 1;
6857 #endif 6857 #endif
6858 spin_unlock_irqrestore(&rq->lock, flags); 6858 spin_unlock_irqrestore(&rq->lock, flags);
6859 6859
6860 /* Set the preempt count _outside_ the spinlocks! */ 6860 /* Set the preempt count _outside_ the spinlocks! */
6861 #if defined(CONFIG_PREEMPT) 6861 #if defined(CONFIG_PREEMPT)
6862 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); 6862 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6863 #else 6863 #else
6864 task_thread_info(idle)->preempt_count = 0; 6864 task_thread_info(idle)->preempt_count = 0;
6865 #endif 6865 #endif
6866 /* 6866 /*
6867 * The idle tasks have their own, simple scheduling class: 6867 * The idle tasks have their own, simple scheduling class:
6868 */ 6868 */
6869 idle->sched_class = &idle_sched_class; 6869 idle->sched_class = &idle_sched_class;
6870 ftrace_graph_init_task(idle); 6870 ftrace_graph_init_task(idle);
6871 } 6871 }
6872 6872
6873 /* 6873 /*
6874 * In a system that switches off the HZ timer nohz_cpu_mask 6874 * In a system that switches off the HZ timer nohz_cpu_mask
6875 * indicates which cpus entered this state. This is used 6875 * indicates which cpus entered this state. This is used
6876 * in the rcu update to wait only for active cpus. For system 6876 * in the rcu update to wait only for active cpus. For system
6877 * which do not switch off the HZ timer nohz_cpu_mask should 6877 * which do not switch off the HZ timer nohz_cpu_mask should
6878 * always be CPU_BITS_NONE. 6878 * always be CPU_BITS_NONE.
6879 */ 6879 */
6880 cpumask_var_t nohz_cpu_mask; 6880 cpumask_var_t nohz_cpu_mask;
6881 6881
6882 /* 6882 /*
6883 * Increase the granularity value when there are more CPUs, 6883 * Increase the granularity value when there are more CPUs,
6884 * because with more CPUs the 'effective latency' as visible 6884 * because with more CPUs the 'effective latency' as visible
6885 * to users decreases. But the relationship is not linear, 6885 * to users decreases. But the relationship is not linear,
6886 * so pick a second-best guess by going with the log2 of the 6886 * so pick a second-best guess by going with the log2 of the
6887 * number of CPUs. 6887 * number of CPUs.
6888 * 6888 *
6889 * This idea comes from the SD scheduler of Con Kolivas: 6889 * This idea comes from the SD scheduler of Con Kolivas:
6890 */ 6890 */
6891 static inline void sched_init_granularity(void) 6891 static inline void sched_init_granularity(void)
6892 { 6892 {
6893 unsigned int factor = 1 + ilog2(num_online_cpus()); 6893 unsigned int factor = 1 + ilog2(num_online_cpus());
6894 const unsigned long limit = 200000000; 6894 const unsigned long limit = 200000000;
6895 6895
6896 sysctl_sched_min_granularity *= factor; 6896 sysctl_sched_min_granularity *= factor;
6897 if (sysctl_sched_min_granularity > limit) 6897 if (sysctl_sched_min_granularity > limit)
6898 sysctl_sched_min_granularity = limit; 6898 sysctl_sched_min_granularity = limit;
6899 6899
6900 sysctl_sched_latency *= factor; 6900 sysctl_sched_latency *= factor;
6901 if (sysctl_sched_latency > limit) 6901 if (sysctl_sched_latency > limit)
6902 sysctl_sched_latency = limit; 6902 sysctl_sched_latency = limit;
6903 6903
6904 sysctl_sched_wakeup_granularity *= factor; 6904 sysctl_sched_wakeup_granularity *= factor;
6905 6905
6906 sysctl_sched_shares_ratelimit *= factor; 6906 sysctl_sched_shares_ratelimit *= factor;
6907 } 6907 }
6908 6908
6909 #ifdef CONFIG_SMP 6909 #ifdef CONFIG_SMP
6910 /* 6910 /*
6911 * This is how migration works: 6911 * This is how migration works:
6912 * 6912 *
6913 * 1) we queue a struct migration_req structure in the source CPU's 6913 * 1) we queue a struct migration_req structure in the source CPU's
6914 * runqueue and wake up that CPU's migration thread. 6914 * runqueue and wake up that CPU's migration thread.
6915 * 2) we down() the locked semaphore => thread blocks. 6915 * 2) we down() the locked semaphore => thread blocks.
6916 * 3) migration thread wakes up (implicitly it forces the migrated 6916 * 3) migration thread wakes up (implicitly it forces the migrated
6917 * thread off the CPU) 6917 * thread off the CPU)
6918 * 4) it gets the migration request and checks whether the migrated 6918 * 4) it gets the migration request and checks whether the migrated
6919 * task is still in the wrong runqueue. 6919 * task is still in the wrong runqueue.
6920 * 5) if it's in the wrong runqueue then the migration thread removes 6920 * 5) if it's in the wrong runqueue then the migration thread removes
6921 * it and puts it into the right queue. 6921 * it and puts it into the right queue.
6922 * 6) migration thread up()s the semaphore. 6922 * 6) migration thread up()s the semaphore.
6923 * 7) we wake up and the migration is done. 6923 * 7) we wake up and the migration is done.
6924 */ 6924 */
6925 6925
6926 /* 6926 /*
6927 * Change a given task's CPU affinity. Migrate the thread to a 6927 * Change a given task's CPU affinity. Migrate the thread to a
6928 * proper CPU and schedule it away if the CPU it's executing on 6928 * proper CPU and schedule it away if the CPU it's executing on
6929 * is removed from the allowed bitmask. 6929 * is removed from the allowed bitmask.
6930 * 6930 *
6931 * NOTE: the caller must have a valid reference to the task, the 6931 * NOTE: the caller must have a valid reference to the task, the
6932 * task must not exit() & deallocate itself prematurely. The 6932 * task must not exit() & deallocate itself prematurely. The
6933 * call is not atomic; no spinlocks may be held. 6933 * call is not atomic; no spinlocks may be held.
6934 */ 6934 */
6935 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 6935 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6936 { 6936 {
6937 struct migration_req req; 6937 struct migration_req req;
6938 unsigned long flags; 6938 unsigned long flags;
6939 struct rq *rq; 6939 struct rq *rq;
6940 int ret = 0; 6940 int ret = 0;
6941 6941
6942 rq = task_rq_lock(p, &flags); 6942 rq = task_rq_lock(p, &flags);
6943 if (!cpumask_intersects(new_mask, cpu_online_mask)) { 6943 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6944 ret = -EINVAL; 6944 ret = -EINVAL;
6945 goto out; 6945 goto out;
6946 } 6946 }
6947 6947
6948 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && 6948 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6949 !cpumask_equal(&p->cpus_allowed, new_mask))) { 6949 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6950 ret = -EINVAL; 6950 ret = -EINVAL;
6951 goto out; 6951 goto out;
6952 } 6952 }
6953 6953
6954 if (p->sched_class->set_cpus_allowed) 6954 if (p->sched_class->set_cpus_allowed)
6955 p->sched_class->set_cpus_allowed(p, new_mask); 6955 p->sched_class->set_cpus_allowed(p, new_mask);
6956 else { 6956 else {
6957 cpumask_copy(&p->cpus_allowed, new_mask); 6957 cpumask_copy(&p->cpus_allowed, new_mask);
6958 p->rt.nr_cpus_allowed = cpumask_weight(new_mask); 6958 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6959 } 6959 }
6960 6960
6961 /* Can the task run on the task's current CPU? If so, we're done */ 6961 /* Can the task run on the task's current CPU? If so, we're done */
6962 if (cpumask_test_cpu(task_cpu(p), new_mask)) 6962 if (cpumask_test_cpu(task_cpu(p), new_mask))
6963 goto out; 6963 goto out;
6964 6964
6965 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) { 6965 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6966 /* Need help from migration thread: drop lock and wait. */ 6966 /* Need help from migration thread: drop lock and wait. */
6967 task_rq_unlock(rq, &flags); 6967 task_rq_unlock(rq, &flags);
6968 wake_up_process(rq->migration_thread); 6968 wake_up_process(rq->migration_thread);
6969 wait_for_completion(&req.done); 6969 wait_for_completion(&req.done);
6970 tlb_migrate_finish(p->mm); 6970 tlb_migrate_finish(p->mm);
6971 return 0; 6971 return 0;
6972 } 6972 }
6973 out: 6973 out:
6974 task_rq_unlock(rq, &flags); 6974 task_rq_unlock(rq, &flags);
6975 6975
6976 return ret; 6976 return ret;
6977 } 6977 }
6978 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 6978 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6979 6979
6980 /* 6980 /*
6981 * Move (not current) task off this cpu, onto dest cpu. We're doing 6981 * Move (not current) task off this cpu, onto dest cpu. We're doing
6982 * this because either it can't run here any more (set_cpus_allowed() 6982 * this because either it can't run here any more (set_cpus_allowed()
6983 * away from this CPU, or CPU going down), or because we're 6983 * away from this CPU, or CPU going down), or because we're
6984 * attempting to rebalance this task on exec (sched_exec). 6984 * attempting to rebalance this task on exec (sched_exec).
6985 * 6985 *
6986 * So we race with normal scheduler movements, but that's OK, as long 6986 * So we race with normal scheduler movements, but that's OK, as long
6987 * as the task is no longer on this CPU. 6987 * as the task is no longer on this CPU.
6988 * 6988 *
6989 * Returns non-zero if task was successfully migrated. 6989 * Returns non-zero if task was successfully migrated.
6990 */ 6990 */
6991 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) 6991 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6992 { 6992 {
6993 struct rq *rq_dest, *rq_src; 6993 struct rq *rq_dest, *rq_src;
6994 int ret = 0, on_rq; 6994 int ret = 0, on_rq;
6995 6995
6996 if (unlikely(!cpu_active(dest_cpu))) 6996 if (unlikely(!cpu_active(dest_cpu)))
6997 return ret; 6997 return ret;
6998 6998
6999 rq_src = cpu_rq(src_cpu); 6999 rq_src = cpu_rq(src_cpu);
7000 rq_dest = cpu_rq(dest_cpu); 7000 rq_dest = cpu_rq(dest_cpu);
7001 7001
7002 double_rq_lock(rq_src, rq_dest); 7002 double_rq_lock(rq_src, rq_dest);
7003 /* Already moved. */ 7003 /* Already moved. */
7004 if (task_cpu(p) != src_cpu) 7004 if (task_cpu(p) != src_cpu)
7005 goto done; 7005 goto done;
7006 /* Affinity changed (again). */ 7006 /* Affinity changed (again). */
7007 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 7007 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7008 goto fail; 7008 goto fail;
7009 7009
7010 on_rq = p->se.on_rq; 7010 on_rq = p->se.on_rq;
7011 if (on_rq) 7011 if (on_rq)
7012 deactivate_task(rq_src, p, 0); 7012 deactivate_task(rq_src, p, 0);
7013 7013
7014 set_task_cpu(p, dest_cpu); 7014 set_task_cpu(p, dest_cpu);
7015 if (on_rq) { 7015 if (on_rq) {
7016 activate_task(rq_dest, p, 0); 7016 activate_task(rq_dest, p, 0);
7017 check_preempt_curr(rq_dest, p, 0); 7017 check_preempt_curr(rq_dest, p, 0);
7018 } 7018 }
7019 done: 7019 done:
7020 ret = 1; 7020 ret = 1;
7021 fail: 7021 fail:
7022 double_rq_unlock(rq_src, rq_dest); 7022 double_rq_unlock(rq_src, rq_dest);
7023 return ret; 7023 return ret;
7024 } 7024 }
7025 7025
7026 /* 7026 /*
7027 * migration_thread - this is a highprio system thread that performs 7027 * migration_thread - this is a highprio system thread that performs
7028 * thread migration by bumping thread off CPU then 'pushing' onto 7028 * thread migration by bumping thread off CPU then 'pushing' onto
7029 * another runqueue. 7029 * another runqueue.
7030 */ 7030 */
7031 static int migration_thread(void *data) 7031 static int migration_thread(void *data)
7032 { 7032 {
7033 int cpu = (long)data; 7033 int cpu = (long)data;
7034 struct rq *rq; 7034 struct rq *rq;
7035 7035
7036 rq = cpu_rq(cpu); 7036 rq = cpu_rq(cpu);
7037 BUG_ON(rq->migration_thread != current); 7037 BUG_ON(rq->migration_thread != current);
7038 7038
7039 set_current_state(TASK_INTERRUPTIBLE); 7039 set_current_state(TASK_INTERRUPTIBLE);
7040 while (!kthread_should_stop()) { 7040 while (!kthread_should_stop()) {
7041 struct migration_req *req; 7041 struct migration_req *req;
7042 struct list_head *head; 7042 struct list_head *head;
7043 7043
7044 spin_lock_irq(&rq->lock); 7044 spin_lock_irq(&rq->lock);
7045 7045
7046 if (cpu_is_offline(cpu)) { 7046 if (cpu_is_offline(cpu)) {
7047 spin_unlock_irq(&rq->lock); 7047 spin_unlock_irq(&rq->lock);
7048 goto wait_to_die; 7048 goto wait_to_die;
7049 } 7049 }
7050 7050
7051 if (rq->active_balance) { 7051 if (rq->active_balance) {
7052 active_load_balance(rq, cpu); 7052 active_load_balance(rq, cpu);
7053 rq->active_balance = 0; 7053 rq->active_balance = 0;
7054 } 7054 }
7055 7055
7056 head = &rq->migration_queue; 7056 head = &rq->migration_queue;
7057 7057
7058 if (list_empty(head)) { 7058 if (list_empty(head)) {
7059 spin_unlock_irq(&rq->lock); 7059 spin_unlock_irq(&rq->lock);
7060 schedule(); 7060 schedule();
7061 set_current_state(TASK_INTERRUPTIBLE); 7061 set_current_state(TASK_INTERRUPTIBLE);
7062 continue; 7062 continue;
7063 } 7063 }
7064 req = list_entry(head->next, struct migration_req, list); 7064 req = list_entry(head->next, struct migration_req, list);
7065 list_del_init(head->next); 7065 list_del_init(head->next);
7066 7066
7067 spin_unlock(&rq->lock); 7067 spin_unlock(&rq->lock);
7068 __migrate_task(req->task, cpu, req->dest_cpu); 7068 __migrate_task(req->task, cpu, req->dest_cpu);
7069 local_irq_enable(); 7069 local_irq_enable();
7070 7070
7071 complete(&req->done); 7071 complete(&req->done);
7072 } 7072 }
7073 __set_current_state(TASK_RUNNING); 7073 __set_current_state(TASK_RUNNING);
7074 return 0; 7074 return 0;
7075 7075
7076 wait_to_die: 7076 wait_to_die:
7077 /* Wait for kthread_stop */ 7077 /* Wait for kthread_stop */
7078 set_current_state(TASK_INTERRUPTIBLE); 7078 set_current_state(TASK_INTERRUPTIBLE);
7079 while (!kthread_should_stop()) { 7079 while (!kthread_should_stop()) {
7080 schedule(); 7080 schedule();
7081 set_current_state(TASK_INTERRUPTIBLE); 7081 set_current_state(TASK_INTERRUPTIBLE);
7082 } 7082 }
7083 __set_current_state(TASK_RUNNING); 7083 __set_current_state(TASK_RUNNING);
7084 return 0; 7084 return 0;
7085 } 7085 }
7086 7086
7087 #ifdef CONFIG_HOTPLUG_CPU 7087 #ifdef CONFIG_HOTPLUG_CPU
7088 7088
7089 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) 7089 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7090 { 7090 {
7091 int ret; 7091 int ret;
7092 7092
7093 local_irq_disable(); 7093 local_irq_disable();
7094 ret = __migrate_task(p, src_cpu, dest_cpu); 7094 ret = __migrate_task(p, src_cpu, dest_cpu);
7095 local_irq_enable(); 7095 local_irq_enable();
7096 return ret; 7096 return ret;
7097 } 7097 }
7098 7098
7099 /* 7099 /*
7100 * Figure out where task on dead CPU should go, use force if necessary. 7100 * Figure out where task on dead CPU should go, use force if necessary.
7101 */ 7101 */
7102 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) 7102 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7103 { 7103 {
7104 int dest_cpu; 7104 int dest_cpu;
7105 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu)); 7105 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7106 7106
7107 again: 7107 again:
7108 /* Look for allowed, online CPU in same node. */ 7108 /* Look for allowed, online CPU in same node. */
7109 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask) 7109 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7110 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) 7110 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7111 goto move; 7111 goto move;
7112 7112
7113 /* Any allowed, online CPU? */ 7113 /* Any allowed, online CPU? */
7114 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask); 7114 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7115 if (dest_cpu < nr_cpu_ids) 7115 if (dest_cpu < nr_cpu_ids)
7116 goto move; 7116 goto move;
7117 7117
7118 /* No more Mr. Nice Guy. */ 7118 /* No more Mr. Nice Guy. */
7119 if (dest_cpu >= nr_cpu_ids) { 7119 if (dest_cpu >= nr_cpu_ids) {
7120 cpuset_cpus_allowed_locked(p, &p->cpus_allowed); 7120 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7121 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed); 7121 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7122 7122
7123 /* 7123 /*
7124 * Don't tell them about moving exiting tasks or 7124 * Don't tell them about moving exiting tasks or
7125 * kernel threads (both mm NULL), since they never 7125 * kernel threads (both mm NULL), since they never
7126 * leave kernel. 7126 * leave kernel.
7127 */ 7127 */
7128 if (p->mm && printk_ratelimit()) { 7128 if (p->mm && printk_ratelimit()) {
7129 printk(KERN_INFO "process %d (%s) no " 7129 printk(KERN_INFO "process %d (%s) no "
7130 "longer affine to cpu%d\n", 7130 "longer affine to cpu%d\n",
7131 task_pid_nr(p), p->comm, dead_cpu); 7131 task_pid_nr(p), p->comm, dead_cpu);
7132 } 7132 }
7133 } 7133 }
7134 7134
7135 move: 7135 move:
7136 /* It can have affinity changed while we were choosing. */ 7136 /* It can have affinity changed while we were choosing. */
7137 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) 7137 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7138 goto again; 7138 goto again;
7139 } 7139 }
7140 7140
7141 /* 7141 /*
7142 * While a dead CPU has no uninterruptible tasks queued at this point, 7142 * While a dead CPU has no uninterruptible tasks queued at this point,
7143 * it might still have a nonzero ->nr_uninterruptible counter, because 7143 * it might still have a nonzero ->nr_uninterruptible counter, because
7144 * for performance reasons the counter is not stricly tracking tasks to 7144 * for performance reasons the counter is not stricly tracking tasks to
7145 * their home CPUs. So we just add the counter to another CPU's counter, 7145 * their home CPUs. So we just add the counter to another CPU's counter,
7146 * to keep the global sum constant after CPU-down: 7146 * to keep the global sum constant after CPU-down:
7147 */ 7147 */
7148 static void migrate_nr_uninterruptible(struct rq *rq_src) 7148 static void migrate_nr_uninterruptible(struct rq *rq_src)
7149 { 7149 {
7150 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask)); 7150 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7151 unsigned long flags; 7151 unsigned long flags;
7152 7152
7153 local_irq_save(flags); 7153 local_irq_save(flags);
7154 double_rq_lock(rq_src, rq_dest); 7154 double_rq_lock(rq_src, rq_dest);
7155 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; 7155 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7156 rq_src->nr_uninterruptible = 0; 7156 rq_src->nr_uninterruptible = 0;
7157 double_rq_unlock(rq_src, rq_dest); 7157 double_rq_unlock(rq_src, rq_dest);
7158 local_irq_restore(flags); 7158 local_irq_restore(flags);
7159 } 7159 }
7160 7160
7161 /* Run through task list and migrate tasks from the dead cpu. */ 7161 /* Run through task list and migrate tasks from the dead cpu. */
7162 static void migrate_live_tasks(int src_cpu) 7162 static void migrate_live_tasks(int src_cpu)
7163 { 7163 {
7164 struct task_struct *p, *t; 7164 struct task_struct *p, *t;
7165 7165
7166 read_lock(&tasklist_lock); 7166 read_lock(&tasklist_lock);
7167 7167
7168 do_each_thread(t, p) { 7168 do_each_thread(t, p) {
7169 if (p == current) 7169 if (p == current)
7170 continue; 7170 continue;
7171 7171
7172 if (task_cpu(p) == src_cpu) 7172 if (task_cpu(p) == src_cpu)
7173 move_task_off_dead_cpu(src_cpu, p); 7173 move_task_off_dead_cpu(src_cpu, p);
7174 } while_each_thread(t, p); 7174 } while_each_thread(t, p);
7175 7175
7176 read_unlock(&tasklist_lock); 7176 read_unlock(&tasklist_lock);
7177 } 7177 }
7178 7178
7179 /* 7179 /*
7180 * Schedules idle task to be the next runnable task on current CPU. 7180 * Schedules idle task to be the next runnable task on current CPU.
7181 * It does so by boosting its priority to highest possible. 7181 * It does so by boosting its priority to highest possible.
7182 * Used by CPU offline code. 7182 * Used by CPU offline code.
7183 */ 7183 */
7184 void sched_idle_next(void) 7184 void sched_idle_next(void)
7185 { 7185 {
7186 int this_cpu = smp_processor_id(); 7186 int this_cpu = smp_processor_id();
7187 struct rq *rq = cpu_rq(this_cpu); 7187 struct rq *rq = cpu_rq(this_cpu);
7188 struct task_struct *p = rq->idle; 7188 struct task_struct *p = rq->idle;
7189 unsigned long flags; 7189 unsigned long flags;
7190 7190
7191 /* cpu has to be offline */ 7191 /* cpu has to be offline */
7192 BUG_ON(cpu_online(this_cpu)); 7192 BUG_ON(cpu_online(this_cpu));
7193 7193
7194 /* 7194 /*
7195 * Strictly not necessary since rest of the CPUs are stopped by now 7195 * Strictly not necessary since rest of the CPUs are stopped by now
7196 * and interrupts disabled on the current cpu. 7196 * and interrupts disabled on the current cpu.
7197 */ 7197 */
7198 spin_lock_irqsave(&rq->lock, flags); 7198 spin_lock_irqsave(&rq->lock, flags);
7199 7199
7200 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 7200 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7201 7201
7202 update_rq_clock(rq); 7202 update_rq_clock(rq);
7203 activate_task(rq, p, 0); 7203 activate_task(rq, p, 0);
7204 7204
7205 spin_unlock_irqrestore(&rq->lock, flags); 7205 spin_unlock_irqrestore(&rq->lock, flags);
7206 } 7206 }
7207 7207
7208 /* 7208 /*
7209 * Ensures that the idle task is using init_mm right before its cpu goes 7209 * Ensures that the idle task is using init_mm right before its cpu goes
7210 * offline. 7210 * offline.
7211 */ 7211 */
7212 void idle_task_exit(void) 7212 void idle_task_exit(void)
7213 { 7213 {
7214 struct mm_struct *mm = current->active_mm; 7214 struct mm_struct *mm = current->active_mm;
7215 7215
7216 BUG_ON(cpu_online(smp_processor_id())); 7216 BUG_ON(cpu_online(smp_processor_id()));
7217 7217
7218 if (mm != &init_mm) 7218 if (mm != &init_mm)
7219 switch_mm(mm, &init_mm, current); 7219 switch_mm(mm, &init_mm, current);
7220 mmdrop(mm); 7220 mmdrop(mm);
7221 } 7221 }
7222 7222
7223 /* called under rq->lock with disabled interrupts */ 7223 /* called under rq->lock with disabled interrupts */
7224 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) 7224 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7225 { 7225 {
7226 struct rq *rq = cpu_rq(dead_cpu); 7226 struct rq *rq = cpu_rq(dead_cpu);
7227 7227
7228 /* Must be exiting, otherwise would be on tasklist. */ 7228 /* Must be exiting, otherwise would be on tasklist. */
7229 BUG_ON(!p->exit_state); 7229 BUG_ON(!p->exit_state);
7230 7230
7231 /* Cannot have done final schedule yet: would have vanished. */ 7231 /* Cannot have done final schedule yet: would have vanished. */
7232 BUG_ON(p->state == TASK_DEAD); 7232 BUG_ON(p->state == TASK_DEAD);
7233 7233
7234 get_task_struct(p); 7234 get_task_struct(p);
7235 7235
7236 /* 7236 /*
7237 * Drop lock around migration; if someone else moves it, 7237 * Drop lock around migration; if someone else moves it,
7238 * that's OK. No task can be added to this CPU, so iteration is 7238 * that's OK. No task can be added to this CPU, so iteration is
7239 * fine. 7239 * fine.
7240 */ 7240 */
7241 spin_unlock_irq(&rq->lock); 7241 spin_unlock_irq(&rq->lock);
7242 move_task_off_dead_cpu(dead_cpu, p); 7242 move_task_off_dead_cpu(dead_cpu, p);
7243 spin_lock_irq(&rq->lock); 7243 spin_lock_irq(&rq->lock);
7244 7244
7245 put_task_struct(p); 7245 put_task_struct(p);
7246 } 7246 }
7247 7247
7248 /* release_task() removes task from tasklist, so we won't find dead tasks. */ 7248 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7249 static void migrate_dead_tasks(unsigned int dead_cpu) 7249 static void migrate_dead_tasks(unsigned int dead_cpu)
7250 { 7250 {
7251 struct rq *rq = cpu_rq(dead_cpu); 7251 struct rq *rq = cpu_rq(dead_cpu);
7252 struct task_struct *next; 7252 struct task_struct *next;
7253 7253
7254 for ( ; ; ) { 7254 for ( ; ; ) {
7255 if (!rq->nr_running) 7255 if (!rq->nr_running)
7256 break; 7256 break;
7257 update_rq_clock(rq); 7257 update_rq_clock(rq);
7258 next = pick_next_task(rq); 7258 next = pick_next_task(rq);
7259 if (!next) 7259 if (!next)
7260 break; 7260 break;
7261 next->sched_class->put_prev_task(rq, next); 7261 next->sched_class->put_prev_task(rq, next);
7262 migrate_dead(dead_cpu, next); 7262 migrate_dead(dead_cpu, next);
7263 7263
7264 } 7264 }
7265 } 7265 }
7266 7266
7267 /* 7267 /*
7268 * remove the tasks which were accounted by rq from calc_load_tasks. 7268 * remove the tasks which were accounted by rq from calc_load_tasks.
7269 */ 7269 */
7270 static void calc_global_load_remove(struct rq *rq) 7270 static void calc_global_load_remove(struct rq *rq)
7271 { 7271 {
7272 atomic_long_sub(rq->calc_load_active, &calc_load_tasks); 7272 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7273 } 7273 }
7274 #endif /* CONFIG_HOTPLUG_CPU */ 7274 #endif /* CONFIG_HOTPLUG_CPU */
7275 7275
7276 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 7276 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7277 7277
7278 static struct ctl_table sd_ctl_dir[] = { 7278 static struct ctl_table sd_ctl_dir[] = {
7279 { 7279 {
7280 .procname = "sched_domain", 7280 .procname = "sched_domain",
7281 .mode = 0555, 7281 .mode = 0555,
7282 }, 7282 },
7283 {0, }, 7283 {0, },
7284 }; 7284 };
7285 7285
7286 static struct ctl_table sd_ctl_root[] = { 7286 static struct ctl_table sd_ctl_root[] = {
7287 { 7287 {
7288 .ctl_name = CTL_KERN, 7288 .ctl_name = CTL_KERN,
7289 .procname = "kernel", 7289 .procname = "kernel",
7290 .mode = 0555, 7290 .mode = 0555,
7291 .child = sd_ctl_dir, 7291 .child = sd_ctl_dir,
7292 }, 7292 },
7293 {0, }, 7293 {0, },
7294 }; 7294 };
7295 7295
7296 static struct ctl_table *sd_alloc_ctl_entry(int n) 7296 static struct ctl_table *sd_alloc_ctl_entry(int n)
7297 { 7297 {
7298 struct ctl_table *entry = 7298 struct ctl_table *entry =
7299 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); 7299 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7300 7300
7301 return entry; 7301 return entry;
7302 } 7302 }
7303 7303
7304 static void sd_free_ctl_entry(struct ctl_table **tablep) 7304 static void sd_free_ctl_entry(struct ctl_table **tablep)
7305 { 7305 {
7306 struct ctl_table *entry; 7306 struct ctl_table *entry;
7307 7307
7308 /* 7308 /*
7309 * In the intermediate directories, both the child directory and 7309 * In the intermediate directories, both the child directory and
7310 * procname are dynamically allocated and could fail but the mode 7310 * procname are dynamically allocated and could fail but the mode
7311 * will always be set. In the lowest directory the names are 7311 * will always be set. In the lowest directory the names are
7312 * static strings and all have proc handlers. 7312 * static strings and all have proc handlers.
7313 */ 7313 */
7314 for (entry = *tablep; entry->mode; entry++) { 7314 for (entry = *tablep; entry->mode; entry++) {
7315 if (entry->child) 7315 if (entry->child)
7316 sd_free_ctl_entry(&entry->child); 7316 sd_free_ctl_entry(&entry->child);
7317 if (entry->proc_handler == NULL) 7317 if (entry->proc_handler == NULL)
7318 kfree(entry->procname); 7318 kfree(entry->procname);
7319 } 7319 }
7320 7320
7321 kfree(*tablep); 7321 kfree(*tablep);
7322 *tablep = NULL; 7322 *tablep = NULL;
7323 } 7323 }
7324 7324
7325 static void 7325 static void
7326 set_table_entry(struct ctl_table *entry, 7326 set_table_entry(struct ctl_table *entry,
7327 const char *procname, void *data, int maxlen, 7327 const char *procname, void *data, int maxlen,
7328 mode_t mode, proc_handler *proc_handler) 7328 mode_t mode, proc_handler *proc_handler)
7329 { 7329 {
7330 entry->procname = procname; 7330 entry->procname = procname;
7331 entry->data = data; 7331 entry->data = data;
7332 entry->maxlen = maxlen; 7332 entry->maxlen = maxlen;
7333 entry->mode = mode; 7333 entry->mode = mode;
7334 entry->proc_handler = proc_handler; 7334 entry->proc_handler = proc_handler;
7335 } 7335 }
7336 7336
7337 static struct ctl_table * 7337 static struct ctl_table *
7338 sd_alloc_ctl_domain_table(struct sched_domain *sd) 7338 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7339 { 7339 {
7340 struct ctl_table *table = sd_alloc_ctl_entry(13); 7340 struct ctl_table *table = sd_alloc_ctl_entry(13);
7341 7341
7342 if (table == NULL) 7342 if (table == NULL)
7343 return NULL; 7343 return NULL;
7344 7344
7345 set_table_entry(&table[0], "min_interval", &sd->min_interval, 7345 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7346 sizeof(long), 0644, proc_doulongvec_minmax); 7346 sizeof(long), 0644, proc_doulongvec_minmax);
7347 set_table_entry(&table[1], "max_interval", &sd->max_interval, 7347 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7348 sizeof(long), 0644, proc_doulongvec_minmax); 7348 sizeof(long), 0644, proc_doulongvec_minmax);
7349 set_table_entry(&table[2], "busy_idx", &sd->busy_idx, 7349 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7350 sizeof(int), 0644, proc_dointvec_minmax); 7350 sizeof(int), 0644, proc_dointvec_minmax);
7351 set_table_entry(&table[3], "idle_idx", &sd->idle_idx, 7351 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7352 sizeof(int), 0644, proc_dointvec_minmax); 7352 sizeof(int), 0644, proc_dointvec_minmax);
7353 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, 7353 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7354 sizeof(int), 0644, proc_dointvec_minmax); 7354 sizeof(int), 0644, proc_dointvec_minmax);
7355 set_table_entry(&table[5], "wake_idx", &sd->wake_idx, 7355 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7356 sizeof(int), 0644, proc_dointvec_minmax); 7356 sizeof(int), 0644, proc_dointvec_minmax);
7357 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, 7357 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7358 sizeof(int), 0644, proc_dointvec_minmax); 7358 sizeof(int), 0644, proc_dointvec_minmax);
7359 set_table_entry(&table[7], "busy_factor", &sd->busy_factor, 7359 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7360 sizeof(int), 0644, proc_dointvec_minmax); 7360 sizeof(int), 0644, proc_dointvec_minmax);
7361 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, 7361 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7362 sizeof(int), 0644, proc_dointvec_minmax); 7362 sizeof(int), 0644, proc_dointvec_minmax);
7363 set_table_entry(&table[9], "cache_nice_tries", 7363 set_table_entry(&table[9], "cache_nice_tries",
7364 &sd->cache_nice_tries, 7364 &sd->cache_nice_tries,
7365 sizeof(int), 0644, proc_dointvec_minmax); 7365 sizeof(int), 0644, proc_dointvec_minmax);
7366 set_table_entry(&table[10], "flags", &sd->flags, 7366 set_table_entry(&table[10], "flags", &sd->flags,
7367 sizeof(int), 0644, proc_dointvec_minmax); 7367 sizeof(int), 0644, proc_dointvec_minmax);
7368 set_table_entry(&table[11], "name", sd->name, 7368 set_table_entry(&table[11], "name", sd->name,
7369 CORENAME_MAX_SIZE, 0444, proc_dostring); 7369 CORENAME_MAX_SIZE, 0444, proc_dostring);
7370 /* &table[12] is terminator */ 7370 /* &table[12] is terminator */
7371 7371
7372 return table; 7372 return table;
7373 } 7373 }
7374 7374
7375 static ctl_table *sd_alloc_ctl_cpu_table(int cpu) 7375 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7376 { 7376 {
7377 struct ctl_table *entry, *table; 7377 struct ctl_table *entry, *table;
7378 struct sched_domain *sd; 7378 struct sched_domain *sd;
7379 int domain_num = 0, i; 7379 int domain_num = 0, i;
7380 char buf[32]; 7380 char buf[32];
7381 7381
7382 for_each_domain(cpu, sd) 7382 for_each_domain(cpu, sd)
7383 domain_num++; 7383 domain_num++;
7384 entry = table = sd_alloc_ctl_entry(domain_num + 1); 7384 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7385 if (table == NULL) 7385 if (table == NULL)
7386 return NULL; 7386 return NULL;
7387 7387
7388 i = 0; 7388 i = 0;
7389 for_each_domain(cpu, sd) { 7389 for_each_domain(cpu, sd) {
7390 snprintf(buf, 32, "domain%d", i); 7390 snprintf(buf, 32, "domain%d", i);
7391 entry->procname = kstrdup(buf, GFP_KERNEL); 7391 entry->procname = kstrdup(buf, GFP_KERNEL);
7392 entry->mode = 0555; 7392 entry->mode = 0555;
7393 entry->child = sd_alloc_ctl_domain_table(sd); 7393 entry->child = sd_alloc_ctl_domain_table(sd);
7394 entry++; 7394 entry++;
7395 i++; 7395 i++;
7396 } 7396 }
7397 return table; 7397 return table;
7398 } 7398 }
7399 7399
7400 static struct ctl_table_header *sd_sysctl_header; 7400 static struct ctl_table_header *sd_sysctl_header;
7401 static void register_sched_domain_sysctl(void) 7401 static void register_sched_domain_sysctl(void)
7402 { 7402 {
7403 int i, cpu_num = num_online_cpus(); 7403 int i, cpu_num = num_online_cpus();
7404 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); 7404 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7405 char buf[32]; 7405 char buf[32];
7406 7406
7407 WARN_ON(sd_ctl_dir[0].child); 7407 WARN_ON(sd_ctl_dir[0].child);
7408 sd_ctl_dir[0].child = entry; 7408 sd_ctl_dir[0].child = entry;
7409 7409
7410 if (entry == NULL) 7410 if (entry == NULL)
7411 return; 7411 return;
7412 7412
7413 for_each_online_cpu(i) { 7413 for_each_online_cpu(i) {
7414 snprintf(buf, 32, "cpu%d", i); 7414 snprintf(buf, 32, "cpu%d", i);
7415 entry->procname = kstrdup(buf, GFP_KERNEL); 7415 entry->procname = kstrdup(buf, GFP_KERNEL);
7416 entry->mode = 0555; 7416 entry->mode = 0555;
7417 entry->child = sd_alloc_ctl_cpu_table(i); 7417 entry->child = sd_alloc_ctl_cpu_table(i);
7418 entry++; 7418 entry++;
7419 } 7419 }
7420 7420
7421 WARN_ON(sd_sysctl_header); 7421 WARN_ON(sd_sysctl_header);
7422 sd_sysctl_header = register_sysctl_table(sd_ctl_root); 7422 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7423 } 7423 }
7424 7424
7425 /* may be called multiple times per register */ 7425 /* may be called multiple times per register */
7426 static void unregister_sched_domain_sysctl(void) 7426 static void unregister_sched_domain_sysctl(void)
7427 { 7427 {
7428 if (sd_sysctl_header) 7428 if (sd_sysctl_header)
7429 unregister_sysctl_table(sd_sysctl_header); 7429 unregister_sysctl_table(sd_sysctl_header);
7430 sd_sysctl_header = NULL; 7430 sd_sysctl_header = NULL;
7431 if (sd_ctl_dir[0].child) 7431 if (sd_ctl_dir[0].child)
7432 sd_free_ctl_entry(&sd_ctl_dir[0].child); 7432 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7433 } 7433 }
7434 #else 7434 #else
7435 static void register_sched_domain_sysctl(void) 7435 static void register_sched_domain_sysctl(void)
7436 { 7436 {
7437 } 7437 }
7438 static void unregister_sched_domain_sysctl(void) 7438 static void unregister_sched_domain_sysctl(void)
7439 { 7439 {
7440 } 7440 }
7441 #endif 7441 #endif
7442 7442
7443 static void set_rq_online(struct rq *rq) 7443 static void set_rq_online(struct rq *rq)
7444 { 7444 {
7445 if (!rq->online) { 7445 if (!rq->online) {
7446 const struct sched_class *class; 7446 const struct sched_class *class;
7447 7447
7448 cpumask_set_cpu(rq->cpu, rq->rd->online); 7448 cpumask_set_cpu(rq->cpu, rq->rd->online);
7449 rq->online = 1; 7449 rq->online = 1;
7450 7450
7451 for_each_class(class) { 7451 for_each_class(class) {
7452 if (class->rq_online) 7452 if (class->rq_online)
7453 class->rq_online(rq); 7453 class->rq_online(rq);
7454 } 7454 }
7455 } 7455 }
7456 } 7456 }
7457 7457
7458 static void set_rq_offline(struct rq *rq) 7458 static void set_rq_offline(struct rq *rq)
7459 { 7459 {
7460 if (rq->online) { 7460 if (rq->online) {
7461 const struct sched_class *class; 7461 const struct sched_class *class;
7462 7462
7463 for_each_class(class) { 7463 for_each_class(class) {
7464 if (class->rq_offline) 7464 if (class->rq_offline)
7465 class->rq_offline(rq); 7465 class->rq_offline(rq);
7466 } 7466 }
7467 7467
7468 cpumask_clear_cpu(rq->cpu, rq->rd->online); 7468 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7469 rq->online = 0; 7469 rq->online = 0;
7470 } 7470 }
7471 } 7471 }
7472 7472
7473 /* 7473 /*
7474 * migration_call - callback that gets triggered when a CPU is added. 7474 * migration_call - callback that gets triggered when a CPU is added.
7475 * Here we can start up the necessary migration thread for the new CPU. 7475 * Here we can start up the necessary migration thread for the new CPU.
7476 */ 7476 */
7477 static int __cpuinit 7477 static int __cpuinit
7478 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) 7478 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7479 { 7479 {
7480 struct task_struct *p; 7480 struct task_struct *p;
7481 int cpu = (long)hcpu; 7481 int cpu = (long)hcpu;
7482 unsigned long flags; 7482 unsigned long flags;
7483 struct rq *rq; 7483 struct rq *rq;
7484 7484
7485 switch (action) { 7485 switch (action) {
7486 7486
7487 case CPU_UP_PREPARE: 7487 case CPU_UP_PREPARE:
7488 case CPU_UP_PREPARE_FROZEN: 7488 case CPU_UP_PREPARE_FROZEN:
7489 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); 7489 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7490 if (IS_ERR(p)) 7490 if (IS_ERR(p))
7491 return NOTIFY_BAD; 7491 return NOTIFY_BAD;
7492 kthread_bind(p, cpu); 7492 kthread_bind(p, cpu);
7493 /* Must be high prio: stop_machine expects to yield to it. */ 7493 /* Must be high prio: stop_machine expects to yield to it. */
7494 rq = task_rq_lock(p, &flags); 7494 rq = task_rq_lock(p, &flags);
7495 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); 7495 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7496 task_rq_unlock(rq, &flags); 7496 task_rq_unlock(rq, &flags);
7497 cpu_rq(cpu)->migration_thread = p; 7497 cpu_rq(cpu)->migration_thread = p;
7498 break; 7498 break;
7499 7499
7500 case CPU_ONLINE: 7500 case CPU_ONLINE:
7501 case CPU_ONLINE_FROZEN: 7501 case CPU_ONLINE_FROZEN:
7502 /* Strictly unnecessary, as first user will wake it. */ 7502 /* Strictly unnecessary, as first user will wake it. */
7503 wake_up_process(cpu_rq(cpu)->migration_thread); 7503 wake_up_process(cpu_rq(cpu)->migration_thread);
7504 7504
7505 /* Update our root-domain */ 7505 /* Update our root-domain */
7506 rq = cpu_rq(cpu); 7506 rq = cpu_rq(cpu);
7507 spin_lock_irqsave(&rq->lock, flags); 7507 spin_lock_irqsave(&rq->lock, flags);
7508 rq->calc_load_update = calc_load_update; 7508 rq->calc_load_update = calc_load_update;
7509 rq->calc_load_active = 0; 7509 rq->calc_load_active = 0;
7510 if (rq->rd) { 7510 if (rq->rd) {
7511 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7511 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7512 7512
7513 set_rq_online(rq); 7513 set_rq_online(rq);
7514 } 7514 }
7515 spin_unlock_irqrestore(&rq->lock, flags); 7515 spin_unlock_irqrestore(&rq->lock, flags);
7516 break; 7516 break;
7517 7517
7518 #ifdef CONFIG_HOTPLUG_CPU 7518 #ifdef CONFIG_HOTPLUG_CPU
7519 case CPU_UP_CANCELED: 7519 case CPU_UP_CANCELED:
7520 case CPU_UP_CANCELED_FROZEN: 7520 case CPU_UP_CANCELED_FROZEN:
7521 if (!cpu_rq(cpu)->migration_thread) 7521 if (!cpu_rq(cpu)->migration_thread)
7522 break; 7522 break;
7523 /* Unbind it from offline cpu so it can run. Fall thru. */ 7523 /* Unbind it from offline cpu so it can run. Fall thru. */
7524 kthread_bind(cpu_rq(cpu)->migration_thread, 7524 kthread_bind(cpu_rq(cpu)->migration_thread,
7525 cpumask_any(cpu_online_mask)); 7525 cpumask_any(cpu_online_mask));
7526 kthread_stop(cpu_rq(cpu)->migration_thread); 7526 kthread_stop(cpu_rq(cpu)->migration_thread);
7527 cpu_rq(cpu)->migration_thread = NULL; 7527 cpu_rq(cpu)->migration_thread = NULL;
7528 break; 7528 break;
7529 7529
7530 case CPU_DEAD: 7530 case CPU_DEAD:
7531 case CPU_DEAD_FROZEN: 7531 case CPU_DEAD_FROZEN:
7532 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ 7532 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7533 migrate_live_tasks(cpu); 7533 migrate_live_tasks(cpu);
7534 rq = cpu_rq(cpu); 7534 rq = cpu_rq(cpu);
7535 kthread_stop(rq->migration_thread); 7535 kthread_stop(rq->migration_thread);
7536 rq->migration_thread = NULL; 7536 rq->migration_thread = NULL;
7537 /* Idle task back to normal (off runqueue, low prio) */ 7537 /* Idle task back to normal (off runqueue, low prio) */
7538 spin_lock_irq(&rq->lock); 7538 spin_lock_irq(&rq->lock);
7539 update_rq_clock(rq); 7539 update_rq_clock(rq);
7540 deactivate_task(rq, rq->idle, 0); 7540 deactivate_task(rq, rq->idle, 0);
7541 rq->idle->static_prio = MAX_PRIO; 7541 rq->idle->static_prio = MAX_PRIO;
7542 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); 7542 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7543 rq->idle->sched_class = &idle_sched_class; 7543 rq->idle->sched_class = &idle_sched_class;
7544 migrate_dead_tasks(cpu); 7544 migrate_dead_tasks(cpu);
7545 spin_unlock_irq(&rq->lock); 7545 spin_unlock_irq(&rq->lock);
7546 cpuset_unlock(); 7546 cpuset_unlock();
7547 migrate_nr_uninterruptible(rq); 7547 migrate_nr_uninterruptible(rq);
7548 BUG_ON(rq->nr_running != 0); 7548 BUG_ON(rq->nr_running != 0);
7549 calc_global_load_remove(rq); 7549 calc_global_load_remove(rq);
7550 /* 7550 /*
7551 * No need to migrate the tasks: it was best-effort if 7551 * No need to migrate the tasks: it was best-effort if
7552 * they didn't take sched_hotcpu_mutex. Just wake up 7552 * they didn't take sched_hotcpu_mutex. Just wake up
7553 * the requestors. 7553 * the requestors.
7554 */ 7554 */
7555 spin_lock_irq(&rq->lock); 7555 spin_lock_irq(&rq->lock);
7556 while (!list_empty(&rq->migration_queue)) { 7556 while (!list_empty(&rq->migration_queue)) {
7557 struct migration_req *req; 7557 struct migration_req *req;
7558 7558
7559 req = list_entry(rq->migration_queue.next, 7559 req = list_entry(rq->migration_queue.next,
7560 struct migration_req, list); 7560 struct migration_req, list);
7561 list_del_init(&req->list); 7561 list_del_init(&req->list);
7562 spin_unlock_irq(&rq->lock); 7562 spin_unlock_irq(&rq->lock);
7563 complete(&req->done); 7563 complete(&req->done);
7564 spin_lock_irq(&rq->lock); 7564 spin_lock_irq(&rq->lock);
7565 } 7565 }
7566 spin_unlock_irq(&rq->lock); 7566 spin_unlock_irq(&rq->lock);
7567 break; 7567 break;
7568 7568
7569 case CPU_DYING: 7569 case CPU_DYING:
7570 case CPU_DYING_FROZEN: 7570 case CPU_DYING_FROZEN:
7571 /* Update our root-domain */ 7571 /* Update our root-domain */
7572 rq = cpu_rq(cpu); 7572 rq = cpu_rq(cpu);
7573 spin_lock_irqsave(&rq->lock, flags); 7573 spin_lock_irqsave(&rq->lock, flags);
7574 if (rq->rd) { 7574 if (rq->rd) {
7575 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 7575 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7576 set_rq_offline(rq); 7576 set_rq_offline(rq);
7577 } 7577 }
7578 spin_unlock_irqrestore(&rq->lock, flags); 7578 spin_unlock_irqrestore(&rq->lock, flags);
7579 break; 7579 break;
7580 #endif 7580 #endif
7581 } 7581 }
7582 return NOTIFY_OK; 7582 return NOTIFY_OK;
7583 } 7583 }
7584 7584
7585 /* 7585 /*
7586 * Register at high priority so that task migration (migrate_all_tasks) 7586 * Register at high priority so that task migration (migrate_all_tasks)
7587 * happens before everything else. This has to be lower priority than 7587 * happens before everything else. This has to be lower priority than
7588 * the notifier in the perf_counter subsystem, though. 7588 * the notifier in the perf_counter subsystem, though.
7589 */ 7589 */
7590 static struct notifier_block __cpuinitdata migration_notifier = { 7590 static struct notifier_block __cpuinitdata migration_notifier = {
7591 .notifier_call = migration_call, 7591 .notifier_call = migration_call,
7592 .priority = 10 7592 .priority = 10
7593 }; 7593 };
7594 7594
7595 static int __init migration_init(void) 7595 static int __init migration_init(void)
7596 { 7596 {
7597 void *cpu = (void *)(long)smp_processor_id(); 7597 void *cpu = (void *)(long)smp_processor_id();
7598 int err; 7598 int err;
7599 7599
7600 /* Start one for the boot CPU: */ 7600 /* Start one for the boot CPU: */
7601 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); 7601 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7602 BUG_ON(err == NOTIFY_BAD); 7602 BUG_ON(err == NOTIFY_BAD);
7603 migration_call(&migration_notifier, CPU_ONLINE, cpu); 7603 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7604 register_cpu_notifier(&migration_notifier); 7604 register_cpu_notifier(&migration_notifier);
7605 7605
7606 return err; 7606 return err;
7607 } 7607 }
7608 early_initcall(migration_init); 7608 early_initcall(migration_init);
7609 #endif 7609 #endif
7610 7610
7611 #ifdef CONFIG_SMP 7611 #ifdef CONFIG_SMP
7612 7612
7613 #ifdef CONFIG_SCHED_DEBUG 7613 #ifdef CONFIG_SCHED_DEBUG
7614 7614
7615 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 7615 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7616 struct cpumask *groupmask) 7616 struct cpumask *groupmask)
7617 { 7617 {
7618 struct sched_group *group = sd->groups; 7618 struct sched_group *group = sd->groups;
7619 char str[256]; 7619 char str[256];
7620 7620
7621 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); 7621 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7622 cpumask_clear(groupmask); 7622 cpumask_clear(groupmask);
7623 7623
7624 printk(KERN_DEBUG "%*s domain %d: ", level, "", level); 7624 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7625 7625
7626 if (!(sd->flags & SD_LOAD_BALANCE)) { 7626 if (!(sd->flags & SD_LOAD_BALANCE)) {
7627 printk("does not load-balance\n"); 7627 printk("does not load-balance\n");
7628 if (sd->parent) 7628 if (sd->parent)
7629 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" 7629 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7630 " has parent"); 7630 " has parent");
7631 return -1; 7631 return -1;
7632 } 7632 }
7633 7633
7634 printk(KERN_CONT "span %s level %s\n", str, sd->name); 7634 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7635 7635
7636 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 7636 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7637 printk(KERN_ERR "ERROR: domain->span does not contain " 7637 printk(KERN_ERR "ERROR: domain->span does not contain "
7638 "CPU%d\n", cpu); 7638 "CPU%d\n", cpu);
7639 } 7639 }
7640 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { 7640 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7641 printk(KERN_ERR "ERROR: domain->groups does not contain" 7641 printk(KERN_ERR "ERROR: domain->groups does not contain"
7642 " CPU%d\n", cpu); 7642 " CPU%d\n", cpu);
7643 } 7643 }
7644 7644
7645 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 7645 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7646 do { 7646 do {
7647 if (!group) { 7647 if (!group) {
7648 printk("\n"); 7648 printk("\n");
7649 printk(KERN_ERR "ERROR: group is NULL\n"); 7649 printk(KERN_ERR "ERROR: group is NULL\n");
7650 break; 7650 break;
7651 } 7651 }
7652 7652
7653 if (!group->__cpu_power) { 7653 if (!group->__cpu_power) {
7654 printk(KERN_CONT "\n"); 7654 printk(KERN_CONT "\n");
7655 printk(KERN_ERR "ERROR: domain->cpu_power not " 7655 printk(KERN_ERR "ERROR: domain->cpu_power not "
7656 "set\n"); 7656 "set\n");
7657 break; 7657 break;
7658 } 7658 }
7659 7659
7660 if (!cpumask_weight(sched_group_cpus(group))) { 7660 if (!cpumask_weight(sched_group_cpus(group))) {
7661 printk(KERN_CONT "\n"); 7661 printk(KERN_CONT "\n");
7662 printk(KERN_ERR "ERROR: empty group\n"); 7662 printk(KERN_ERR "ERROR: empty group\n");
7663 break; 7663 break;
7664 } 7664 }
7665 7665
7666 if (cpumask_intersects(groupmask, sched_group_cpus(group))) { 7666 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7667 printk(KERN_CONT "\n"); 7667 printk(KERN_CONT "\n");
7668 printk(KERN_ERR "ERROR: repeated CPUs\n"); 7668 printk(KERN_ERR "ERROR: repeated CPUs\n");
7669 break; 7669 break;
7670 } 7670 }
7671 7671
7672 cpumask_or(groupmask, groupmask, sched_group_cpus(group)); 7672 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7673 7673
7674 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); 7674 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7675 7675
7676 printk(KERN_CONT " %s", str); 7676 printk(KERN_CONT " %s", str);
7677 if (group->__cpu_power != SCHED_LOAD_SCALE) { 7677 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7678 printk(KERN_CONT " (__cpu_power = %d)", 7678 printk(KERN_CONT " (__cpu_power = %d)",
7679 group->__cpu_power); 7679 group->__cpu_power);
7680 } 7680 }
7681 7681
7682 group = group->next; 7682 group = group->next;
7683 } while (group != sd->groups); 7683 } while (group != sd->groups);
7684 printk(KERN_CONT "\n"); 7684 printk(KERN_CONT "\n");
7685 7685
7686 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 7686 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7687 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 7687 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7688 7688
7689 if (sd->parent && 7689 if (sd->parent &&
7690 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 7690 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7691 printk(KERN_ERR "ERROR: parent span is not a superset " 7691 printk(KERN_ERR "ERROR: parent span is not a superset "
7692 "of domain->span\n"); 7692 "of domain->span\n");
7693 return 0; 7693 return 0;
7694 } 7694 }
7695 7695
7696 static void sched_domain_debug(struct sched_domain *sd, int cpu) 7696 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7697 { 7697 {
7698 cpumask_var_t groupmask; 7698 cpumask_var_t groupmask;
7699 int level = 0; 7699 int level = 0;
7700 7700
7701 if (!sd) { 7701 if (!sd) {
7702 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 7702 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7703 return; 7703 return;
7704 } 7704 }
7705 7705
7706 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); 7706 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7707 7707
7708 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { 7708 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7709 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); 7709 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7710 return; 7710 return;
7711 } 7711 }
7712 7712
7713 for (;;) { 7713 for (;;) {
7714 if (sched_domain_debug_one(sd, cpu, level, groupmask)) 7714 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7715 break; 7715 break;
7716 level++; 7716 level++;
7717 sd = sd->parent; 7717 sd = sd->parent;
7718 if (!sd) 7718 if (!sd)
7719 break; 7719 break;
7720 } 7720 }
7721 free_cpumask_var(groupmask); 7721 free_cpumask_var(groupmask);
7722 } 7722 }
7723 #else /* !CONFIG_SCHED_DEBUG */ 7723 #else /* !CONFIG_SCHED_DEBUG */
7724 # define sched_domain_debug(sd, cpu) do { } while (0) 7724 # define sched_domain_debug(sd, cpu) do { } while (0)
7725 #endif /* CONFIG_SCHED_DEBUG */ 7725 #endif /* CONFIG_SCHED_DEBUG */
7726 7726
7727 static int sd_degenerate(struct sched_domain *sd) 7727 static int sd_degenerate(struct sched_domain *sd)
7728 { 7728 {
7729 if (cpumask_weight(sched_domain_span(sd)) == 1) 7729 if (cpumask_weight(sched_domain_span(sd)) == 1)
7730 return 1; 7730 return 1;
7731 7731
7732 /* Following flags need at least 2 groups */ 7732 /* Following flags need at least 2 groups */
7733 if (sd->flags & (SD_LOAD_BALANCE | 7733 if (sd->flags & (SD_LOAD_BALANCE |
7734 SD_BALANCE_NEWIDLE | 7734 SD_BALANCE_NEWIDLE |
7735 SD_BALANCE_FORK | 7735 SD_BALANCE_FORK |
7736 SD_BALANCE_EXEC | 7736 SD_BALANCE_EXEC |
7737 SD_SHARE_CPUPOWER | 7737 SD_SHARE_CPUPOWER |
7738 SD_SHARE_PKG_RESOURCES)) { 7738 SD_SHARE_PKG_RESOURCES)) {
7739 if (sd->groups != sd->groups->next) 7739 if (sd->groups != sd->groups->next)
7740 return 0; 7740 return 0;
7741 } 7741 }
7742 7742
7743 /* Following flags don't use groups */ 7743 /* Following flags don't use groups */
7744 if (sd->flags & (SD_WAKE_IDLE | 7744 if (sd->flags & (SD_WAKE_IDLE |
7745 SD_WAKE_AFFINE | 7745 SD_WAKE_AFFINE |
7746 SD_WAKE_BALANCE)) 7746 SD_WAKE_BALANCE))
7747 return 0; 7747 return 0;
7748 7748
7749 return 1; 7749 return 1;
7750 } 7750 }
7751 7751
7752 static int 7752 static int
7753 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 7753 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7754 { 7754 {
7755 unsigned long cflags = sd->flags, pflags = parent->flags; 7755 unsigned long cflags = sd->flags, pflags = parent->flags;
7756 7756
7757 if (sd_degenerate(parent)) 7757 if (sd_degenerate(parent))
7758 return 1; 7758 return 1;
7759 7759
7760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 7760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7761 return 0; 7761 return 0;
7762 7762
7763 /* Does parent contain flags not in child? */ 7763 /* Does parent contain flags not in child? */
7764 /* WAKE_BALANCE is a subset of WAKE_AFFINE */ 7764 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7765 if (cflags & SD_WAKE_AFFINE) 7765 if (cflags & SD_WAKE_AFFINE)
7766 pflags &= ~SD_WAKE_BALANCE; 7766 pflags &= ~SD_WAKE_BALANCE;
7767 /* Flags needing groups don't count if only 1 group in parent */ 7767 /* Flags needing groups don't count if only 1 group in parent */
7768 if (parent->groups == parent->groups->next) { 7768 if (parent->groups == parent->groups->next) {
7769 pflags &= ~(SD_LOAD_BALANCE | 7769 pflags &= ~(SD_LOAD_BALANCE |
7770 SD_BALANCE_NEWIDLE | 7770 SD_BALANCE_NEWIDLE |
7771 SD_BALANCE_FORK | 7771 SD_BALANCE_FORK |
7772 SD_BALANCE_EXEC | 7772 SD_BALANCE_EXEC |
7773 SD_SHARE_CPUPOWER | 7773 SD_SHARE_CPUPOWER |
7774 SD_SHARE_PKG_RESOURCES); 7774 SD_SHARE_PKG_RESOURCES);
7775 if (nr_node_ids == 1) 7775 if (nr_node_ids == 1)
7776 pflags &= ~SD_SERIALIZE; 7776 pflags &= ~SD_SERIALIZE;
7777 } 7777 }
7778 if (~cflags & pflags) 7778 if (~cflags & pflags)
7779 return 0; 7779 return 0;
7780 7780
7781 return 1; 7781 return 1;
7782 } 7782 }
7783 7783
7784 static void free_rootdomain(struct root_domain *rd) 7784 static void free_rootdomain(struct root_domain *rd)
7785 { 7785 {
7786 cpupri_cleanup(&rd->cpupri); 7786 cpupri_cleanup(&rd->cpupri);
7787 7787
7788 free_cpumask_var(rd->rto_mask); 7788 free_cpumask_var(rd->rto_mask);
7789 free_cpumask_var(rd->online); 7789 free_cpumask_var(rd->online);
7790 free_cpumask_var(rd->span); 7790 free_cpumask_var(rd->span);
7791 kfree(rd); 7791 kfree(rd);
7792 } 7792 }
7793 7793
7794 static void rq_attach_root(struct rq *rq, struct root_domain *rd) 7794 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7795 { 7795 {
7796 struct root_domain *old_rd = NULL; 7796 struct root_domain *old_rd = NULL;
7797 unsigned long flags; 7797 unsigned long flags;
7798 7798
7799 spin_lock_irqsave(&rq->lock, flags); 7799 spin_lock_irqsave(&rq->lock, flags);
7800 7800
7801 if (rq->rd) { 7801 if (rq->rd) {
7802 old_rd = rq->rd; 7802 old_rd = rq->rd;
7803 7803
7804 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 7804 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7805 set_rq_offline(rq); 7805 set_rq_offline(rq);
7806 7806
7807 cpumask_clear_cpu(rq->cpu, old_rd->span); 7807 cpumask_clear_cpu(rq->cpu, old_rd->span);
7808 7808
7809 /* 7809 /*
7810 * If we dont want to free the old_rt yet then 7810 * If we dont want to free the old_rt yet then
7811 * set old_rd to NULL to skip the freeing later 7811 * set old_rd to NULL to skip the freeing later
7812 * in this function: 7812 * in this function:
7813 */ 7813 */
7814 if (!atomic_dec_and_test(&old_rd->refcount)) 7814 if (!atomic_dec_and_test(&old_rd->refcount))
7815 old_rd = NULL; 7815 old_rd = NULL;
7816 } 7816 }
7817 7817
7818 atomic_inc(&rd->refcount); 7818 atomic_inc(&rd->refcount);
7819 rq->rd = rd; 7819 rq->rd = rd;
7820 7820
7821 cpumask_set_cpu(rq->cpu, rd->span); 7821 cpumask_set_cpu(rq->cpu, rd->span);
7822 if (cpumask_test_cpu(rq->cpu, cpu_online_mask)) 7822 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7823 set_rq_online(rq); 7823 set_rq_online(rq);
7824 7824
7825 spin_unlock_irqrestore(&rq->lock, flags); 7825 spin_unlock_irqrestore(&rq->lock, flags);
7826 7826
7827 if (old_rd) 7827 if (old_rd)
7828 free_rootdomain(old_rd); 7828 free_rootdomain(old_rd);
7829 } 7829 }
7830 7830
7831 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem) 7831 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7832 { 7832 {
7833 gfp_t gfp = GFP_KERNEL; 7833 gfp_t gfp = GFP_KERNEL;
7834 7834
7835 memset(rd, 0, sizeof(*rd)); 7835 memset(rd, 0, sizeof(*rd));
7836 7836
7837 if (bootmem) 7837 if (bootmem)
7838 gfp = GFP_NOWAIT; 7838 gfp = GFP_NOWAIT;
7839 7839
7840 if (!alloc_cpumask_var(&rd->span, gfp)) 7840 if (!alloc_cpumask_var(&rd->span, gfp))
7841 goto out; 7841 goto out;
7842 if (!alloc_cpumask_var(&rd->online, gfp)) 7842 if (!alloc_cpumask_var(&rd->online, gfp))
7843 goto free_span; 7843 goto free_span;
7844 if (!alloc_cpumask_var(&rd->rto_mask, gfp)) 7844 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7845 goto free_online; 7845 goto free_online;
7846 7846
7847 if (cpupri_init(&rd->cpupri, bootmem) != 0) 7847 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7848 goto free_rto_mask; 7848 goto free_rto_mask;
7849 return 0; 7849 return 0;
7850 7850
7851 free_rto_mask: 7851 free_rto_mask:
7852 free_cpumask_var(rd->rto_mask); 7852 free_cpumask_var(rd->rto_mask);
7853 free_online: 7853 free_online:
7854 free_cpumask_var(rd->online); 7854 free_cpumask_var(rd->online);
7855 free_span: 7855 free_span:
7856 free_cpumask_var(rd->span); 7856 free_cpumask_var(rd->span);
7857 out: 7857 out:
7858 return -ENOMEM; 7858 return -ENOMEM;
7859 } 7859 }
7860 7860
7861 static void init_defrootdomain(void) 7861 static void init_defrootdomain(void)
7862 { 7862 {
7863 init_rootdomain(&def_root_domain, true); 7863 init_rootdomain(&def_root_domain, true);
7864 7864
7865 atomic_set(&def_root_domain.refcount, 1); 7865 atomic_set(&def_root_domain.refcount, 1);
7866 } 7866 }
7867 7867
7868 static struct root_domain *alloc_rootdomain(void) 7868 static struct root_domain *alloc_rootdomain(void)
7869 { 7869 {
7870 struct root_domain *rd; 7870 struct root_domain *rd;
7871 7871
7872 rd = kmalloc(sizeof(*rd), GFP_KERNEL); 7872 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7873 if (!rd) 7873 if (!rd)
7874 return NULL; 7874 return NULL;
7875 7875
7876 if (init_rootdomain(rd, false) != 0) { 7876 if (init_rootdomain(rd, false) != 0) {
7877 kfree(rd); 7877 kfree(rd);
7878 return NULL; 7878 return NULL;
7879 } 7879 }
7880 7880
7881 return rd; 7881 return rd;
7882 } 7882 }
7883 7883
7884 /* 7884 /*
7885 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 7885 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7886 * hold the hotplug lock. 7886 * hold the hotplug lock.
7887 */ 7887 */
7888 static void 7888 static void
7889 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 7889 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7890 { 7890 {
7891 struct rq *rq = cpu_rq(cpu); 7891 struct rq *rq = cpu_rq(cpu);
7892 struct sched_domain *tmp; 7892 struct sched_domain *tmp;
7893 7893
7894 /* Remove the sched domains which do not contribute to scheduling. */ 7894 /* Remove the sched domains which do not contribute to scheduling. */
7895 for (tmp = sd; tmp; ) { 7895 for (tmp = sd; tmp; ) {
7896 struct sched_domain *parent = tmp->parent; 7896 struct sched_domain *parent = tmp->parent;
7897 if (!parent) 7897 if (!parent)
7898 break; 7898 break;
7899 7899
7900 if (sd_parent_degenerate(tmp, parent)) { 7900 if (sd_parent_degenerate(tmp, parent)) {
7901 tmp->parent = parent->parent; 7901 tmp->parent = parent->parent;
7902 if (parent->parent) 7902 if (parent->parent)
7903 parent->parent->child = tmp; 7903 parent->parent->child = tmp;
7904 } else 7904 } else
7905 tmp = tmp->parent; 7905 tmp = tmp->parent;
7906 } 7906 }
7907 7907
7908 if (sd && sd_degenerate(sd)) { 7908 if (sd && sd_degenerate(sd)) {
7909 sd = sd->parent; 7909 sd = sd->parent;
7910 if (sd) 7910 if (sd)
7911 sd->child = NULL; 7911 sd->child = NULL;
7912 } 7912 }
7913 7913
7914 sched_domain_debug(sd, cpu); 7914 sched_domain_debug(sd, cpu);
7915 7915
7916 rq_attach_root(rq, rd); 7916 rq_attach_root(rq, rd);
7917 rcu_assign_pointer(rq->sd, sd); 7917 rcu_assign_pointer(rq->sd, sd);
7918 } 7918 }
7919 7919
7920 /* cpus with isolated domains */ 7920 /* cpus with isolated domains */
7921 static cpumask_var_t cpu_isolated_map; 7921 static cpumask_var_t cpu_isolated_map;
7922 7922
7923 /* Setup the mask of cpus configured for isolated domains */ 7923 /* Setup the mask of cpus configured for isolated domains */
7924 static int __init isolated_cpu_setup(char *str) 7924 static int __init isolated_cpu_setup(char *str)
7925 { 7925 {
7926 cpulist_parse(str, cpu_isolated_map); 7926 cpulist_parse(str, cpu_isolated_map);
7927 return 1; 7927 return 1;
7928 } 7928 }
7929 7929
7930 __setup("isolcpus=", isolated_cpu_setup); 7930 __setup("isolcpus=", isolated_cpu_setup);
7931 7931
7932 /* 7932 /*
7933 * init_sched_build_groups takes the cpumask we wish to span, and a pointer 7933 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7934 * to a function which identifies what group(along with sched group) a CPU 7934 * to a function which identifies what group(along with sched group) a CPU
7935 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids 7935 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7936 * (due to the fact that we keep track of groups covered with a struct cpumask). 7936 * (due to the fact that we keep track of groups covered with a struct cpumask).
7937 * 7937 *
7938 * init_sched_build_groups will build a circular linked list of the groups 7938 * init_sched_build_groups will build a circular linked list of the groups
7939 * covered by the given span, and will set each group's ->cpumask correctly, 7939 * covered by the given span, and will set each group's ->cpumask correctly,
7940 * and ->cpu_power to 0. 7940 * and ->cpu_power to 0.
7941 */ 7941 */
7942 static void 7942 static void
7943 init_sched_build_groups(const struct cpumask *span, 7943 init_sched_build_groups(const struct cpumask *span,
7944 const struct cpumask *cpu_map, 7944 const struct cpumask *cpu_map,
7945 int (*group_fn)(int cpu, const struct cpumask *cpu_map, 7945 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7946 struct sched_group **sg, 7946 struct sched_group **sg,
7947 struct cpumask *tmpmask), 7947 struct cpumask *tmpmask),
7948 struct cpumask *covered, struct cpumask *tmpmask) 7948 struct cpumask *covered, struct cpumask *tmpmask)
7949 { 7949 {
7950 struct sched_group *first = NULL, *last = NULL; 7950 struct sched_group *first = NULL, *last = NULL;
7951 int i; 7951 int i;
7952 7952
7953 cpumask_clear(covered); 7953 cpumask_clear(covered);
7954 7954
7955 for_each_cpu(i, span) { 7955 for_each_cpu(i, span) {
7956 struct sched_group *sg; 7956 struct sched_group *sg;
7957 int group = group_fn(i, cpu_map, &sg, tmpmask); 7957 int group = group_fn(i, cpu_map, &sg, tmpmask);
7958 int j; 7958 int j;
7959 7959
7960 if (cpumask_test_cpu(i, covered)) 7960 if (cpumask_test_cpu(i, covered))
7961 continue; 7961 continue;
7962 7962
7963 cpumask_clear(sched_group_cpus(sg)); 7963 cpumask_clear(sched_group_cpus(sg));
7964 sg->__cpu_power = 0; 7964 sg->__cpu_power = 0;
7965 7965
7966 for_each_cpu(j, span) { 7966 for_each_cpu(j, span) {
7967 if (group_fn(j, cpu_map, NULL, tmpmask) != group) 7967 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7968 continue; 7968 continue;
7969 7969
7970 cpumask_set_cpu(j, covered); 7970 cpumask_set_cpu(j, covered);
7971 cpumask_set_cpu(j, sched_group_cpus(sg)); 7971 cpumask_set_cpu(j, sched_group_cpus(sg));
7972 } 7972 }
7973 if (!first) 7973 if (!first)
7974 first = sg; 7974 first = sg;
7975 if (last) 7975 if (last)
7976 last->next = sg; 7976 last->next = sg;
7977 last = sg; 7977 last = sg;
7978 } 7978 }
7979 last->next = first; 7979 last->next = first;
7980 } 7980 }
7981 7981
7982 #define SD_NODES_PER_DOMAIN 16 7982 #define SD_NODES_PER_DOMAIN 16
7983 7983
7984 #ifdef CONFIG_NUMA 7984 #ifdef CONFIG_NUMA
7985 7985
7986 /** 7986 /**
7987 * find_next_best_node - find the next node to include in a sched_domain 7987 * find_next_best_node - find the next node to include in a sched_domain
7988 * @node: node whose sched_domain we're building 7988 * @node: node whose sched_domain we're building
7989 * @used_nodes: nodes already in the sched_domain 7989 * @used_nodes: nodes already in the sched_domain
7990 * 7990 *
7991 * Find the next node to include in a given scheduling domain. Simply 7991 * Find the next node to include in a given scheduling domain. Simply
7992 * finds the closest node not already in the @used_nodes map. 7992 * finds the closest node not already in the @used_nodes map.
7993 * 7993 *
7994 * Should use nodemask_t. 7994 * Should use nodemask_t.
7995 */ 7995 */
7996 static int find_next_best_node(int node, nodemask_t *used_nodes) 7996 static int find_next_best_node(int node, nodemask_t *used_nodes)
7997 { 7997 {
7998 int i, n, val, min_val, best_node = 0; 7998 int i, n, val, min_val, best_node = 0;
7999 7999
8000 min_val = INT_MAX; 8000 min_val = INT_MAX;
8001 8001
8002 for (i = 0; i < nr_node_ids; i++) { 8002 for (i = 0; i < nr_node_ids; i++) {
8003 /* Start at @node */ 8003 /* Start at @node */
8004 n = (node + i) % nr_node_ids; 8004 n = (node + i) % nr_node_ids;
8005 8005
8006 if (!nr_cpus_node(n)) 8006 if (!nr_cpus_node(n))
8007 continue; 8007 continue;
8008 8008
8009 /* Skip already used nodes */ 8009 /* Skip already used nodes */
8010 if (node_isset(n, *used_nodes)) 8010 if (node_isset(n, *used_nodes))
8011 continue; 8011 continue;
8012 8012
8013 /* Simple min distance search */ 8013 /* Simple min distance search */
8014 val = node_distance(node, n); 8014 val = node_distance(node, n);
8015 8015
8016 if (val < min_val) { 8016 if (val < min_val) {
8017 min_val = val; 8017 min_val = val;
8018 best_node = n; 8018 best_node = n;
8019 } 8019 }
8020 } 8020 }
8021 8021
8022 node_set(best_node, *used_nodes); 8022 node_set(best_node, *used_nodes);
8023 return best_node; 8023 return best_node;
8024 } 8024 }
8025 8025
8026 /** 8026 /**
8027 * sched_domain_node_span - get a cpumask for a node's sched_domain 8027 * sched_domain_node_span - get a cpumask for a node's sched_domain
8028 * @node: node whose cpumask we're constructing 8028 * @node: node whose cpumask we're constructing
8029 * @span: resulting cpumask 8029 * @span: resulting cpumask
8030 * 8030 *
8031 * Given a node, construct a good cpumask for its sched_domain to span. It 8031 * Given a node, construct a good cpumask for its sched_domain to span. It
8032 * should be one that prevents unnecessary balancing, but also spreads tasks 8032 * should be one that prevents unnecessary balancing, but also spreads tasks
8033 * out optimally. 8033 * out optimally.
8034 */ 8034 */
8035 static void sched_domain_node_span(int node, struct cpumask *span) 8035 static void sched_domain_node_span(int node, struct cpumask *span)
8036 { 8036 {
8037 nodemask_t used_nodes; 8037 nodemask_t used_nodes;
8038 int i; 8038 int i;
8039 8039
8040 cpumask_clear(span); 8040 cpumask_clear(span);
8041 nodes_clear(used_nodes); 8041 nodes_clear(used_nodes);
8042 8042
8043 cpumask_or(span, span, cpumask_of_node(node)); 8043 cpumask_or(span, span, cpumask_of_node(node));
8044 node_set(node, used_nodes); 8044 node_set(node, used_nodes);
8045 8045
8046 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { 8046 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8047 int next_node = find_next_best_node(node, &used_nodes); 8047 int next_node = find_next_best_node(node, &used_nodes);
8048 8048
8049 cpumask_or(span, span, cpumask_of_node(next_node)); 8049 cpumask_or(span, span, cpumask_of_node(next_node));
8050 } 8050 }
8051 } 8051 }
8052 #endif /* CONFIG_NUMA */ 8052 #endif /* CONFIG_NUMA */
8053 8053
8054 int sched_smt_power_savings = 0, sched_mc_power_savings = 0; 8054 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8055 8055
8056 /* 8056 /*
8057 * The cpus mask in sched_group and sched_domain hangs off the end. 8057 * The cpus mask in sched_group and sched_domain hangs off the end.
8058 * 8058 *
8059 * ( See the the comments in include/linux/sched.h:struct sched_group 8059 * ( See the the comments in include/linux/sched.h:struct sched_group
8060 * and struct sched_domain. ) 8060 * and struct sched_domain. )
8061 */ 8061 */
8062 struct static_sched_group { 8062 struct static_sched_group {
8063 struct sched_group sg; 8063 struct sched_group sg;
8064 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS); 8064 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8065 }; 8065 };
8066 8066
8067 struct static_sched_domain { 8067 struct static_sched_domain {
8068 struct sched_domain sd; 8068 struct sched_domain sd;
8069 DECLARE_BITMAP(span, CONFIG_NR_CPUS); 8069 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8070 }; 8070 };
8071 8071
8072 /* 8072 /*
8073 * SMT sched-domains: 8073 * SMT sched-domains:
8074 */ 8074 */
8075 #ifdef CONFIG_SCHED_SMT 8075 #ifdef CONFIG_SCHED_SMT
8076 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains); 8076 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8077 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus); 8077 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8078 8078
8079 static int 8079 static int
8080 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map, 8080 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8081 struct sched_group **sg, struct cpumask *unused) 8081 struct sched_group **sg, struct cpumask *unused)
8082 { 8082 {
8083 if (sg) 8083 if (sg)
8084 *sg = &per_cpu(sched_group_cpus, cpu).sg; 8084 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8085 return cpu; 8085 return cpu;
8086 } 8086 }
8087 #endif /* CONFIG_SCHED_SMT */ 8087 #endif /* CONFIG_SCHED_SMT */
8088 8088
8089 /* 8089 /*
8090 * multi-core sched-domains: 8090 * multi-core sched-domains:
8091 */ 8091 */
8092 #ifdef CONFIG_SCHED_MC 8092 #ifdef CONFIG_SCHED_MC
8093 static DEFINE_PER_CPU(struct static_sched_domain, core_domains); 8093 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8094 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core); 8094 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8095 #endif /* CONFIG_SCHED_MC */ 8095 #endif /* CONFIG_SCHED_MC */
8096 8096
8097 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) 8097 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8098 static int 8098 static int
8099 cpu_to_core_group(int cpu, const struct cpumask *cpu_map, 8099 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8100 struct sched_group **sg, struct cpumask *mask) 8100 struct sched_group **sg, struct cpumask *mask)
8101 { 8101 {
8102 int group; 8102 int group;
8103 8103
8104 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); 8104 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8105 group = cpumask_first(mask); 8105 group = cpumask_first(mask);
8106 if (sg) 8106 if (sg)
8107 *sg = &per_cpu(sched_group_core, group).sg; 8107 *sg = &per_cpu(sched_group_core, group).sg;
8108 return group; 8108 return group;
8109 } 8109 }
8110 #elif defined(CONFIG_SCHED_MC) 8110 #elif defined(CONFIG_SCHED_MC)
8111 static int 8111 static int
8112 cpu_to_core_group(int cpu, const struct cpumask *cpu_map, 8112 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8113 struct sched_group **sg, struct cpumask *unused) 8113 struct sched_group **sg, struct cpumask *unused)
8114 { 8114 {
8115 if (sg) 8115 if (sg)
8116 *sg = &per_cpu(sched_group_core, cpu).sg; 8116 *sg = &per_cpu(sched_group_core, cpu).sg;
8117 return cpu; 8117 return cpu;
8118 } 8118 }
8119 #endif 8119 #endif
8120 8120
8121 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains); 8121 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8122 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys); 8122 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8123 8123
8124 static int 8124 static int
8125 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map, 8125 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8126 struct sched_group **sg, struct cpumask *mask) 8126 struct sched_group **sg, struct cpumask *mask)
8127 { 8127 {
8128 int group; 8128 int group;
8129 #ifdef CONFIG_SCHED_MC 8129 #ifdef CONFIG_SCHED_MC
8130 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map); 8130 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8131 group = cpumask_first(mask); 8131 group = cpumask_first(mask);
8132 #elif defined(CONFIG_SCHED_SMT) 8132 #elif defined(CONFIG_SCHED_SMT)
8133 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map); 8133 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8134 group = cpumask_first(mask); 8134 group = cpumask_first(mask);
8135 #else 8135 #else
8136 group = cpu; 8136 group = cpu;
8137 #endif 8137 #endif
8138 if (sg) 8138 if (sg)
8139 *sg = &per_cpu(sched_group_phys, group).sg; 8139 *sg = &per_cpu(sched_group_phys, group).sg;
8140 return group; 8140 return group;
8141 } 8141 }
8142 8142
8143 #ifdef CONFIG_NUMA 8143 #ifdef CONFIG_NUMA
8144 /* 8144 /*
8145 * The init_sched_build_groups can't handle what we want to do with node 8145 * The init_sched_build_groups can't handle what we want to do with node
8146 * groups, so roll our own. Now each node has its own list of groups which 8146 * groups, so roll our own. Now each node has its own list of groups which
8147 * gets dynamically allocated. 8147 * gets dynamically allocated.
8148 */ 8148 */
8149 static DEFINE_PER_CPU(struct static_sched_domain, node_domains); 8149 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8150 static struct sched_group ***sched_group_nodes_bycpu; 8150 static struct sched_group ***sched_group_nodes_bycpu;
8151 8151
8152 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains); 8152 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8153 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes); 8153 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8154 8154
8155 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map, 8155 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8156 struct sched_group **sg, 8156 struct sched_group **sg,
8157 struct cpumask *nodemask) 8157 struct cpumask *nodemask)
8158 { 8158 {
8159 int group; 8159 int group;
8160 8160
8161 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map); 8161 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8162 group = cpumask_first(nodemask); 8162 group = cpumask_first(nodemask);
8163 8163
8164 if (sg) 8164 if (sg)
8165 *sg = &per_cpu(sched_group_allnodes, group).sg; 8165 *sg = &per_cpu(sched_group_allnodes, group).sg;
8166 return group; 8166 return group;
8167 } 8167 }
8168 8168
8169 static void init_numa_sched_groups_power(struct sched_group *group_head) 8169 static void init_numa_sched_groups_power(struct sched_group *group_head)
8170 { 8170 {
8171 struct sched_group *sg = group_head; 8171 struct sched_group *sg = group_head;
8172 int j; 8172 int j;
8173 8173
8174 if (!sg) 8174 if (!sg)
8175 return; 8175 return;
8176 do { 8176 do {
8177 for_each_cpu(j, sched_group_cpus(sg)) { 8177 for_each_cpu(j, sched_group_cpus(sg)) {
8178 struct sched_domain *sd; 8178 struct sched_domain *sd;
8179 8179
8180 sd = &per_cpu(phys_domains, j).sd; 8180 sd = &per_cpu(phys_domains, j).sd;
8181 if (j != group_first_cpu(sd->groups)) { 8181 if (j != group_first_cpu(sd->groups)) {
8182 /* 8182 /*
8183 * Only add "power" once for each 8183 * Only add "power" once for each
8184 * physical package. 8184 * physical package.
8185 */ 8185 */
8186 continue; 8186 continue;
8187 } 8187 }
8188 8188
8189 sg_inc_cpu_power(sg, sd->groups->__cpu_power); 8189 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8190 } 8190 }
8191 sg = sg->next; 8191 sg = sg->next;
8192 } while (sg != group_head); 8192 } while (sg != group_head);
8193 } 8193 }
8194 #endif /* CONFIG_NUMA */ 8194 #endif /* CONFIG_NUMA */
8195 8195
8196 #ifdef CONFIG_NUMA 8196 #ifdef CONFIG_NUMA
8197 /* Free memory allocated for various sched_group structures */ 8197 /* Free memory allocated for various sched_group structures */
8198 static void free_sched_groups(const struct cpumask *cpu_map, 8198 static void free_sched_groups(const struct cpumask *cpu_map,
8199 struct cpumask *nodemask) 8199 struct cpumask *nodemask)
8200 { 8200 {
8201 int cpu, i; 8201 int cpu, i;
8202 8202
8203 for_each_cpu(cpu, cpu_map) { 8203 for_each_cpu(cpu, cpu_map) {
8204 struct sched_group **sched_group_nodes 8204 struct sched_group **sched_group_nodes
8205 = sched_group_nodes_bycpu[cpu]; 8205 = sched_group_nodes_bycpu[cpu];
8206 8206
8207 if (!sched_group_nodes) 8207 if (!sched_group_nodes)
8208 continue; 8208 continue;
8209 8209
8210 for (i = 0; i < nr_node_ids; i++) { 8210 for (i = 0; i < nr_node_ids; i++) {
8211 struct sched_group *oldsg, *sg = sched_group_nodes[i]; 8211 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8212 8212
8213 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8213 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8214 if (cpumask_empty(nodemask)) 8214 if (cpumask_empty(nodemask))
8215 continue; 8215 continue;
8216 8216
8217 if (sg == NULL) 8217 if (sg == NULL)
8218 continue; 8218 continue;
8219 sg = sg->next; 8219 sg = sg->next;
8220 next_sg: 8220 next_sg:
8221 oldsg = sg; 8221 oldsg = sg;
8222 sg = sg->next; 8222 sg = sg->next;
8223 kfree(oldsg); 8223 kfree(oldsg);
8224 if (oldsg != sched_group_nodes[i]) 8224 if (oldsg != sched_group_nodes[i])
8225 goto next_sg; 8225 goto next_sg;
8226 } 8226 }
8227 kfree(sched_group_nodes); 8227 kfree(sched_group_nodes);
8228 sched_group_nodes_bycpu[cpu] = NULL; 8228 sched_group_nodes_bycpu[cpu] = NULL;
8229 } 8229 }
8230 } 8230 }
8231 #else /* !CONFIG_NUMA */ 8231 #else /* !CONFIG_NUMA */
8232 static void free_sched_groups(const struct cpumask *cpu_map, 8232 static void free_sched_groups(const struct cpumask *cpu_map,
8233 struct cpumask *nodemask) 8233 struct cpumask *nodemask)
8234 { 8234 {
8235 } 8235 }
8236 #endif /* CONFIG_NUMA */ 8236 #endif /* CONFIG_NUMA */
8237 8237
8238 /* 8238 /*
8239 * Initialize sched groups cpu_power. 8239 * Initialize sched groups cpu_power.
8240 * 8240 *
8241 * cpu_power indicates the capacity of sched group, which is used while 8241 * cpu_power indicates the capacity of sched group, which is used while
8242 * distributing the load between different sched groups in a sched domain. 8242 * distributing the load between different sched groups in a sched domain.
8243 * Typically cpu_power for all the groups in a sched domain will be same unless 8243 * Typically cpu_power for all the groups in a sched domain will be same unless
8244 * there are asymmetries in the topology. If there are asymmetries, group 8244 * there are asymmetries in the topology. If there are asymmetries, group
8245 * having more cpu_power will pickup more load compared to the group having 8245 * having more cpu_power will pickup more load compared to the group having
8246 * less cpu_power. 8246 * less cpu_power.
8247 * 8247 *
8248 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents 8248 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8249 * the maximum number of tasks a group can handle in the presence of other idle 8249 * the maximum number of tasks a group can handle in the presence of other idle
8250 * or lightly loaded groups in the same sched domain. 8250 * or lightly loaded groups in the same sched domain.
8251 */ 8251 */
8252 static void init_sched_groups_power(int cpu, struct sched_domain *sd) 8252 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8253 { 8253 {
8254 struct sched_domain *child; 8254 struct sched_domain *child;
8255 struct sched_group *group; 8255 struct sched_group *group;
8256 8256
8257 WARN_ON(!sd || !sd->groups); 8257 WARN_ON(!sd || !sd->groups);
8258 8258
8259 if (cpu != group_first_cpu(sd->groups)) 8259 if (cpu != group_first_cpu(sd->groups))
8260 return; 8260 return;
8261 8261
8262 child = sd->child; 8262 child = sd->child;
8263 8263
8264 sd->groups->__cpu_power = 0; 8264 sd->groups->__cpu_power = 0;
8265 8265
8266 /* 8266 /*
8267 * For perf policy, if the groups in child domain share resources 8267 * For perf policy, if the groups in child domain share resources
8268 * (for example cores sharing some portions of the cache hierarchy 8268 * (for example cores sharing some portions of the cache hierarchy
8269 * or SMT), then set this domain groups cpu_power such that each group 8269 * or SMT), then set this domain groups cpu_power such that each group
8270 * can handle only one task, when there are other idle groups in the 8270 * can handle only one task, when there are other idle groups in the
8271 * same sched domain. 8271 * same sched domain.
8272 */ 8272 */
8273 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && 8273 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8274 (child->flags & 8274 (child->flags &
8275 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { 8275 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8276 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); 8276 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8277 return; 8277 return;
8278 } 8278 }
8279 8279
8280 /* 8280 /*
8281 * add cpu_power of each child group to this groups cpu_power 8281 * add cpu_power of each child group to this groups cpu_power
8282 */ 8282 */
8283 group = child->groups; 8283 group = child->groups;
8284 do { 8284 do {
8285 sg_inc_cpu_power(sd->groups, group->__cpu_power); 8285 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8286 group = group->next; 8286 group = group->next;
8287 } while (group != child->groups); 8287 } while (group != child->groups);
8288 } 8288 }
8289 8289
8290 /* 8290 /*
8291 * Initializers for schedule domains 8291 * Initializers for schedule domains
8292 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 8292 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8293 */ 8293 */
8294 8294
8295 #ifdef CONFIG_SCHED_DEBUG 8295 #ifdef CONFIG_SCHED_DEBUG
8296 # define SD_INIT_NAME(sd, type) sd->name = #type 8296 # define SD_INIT_NAME(sd, type) sd->name = #type
8297 #else 8297 #else
8298 # define SD_INIT_NAME(sd, type) do { } while (0) 8298 # define SD_INIT_NAME(sd, type) do { } while (0)
8299 #endif 8299 #endif
8300 8300
8301 #define SD_INIT(sd, type) sd_init_##type(sd) 8301 #define SD_INIT(sd, type) sd_init_##type(sd)
8302 8302
8303 #define SD_INIT_FUNC(type) \ 8303 #define SD_INIT_FUNC(type) \
8304 static noinline void sd_init_##type(struct sched_domain *sd) \ 8304 static noinline void sd_init_##type(struct sched_domain *sd) \
8305 { \ 8305 { \
8306 memset(sd, 0, sizeof(*sd)); \ 8306 memset(sd, 0, sizeof(*sd)); \
8307 *sd = SD_##type##_INIT; \ 8307 *sd = SD_##type##_INIT; \
8308 sd->level = SD_LV_##type; \ 8308 sd->level = SD_LV_##type; \
8309 SD_INIT_NAME(sd, type); \ 8309 SD_INIT_NAME(sd, type); \
8310 } 8310 }
8311 8311
8312 SD_INIT_FUNC(CPU) 8312 SD_INIT_FUNC(CPU)
8313 #ifdef CONFIG_NUMA 8313 #ifdef CONFIG_NUMA
8314 SD_INIT_FUNC(ALLNODES) 8314 SD_INIT_FUNC(ALLNODES)
8315 SD_INIT_FUNC(NODE) 8315 SD_INIT_FUNC(NODE)
8316 #endif 8316 #endif
8317 #ifdef CONFIG_SCHED_SMT 8317 #ifdef CONFIG_SCHED_SMT
8318 SD_INIT_FUNC(SIBLING) 8318 SD_INIT_FUNC(SIBLING)
8319 #endif 8319 #endif
8320 #ifdef CONFIG_SCHED_MC 8320 #ifdef CONFIG_SCHED_MC
8321 SD_INIT_FUNC(MC) 8321 SD_INIT_FUNC(MC)
8322 #endif 8322 #endif
8323 8323
8324 static int default_relax_domain_level = -1; 8324 static int default_relax_domain_level = -1;
8325 8325
8326 static int __init setup_relax_domain_level(char *str) 8326 static int __init setup_relax_domain_level(char *str)
8327 { 8327 {
8328 unsigned long val; 8328 unsigned long val;
8329 8329
8330 val = simple_strtoul(str, NULL, 0); 8330 val = simple_strtoul(str, NULL, 0);
8331 if (val < SD_LV_MAX) 8331 if (val < SD_LV_MAX)
8332 default_relax_domain_level = val; 8332 default_relax_domain_level = val;
8333 8333
8334 return 1; 8334 return 1;
8335 } 8335 }
8336 __setup("relax_domain_level=", setup_relax_domain_level); 8336 __setup("relax_domain_level=", setup_relax_domain_level);
8337 8337
8338 static void set_domain_attribute(struct sched_domain *sd, 8338 static void set_domain_attribute(struct sched_domain *sd,
8339 struct sched_domain_attr *attr) 8339 struct sched_domain_attr *attr)
8340 { 8340 {
8341 int request; 8341 int request;
8342 8342
8343 if (!attr || attr->relax_domain_level < 0) { 8343 if (!attr || attr->relax_domain_level < 0) {
8344 if (default_relax_domain_level < 0) 8344 if (default_relax_domain_level < 0)
8345 return; 8345 return;
8346 else 8346 else
8347 request = default_relax_domain_level; 8347 request = default_relax_domain_level;
8348 } else 8348 } else
8349 request = attr->relax_domain_level; 8349 request = attr->relax_domain_level;
8350 if (request < sd->level) { 8350 if (request < sd->level) {
8351 /* turn off idle balance on this domain */ 8351 /* turn off idle balance on this domain */
8352 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); 8352 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8353 } else { 8353 } else {
8354 /* turn on idle balance on this domain */ 8354 /* turn on idle balance on this domain */
8355 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); 8355 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8356 } 8356 }
8357 } 8357 }
8358 8358
8359 /* 8359 /*
8360 * Build sched domains for a given set of cpus and attach the sched domains 8360 * Build sched domains for a given set of cpus and attach the sched domains
8361 * to the individual cpus 8361 * to the individual cpus
8362 */ 8362 */
8363 static int __build_sched_domains(const struct cpumask *cpu_map, 8363 static int __build_sched_domains(const struct cpumask *cpu_map,
8364 struct sched_domain_attr *attr) 8364 struct sched_domain_attr *attr)
8365 { 8365 {
8366 int i, err = -ENOMEM; 8366 int i, err = -ENOMEM;
8367 struct root_domain *rd; 8367 struct root_domain *rd;
8368 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered, 8368 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8369 tmpmask; 8369 tmpmask;
8370 #ifdef CONFIG_NUMA 8370 #ifdef CONFIG_NUMA
8371 cpumask_var_t domainspan, covered, notcovered; 8371 cpumask_var_t domainspan, covered, notcovered;
8372 struct sched_group **sched_group_nodes = NULL; 8372 struct sched_group **sched_group_nodes = NULL;
8373 int sd_allnodes = 0; 8373 int sd_allnodes = 0;
8374 8374
8375 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL)) 8375 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8376 goto out; 8376 goto out;
8377 if (!alloc_cpumask_var(&covered, GFP_KERNEL)) 8377 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8378 goto free_domainspan; 8378 goto free_domainspan;
8379 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL)) 8379 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8380 goto free_covered; 8380 goto free_covered;
8381 #endif 8381 #endif
8382 8382
8383 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL)) 8383 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8384 goto free_notcovered; 8384 goto free_notcovered;
8385 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL)) 8385 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8386 goto free_nodemask; 8386 goto free_nodemask;
8387 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL)) 8387 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8388 goto free_this_sibling_map; 8388 goto free_this_sibling_map;
8389 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL)) 8389 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8390 goto free_this_core_map; 8390 goto free_this_core_map;
8391 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 8391 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8392 goto free_send_covered; 8392 goto free_send_covered;
8393 8393
8394 #ifdef CONFIG_NUMA 8394 #ifdef CONFIG_NUMA
8395 /* 8395 /*
8396 * Allocate the per-node list of sched groups 8396 * Allocate the per-node list of sched groups
8397 */ 8397 */
8398 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), 8398 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8399 GFP_KERNEL); 8399 GFP_KERNEL);
8400 if (!sched_group_nodes) { 8400 if (!sched_group_nodes) {
8401 printk(KERN_WARNING "Can not alloc sched group node list\n"); 8401 printk(KERN_WARNING "Can not alloc sched group node list\n");
8402 goto free_tmpmask; 8402 goto free_tmpmask;
8403 } 8403 }
8404 #endif 8404 #endif
8405 8405
8406 rd = alloc_rootdomain(); 8406 rd = alloc_rootdomain();
8407 if (!rd) { 8407 if (!rd) {
8408 printk(KERN_WARNING "Cannot alloc root domain\n"); 8408 printk(KERN_WARNING "Cannot alloc root domain\n");
8409 goto free_sched_groups; 8409 goto free_sched_groups;
8410 } 8410 }
8411 8411
8412 #ifdef CONFIG_NUMA 8412 #ifdef CONFIG_NUMA
8413 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes; 8413 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8414 #endif 8414 #endif
8415 8415
8416 /* 8416 /*
8417 * Set up domains for cpus specified by the cpu_map. 8417 * Set up domains for cpus specified by the cpu_map.
8418 */ 8418 */
8419 for_each_cpu(i, cpu_map) { 8419 for_each_cpu(i, cpu_map) {
8420 struct sched_domain *sd = NULL, *p; 8420 struct sched_domain *sd = NULL, *p;
8421 8421
8422 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map); 8422 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8423 8423
8424 #ifdef CONFIG_NUMA 8424 #ifdef CONFIG_NUMA
8425 if (cpumask_weight(cpu_map) > 8425 if (cpumask_weight(cpu_map) >
8426 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) { 8426 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8427 sd = &per_cpu(allnodes_domains, i).sd; 8427 sd = &per_cpu(allnodes_domains, i).sd;
8428 SD_INIT(sd, ALLNODES); 8428 SD_INIT(sd, ALLNODES);
8429 set_domain_attribute(sd, attr); 8429 set_domain_attribute(sd, attr);
8430 cpumask_copy(sched_domain_span(sd), cpu_map); 8430 cpumask_copy(sched_domain_span(sd), cpu_map);
8431 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); 8431 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8432 p = sd; 8432 p = sd;
8433 sd_allnodes = 1; 8433 sd_allnodes = 1;
8434 } else 8434 } else
8435 p = NULL; 8435 p = NULL;
8436 8436
8437 sd = &per_cpu(node_domains, i).sd; 8437 sd = &per_cpu(node_domains, i).sd;
8438 SD_INIT(sd, NODE); 8438 SD_INIT(sd, NODE);
8439 set_domain_attribute(sd, attr); 8439 set_domain_attribute(sd, attr);
8440 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd)); 8440 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8441 sd->parent = p; 8441 sd->parent = p;
8442 if (p) 8442 if (p)
8443 p->child = sd; 8443 p->child = sd;
8444 cpumask_and(sched_domain_span(sd), 8444 cpumask_and(sched_domain_span(sd),
8445 sched_domain_span(sd), cpu_map); 8445 sched_domain_span(sd), cpu_map);
8446 #endif 8446 #endif
8447 8447
8448 p = sd; 8448 p = sd;
8449 sd = &per_cpu(phys_domains, i).sd; 8449 sd = &per_cpu(phys_domains, i).sd;
8450 SD_INIT(sd, CPU); 8450 SD_INIT(sd, CPU);
8451 set_domain_attribute(sd, attr); 8451 set_domain_attribute(sd, attr);
8452 cpumask_copy(sched_domain_span(sd), nodemask); 8452 cpumask_copy(sched_domain_span(sd), nodemask);
8453 sd->parent = p; 8453 sd->parent = p;
8454 if (p) 8454 if (p)
8455 p->child = sd; 8455 p->child = sd;
8456 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); 8456 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8457 8457
8458 #ifdef CONFIG_SCHED_MC 8458 #ifdef CONFIG_SCHED_MC
8459 p = sd; 8459 p = sd;
8460 sd = &per_cpu(core_domains, i).sd; 8460 sd = &per_cpu(core_domains, i).sd;
8461 SD_INIT(sd, MC); 8461 SD_INIT(sd, MC);
8462 set_domain_attribute(sd, attr); 8462 set_domain_attribute(sd, attr);
8463 cpumask_and(sched_domain_span(sd), cpu_map, 8463 cpumask_and(sched_domain_span(sd), cpu_map,
8464 cpu_coregroup_mask(i)); 8464 cpu_coregroup_mask(i));
8465 sd->parent = p; 8465 sd->parent = p;
8466 p->child = sd; 8466 p->child = sd;
8467 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); 8467 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8468 #endif 8468 #endif
8469 8469
8470 #ifdef CONFIG_SCHED_SMT 8470 #ifdef CONFIG_SCHED_SMT
8471 p = sd; 8471 p = sd;
8472 sd = &per_cpu(cpu_domains, i).sd; 8472 sd = &per_cpu(cpu_domains, i).sd;
8473 SD_INIT(sd, SIBLING); 8473 SD_INIT(sd, SIBLING);
8474 set_domain_attribute(sd, attr); 8474 set_domain_attribute(sd, attr);
8475 cpumask_and(sched_domain_span(sd), 8475 cpumask_and(sched_domain_span(sd),
8476 topology_thread_cpumask(i), cpu_map); 8476 topology_thread_cpumask(i), cpu_map);
8477 sd->parent = p; 8477 sd->parent = p;
8478 p->child = sd; 8478 p->child = sd;
8479 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); 8479 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8480 #endif 8480 #endif
8481 } 8481 }
8482 8482
8483 #ifdef CONFIG_SCHED_SMT 8483 #ifdef CONFIG_SCHED_SMT
8484 /* Set up CPU (sibling) groups */ 8484 /* Set up CPU (sibling) groups */
8485 for_each_cpu(i, cpu_map) { 8485 for_each_cpu(i, cpu_map) {
8486 cpumask_and(this_sibling_map, 8486 cpumask_and(this_sibling_map,
8487 topology_thread_cpumask(i), cpu_map); 8487 topology_thread_cpumask(i), cpu_map);
8488 if (i != cpumask_first(this_sibling_map)) 8488 if (i != cpumask_first(this_sibling_map))
8489 continue; 8489 continue;
8490 8490
8491 init_sched_build_groups(this_sibling_map, cpu_map, 8491 init_sched_build_groups(this_sibling_map, cpu_map,
8492 &cpu_to_cpu_group, 8492 &cpu_to_cpu_group,
8493 send_covered, tmpmask); 8493 send_covered, tmpmask);
8494 } 8494 }
8495 #endif 8495 #endif
8496 8496
8497 #ifdef CONFIG_SCHED_MC 8497 #ifdef CONFIG_SCHED_MC
8498 /* Set up multi-core groups */ 8498 /* Set up multi-core groups */
8499 for_each_cpu(i, cpu_map) { 8499 for_each_cpu(i, cpu_map) {
8500 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map); 8500 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8501 if (i != cpumask_first(this_core_map)) 8501 if (i != cpumask_first(this_core_map))
8502 continue; 8502 continue;
8503 8503
8504 init_sched_build_groups(this_core_map, cpu_map, 8504 init_sched_build_groups(this_core_map, cpu_map,
8505 &cpu_to_core_group, 8505 &cpu_to_core_group,
8506 send_covered, tmpmask); 8506 send_covered, tmpmask);
8507 } 8507 }
8508 #endif 8508 #endif
8509 8509
8510 /* Set up physical groups */ 8510 /* Set up physical groups */
8511 for (i = 0; i < nr_node_ids; i++) { 8511 for (i = 0; i < nr_node_ids; i++) {
8512 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8512 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8513 if (cpumask_empty(nodemask)) 8513 if (cpumask_empty(nodemask))
8514 continue; 8514 continue;
8515 8515
8516 init_sched_build_groups(nodemask, cpu_map, 8516 init_sched_build_groups(nodemask, cpu_map,
8517 &cpu_to_phys_group, 8517 &cpu_to_phys_group,
8518 send_covered, tmpmask); 8518 send_covered, tmpmask);
8519 } 8519 }
8520 8520
8521 #ifdef CONFIG_NUMA 8521 #ifdef CONFIG_NUMA
8522 /* Set up node groups */ 8522 /* Set up node groups */
8523 if (sd_allnodes) { 8523 if (sd_allnodes) {
8524 init_sched_build_groups(cpu_map, cpu_map, 8524 init_sched_build_groups(cpu_map, cpu_map,
8525 &cpu_to_allnodes_group, 8525 &cpu_to_allnodes_group,
8526 send_covered, tmpmask); 8526 send_covered, tmpmask);
8527 } 8527 }
8528 8528
8529 for (i = 0; i < nr_node_ids; i++) { 8529 for (i = 0; i < nr_node_ids; i++) {
8530 /* Set up node groups */ 8530 /* Set up node groups */
8531 struct sched_group *sg, *prev; 8531 struct sched_group *sg, *prev;
8532 int j; 8532 int j;
8533 8533
8534 cpumask_clear(covered); 8534 cpumask_clear(covered);
8535 cpumask_and(nodemask, cpumask_of_node(i), cpu_map); 8535 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8536 if (cpumask_empty(nodemask)) { 8536 if (cpumask_empty(nodemask)) {
8537 sched_group_nodes[i] = NULL; 8537 sched_group_nodes[i] = NULL;
8538 continue; 8538 continue;
8539 } 8539 }
8540 8540
8541 sched_domain_node_span(i, domainspan); 8541 sched_domain_node_span(i, domainspan);
8542 cpumask_and(domainspan, domainspan, cpu_map); 8542 cpumask_and(domainspan, domainspan, cpu_map);
8543 8543
8544 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(), 8544 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8545 GFP_KERNEL, i); 8545 GFP_KERNEL, i);
8546 if (!sg) { 8546 if (!sg) {
8547 printk(KERN_WARNING "Can not alloc domain group for " 8547 printk(KERN_WARNING "Can not alloc domain group for "
8548 "node %d\n", i); 8548 "node %d\n", i);
8549 goto error; 8549 goto error;
8550 } 8550 }
8551 sched_group_nodes[i] = sg; 8551 sched_group_nodes[i] = sg;
8552 for_each_cpu(j, nodemask) { 8552 for_each_cpu(j, nodemask) {
8553 struct sched_domain *sd; 8553 struct sched_domain *sd;
8554 8554
8555 sd = &per_cpu(node_domains, j).sd; 8555 sd = &per_cpu(node_domains, j).sd;
8556 sd->groups = sg; 8556 sd->groups = sg;
8557 } 8557 }
8558 sg->__cpu_power = 0; 8558 sg->__cpu_power = 0;
8559 cpumask_copy(sched_group_cpus(sg), nodemask); 8559 cpumask_copy(sched_group_cpus(sg), nodemask);
8560 sg->next = sg; 8560 sg->next = sg;
8561 cpumask_or(covered, covered, nodemask); 8561 cpumask_or(covered, covered, nodemask);
8562 prev = sg; 8562 prev = sg;
8563 8563
8564 for (j = 0; j < nr_node_ids; j++) { 8564 for (j = 0; j < nr_node_ids; j++) {
8565 int n = (i + j) % nr_node_ids; 8565 int n = (i + j) % nr_node_ids;
8566 8566
8567 cpumask_complement(notcovered, covered); 8567 cpumask_complement(notcovered, covered);
8568 cpumask_and(tmpmask, notcovered, cpu_map); 8568 cpumask_and(tmpmask, notcovered, cpu_map);
8569 cpumask_and(tmpmask, tmpmask, domainspan); 8569 cpumask_and(tmpmask, tmpmask, domainspan);
8570 if (cpumask_empty(tmpmask)) 8570 if (cpumask_empty(tmpmask))
8571 break; 8571 break;
8572 8572
8573 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n)); 8573 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8574 if (cpumask_empty(tmpmask)) 8574 if (cpumask_empty(tmpmask))
8575 continue; 8575 continue;
8576 8576
8577 sg = kmalloc_node(sizeof(struct sched_group) + 8577 sg = kmalloc_node(sizeof(struct sched_group) +
8578 cpumask_size(), 8578 cpumask_size(),
8579 GFP_KERNEL, i); 8579 GFP_KERNEL, i);
8580 if (!sg) { 8580 if (!sg) {
8581 printk(KERN_WARNING 8581 printk(KERN_WARNING
8582 "Can not alloc domain group for node %d\n", j); 8582 "Can not alloc domain group for node %d\n", j);
8583 goto error; 8583 goto error;
8584 } 8584 }
8585 sg->__cpu_power = 0; 8585 sg->__cpu_power = 0;
8586 cpumask_copy(sched_group_cpus(sg), tmpmask); 8586 cpumask_copy(sched_group_cpus(sg), tmpmask);
8587 sg->next = prev->next; 8587 sg->next = prev->next;
8588 cpumask_or(covered, covered, tmpmask); 8588 cpumask_or(covered, covered, tmpmask);
8589 prev->next = sg; 8589 prev->next = sg;
8590 prev = sg; 8590 prev = sg;
8591 } 8591 }
8592 } 8592 }
8593 #endif 8593 #endif
8594 8594
8595 /* Calculate CPU power for physical packages and nodes */ 8595 /* Calculate CPU power for physical packages and nodes */
8596 #ifdef CONFIG_SCHED_SMT 8596 #ifdef CONFIG_SCHED_SMT
8597 for_each_cpu(i, cpu_map) { 8597 for_each_cpu(i, cpu_map) {
8598 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd; 8598 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8599 8599
8600 init_sched_groups_power(i, sd); 8600 init_sched_groups_power(i, sd);
8601 } 8601 }
8602 #endif 8602 #endif
8603 #ifdef CONFIG_SCHED_MC 8603 #ifdef CONFIG_SCHED_MC
8604 for_each_cpu(i, cpu_map) { 8604 for_each_cpu(i, cpu_map) {
8605 struct sched_domain *sd = &per_cpu(core_domains, i).sd; 8605 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8606 8606
8607 init_sched_groups_power(i, sd); 8607 init_sched_groups_power(i, sd);
8608 } 8608 }
8609 #endif 8609 #endif
8610 8610
8611 for_each_cpu(i, cpu_map) { 8611 for_each_cpu(i, cpu_map) {
8612 struct sched_domain *sd = &per_cpu(phys_domains, i).sd; 8612 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8613 8613
8614 init_sched_groups_power(i, sd); 8614 init_sched_groups_power(i, sd);
8615 } 8615 }
8616 8616
8617 #ifdef CONFIG_NUMA 8617 #ifdef CONFIG_NUMA
8618 for (i = 0; i < nr_node_ids; i++) 8618 for (i = 0; i < nr_node_ids; i++)
8619 init_numa_sched_groups_power(sched_group_nodes[i]); 8619 init_numa_sched_groups_power(sched_group_nodes[i]);
8620 8620
8621 if (sd_allnodes) { 8621 if (sd_allnodes) {
8622 struct sched_group *sg; 8622 struct sched_group *sg;
8623 8623
8624 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg, 8624 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8625 tmpmask); 8625 tmpmask);
8626 init_numa_sched_groups_power(sg); 8626 init_numa_sched_groups_power(sg);
8627 } 8627 }
8628 #endif 8628 #endif
8629 8629
8630 /* Attach the domains */ 8630 /* Attach the domains */
8631 for_each_cpu(i, cpu_map) { 8631 for_each_cpu(i, cpu_map) {
8632 struct sched_domain *sd; 8632 struct sched_domain *sd;
8633 #ifdef CONFIG_SCHED_SMT 8633 #ifdef CONFIG_SCHED_SMT
8634 sd = &per_cpu(cpu_domains, i).sd; 8634 sd = &per_cpu(cpu_domains, i).sd;
8635 #elif defined(CONFIG_SCHED_MC) 8635 #elif defined(CONFIG_SCHED_MC)
8636 sd = &per_cpu(core_domains, i).sd; 8636 sd = &per_cpu(core_domains, i).sd;
8637 #else 8637 #else
8638 sd = &per_cpu(phys_domains, i).sd; 8638 sd = &per_cpu(phys_domains, i).sd;
8639 #endif 8639 #endif
8640 cpu_attach_domain(sd, rd, i); 8640 cpu_attach_domain(sd, rd, i);
8641 } 8641 }
8642 8642
8643 err = 0; 8643 err = 0;
8644 8644
8645 free_tmpmask: 8645 free_tmpmask:
8646 free_cpumask_var(tmpmask); 8646 free_cpumask_var(tmpmask);
8647 free_send_covered: 8647 free_send_covered:
8648 free_cpumask_var(send_covered); 8648 free_cpumask_var(send_covered);
8649 free_this_core_map: 8649 free_this_core_map:
8650 free_cpumask_var(this_core_map); 8650 free_cpumask_var(this_core_map);
8651 free_this_sibling_map: 8651 free_this_sibling_map:
8652 free_cpumask_var(this_sibling_map); 8652 free_cpumask_var(this_sibling_map);
8653 free_nodemask: 8653 free_nodemask:
8654 free_cpumask_var(nodemask); 8654 free_cpumask_var(nodemask);
8655 free_notcovered: 8655 free_notcovered:
8656 #ifdef CONFIG_NUMA 8656 #ifdef CONFIG_NUMA
8657 free_cpumask_var(notcovered); 8657 free_cpumask_var(notcovered);
8658 free_covered: 8658 free_covered:
8659 free_cpumask_var(covered); 8659 free_cpumask_var(covered);
8660 free_domainspan: 8660 free_domainspan:
8661 free_cpumask_var(domainspan); 8661 free_cpumask_var(domainspan);
8662 out: 8662 out:
8663 #endif 8663 #endif
8664 return err; 8664 return err;
8665 8665
8666 free_sched_groups: 8666 free_sched_groups:
8667 #ifdef CONFIG_NUMA 8667 #ifdef CONFIG_NUMA
8668 kfree(sched_group_nodes); 8668 kfree(sched_group_nodes);
8669 #endif 8669 #endif
8670 goto free_tmpmask; 8670 goto free_tmpmask;
8671 8671
8672 #ifdef CONFIG_NUMA 8672 #ifdef CONFIG_NUMA
8673 error: 8673 error:
8674 free_sched_groups(cpu_map, tmpmask); 8674 free_sched_groups(cpu_map, tmpmask);
8675 free_rootdomain(rd); 8675 free_rootdomain(rd);
8676 goto free_tmpmask; 8676 goto free_tmpmask;
8677 #endif 8677 #endif
8678 } 8678 }
8679 8679
8680 static int build_sched_domains(const struct cpumask *cpu_map) 8680 static int build_sched_domains(const struct cpumask *cpu_map)
8681 { 8681 {
8682 return __build_sched_domains(cpu_map, NULL); 8682 return __build_sched_domains(cpu_map, NULL);
8683 } 8683 }
8684 8684
8685 static struct cpumask *doms_cur; /* current sched domains */ 8685 static struct cpumask *doms_cur; /* current sched domains */
8686 static int ndoms_cur; /* number of sched domains in 'doms_cur' */ 8686 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8687 static struct sched_domain_attr *dattr_cur; 8687 static struct sched_domain_attr *dattr_cur;
8688 /* attribues of custom domains in 'doms_cur' */ 8688 /* attribues of custom domains in 'doms_cur' */
8689 8689
8690 /* 8690 /*
8691 * Special case: If a kmalloc of a doms_cur partition (array of 8691 * Special case: If a kmalloc of a doms_cur partition (array of
8692 * cpumask) fails, then fallback to a single sched domain, 8692 * cpumask) fails, then fallback to a single sched domain,
8693 * as determined by the single cpumask fallback_doms. 8693 * as determined by the single cpumask fallback_doms.
8694 */ 8694 */
8695 static cpumask_var_t fallback_doms; 8695 static cpumask_var_t fallback_doms;
8696 8696
8697 /* 8697 /*
8698 * arch_update_cpu_topology lets virtualized architectures update the 8698 * arch_update_cpu_topology lets virtualized architectures update the
8699 * cpu core maps. It is supposed to return 1 if the topology changed 8699 * cpu core maps. It is supposed to return 1 if the topology changed
8700 * or 0 if it stayed the same. 8700 * or 0 if it stayed the same.
8701 */ 8701 */
8702 int __attribute__((weak)) arch_update_cpu_topology(void) 8702 int __attribute__((weak)) arch_update_cpu_topology(void)
8703 { 8703 {
8704 return 0; 8704 return 0;
8705 } 8705 }
8706 8706
8707 /* 8707 /*
8708 * Set up scheduler domains and groups. Callers must hold the hotplug lock. 8708 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8709 * For now this just excludes isolated cpus, but could be used to 8709 * For now this just excludes isolated cpus, but could be used to
8710 * exclude other special cases in the future. 8710 * exclude other special cases in the future.
8711 */ 8711 */
8712 static int arch_init_sched_domains(const struct cpumask *cpu_map) 8712 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8713 { 8713 {
8714 int err; 8714 int err;
8715 8715
8716 arch_update_cpu_topology(); 8716 arch_update_cpu_topology();
8717 ndoms_cur = 1; 8717 ndoms_cur = 1;
8718 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL); 8718 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8719 if (!doms_cur) 8719 if (!doms_cur)
8720 doms_cur = fallback_doms; 8720 doms_cur = fallback_doms;
8721 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map); 8721 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8722 dattr_cur = NULL; 8722 dattr_cur = NULL;
8723 err = build_sched_domains(doms_cur); 8723 err = build_sched_domains(doms_cur);
8724 register_sched_domain_sysctl(); 8724 register_sched_domain_sysctl();
8725 8725
8726 return err; 8726 return err;
8727 } 8727 }
8728 8728
8729 static void arch_destroy_sched_domains(const struct cpumask *cpu_map, 8729 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8730 struct cpumask *tmpmask) 8730 struct cpumask *tmpmask)
8731 { 8731 {
8732 free_sched_groups(cpu_map, tmpmask); 8732 free_sched_groups(cpu_map, tmpmask);
8733 } 8733 }
8734 8734
8735 /* 8735 /*
8736 * Detach sched domains from a group of cpus specified in cpu_map 8736 * Detach sched domains from a group of cpus specified in cpu_map
8737 * These cpus will now be attached to the NULL domain 8737 * These cpus will now be attached to the NULL domain
8738 */ 8738 */
8739 static void detach_destroy_domains(const struct cpumask *cpu_map) 8739 static void detach_destroy_domains(const struct cpumask *cpu_map)
8740 { 8740 {
8741 /* Save because hotplug lock held. */ 8741 /* Save because hotplug lock held. */
8742 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS); 8742 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8743 int i; 8743 int i;
8744 8744
8745 for_each_cpu(i, cpu_map) 8745 for_each_cpu(i, cpu_map)
8746 cpu_attach_domain(NULL, &def_root_domain, i); 8746 cpu_attach_domain(NULL, &def_root_domain, i);
8747 synchronize_sched(); 8747 synchronize_sched();
8748 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask)); 8748 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8749 } 8749 }
8750 8750
8751 /* handle null as "default" */ 8751 /* handle null as "default" */
8752 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 8752 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8753 struct sched_domain_attr *new, int idx_new) 8753 struct sched_domain_attr *new, int idx_new)
8754 { 8754 {
8755 struct sched_domain_attr tmp; 8755 struct sched_domain_attr tmp;
8756 8756
8757 /* fast path */ 8757 /* fast path */
8758 if (!new && !cur) 8758 if (!new && !cur)
8759 return 1; 8759 return 1;
8760 8760
8761 tmp = SD_ATTR_INIT; 8761 tmp = SD_ATTR_INIT;
8762 return !memcmp(cur ? (cur + idx_cur) : &tmp, 8762 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8763 new ? (new + idx_new) : &tmp, 8763 new ? (new + idx_new) : &tmp,
8764 sizeof(struct sched_domain_attr)); 8764 sizeof(struct sched_domain_attr));
8765 } 8765 }
8766 8766
8767 /* 8767 /*
8768 * Partition sched domains as specified by the 'ndoms_new' 8768 * Partition sched domains as specified by the 'ndoms_new'
8769 * cpumasks in the array doms_new[] of cpumasks. This compares 8769 * cpumasks in the array doms_new[] of cpumasks. This compares
8770 * doms_new[] to the current sched domain partitioning, doms_cur[]. 8770 * doms_new[] to the current sched domain partitioning, doms_cur[].
8771 * It destroys each deleted domain and builds each new domain. 8771 * It destroys each deleted domain and builds each new domain.
8772 * 8772 *
8773 * 'doms_new' is an array of cpumask's of length 'ndoms_new'. 8773 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8774 * The masks don't intersect (don't overlap.) We should setup one 8774 * The masks don't intersect (don't overlap.) We should setup one
8775 * sched domain for each mask. CPUs not in any of the cpumasks will 8775 * sched domain for each mask. CPUs not in any of the cpumasks will
8776 * not be load balanced. If the same cpumask appears both in the 8776 * not be load balanced. If the same cpumask appears both in the
8777 * current 'doms_cur' domains and in the new 'doms_new', we can leave 8777 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8778 * it as it is. 8778 * it as it is.
8779 * 8779 *
8780 * The passed in 'doms_new' should be kmalloc'd. This routine takes 8780 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8781 * ownership of it and will kfree it when done with it. If the caller 8781 * ownership of it and will kfree it when done with it. If the caller
8782 * failed the kmalloc call, then it can pass in doms_new == NULL && 8782 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8783 * ndoms_new == 1, and partition_sched_domains() will fallback to 8783 * ndoms_new == 1, and partition_sched_domains() will fallback to
8784 * the single partition 'fallback_doms', it also forces the domains 8784 * the single partition 'fallback_doms', it also forces the domains
8785 * to be rebuilt. 8785 * to be rebuilt.
8786 * 8786 *
8787 * If doms_new == NULL it will be replaced with cpu_online_mask. 8787 * If doms_new == NULL it will be replaced with cpu_online_mask.
8788 * ndoms_new == 0 is a special case for destroying existing domains, 8788 * ndoms_new == 0 is a special case for destroying existing domains,
8789 * and it will not create the default domain. 8789 * and it will not create the default domain.
8790 * 8790 *
8791 * Call with hotplug lock held 8791 * Call with hotplug lock held
8792 */ 8792 */
8793 /* FIXME: Change to struct cpumask *doms_new[] */ 8793 /* FIXME: Change to struct cpumask *doms_new[] */
8794 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new, 8794 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8795 struct sched_domain_attr *dattr_new) 8795 struct sched_domain_attr *dattr_new)
8796 { 8796 {
8797 int i, j, n; 8797 int i, j, n;
8798 int new_topology; 8798 int new_topology;
8799 8799
8800 mutex_lock(&sched_domains_mutex); 8800 mutex_lock(&sched_domains_mutex);
8801 8801
8802 /* always unregister in case we don't destroy any domains */ 8802 /* always unregister in case we don't destroy any domains */
8803 unregister_sched_domain_sysctl(); 8803 unregister_sched_domain_sysctl();
8804 8804
8805 /* Let architecture update cpu core mappings. */ 8805 /* Let architecture update cpu core mappings. */
8806 new_topology = arch_update_cpu_topology(); 8806 new_topology = arch_update_cpu_topology();
8807 8807
8808 n = doms_new ? ndoms_new : 0; 8808 n = doms_new ? ndoms_new : 0;
8809 8809
8810 /* Destroy deleted domains */ 8810 /* Destroy deleted domains */
8811 for (i = 0; i < ndoms_cur; i++) { 8811 for (i = 0; i < ndoms_cur; i++) {
8812 for (j = 0; j < n && !new_topology; j++) { 8812 for (j = 0; j < n && !new_topology; j++) {
8813 if (cpumask_equal(&doms_cur[i], &doms_new[j]) 8813 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8814 && dattrs_equal(dattr_cur, i, dattr_new, j)) 8814 && dattrs_equal(dattr_cur, i, dattr_new, j))
8815 goto match1; 8815 goto match1;
8816 } 8816 }
8817 /* no match - a current sched domain not in new doms_new[] */ 8817 /* no match - a current sched domain not in new doms_new[] */
8818 detach_destroy_domains(doms_cur + i); 8818 detach_destroy_domains(doms_cur + i);
8819 match1: 8819 match1:
8820 ; 8820 ;
8821 } 8821 }
8822 8822
8823 if (doms_new == NULL) { 8823 if (doms_new == NULL) {
8824 ndoms_cur = 0; 8824 ndoms_cur = 0;
8825 doms_new = fallback_doms; 8825 doms_new = fallback_doms;
8826 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map); 8826 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8827 WARN_ON_ONCE(dattr_new); 8827 WARN_ON_ONCE(dattr_new);
8828 } 8828 }
8829 8829
8830 /* Build new domains */ 8830 /* Build new domains */
8831 for (i = 0; i < ndoms_new; i++) { 8831 for (i = 0; i < ndoms_new; i++) {
8832 for (j = 0; j < ndoms_cur && !new_topology; j++) { 8832 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8833 if (cpumask_equal(&doms_new[i], &doms_cur[j]) 8833 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8834 && dattrs_equal(dattr_new, i, dattr_cur, j)) 8834 && dattrs_equal(dattr_new, i, dattr_cur, j))
8835 goto match2; 8835 goto match2;
8836 } 8836 }
8837 /* no match - add a new doms_new */ 8837 /* no match - add a new doms_new */
8838 __build_sched_domains(doms_new + i, 8838 __build_sched_domains(doms_new + i,
8839 dattr_new ? dattr_new + i : NULL); 8839 dattr_new ? dattr_new + i : NULL);
8840 match2: 8840 match2:
8841 ; 8841 ;
8842 } 8842 }
8843 8843
8844 /* Remember the new sched domains */ 8844 /* Remember the new sched domains */
8845 if (doms_cur != fallback_doms) 8845 if (doms_cur != fallback_doms)
8846 kfree(doms_cur); 8846 kfree(doms_cur);
8847 kfree(dattr_cur); /* kfree(NULL) is safe */ 8847 kfree(dattr_cur); /* kfree(NULL) is safe */
8848 doms_cur = doms_new; 8848 doms_cur = doms_new;
8849 dattr_cur = dattr_new; 8849 dattr_cur = dattr_new;
8850 ndoms_cur = ndoms_new; 8850 ndoms_cur = ndoms_new;
8851 8851
8852 register_sched_domain_sysctl(); 8852 register_sched_domain_sysctl();
8853 8853
8854 mutex_unlock(&sched_domains_mutex); 8854 mutex_unlock(&sched_domains_mutex);
8855 } 8855 }
8856 8856
8857 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 8857 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8858 static void arch_reinit_sched_domains(void) 8858 static void arch_reinit_sched_domains(void)
8859 { 8859 {
8860 get_online_cpus(); 8860 get_online_cpus();
8861 8861
8862 /* Destroy domains first to force the rebuild */ 8862 /* Destroy domains first to force the rebuild */
8863 partition_sched_domains(0, NULL, NULL); 8863 partition_sched_domains(0, NULL, NULL);
8864 8864
8865 rebuild_sched_domains(); 8865 rebuild_sched_domains();
8866 put_online_cpus(); 8866 put_online_cpus();
8867 } 8867 }
8868 8868
8869 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) 8869 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8870 { 8870 {
8871 unsigned int level = 0; 8871 unsigned int level = 0;
8872 8872
8873 if (sscanf(buf, "%u", &level) != 1) 8873 if (sscanf(buf, "%u", &level) != 1)
8874 return -EINVAL; 8874 return -EINVAL;
8875 8875
8876 /* 8876 /*
8877 * level is always be positive so don't check for 8877 * level is always be positive so don't check for
8878 * level < POWERSAVINGS_BALANCE_NONE which is 0 8878 * level < POWERSAVINGS_BALANCE_NONE which is 0
8879 * What happens on 0 or 1 byte write, 8879 * What happens on 0 or 1 byte write,
8880 * need to check for count as well? 8880 * need to check for count as well?
8881 */ 8881 */
8882 8882
8883 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS) 8883 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8884 return -EINVAL; 8884 return -EINVAL;
8885 8885
8886 if (smt) 8886 if (smt)
8887 sched_smt_power_savings = level; 8887 sched_smt_power_savings = level;
8888 else 8888 else
8889 sched_mc_power_savings = level; 8889 sched_mc_power_savings = level;
8890 8890
8891 arch_reinit_sched_domains(); 8891 arch_reinit_sched_domains();
8892 8892
8893 return count; 8893 return count;
8894 } 8894 }
8895 8895
8896 #ifdef CONFIG_SCHED_MC 8896 #ifdef CONFIG_SCHED_MC
8897 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, 8897 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8898 char *page) 8898 char *page)
8899 { 8899 {
8900 return sprintf(page, "%u\n", sched_mc_power_savings); 8900 return sprintf(page, "%u\n", sched_mc_power_savings);
8901 } 8901 }
8902 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, 8902 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8903 const char *buf, size_t count) 8903 const char *buf, size_t count)
8904 { 8904 {
8905 return sched_power_savings_store(buf, count, 0); 8905 return sched_power_savings_store(buf, count, 0);
8906 } 8906 }
8907 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, 8907 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8908 sched_mc_power_savings_show, 8908 sched_mc_power_savings_show,
8909 sched_mc_power_savings_store); 8909 sched_mc_power_savings_store);
8910 #endif 8910 #endif
8911 8911
8912 #ifdef CONFIG_SCHED_SMT 8912 #ifdef CONFIG_SCHED_SMT
8913 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, 8913 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8914 char *page) 8914 char *page)
8915 { 8915 {
8916 return sprintf(page, "%u\n", sched_smt_power_savings); 8916 return sprintf(page, "%u\n", sched_smt_power_savings);
8917 } 8917 }
8918 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, 8918 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8919 const char *buf, size_t count) 8919 const char *buf, size_t count)
8920 { 8920 {
8921 return sched_power_savings_store(buf, count, 1); 8921 return sched_power_savings_store(buf, count, 1);
8922 } 8922 }
8923 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, 8923 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8924 sched_smt_power_savings_show, 8924 sched_smt_power_savings_show,
8925 sched_smt_power_savings_store); 8925 sched_smt_power_savings_store);
8926 #endif 8926 #endif
8927 8927
8928 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) 8928 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8929 { 8929 {
8930 int err = 0; 8930 int err = 0;
8931 8931
8932 #ifdef CONFIG_SCHED_SMT 8932 #ifdef CONFIG_SCHED_SMT
8933 if (smt_capable()) 8933 if (smt_capable())
8934 err = sysfs_create_file(&cls->kset.kobj, 8934 err = sysfs_create_file(&cls->kset.kobj,
8935 &attr_sched_smt_power_savings.attr); 8935 &attr_sched_smt_power_savings.attr);
8936 #endif 8936 #endif
8937 #ifdef CONFIG_SCHED_MC 8937 #ifdef CONFIG_SCHED_MC
8938 if (!err && mc_capable()) 8938 if (!err && mc_capable())
8939 err = sysfs_create_file(&cls->kset.kobj, 8939 err = sysfs_create_file(&cls->kset.kobj,
8940 &attr_sched_mc_power_savings.attr); 8940 &attr_sched_mc_power_savings.attr);
8941 #endif 8941 #endif
8942 return err; 8942 return err;
8943 } 8943 }
8944 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 8944 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8945 8945
8946 #ifndef CONFIG_CPUSETS 8946 #ifndef CONFIG_CPUSETS
8947 /* 8947 /*
8948 * Add online and remove offline CPUs from the scheduler domains. 8948 * Add online and remove offline CPUs from the scheduler domains.
8949 * When cpusets are enabled they take over this function. 8949 * When cpusets are enabled they take over this function.
8950 */ 8950 */
8951 static int update_sched_domains(struct notifier_block *nfb, 8951 static int update_sched_domains(struct notifier_block *nfb,
8952 unsigned long action, void *hcpu) 8952 unsigned long action, void *hcpu)
8953 { 8953 {
8954 switch (action) { 8954 switch (action) {
8955 case CPU_ONLINE: 8955 case CPU_ONLINE:
8956 case CPU_ONLINE_FROZEN: 8956 case CPU_ONLINE_FROZEN:
8957 case CPU_DEAD: 8957 case CPU_DEAD:
8958 case CPU_DEAD_FROZEN: 8958 case CPU_DEAD_FROZEN:
8959 partition_sched_domains(1, NULL, NULL); 8959 partition_sched_domains(1, NULL, NULL);
8960 return NOTIFY_OK; 8960 return NOTIFY_OK;
8961 8961
8962 default: 8962 default:
8963 return NOTIFY_DONE; 8963 return NOTIFY_DONE;
8964 } 8964 }
8965 } 8965 }
8966 #endif 8966 #endif
8967 8967
8968 static int update_runtime(struct notifier_block *nfb, 8968 static int update_runtime(struct notifier_block *nfb,
8969 unsigned long action, void *hcpu) 8969 unsigned long action, void *hcpu)
8970 { 8970 {
8971 int cpu = (int)(long)hcpu; 8971 int cpu = (int)(long)hcpu;
8972 8972
8973 switch (action) { 8973 switch (action) {
8974 case CPU_DOWN_PREPARE: 8974 case CPU_DOWN_PREPARE:
8975 case CPU_DOWN_PREPARE_FROZEN: 8975 case CPU_DOWN_PREPARE_FROZEN:
8976 disable_runtime(cpu_rq(cpu)); 8976 disable_runtime(cpu_rq(cpu));
8977 return NOTIFY_OK; 8977 return NOTIFY_OK;
8978 8978
8979 case CPU_DOWN_FAILED: 8979 case CPU_DOWN_FAILED:
8980 case CPU_DOWN_FAILED_FROZEN: 8980 case CPU_DOWN_FAILED_FROZEN:
8981 case CPU_ONLINE: 8981 case CPU_ONLINE:
8982 case CPU_ONLINE_FROZEN: 8982 case CPU_ONLINE_FROZEN:
8983 enable_runtime(cpu_rq(cpu)); 8983 enable_runtime(cpu_rq(cpu));
8984 return NOTIFY_OK; 8984 return NOTIFY_OK;
8985 8985
8986 default: 8986 default:
8987 return NOTIFY_DONE; 8987 return NOTIFY_DONE;
8988 } 8988 }
8989 } 8989 }
8990 8990
8991 void __init sched_init_smp(void) 8991 void __init sched_init_smp(void)
8992 { 8992 {
8993 cpumask_var_t non_isolated_cpus; 8993 cpumask_var_t non_isolated_cpus;
8994 8994
8995 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); 8995 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8996 8996
8997 #if defined(CONFIG_NUMA) 8997 #if defined(CONFIG_NUMA)
8998 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), 8998 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8999 GFP_KERNEL); 8999 GFP_KERNEL);
9000 BUG_ON(sched_group_nodes_bycpu == NULL); 9000 BUG_ON(sched_group_nodes_bycpu == NULL);
9001 #endif 9001 #endif
9002 get_online_cpus(); 9002 get_online_cpus();
9003 mutex_lock(&sched_domains_mutex); 9003 mutex_lock(&sched_domains_mutex);
9004 arch_init_sched_domains(cpu_online_mask); 9004 arch_init_sched_domains(cpu_online_mask);
9005 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); 9005 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9006 if (cpumask_empty(non_isolated_cpus)) 9006 if (cpumask_empty(non_isolated_cpus))
9007 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); 9007 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9008 mutex_unlock(&sched_domains_mutex); 9008 mutex_unlock(&sched_domains_mutex);
9009 put_online_cpus(); 9009 put_online_cpus();
9010 9010
9011 #ifndef CONFIG_CPUSETS 9011 #ifndef CONFIG_CPUSETS
9012 /* XXX: Theoretical race here - CPU may be hotplugged now */ 9012 /* XXX: Theoretical race here - CPU may be hotplugged now */
9013 hotcpu_notifier(update_sched_domains, 0); 9013 hotcpu_notifier(update_sched_domains, 0);
9014 #endif 9014 #endif
9015 9015
9016 /* RT runtime code needs to handle some hotplug events */ 9016 /* RT runtime code needs to handle some hotplug events */
9017 hotcpu_notifier(update_runtime, 0); 9017 hotcpu_notifier(update_runtime, 0);
9018 9018
9019 init_hrtick(); 9019 init_hrtick();
9020 9020
9021 /* Move init over to a non-isolated CPU */ 9021 /* Move init over to a non-isolated CPU */
9022 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0) 9022 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9023 BUG(); 9023 BUG();
9024 sched_init_granularity(); 9024 sched_init_granularity();
9025 free_cpumask_var(non_isolated_cpus); 9025 free_cpumask_var(non_isolated_cpus);
9026 9026
9027 alloc_cpumask_var(&fallback_doms, GFP_KERNEL); 9027 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9028 init_sched_rt_class(); 9028 init_sched_rt_class();
9029 } 9029 }
9030 #else 9030 #else
9031 void __init sched_init_smp(void) 9031 void __init sched_init_smp(void)
9032 { 9032 {
9033 sched_init_granularity(); 9033 sched_init_granularity();
9034 } 9034 }
9035 #endif /* CONFIG_SMP */ 9035 #endif /* CONFIG_SMP */
9036 9036
9037 const_debug unsigned int sysctl_timer_migration = 1; 9037 const_debug unsigned int sysctl_timer_migration = 1;
9038 9038
9039 int in_sched_functions(unsigned long addr) 9039 int in_sched_functions(unsigned long addr)
9040 { 9040 {
9041 return in_lock_functions(addr) || 9041 return in_lock_functions(addr) ||
9042 (addr >= (unsigned long)__sched_text_start 9042 (addr >= (unsigned long)__sched_text_start
9043 && addr < (unsigned long)__sched_text_end); 9043 && addr < (unsigned long)__sched_text_end);
9044 } 9044 }
9045 9045
9046 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) 9046 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9047 { 9047 {
9048 cfs_rq->tasks_timeline = RB_ROOT; 9048 cfs_rq->tasks_timeline = RB_ROOT;
9049 INIT_LIST_HEAD(&cfs_rq->tasks); 9049 INIT_LIST_HEAD(&cfs_rq->tasks);
9050 #ifdef CONFIG_FAIR_GROUP_SCHED 9050 #ifdef CONFIG_FAIR_GROUP_SCHED
9051 cfs_rq->rq = rq; 9051 cfs_rq->rq = rq;
9052 #endif 9052 #endif
9053 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9053 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9054 } 9054 }
9055 9055
9056 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 9056 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9057 { 9057 {
9058 struct rt_prio_array *array; 9058 struct rt_prio_array *array;
9059 int i; 9059 int i;
9060 9060
9061 array = &rt_rq->active; 9061 array = &rt_rq->active;
9062 for (i = 0; i < MAX_RT_PRIO; i++) { 9062 for (i = 0; i < MAX_RT_PRIO; i++) {
9063 INIT_LIST_HEAD(array->queue + i); 9063 INIT_LIST_HEAD(array->queue + i);
9064 __clear_bit(i, array->bitmap); 9064 __clear_bit(i, array->bitmap);
9065 } 9065 }
9066 /* delimiter for bitsearch: */ 9066 /* delimiter for bitsearch: */
9067 __set_bit(MAX_RT_PRIO, array->bitmap); 9067 __set_bit(MAX_RT_PRIO, array->bitmap);
9068 9068
9069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 9069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9070 rt_rq->highest_prio.curr = MAX_RT_PRIO; 9070 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9071 #ifdef CONFIG_SMP 9071 #ifdef CONFIG_SMP
9072 rt_rq->highest_prio.next = MAX_RT_PRIO; 9072 rt_rq->highest_prio.next = MAX_RT_PRIO;
9073 #endif 9073 #endif
9074 #endif 9074 #endif
9075 #ifdef CONFIG_SMP 9075 #ifdef CONFIG_SMP
9076 rt_rq->rt_nr_migratory = 0; 9076 rt_rq->rt_nr_migratory = 0;
9077 rt_rq->overloaded = 0; 9077 rt_rq->overloaded = 0;
9078 plist_head_init(&rq->rt.pushable_tasks, &rq->lock); 9078 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
9079 #endif 9079 #endif
9080 9080
9081 rt_rq->rt_time = 0; 9081 rt_rq->rt_time = 0;
9082 rt_rq->rt_throttled = 0; 9082 rt_rq->rt_throttled = 0;
9083 rt_rq->rt_runtime = 0; 9083 rt_rq->rt_runtime = 0;
9084 spin_lock_init(&rt_rq->rt_runtime_lock); 9084 spin_lock_init(&rt_rq->rt_runtime_lock);
9085 9085
9086 #ifdef CONFIG_RT_GROUP_SCHED 9086 #ifdef CONFIG_RT_GROUP_SCHED
9087 rt_rq->rt_nr_boosted = 0; 9087 rt_rq->rt_nr_boosted = 0;
9088 rt_rq->rq = rq; 9088 rt_rq->rq = rq;
9089 #endif 9089 #endif
9090 } 9090 }
9091 9091
9092 #ifdef CONFIG_FAIR_GROUP_SCHED 9092 #ifdef CONFIG_FAIR_GROUP_SCHED
9093 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9093 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9094 struct sched_entity *se, int cpu, int add, 9094 struct sched_entity *se, int cpu, int add,
9095 struct sched_entity *parent) 9095 struct sched_entity *parent)
9096 { 9096 {
9097 struct rq *rq = cpu_rq(cpu); 9097 struct rq *rq = cpu_rq(cpu);
9098 tg->cfs_rq[cpu] = cfs_rq; 9098 tg->cfs_rq[cpu] = cfs_rq;
9099 init_cfs_rq(cfs_rq, rq); 9099 init_cfs_rq(cfs_rq, rq);
9100 cfs_rq->tg = tg; 9100 cfs_rq->tg = tg;
9101 if (add) 9101 if (add)
9102 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); 9102 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9103 9103
9104 tg->se[cpu] = se; 9104 tg->se[cpu] = se;
9105 /* se could be NULL for init_task_group */ 9105 /* se could be NULL for init_task_group */
9106 if (!se) 9106 if (!se)
9107 return; 9107 return;
9108 9108
9109 if (!parent) 9109 if (!parent)
9110 se->cfs_rq = &rq->cfs; 9110 se->cfs_rq = &rq->cfs;
9111 else 9111 else
9112 se->cfs_rq = parent->my_q; 9112 se->cfs_rq = parent->my_q;
9113 9113
9114 se->my_q = cfs_rq; 9114 se->my_q = cfs_rq;
9115 se->load.weight = tg->shares; 9115 se->load.weight = tg->shares;
9116 se->load.inv_weight = 0; 9116 se->load.inv_weight = 0;
9117 se->parent = parent; 9117 se->parent = parent;
9118 } 9118 }
9119 #endif 9119 #endif
9120 9120
9121 #ifdef CONFIG_RT_GROUP_SCHED 9121 #ifdef CONFIG_RT_GROUP_SCHED
9122 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 9122 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9123 struct sched_rt_entity *rt_se, int cpu, int add, 9123 struct sched_rt_entity *rt_se, int cpu, int add,
9124 struct sched_rt_entity *parent) 9124 struct sched_rt_entity *parent)
9125 { 9125 {
9126 struct rq *rq = cpu_rq(cpu); 9126 struct rq *rq = cpu_rq(cpu);
9127 9127
9128 tg->rt_rq[cpu] = rt_rq; 9128 tg->rt_rq[cpu] = rt_rq;
9129 init_rt_rq(rt_rq, rq); 9129 init_rt_rq(rt_rq, rq);
9130 rt_rq->tg = tg; 9130 rt_rq->tg = tg;
9131 rt_rq->rt_se = rt_se; 9131 rt_rq->rt_se = rt_se;
9132 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 9132 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9133 if (add) 9133 if (add)
9134 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); 9134 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9135 9135
9136 tg->rt_se[cpu] = rt_se; 9136 tg->rt_se[cpu] = rt_se;
9137 if (!rt_se) 9137 if (!rt_se)
9138 return; 9138 return;
9139 9139
9140 if (!parent) 9140 if (!parent)
9141 rt_se->rt_rq = &rq->rt; 9141 rt_se->rt_rq = &rq->rt;
9142 else 9142 else
9143 rt_se->rt_rq = parent->my_q; 9143 rt_se->rt_rq = parent->my_q;
9144 9144
9145 rt_se->my_q = rt_rq; 9145 rt_se->my_q = rt_rq;
9146 rt_se->parent = parent; 9146 rt_se->parent = parent;
9147 INIT_LIST_HEAD(&rt_se->run_list); 9147 INIT_LIST_HEAD(&rt_se->run_list);
9148 } 9148 }
9149 #endif 9149 #endif
9150 9150
9151 void __init sched_init(void) 9151 void __init sched_init(void)
9152 { 9152 {
9153 int i, j; 9153 int i, j;
9154 unsigned long alloc_size = 0, ptr; 9154 unsigned long alloc_size = 0, ptr;
9155 9155
9156 #ifdef CONFIG_FAIR_GROUP_SCHED 9156 #ifdef CONFIG_FAIR_GROUP_SCHED
9157 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 9157 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9158 #endif 9158 #endif
9159 #ifdef CONFIG_RT_GROUP_SCHED 9159 #ifdef CONFIG_RT_GROUP_SCHED
9160 alloc_size += 2 * nr_cpu_ids * sizeof(void **); 9160 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9161 #endif 9161 #endif
9162 #ifdef CONFIG_USER_SCHED 9162 #ifdef CONFIG_USER_SCHED
9163 alloc_size *= 2; 9163 alloc_size *= 2;
9164 #endif 9164 #endif
9165 #ifdef CONFIG_CPUMASK_OFFSTACK 9165 #ifdef CONFIG_CPUMASK_OFFSTACK
9166 alloc_size += num_possible_cpus() * cpumask_size(); 9166 alloc_size += num_possible_cpus() * cpumask_size();
9167 #endif 9167 #endif
9168 /* 9168 /*
9169 * As sched_init() is called before page_alloc is setup, 9169 * As sched_init() is called before page_alloc is setup,
9170 * we use alloc_bootmem(). 9170 * we use alloc_bootmem().
9171 */ 9171 */
9172 if (alloc_size) { 9172 if (alloc_size) {
9173 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT); 9173 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9174 9174
9175 #ifdef CONFIG_FAIR_GROUP_SCHED 9175 #ifdef CONFIG_FAIR_GROUP_SCHED
9176 init_task_group.se = (struct sched_entity **)ptr; 9176 init_task_group.se = (struct sched_entity **)ptr;
9177 ptr += nr_cpu_ids * sizeof(void **); 9177 ptr += nr_cpu_ids * sizeof(void **);
9178 9178
9179 init_task_group.cfs_rq = (struct cfs_rq **)ptr; 9179 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9180 ptr += nr_cpu_ids * sizeof(void **); 9180 ptr += nr_cpu_ids * sizeof(void **);
9181 9181
9182 #ifdef CONFIG_USER_SCHED 9182 #ifdef CONFIG_USER_SCHED
9183 root_task_group.se = (struct sched_entity **)ptr; 9183 root_task_group.se = (struct sched_entity **)ptr;
9184 ptr += nr_cpu_ids * sizeof(void **); 9184 ptr += nr_cpu_ids * sizeof(void **);
9185 9185
9186 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 9186 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9187 ptr += nr_cpu_ids * sizeof(void **); 9187 ptr += nr_cpu_ids * sizeof(void **);
9188 #endif /* CONFIG_USER_SCHED */ 9188 #endif /* CONFIG_USER_SCHED */
9189 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9189 #endif /* CONFIG_FAIR_GROUP_SCHED */
9190 #ifdef CONFIG_RT_GROUP_SCHED 9190 #ifdef CONFIG_RT_GROUP_SCHED
9191 init_task_group.rt_se = (struct sched_rt_entity **)ptr; 9191 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9192 ptr += nr_cpu_ids * sizeof(void **); 9192 ptr += nr_cpu_ids * sizeof(void **);
9193 9193
9194 init_task_group.rt_rq = (struct rt_rq **)ptr; 9194 init_task_group.rt_rq = (struct rt_rq **)ptr;
9195 ptr += nr_cpu_ids * sizeof(void **); 9195 ptr += nr_cpu_ids * sizeof(void **);
9196 9196
9197 #ifdef CONFIG_USER_SCHED 9197 #ifdef CONFIG_USER_SCHED
9198 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 9198 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9199 ptr += nr_cpu_ids * sizeof(void **); 9199 ptr += nr_cpu_ids * sizeof(void **);
9200 9200
9201 root_task_group.rt_rq = (struct rt_rq **)ptr; 9201 root_task_group.rt_rq = (struct rt_rq **)ptr;
9202 ptr += nr_cpu_ids * sizeof(void **); 9202 ptr += nr_cpu_ids * sizeof(void **);
9203 #endif /* CONFIG_USER_SCHED */ 9203 #endif /* CONFIG_USER_SCHED */
9204 #endif /* CONFIG_RT_GROUP_SCHED */ 9204 #endif /* CONFIG_RT_GROUP_SCHED */
9205 #ifdef CONFIG_CPUMASK_OFFSTACK 9205 #ifdef CONFIG_CPUMASK_OFFSTACK
9206 for_each_possible_cpu(i) { 9206 for_each_possible_cpu(i) {
9207 per_cpu(load_balance_tmpmask, i) = (void *)ptr; 9207 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9208 ptr += cpumask_size(); 9208 ptr += cpumask_size();
9209 } 9209 }
9210 #endif /* CONFIG_CPUMASK_OFFSTACK */ 9210 #endif /* CONFIG_CPUMASK_OFFSTACK */
9211 } 9211 }
9212 9212
9213 #ifdef CONFIG_SMP 9213 #ifdef CONFIG_SMP
9214 init_defrootdomain(); 9214 init_defrootdomain();
9215 #endif 9215 #endif
9216 9216
9217 init_rt_bandwidth(&def_rt_bandwidth, 9217 init_rt_bandwidth(&def_rt_bandwidth,
9218 global_rt_period(), global_rt_runtime()); 9218 global_rt_period(), global_rt_runtime());
9219 9219
9220 #ifdef CONFIG_RT_GROUP_SCHED 9220 #ifdef CONFIG_RT_GROUP_SCHED
9221 init_rt_bandwidth(&init_task_group.rt_bandwidth, 9221 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9222 global_rt_period(), global_rt_runtime()); 9222 global_rt_period(), global_rt_runtime());
9223 #ifdef CONFIG_USER_SCHED 9223 #ifdef CONFIG_USER_SCHED
9224 init_rt_bandwidth(&root_task_group.rt_bandwidth, 9224 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9225 global_rt_period(), RUNTIME_INF); 9225 global_rt_period(), RUNTIME_INF);
9226 #endif /* CONFIG_USER_SCHED */ 9226 #endif /* CONFIG_USER_SCHED */
9227 #endif /* CONFIG_RT_GROUP_SCHED */ 9227 #endif /* CONFIG_RT_GROUP_SCHED */
9228 9228
9229 #ifdef CONFIG_GROUP_SCHED 9229 #ifdef CONFIG_GROUP_SCHED
9230 list_add(&init_task_group.list, &task_groups); 9230 list_add(&init_task_group.list, &task_groups);
9231 INIT_LIST_HEAD(&init_task_group.children); 9231 INIT_LIST_HEAD(&init_task_group.children);
9232 9232
9233 #ifdef CONFIG_USER_SCHED 9233 #ifdef CONFIG_USER_SCHED
9234 INIT_LIST_HEAD(&root_task_group.children); 9234 INIT_LIST_HEAD(&root_task_group.children);
9235 init_task_group.parent = &root_task_group; 9235 init_task_group.parent = &root_task_group;
9236 list_add(&init_task_group.siblings, &root_task_group.children); 9236 list_add(&init_task_group.siblings, &root_task_group.children);
9237 #endif /* CONFIG_USER_SCHED */ 9237 #endif /* CONFIG_USER_SCHED */
9238 #endif /* CONFIG_GROUP_SCHED */ 9238 #endif /* CONFIG_GROUP_SCHED */
9239 9239
9240 for_each_possible_cpu(i) { 9240 for_each_possible_cpu(i) {
9241 struct rq *rq; 9241 struct rq *rq;
9242 9242
9243 rq = cpu_rq(i); 9243 rq = cpu_rq(i);
9244 spin_lock_init(&rq->lock); 9244 spin_lock_init(&rq->lock);
9245 rq->nr_running = 0; 9245 rq->nr_running = 0;
9246 rq->calc_load_active = 0; 9246 rq->calc_load_active = 0;
9247 rq->calc_load_update = jiffies + LOAD_FREQ; 9247 rq->calc_load_update = jiffies + LOAD_FREQ;
9248 init_cfs_rq(&rq->cfs, rq); 9248 init_cfs_rq(&rq->cfs, rq);
9249 init_rt_rq(&rq->rt, rq); 9249 init_rt_rq(&rq->rt, rq);
9250 #ifdef CONFIG_FAIR_GROUP_SCHED 9250 #ifdef CONFIG_FAIR_GROUP_SCHED
9251 init_task_group.shares = init_task_group_load; 9251 init_task_group.shares = init_task_group_load;
9252 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 9252 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9253 #ifdef CONFIG_CGROUP_SCHED 9253 #ifdef CONFIG_CGROUP_SCHED
9254 /* 9254 /*
9255 * How much cpu bandwidth does init_task_group get? 9255 * How much cpu bandwidth does init_task_group get?
9256 * 9256 *
9257 * In case of task-groups formed thr' the cgroup filesystem, it 9257 * In case of task-groups formed thr' the cgroup filesystem, it
9258 * gets 100% of the cpu resources in the system. This overall 9258 * gets 100% of the cpu resources in the system. This overall
9259 * system cpu resource is divided among the tasks of 9259 * system cpu resource is divided among the tasks of
9260 * init_task_group and its child task-groups in a fair manner, 9260 * init_task_group and its child task-groups in a fair manner,
9261 * based on each entity's (task or task-group's) weight 9261 * based on each entity's (task or task-group's) weight
9262 * (se->load.weight). 9262 * (se->load.weight).
9263 * 9263 *
9264 * In other words, if init_task_group has 10 tasks of weight 9264 * In other words, if init_task_group has 10 tasks of weight
9265 * 1024) and two child groups A0 and A1 (of weight 1024 each), 9265 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9266 * then A0's share of the cpu resource is: 9266 * then A0's share of the cpu resource is:
9267 * 9267 *
9268 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 9268 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9269 * 9269 *
9270 * We achieve this by letting init_task_group's tasks sit 9270 * We achieve this by letting init_task_group's tasks sit
9271 * directly in rq->cfs (i.e init_task_group->se[] = NULL). 9271 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9272 */ 9272 */
9273 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); 9273 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9274 #elif defined CONFIG_USER_SCHED 9274 #elif defined CONFIG_USER_SCHED
9275 root_task_group.shares = NICE_0_LOAD; 9275 root_task_group.shares = NICE_0_LOAD;
9276 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); 9276 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9277 /* 9277 /*
9278 * In case of task-groups formed thr' the user id of tasks, 9278 * In case of task-groups formed thr' the user id of tasks,
9279 * init_task_group represents tasks belonging to root user. 9279 * init_task_group represents tasks belonging to root user.
9280 * Hence it forms a sibling of all subsequent groups formed. 9280 * Hence it forms a sibling of all subsequent groups formed.
9281 * In this case, init_task_group gets only a fraction of overall 9281 * In this case, init_task_group gets only a fraction of overall
9282 * system cpu resource, based on the weight assigned to root 9282 * system cpu resource, based on the weight assigned to root
9283 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished 9283 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9284 * by letting tasks of init_task_group sit in a separate cfs_rq 9284 * by letting tasks of init_task_group sit in a separate cfs_rq
9285 * (init_cfs_rq) and having one entity represent this group of 9285 * (init_cfs_rq) and having one entity represent this group of
9286 * tasks in rq->cfs (i.e init_task_group->se[] != NULL). 9286 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9287 */ 9287 */
9288 init_tg_cfs_entry(&init_task_group, 9288 init_tg_cfs_entry(&init_task_group,
9289 &per_cpu(init_cfs_rq, i), 9289 &per_cpu(init_cfs_rq, i),
9290 &per_cpu(init_sched_entity, i), i, 1, 9290 &per_cpu(init_sched_entity, i), i, 1,
9291 root_task_group.se[i]); 9291 root_task_group.se[i]);
9292 9292
9293 #endif 9293 #endif
9294 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9294 #endif /* CONFIG_FAIR_GROUP_SCHED */
9295 9295
9296 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; 9296 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9297 #ifdef CONFIG_RT_GROUP_SCHED 9297 #ifdef CONFIG_RT_GROUP_SCHED
9298 INIT_LIST_HEAD(&rq->leaf_rt_rq_list); 9298 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9299 #ifdef CONFIG_CGROUP_SCHED 9299 #ifdef CONFIG_CGROUP_SCHED
9300 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); 9300 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9301 #elif defined CONFIG_USER_SCHED 9301 #elif defined CONFIG_USER_SCHED
9302 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); 9302 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9303 init_tg_rt_entry(&init_task_group, 9303 init_tg_rt_entry(&init_task_group,
9304 &per_cpu(init_rt_rq, i), 9304 &per_cpu(init_rt_rq, i),
9305 &per_cpu(init_sched_rt_entity, i), i, 1, 9305 &per_cpu(init_sched_rt_entity, i), i, 1,
9306 root_task_group.rt_se[i]); 9306 root_task_group.rt_se[i]);
9307 #endif 9307 #endif
9308 #endif 9308 #endif
9309 9309
9310 for (j = 0; j < CPU_LOAD_IDX_MAX; j++) 9310 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9311 rq->cpu_load[j] = 0; 9311 rq->cpu_load[j] = 0;
9312 #ifdef CONFIG_SMP 9312 #ifdef CONFIG_SMP
9313 rq->sd = NULL; 9313 rq->sd = NULL;
9314 rq->rd = NULL; 9314 rq->rd = NULL;
9315 rq->active_balance = 0; 9315 rq->active_balance = 0;
9316 rq->next_balance = jiffies; 9316 rq->next_balance = jiffies;
9317 rq->push_cpu = 0; 9317 rq->push_cpu = 0;
9318 rq->cpu = i; 9318 rq->cpu = i;
9319 rq->online = 0; 9319 rq->online = 0;
9320 rq->migration_thread = NULL; 9320 rq->migration_thread = NULL;
9321 INIT_LIST_HEAD(&rq->migration_queue); 9321 INIT_LIST_HEAD(&rq->migration_queue);
9322 rq_attach_root(rq, &def_root_domain); 9322 rq_attach_root(rq, &def_root_domain);
9323 #endif 9323 #endif
9324 init_rq_hrtick(rq); 9324 init_rq_hrtick(rq);
9325 atomic_set(&rq->nr_iowait, 0); 9325 atomic_set(&rq->nr_iowait, 0);
9326 } 9326 }
9327 9327
9328 set_load_weight(&init_task); 9328 set_load_weight(&init_task);
9329 9329
9330 #ifdef CONFIG_PREEMPT_NOTIFIERS 9330 #ifdef CONFIG_PREEMPT_NOTIFIERS
9331 INIT_HLIST_HEAD(&init_task.preempt_notifiers); 9331 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9332 #endif 9332 #endif
9333 9333
9334 #ifdef CONFIG_SMP 9334 #ifdef CONFIG_SMP
9335 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9335 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9336 #endif 9336 #endif
9337 9337
9338 #ifdef CONFIG_RT_MUTEXES 9338 #ifdef CONFIG_RT_MUTEXES
9339 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); 9339 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9340 #endif 9340 #endif
9341 9341
9342 /* 9342 /*
9343 * The boot idle thread does lazy MMU switching as well: 9343 * The boot idle thread does lazy MMU switching as well:
9344 */ 9344 */
9345 atomic_inc(&init_mm.mm_count); 9345 atomic_inc(&init_mm.mm_count);
9346 enter_lazy_tlb(&init_mm, current); 9346 enter_lazy_tlb(&init_mm, current);
9347 9347
9348 /* 9348 /*
9349 * Make us the idle thread. Technically, schedule() should not be 9349 * Make us the idle thread. Technically, schedule() should not be
9350 * called from this thread, however somewhere below it might be, 9350 * called from this thread, however somewhere below it might be,
9351 * but because we are the idle thread, we just pick up running again 9351 * but because we are the idle thread, we just pick up running again
9352 * when this runqueue becomes "idle". 9352 * when this runqueue becomes "idle".
9353 */ 9353 */
9354 init_idle(current, smp_processor_id()); 9354 init_idle(current, smp_processor_id());
9355 9355
9356 calc_load_update = jiffies + LOAD_FREQ; 9356 calc_load_update = jiffies + LOAD_FREQ;
9357 9357
9358 /* 9358 /*
9359 * During early bootup we pretend to be a normal task: 9359 * During early bootup we pretend to be a normal task:
9360 */ 9360 */
9361 current->sched_class = &fair_sched_class; 9361 current->sched_class = &fair_sched_class;
9362 9362
9363 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */ 9363 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9364 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT); 9364 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9365 #ifdef CONFIG_SMP 9365 #ifdef CONFIG_SMP
9366 #ifdef CONFIG_NO_HZ 9366 #ifdef CONFIG_NO_HZ
9367 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT); 9367 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9368 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT); 9368 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9369 #endif 9369 #endif
9370 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); 9370 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9371 #endif /* SMP */ 9371 #endif /* SMP */
9372 9372
9373 perf_counter_init(); 9373 perf_counter_init();
9374 9374
9375 scheduler_running = 1; 9375 scheduler_running = 1;
9376 } 9376 }
9377 9377
9378 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP 9378 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9379 void __might_sleep(char *file, int line) 9379 void __might_sleep(char *file, int line)
9380 { 9380 {
9381 #ifdef in_atomic 9381 #ifdef in_atomic
9382 static unsigned long prev_jiffy; /* ratelimiting */ 9382 static unsigned long prev_jiffy; /* ratelimiting */
9383 9383
9384 if ((!in_atomic() && !irqs_disabled()) || 9384 if ((!in_atomic() && !irqs_disabled()) ||
9385 system_state != SYSTEM_RUNNING || oops_in_progress) 9385 system_state != SYSTEM_RUNNING || oops_in_progress)
9386 return; 9386 return;
9387 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 9387 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9388 return; 9388 return;
9389 prev_jiffy = jiffies; 9389 prev_jiffy = jiffies;
9390 9390
9391 printk(KERN_ERR 9391 printk(KERN_ERR
9392 "BUG: sleeping function called from invalid context at %s:%d\n", 9392 "BUG: sleeping function called from invalid context at %s:%d\n",
9393 file, line); 9393 file, line);
9394 printk(KERN_ERR 9394 printk(KERN_ERR
9395 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 9395 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9396 in_atomic(), irqs_disabled(), 9396 in_atomic(), irqs_disabled(),
9397 current->pid, current->comm); 9397 current->pid, current->comm);
9398 9398
9399 debug_show_held_locks(current); 9399 debug_show_held_locks(current);
9400 if (irqs_disabled()) 9400 if (irqs_disabled())
9401 print_irqtrace_events(current); 9401 print_irqtrace_events(current);
9402 dump_stack(); 9402 dump_stack();
9403 #endif 9403 #endif
9404 } 9404 }
9405 EXPORT_SYMBOL(__might_sleep); 9405 EXPORT_SYMBOL(__might_sleep);
9406 #endif 9406 #endif
9407 9407
9408 #ifdef CONFIG_MAGIC_SYSRQ 9408 #ifdef CONFIG_MAGIC_SYSRQ
9409 static void normalize_task(struct rq *rq, struct task_struct *p) 9409 static void normalize_task(struct rq *rq, struct task_struct *p)
9410 { 9410 {
9411 int on_rq; 9411 int on_rq;
9412 9412
9413 update_rq_clock(rq); 9413 update_rq_clock(rq);
9414 on_rq = p->se.on_rq; 9414 on_rq = p->se.on_rq;
9415 if (on_rq) 9415 if (on_rq)
9416 deactivate_task(rq, p, 0); 9416 deactivate_task(rq, p, 0);
9417 __setscheduler(rq, p, SCHED_NORMAL, 0); 9417 __setscheduler(rq, p, SCHED_NORMAL, 0);
9418 if (on_rq) { 9418 if (on_rq) {
9419 activate_task(rq, p, 0); 9419 activate_task(rq, p, 0);
9420 resched_task(rq->curr); 9420 resched_task(rq->curr);
9421 } 9421 }
9422 } 9422 }
9423 9423
9424 void normalize_rt_tasks(void) 9424 void normalize_rt_tasks(void)
9425 { 9425 {
9426 struct task_struct *g, *p; 9426 struct task_struct *g, *p;
9427 unsigned long flags; 9427 unsigned long flags;
9428 struct rq *rq; 9428 struct rq *rq;
9429 9429
9430 read_lock_irqsave(&tasklist_lock, flags); 9430 read_lock_irqsave(&tasklist_lock, flags);
9431 do_each_thread(g, p) { 9431 do_each_thread(g, p) {
9432 /* 9432 /*
9433 * Only normalize user tasks: 9433 * Only normalize user tasks:
9434 */ 9434 */
9435 if (!p->mm) 9435 if (!p->mm)
9436 continue; 9436 continue;
9437 9437
9438 p->se.exec_start = 0; 9438 p->se.exec_start = 0;
9439 #ifdef CONFIG_SCHEDSTATS 9439 #ifdef CONFIG_SCHEDSTATS
9440 p->se.wait_start = 0; 9440 p->se.wait_start = 0;
9441 p->se.sleep_start = 0; 9441 p->se.sleep_start = 0;
9442 p->se.block_start = 0; 9442 p->se.block_start = 0;
9443 #endif 9443 #endif
9444 9444
9445 if (!rt_task(p)) { 9445 if (!rt_task(p)) {
9446 /* 9446 /*
9447 * Renice negative nice level userspace 9447 * Renice negative nice level userspace
9448 * tasks back to 0: 9448 * tasks back to 0:
9449 */ 9449 */
9450 if (TASK_NICE(p) < 0 && p->mm) 9450 if (TASK_NICE(p) < 0 && p->mm)
9451 set_user_nice(p, 0); 9451 set_user_nice(p, 0);
9452 continue; 9452 continue;
9453 } 9453 }
9454 9454
9455 spin_lock(&p->pi_lock); 9455 spin_lock(&p->pi_lock);
9456 rq = __task_rq_lock(p); 9456 rq = __task_rq_lock(p);
9457 9457
9458 normalize_task(rq, p); 9458 normalize_task(rq, p);
9459 9459
9460 __task_rq_unlock(rq); 9460 __task_rq_unlock(rq);
9461 spin_unlock(&p->pi_lock); 9461 spin_unlock(&p->pi_lock);
9462 } while_each_thread(g, p); 9462 } while_each_thread(g, p);
9463 9463
9464 read_unlock_irqrestore(&tasklist_lock, flags); 9464 read_unlock_irqrestore(&tasklist_lock, flags);
9465 } 9465 }
9466 9466
9467 #endif /* CONFIG_MAGIC_SYSRQ */ 9467 #endif /* CONFIG_MAGIC_SYSRQ */
9468 9468
9469 #ifdef CONFIG_IA64 9469 #ifdef CONFIG_IA64
9470 /* 9470 /*
9471 * These functions are only useful for the IA64 MCA handling. 9471 * These functions are only useful for the IA64 MCA handling.
9472 * 9472 *
9473 * They can only be called when the whole system has been 9473 * They can only be called when the whole system has been
9474 * stopped - every CPU needs to be quiescent, and no scheduling 9474 * stopped - every CPU needs to be quiescent, and no scheduling
9475 * activity can take place. Using them for anything else would 9475 * activity can take place. Using them for anything else would
9476 * be a serious bug, and as a result, they aren't even visible 9476 * be a serious bug, and as a result, they aren't even visible
9477 * under any other configuration. 9477 * under any other configuration.
9478 */ 9478 */
9479 9479
9480 /** 9480 /**
9481 * curr_task - return the current task for a given cpu. 9481 * curr_task - return the current task for a given cpu.
9482 * @cpu: the processor in question. 9482 * @cpu: the processor in question.
9483 * 9483 *
9484 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9484 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9485 */ 9485 */
9486 struct task_struct *curr_task(int cpu) 9486 struct task_struct *curr_task(int cpu)
9487 { 9487 {
9488 return cpu_curr(cpu); 9488 return cpu_curr(cpu);
9489 } 9489 }
9490 9490
9491 /** 9491 /**
9492 * set_curr_task - set the current task for a given cpu. 9492 * set_curr_task - set the current task for a given cpu.
9493 * @cpu: the processor in question. 9493 * @cpu: the processor in question.
9494 * @p: the task pointer to set. 9494 * @p: the task pointer to set.
9495 * 9495 *
9496 * Description: This function must only be used when non-maskable interrupts 9496 * Description: This function must only be used when non-maskable interrupts
9497 * are serviced on a separate stack. It allows the architecture to switch the 9497 * are serviced on a separate stack. It allows the architecture to switch the
9498 * notion of the current task on a cpu in a non-blocking manner. This function 9498 * notion of the current task on a cpu in a non-blocking manner. This function
9499 * must be called with all CPU's synchronized, and interrupts disabled, the 9499 * must be called with all CPU's synchronized, and interrupts disabled, the
9500 * and caller must save the original value of the current task (see 9500 * and caller must save the original value of the current task (see
9501 * curr_task() above) and restore that value before reenabling interrupts and 9501 * curr_task() above) and restore that value before reenabling interrupts and
9502 * re-starting the system. 9502 * re-starting the system.
9503 * 9503 *
9504 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 9504 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9505 */ 9505 */
9506 void set_curr_task(int cpu, struct task_struct *p) 9506 void set_curr_task(int cpu, struct task_struct *p)
9507 { 9507 {
9508 cpu_curr(cpu) = p; 9508 cpu_curr(cpu) = p;
9509 } 9509 }
9510 9510
9511 #endif 9511 #endif
9512 9512
9513 #ifdef CONFIG_FAIR_GROUP_SCHED 9513 #ifdef CONFIG_FAIR_GROUP_SCHED
9514 static void free_fair_sched_group(struct task_group *tg) 9514 static void free_fair_sched_group(struct task_group *tg)
9515 { 9515 {
9516 int i; 9516 int i;
9517 9517
9518 for_each_possible_cpu(i) { 9518 for_each_possible_cpu(i) {
9519 if (tg->cfs_rq) 9519 if (tg->cfs_rq)
9520 kfree(tg->cfs_rq[i]); 9520 kfree(tg->cfs_rq[i]);
9521 if (tg->se) 9521 if (tg->se)
9522 kfree(tg->se[i]); 9522 kfree(tg->se[i]);
9523 } 9523 }
9524 9524
9525 kfree(tg->cfs_rq); 9525 kfree(tg->cfs_rq);
9526 kfree(tg->se); 9526 kfree(tg->se);
9527 } 9527 }
9528 9528
9529 static 9529 static
9530 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9530 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9531 { 9531 {
9532 struct cfs_rq *cfs_rq; 9532 struct cfs_rq *cfs_rq;
9533 struct sched_entity *se; 9533 struct sched_entity *se;
9534 struct rq *rq; 9534 struct rq *rq;
9535 int i; 9535 int i;
9536 9536
9537 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9537 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9538 if (!tg->cfs_rq) 9538 if (!tg->cfs_rq)
9539 goto err; 9539 goto err;
9540 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9540 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9541 if (!tg->se) 9541 if (!tg->se)
9542 goto err; 9542 goto err;
9543 9543
9544 tg->shares = NICE_0_LOAD; 9544 tg->shares = NICE_0_LOAD;
9545 9545
9546 for_each_possible_cpu(i) { 9546 for_each_possible_cpu(i) {
9547 rq = cpu_rq(i); 9547 rq = cpu_rq(i);
9548 9548
9549 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9549 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9550 GFP_KERNEL, cpu_to_node(i)); 9550 GFP_KERNEL, cpu_to_node(i));
9551 if (!cfs_rq) 9551 if (!cfs_rq)
9552 goto err; 9552 goto err;
9553 9553
9554 se = kzalloc_node(sizeof(struct sched_entity), 9554 se = kzalloc_node(sizeof(struct sched_entity),
9555 GFP_KERNEL, cpu_to_node(i)); 9555 GFP_KERNEL, cpu_to_node(i));
9556 if (!se) 9556 if (!se)
9557 goto err; 9557 goto err;
9558 9558
9559 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]); 9559 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9560 } 9560 }
9561 9561
9562 return 1; 9562 return 1;
9563 9563
9564 err: 9564 err:
9565 return 0; 9565 return 0;
9566 } 9566 }
9567 9567
9568 static inline void register_fair_sched_group(struct task_group *tg, int cpu) 9568 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9569 { 9569 {
9570 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, 9570 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9571 &cpu_rq(cpu)->leaf_cfs_rq_list); 9571 &cpu_rq(cpu)->leaf_cfs_rq_list);
9572 } 9572 }
9573 9573
9574 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) 9574 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9575 { 9575 {
9576 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); 9576 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9577 } 9577 }
9578 #else /* !CONFG_FAIR_GROUP_SCHED */ 9578 #else /* !CONFG_FAIR_GROUP_SCHED */
9579 static inline void free_fair_sched_group(struct task_group *tg) 9579 static inline void free_fair_sched_group(struct task_group *tg)
9580 { 9580 {
9581 } 9581 }
9582 9582
9583 static inline 9583 static inline
9584 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9584 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9585 { 9585 {
9586 return 1; 9586 return 1;
9587 } 9587 }
9588 9588
9589 static inline void register_fair_sched_group(struct task_group *tg, int cpu) 9589 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9590 { 9590 {
9591 } 9591 }
9592 9592
9593 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) 9593 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9594 { 9594 {
9595 } 9595 }
9596 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9596 #endif /* CONFIG_FAIR_GROUP_SCHED */
9597 9597
9598 #ifdef CONFIG_RT_GROUP_SCHED 9598 #ifdef CONFIG_RT_GROUP_SCHED
9599 static void free_rt_sched_group(struct task_group *tg) 9599 static void free_rt_sched_group(struct task_group *tg)
9600 { 9600 {
9601 int i; 9601 int i;
9602 9602
9603 destroy_rt_bandwidth(&tg->rt_bandwidth); 9603 destroy_rt_bandwidth(&tg->rt_bandwidth);
9604 9604
9605 for_each_possible_cpu(i) { 9605 for_each_possible_cpu(i) {
9606 if (tg->rt_rq) 9606 if (tg->rt_rq)
9607 kfree(tg->rt_rq[i]); 9607 kfree(tg->rt_rq[i]);
9608 if (tg->rt_se) 9608 if (tg->rt_se)
9609 kfree(tg->rt_se[i]); 9609 kfree(tg->rt_se[i]);
9610 } 9610 }
9611 9611
9612 kfree(tg->rt_rq); 9612 kfree(tg->rt_rq);
9613 kfree(tg->rt_se); 9613 kfree(tg->rt_se);
9614 } 9614 }
9615 9615
9616 static 9616 static
9617 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 9617 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9618 { 9618 {
9619 struct rt_rq *rt_rq; 9619 struct rt_rq *rt_rq;
9620 struct sched_rt_entity *rt_se; 9620 struct sched_rt_entity *rt_se;
9621 struct rq *rq; 9621 struct rq *rq;
9622 int i; 9622 int i;
9623 9623
9624 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 9624 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9625 if (!tg->rt_rq) 9625 if (!tg->rt_rq)
9626 goto err; 9626 goto err;
9627 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 9627 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9628 if (!tg->rt_se) 9628 if (!tg->rt_se)
9629 goto err; 9629 goto err;
9630 9630
9631 init_rt_bandwidth(&tg->rt_bandwidth, 9631 init_rt_bandwidth(&tg->rt_bandwidth,
9632 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 9632 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9633 9633
9634 for_each_possible_cpu(i) { 9634 for_each_possible_cpu(i) {
9635 rq = cpu_rq(i); 9635 rq = cpu_rq(i);
9636 9636
9637 rt_rq = kzalloc_node(sizeof(struct rt_rq), 9637 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9638 GFP_KERNEL, cpu_to_node(i)); 9638 GFP_KERNEL, cpu_to_node(i));
9639 if (!rt_rq) 9639 if (!rt_rq)
9640 goto err; 9640 goto err;
9641 9641
9642 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 9642 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9643 GFP_KERNEL, cpu_to_node(i)); 9643 GFP_KERNEL, cpu_to_node(i));
9644 if (!rt_se) 9644 if (!rt_se)
9645 goto err; 9645 goto err;
9646 9646
9647 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]); 9647 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9648 } 9648 }
9649 9649
9650 return 1; 9650 return 1;
9651 9651
9652 err: 9652 err:
9653 return 0; 9653 return 0;
9654 } 9654 }
9655 9655
9656 static inline void register_rt_sched_group(struct task_group *tg, int cpu) 9656 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9657 { 9657 {
9658 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, 9658 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9659 &cpu_rq(cpu)->leaf_rt_rq_list); 9659 &cpu_rq(cpu)->leaf_rt_rq_list);
9660 } 9660 }
9661 9661
9662 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) 9662 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9663 { 9663 {
9664 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); 9664 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9665 } 9665 }
9666 #else /* !CONFIG_RT_GROUP_SCHED */ 9666 #else /* !CONFIG_RT_GROUP_SCHED */
9667 static inline void free_rt_sched_group(struct task_group *tg) 9667 static inline void free_rt_sched_group(struct task_group *tg)
9668 { 9668 {
9669 } 9669 }
9670 9670
9671 static inline 9671 static inline
9672 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 9672 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9673 { 9673 {
9674 return 1; 9674 return 1;
9675 } 9675 }
9676 9676
9677 static inline void register_rt_sched_group(struct task_group *tg, int cpu) 9677 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9678 { 9678 {
9679 } 9679 }
9680 9680
9681 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) 9681 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9682 { 9682 {
9683 } 9683 }
9684 #endif /* CONFIG_RT_GROUP_SCHED */ 9684 #endif /* CONFIG_RT_GROUP_SCHED */
9685 9685
9686 #ifdef CONFIG_GROUP_SCHED 9686 #ifdef CONFIG_GROUP_SCHED
9687 static void free_sched_group(struct task_group *tg) 9687 static void free_sched_group(struct task_group *tg)
9688 { 9688 {
9689 free_fair_sched_group(tg); 9689 free_fair_sched_group(tg);
9690 free_rt_sched_group(tg); 9690 free_rt_sched_group(tg);
9691 kfree(tg); 9691 kfree(tg);
9692 } 9692 }
9693 9693
9694 /* allocate runqueue etc for a new task group */ 9694 /* allocate runqueue etc for a new task group */
9695 struct task_group *sched_create_group(struct task_group *parent) 9695 struct task_group *sched_create_group(struct task_group *parent)
9696 { 9696 {
9697 struct task_group *tg; 9697 struct task_group *tg;
9698 unsigned long flags; 9698 unsigned long flags;
9699 int i; 9699 int i;
9700 9700
9701 tg = kzalloc(sizeof(*tg), GFP_KERNEL); 9701 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9702 if (!tg) 9702 if (!tg)
9703 return ERR_PTR(-ENOMEM); 9703 return ERR_PTR(-ENOMEM);
9704 9704
9705 if (!alloc_fair_sched_group(tg, parent)) 9705 if (!alloc_fair_sched_group(tg, parent))
9706 goto err; 9706 goto err;
9707 9707
9708 if (!alloc_rt_sched_group(tg, parent)) 9708 if (!alloc_rt_sched_group(tg, parent))
9709 goto err; 9709 goto err;
9710 9710
9711 spin_lock_irqsave(&task_group_lock, flags); 9711 spin_lock_irqsave(&task_group_lock, flags);
9712 for_each_possible_cpu(i) { 9712 for_each_possible_cpu(i) {
9713 register_fair_sched_group(tg, i); 9713 register_fair_sched_group(tg, i);
9714 register_rt_sched_group(tg, i); 9714 register_rt_sched_group(tg, i);
9715 } 9715 }
9716 list_add_rcu(&tg->list, &task_groups); 9716 list_add_rcu(&tg->list, &task_groups);
9717 9717
9718 WARN_ON(!parent); /* root should already exist */ 9718 WARN_ON(!parent); /* root should already exist */
9719 9719
9720 tg->parent = parent; 9720 tg->parent = parent;
9721 INIT_LIST_HEAD(&tg->children); 9721 INIT_LIST_HEAD(&tg->children);
9722 list_add_rcu(&tg->siblings, &parent->children); 9722 list_add_rcu(&tg->siblings, &parent->children);
9723 spin_unlock_irqrestore(&task_group_lock, flags); 9723 spin_unlock_irqrestore(&task_group_lock, flags);
9724 9724
9725 return tg; 9725 return tg;
9726 9726
9727 err: 9727 err:
9728 free_sched_group(tg); 9728 free_sched_group(tg);
9729 return ERR_PTR(-ENOMEM); 9729 return ERR_PTR(-ENOMEM);
9730 } 9730 }
9731 9731
9732 /* rcu callback to free various structures associated with a task group */ 9732 /* rcu callback to free various structures associated with a task group */
9733 static void free_sched_group_rcu(struct rcu_head *rhp) 9733 static void free_sched_group_rcu(struct rcu_head *rhp)
9734 { 9734 {
9735 /* now it should be safe to free those cfs_rqs */ 9735 /* now it should be safe to free those cfs_rqs */
9736 free_sched_group(container_of(rhp, struct task_group, rcu)); 9736 free_sched_group(container_of(rhp, struct task_group, rcu));
9737 } 9737 }
9738 9738
9739 /* Destroy runqueue etc associated with a task group */ 9739 /* Destroy runqueue etc associated with a task group */
9740 void sched_destroy_group(struct task_group *tg) 9740 void sched_destroy_group(struct task_group *tg)
9741 { 9741 {
9742 unsigned long flags; 9742 unsigned long flags;
9743 int i; 9743 int i;
9744 9744
9745 spin_lock_irqsave(&task_group_lock, flags); 9745 spin_lock_irqsave(&task_group_lock, flags);
9746 for_each_possible_cpu(i) { 9746 for_each_possible_cpu(i) {
9747 unregister_fair_sched_group(tg, i); 9747 unregister_fair_sched_group(tg, i);
9748 unregister_rt_sched_group(tg, i); 9748 unregister_rt_sched_group(tg, i);
9749 } 9749 }
9750 list_del_rcu(&tg->list); 9750 list_del_rcu(&tg->list);
9751 list_del_rcu(&tg->siblings); 9751 list_del_rcu(&tg->siblings);
9752 spin_unlock_irqrestore(&task_group_lock, flags); 9752 spin_unlock_irqrestore(&task_group_lock, flags);
9753 9753
9754 /* wait for possible concurrent references to cfs_rqs complete */ 9754 /* wait for possible concurrent references to cfs_rqs complete */
9755 call_rcu(&tg->rcu, free_sched_group_rcu); 9755 call_rcu(&tg->rcu, free_sched_group_rcu);
9756 } 9756 }
9757 9757
9758 /* change task's runqueue when it moves between groups. 9758 /* change task's runqueue when it moves between groups.
9759 * The caller of this function should have put the task in its new group 9759 * The caller of this function should have put the task in its new group
9760 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to 9760 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9761 * reflect its new group. 9761 * reflect its new group.
9762 */ 9762 */
9763 void sched_move_task(struct task_struct *tsk) 9763 void sched_move_task(struct task_struct *tsk)
9764 { 9764 {
9765 int on_rq, running; 9765 int on_rq, running;
9766 unsigned long flags; 9766 unsigned long flags;
9767 struct rq *rq; 9767 struct rq *rq;
9768 9768
9769 rq = task_rq_lock(tsk, &flags); 9769 rq = task_rq_lock(tsk, &flags);
9770 9770
9771 update_rq_clock(rq); 9771 update_rq_clock(rq);
9772 9772
9773 running = task_current(rq, tsk); 9773 running = task_current(rq, tsk);
9774 on_rq = tsk->se.on_rq; 9774 on_rq = tsk->se.on_rq;
9775 9775
9776 if (on_rq) 9776 if (on_rq)
9777 dequeue_task(rq, tsk, 0); 9777 dequeue_task(rq, tsk, 0);
9778 if (unlikely(running)) 9778 if (unlikely(running))
9779 tsk->sched_class->put_prev_task(rq, tsk); 9779 tsk->sched_class->put_prev_task(rq, tsk);
9780 9780
9781 set_task_rq(tsk, task_cpu(tsk)); 9781 set_task_rq(tsk, task_cpu(tsk));
9782 9782
9783 #ifdef CONFIG_FAIR_GROUP_SCHED 9783 #ifdef CONFIG_FAIR_GROUP_SCHED
9784 if (tsk->sched_class->moved_group) 9784 if (tsk->sched_class->moved_group)
9785 tsk->sched_class->moved_group(tsk); 9785 tsk->sched_class->moved_group(tsk);
9786 #endif 9786 #endif
9787 9787
9788 if (unlikely(running)) 9788 if (unlikely(running))
9789 tsk->sched_class->set_curr_task(rq); 9789 tsk->sched_class->set_curr_task(rq);
9790 if (on_rq) 9790 if (on_rq)
9791 enqueue_task(rq, tsk, 0); 9791 enqueue_task(rq, tsk, 0);
9792 9792
9793 task_rq_unlock(rq, &flags); 9793 task_rq_unlock(rq, &flags);
9794 } 9794 }
9795 #endif /* CONFIG_GROUP_SCHED */ 9795 #endif /* CONFIG_GROUP_SCHED */
9796 9796
9797 #ifdef CONFIG_FAIR_GROUP_SCHED 9797 #ifdef CONFIG_FAIR_GROUP_SCHED
9798 static void __set_se_shares(struct sched_entity *se, unsigned long shares) 9798 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9799 { 9799 {
9800 struct cfs_rq *cfs_rq = se->cfs_rq; 9800 struct cfs_rq *cfs_rq = se->cfs_rq;
9801 int on_rq; 9801 int on_rq;
9802 9802
9803 on_rq = se->on_rq; 9803 on_rq = se->on_rq;
9804 if (on_rq) 9804 if (on_rq)
9805 dequeue_entity(cfs_rq, se, 0); 9805 dequeue_entity(cfs_rq, se, 0);
9806 9806
9807 se->load.weight = shares; 9807 se->load.weight = shares;
9808 se->load.inv_weight = 0; 9808 se->load.inv_weight = 0;
9809 9809
9810 if (on_rq) 9810 if (on_rq)
9811 enqueue_entity(cfs_rq, se, 0); 9811 enqueue_entity(cfs_rq, se, 0);
9812 } 9812 }
9813 9813
9814 static void set_se_shares(struct sched_entity *se, unsigned long shares) 9814 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9815 { 9815 {
9816 struct cfs_rq *cfs_rq = se->cfs_rq; 9816 struct cfs_rq *cfs_rq = se->cfs_rq;
9817 struct rq *rq = cfs_rq->rq; 9817 struct rq *rq = cfs_rq->rq;
9818 unsigned long flags; 9818 unsigned long flags;
9819 9819
9820 spin_lock_irqsave(&rq->lock, flags); 9820 spin_lock_irqsave(&rq->lock, flags);
9821 __set_se_shares(se, shares); 9821 __set_se_shares(se, shares);
9822 spin_unlock_irqrestore(&rq->lock, flags); 9822 spin_unlock_irqrestore(&rq->lock, flags);
9823 } 9823 }
9824 9824
9825 static DEFINE_MUTEX(shares_mutex); 9825 static DEFINE_MUTEX(shares_mutex);
9826 9826
9827 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9827 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9828 { 9828 {
9829 int i; 9829 int i;
9830 unsigned long flags; 9830 unsigned long flags;
9831 9831
9832 /* 9832 /*
9833 * We can't change the weight of the root cgroup. 9833 * We can't change the weight of the root cgroup.
9834 */ 9834 */
9835 if (!tg->se[0]) 9835 if (!tg->se[0])
9836 return -EINVAL; 9836 return -EINVAL;
9837 9837
9838 if (shares < MIN_SHARES) 9838 if (shares < MIN_SHARES)
9839 shares = MIN_SHARES; 9839 shares = MIN_SHARES;
9840 else if (shares > MAX_SHARES) 9840 else if (shares > MAX_SHARES)
9841 shares = MAX_SHARES; 9841 shares = MAX_SHARES;
9842 9842
9843 mutex_lock(&shares_mutex); 9843 mutex_lock(&shares_mutex);
9844 if (tg->shares == shares) 9844 if (tg->shares == shares)
9845 goto done; 9845 goto done;
9846 9846
9847 spin_lock_irqsave(&task_group_lock, flags); 9847 spin_lock_irqsave(&task_group_lock, flags);
9848 for_each_possible_cpu(i) 9848 for_each_possible_cpu(i)
9849 unregister_fair_sched_group(tg, i); 9849 unregister_fair_sched_group(tg, i);
9850 list_del_rcu(&tg->siblings); 9850 list_del_rcu(&tg->siblings);
9851 spin_unlock_irqrestore(&task_group_lock, flags); 9851 spin_unlock_irqrestore(&task_group_lock, flags);
9852 9852
9853 /* wait for any ongoing reference to this group to finish */ 9853 /* wait for any ongoing reference to this group to finish */
9854 synchronize_sched(); 9854 synchronize_sched();
9855 9855
9856 /* 9856 /*
9857 * Now we are free to modify the group's share on each cpu 9857 * Now we are free to modify the group's share on each cpu
9858 * w/o tripping rebalance_share or load_balance_fair. 9858 * w/o tripping rebalance_share or load_balance_fair.
9859 */ 9859 */
9860 tg->shares = shares; 9860 tg->shares = shares;
9861 for_each_possible_cpu(i) { 9861 for_each_possible_cpu(i) {
9862 /* 9862 /*
9863 * force a rebalance 9863 * force a rebalance
9864 */ 9864 */
9865 cfs_rq_set_shares(tg->cfs_rq[i], 0); 9865 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9866 set_se_shares(tg->se[i], shares); 9866 set_se_shares(tg->se[i], shares);
9867 } 9867 }
9868 9868
9869 /* 9869 /*
9870 * Enable load balance activity on this group, by inserting it back on 9870 * Enable load balance activity on this group, by inserting it back on
9871 * each cpu's rq->leaf_cfs_rq_list. 9871 * each cpu's rq->leaf_cfs_rq_list.
9872 */ 9872 */
9873 spin_lock_irqsave(&task_group_lock, flags); 9873 spin_lock_irqsave(&task_group_lock, flags);
9874 for_each_possible_cpu(i) 9874 for_each_possible_cpu(i)
9875 register_fair_sched_group(tg, i); 9875 register_fair_sched_group(tg, i);
9876 list_add_rcu(&tg->siblings, &tg->parent->children); 9876 list_add_rcu(&tg->siblings, &tg->parent->children);
9877 spin_unlock_irqrestore(&task_group_lock, flags); 9877 spin_unlock_irqrestore(&task_group_lock, flags);
9878 done: 9878 done:
9879 mutex_unlock(&shares_mutex); 9879 mutex_unlock(&shares_mutex);
9880 return 0; 9880 return 0;
9881 } 9881 }
9882 9882
9883 unsigned long sched_group_shares(struct task_group *tg) 9883 unsigned long sched_group_shares(struct task_group *tg)
9884 { 9884 {
9885 return tg->shares; 9885 return tg->shares;
9886 } 9886 }
9887 #endif 9887 #endif
9888 9888
9889 #ifdef CONFIG_RT_GROUP_SCHED 9889 #ifdef CONFIG_RT_GROUP_SCHED
9890 /* 9890 /*
9891 * Ensure that the real time constraints are schedulable. 9891 * Ensure that the real time constraints are schedulable.
9892 */ 9892 */
9893 static DEFINE_MUTEX(rt_constraints_mutex); 9893 static DEFINE_MUTEX(rt_constraints_mutex);
9894 9894
9895 static unsigned long to_ratio(u64 period, u64 runtime) 9895 static unsigned long to_ratio(u64 period, u64 runtime)
9896 { 9896 {
9897 if (runtime == RUNTIME_INF) 9897 if (runtime == RUNTIME_INF)
9898 return 1ULL << 20; 9898 return 1ULL << 20;
9899 9899
9900 return div64_u64(runtime << 20, period); 9900 return div64_u64(runtime << 20, period);
9901 } 9901 }
9902 9902
9903 /* Must be called with tasklist_lock held */ 9903 /* Must be called with tasklist_lock held */
9904 static inline int tg_has_rt_tasks(struct task_group *tg) 9904 static inline int tg_has_rt_tasks(struct task_group *tg)
9905 { 9905 {
9906 struct task_struct *g, *p; 9906 struct task_struct *g, *p;
9907 9907
9908 do_each_thread(g, p) { 9908 do_each_thread(g, p) {
9909 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) 9909 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9910 return 1; 9910 return 1;
9911 } while_each_thread(g, p); 9911 } while_each_thread(g, p);
9912 9912
9913 return 0; 9913 return 0;
9914 } 9914 }
9915 9915
9916 struct rt_schedulable_data { 9916 struct rt_schedulable_data {
9917 struct task_group *tg; 9917 struct task_group *tg;
9918 u64 rt_period; 9918 u64 rt_period;
9919 u64 rt_runtime; 9919 u64 rt_runtime;
9920 }; 9920 };
9921 9921
9922 static int tg_schedulable(struct task_group *tg, void *data) 9922 static int tg_schedulable(struct task_group *tg, void *data)
9923 { 9923 {
9924 struct rt_schedulable_data *d = data; 9924 struct rt_schedulable_data *d = data;
9925 struct task_group *child; 9925 struct task_group *child;
9926 unsigned long total, sum = 0; 9926 unsigned long total, sum = 0;
9927 u64 period, runtime; 9927 u64 period, runtime;
9928 9928
9929 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 9929 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9930 runtime = tg->rt_bandwidth.rt_runtime; 9930 runtime = tg->rt_bandwidth.rt_runtime;
9931 9931
9932 if (tg == d->tg) { 9932 if (tg == d->tg) {
9933 period = d->rt_period; 9933 period = d->rt_period;
9934 runtime = d->rt_runtime; 9934 runtime = d->rt_runtime;
9935 } 9935 }
9936 9936
9937 #ifdef CONFIG_USER_SCHED 9937 #ifdef CONFIG_USER_SCHED
9938 if (tg == &root_task_group) { 9938 if (tg == &root_task_group) {
9939 period = global_rt_period(); 9939 period = global_rt_period();
9940 runtime = global_rt_runtime(); 9940 runtime = global_rt_runtime();
9941 } 9941 }
9942 #endif 9942 #endif
9943 9943
9944 /* 9944 /*
9945 * Cannot have more runtime than the period. 9945 * Cannot have more runtime than the period.
9946 */ 9946 */
9947 if (runtime > period && runtime != RUNTIME_INF) 9947 if (runtime > period && runtime != RUNTIME_INF)
9948 return -EINVAL; 9948 return -EINVAL;
9949 9949
9950 /* 9950 /*
9951 * Ensure we don't starve existing RT tasks. 9951 * Ensure we don't starve existing RT tasks.
9952 */ 9952 */
9953 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 9953 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9954 return -EBUSY; 9954 return -EBUSY;
9955 9955
9956 total = to_ratio(period, runtime); 9956 total = to_ratio(period, runtime);
9957 9957
9958 /* 9958 /*
9959 * Nobody can have more than the global setting allows. 9959 * Nobody can have more than the global setting allows.
9960 */ 9960 */
9961 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 9961 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9962 return -EINVAL; 9962 return -EINVAL;
9963 9963
9964 /* 9964 /*
9965 * The sum of our children's runtime should not exceed our own. 9965 * The sum of our children's runtime should not exceed our own.
9966 */ 9966 */
9967 list_for_each_entry_rcu(child, &tg->children, siblings) { 9967 list_for_each_entry_rcu(child, &tg->children, siblings) {
9968 period = ktime_to_ns(child->rt_bandwidth.rt_period); 9968 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9969 runtime = child->rt_bandwidth.rt_runtime; 9969 runtime = child->rt_bandwidth.rt_runtime;
9970 9970
9971 if (child == d->tg) { 9971 if (child == d->tg) {
9972 period = d->rt_period; 9972 period = d->rt_period;
9973 runtime = d->rt_runtime; 9973 runtime = d->rt_runtime;
9974 } 9974 }
9975 9975
9976 sum += to_ratio(period, runtime); 9976 sum += to_ratio(period, runtime);
9977 } 9977 }
9978 9978
9979 if (sum > total) 9979 if (sum > total)
9980 return -EINVAL; 9980 return -EINVAL;
9981 9981
9982 return 0; 9982 return 0;
9983 } 9983 }
9984 9984
9985 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 9985 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9986 { 9986 {
9987 struct rt_schedulable_data data = { 9987 struct rt_schedulable_data data = {
9988 .tg = tg, 9988 .tg = tg,
9989 .rt_period = period, 9989 .rt_period = period,
9990 .rt_runtime = runtime, 9990 .rt_runtime = runtime,
9991 }; 9991 };
9992 9992
9993 return walk_tg_tree(tg_schedulable, tg_nop, &data); 9993 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9994 } 9994 }
9995 9995
9996 static int tg_set_bandwidth(struct task_group *tg, 9996 static int tg_set_bandwidth(struct task_group *tg,
9997 u64 rt_period, u64 rt_runtime) 9997 u64 rt_period, u64 rt_runtime)
9998 { 9998 {
9999 int i, err = 0; 9999 int i, err = 0;
10000 10000
10001 mutex_lock(&rt_constraints_mutex); 10001 mutex_lock(&rt_constraints_mutex);
10002 read_lock(&tasklist_lock); 10002 read_lock(&tasklist_lock);
10003 err = __rt_schedulable(tg, rt_period, rt_runtime); 10003 err = __rt_schedulable(tg, rt_period, rt_runtime);
10004 if (err) 10004 if (err)
10005 goto unlock; 10005 goto unlock;
10006 10006
10007 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10007 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10008 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 10008 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10009 tg->rt_bandwidth.rt_runtime = rt_runtime; 10009 tg->rt_bandwidth.rt_runtime = rt_runtime;
10010 10010
10011 for_each_possible_cpu(i) { 10011 for_each_possible_cpu(i) {
10012 struct rt_rq *rt_rq = tg->rt_rq[i]; 10012 struct rt_rq *rt_rq = tg->rt_rq[i];
10013 10013
10014 spin_lock(&rt_rq->rt_runtime_lock); 10014 spin_lock(&rt_rq->rt_runtime_lock);
10015 rt_rq->rt_runtime = rt_runtime; 10015 rt_rq->rt_runtime = rt_runtime;
10016 spin_unlock(&rt_rq->rt_runtime_lock); 10016 spin_unlock(&rt_rq->rt_runtime_lock);
10017 } 10017 }
10018 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 10018 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10019 unlock: 10019 unlock:
10020 read_unlock(&tasklist_lock); 10020 read_unlock(&tasklist_lock);
10021 mutex_unlock(&rt_constraints_mutex); 10021 mutex_unlock(&rt_constraints_mutex);
10022 10022
10023 return err; 10023 return err;
10024 } 10024 }
10025 10025
10026 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 10026 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10027 { 10027 {
10028 u64 rt_runtime, rt_period; 10028 u64 rt_runtime, rt_period;
10029 10029
10030 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 10030 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10031 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 10031 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10032 if (rt_runtime_us < 0) 10032 if (rt_runtime_us < 0)
10033 rt_runtime = RUNTIME_INF; 10033 rt_runtime = RUNTIME_INF;
10034 10034
10035 return tg_set_bandwidth(tg, rt_period, rt_runtime); 10035 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10036 } 10036 }
10037 10037
10038 long sched_group_rt_runtime(struct task_group *tg) 10038 long sched_group_rt_runtime(struct task_group *tg)
10039 { 10039 {
10040 u64 rt_runtime_us; 10040 u64 rt_runtime_us;
10041 10041
10042 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 10042 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10043 return -1; 10043 return -1;
10044 10044
10045 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 10045 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10046 do_div(rt_runtime_us, NSEC_PER_USEC); 10046 do_div(rt_runtime_us, NSEC_PER_USEC);
10047 return rt_runtime_us; 10047 return rt_runtime_us;
10048 } 10048 }
10049 10049
10050 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) 10050 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10051 { 10051 {
10052 u64 rt_runtime, rt_period; 10052 u64 rt_runtime, rt_period;
10053 10053
10054 rt_period = (u64)rt_period_us * NSEC_PER_USEC; 10054 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10055 rt_runtime = tg->rt_bandwidth.rt_runtime; 10055 rt_runtime = tg->rt_bandwidth.rt_runtime;
10056 10056
10057 if (rt_period == 0) 10057 if (rt_period == 0)
10058 return -EINVAL; 10058 return -EINVAL;
10059 10059
10060 return tg_set_bandwidth(tg, rt_period, rt_runtime); 10060 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10061 } 10061 }
10062 10062
10063 long sched_group_rt_period(struct task_group *tg) 10063 long sched_group_rt_period(struct task_group *tg)
10064 { 10064 {
10065 u64 rt_period_us; 10065 u64 rt_period_us;
10066 10066
10067 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 10067 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10068 do_div(rt_period_us, NSEC_PER_USEC); 10068 do_div(rt_period_us, NSEC_PER_USEC);
10069 return rt_period_us; 10069 return rt_period_us;
10070 } 10070 }
10071 10071
10072 static int sched_rt_global_constraints(void) 10072 static int sched_rt_global_constraints(void)
10073 { 10073 {
10074 u64 runtime, period; 10074 u64 runtime, period;
10075 int ret = 0; 10075 int ret = 0;
10076 10076
10077 if (sysctl_sched_rt_period <= 0) 10077 if (sysctl_sched_rt_period <= 0)
10078 return -EINVAL; 10078 return -EINVAL;
10079 10079
10080 runtime = global_rt_runtime(); 10080 runtime = global_rt_runtime();
10081 period = global_rt_period(); 10081 period = global_rt_period();
10082 10082
10083 /* 10083 /*
10084 * Sanity check on the sysctl variables. 10084 * Sanity check on the sysctl variables.
10085 */ 10085 */
10086 if (runtime > period && runtime != RUNTIME_INF) 10086 if (runtime > period && runtime != RUNTIME_INF)
10087 return -EINVAL; 10087 return -EINVAL;
10088 10088
10089 mutex_lock(&rt_constraints_mutex); 10089 mutex_lock(&rt_constraints_mutex);
10090 read_lock(&tasklist_lock); 10090 read_lock(&tasklist_lock);
10091 ret = __rt_schedulable(NULL, 0, 0); 10091 ret = __rt_schedulable(NULL, 0, 0);
10092 read_unlock(&tasklist_lock); 10092 read_unlock(&tasklist_lock);
10093 mutex_unlock(&rt_constraints_mutex); 10093 mutex_unlock(&rt_constraints_mutex);
10094 10094
10095 return ret; 10095 return ret;
10096 } 10096 }
10097 10097
10098 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 10098 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10099 { 10099 {
10100 /* Don't accept realtime tasks when there is no way for them to run */ 10100 /* Don't accept realtime tasks when there is no way for them to run */
10101 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 10101 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10102 return 0; 10102 return 0;
10103 10103
10104 return 1; 10104 return 1;
10105 } 10105 }
10106 10106
10107 #else /* !CONFIG_RT_GROUP_SCHED */ 10107 #else /* !CONFIG_RT_GROUP_SCHED */
10108 static int sched_rt_global_constraints(void) 10108 static int sched_rt_global_constraints(void)
10109 { 10109 {
10110 unsigned long flags; 10110 unsigned long flags;
10111 int i; 10111 int i;
10112 10112
10113 if (sysctl_sched_rt_period <= 0) 10113 if (sysctl_sched_rt_period <= 0)
10114 return -EINVAL; 10114 return -EINVAL;
10115 10115
10116 /* 10116 /*
10117 * There's always some RT tasks in the root group 10117 * There's always some RT tasks in the root group
10118 * -- migration, kstopmachine etc.. 10118 * -- migration, kstopmachine etc..
10119 */ 10119 */
10120 if (sysctl_sched_rt_runtime == 0) 10120 if (sysctl_sched_rt_runtime == 0)
10121 return -EBUSY; 10121 return -EBUSY;
10122 10122
10123 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 10123 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10124 for_each_possible_cpu(i) { 10124 for_each_possible_cpu(i) {
10125 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 10125 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10126 10126
10127 spin_lock(&rt_rq->rt_runtime_lock); 10127 spin_lock(&rt_rq->rt_runtime_lock);
10128 rt_rq->rt_runtime = global_rt_runtime(); 10128 rt_rq->rt_runtime = global_rt_runtime();
10129 spin_unlock(&rt_rq->rt_runtime_lock); 10129 spin_unlock(&rt_rq->rt_runtime_lock);
10130 } 10130 }
10131 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 10131 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10132 10132
10133 return 0; 10133 return 0;
10134 } 10134 }
10135 #endif /* CONFIG_RT_GROUP_SCHED */ 10135 #endif /* CONFIG_RT_GROUP_SCHED */
10136 10136
10137 int sched_rt_handler(struct ctl_table *table, int write, 10137 int sched_rt_handler(struct ctl_table *table, int write,
10138 struct file *filp, void __user *buffer, size_t *lenp, 10138 struct file *filp, void __user *buffer, size_t *lenp,
10139 loff_t *ppos) 10139 loff_t *ppos)
10140 { 10140 {
10141 int ret; 10141 int ret;
10142 int old_period, old_runtime; 10142 int old_period, old_runtime;
10143 static DEFINE_MUTEX(mutex); 10143 static DEFINE_MUTEX(mutex);
10144 10144
10145 mutex_lock(&mutex); 10145 mutex_lock(&mutex);
10146 old_period = sysctl_sched_rt_period; 10146 old_period = sysctl_sched_rt_period;
10147 old_runtime = sysctl_sched_rt_runtime; 10147 old_runtime = sysctl_sched_rt_runtime;
10148 10148
10149 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); 10149 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10150 10150
10151 if (!ret && write) { 10151 if (!ret && write) {
10152 ret = sched_rt_global_constraints(); 10152 ret = sched_rt_global_constraints();
10153 if (ret) { 10153 if (ret) {
10154 sysctl_sched_rt_period = old_period; 10154 sysctl_sched_rt_period = old_period;
10155 sysctl_sched_rt_runtime = old_runtime; 10155 sysctl_sched_rt_runtime = old_runtime;
10156 } else { 10156 } else {
10157 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 10157 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10158 def_rt_bandwidth.rt_period = 10158 def_rt_bandwidth.rt_period =
10159 ns_to_ktime(global_rt_period()); 10159 ns_to_ktime(global_rt_period());
10160 } 10160 }
10161 } 10161 }
10162 mutex_unlock(&mutex); 10162 mutex_unlock(&mutex);
10163 10163
10164 return ret; 10164 return ret;
10165 } 10165 }
10166 10166
10167 #ifdef CONFIG_CGROUP_SCHED 10167 #ifdef CONFIG_CGROUP_SCHED
10168 10168
10169 /* return corresponding task_group object of a cgroup */ 10169 /* return corresponding task_group object of a cgroup */
10170 static inline struct task_group *cgroup_tg(struct cgroup *cgrp) 10170 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10171 { 10171 {
10172 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), 10172 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10173 struct task_group, css); 10173 struct task_group, css);
10174 } 10174 }
10175 10175
10176 static struct cgroup_subsys_state * 10176 static struct cgroup_subsys_state *
10177 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) 10177 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10178 { 10178 {
10179 struct task_group *tg, *parent; 10179 struct task_group *tg, *parent;
10180 10180
10181 if (!cgrp->parent) { 10181 if (!cgrp->parent) {
10182 /* This is early initialization for the top cgroup */ 10182 /* This is early initialization for the top cgroup */
10183 return &init_task_group.css; 10183 return &init_task_group.css;
10184 } 10184 }
10185 10185
10186 parent = cgroup_tg(cgrp->parent); 10186 parent = cgroup_tg(cgrp->parent);
10187 tg = sched_create_group(parent); 10187 tg = sched_create_group(parent);
10188 if (IS_ERR(tg)) 10188 if (IS_ERR(tg))
10189 return ERR_PTR(-ENOMEM); 10189 return ERR_PTR(-ENOMEM);
10190 10190
10191 return &tg->css; 10191 return &tg->css;
10192 } 10192 }
10193 10193
10194 static void 10194 static void
10195 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 10195 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10196 { 10196 {
10197 struct task_group *tg = cgroup_tg(cgrp); 10197 struct task_group *tg = cgroup_tg(cgrp);
10198 10198
10199 sched_destroy_group(tg); 10199 sched_destroy_group(tg);
10200 } 10200 }
10201 10201
10202 static int 10202 static int
10203 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10203 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10204 struct task_struct *tsk) 10204 struct task_struct *tsk)
10205 { 10205 {
10206 #ifdef CONFIG_RT_GROUP_SCHED 10206 #ifdef CONFIG_RT_GROUP_SCHED
10207 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) 10207 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10208 return -EINVAL; 10208 return -EINVAL;
10209 #else 10209 #else
10210 /* We don't support RT-tasks being in separate groups */ 10210 /* We don't support RT-tasks being in separate groups */
10211 if (tsk->sched_class != &fair_sched_class) 10211 if (tsk->sched_class != &fair_sched_class)
10212 return -EINVAL; 10212 return -EINVAL;
10213 #endif 10213 #endif
10214 10214
10215 return 0; 10215 return 0;
10216 } 10216 }
10217 10217
10218 static void 10218 static void
10219 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, 10219 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10220 struct cgroup *old_cont, struct task_struct *tsk) 10220 struct cgroup *old_cont, struct task_struct *tsk)
10221 { 10221 {
10222 sched_move_task(tsk); 10222 sched_move_task(tsk);
10223 } 10223 }
10224 10224
10225 #ifdef CONFIG_FAIR_GROUP_SCHED 10225 #ifdef CONFIG_FAIR_GROUP_SCHED
10226 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, 10226 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10227 u64 shareval) 10227 u64 shareval)
10228 { 10228 {
10229 return sched_group_set_shares(cgroup_tg(cgrp), shareval); 10229 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10230 } 10230 }
10231 10231
10232 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) 10232 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10233 { 10233 {
10234 struct task_group *tg = cgroup_tg(cgrp); 10234 struct task_group *tg = cgroup_tg(cgrp);
10235 10235
10236 return (u64) tg->shares; 10236 return (u64) tg->shares;
10237 } 10237 }
10238 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10238 #endif /* CONFIG_FAIR_GROUP_SCHED */
10239 10239
10240 #ifdef CONFIG_RT_GROUP_SCHED 10240 #ifdef CONFIG_RT_GROUP_SCHED
10241 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, 10241 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10242 s64 val) 10242 s64 val)
10243 { 10243 {
10244 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); 10244 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10245 } 10245 }
10246 10246
10247 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) 10247 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10248 { 10248 {
10249 return sched_group_rt_runtime(cgroup_tg(cgrp)); 10249 return sched_group_rt_runtime(cgroup_tg(cgrp));
10250 } 10250 }
10251 10251
10252 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, 10252 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10253 u64 rt_period_us) 10253 u64 rt_period_us)
10254 { 10254 {
10255 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); 10255 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10256 } 10256 }
10257 10257
10258 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) 10258 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10259 { 10259 {
10260 return sched_group_rt_period(cgroup_tg(cgrp)); 10260 return sched_group_rt_period(cgroup_tg(cgrp));
10261 } 10261 }
10262 #endif /* CONFIG_RT_GROUP_SCHED */ 10262 #endif /* CONFIG_RT_GROUP_SCHED */
10263 10263
10264 static struct cftype cpu_files[] = { 10264 static struct cftype cpu_files[] = {
10265 #ifdef CONFIG_FAIR_GROUP_SCHED 10265 #ifdef CONFIG_FAIR_GROUP_SCHED
10266 { 10266 {
10267 .name = "shares", 10267 .name = "shares",
10268 .read_u64 = cpu_shares_read_u64, 10268 .read_u64 = cpu_shares_read_u64,
10269 .write_u64 = cpu_shares_write_u64, 10269 .write_u64 = cpu_shares_write_u64,
10270 }, 10270 },
10271 #endif 10271 #endif
10272 #ifdef CONFIG_RT_GROUP_SCHED 10272 #ifdef CONFIG_RT_GROUP_SCHED
10273 { 10273 {
10274 .name = "rt_runtime_us", 10274 .name = "rt_runtime_us",
10275 .read_s64 = cpu_rt_runtime_read, 10275 .read_s64 = cpu_rt_runtime_read,
10276 .write_s64 = cpu_rt_runtime_write, 10276 .write_s64 = cpu_rt_runtime_write,
10277 }, 10277 },
10278 { 10278 {
10279 .name = "rt_period_us", 10279 .name = "rt_period_us",
10280 .read_u64 = cpu_rt_period_read_uint, 10280 .read_u64 = cpu_rt_period_read_uint,
10281 .write_u64 = cpu_rt_period_write_uint, 10281 .write_u64 = cpu_rt_period_write_uint,
10282 }, 10282 },
10283 #endif 10283 #endif
10284 }; 10284 };
10285 10285
10286 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) 10286 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10287 { 10287 {
10288 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); 10288 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10289 } 10289 }
10290 10290
10291 struct cgroup_subsys cpu_cgroup_subsys = { 10291 struct cgroup_subsys cpu_cgroup_subsys = {
10292 .name = "cpu", 10292 .name = "cpu",
10293 .create = cpu_cgroup_create, 10293 .create = cpu_cgroup_create,
10294 .destroy = cpu_cgroup_destroy, 10294 .destroy = cpu_cgroup_destroy,
10295 .can_attach = cpu_cgroup_can_attach, 10295 .can_attach = cpu_cgroup_can_attach,
10296 .attach = cpu_cgroup_attach, 10296 .attach = cpu_cgroup_attach,
10297 .populate = cpu_cgroup_populate, 10297 .populate = cpu_cgroup_populate,
10298 .subsys_id = cpu_cgroup_subsys_id, 10298 .subsys_id = cpu_cgroup_subsys_id,
10299 .early_init = 1, 10299 .early_init = 1,
10300 }; 10300 };
10301 10301
10302 #endif /* CONFIG_CGROUP_SCHED */ 10302 #endif /* CONFIG_CGROUP_SCHED */
10303 10303
10304 #ifdef CONFIG_CGROUP_CPUACCT 10304 #ifdef CONFIG_CGROUP_CPUACCT
10305 10305
10306 /* 10306 /*
10307 * CPU accounting code for task groups. 10307 * CPU accounting code for task groups.
10308 * 10308 *
10309 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh 10309 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10310 * (balbir@in.ibm.com). 10310 * (balbir@in.ibm.com).
10311 */ 10311 */
10312 10312
10313 /* track cpu usage of a group of tasks and its child groups */ 10313 /* track cpu usage of a group of tasks and its child groups */
10314 struct cpuacct { 10314 struct cpuacct {
10315 struct cgroup_subsys_state css; 10315 struct cgroup_subsys_state css;
10316 /* cpuusage holds pointer to a u64-type object on every cpu */ 10316 /* cpuusage holds pointer to a u64-type object on every cpu */
10317 u64 *cpuusage; 10317 u64 *cpuusage;
10318 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS]; 10318 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10319 struct cpuacct *parent; 10319 struct cpuacct *parent;
10320 }; 10320 };
10321 10321
10322 struct cgroup_subsys cpuacct_subsys; 10322 struct cgroup_subsys cpuacct_subsys;
10323 10323
10324 /* return cpu accounting group corresponding to this container */ 10324 /* return cpu accounting group corresponding to this container */
10325 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) 10325 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10326 { 10326 {
10327 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), 10327 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10328 struct cpuacct, css); 10328 struct cpuacct, css);
10329 } 10329 }
10330 10330
10331 /* return cpu accounting group to which this task belongs */ 10331 /* return cpu accounting group to which this task belongs */
10332 static inline struct cpuacct *task_ca(struct task_struct *tsk) 10332 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10333 { 10333 {
10334 return container_of(task_subsys_state(tsk, cpuacct_subsys_id), 10334 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10335 struct cpuacct, css); 10335 struct cpuacct, css);
10336 } 10336 }
10337 10337
10338 /* create a new cpu accounting group */ 10338 /* create a new cpu accounting group */
10339 static struct cgroup_subsys_state *cpuacct_create( 10339 static struct cgroup_subsys_state *cpuacct_create(
10340 struct cgroup_subsys *ss, struct cgroup *cgrp) 10340 struct cgroup_subsys *ss, struct cgroup *cgrp)
10341 { 10341 {
10342 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 10342 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10343 int i; 10343 int i;
10344 10344
10345 if (!ca) 10345 if (!ca)
10346 goto out; 10346 goto out;
10347 10347
10348 ca->cpuusage = alloc_percpu(u64); 10348 ca->cpuusage = alloc_percpu(u64);
10349 if (!ca->cpuusage) 10349 if (!ca->cpuusage)
10350 goto out_free_ca; 10350 goto out_free_ca;
10351 10351
10352 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) 10352 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10353 if (percpu_counter_init(&ca->cpustat[i], 0)) 10353 if (percpu_counter_init(&ca->cpustat[i], 0))
10354 goto out_free_counters; 10354 goto out_free_counters;
10355 10355
10356 if (cgrp->parent) 10356 if (cgrp->parent)
10357 ca->parent = cgroup_ca(cgrp->parent); 10357 ca->parent = cgroup_ca(cgrp->parent);
10358 10358
10359 return &ca->css; 10359 return &ca->css;
10360 10360
10361 out_free_counters: 10361 out_free_counters:
10362 while (--i >= 0) 10362 while (--i >= 0)
10363 percpu_counter_destroy(&ca->cpustat[i]); 10363 percpu_counter_destroy(&ca->cpustat[i]);
10364 free_percpu(ca->cpuusage); 10364 free_percpu(ca->cpuusage);
10365 out_free_ca: 10365 out_free_ca:
10366 kfree(ca); 10366 kfree(ca);
10367 out: 10367 out:
10368 return ERR_PTR(-ENOMEM); 10368 return ERR_PTR(-ENOMEM);
10369 } 10369 }
10370 10370
10371 /* destroy an existing cpu accounting group */ 10371 /* destroy an existing cpu accounting group */
10372 static void 10372 static void
10373 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) 10373 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10374 { 10374 {
10375 struct cpuacct *ca = cgroup_ca(cgrp); 10375 struct cpuacct *ca = cgroup_ca(cgrp);
10376 int i; 10376 int i;
10377 10377
10378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) 10378 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10379 percpu_counter_destroy(&ca->cpustat[i]); 10379 percpu_counter_destroy(&ca->cpustat[i]);
10380 free_percpu(ca->cpuusage); 10380 free_percpu(ca->cpuusage);
10381 kfree(ca); 10381 kfree(ca);
10382 } 10382 }
10383 10383
10384 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu) 10384 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10385 { 10385 {
10386 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 10386 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10387 u64 data; 10387 u64 data;
10388 10388
10389 #ifndef CONFIG_64BIT 10389 #ifndef CONFIG_64BIT
10390 /* 10390 /*
10391 * Take rq->lock to make 64-bit read safe on 32-bit platforms. 10391 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10392 */ 10392 */
10393 spin_lock_irq(&cpu_rq(cpu)->lock); 10393 spin_lock_irq(&cpu_rq(cpu)->lock);
10394 data = *cpuusage; 10394 data = *cpuusage;
10395 spin_unlock_irq(&cpu_rq(cpu)->lock); 10395 spin_unlock_irq(&cpu_rq(cpu)->lock);
10396 #else 10396 #else
10397 data = *cpuusage; 10397 data = *cpuusage;
10398 #endif 10398 #endif
10399 10399
10400 return data; 10400 return data;
10401 } 10401 }
10402 10402
10403 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) 10403 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10404 { 10404 {
10405 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 10405 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10406 10406
10407 #ifndef CONFIG_64BIT 10407 #ifndef CONFIG_64BIT
10408 /* 10408 /*
10409 * Take rq->lock to make 64-bit write safe on 32-bit platforms. 10409 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10410 */ 10410 */
10411 spin_lock_irq(&cpu_rq(cpu)->lock); 10411 spin_lock_irq(&cpu_rq(cpu)->lock);
10412 *cpuusage = val; 10412 *cpuusage = val;
10413 spin_unlock_irq(&cpu_rq(cpu)->lock); 10413 spin_unlock_irq(&cpu_rq(cpu)->lock);
10414 #else 10414 #else
10415 *cpuusage = val; 10415 *cpuusage = val;
10416 #endif 10416 #endif
10417 } 10417 }
10418 10418
10419 /* return total cpu usage (in nanoseconds) of a group */ 10419 /* return total cpu usage (in nanoseconds) of a group */
10420 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) 10420 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10421 { 10421 {
10422 struct cpuacct *ca = cgroup_ca(cgrp); 10422 struct cpuacct *ca = cgroup_ca(cgrp);
10423 u64 totalcpuusage = 0; 10423 u64 totalcpuusage = 0;
10424 int i; 10424 int i;
10425 10425
10426 for_each_present_cpu(i) 10426 for_each_present_cpu(i)
10427 totalcpuusage += cpuacct_cpuusage_read(ca, i); 10427 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10428 10428
10429 return totalcpuusage; 10429 return totalcpuusage;
10430 } 10430 }
10431 10431
10432 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, 10432 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10433 u64 reset) 10433 u64 reset)
10434 { 10434 {
10435 struct cpuacct *ca = cgroup_ca(cgrp); 10435 struct cpuacct *ca = cgroup_ca(cgrp);
10436 int err = 0; 10436 int err = 0;
10437 int i; 10437 int i;
10438 10438
10439 if (reset) { 10439 if (reset) {
10440 err = -EINVAL; 10440 err = -EINVAL;
10441 goto out; 10441 goto out;
10442 } 10442 }
10443 10443
10444 for_each_present_cpu(i) 10444 for_each_present_cpu(i)
10445 cpuacct_cpuusage_write(ca, i, 0); 10445 cpuacct_cpuusage_write(ca, i, 0);
10446 10446
10447 out: 10447 out:
10448 return err; 10448 return err;
10449 } 10449 }
10450 10450
10451 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft, 10451 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10452 struct seq_file *m) 10452 struct seq_file *m)
10453 { 10453 {
10454 struct cpuacct *ca = cgroup_ca(cgroup); 10454 struct cpuacct *ca = cgroup_ca(cgroup);
10455 u64 percpu; 10455 u64 percpu;
10456 int i; 10456 int i;
10457 10457
10458 for_each_present_cpu(i) { 10458 for_each_present_cpu(i) {
10459 percpu = cpuacct_cpuusage_read(ca, i); 10459 percpu = cpuacct_cpuusage_read(ca, i);
10460 seq_printf(m, "%llu ", (unsigned long long) percpu); 10460 seq_printf(m, "%llu ", (unsigned long long) percpu);
10461 } 10461 }
10462 seq_printf(m, "\n"); 10462 seq_printf(m, "\n");
10463 return 0; 10463 return 0;
10464 } 10464 }
10465 10465
10466 static const char *cpuacct_stat_desc[] = { 10466 static const char *cpuacct_stat_desc[] = {
10467 [CPUACCT_STAT_USER] = "user", 10467 [CPUACCT_STAT_USER] = "user",
10468 [CPUACCT_STAT_SYSTEM] = "system", 10468 [CPUACCT_STAT_SYSTEM] = "system",
10469 }; 10469 };
10470 10470
10471 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft, 10471 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10472 struct cgroup_map_cb *cb) 10472 struct cgroup_map_cb *cb)
10473 { 10473 {
10474 struct cpuacct *ca = cgroup_ca(cgrp); 10474 struct cpuacct *ca = cgroup_ca(cgrp);
10475 int i; 10475 int i;
10476 10476
10477 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) { 10477 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10478 s64 val = percpu_counter_read(&ca->cpustat[i]); 10478 s64 val = percpu_counter_read(&ca->cpustat[i]);
10479 val = cputime64_to_clock_t(val); 10479 val = cputime64_to_clock_t(val);
10480 cb->fill(cb, cpuacct_stat_desc[i], val); 10480 cb->fill(cb, cpuacct_stat_desc[i], val);
10481 } 10481 }
10482 return 0; 10482 return 0;
10483 } 10483 }
10484 10484
10485 static struct cftype files[] = { 10485 static struct cftype files[] = {
10486 { 10486 {
10487 .name = "usage", 10487 .name = "usage",
10488 .read_u64 = cpuusage_read, 10488 .read_u64 = cpuusage_read,
10489 .write_u64 = cpuusage_write, 10489 .write_u64 = cpuusage_write,
10490 }, 10490 },
10491 { 10491 {
10492 .name = "usage_percpu", 10492 .name = "usage_percpu",
10493 .read_seq_string = cpuacct_percpu_seq_read, 10493 .read_seq_string = cpuacct_percpu_seq_read,
10494 }, 10494 },
10495 { 10495 {
10496 .name = "stat", 10496 .name = "stat",
10497 .read_map = cpuacct_stats_show, 10497 .read_map = cpuacct_stats_show,
10498 }, 10498 },
10499 }; 10499 };
10500 10500
10501 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) 10501 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10502 { 10502 {
10503 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); 10503 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10504 } 10504 }
10505 10505
10506 /* 10506 /*
10507 * charge this task's execution time to its accounting group. 10507 * charge this task's execution time to its accounting group.
10508 * 10508 *
10509 * called with rq->lock held. 10509 * called with rq->lock held.
10510 */ 10510 */
10511 static void cpuacct_charge(struct task_struct *tsk, u64 cputime) 10511 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10512 { 10512 {
10513 struct cpuacct *ca; 10513 struct cpuacct *ca;
10514 int cpu; 10514 int cpu;
10515 10515
10516 if (unlikely(!cpuacct_subsys.active)) 10516 if (unlikely(!cpuacct_subsys.active))
10517 return; 10517 return;
10518 10518
10519 cpu = task_cpu(tsk); 10519 cpu = task_cpu(tsk);
10520 10520
10521 rcu_read_lock(); 10521 rcu_read_lock();
10522 10522
10523 ca = task_ca(tsk); 10523 ca = task_ca(tsk);
10524 10524
10525 for (; ca; ca = ca->parent) { 10525 for (; ca; ca = ca->parent) {
10526 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); 10526 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10527 *cpuusage += cputime; 10527 *cpuusage += cputime;
10528 } 10528 }
10529 10529
10530 rcu_read_unlock(); 10530 rcu_read_unlock();
10531 } 10531 }
10532 10532
10533 /* 10533 /*
10534 * Charge the system/user time to the task's accounting group. 10534 * Charge the system/user time to the task's accounting group.
10535 */ 10535 */
10536 static void cpuacct_update_stats(struct task_struct *tsk, 10536 static void cpuacct_update_stats(struct task_struct *tsk,
10537 enum cpuacct_stat_index idx, cputime_t val) 10537 enum cpuacct_stat_index idx, cputime_t val)
10538 { 10538 {
10539 struct cpuacct *ca; 10539 struct cpuacct *ca;
10540 10540
10541 if (unlikely(!cpuacct_subsys.active)) 10541 if (unlikely(!cpuacct_subsys.active))
10542 return; 10542 return;
10543 10543
10544 rcu_read_lock(); 10544 rcu_read_lock();
10545 ca = task_ca(tsk); 10545 ca = task_ca(tsk);
10546 10546
10547 do { 10547 do {
10548 percpu_counter_add(&ca->cpustat[idx], val); 10548 percpu_counter_add(&ca->cpustat[idx], val);
10549 ca = ca->parent; 10549 ca = ca->parent;
10550 } while (ca); 10550 } while (ca);
10551 rcu_read_unlock(); 10551 rcu_read_unlock();
10552 } 10552 }
10553 10553
10554 struct cgroup_subsys cpuacct_subsys = { 10554 struct cgroup_subsys cpuacct_subsys = {
10555 .name = "cpuacct", 10555 .name = "cpuacct",
10556 .create = cpuacct_create, 10556 .create = cpuacct_create,
10557 .destroy = cpuacct_destroy, 10557 .destroy = cpuacct_destroy,
10558 .populate = cpuacct_populate, 10558 .populate = cpuacct_populate,
10559 .subsys_id = cpuacct_subsys_id, 10559 .subsys_id = cpuacct_subsys_id,
10560 }; 10560 };
10561 #endif /* CONFIG_CGROUP_CPUACCT */ 10561 #endif /* CONFIG_CGROUP_CPUACCT */
10562 10562
kernel/sched_cpupri.c
1 /* 1 /*
2 * kernel/sched_cpupri.c 2 * kernel/sched_cpupri.c
3 * 3 *
4 * CPU priority management 4 * CPU priority management
5 * 5 *
6 * Copyright (C) 2007-2008 Novell 6 * Copyright (C) 2007-2008 Novell
7 * 7 *
8 * Author: Gregory Haskins <ghaskins@novell.com> 8 * Author: Gregory Haskins <ghaskins@novell.com>
9 * 9 *
10 * This code tracks the priority of each CPU so that global migration 10 * This code tracks the priority of each CPU so that global migration
11 * decisions are easy to calculate. Each CPU can be in a state as follows: 11 * decisions are easy to calculate. Each CPU can be in a state as follows:
12 * 12 *
13 * (INVALID), IDLE, NORMAL, RT1, ... RT99 13 * (INVALID), IDLE, NORMAL, RT1, ... RT99
14 * 14 *
15 * going from the lowest priority to the highest. CPUs in the INVALID state 15 * going from the lowest priority to the highest. CPUs in the INVALID state
16 * are not eligible for routing. The system maintains this state with 16 * are not eligible for routing. The system maintains this state with
17 * a 2 dimensional bitmap (the first for priority class, the second for cpus 17 * a 2 dimensional bitmap (the first for priority class, the second for cpus
18 * in that class). Therefore a typical application without affinity 18 * in that class). Therefore a typical application without affinity
19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit 19 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
20 * searches). For tasks with affinity restrictions, the algorithm has a 20 * searches). For tasks with affinity restrictions, the algorithm has a
21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that 21 * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
22 * yields the worst case search is fairly contrived. 22 * yields the worst case search is fairly contrived.
23 * 23 *
24 * This program is free software; you can redistribute it and/or 24 * This program is free software; you can redistribute it and/or
25 * modify it under the terms of the GNU General Public License 25 * modify it under the terms of the GNU General Public License
26 * as published by the Free Software Foundation; version 2 26 * as published by the Free Software Foundation; version 2
27 * of the License. 27 * of the License.
28 */ 28 */
29 29
30 #include "sched_cpupri.h" 30 #include "sched_cpupri.h"
31 31
32 /* Convert between a 140 based task->prio, and our 102 based cpupri */ 32 /* Convert between a 140 based task->prio, and our 102 based cpupri */
33 static int convert_prio(int prio) 33 static int convert_prio(int prio)
34 { 34 {
35 int cpupri; 35 int cpupri;
36 36
37 if (prio == CPUPRI_INVALID) 37 if (prio == CPUPRI_INVALID)
38 cpupri = CPUPRI_INVALID; 38 cpupri = CPUPRI_INVALID;
39 else if (prio == MAX_PRIO) 39 else if (prio == MAX_PRIO)
40 cpupri = CPUPRI_IDLE; 40 cpupri = CPUPRI_IDLE;
41 else if (prio >= MAX_RT_PRIO) 41 else if (prio >= MAX_RT_PRIO)
42 cpupri = CPUPRI_NORMAL; 42 cpupri = CPUPRI_NORMAL;
43 else 43 else
44 cpupri = MAX_RT_PRIO - prio + 1; 44 cpupri = MAX_RT_PRIO - prio + 1;
45 45
46 return cpupri; 46 return cpupri;
47 } 47 }
48 48
49 #define for_each_cpupri_active(array, idx) \ 49 #define for_each_cpupri_active(array, idx) \
50 for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \ 50 for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
51 idx < CPUPRI_NR_PRIORITIES; \ 51 idx < CPUPRI_NR_PRIORITIES; \
52 idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1)) 52 idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
53 53
54 /** 54 /**
55 * cpupri_find - find the best (lowest-pri) CPU in the system 55 * cpupri_find - find the best (lowest-pri) CPU in the system
56 * @cp: The cpupri context 56 * @cp: The cpupri context
57 * @p: The task 57 * @p: The task
58 * @lowest_mask: A mask to fill in with selected CPUs (or NULL) 58 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
59 * 59 *
60 * Note: This function returns the recommended CPUs as calculated during the 60 * Note: This function returns the recommended CPUs as calculated during the
61 * current invokation. By the time the call returns, the CPUs may have in 61 * current invokation. By the time the call returns, the CPUs may have in
62 * fact changed priorities any number of times. While not ideal, it is not 62 * fact changed priorities any number of times. While not ideal, it is not
63 * an issue of correctness since the normal rebalancer logic will correct 63 * an issue of correctness since the normal rebalancer logic will correct
64 * any discrepancies created by racing against the uncertainty of the current 64 * any discrepancies created by racing against the uncertainty of the current
65 * priority configuration. 65 * priority configuration.
66 * 66 *
67 * Returns: (int)bool - CPUs were found 67 * Returns: (int)bool - CPUs were found
68 */ 68 */
69 int cpupri_find(struct cpupri *cp, struct task_struct *p, 69 int cpupri_find(struct cpupri *cp, struct task_struct *p,
70 struct cpumask *lowest_mask) 70 struct cpumask *lowest_mask)
71 { 71 {
72 int idx = 0; 72 int idx = 0;
73 int task_pri = convert_prio(p->prio); 73 int task_pri = convert_prio(p->prio);
74 74
75 for_each_cpupri_active(cp->pri_active, idx) { 75 for_each_cpupri_active(cp->pri_active, idx) {
76 struct cpupri_vec *vec = &cp->pri_to_cpu[idx]; 76 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
77 77
78 if (idx >= task_pri) 78 if (idx >= task_pri)
79 break; 79 break;
80 80
81 if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids) 81 if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
82 continue; 82 continue;
83 83
84 if (lowest_mask) 84 if (lowest_mask)
85 cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask); 85 cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
86 return 1; 86 return 1;
87 } 87 }
88 88
89 return 0; 89 return 0;
90 } 90 }
91 91
92 /** 92 /**
93 * cpupri_set - update the cpu priority setting 93 * cpupri_set - update the cpu priority setting
94 * @cp: The cpupri context 94 * @cp: The cpupri context
95 * @cpu: The target cpu 95 * @cpu: The target cpu
96 * @pri: The priority (INVALID-RT99) to assign to this CPU 96 * @pri: The priority (INVALID-RT99) to assign to this CPU
97 * 97 *
98 * Note: Assumes cpu_rq(cpu)->lock is locked 98 * Note: Assumes cpu_rq(cpu)->lock is locked
99 * 99 *
100 * Returns: (void) 100 * Returns: (void)
101 */ 101 */
102 void cpupri_set(struct cpupri *cp, int cpu, int newpri) 102 void cpupri_set(struct cpupri *cp, int cpu, int newpri)
103 { 103 {
104 int *currpri = &cp->cpu_to_pri[cpu]; 104 int *currpri = &cp->cpu_to_pri[cpu];
105 int oldpri = *currpri; 105 int oldpri = *currpri;
106 unsigned long flags; 106 unsigned long flags;
107 107
108 newpri = convert_prio(newpri); 108 newpri = convert_prio(newpri);
109 109
110 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES); 110 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
111 111
112 if (newpri == oldpri) 112 if (newpri == oldpri)
113 return; 113 return;
114 114
115 /* 115 /*
116 * If the cpu was currently mapped to a different value, we 116 * If the cpu was currently mapped to a different value, we
117 * first need to unmap the old value 117 * first need to unmap the old value
118 */ 118 */
119 if (likely(oldpri != CPUPRI_INVALID)) { 119 if (likely(oldpri != CPUPRI_INVALID)) {
120 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri]; 120 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
121 121
122 spin_lock_irqsave(&vec->lock, flags); 122 spin_lock_irqsave(&vec->lock, flags);
123 123
124 vec->count--; 124 vec->count--;
125 if (!vec->count) 125 if (!vec->count)
126 clear_bit(oldpri, cp->pri_active); 126 clear_bit(oldpri, cp->pri_active);
127 cpumask_clear_cpu(cpu, vec->mask); 127 cpumask_clear_cpu(cpu, vec->mask);
128 128
129 spin_unlock_irqrestore(&vec->lock, flags); 129 spin_unlock_irqrestore(&vec->lock, flags);
130 } 130 }
131 131
132 if (likely(newpri != CPUPRI_INVALID)) { 132 if (likely(newpri != CPUPRI_INVALID)) {
133 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri]; 133 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
134 134
135 spin_lock_irqsave(&vec->lock, flags); 135 spin_lock_irqsave(&vec->lock, flags);
136 136
137 cpumask_set_cpu(cpu, vec->mask); 137 cpumask_set_cpu(cpu, vec->mask);
138 vec->count++; 138 vec->count++;
139 if (vec->count == 1) 139 if (vec->count == 1)
140 set_bit(newpri, cp->pri_active); 140 set_bit(newpri, cp->pri_active);
141 141
142 spin_unlock_irqrestore(&vec->lock, flags); 142 spin_unlock_irqrestore(&vec->lock, flags);
143 } 143 }
144 144
145 *currpri = newpri; 145 *currpri = newpri;
146 } 146 }
147 147
148 /** 148 /**
149 * cpupri_init - initialize the cpupri structure 149 * cpupri_init - initialize the cpupri structure
150 * @cp: The cpupri context 150 * @cp: The cpupri context
151 * @bootmem: true if allocations need to use bootmem 151 * @bootmem: true if allocations need to use bootmem
152 * 152 *
153 * Returns: -ENOMEM if memory fails. 153 * Returns: -ENOMEM if memory fails.
154 */ 154 */
155 int __init_refok cpupri_init(struct cpupri *cp, bool bootmem) 155 int cpupri_init(struct cpupri *cp, bool bootmem)
156 { 156 {
157 gfp_t gfp = GFP_KERNEL; 157 gfp_t gfp = GFP_KERNEL;
158 int i; 158 int i;
159 159
160 if (bootmem) 160 if (bootmem)
161 gfp = GFP_NOWAIT; 161 gfp = GFP_NOWAIT;
162 162
163 memset(cp, 0, sizeof(*cp)); 163 memset(cp, 0, sizeof(*cp));
164 164
165 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) { 165 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
166 struct cpupri_vec *vec = &cp->pri_to_cpu[i]; 166 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
167 167
168 spin_lock_init(&vec->lock); 168 spin_lock_init(&vec->lock);
169 vec->count = 0; 169 vec->count = 0;
170 if (!zalloc_cpumask_var(&vec->mask, gfp)) 170 if (!zalloc_cpumask_var(&vec->mask, gfp))
171 goto cleanup; 171 goto cleanup;
172 } 172 }
173 173
174 for_each_possible_cpu(i) 174 for_each_possible_cpu(i)
175 cp->cpu_to_pri[i] = CPUPRI_INVALID; 175 cp->cpu_to_pri[i] = CPUPRI_INVALID;
176 return 0; 176 return 0;
177 177
178 cleanup: 178 cleanup:
179 for (i--; i >= 0; i--) 179 for (i--; i >= 0; i--)
180 free_cpumask_var(cp->pri_to_cpu[i].mask); 180 free_cpumask_var(cp->pri_to_cpu[i].mask);
181 return -ENOMEM; 181 return -ENOMEM;
182 } 182 }
183 183
184 /** 184 /**
185 * cpupri_cleanup - clean up the cpupri structure 185 * cpupri_cleanup - clean up the cpupri structure
186 * @cp: The cpupri context 186 * @cp: The cpupri context
187 */ 187 */
188 void cpupri_cleanup(struct cpupri *cp) 188 void cpupri_cleanup(struct cpupri *cp)
189 { 189 {
190 int i; 190 int i;
191 191
192 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) 192 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
193 free_cpumask_var(cp->pri_to_cpu[i].mask); 193 free_cpumask_var(cp->pri_to_cpu[i].mask);
194 } 194 }
195 195