milli.S 67.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/* 32 and 64-bit millicode, original author Hewlett-Packard
   adapted for gcc by Paul Bame <bame@debian.org>
   and Alan Modra <alan@linuxcare.com.au>.

   Copyright 2001, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GCC and is released under the terms of
   of the GNU General Public License as published by the Free Software
   Foundation; either version 2, or (at your option) any later version.
   See the file COPYING in the top-level GCC source directory for a copy
   of the license.  */

#ifdef CONFIG_64BIT
        .level  2.0w
#endif

/* Hardware General Registers.  */
r0:	.reg	%r0
r1:	.reg	%r1
r2:	.reg	%r2
r3:	.reg	%r3
r4:	.reg	%r4
r5:	.reg	%r5
r6:	.reg	%r6
r7:	.reg	%r7
r8:	.reg	%r8
r9:	.reg	%r9
r10:	.reg	%r10
r11:	.reg	%r11
r12:	.reg	%r12
r13:	.reg	%r13
r14:	.reg	%r14
r15:	.reg	%r15
r16:	.reg	%r16
r17:	.reg	%r17
r18:	.reg	%r18
r19:	.reg	%r19
r20:	.reg	%r20
r21:	.reg	%r21
r22:	.reg	%r22
r23:	.reg	%r23
r24:	.reg	%r24
r25:	.reg	%r25
r26:	.reg	%r26
r27:	.reg	%r27
r28:	.reg	%r28
r29:	.reg	%r29
r30:	.reg	%r30
r31:	.reg	%r31

/* Hardware Space Registers.  */
sr0:	.reg	%sr0
sr1:	.reg	%sr1
sr2:	.reg	%sr2
sr3:	.reg	%sr3
sr4:	.reg	%sr4
sr5:	.reg	%sr5
sr6:	.reg	%sr6
sr7:	.reg	%sr7

/* Hardware Floating Point Registers.  */
fr0:	.reg	%fr0
fr1:	.reg	%fr1
fr2:	.reg	%fr2
fr3:	.reg	%fr3
fr4:	.reg	%fr4
fr5:	.reg	%fr5
fr6:	.reg	%fr6
fr7:	.reg	%fr7
fr8:	.reg	%fr8
fr9:	.reg	%fr9
fr10:	.reg	%fr10
fr11:	.reg	%fr11
fr12:	.reg	%fr12
fr13:	.reg	%fr13
fr14:	.reg	%fr14
fr15:	.reg	%fr15

/* Hardware Control Registers.  */
cr11:	.reg	%cr11
sar:	.reg	%cr11	/* Shift Amount Register */

/* Software Architecture General Registers.  */
rp:	.reg    r2	/* return pointer */
#ifdef CONFIG_64BIT
mrp:	.reg	r2 	/* millicode return pointer */
#else
mrp:	.reg	r31	/* millicode return pointer */
#endif
ret0:	.reg    r28	/* return value */
ret1:	.reg    r29	/* return value (high part of double) */
sp:	.reg 	r30	/* stack pointer */
dp:	.reg	r27	/* data pointer */
arg0:	.reg	r26	/* argument */
arg1:	.reg	r25	/* argument or high part of double argument */
arg2:	.reg	r24	/* argument */
arg3:	.reg	r23	/* argument or high part of double argument */

/* Software Architecture Space Registers.  */
/* 		sr0	; return link from BLE */
sret:	.reg	sr1	/* return value */
sarg:	.reg	sr1	/* argument */
/* 		sr4	; PC SPACE tracker */
/* 		sr5	; process private data */

/* Frame Offsets (millicode convention!)  Used when calling other
   millicode routines.  Stack unwinding is dependent upon these
   definitions.  */
r31_slot:	.equ	-20	/* "current RP" slot */
sr0_slot:	.equ	-16     /* "static link" slot */
#if defined(CONFIG_64BIT)
mrp_slot:       .equ    -16	/* "current RP" slot */
psp_slot:       .equ    -8	/* "previous SP" slot */
#else
mrp_slot:	.equ	-20     /* "current RP" slot (replacing "r31_slot") */
#endif


#define DEFINE(name,value)name:	.EQU	value
#define RDEFINE(name,value)name:	.REG	value
#ifdef milliext
#define MILLI_BE(lbl)   BE    lbl(sr7,r0)
#define MILLI_BEN(lbl)  BE,n  lbl(sr7,r0)
#define MILLI_BLE(lbl)	BLE   lbl(sr7,r0)
#define MILLI_BLEN(lbl)	BLE,n lbl(sr7,r0)
#define MILLIRETN	BE,n  0(sr0,mrp)
#define MILLIRET	BE    0(sr0,mrp)
#define MILLI_RETN	BE,n  0(sr0,mrp)
#define MILLI_RET	BE    0(sr0,mrp)
#else
#define MILLI_BE(lbl)	B     lbl
#define MILLI_BEN(lbl)  B,n   lbl
#define MILLI_BLE(lbl)	BL    lbl,mrp
#define MILLI_BLEN(lbl)	BL,n  lbl,mrp
#define MILLIRETN	BV,n  0(mrp)
#define MILLIRET	BV    0(mrp)
#define MILLI_RETN	BV,n  0(mrp)
#define MILLI_RET	BV    0(mrp)
#endif

#define CAT(a,b)	a##b

#define SUBSPA_MILLI	 .section .text
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
#define ATTR_MILLI
#define SUBSPA_DATA	 .section .data
#define ATTR_DATA
#define GLOBAL		 $global$
#define GSYM(sym) 	 !sym:
#define LSYM(sym)	 !CAT(.L,sym:)
#define LREF(sym)	 CAT(.L,sym)

#ifdef L_dyncall
	SUBSPA_MILLI
	ATTR_DATA
GSYM($$dyncall)
	.export $$dyncall,millicode
	.proc
	.callinfo	millicode
	.entry
	bb,>=,n %r22,30,LREF(1)		; branch if not plabel address
	depi	0,31,2,%r22		; clear the two least significant bits
	ldw	4(%r22),%r19		; load new LTP value
	ldw	0(%r22),%r22		; load address of target
LSYM(1)
	bv	%r0(%r22)		; branch to the real target
	stw	%r2,-24(%r30)		; save return address into frame marker
	.exit
	.procend
#endif

#ifdef L_divI
/* ROUTINES:	$$divI, $$divoI

   Single precision divide for signed binary integers.

   The quotient is truncated towards zero.
   The sign of the quotient is the XOR of the signs of the dividend and
   divisor.
   Divide by zero is trapped.
   Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 ==	divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:
   .		divisor is zero  (traps with ADDIT,=  0,25,0)
   .		dividend==-2**31  and divisor==-1 and routine is $$divoI
   .				 (traps with ADDO  26,25,0)
   .	Changes memory at the following places:
   .		NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Branchs to other millicode routines using BE
   .		$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
   .
   .	For selected divisors, calls a divide by constant routine written by
   .	Karl Pettis.  Eligible divisors are 1..15 excluding 11 and 13.
   .
   .	The only overflow case is -2**31 divided by -1.
   .	Both routines return -2**31 but only $$divoI traps.  */

RDEFINE(temp,r1)
RDEFINE(retreg,ret1)	/*  r29 */
RDEFINE(temp1,arg0)
	SUBSPA_MILLI_DIV
	ATTR_MILLI
	.import $$divI_2,millicode
	.import $$divI_3,millicode
	.import $$divI_4,millicode
	.import $$divI_5,millicode
	.import $$divI_6,millicode
	.import $$divI_7,millicode
	.import $$divI_8,millicode
	.import $$divI_9,millicode
	.import $$divI_10,millicode
	.import $$divI_12,millicode
	.import $$divI_14,millicode
	.import $$divI_15,millicode
	.export $$divI,millicode
	.export	$$divoI,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$divoI)
	comib,=,n  -1,arg1,LREF(negative1)	/*  when divisor == -1 */
GSYM($$divI)
	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
	and,<>	arg1,temp,r0		/*  if not, don't use power of 2 divide */
	addi,>	0,arg1,r0		/*  if divisor > 0, use power of 2 divide */
	b,n	LREF(neg_denom)
LSYM(pow2)
	addi,>=	0,arg0,retreg		/*  if numerator is negative, add the */
	add	arg0,temp,retreg	/*  (denominaotr -1) to correct for shifts */
	extru,=	arg1,15,16,temp		/*  test denominator with 0xffff0000 */
	extrs	retreg,15,16,retreg	/*  retreg = retreg >> 16 */
	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 16) */
	ldi	0xcc,temp1		/*  setup 0xcc in temp1 */
	extru,= arg1,23,8,temp		/*  test denominator with 0xff00 */
	extrs	retreg,23,24,retreg	/*  retreg = retreg >> 8 */
	or	arg1,temp,arg1		/*  arg1 = arg1 | (arg1 >> 8) */
	ldi	0xaa,temp		/*  setup 0xaa in temp */
	extru,= arg1,27,4,r0		/*  test denominator with 0xf0 */
	extrs	retreg,27,28,retreg	/*  retreg = retreg >> 4 */
	and,=	arg1,temp1,r0		/*  test denominator with 0xcc */
	extrs	retreg,29,30,retreg	/*  retreg = retreg >> 2 */
	and,=	arg1,temp,r0		/*  test denominator with 0xaa */
	extrs	retreg,30,31,retreg	/*  retreg = retreg >> 1 */
	MILLIRETN
LSYM(neg_denom)
	addi,<	0,arg1,r0		/*  if arg1 >= 0, it's not power of 2 */
	b,n	LREF(regular_seq)
	sub	r0,arg1,temp		/*  make denominator positive */
	comb,=,n  arg1,temp,LREF(regular_seq)	/*  test against 0x80000000 and 0 */
	ldo	-1(temp),retreg		/*  is there at most one bit set ? */
	and,=	temp,retreg,r0		/*  if so, the denominator is power of 2 */
	b,n	LREF(regular_seq)
	sub	r0,arg0,retreg		/*  negate numerator */
	comb,=,n arg0,retreg,LREF(regular_seq) /*  test against 0x80000000 */
	copy	retreg,arg0		/*  set up arg0, arg1 and temp	*/
	copy	temp,arg1		/*  before branching to pow2 */
	b	LREF(pow2)
	ldo	-1(arg1),temp
LSYM(regular_seq)
	comib,>>=,n 15,arg1,LREF(small_divisor)
	add,>=	0,arg0,retreg		/*  move dividend, if retreg < 0, */
LSYM(normal)
	subi	0,retreg,retreg		/*    make it positive */
	sub	0,arg1,temp		/*  clear carry,  */
					/*    negate the divisor */
	ds	0,temp,0		/*  set V-bit to the comple- */
					/*    ment of the divisor sign */
	add	retreg,retreg,retreg	/*  shift msb bit into carry */
	ds	r0,arg1,temp		/*  1st divide step, if no carry */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  2nd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  3rd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  4th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  5th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  6th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  7th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  8th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  9th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  10th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  11th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  12th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  13th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  14th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  15th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  16th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  17th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  18th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  19th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  20th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  21st divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  22nd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  23rd divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  24th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  25th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  26th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  27th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  28th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  29th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  30th divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  31st divide step */
	addc	retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds	temp,arg1,temp		/*  32nd divide step, */
	addc	retreg,retreg,retreg	/*  shift last retreg bit into retreg */
	xor,>=	arg0,arg1,0		/*  get correct sign of quotient */
	  sub	0,retreg,retreg		/*    based on operand signs */
	MILLIRETN
	nop

LSYM(small_divisor)

#if defined(CONFIG_64BIT)
/*  Clear the upper 32 bits of the arg1 register.  We are working with	*/
/*  small divisors (and 32-bit integers)   We must not be mislead  */
/*  by "1" bits left in the upper 32 bits.  */
	depd %r0,31,32,%r25
#endif
	blr,n	arg1,r0
	nop
/*  table for divisor == 0,1, ... ,15 */
	addit,=	0,arg1,r0	/*  trap if divisor == 0 */
	nop
	MILLIRET		/*  divisor == 1 */
	copy	arg0,retreg
	MILLI_BEN($$divI_2)	/*  divisor == 2 */
	nop
	MILLI_BEN($$divI_3)	/*  divisor == 3 */
	nop
	MILLI_BEN($$divI_4)	/*  divisor == 4 */
	nop
	MILLI_BEN($$divI_5)	/*  divisor == 5 */
	nop
	MILLI_BEN($$divI_6)	/*  divisor == 6 */
	nop
	MILLI_BEN($$divI_7)	/*  divisor == 7 */
	nop
	MILLI_BEN($$divI_8)	/*  divisor == 8 */
	nop
	MILLI_BEN($$divI_9)	/*  divisor == 9 */
	nop
	MILLI_BEN($$divI_10)	/*  divisor == 10 */
	nop
	b	LREF(normal)		/*  divisor == 11 */
	add,>=	0,arg0,retreg
	MILLI_BEN($$divI_12)	/*  divisor == 12 */
	nop
	b	LREF(normal)		/*  divisor == 13 */
	add,>=	0,arg0,retreg
	MILLI_BEN($$divI_14)	/*  divisor == 14 */
	nop
	MILLI_BEN($$divI_15)	/*  divisor == 15 */
	nop

LSYM(negative1)
	sub	0,arg0,retreg	/*  result is negation of dividend */
	MILLIRET
	addo	arg0,arg1,r0	/*  trap iff dividend==0x80000000 && divisor==-1 */
	.exit
	.procend
	.end
#endif

#ifdef L_divU
/* ROUTINE:	$$divU
   .
   .	Single precision divide for unsigned integers.
   .
   .	Quotient is truncated towards zero.
   .	Traps on divide by zero.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 ==	divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:
   .		divisor is zero
   .	Changes memory at the following places:
   .		NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Branchs to other millicode routines using BE:
   .		$$divU_# for 3,5,6,7,9,10,12,14,15
   .
   .	For selected small divisors calls the special divide by constant
   .	routines written by Karl Pettis.  These are: 3,5,6,7,9,10,12,14,15.  */

RDEFINE(temp,r1)
RDEFINE(retreg,ret1)	/* r29 */
RDEFINE(temp1,arg0)
	SUBSPA_MILLI_DIV
	ATTR_MILLI
	.export $$divU,millicode
	.import $$divU_3,millicode
	.import $$divU_5,millicode
	.import $$divU_6,millicode
	.import $$divU_7,millicode
	.import $$divU_9,millicode
	.import $$divU_10,millicode
	.import $$divU_12,millicode
	.import $$divU_14,millicode
	.import $$divU_15,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$divU)
/* The subtract is not nullified since it does no harm and can be used
   by the two cases that branch back to "normal".  */
	ldo	-1(arg1),temp		/* is there at most one bit set ? */
	and,=	arg1,temp,r0		/* if so, denominator is power of 2 */
	b	LREF(regular_seq)
	addit,=	0,arg1,0		/* trap for zero dvr */
	copy	arg0,retreg
	extru,= arg1,15,16,temp		/* test denominator with 0xffff0000 */
	extru	retreg,15,16,retreg	/* retreg = retreg >> 16 */
	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 16) */
	ldi	0xcc,temp1		/* setup 0xcc in temp1 */
	extru,= arg1,23,8,temp		/* test denominator with 0xff00 */
	extru	retreg,23,24,retreg	/* retreg = retreg >> 8 */
	or	arg1,temp,arg1		/* arg1 = arg1 | (arg1 >> 8) */
	ldi	0xaa,temp		/* setup 0xaa in temp */
	extru,= arg1,27,4,r0		/* test denominator with 0xf0 */
	extru	retreg,27,28,retreg	/* retreg = retreg >> 4 */
	and,=	arg1,temp1,r0		/* test denominator with 0xcc */
	extru	retreg,29,30,retreg	/* retreg = retreg >> 2 */
	and,=	arg1,temp,r0		/* test denominator with 0xaa */
	extru	retreg,30,31,retreg	/* retreg = retreg >> 1 */
	MILLIRETN
	nop	
LSYM(regular_seq)
	comib,>=  15,arg1,LREF(special_divisor)
	subi	0,arg1,temp		/* clear carry, negate the divisor */
	ds	r0,temp,r0		/* set V-bit to 1 */
LSYM(normal)
	add	arg0,arg0,retreg	/* shift msb bit into carry */
	ds	r0,arg1,temp		/* 1st divide step, if no carry */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 2nd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 3rd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 4th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 5th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 6th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 7th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 8th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 9th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 10th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 11th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 12th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 13th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 14th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 15th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 16th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 17th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 18th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 19th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 20th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 21st divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 22nd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 23rd divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 24th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 25th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 26th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 27th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 28th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 29th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 30th divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 31st divide step */
	addc	retreg,retreg,retreg	/* shift retreg with/into carry */
	ds	temp,arg1,temp		/* 32nd divide step, */
	MILLIRET
	addc	retreg,retreg,retreg	/* shift last retreg bit into retreg */

/* Handle the cases where divisor is a small constant or has high bit on.  */
LSYM(special_divisor)
/*	blr	arg1,r0 */
/*	comib,>,n  0,arg1,LREF(big_divisor) ; nullify previous instruction */

/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
   generating such a blr, comib sequence. A problem in nullification. So I
   rewrote this code.  */

#if defined(CONFIG_64BIT)
/* Clear the upper 32 bits of the arg1 register.  We are working with
   small divisors (and 32-bit unsigned integers)   We must not be mislead
   by "1" bits left in the upper 32 bits.  */
	depd %r0,31,32,%r25
#endif
	comib,>	0,arg1,LREF(big_divisor)
	nop
	blr	arg1,r0
	nop

LSYM(zero_divisor)	/* this label is here to provide external visibility */
	addit,=	0,arg1,0		/* trap for zero dvr */
	nop
	MILLIRET			/* divisor == 1 */
	copy	arg0,retreg
	MILLIRET			/* divisor == 2 */
	extru	arg0,30,31,retreg
	MILLI_BEN($$divU_3)		/* divisor == 3 */
	nop
	MILLIRET			/* divisor == 4 */
	extru	arg0,29,30,retreg
	MILLI_BEN($$divU_5)		/* divisor == 5 */
	nop
	MILLI_BEN($$divU_6)		/* divisor == 6 */
	nop
	MILLI_BEN($$divU_7)		/* divisor == 7 */
	nop
	MILLIRET			/* divisor == 8 */
	extru	arg0,28,29,retreg
	MILLI_BEN($$divU_9)		/* divisor == 9 */
	nop
	MILLI_BEN($$divU_10)		/* divisor == 10 */
	nop
	b	LREF(normal)		/* divisor == 11 */
	ds	r0,temp,r0		/* set V-bit to 1 */
	MILLI_BEN($$divU_12)		/* divisor == 12 */
	nop
	b	LREF(normal)		/* divisor == 13 */
	ds	r0,temp,r0		/* set V-bit to 1 */
	MILLI_BEN($$divU_14)		/* divisor == 14 */
	nop
	MILLI_BEN($$divU_15)		/* divisor == 15 */
	nop

/* Handle the case where the high bit is on in the divisor.
   Compute:	if( dividend>=divisor) quotient=1; else quotient=0;
   Note:	dividend>==divisor iff dividend-divisor does not borrow
   and		not borrow iff carry.  */
LSYM(big_divisor)
	sub	arg0,arg1,r0
	MILLIRET
	addc	r0,r0,retreg
	.exit
	.procend
	.end
#endif

#ifdef L_remI
/* ROUTINE:	$$remI

   DESCRIPTION:
   .	$$remI returns the remainder of the division of two signed 32-bit
   .	integers.  The sign of the remainder is the same as the sign of
   .	the dividend.


   INPUT REGISTERS:
   .	arg0 == dividend
   .	arg1 == divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 = destroyed
   .	arg1 = destroyed
   .	ret1 = remainder

   OTHER REGISTERS AFFECTED:
   .	r1   = undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable
   .	Does not create a stack frame
   .	Is usable for internal or external microcode

   DISCUSSION:
   .	Calls other millicode routines via mrp:  NONE
   .	Calls other millicode routines:  NONE  */

RDEFINE(tmp,r1)
RDEFINE(retreg,ret1)

	SUBSPA_MILLI
	ATTR_MILLI
	.proc
	.callinfo millicode
	.entry
GSYM($$remI)
GSYM($$remoI)
	.export $$remI,MILLICODE
	.export $$remoI,MILLICODE
	ldo		-1(arg1),tmp		/*  is there at most one bit set ? */
	and,<>		arg1,tmp,r0		/*  if not, don't use power of 2 */
	addi,>		0,arg1,r0		/*  if denominator > 0, use power */
						/*  of 2 */
	b,n		LREF(neg_denom)
LSYM(pow2)
	comb,>,n	0,arg0,LREF(neg_num)	/*  is numerator < 0 ? */
	and		arg0,tmp,retreg		/*  get the result */
	MILLIRETN
LSYM(neg_num)
	subi		0,arg0,arg0		/*  negate numerator */
	and		arg0,tmp,retreg		/*  get the result */
	subi		0,retreg,retreg		/*  negate result */
	MILLIRETN
LSYM(neg_denom)
	addi,<		0,arg1,r0		/*  if arg1 >= 0, it's not power */
						/*  of 2 */
	b,n		LREF(regular_seq)
	sub		r0,arg1,tmp		/*  make denominator positive */
	comb,=,n	arg1,tmp,LREF(regular_seq) /*  test against 0x80000000 and 0 */
	ldo		-1(tmp),retreg		/*  is there at most one bit set ? */
	and,=		tmp,retreg,r0		/*  if not, go to regular_seq */
	b,n		LREF(regular_seq)
	comb,>,n	0,arg0,LREF(neg_num_2)	/*  if arg0 < 0, negate it  */
	and		arg0,retreg,retreg
	MILLIRETN
LSYM(neg_num_2)
	subi		0,arg0,tmp		/*  test against 0x80000000 */
	and		tmp,retreg,retreg
	subi		0,retreg,retreg
	MILLIRETN
LSYM(regular_seq)
	addit,=		0,arg1,0		/*  trap if div by zero */
	add,>=		0,arg0,retreg		/*  move dividend, if retreg < 0, */
	sub		0,retreg,retreg		/*    make it positive */
	sub		0,arg1, tmp		/*  clear carry,  */
						/*    negate the divisor */
	ds		0, tmp,0		/*  set V-bit to the comple- */
						/*    ment of the divisor sign */
	or		0,0, tmp		/*  clear  tmp */
	add		retreg,retreg,retreg	/*  shift msb bit into carry */
	ds		 tmp,arg1, tmp		/*  1st divide step, if no carry */
						/*    out, msb of quotient = 0 */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
LSYM(t1)
	ds		 tmp,arg1, tmp		/*  2nd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  3rd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  4th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  5th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  6th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  7th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  8th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  9th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  10th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  11th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  12th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  13th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  14th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  15th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  16th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  17th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  18th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  19th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  20th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  21st divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  22nd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  23rd divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  24th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  25th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  26th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  27th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  28th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  29th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  30th divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  31st divide step */
	addc		retreg,retreg,retreg	/*  shift retreg with/into carry */
	ds		 tmp,arg1, tmp		/*  32nd divide step, */
	addc		retreg,retreg,retreg	/*  shift last bit into retreg */
	movb,>=,n	 tmp,retreg,LREF(finish) /*  branch if pos.  tmp */
	add,<		arg1,0,0		/*  if arg1 > 0, add arg1 */
	add,tr		 tmp,arg1,retreg	/*    for correcting remainder tmp */
	sub		 tmp,arg1,retreg	/*  else add absolute value arg1 */
LSYM(finish)
	add,>=		arg0,0,0		/*  set sign of remainder */
	sub		0,retreg,retreg		/*    to sign of dividend */
	MILLIRET
	nop
	.exit
	.procend
#ifdef milliext
	.origin 0x00000200
#endif
	.end
#endif

#ifdef L_remU
/* ROUTINE:	$$remU
   .	Single precision divide for remainder with unsigned binary integers.
   .
   .	The remainder must be dividend-(dividend/divisor)*divisor.
   .	Divide by zero is trapped.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	arg1 == divisor
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	remainder

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions:  DIVIDE BY ZERO
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Calls other millicode routines using mrp: NONE
   .	Calls other millicode routines: NONE  */


RDEFINE(temp,r1)
RDEFINE(rmndr,ret1)	/*  r29 */
	SUBSPA_MILLI
	ATTR_MILLI
	.export $$remU,millicode
	.proc
	.callinfo	millicode
	.entry
GSYM($$remU)
	ldo	-1(arg1),temp		/*  is there at most one bit set ? */
	and,=	arg1,temp,r0		/*  if not, don't use power of 2 */
	b	LREF(regular_seq)
	addit,=	0,arg1,r0		/*  trap on div by zero */
	and	arg0,temp,rmndr		/*  get the result for power of 2 */
	MILLIRETN
LSYM(regular_seq)
	comib,>=,n  0,arg1,LREF(special_case)
	subi	0,arg1,rmndr		/*  clear carry, negate the divisor */
	ds	r0,rmndr,r0		/*  set V-bit to 1 */
	add	arg0,arg0,temp		/*  shift msb bit into carry */
	ds	r0,arg1,rmndr		/*  1st divide step, if no carry */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  2nd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  3rd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  4th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  5th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  6th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  7th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  8th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  9th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  10th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  11th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  12th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  13th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  14th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  15th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  16th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  17th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  18th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  19th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  20th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  21st divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  22nd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  23rd divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  24th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  25th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  26th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  27th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  28th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  29th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  30th divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  31st divide step */
	addc	temp,temp,temp		/*  shift temp with/into carry */
	ds	rmndr,arg1,rmndr		/*  32nd divide step, */
	comiclr,<= 0,rmndr,r0
	  add	rmndr,arg1,rmndr	/*  correction */
	MILLIRETN
	nop

/* Putting >= on the last DS and deleting COMICLR does not work!  */
LSYM(special_case)
	sub,>>=	arg0,arg1,rmndr
	  copy	arg0,rmndr
	MILLIRETN
	nop
	.exit
	.procend
	.end
#endif

#ifdef L_div_const
/* ROUTINE:	$$divI_2
   .		$$divI_3	$$divU_3
   .		$$divI_4
   .		$$divI_5	$$divU_5
   .		$$divI_6	$$divU_6
   .		$$divI_7	$$divU_7
   .		$$divI_8
   .		$$divI_9	$$divU_9
   .		$$divI_10	$$divU_10
   .
   .		$$divI_12	$$divU_12
   .
   .		$$divI_14	$$divU_14
   .		$$divI_15	$$divU_15
   .		$$divI_16
   .		$$divI_17	$$divU_17
   .
   .	Divide by selected constants for single precision binary integers.

   INPUT REGISTERS:
   .	arg0 ==	dividend
   .	mrp  == return pc
   .	sr0  == return space when called externally

   OUTPUT REGISTERS:
   .	arg0 =	undefined
   .	arg1 =	undefined
   .	ret1 =	quotient

   OTHER REGISTERS AFFECTED:
   .	r1   =	undefined

   SIDE EFFECTS:
   .	Causes a trap under the following conditions: NONE
   .	Changes memory at the following places:  NONE

   PERMISSIBLE CONTEXT:
   .	Unwindable.
   .	Does not create a stack frame.
   .	Suitable for internal or external millicode.
   .	Assumes the special millicode register conventions.

   DISCUSSION:
   .	Calls other millicode routines using mrp:  NONE
   .	Calls other millicode routines:  NONE  */


/* TRUNCATED DIVISION BY SMALL INTEGERS

   We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
   (with y fixed).

   Let a = floor(z/y), for some choice of z.  Note that z will be
   chosen so that division by z is cheap.

   Let r be the remainder(z/y).  In other words, r = z - ay.

   Now, our method is to choose a value for b such that

   q'(x) = floor((ax+b)/z)

   is equal to q(x) over as large a range of x as possible.  If the
   two are equal over a sufficiently large range, and if it is easy to
   form the product (ax), and it is easy to divide by z, then we can
   perform the division much faster than the general division algorithm.

   So, we want the following to be true:

   .	For x in the following range:
   .
   .	    ky <= x < (k+1)y
   .
   .	implies that
   .
   .	    k <= (ax+b)/z < (k+1)

   We want to determine b such that this is true for all k in the
   range {0..K} for some maximum K.

   Since (ax+b) is an increasing function of x, we can take each
   bound separately to determine the "best" value for b.

   (ax+b)/z < (k+1)	       implies

   (a((k+1)y-1)+b < (k+1)z     implies

   b < a + (k+1)(z-ay)	       implies

   b < a + (k+1)r

   This needs to be true for all k in the range {0..K}.  In
   particular, it is true for k = 0 and this leads to a maximum
   acceptable value for b.

   b < a+r   or   b <= a+r-1

   Taking the other bound, we have

   k <= (ax+b)/z	       implies

   k <= (aky+b)/z	       implies

   k(z-ay) <= b		       implies

   kr <= b

   Clearly, the largest range for k will be achieved by maximizing b,
   when r is not zero.	When r is zero, then the simplest choice for b
   is 0.  When r is not 0, set

   .	b = a+r-1

   Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
   for all x in the range:

   .	0 <= x < (K+1)y

   We need to determine what K is.  Of our two bounds,

   .	b < a+(k+1)r	is satisfied for all k >= 0, by construction.

   The other bound is

   .	kr <= b

   This is always true if r = 0.  If r is not 0 (the usual case), then
   K = floor((a+r-1)/r), is the maximum value for k.

   Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
   answer for q(x) = floor(x/y) when x is in the range

   (0,(K+1)y-1)	       K = floor((a+r-1)/r)

   To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
   the formula for q'(x) yields the correct value of q(x) for all x
   representable by a single word in HPPA.

   We are also constrained in that computing the product (ax), adding
   b, and dividing by z must all be done quickly, otherwise we will be
   better off going through the general algorithm using the DS
   instruction, which uses approximately 70 cycles.

   For each y, there is a choice of z which satisfies the constraints
   for (K+1)y >= 2**32.  We may not, however, be able to satisfy the
   timing constraints for arbitrary y.	It seems that z being equal to
   a power of 2 or a power of 2 minus 1 is as good as we can do, since
   it minimizes the time to do division by z.  We want the choice of z
   to also result in a value for (a) that minimizes the computation of
   the product (ax).  This is best achieved if (a) has a regular bit
   pattern (so the multiplication can be done with shifts and adds).
   The value of (a) also needs to be less than 2**32 so the product is
   always guaranteed to fit in 2 words.

   In actual practice, the following should be done:

   1) For negative x, you should take the absolute value and remember
   .  the fact so that the result can be negated.  This obviously does
   .  not apply in the unsigned case.
   2) For even y, you should factor out the power of 2 that divides y
   .  and divide x by it.  You can then proceed by dividing by the
   .  odd factor of y.

   Here is a table of some odd values of y, and corresponding choices
   for z which are "good".

    y	  z	  r	 a (hex)     max x (hex)

    3	2**32	  1	55555555      100000001
    5	2**32	  1	33333333      100000003
    7  2**24-1	  0	  249249     (infinite)
    9  2**24-1	  0	  1c71c7     (infinite)
   11  2**20-1	  0	   1745d     (infinite)
   13  2**24-1	  0	  13b13b     (infinite)
   15	2**32	  1	11111111      10000000d
   17	2**32	  1	 f0f0f0f      10000000f

   If r is 1, then b = a+r-1 = a.  This simplifies the computation
   of (ax+b), since you can compute (x+1)(a) instead.  If r is 0,
   then b = 0 is ok to use which simplifies (ax+b).

   The bit patterns for 55555555, 33333333, and 11111111 are obviously
   very regular.  The bit patterns for the other values of a above are:

    y	   (hex)	  (binary)

    7	  249249  001001001001001001001001  << regular >>
    9	  1c71c7  000111000111000111000111  << regular >>
   11	   1745d  000000010111010001011101  << irregular >>
   13	  13b13b  000100111011000100111011  << irregular >>

   The bit patterns for (a) corresponding to (y) of 11 and 13 may be
   too irregular to warrant using this method.

   When z is a power of 2 minus 1, then the division by z is slightly
   more complicated, involving an iterative solution.

   The code presented here solves division by 1 through 17, except for
   11 and 13. There are algorithms for both signed and unsigned
   quantities given.

   TIMINGS (cycles)

   divisor  positive  negative	unsigned

   .   1	2	   2	     2
   .   2	4	   4	     2
   .   3       19	  21	    19
   .   4	4	   4	     2
   .   5       18	  22	    19
   .   6       19	  22	    19
   .   8	4	   4	     2
   .  10       18	  19	    17
   .  12       18	  20	    18
   .  15       16	  18	    16
   .  16	4	   4	     2
   .  17       16	  18	    16

   Now, the algorithm for 7, 9, and 14 is an iterative one.  That is,
   a loop body is executed until the tentative quotient is 0.  The
   number of times the loop body is executed varies depending on the
   dividend, but is never more than two times.	If the dividend is
   less than the divisor, then the loop body is not executed at all.
   Each iteration adds 4 cycles to the timings.

   divisor  positive  negative	unsigned

   .   7       19+4n	 20+4n	   20+4n    n = number of iterations
   .   9       21+4n	 22+4n	   21+4n
   .  14       21+4n	 22+4n	   20+4n

   To give an idea of how the number of iterations varies, here is a
   table of dividend versus number of iterations when dividing by 7.

   smallest	 largest       required
   dividend	dividend      iterations

   .	0	     6		    0
   .	7	 0x6ffffff	    1
   0x1000006	0xffffffff	    2

   There is some overlap in the range of numbers requiring 1 and 2
   iterations.	*/

RDEFINE(t2,r1)
RDEFINE(x2,arg0)	/*  r26 */
RDEFINE(t1,arg1)	/*  r25 */
RDEFINE(x1,ret1)	/*  r29 */

	SUBSPA_MILLI_DIV
	ATTR_MILLI

	.proc
	.callinfo	millicode
	.entry
/* NONE of these routines require a stack frame
   ALL of these routines are unwindable from millicode	*/

GSYM($$divide_by_constant)
	.export $$divide_by_constant,millicode
/*  Provides a "nice" label for the code covered by the unwind descriptor
    for things like gprof.  */

/* DIVISION BY 2 (shift by 1) */
GSYM($$divI_2)
	.export		$$divI_2,millicode
	comclr,>=	arg0,0,0
	addi		1,arg0,arg0
	MILLIRET
	extrs		arg0,30,31,ret1


/* DIVISION BY 4 (shift by 2) */
GSYM($$divI_4)
	.export		$$divI_4,millicode
	comclr,>=	arg0,0,0
	addi		3,arg0,arg0
	MILLIRET
	extrs		arg0,29,30,ret1


/* DIVISION BY 8 (shift by 3) */
GSYM($$divI_8)
	.export		$$divI_8,millicode
	comclr,>=	arg0,0,0
	addi		7,arg0,arg0
	MILLIRET
	extrs		arg0,28,29,ret1

/* DIVISION BY 16 (shift by 4) */
GSYM($$divI_16)
	.export		$$divI_16,millicode
	comclr,>=	arg0,0,0
	addi		15,arg0,arg0
	MILLIRET
	extrs		arg0,27,28,ret1

/****************************************************************************
*
*	DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
*
*	includes 3,5,15,17 and also 6,10,12
*
****************************************************************************/

/* DIVISION BY 3 (use z = 2**32; a = 55555555) */

GSYM($$divI_3)
	.export		$$divI_3,millicode
	comb,<,N	x2,0,LREF(neg3)

	addi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

LSYM(neg3)
	subi		1,x2,x2		/* this cannot overflow	*/
	extru		x2,1,2,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_3)
	.export		$$divU_3,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,30,t1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,t1,x1

/* DIVISION BY 5 (use z = 2**32; a = 33333333) */

GSYM($$divI_5)
	.export		$$divI_5,millicode
	comb,<,N	x2,0,LREF(neg5)

	addi		3,x2,t1		/* this cannot overflow	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg5)
	sub		0,x2,x2		/* negate x2			*/
	addi		1,x2,x2		/* this cannot overflow	*/
	shd		0,x2,31,x1	/* get top bit (can be 1)	*/
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_5)
	.export		$$divU_5,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,31,t1	/* multiply by 3 to get started */
	sh1add		x2,x2,x2
	b		LREF(pos)
	addc		t1,x1,x1

/* DIVISION BY	6 (shift to divide by 2 then divide by 3) */
GSYM($$divI_6)
	.export		$$divI_6,millicode
	comb,<,N	x2,0,LREF(neg6)
	extru		x2,30,31,x2	/* divide by 2			*/
	addi		5,x2,t1		/* compute 5*(x2+1) = 5*x2+5	*/
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

LSYM(neg6)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	shd		0,x2,30,x1
	sh2add		x2,x2,x2	/* multiply by 5 to get started */
	b		LREF(neg)
	addc		x1,0,x1

GSYM($$divU_6)
	.export		$$divU_6,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		1,x2,x2		/* cannot carry */
	shd		0,x2,30,x1	/* multiply by 5 to get started */
	sh2add		x2,x2,x2
	b		LREF(pos)
	addc		x1,0,x1

/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
GSYM($$divU_10)
	.export		$$divU_10,millicode
	extru		x2,30,31,x2	/* divide by 2 */
	addi		3,x2,t1		/* compute 3*(x2+1) = (3*x2)+3	*/
	sh1add		x2,t1,x2	/* multiply by 3 to get started */
	addc		0,0,x1
LSYM(pos)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(pos_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	MILLIRET
	addc		x1,t1,x1

GSYM($$divI_10)
	.export		$$divI_10,millicode
	comb,<		x2,0,LREF(neg10)
	copy		0,x1
	extru		x2,30,31,x2	/* divide by 2 */
	addib,TR	1,x2,LREF(pos)	/* add 1 (cannot overflow)     */
	sh1add		x2,x2,x2	/* multiply by 3 to get started */

LSYM(neg10)
	subi		2,x2,x2		/* negate, divide by 2, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,30,31,x2
	sh1add		x2,x2,x2	/* multiply by 3 to get started */
LSYM(neg)
	shd		x1,x2,28,t1	/* multiply by 0x11 */
	shd		x2,0,28,t2
	add		x2,t2,x2
	addc		x1,t1,x1
LSYM(neg_for_17)
	shd		x1,x2,24,t1	/* multiply by 0x101 */
	shd		x2,0,24,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,16,t1	/* multiply by 0x10001 */
	shd		x2,0,16,t2
	add		x2,t2,x2
	addc		x1,t1,x1
	MILLIRET
	sub		0,x1,x1

/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
GSYM($$divI_12)
	.export		$$divI_12,millicode
	comb,<		x2,0,LREF(neg12)
	copy		0,x1
	extru		x2,29,30,x2	/* divide by 4			*/
	addib,tr	1,x2,LREF(pos)	/* compute 5*(x2+1) = 5*x2+5    */
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

LSYM(neg12)
	subi		4,x2,x2		/* negate, divide by 4, and add 1 */
					/* negation and adding 1 are done */
					/* at the same time by the SUBI   */
	extru		x2,29,30,x2
	b		LREF(neg)
	sh2add		x2,x2,x2	/* multiply by 5 to get started */

GSYM($$divU_12)
	.export		$$divU_12,millicode
	extru		x2,29,30,x2	/* divide by 4   */
	addi		5,x2,t1		/* cannot carry */
	sh2add		x2,t1,x2	/* multiply by 5 to get started */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
GSYM($$divI_15)
	.export		$$divI_15,millicode
	comb,<		x2,0,LREF(neg15)
	copy		0,x1
	addib,tr	1,x2,LREF(pos)+4
	shd		x1,x2,28,t1

LSYM(neg15)
	b		LREF(neg)
	subi		1,x2,x2

GSYM($$divU_15)
	.export		$$divU_15,millicode
	addi		1,x2,x2		/* this CAN overflow */
	b		LREF(pos)
	addc		0,0,x1

/* DIVISION BY 17 (use z = 2**32; a =  f0f0f0f) */
GSYM($$divI_17)
	.export		$$divI_17,millicode
	comb,<,n	x2,0,LREF(neg17)
	addi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,0,x1

LSYM(neg17)
	subi		1,x2,x2		/* this cannot overflow */
	shd		0,x2,28,t1	/* multiply by 0xf to get started */
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(neg_for_17)
	subb		t1,0,x1

GSYM($$divU_17)
	.export		$$divU_17,millicode
	addi		1,x2,x2		/* this CAN overflow */
	addc		0,0,x1
	shd		x1,x2,28,t1	/* multiply by 0xf to get started */
LSYM(u17)
	shd		x2,0,28,t2
	sub		t2,x2,x2
	b		LREF(pos_for_17)
	subb		t1,x1,x1


/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
   includes 7,9 and also 14


   z = 2**24-1
   r = z mod x = 0

   so choose b = 0

   Also, in order to divide by z = 2**24-1, we approximate by dividing
   by (z+1) = 2**24 (which is easy), and then correcting.

   (ax) = (z+1)q' + r
   .	= zq' + (q'+r)

   So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
   Then the true remainder of (ax)/z is (q'+r).  Repeat the process
   with this new remainder, adding the tentative quotients together,
   until a tentative quotient is 0 (and then we are done).  There is
   one last correction to be done.  It is possible that (q'+r) = z.
   If so, then (q'+r)/(z+1) = 0 and it looks like we are done.	But,
   in fact, we need to add 1 more to the quotient.  Now, it turns
   out that this happens if and only if the original value x is
   an exact multiple of y.  So, to avoid a three instruction test at
   the end, instead use 1 instruction to add 1 to x at the beginning.  */

/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
GSYM($$divI_7)
	.export		$$divI_7,millicode
	comb,<,n	x2,0,LREF(neg7)
LSYM(7)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1
LSYM(pos7)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(1)
	addb,tr		t1,x1,LREF(2)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRETN

LSYM(2)
	addb,tr		t1,x2,LREF(1)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

LSYM(neg7)
	subi		1,x2,x2		/* negate x2 and add 1 */
LSYM(8)
	shd		0,x2,29,x1
	sh3add		x2,x2,x2
	addc		x1,0,x1

LSYM(neg7_shift)
	shd		x1,x2,26,t1
	shd		x2,0,26,t2
	add		x2,t2,x2
	addc		x1,t1,x1

	shd		x1,x2,20,t1
	shd		x2,0,20,t2
	add		x2,t2,x2
	addc		x1,t1,t1

	/* computed <t1,x2>.  Now divide it by (2**24 - 1)	*/

	copy		0,x1
	shd,=		t1,x2,24,t1	/* tentative quotient  */
LSYM(3)
	addb,tr		t1,x1,LREF(4)	/* add to previous quotient   */
	extru		x2,31,24,x2	/* new remainder (unadjusted) */

	MILLIRET
	sub		0,x1,x1		/* negate result    */

LSYM(4)
	addb,tr		t1,x2,LREF(3)	/* adjust remainder */
	extru,=		x2,7,8,t1	/* new quotient     */

GSYM($$divU_7)
	.export		$$divU_7,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	sh3add		x2,x2,x2
	b		LREF(pos7)
	addc		t1,x1,x1

/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
GSYM($$divI_9)
	.export		$$divI_9,millicode
	comb,<,n	x2,0,LREF(neg9)
	addi		1,x2,x2		/* cannot overflow */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,0,x1

LSYM(neg9)
	subi		1,x2,x2		/* negate and add 1 */
	shd		0,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(neg7_shift)
	subb		t1,0,x1

GSYM($$divU_9)
	.export		$$divU_9,millicode
	addi		1,x2,x2		/* can carry */
	addc		0,0,x1
	shd		x1,x2,29,t1
	shd		x2,0,29,t2
	sub		t2,x2,x2
	b		LREF(pos7)
	subb		t1,x1,x1

/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
GSYM($$divI_14)
	.export		$$divI_14,millicode
	comb,<,n	x2,0,LREF(neg14)
GSYM($$divU_14)
	.export		$$divU_14,millicode
	b		LREF(7)		/* go to 7 case */
	extru		x2,30,31,x2	/* divide by 2  */

LSYM(neg14)
	subi		2,x2,x2		/* negate (and add 2) */
	b		LREF(8)
	extru		x2,30,31,x2	/* divide by 2	      */
	.exit
	.procend
	.end
#endif

#ifdef L_mulI
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
/******************************************************************************
This routine is used on PA2.0 processors when gcc -mno-fpregs is used

ROUTINE:	$$mulI


DESCRIPTION:	

	$$mulI multiplies two single word integers, giving a single 
	word result.  


INPUT REGISTERS:

	arg0 = Operand 1
	arg1 = Operand 2
	r31  == return pc
	sr0  == return space when called externally 


OUTPUT REGISTERS:

	arg0 = undefined
	arg1 = undefined
	ret1 = result 

OTHER REGISTERS AFFECTED:

	r1   = undefined

SIDE EFFECTS:

	Causes a trap under the following conditions:  NONE
	Changes memory at the following places:  NONE

PERMISSIBLE CONTEXT:

	Unwindable
	Does not create a stack frame
	Is usable for internal or external microcode

DISCUSSION:

	Calls other millicode routines via mrp:  NONE
	Calls other millicode routines:  NONE

***************************************************************************/


#define	a0	%arg0
#define	a1	%arg1
#define	t0	%r1
#define	r	%ret1

#define	a0__128a0	zdep	a0,24,25,a0
#define	a0__256a0	zdep	a0,23,24,a0
#define	a1_ne_0_b_l0	comb,<>	a1,0,LREF(l0)
#define	a1_ne_0_b_l1	comb,<>	a1,0,LREF(l1)
#define	a1_ne_0_b_l2	comb,<>	a1,0,LREF(l2)
#define	b_n_ret_t0	b,n	LREF(ret_t0)
#define	b_e_shift	b	LREF(e_shift)
#define	b_e_t0ma0	b	LREF(e_t0ma0)
#define	b_e_t0		b	LREF(e_t0)
#define	b_e_t0a0	b	LREF(e_t0a0)
#define	b_e_t02a0	b	LREF(e_t02a0)
#define	b_e_t04a0	b	LREF(e_t04a0)
#define	b_e_2t0		b	LREF(e_2t0)
#define	b_e_2t0a0	b	LREF(e_2t0a0)
#define	b_e_2t04a0	b	LREF(e2t04a0)
#define	b_e_3t0		b	LREF(e_3t0)
#define	b_e_4t0		b	LREF(e_4t0)
#define	b_e_4t0a0	b	LREF(e_4t0a0)
#define	b_e_4t08a0	b	LREF(e4t08a0)
#define	b_e_5t0		b	LREF(e_5t0)
#define	b_e_8t0		b	LREF(e_8t0)
#define	b_e_8t0a0	b	LREF(e_8t0a0)
#define	r__r_a0		add	r,a0,r
#define	r__r_2a0	sh1add	a0,r,r
#define	r__r_4a0	sh2add	a0,r,r
#define	r__r_8a0	sh3add	a0,r,r
#define	r__r_t0		add	r,t0,r
#define	r__r_2t0	sh1add	t0,r,r
#define	r__r_4t0	sh2add	t0,r,r
#define	r__r_8t0	sh3add	t0,r,r
#define	t0__3a0		sh1add	a0,a0,t0
#define	t0__4a0		sh2add	a0,0,t0
#define	t0__5a0		sh2add	a0,a0,t0
#define	t0__8a0		sh3add	a0,0,t0
#define	t0__9a0		sh3add	a0,a0,t0
#define	t0__16a0	zdep	a0,27,28,t0
#define	t0__32a0	zdep	a0,26,27,t0
#define	t0__64a0	zdep	a0,25,26,t0
#define	t0__128a0	zdep	a0,24,25,t0
#define	t0__t0ma0	sub	t0,a0,t0
#define	t0__t0_a0	add	t0,a0,t0
#define	t0__t0_2a0	sh1add	a0,t0,t0
#define	t0__t0_4a0	sh2add	a0,t0,t0
#define	t0__t0_8a0	sh3add	a0,t0,t0
#define	t0__2t0_a0	sh1add	t0,a0,t0
#define	t0__3t0		sh1add	t0,t0,t0
#define	t0__4t0		sh2add	t0,0,t0
#define	t0__4t0_a0	sh2add	t0,a0,t0
#define	t0__5t0		sh2add	t0,t0,t0
#define	t0__8t0		sh3add	t0,0,t0
#define	t0__8t0_a0	sh3add	t0,a0,t0
#define	t0__9t0		sh3add	t0,t0,t0
#define	t0__16t0	zdep	t0,27,28,t0
#define	t0__32t0	zdep	t0,26,27,t0
#define	t0__256a0	zdep	a0,23,24,t0


	SUBSPA_MILLI
	ATTR_MILLI
	.align 16
	.proc
	.callinfo millicode
	.export $$mulI,millicode
GSYM($$mulI)	
	combt,<<=	a1,a0,LREF(l4)	/* swap args if unsigned a1>a0 */
	copy		0,r		/* zero out the result */
	xor		a0,a1,a0	/* swap a0 & a1 using the */
	xor		a0,a1,a1	/*  old xor trick */
	xor		a0,a1,a0
LSYM(l4)
	combt,<=	0,a0,LREF(l3)		/* if a0>=0 then proceed like unsigned */
	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
	sub,>		0,a1,t0		/* otherwise negate both and */
	combt,<=,n	a0,t0,LREF(l2)	/*  swap back if |a0|<|a1| */
	sub		0,a0,a1
	movb,tr,n	t0,a0,LREF(l2)	/* 10th inst.  */

LSYM(l0)	r__r_t0				/* add in this partial product */
LSYM(l1)	a0__256a0			/* a0 <<= 8 ****************** */
LSYM(l2)	zdep		a1,30,8,t0	/* t0 = (a1&0xff)<<1 ********* */
LSYM(l3)	blr		t0,0		/* case on these 8 bits ****** */
		extru		a1,23,24,a1	/* a1 >>= 8 ****************** */

/*16 insts before this.  */
/*			  a0 <<= 8 ************************** */
LSYM(x0)	a1_ne_0_b_l2	! a0__256a0	! MILLIRETN	! nop
LSYM(x1)	a1_ne_0_b_l1	! r__r_a0	! MILLIRETN	! nop
LSYM(x2)	a1_ne_0_b_l1	! r__r_2a0	! MILLIRETN	! nop
LSYM(x3)	a1_ne_0_b_l0	! t0__3a0	! MILLIRET	! r__r_t0
LSYM(x4)	a1_ne_0_b_l1	! r__r_4a0	! MILLIRETN	! nop
LSYM(x5)	a1_ne_0_b_l0	! t0__5a0	! MILLIRET	! r__r_t0
LSYM(x6)	t0__3a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x7)	t0__3a0		! a1_ne_0_b_l0	! r__r_4a0	! b_n_ret_t0
LSYM(x8)	a1_ne_0_b_l1	! r__r_8a0	! MILLIRETN	! nop
LSYM(x9)	a1_ne_0_b_l0	! t0__9a0	! MILLIRET	! r__r_t0
LSYM(x10)	t0__5a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x11)	t0__3a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x12)	t0__3a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x13)	t0__5a0		! a1_ne_0_b_l0	! r__r_8a0	! b_n_ret_t0
LSYM(x14)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x15)	t0__5a0		! a1_ne_0_b_l0	! t0__3t0	! b_n_ret_t0
LSYM(x16)	t0__16a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x17)	t0__9a0		! a1_ne_0_b_l0	! t0__t0_8a0	! b_n_ret_t0
LSYM(x18)	t0__9a0		! a1_ne_0_b_l1	! r__r_2t0	! MILLIRETN
LSYM(x19)	t0__9a0		! a1_ne_0_b_l0	! t0__2t0_a0	! b_n_ret_t0
LSYM(x20)	t0__5a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x21)	t0__5a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x22)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x23)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x24)	t0__3a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x25)	t0__5a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x26)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x27)	t0__3a0		! a1_ne_0_b_l0	! t0__9t0	! b_n_ret_t0
LSYM(x28)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x29)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x30)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x31)	t0__32a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x32)	t0__32a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x33)	t0__8a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x34)	t0__16a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x35)	t0__9a0		! t0__3t0	! b_e_t0	! t0__t0_8a0
LSYM(x36)	t0__9a0		! a1_ne_0_b_l1	! r__r_4t0	! MILLIRETN
LSYM(x37)	t0__9a0		! a1_ne_0_b_l0	! t0__4t0_a0	! b_n_ret_t0
LSYM(x38)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_2t0
LSYM(x39)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x40)	t0__5a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x41)	t0__5a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x42)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x43)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x44)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x45)	t0__9a0		! a1_ne_0_b_l0	! t0__5t0	! b_n_ret_t0
LSYM(x46)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_a0
LSYM(x47)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_2a0
LSYM(x48)	t0__3a0		! a1_ne_0_b_l0	! t0__16t0	! b_n_ret_t0
LSYM(x49)	t0__9a0		! t0__5t0	! b_e_t0	! t0__t0_4a0
LSYM(x50)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x51)	t0__9a0		! t0__t0_8a0	! b_e_t0	! t0__3t0
LSYM(x52)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x53)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x54)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_2t0
LSYM(x55)	t0__9a0		! t0__3t0	! b_e_t0	! t0__2t0_a0
LSYM(x56)	t0__3a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x57)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__3t0
LSYM(x58)	t0__3a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x59)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x60)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x61)	t0__5a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x62)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x63)	t0__64a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x64)	t0__64a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x65)	t0__8a0		! a1_ne_0_b_l0	! t0__8t0_a0	! b_n_ret_t0
LSYM(x66)	t0__32a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x67)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x68)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x69)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x70)	t0__64a0	! t0__t0_4a0	! b_e_t0	! t0__t0_2a0
LSYM(x71)	t0__9a0		! t0__8t0	! b_e_t0	! t0__t0ma0
LSYM(x72)	t0__9a0		! a1_ne_0_b_l1	! r__r_8t0	! MILLIRETN
LSYM(x73)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_t0
LSYM(x74)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_2t0
LSYM(x75)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x76)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_4t0
LSYM(x77)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x78)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x79)	t0__16a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x80)	t0__16a0	! t0__5t0	! b_e_shift	! r__r_t0
LSYM(x81)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_t0
LSYM(x82)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x83)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x84)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x85)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x86)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x87)	t0__9a0		! t0__9t0	! b_e_t02a0	! t0__t0_4a0
LSYM(x88)	t0__5a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x89)	t0__5a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x90)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_2t0
LSYM(x91)	t0__9a0		! t0__5t0	! b_e_t0	! t0__2t0_a0
LSYM(x92)	t0__5a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x93)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__3t0
LSYM(x94)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__t0_2a0
LSYM(x95)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__5t0
LSYM(x96)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x97)	t0__8a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x98)	t0__32a0	! t0__3t0	! b_e_t0	! t0__t0_2a0
LSYM(x99)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x100)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x101)	t0__5a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x102)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x103)	t0__5a0		! t0__5t0	! b_e_t02a0	! t0__4t0_a0
LSYM(x104)	t0__3a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x105)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x106)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x107)	t0__9a0		! t0__t0_4a0	! b_e_t02a0	! t0__8t0_a0
LSYM(x108)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_4t0
LSYM(x109)	t0__9a0		! t0__3t0	! b_e_t0	! t0__4t0_a0
LSYM(x110)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__2t0_a0
LSYM(x111)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__3t0
LSYM(x112)	t0__3a0		! t0__2t0_a0	! b_e_t0	! t0__16t0
LSYM(x113)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__3t0
LSYM(x114)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__3t0
LSYM(x115)	t0__9a0		! t0__2t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x116)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x117)	t0__3a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x118)	t0__3a0		! t0__4t0_a0	! b_e_t0a0	! t0__9t0
LSYM(x119)	t0__3a0		! t0__4t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x120)	t0__5a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x121)	t0__5a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x122)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x123)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x124)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x125)	t0__5a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x126)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x127)	t0__128a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
LSYM(x128)	t0__128a0	! a1_ne_0_b_l1	! r__r_t0	! MILLIRETN
LSYM(x129)	t0__128a0	! a1_ne_0_b_l0	! t0__t0_a0	! b_n_ret_t0
LSYM(x130)	t0__64a0	! t0__t0_a0	! b_e_shift	! r__r_2t0
LSYM(x131)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x132)	t0__8a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x133)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x134)	t0__8a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x135)	t0__9a0		! t0__5t0	! b_e_t0	! t0__3t0
LSYM(x136)	t0__8a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x137)	t0__8a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x138)	t0__8a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x139)	t0__8a0		! t0__2t0_a0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x140)	t0__3a0		! t0__2t0_a0	! b_e_4t0	! t0__5t0
LSYM(x141)	t0__8a0		! t0__2t0_a0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x142)	t0__9a0		! t0__8t0	! b_e_2t0	! t0__t0ma0
LSYM(x143)	t0__16a0	! t0__9t0	! b_e_t0	! t0__t0ma0
LSYM(x144)	t0__9a0		! t0__8t0	! b_e_shift	! r__r_2t0
LSYM(x145)	t0__9a0		! t0__8t0	! b_e_t0	! t0__2t0_a0
LSYM(x146)	t0__9a0		! t0__8t0_a0	! b_e_shift	! r__r_2t0
LSYM(x147)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__2t0_a0
LSYM(x148)	t0__9a0		! t0__4t0_a0	! b_e_shift	! r__r_4t0
LSYM(x149)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__4t0_a0
LSYM(x150)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x151)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x152)	t0__9a0		! t0__2t0_a0	! b_e_shift	! r__r_8t0
LSYM(x153)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x154)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__4t0_a0
LSYM(x155)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__5t0
LSYM(x156)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x157)	t0__32a0	! t0__t0ma0	! b_e_t02a0	! t0__5t0
LSYM(x158)	t0__16a0	! t0__5t0	! b_e_2t0	! t0__t0ma0
LSYM(x159)	t0__32a0	! t0__5t0	! b_e_t0	! t0__t0ma0
LSYM(x160)	t0__5a0		! t0__4t0	! b_e_shift	! r__r_8t0
LSYM(x161)	t0__8a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x162)	t0__9a0		! t0__9t0	! b_e_shift	! r__r_2t0
LSYM(x163)	t0__9a0		! t0__9t0	! b_e_t0	! t0__2t0_a0
LSYM(x164)	t0__5a0		! t0__8t0_a0	! b_e_shift	! r__r_4t0
LSYM(x165)	t0__8a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x166)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__2t0_a0
LSYM(x167)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x168)	t0__5a0		! t0__4t0_a0	! b_e_shift	! r__r_8t0
LSYM(x169)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__8t0_a0
LSYM(x170)	t0__32a0	! t0__t0_2a0	! b_e_t0	! t0__5t0
LSYM(x171)	t0__9a0		! t0__2t0_a0	! b_e_t0	! t0__9t0
LSYM(x172)	t0__5a0		! t0__4t0_a0	! b_e_4t0	! t0__2t0_a0
LSYM(x173)	t0__9a0		! t0__2t0_a0	! b_e_t02a0	! t0__9t0
LSYM(x174)	t0__32a0	! t0__t0_2a0	! b_e_t04a0	! t0__5t0
LSYM(x175)	t0__8a0		! t0__2t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x176)	t0__5a0		! t0__4t0_a0	! b_e_8t0	! t0__t0_a0
LSYM(x177)	t0__5a0		! t0__4t0_a0	! b_e_8t0a0	! t0__t0_a0
LSYM(x178)	t0__5a0		! t0__2t0_a0	! b_e_2t0	! t0__8t0_a0
LSYM(x179)	t0__5a0		! t0__2t0_a0	! b_e_2t0a0	! t0__8t0_a0
LSYM(x180)	t0__9a0		! t0__5t0	! b_e_shift	! r__r_4t0
LSYM(x181)	t0__9a0		! t0__5t0	! b_e_t0	! t0__4t0_a0
LSYM(x182)	t0__9a0		! t0__5t0	! b_e_2t0	! t0__2t0_a0
LSYM(x183)	t0__9a0		! t0__5t0	! b_e_2t0a0	! t0__2t0_a0
LSYM(x184)	t0__5a0		! t0__9t0	! b_e_4t0	! t0__t0_a0
LSYM(x185)	t0__9a0		! t0__4t0_a0	! b_e_t0	! t0__5t0
LSYM(x186)	t0__32a0	! t0__t0ma0	! b_e_2t0	! t0__3t0
LSYM(x187)	t0__9a0		! t0__4t0_a0	! b_e_t02a0	! t0__5t0
LSYM(x188)	t0__9a0		! t0__5t0	! b_e_4t0	! t0__t0_2a0
LSYM(x189)	t0__5a0		! t0__4t0_a0	! b_e_t0	! t0__9t0
LSYM(x190)	t0__9a0		! t0__2t0_a0	! b_e_2t0	! t0__5t0
LSYM(x191)	t0__64a0	! t0__3t0	! b_e_t0	! t0__t0ma0
LSYM(x192)	t0__8a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x193)	t0__8a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x194)	t0__8a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x195)	t0__8a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x196)	t0__8a0		! t0__3t0	! b_e_4t0	! t0__2t0_a0
LSYM(x197)	t0__8a0		! t0__3t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x198)	t0__64a0	! t0__t0_2a0	! b_e_t0	! t0__3t0
LSYM(x199)	t0__8a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x200)	t0__5a0		! t0__5t0	! b_e_shift	! r__r_8t0
LSYM(x201)	t0__5a0		! t0__5t0	! b_e_t0	! t0__8t0_a0
LSYM(x202)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__4t0_a0
LSYM(x203)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__4t0_a0
LSYM(x204)	t0__8a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x205)	t0__5a0		! t0__8t0_a0	! b_e_t0	! t0__5t0
LSYM(x206)	t0__64a0	! t0__t0_4a0	! b_e_t02a0	! t0__3t0
LSYM(x207)	t0__8a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x208)	t0__5a0		! t0__5t0	! b_e_8t0	! t0__t0_a0
LSYM(x209)	t0__5a0		! t0__5t0	! b_e_8t0a0	! t0__t0_a0
LSYM(x210)	t0__5a0		! t0__4t0_a0	! b_e_2t0	! t0__5t0
LSYM(x211)	t0__5a0		! t0__4t0_a0	! b_e_2t0a0	! t0__5t0
LSYM(x212)	t0__3a0		! t0__4t0_a0	! b_e_4t0	! t0__4t0_a0
LSYM(x213)	t0__3a0		! t0__4t0_a0	! b_e_4t0a0	! t0__4t0_a0
LSYM(x214)	t0__9a0		! t0__t0_4a0	! b_e_2t04a0	! t0__8t0_a0
LSYM(x215)	t0__5a0		! t0__4t0_a0	! b_e_5t0	! t0__2t0_a0
LSYM(x216)	t0__9a0		! t0__3t0	! b_e_shift	! r__r_8t0
LSYM(x217)	t0__9a0		! t0__3t0	! b_e_t0	! t0__8t0_a0
LSYM(x218)	t0__9a0		! t0__3t0	! b_e_2t0	! t0__4t0_a0
LSYM(x219)	t0__9a0		! t0__8t0_a0	! b_e_t0	! t0__3t0
LSYM(x220)	t0__3a0		! t0__9t0	! b_e_4t0	! t0__2t0_a0
LSYM(x221)	t0__3a0		! t0__9t0	! b_e_4t0a0	! t0__2t0_a0
LSYM(x222)	t0__9a0		! t0__4t0_a0	! b_e_2t0	! t0__3t0
LSYM(x223)	t0__9a0		! t0__4t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x224)	t0__9a0		! t0__3t0	! b_e_8t0	! t0__t0_a0
LSYM(x225)	t0__9a0		! t0__5t0	! b_e_t0	! t0__5t0
LSYM(x226)	t0__3a0		! t0__2t0_a0	! b_e_t02a0	! t0__32t0
LSYM(x227)	t0__9a0		! t0__5t0	! b_e_t02a0	! t0__5t0
LSYM(x228)	t0__9a0		! t0__2t0_a0	! b_e_4t0	! t0__3t0
LSYM(x229)	t0__9a0		! t0__2t0_a0	! b_e_4t0a0	! t0__3t0
LSYM(x230)	t0__9a0		! t0__5t0	! b_e_5t0	! t0__t0_a0
LSYM(x231)	t0__9a0		! t0__2t0_a0	! b_e_3t0	! t0__4t0_a0
LSYM(x232)	t0__3a0		! t0__2t0_a0	! b_e_8t0	! t0__4t0_a0
LSYM(x233)	t0__3a0		! t0__2t0_a0	! b_e_8t0a0	! t0__4t0_a0
LSYM(x234)	t0__3a0		! t0__4t0_a0	! b_e_2t0	! t0__9t0
LSYM(x235)	t0__3a0		! t0__4t0_a0	! b_e_2t0a0	! t0__9t0
LSYM(x236)	t0__9a0		! t0__2t0_a0	! b_e_4t08a0	! t0__3t0
LSYM(x237)	t0__16a0	! t0__5t0	! b_e_3t0	! t0__t0ma0
LSYM(x238)	t0__3a0		! t0__4t0_a0	! b_e_2t04a0	! t0__9t0
LSYM(x239)	t0__16a0	! t0__5t0	! b_e_t0ma0	! t0__3t0
LSYM(x240)	t0__9a0		! t0__t0_a0	! b_e_8t0	! t0__3t0
LSYM(x241)	t0__9a0		! t0__t0_a0	! b_e_8t0a0	! t0__3t0
LSYM(x242)	t0__5a0		! t0__3t0	! b_e_2t0	! t0__8t0_a0
LSYM(x243)	t0__9a0		! t0__9t0	! b_e_t0	! t0__3t0
LSYM(x244)	t0__5a0		! t0__3t0	! b_e_4t0	! t0__4t0_a0
LSYM(x245)	t0__8a0		! t0__3t0	! b_e_5t0	! t0__2t0_a0
LSYM(x246)	t0__5a0		! t0__8t0_a0	! b_e_2t0	! t0__3t0
LSYM(x247)	t0__5a0		! t0__8t0_a0	! b_e_2t0a0	! t0__3t0
LSYM(x248)	t0__32a0	! t0__t0ma0	! b_e_shift	! r__r_8t0
LSYM(x249)	t0__32a0	! t0__t0ma0	! b_e_t0	! t0__8t0_a0
LSYM(x250)	t0__5a0		! t0__5t0	! b_e_2t0	! t0__5t0
LSYM(x251)	t0__5a0		! t0__5t0	! b_e_2t0a0	! t0__5t0
LSYM(x252)	t0__64a0	! t0__t0ma0	! b_e_shift	! r__r_4t0
LSYM(x253)	t0__64a0	! t0__t0ma0	! b_e_t0	! t0__4t0_a0
LSYM(x254)	t0__128a0	! t0__t0ma0	! b_e_shift	! r__r_2t0
LSYM(x255)	t0__256a0	! a1_ne_0_b_l0	! t0__t0ma0	! b_n_ret_t0
/*1040 insts before this.  */
LSYM(ret_t0)	MILLIRET
LSYM(e_t0)	r__r_t0
LSYM(e_shift)	a1_ne_0_b_l2
	a0__256a0	/* a0 <<= 8 *********** */
	MILLIRETN
LSYM(e_t0ma0)	a1_ne_0_b_l0
	t0__t0ma0
	MILLIRET
	r__r_t0
LSYM(e_t0a0)	a1_ne_0_b_l0
	t0__t0_a0
	MILLIRET
	r__r_t0
LSYM(e_t02a0)	a1_ne_0_b_l0
	t0__t0_2a0
	MILLIRET
	r__r_t0
LSYM(e_t04a0)	a1_ne_0_b_l0
	t0__t0_4a0
	MILLIRET
	r__r_t0
LSYM(e_2t0)	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_2t0a0)	a1_ne_0_b_l0
	t0__2t0_a0
	MILLIRET
	r__r_t0
LSYM(e2t04a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_2t0
	MILLIRETN
LSYM(e_3t0)	a1_ne_0_b_l0
	t0__3t0
	MILLIRET
	r__r_t0
LSYM(e_4t0)	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_4t0a0)	a1_ne_0_b_l0
	t0__4t0_a0
	MILLIRET
	r__r_t0
LSYM(e4t08a0)	t0__t0_2a0
	a1_ne_0_b_l1
	r__r_4t0
	MILLIRETN
LSYM(e_5t0)	a1_ne_0_b_l0
	t0__5t0
	MILLIRET
	r__r_t0
LSYM(e_8t0)	a1_ne_0_b_l1
	r__r_8t0
	MILLIRETN
LSYM(e_8t0a0)	a1_ne_0_b_l0
	t0__8t0_a0
	MILLIRET
	r__r_t0

	.procend
	.end
#endif