interface.c 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/*
 * RTC subsystem, interface functions
 *
 * Copyright (C) 2005 Tower Technologies
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 *
 * based on arch/arm/common/rtctime.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/rtc.h>
#include <linux/sched.h>
#include <linux/log2.h>
#include <linux/workqueue.h>

static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;
	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->read_time)
		err = -EINVAL;
	else {
		memset(tm, 0, sizeof(struct rtc_time));
		err = rtc->ops->read_time(rtc->dev.parent, tm);
	}
	return err;
}

int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	err = __rtc_read_time(rtc, tm);
	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_read_time);

int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = rtc_valid_tm(tm);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (!rtc->ops)
		err = -ENODEV;
	else if (rtc->ops->set_time)
		err = rtc->ops->set_time(rtc->dev.parent, tm);
	else if (rtc->ops->set_mmss) {
		unsigned long secs;
		err = rtc_tm_to_time(tm, &secs);
		if (err == 0)
			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
	} else
		err = -EINVAL;

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_time);

int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (!rtc->ops)
		err = -ENODEV;
	else if (rtc->ops->set_mmss)
		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
	else if (rtc->ops->read_time && rtc->ops->set_time) {
		struct rtc_time new, old;

		err = rtc->ops->read_time(rtc->dev.parent, &old);
		if (err == 0) {
			rtc_time_to_tm(secs, &new);

			/*
			 * avoid writing when we're going to change the day of
			 * the month. We will retry in the next minute. This
			 * basically means that if the RTC must not drift
			 * by more than 1 minute in 11 minutes.
			 */
			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
				(new.tm_hour == 23 && new.tm_min == 59)))
				err = rtc->ops->set_time(rtc->dev.parent,
						&new);
		}
	}
	else
		err = -EINVAL;

	mutex_unlock(&rtc->ops_lock);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_mmss);

int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;
	alarm->enabled = rtc->aie_timer.enabled;
	if (alarm->enabled)
		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
	mutex_unlock(&rtc->ops_lock);

	return 0;
}
EXPORT_SYMBOL_GPL(rtc_read_alarm);

int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	struct rtc_time tm;
	long now, scheduled;
	int err;

	err = rtc_valid_tm(&alarm->time);
	if (err)
		return err;
	rtc_tm_to_time(&alarm->time, &scheduled);

	/* Make sure we're not setting alarms in the past */
	err = __rtc_read_time(rtc, &tm);
	rtc_tm_to_time(&tm, &now);
	if (scheduled <= now)
		return -ETIME;
	/*
	 * XXX - We just checked to make sure the alarm time is not
	 * in the past, but there is still a race window where if
	 * the is alarm set for the next second and the second ticks
	 * over right here, before we set the alarm.
	 */

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->set_alarm)
		err = -EINVAL;
	else
		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);

	return err;
}

int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = rtc_valid_tm(&alarm->time);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;
	if (rtc->aie_timer.enabled) {
		rtc_timer_remove(rtc, &rtc->aie_timer);
		rtc->aie_timer.enabled = 0;
	}
	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
	rtc->aie_timer.period = ktime_set(0, 0);
	if (alarm->enabled) {
		rtc->aie_timer.enabled = 1;
		rtc_timer_enqueue(rtc, &rtc->aie_timer);
	}
	mutex_unlock(&rtc->ops_lock);
	return 0;
}
EXPORT_SYMBOL_GPL(rtc_set_alarm);

int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
	int err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	if (rtc->aie_timer.enabled != enabled) {
		if (enabled) {
			rtc->aie_timer.enabled = 1;
			rtc_timer_enqueue(rtc, &rtc->aie_timer);
		} else {
			rtc_timer_remove(rtc, &rtc->aie_timer);
			rtc->aie_timer.enabled = 0;
		}
	}

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->alarm_irq_enable)
		err = -EINVAL;
	else
		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);

int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
{
	int err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return err;

	/* make sure we're changing state */
	if (rtc->uie_rtctimer.enabled == enabled)
		goto out;

	if (enabled) {
		struct rtc_time tm;
		ktime_t now, onesec;

		__rtc_read_time(rtc, &tm);
		onesec = ktime_set(1, 0);
		now = rtc_tm_to_ktime(tm);
		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
		rtc->uie_rtctimer.period = ktime_set(1, 0);
		rtc->uie_rtctimer.enabled = 1;
		rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
	} else {
		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
		rtc->uie_rtctimer.enabled = 0;
	}

out:
	mutex_unlock(&rtc->ops_lock);
	return err;

}
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);


/**
 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 * @rtc: pointer to the rtc device
 *
 * This function is called when an AIE, UIE or PIE mode interrupt
 * has occured (or been emulated).
 *
 * Triggers the registered irq_task function callback.
 */
static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
{
	unsigned long flags;

	/* mark one irq of the appropriate mode */
	spin_lock_irqsave(&rtc->irq_lock, flags);
	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
	spin_unlock_irqrestore(&rtc->irq_lock, flags);

	/* call the task func */
	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task)
		rtc->irq_task->func(rtc->irq_task->private_data);
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	wake_up_interruptible(&rtc->irq_queue);
	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
}


/**
 * rtc_aie_update_irq - AIE mode rtctimer hook
 * @private: pointer to the rtc_device
 *
 * This functions is called when the aie_timer expires.
 */
void rtc_aie_update_irq(void *private)
{
	struct rtc_device *rtc = (struct rtc_device *)private;
	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
}


/**
 * rtc_uie_update_irq - UIE mode rtctimer hook
 * @private: pointer to the rtc_device
 *
 * This functions is called when the uie_timer expires.
 */
void rtc_uie_update_irq(void *private)
{
	struct rtc_device *rtc = (struct rtc_device *)private;
	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
}


/**
 * rtc_pie_update_irq - PIE mode hrtimer hook
 * @timer: pointer to the pie mode hrtimer
 *
 * This function is used to emulate PIE mode interrupts
 * using an hrtimer. This function is called when the periodic
 * hrtimer expires.
 */
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
{
	struct rtc_device *rtc;
	ktime_t period;
	int count;
	rtc = container_of(timer, struct rtc_device, pie_timer);

	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
	count = hrtimer_forward_now(timer, period);

	rtc_handle_legacy_irq(rtc, count, RTC_PF);

	return HRTIMER_RESTART;
}

/**
 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 * @rtc: the rtc device
 * @num: how many irqs are being reported (usually one)
 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 * Context: any
 */
void rtc_update_irq(struct rtc_device *rtc,
		unsigned long num, unsigned long events)
{
	schedule_work(&rtc->irqwork);
}
EXPORT_SYMBOL_GPL(rtc_update_irq);

static int __rtc_match(struct device *dev, void *data)
{
	char *name = (char *)data;

	if (strcmp(dev_name(dev), name) == 0)
		return 1;
	return 0;
}

struct rtc_device *rtc_class_open(char *name)
{
	struct device *dev;
	struct rtc_device *rtc = NULL;

	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
	if (dev)
		rtc = to_rtc_device(dev);

	if (rtc) {
		if (!try_module_get(rtc->owner)) {
			put_device(dev);
			rtc = NULL;
		}
	}

	return rtc;
}
EXPORT_SYMBOL_GPL(rtc_class_open);

void rtc_class_close(struct rtc_device *rtc)
{
	module_put(rtc->owner);
	put_device(&rtc->dev);
}
EXPORT_SYMBOL_GPL(rtc_class_close);

int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
{
	int retval = -EBUSY;

	if (task == NULL || task->func == NULL)
		return -EINVAL;

	/* Cannot register while the char dev is in use */
	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
		return -EBUSY;

	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == NULL) {
		rtc->irq_task = task;
		retval = 0;
	}
	spin_unlock_irq(&rtc->irq_task_lock);

	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);

	return retval;
}
EXPORT_SYMBOL_GPL(rtc_irq_register);

void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
{
	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == task)
		rtc->irq_task = NULL;
	spin_unlock_irq(&rtc->irq_task_lock);
}
EXPORT_SYMBOL_GPL(rtc_irq_unregister);

/**
 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @enabled: true to enable periodic IRQs
 * Context: any
 *
 * Note that rtc_irq_set_freq() should previously have been used to
 * specify the desired frequency of periodic IRQ task->func() callbacks.
 */
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
{
	int err = 0;
	unsigned long flags;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;

	if (enabled) {
		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
	} else {
		hrtimer_cancel(&rtc->pie_timer);
	}
	rtc->pie_enabled = enabled;
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_state);

/**
 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @freq: positive frequency with which task->func() will be called
 * Context: any
 *
 * Note that rtc_irq_set_state() is used to enable or disable the
 * periodic IRQs.
 */
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
{
	int err = 0;
	unsigned long flags;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;
	if (err == 0) {
		rtc->irq_freq = freq;
		if (rtc->pie_enabled) {
			ktime_t period;
			hrtimer_cancel(&rtc->pie_timer);
			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
			hrtimer_start(&rtc->pie_timer, period,
					HRTIMER_MODE_REL);
		}
	}
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);

/**
 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 * @rtc rtc device
 * @timer timer being added.
 *
 * Enqueues a timer onto the rtc devices timerqueue and sets
 * the next alarm event appropriately.
 *
 * Must hold ops_lock for proper serialization of timerqueue
 */
void rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
{
	timerqueue_add(&rtc->timerqueue, &timer->node);
	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
		struct rtc_wkalrm alarm;
		int err;
		alarm.time = rtc_ktime_to_tm(timer->node.expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			schedule_work(&rtc->irqwork);
	}
}

/**
 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 * @rtc rtc device
 * @timer timer being removed.
 *
 * Removes a timer onto the rtc devices timerqueue and sets
 * the next alarm event appropriately.
 *
 * Must hold ops_lock for proper serialization of timerqueue
 */
void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
{
	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
	timerqueue_del(&rtc->timerqueue, &timer->node);

	if (next == &timer->node) {
		struct rtc_wkalrm alarm;
		int err;
		next = timerqueue_getnext(&rtc->timerqueue);
		if (!next)
			return;
		alarm.time = rtc_ktime_to_tm(next->expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			schedule_work(&rtc->irqwork);
	}
}

/**
 * rtc_timer_do_work - Expires rtc timers
 * @rtc rtc device
 * @timer timer being removed.
 *
 * Expires rtc timers. Reprograms next alarm event if needed.
 * Called via worktask.
 *
 * Serializes access to timerqueue via ops_lock mutex
 */
void rtc_timer_do_work(struct work_struct *work)
{
	struct rtc_timer *timer;
	struct timerqueue_node *next;
	ktime_t now;
	struct rtc_time tm;

	struct rtc_device *rtc =
		container_of(work, struct rtc_device, irqwork);

	mutex_lock(&rtc->ops_lock);
again:
	__rtc_read_time(rtc, &tm);
	now = rtc_tm_to_ktime(tm);
	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
		if (next->expires.tv64 > now.tv64)
			break;

		/* expire timer */
		timer = container_of(next, struct rtc_timer, node);
		timerqueue_del(&rtc->timerqueue, &timer->node);
		timer->enabled = 0;
		if (timer->task.func)
			timer->task.func(timer->task.private_data);

		/* Re-add/fwd periodic timers */
		if (ktime_to_ns(timer->period)) {
			timer->node.expires = ktime_add(timer->node.expires,
							timer->period);
			timer->enabled = 1;
			timerqueue_add(&rtc->timerqueue, &timer->node);
		}
	}

	/* Set next alarm */
	if (next) {
		struct rtc_wkalrm alarm;
		int err;
		alarm.time = rtc_ktime_to_tm(next->expires);
		alarm.enabled = 1;
		err = __rtc_set_alarm(rtc, &alarm);
		if (err == -ETIME)
			goto again;
	}

	mutex_unlock(&rtc->ops_lock);
}


/* rtc_timer_init - Initializes an rtc_timer
 * @timer: timer to be intiialized
 * @f: function pointer to be called when timer fires
 * @data: private data passed to function pointer
 *
 * Kernel interface to initializing an rtc_timer.
 */
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
{
	timerqueue_init(&timer->node);
	timer->enabled = 0;
	timer->task.func = f;
	timer->task.private_data = data;
}

/* rtc_timer_start - Sets an rtc_timer to fire in the future
 * @ rtc: rtc device to be used
 * @ timer: timer being set
 * @ expires: time at which to expire the timer
 * @ period: period that the timer will recur
 *
 * Kernel interface to set an rtc_timer
 */
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
			ktime_t expires, ktime_t period)
{
	int ret = 0;
	mutex_lock(&rtc->ops_lock);
	if (timer->enabled)
		rtc_timer_remove(rtc, timer);

	timer->node.expires = expires;
	timer->period = period;

	timer->enabled = 1;
	rtc_timer_enqueue(rtc, timer);

	mutex_unlock(&rtc->ops_lock);
	return ret;
}

/* rtc_timer_cancel - Stops an rtc_timer
 * @ rtc: rtc device to be used
 * @ timer: timer being set
 *
 * Kernel interface to cancel an rtc_timer
 */
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
{
	int ret = 0;
	mutex_lock(&rtc->ops_lock);
	if (timer->enabled)
		rtc_timer_remove(rtc, timer);
	timer->enabled = 0;
	mutex_unlock(&rtc->ops_lock);
	return ret;
}