Commit 6b101116ae445311031f3e9f91d3010d444b9845

Authored by Guenter Roeck
Committed by Jean Delvare
1 parent 2fe28ab51d

hwmon: (lm90) Add range check to set_update_interval

When writing the update_interval attribute, the parameter value was
not range checked, which could cause an integer overflow and result
in an arbitrary update interval. Fix by limiting the value range to
<0, 100000>.

Reported-by: Jean Delvare <khali@linux-fr.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Jean Delvare <khali@linux-fr.org>

Showing 1 changed file with 1 additions and 1 deletions Inline Diff

drivers/hwmon/lm90.c
1 /* 1 /*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware 2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring 3 * monitoring
4 * Copyright (C) 2003-2010 Jean Delvare <khali@linux-fr.org> 4 * Copyright (C) 2003-2010 Jean Delvare <khali@linux-fr.org>
5 * 5 *
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National 6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to 7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local 8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy. 9 * temperature) and a 3-4 deg accuracy.
10 * 10 *
11 * This driver also supports the LM89 and LM99, two other sensor chips 11 * This driver also supports the LM89 and LM99, two other sensor chips
12 * made by National Semiconductor. Both have an increased remote 12 * made by National Semiconductor. Both have an increased remote
13 * temperature measurement accuracy (1 degree), and the LM99 13 * temperature measurement accuracy (1 degree), and the LM99
14 * additionally shifts remote temperatures (measured and limits) by 16 14 * additionally shifts remote temperatures (measured and limits) by 16
15 * degrees, which allows for higher temperatures measurement. 15 * degrees, which allows for higher temperatures measurement.
16 * Note that there is no way to differentiate between both chips. 16 * Note that there is no way to differentiate between both chips.
17 * When device is auto-detected, the driver will assume an LM99. 17 * When device is auto-detected, the driver will assume an LM99.
18 * 18 *
19 * This driver also supports the LM86, another sensor chip made by 19 * This driver also supports the LM86, another sensor chip made by
20 * National Semiconductor. It is exactly similar to the LM90 except it 20 * National Semiconductor. It is exactly similar to the LM90 except it
21 * has a higher accuracy. 21 * has a higher accuracy.
22 * 22 *
23 * This driver also supports the ADM1032, a sensor chip made by Analog 23 * This driver also supports the ADM1032, a sensor chip made by Analog
24 * Devices. That chip is similar to the LM90, with a few differences 24 * Devices. That chip is similar to the LM90, with a few differences
25 * that are not handled by this driver. Among others, it has a higher 25 * that are not handled by this driver. Among others, it has a higher
26 * accuracy than the LM90, much like the LM86 does. 26 * accuracy than the LM90, much like the LM86 does.
27 * 27 *
28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor 28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29 * chips made by Maxim. These chips are similar to the LM86. 29 * chips made by Maxim. These chips are similar to the LM86.
30 * Note that there is no easy way to differentiate between the three 30 * Note that there is no easy way to differentiate between the three
31 * variants. We use the device address to detect MAX6659, which will result 31 * variants. We use the device address to detect MAX6659, which will result
32 * in a detection as max6657 if it is on address 0x4c. The extra address 32 * in a detection as max6657 if it is on address 0x4c. The extra address
33 * and features of the MAX6659 are only supported if the chip is configured 33 * and features of the MAX6659 are only supported if the chip is configured
34 * explicitly as max6659, or if its address is not 0x4c. 34 * explicitly as max6659, or if its address is not 0x4c.
35 * These chips lack the remote temperature offset feature. 35 * These chips lack the remote temperature offset feature.
36 * 36 *
37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and 37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38 * MAX6692 chips made by Maxim. These are again similar to the LM86, 38 * MAX6692 chips made by Maxim. These are again similar to the LM86,
39 * but they use unsigned temperature values and can report temperatures 39 * but they use unsigned temperature values and can report temperatures
40 * from 0 to 145 degrees. 40 * from 0 to 145 degrees.
41 * 41 *
42 * This driver also supports the MAX6680 and MAX6681, two other sensor 42 * This driver also supports the MAX6680 and MAX6681, two other sensor
43 * chips made by Maxim. These are quite similar to the other Maxim 43 * chips made by Maxim. These are quite similar to the other Maxim
44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can 44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45 * be treated identically. 45 * be treated identically.
46 * 46 *
47 * This driver also supports the MAX6695 and MAX6696, two other sensor 47 * This driver also supports the MAX6695 and MAX6696, two other sensor
48 * chips made by Maxim. These are also quite similar to other Maxim 48 * chips made by Maxim. These are also quite similar to other Maxim
49 * chips, but support three temperature sensors instead of two. MAX6695 49 * chips, but support three temperature sensors instead of two. MAX6695
50 * and MAX6696 only differ in the pinout so they can be treated identically. 50 * and MAX6696 only differ in the pinout so they can be treated identically.
51 * 51 *
52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as 52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility 53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54 * and extended mode. They are mostly compatible with LM90 except for a data 54 * and extended mode. They are mostly compatible with LM90 except for a data
55 * format difference for the temperature value registers. 55 * format difference for the temperature value registers.
56 * 56 *
57 * This driver also supports the SA56004 from Philips. This device is 57 * This driver also supports the SA56004 from Philips. This device is
58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. 58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59 * 59 *
60 * Since the LM90 was the first chipset supported by this driver, most 60 * Since the LM90 was the first chipset supported by this driver, most
61 * comments will refer to this chipset, but are actually general and 61 * comments will refer to this chipset, but are actually general and
62 * concern all supported chipsets, unless mentioned otherwise. 62 * concern all supported chipsets, unless mentioned otherwise.
63 * 63 *
64 * This program is free software; you can redistribute it and/or modify 64 * This program is free software; you can redistribute it and/or modify
65 * it under the terms of the GNU General Public License as published by 65 * it under the terms of the GNU General Public License as published by
66 * the Free Software Foundation; either version 2 of the License, or 66 * the Free Software Foundation; either version 2 of the License, or
67 * (at your option) any later version. 67 * (at your option) any later version.
68 * 68 *
69 * This program is distributed in the hope that it will be useful, 69 * This program is distributed in the hope that it will be useful,
70 * but WITHOUT ANY WARRANTY; without even the implied warranty of 70 * but WITHOUT ANY WARRANTY; without even the implied warranty of
71 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 71 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
72 * GNU General Public License for more details. 72 * GNU General Public License for more details.
73 * 73 *
74 * You should have received a copy of the GNU General Public License 74 * You should have received a copy of the GNU General Public License
75 * along with this program; if not, write to the Free Software 75 * along with this program; if not, write to the Free Software
76 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 76 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
77 */ 77 */
78 78
79 #include <linux/module.h> 79 #include <linux/module.h>
80 #include <linux/init.h> 80 #include <linux/init.h>
81 #include <linux/slab.h> 81 #include <linux/slab.h>
82 #include <linux/jiffies.h> 82 #include <linux/jiffies.h>
83 #include <linux/i2c.h> 83 #include <linux/i2c.h>
84 #include <linux/hwmon-sysfs.h> 84 #include <linux/hwmon-sysfs.h>
85 #include <linux/hwmon.h> 85 #include <linux/hwmon.h>
86 #include <linux/err.h> 86 #include <linux/err.h>
87 #include <linux/mutex.h> 87 #include <linux/mutex.h>
88 #include <linux/sysfs.h> 88 #include <linux/sysfs.h>
89 89
90 /* 90 /*
91 * Addresses to scan 91 * Addresses to scan
92 * Address is fully defined internally and cannot be changed except for 92 * Address is fully defined internally and cannot be changed except for
93 * MAX6659, MAX6680 and MAX6681. 93 * MAX6659, MAX6680 and MAX6681.
94 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, 94 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
95 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. 95 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
96 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D 96 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
97 * have address 0x4d. 97 * have address 0x4d.
98 * MAX6647 has address 0x4e. 98 * MAX6647 has address 0x4e.
99 * MAX6659 can have address 0x4c, 0x4d or 0x4e. 99 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
100 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 100 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
101 * 0x4c, 0x4d or 0x4e. 101 * 0x4c, 0x4d or 0x4e.
102 * SA56004 can have address 0x48 through 0x4F. 102 * SA56004 can have address 0x48 through 0x4F.
103 */ 103 */
104 104
105 static const unsigned short normal_i2c[] = { 105 static const unsigned short normal_i2c[] = {
106 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 106 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
107 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; 107 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
108 108
109 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680, 109 enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
110 max6646, w83l771, max6696, sa56004 }; 110 max6646, w83l771, max6696, sa56004 };
111 111
112 /* 112 /*
113 * The LM90 registers 113 * The LM90 registers
114 */ 114 */
115 115
116 #define LM90_REG_R_MAN_ID 0xFE 116 #define LM90_REG_R_MAN_ID 0xFE
117 #define LM90_REG_R_CHIP_ID 0xFF 117 #define LM90_REG_R_CHIP_ID 0xFF
118 #define LM90_REG_R_CONFIG1 0x03 118 #define LM90_REG_R_CONFIG1 0x03
119 #define LM90_REG_W_CONFIG1 0x09 119 #define LM90_REG_W_CONFIG1 0x09
120 #define LM90_REG_R_CONFIG2 0xBF 120 #define LM90_REG_R_CONFIG2 0xBF
121 #define LM90_REG_W_CONFIG2 0xBF 121 #define LM90_REG_W_CONFIG2 0xBF
122 #define LM90_REG_R_CONVRATE 0x04 122 #define LM90_REG_R_CONVRATE 0x04
123 #define LM90_REG_W_CONVRATE 0x0A 123 #define LM90_REG_W_CONVRATE 0x0A
124 #define LM90_REG_R_STATUS 0x02 124 #define LM90_REG_R_STATUS 0x02
125 #define LM90_REG_R_LOCAL_TEMP 0x00 125 #define LM90_REG_R_LOCAL_TEMP 0x00
126 #define LM90_REG_R_LOCAL_HIGH 0x05 126 #define LM90_REG_R_LOCAL_HIGH 0x05
127 #define LM90_REG_W_LOCAL_HIGH 0x0B 127 #define LM90_REG_W_LOCAL_HIGH 0x0B
128 #define LM90_REG_R_LOCAL_LOW 0x06 128 #define LM90_REG_R_LOCAL_LOW 0x06
129 #define LM90_REG_W_LOCAL_LOW 0x0C 129 #define LM90_REG_W_LOCAL_LOW 0x0C
130 #define LM90_REG_R_LOCAL_CRIT 0x20 130 #define LM90_REG_R_LOCAL_CRIT 0x20
131 #define LM90_REG_W_LOCAL_CRIT 0x20 131 #define LM90_REG_W_LOCAL_CRIT 0x20
132 #define LM90_REG_R_REMOTE_TEMPH 0x01 132 #define LM90_REG_R_REMOTE_TEMPH 0x01
133 #define LM90_REG_R_REMOTE_TEMPL 0x10 133 #define LM90_REG_R_REMOTE_TEMPL 0x10
134 #define LM90_REG_R_REMOTE_OFFSH 0x11 134 #define LM90_REG_R_REMOTE_OFFSH 0x11
135 #define LM90_REG_W_REMOTE_OFFSH 0x11 135 #define LM90_REG_W_REMOTE_OFFSH 0x11
136 #define LM90_REG_R_REMOTE_OFFSL 0x12 136 #define LM90_REG_R_REMOTE_OFFSL 0x12
137 #define LM90_REG_W_REMOTE_OFFSL 0x12 137 #define LM90_REG_W_REMOTE_OFFSL 0x12
138 #define LM90_REG_R_REMOTE_HIGHH 0x07 138 #define LM90_REG_R_REMOTE_HIGHH 0x07
139 #define LM90_REG_W_REMOTE_HIGHH 0x0D 139 #define LM90_REG_W_REMOTE_HIGHH 0x0D
140 #define LM90_REG_R_REMOTE_HIGHL 0x13 140 #define LM90_REG_R_REMOTE_HIGHL 0x13
141 #define LM90_REG_W_REMOTE_HIGHL 0x13 141 #define LM90_REG_W_REMOTE_HIGHL 0x13
142 #define LM90_REG_R_REMOTE_LOWH 0x08 142 #define LM90_REG_R_REMOTE_LOWH 0x08
143 #define LM90_REG_W_REMOTE_LOWH 0x0E 143 #define LM90_REG_W_REMOTE_LOWH 0x0E
144 #define LM90_REG_R_REMOTE_LOWL 0x14 144 #define LM90_REG_R_REMOTE_LOWL 0x14
145 #define LM90_REG_W_REMOTE_LOWL 0x14 145 #define LM90_REG_W_REMOTE_LOWL 0x14
146 #define LM90_REG_R_REMOTE_CRIT 0x19 146 #define LM90_REG_R_REMOTE_CRIT 0x19
147 #define LM90_REG_W_REMOTE_CRIT 0x19 147 #define LM90_REG_W_REMOTE_CRIT 0x19
148 #define LM90_REG_R_TCRIT_HYST 0x21 148 #define LM90_REG_R_TCRIT_HYST 0x21
149 #define LM90_REG_W_TCRIT_HYST 0x21 149 #define LM90_REG_W_TCRIT_HYST 0x21
150 150
151 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */ 151 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
152 152
153 #define MAX6657_REG_R_LOCAL_TEMPL 0x11 153 #define MAX6657_REG_R_LOCAL_TEMPL 0x11
154 #define MAX6696_REG_R_STATUS2 0x12 154 #define MAX6696_REG_R_STATUS2 0x12
155 #define MAX6659_REG_R_REMOTE_EMERG 0x16 155 #define MAX6659_REG_R_REMOTE_EMERG 0x16
156 #define MAX6659_REG_W_REMOTE_EMERG 0x16 156 #define MAX6659_REG_W_REMOTE_EMERG 0x16
157 #define MAX6659_REG_R_LOCAL_EMERG 0x17 157 #define MAX6659_REG_R_LOCAL_EMERG 0x17
158 #define MAX6659_REG_W_LOCAL_EMERG 0x17 158 #define MAX6659_REG_W_LOCAL_EMERG 0x17
159 159
160 /* SA56004 registers */ 160 /* SA56004 registers */
161 161
162 #define SA56004_REG_R_LOCAL_TEMPL 0x22 162 #define SA56004_REG_R_LOCAL_TEMPL 0x22
163 163
164 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */ 164 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
165 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ 165 #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
166 166
167 /* 167 /*
168 * Device flags 168 * Device flags
169 */ 169 */
170 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */ 170 #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
171 /* Device features */ 171 /* Device features */
172 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */ 172 #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
173 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */ 173 #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
174 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */ 174 #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
175 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */ 175 #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
176 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */ 176 #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
177 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */ 177 #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
178 178
179 /* 179 /*
180 * Driver data (common to all clients) 180 * Driver data (common to all clients)
181 */ 181 */
182 182
183 static const struct i2c_device_id lm90_id[] = { 183 static const struct i2c_device_id lm90_id[] = {
184 { "adm1032", adm1032 }, 184 { "adm1032", adm1032 },
185 { "adt7461", adt7461 }, 185 { "adt7461", adt7461 },
186 { "adt7461a", adt7461 }, 186 { "adt7461a", adt7461 },
187 { "lm90", lm90 }, 187 { "lm90", lm90 },
188 { "lm86", lm86 }, 188 { "lm86", lm86 },
189 { "lm89", lm86 }, 189 { "lm89", lm86 },
190 { "lm99", lm99 }, 190 { "lm99", lm99 },
191 { "max6646", max6646 }, 191 { "max6646", max6646 },
192 { "max6647", max6646 }, 192 { "max6647", max6646 },
193 { "max6649", max6646 }, 193 { "max6649", max6646 },
194 { "max6657", max6657 }, 194 { "max6657", max6657 },
195 { "max6658", max6657 }, 195 { "max6658", max6657 },
196 { "max6659", max6659 }, 196 { "max6659", max6659 },
197 { "max6680", max6680 }, 197 { "max6680", max6680 },
198 { "max6681", max6680 }, 198 { "max6681", max6680 },
199 { "max6695", max6696 }, 199 { "max6695", max6696 },
200 { "max6696", max6696 }, 200 { "max6696", max6696 },
201 { "nct1008", adt7461 }, 201 { "nct1008", adt7461 },
202 { "w83l771", w83l771 }, 202 { "w83l771", w83l771 },
203 { "sa56004", sa56004 }, 203 { "sa56004", sa56004 },
204 { } 204 { }
205 }; 205 };
206 MODULE_DEVICE_TABLE(i2c, lm90_id); 206 MODULE_DEVICE_TABLE(i2c, lm90_id);
207 207
208 /* 208 /*
209 * chip type specific parameters 209 * chip type specific parameters
210 */ 210 */
211 struct lm90_params { 211 struct lm90_params {
212 u32 flags; /* Capabilities */ 212 u32 flags; /* Capabilities */
213 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 213 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
214 /* Upper 8 bits for max6695/96 */ 214 /* Upper 8 bits for max6695/96 */
215 u8 max_convrate; /* Maximum conversion rate register value */ 215 u8 max_convrate; /* Maximum conversion rate register value */
216 u8 reg_local_ext; /* Extended local temp register (optional) */ 216 u8 reg_local_ext; /* Extended local temp register (optional) */
217 }; 217 };
218 218
219 static const struct lm90_params lm90_params[] = { 219 static const struct lm90_params lm90_params[] = {
220 [adm1032] = { 220 [adm1032] = {
221 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 221 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
222 | LM90_HAVE_BROKEN_ALERT, 222 | LM90_HAVE_BROKEN_ALERT,
223 .alert_alarms = 0x7c, 223 .alert_alarms = 0x7c,
224 .max_convrate = 10, 224 .max_convrate = 10,
225 }, 225 },
226 [adt7461] = { 226 [adt7461] = {
227 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT 227 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
228 | LM90_HAVE_BROKEN_ALERT, 228 | LM90_HAVE_BROKEN_ALERT,
229 .alert_alarms = 0x7c, 229 .alert_alarms = 0x7c,
230 .max_convrate = 10, 230 .max_convrate = 10,
231 }, 231 },
232 [lm86] = { 232 [lm86] = {
233 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 233 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
234 .alert_alarms = 0x7b, 234 .alert_alarms = 0x7b,
235 .max_convrate = 9, 235 .max_convrate = 9,
236 }, 236 },
237 [lm90] = { 237 [lm90] = {
238 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 238 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
239 .alert_alarms = 0x7b, 239 .alert_alarms = 0x7b,
240 .max_convrate = 9, 240 .max_convrate = 9,
241 }, 241 },
242 [lm99] = { 242 [lm99] = {
243 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 243 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
244 .alert_alarms = 0x7b, 244 .alert_alarms = 0x7b,
245 .max_convrate = 9, 245 .max_convrate = 9,
246 }, 246 },
247 [max6646] = { 247 [max6646] = {
248 .alert_alarms = 0x7c, 248 .alert_alarms = 0x7c,
249 .max_convrate = 6, 249 .max_convrate = 6,
250 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 250 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
251 }, 251 },
252 [max6657] = { 252 [max6657] = {
253 .alert_alarms = 0x7c, 253 .alert_alarms = 0x7c,
254 .max_convrate = 8, 254 .max_convrate = 8,
255 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 255 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
256 }, 256 },
257 [max6659] = { 257 [max6659] = {
258 .flags = LM90_HAVE_EMERGENCY, 258 .flags = LM90_HAVE_EMERGENCY,
259 .alert_alarms = 0x7c, 259 .alert_alarms = 0x7c,
260 .max_convrate = 8, 260 .max_convrate = 8,
261 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 261 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
262 }, 262 },
263 [max6680] = { 263 [max6680] = {
264 .flags = LM90_HAVE_OFFSET, 264 .flags = LM90_HAVE_OFFSET,
265 .alert_alarms = 0x7c, 265 .alert_alarms = 0x7c,
266 .max_convrate = 7, 266 .max_convrate = 7,
267 }, 267 },
268 [max6696] = { 268 [max6696] = {
269 .flags = LM90_HAVE_EMERGENCY 269 .flags = LM90_HAVE_EMERGENCY
270 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3, 270 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
271 .alert_alarms = 0x187c, 271 .alert_alarms = 0x187c,
272 .max_convrate = 6, 272 .max_convrate = 6,
273 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, 273 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
274 }, 274 },
275 [w83l771] = { 275 [w83l771] = {
276 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 276 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
277 .alert_alarms = 0x7c, 277 .alert_alarms = 0x7c,
278 .max_convrate = 8, 278 .max_convrate = 8,
279 }, 279 },
280 [sa56004] = { 280 [sa56004] = {
281 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, 281 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
282 .alert_alarms = 0x7b, 282 .alert_alarms = 0x7b,
283 .max_convrate = 9, 283 .max_convrate = 9,
284 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL, 284 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
285 }, 285 },
286 }; 286 };
287 287
288 /* 288 /*
289 * Client data (each client gets its own) 289 * Client data (each client gets its own)
290 */ 290 */
291 291
292 struct lm90_data { 292 struct lm90_data {
293 struct device *hwmon_dev; 293 struct device *hwmon_dev;
294 struct mutex update_lock; 294 struct mutex update_lock;
295 char valid; /* zero until following fields are valid */ 295 char valid; /* zero until following fields are valid */
296 unsigned long last_updated; /* in jiffies */ 296 unsigned long last_updated; /* in jiffies */
297 int kind; 297 int kind;
298 u32 flags; 298 u32 flags;
299 299
300 int update_interval; /* in milliseconds */ 300 int update_interval; /* in milliseconds */
301 301
302 u8 config_orig; /* Original configuration register value */ 302 u8 config_orig; /* Original configuration register value */
303 u8 convrate_orig; /* Original conversion rate register value */ 303 u8 convrate_orig; /* Original conversion rate register value */
304 u16 alert_alarms; /* Which alarm bits trigger ALERT# */ 304 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
305 /* Upper 8 bits for max6695/96 */ 305 /* Upper 8 bits for max6695/96 */
306 u8 max_convrate; /* Maximum conversion rate */ 306 u8 max_convrate; /* Maximum conversion rate */
307 u8 reg_local_ext; /* local extension register offset */ 307 u8 reg_local_ext; /* local extension register offset */
308 308
309 /* registers values */ 309 /* registers values */
310 s8 temp8[8]; /* 0: local low limit 310 s8 temp8[8]; /* 0: local low limit
311 1: local high limit 311 1: local high limit
312 2: local critical limit 312 2: local critical limit
313 3: remote critical limit 313 3: remote critical limit
314 4: local emergency limit (max6659 and max6695/96) 314 4: local emergency limit (max6659 and max6695/96)
315 5: remote emergency limit (max6659 and max6695/96) 315 5: remote emergency limit (max6659 and max6695/96)
316 6: remote 2 critical limit (max6695/96 only) 316 6: remote 2 critical limit (max6695/96 only)
317 7: remote 2 emergency limit (max6695/96 only) */ 317 7: remote 2 emergency limit (max6695/96 only) */
318 s16 temp11[8]; /* 0: remote input 318 s16 temp11[8]; /* 0: remote input
319 1: remote low limit 319 1: remote low limit
320 2: remote high limit 320 2: remote high limit
321 3: remote offset (except max6646, max6657/58/59, 321 3: remote offset (except max6646, max6657/58/59,
322 and max6695/96) 322 and max6695/96)
323 4: local input 323 4: local input
324 5: remote 2 input (max6695/96 only) 324 5: remote 2 input (max6695/96 only)
325 6: remote 2 low limit (max6695/96 only) 325 6: remote 2 low limit (max6695/96 only)
326 7: remote 2 high limit (ma6695/96 only) */ 326 7: remote 2 high limit (ma6695/96 only) */
327 u8 temp_hyst; 327 u8 temp_hyst;
328 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */ 328 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
329 }; 329 };
330 330
331 /* 331 /*
332 * Support functions 332 * Support functions
333 */ 333 */
334 334
335 /* 335 /*
336 * The ADM1032 supports PEC but not on write byte transactions, so we need 336 * The ADM1032 supports PEC but not on write byte transactions, so we need
337 * to explicitly ask for a transaction without PEC. 337 * to explicitly ask for a transaction without PEC.
338 */ 338 */
339 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value) 339 static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
340 { 340 {
341 return i2c_smbus_xfer(client->adapter, client->addr, 341 return i2c_smbus_xfer(client->adapter, client->addr,
342 client->flags & ~I2C_CLIENT_PEC, 342 client->flags & ~I2C_CLIENT_PEC,
343 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); 343 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
344 } 344 }
345 345
346 /* 346 /*
347 * It is assumed that client->update_lock is held (unless we are in 347 * It is assumed that client->update_lock is held (unless we are in
348 * detection or initialization steps). This matters when PEC is enabled, 348 * detection or initialization steps). This matters when PEC is enabled,
349 * because we don't want the address pointer to change between the write 349 * because we don't want the address pointer to change between the write
350 * byte and the read byte transactions. 350 * byte and the read byte transactions.
351 */ 351 */
352 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value) 352 static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
353 { 353 {
354 int err; 354 int err;
355 355
356 if (client->flags & I2C_CLIENT_PEC) { 356 if (client->flags & I2C_CLIENT_PEC) {
357 err = adm1032_write_byte(client, reg); 357 err = adm1032_write_byte(client, reg);
358 if (err >= 0) 358 if (err >= 0)
359 err = i2c_smbus_read_byte(client); 359 err = i2c_smbus_read_byte(client);
360 } else 360 } else
361 err = i2c_smbus_read_byte_data(client, reg); 361 err = i2c_smbus_read_byte_data(client, reg);
362 362
363 if (err < 0) { 363 if (err < 0) {
364 dev_warn(&client->dev, "Register %#02x read failed (%d)\n", 364 dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
365 reg, err); 365 reg, err);
366 return err; 366 return err;
367 } 367 }
368 *value = err; 368 *value = err;
369 369
370 return 0; 370 return 0;
371 } 371 }
372 372
373 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value) 373 static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
374 { 374 {
375 int err; 375 int err;
376 u8 oldh, newh, l; 376 u8 oldh, newh, l;
377 377
378 /* 378 /*
379 * There is a trick here. We have to read two registers to have the 379 * There is a trick here. We have to read two registers to have the
380 * sensor temperature, but we have to beware a conversion could occur 380 * sensor temperature, but we have to beware a conversion could occur
381 * between the readings. The datasheet says we should either use 381 * between the readings. The datasheet says we should either use
382 * the one-shot conversion register, which we don't want to do 382 * the one-shot conversion register, which we don't want to do
383 * (disables hardware monitoring) or monitor the busy bit, which is 383 * (disables hardware monitoring) or monitor the busy bit, which is
384 * impossible (we can't read the values and monitor that bit at the 384 * impossible (we can't read the values and monitor that bit at the
385 * exact same time). So the solution used here is to read the high 385 * exact same time). So the solution used here is to read the high
386 * byte once, then the low byte, then the high byte again. If the new 386 * byte once, then the low byte, then the high byte again. If the new
387 * high byte matches the old one, then we have a valid reading. Else 387 * high byte matches the old one, then we have a valid reading. Else
388 * we have to read the low byte again, and now we believe we have a 388 * we have to read the low byte again, and now we believe we have a
389 * correct reading. 389 * correct reading.
390 */ 390 */
391 if ((err = lm90_read_reg(client, regh, &oldh)) 391 if ((err = lm90_read_reg(client, regh, &oldh))
392 || (err = lm90_read_reg(client, regl, &l)) 392 || (err = lm90_read_reg(client, regl, &l))
393 || (err = lm90_read_reg(client, regh, &newh))) 393 || (err = lm90_read_reg(client, regh, &newh)))
394 return err; 394 return err;
395 if (oldh != newh) { 395 if (oldh != newh) {
396 err = lm90_read_reg(client, regl, &l); 396 err = lm90_read_reg(client, regl, &l);
397 if (err) 397 if (err)
398 return err; 398 return err;
399 } 399 }
400 *value = (newh << 8) | l; 400 *value = (newh << 8) | l;
401 401
402 return 0; 402 return 0;
403 } 403 }
404 404
405 /* 405 /*
406 * client->update_lock must be held when calling this function (unless we are 406 * client->update_lock must be held when calling this function (unless we are
407 * in detection or initialization steps), and while a remote channel other 407 * in detection or initialization steps), and while a remote channel other
408 * than channel 0 is selected. Also, calling code must make sure to re-select 408 * than channel 0 is selected. Also, calling code must make sure to re-select
409 * external channel 0 before releasing the lock. This is necessary because 409 * external channel 0 before releasing the lock. This is necessary because
410 * various registers have different meanings as a result of selecting a 410 * various registers have different meanings as a result of selecting a
411 * non-default remote channel. 411 * non-default remote channel.
412 */ 412 */
413 static inline void lm90_select_remote_channel(struct i2c_client *client, 413 static inline void lm90_select_remote_channel(struct i2c_client *client,
414 struct lm90_data *data, 414 struct lm90_data *data,
415 int channel) 415 int channel)
416 { 416 {
417 u8 config; 417 u8 config;
418 418
419 if (data->kind == max6696) { 419 if (data->kind == max6696) {
420 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); 420 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
421 config &= ~0x08; 421 config &= ~0x08;
422 if (channel) 422 if (channel)
423 config |= 0x08; 423 config |= 0x08;
424 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 424 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
425 config); 425 config);
426 } 426 }
427 } 427 }
428 428
429 /* 429 /*
430 * Set conversion rate. 430 * Set conversion rate.
431 * client->update_lock must be held when calling this function (unless we are 431 * client->update_lock must be held when calling this function (unless we are
432 * in detection or initialization steps). 432 * in detection or initialization steps).
433 */ 433 */
434 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, 434 static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
435 unsigned int interval) 435 unsigned int interval)
436 { 436 {
437 int i; 437 int i;
438 unsigned int update_interval; 438 unsigned int update_interval;
439 439
440 /* Shift calculations to avoid rounding errors */ 440 /* Shift calculations to avoid rounding errors */
441 interval <<= 6; 441 interval <<= 6;
442 442
443 /* find the nearest update rate */ 443 /* find the nearest update rate */
444 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; 444 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
445 i < data->max_convrate; i++, update_interval >>= 1) 445 i < data->max_convrate; i++, update_interval >>= 1)
446 if (interval >= update_interval * 3 / 4) 446 if (interval >= update_interval * 3 / 4)
447 break; 447 break;
448 448
449 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i); 449 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
450 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); 450 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
451 } 451 }
452 452
453 static struct lm90_data *lm90_update_device(struct device *dev) 453 static struct lm90_data *lm90_update_device(struct device *dev)
454 { 454 {
455 struct i2c_client *client = to_i2c_client(dev); 455 struct i2c_client *client = to_i2c_client(dev);
456 struct lm90_data *data = i2c_get_clientdata(client); 456 struct lm90_data *data = i2c_get_clientdata(client);
457 unsigned long next_update; 457 unsigned long next_update;
458 458
459 mutex_lock(&data->update_lock); 459 mutex_lock(&data->update_lock);
460 460
461 next_update = data->last_updated 461 next_update = data->last_updated
462 + msecs_to_jiffies(data->update_interval) + 1; 462 + msecs_to_jiffies(data->update_interval) + 1;
463 if (time_after(jiffies, next_update) || !data->valid) { 463 if (time_after(jiffies, next_update) || !data->valid) {
464 u8 h, l; 464 u8 h, l;
465 u8 alarms; 465 u8 alarms;
466 466
467 dev_dbg(&client->dev, "Updating lm90 data.\n"); 467 dev_dbg(&client->dev, "Updating lm90 data.\n");
468 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]); 468 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]);
469 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]); 469 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]);
470 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]); 470 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]);
471 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]); 471 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]);
472 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst); 472 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
473 473
474 if (data->reg_local_ext) { 474 if (data->reg_local_ext) {
475 lm90_read16(client, LM90_REG_R_LOCAL_TEMP, 475 lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
476 data->reg_local_ext, 476 data->reg_local_ext,
477 &data->temp11[4]); 477 &data->temp11[4]);
478 } else { 478 } else {
479 if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP, 479 if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
480 &h) == 0) 480 &h) == 0)
481 data->temp11[4] = h << 8; 481 data->temp11[4] = h << 8;
482 } 482 }
483 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 483 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
484 LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]); 484 LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]);
485 485
486 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) { 486 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
487 data->temp11[1] = h << 8; 487 data->temp11[1] = h << 8;
488 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT) 488 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
489 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL, 489 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
490 &l) == 0) 490 &l) == 0)
491 data->temp11[1] |= l; 491 data->temp11[1] |= l;
492 } 492 }
493 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) { 493 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
494 data->temp11[2] = h << 8; 494 data->temp11[2] = h << 8;
495 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT) 495 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
496 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL, 496 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
497 &l) == 0) 497 &l) == 0)
498 data->temp11[2] |= l; 498 data->temp11[2] |= l;
499 } 499 }
500 500
501 if (data->flags & LM90_HAVE_OFFSET) { 501 if (data->flags & LM90_HAVE_OFFSET) {
502 if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH, 502 if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
503 &h) == 0 503 &h) == 0
504 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL, 504 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
505 &l) == 0) 505 &l) == 0)
506 data->temp11[3] = (h << 8) | l; 506 data->temp11[3] = (h << 8) | l;
507 } 507 }
508 if (data->flags & LM90_HAVE_EMERGENCY) { 508 if (data->flags & LM90_HAVE_EMERGENCY) {
509 lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG, 509 lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
510 &data->temp8[4]); 510 &data->temp8[4]);
511 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG, 511 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
512 &data->temp8[5]); 512 &data->temp8[5]);
513 } 513 }
514 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms); 514 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
515 data->alarms = alarms; /* save as 16 bit value */ 515 data->alarms = alarms; /* save as 16 bit value */
516 516
517 if (data->kind == max6696) { 517 if (data->kind == max6696) {
518 lm90_select_remote_channel(client, data, 1); 518 lm90_select_remote_channel(client, data, 1);
519 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, 519 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
520 &data->temp8[6]); 520 &data->temp8[6]);
521 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG, 521 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
522 &data->temp8[7]); 522 &data->temp8[7]);
523 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, 523 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
524 LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]); 524 LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]);
525 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h)) 525 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
526 data->temp11[6] = h << 8; 526 data->temp11[6] = h << 8;
527 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h)) 527 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
528 data->temp11[7] = h << 8; 528 data->temp11[7] = h << 8;
529 lm90_select_remote_channel(client, data, 0); 529 lm90_select_remote_channel(client, data, 0);
530 530
531 if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2, 531 if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
532 &alarms)) 532 &alarms))
533 data->alarms |= alarms << 8; 533 data->alarms |= alarms << 8;
534 } 534 }
535 535
536 /* Re-enable ALERT# output if it was originally enabled and 536 /* Re-enable ALERT# output if it was originally enabled and
537 * relevant alarms are all clear */ 537 * relevant alarms are all clear */
538 if ((data->config_orig & 0x80) == 0 538 if ((data->config_orig & 0x80) == 0
539 && (data->alarms & data->alert_alarms) == 0) { 539 && (data->alarms & data->alert_alarms) == 0) {
540 u8 config; 540 u8 config;
541 541
542 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); 542 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
543 if (config & 0x80) { 543 if (config & 0x80) {
544 dev_dbg(&client->dev, "Re-enabling ALERT#\n"); 544 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
545 i2c_smbus_write_byte_data(client, 545 i2c_smbus_write_byte_data(client,
546 LM90_REG_W_CONFIG1, 546 LM90_REG_W_CONFIG1,
547 config & ~0x80); 547 config & ~0x80);
548 } 548 }
549 } 549 }
550 550
551 data->last_updated = jiffies; 551 data->last_updated = jiffies;
552 data->valid = 1; 552 data->valid = 1;
553 } 553 }
554 554
555 mutex_unlock(&data->update_lock); 555 mutex_unlock(&data->update_lock);
556 556
557 return data; 557 return data;
558 } 558 }
559 559
560 /* 560 /*
561 * Conversions 561 * Conversions
562 * For local temperatures and limits, critical limits and the hysteresis 562 * For local temperatures and limits, critical limits and the hysteresis
563 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. 563 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
564 * For remote temperatures and limits, it uses signed 11-bit values with 564 * For remote temperatures and limits, it uses signed 11-bit values with
565 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some 565 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
566 * Maxim chips use unsigned values. 566 * Maxim chips use unsigned values.
567 */ 567 */
568 568
569 static inline int temp_from_s8(s8 val) 569 static inline int temp_from_s8(s8 val)
570 { 570 {
571 return val * 1000; 571 return val * 1000;
572 } 572 }
573 573
574 static inline int temp_from_u8(u8 val) 574 static inline int temp_from_u8(u8 val)
575 { 575 {
576 return val * 1000; 576 return val * 1000;
577 } 577 }
578 578
579 static inline int temp_from_s16(s16 val) 579 static inline int temp_from_s16(s16 val)
580 { 580 {
581 return val / 32 * 125; 581 return val / 32 * 125;
582 } 582 }
583 583
584 static inline int temp_from_u16(u16 val) 584 static inline int temp_from_u16(u16 val)
585 { 585 {
586 return val / 32 * 125; 586 return val / 32 * 125;
587 } 587 }
588 588
589 static s8 temp_to_s8(long val) 589 static s8 temp_to_s8(long val)
590 { 590 {
591 if (val <= -128000) 591 if (val <= -128000)
592 return -128; 592 return -128;
593 if (val >= 127000) 593 if (val >= 127000)
594 return 127; 594 return 127;
595 if (val < 0) 595 if (val < 0)
596 return (val - 500) / 1000; 596 return (val - 500) / 1000;
597 return (val + 500) / 1000; 597 return (val + 500) / 1000;
598 } 598 }
599 599
600 static u8 temp_to_u8(long val) 600 static u8 temp_to_u8(long val)
601 { 601 {
602 if (val <= 0) 602 if (val <= 0)
603 return 0; 603 return 0;
604 if (val >= 255000) 604 if (val >= 255000)
605 return 255; 605 return 255;
606 return (val + 500) / 1000; 606 return (val + 500) / 1000;
607 } 607 }
608 608
609 static s16 temp_to_s16(long val) 609 static s16 temp_to_s16(long val)
610 { 610 {
611 if (val <= -128000) 611 if (val <= -128000)
612 return 0x8000; 612 return 0x8000;
613 if (val >= 127875) 613 if (val >= 127875)
614 return 0x7FE0; 614 return 0x7FE0;
615 if (val < 0) 615 if (val < 0)
616 return (val - 62) / 125 * 32; 616 return (val - 62) / 125 * 32;
617 return (val + 62) / 125 * 32; 617 return (val + 62) / 125 * 32;
618 } 618 }
619 619
620 static u8 hyst_to_reg(long val) 620 static u8 hyst_to_reg(long val)
621 { 621 {
622 if (val <= 0) 622 if (val <= 0)
623 return 0; 623 return 0;
624 if (val >= 30500) 624 if (val >= 30500)
625 return 31; 625 return 31;
626 return (val + 500) / 1000; 626 return (val + 500) / 1000;
627 } 627 }
628 628
629 /* 629 /*
630 * ADT7461 in compatibility mode is almost identical to LM90 except that 630 * ADT7461 in compatibility mode is almost identical to LM90 except that
631 * attempts to write values that are outside the range 0 < temp < 127 are 631 * attempts to write values that are outside the range 0 < temp < 127 are
632 * treated as the boundary value. 632 * treated as the boundary value.
633 * 633 *
634 * ADT7461 in "extended mode" operation uses unsigned integers offset by 634 * ADT7461 in "extended mode" operation uses unsigned integers offset by
635 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC. 635 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
636 */ 636 */
637 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val) 637 static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
638 { 638 {
639 if (data->flags & LM90_FLAG_ADT7461_EXT) 639 if (data->flags & LM90_FLAG_ADT7461_EXT)
640 return (val - 64) * 1000; 640 return (val - 64) * 1000;
641 else 641 else
642 return temp_from_s8(val); 642 return temp_from_s8(val);
643 } 643 }
644 644
645 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val) 645 static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
646 { 646 {
647 if (data->flags & LM90_FLAG_ADT7461_EXT) 647 if (data->flags & LM90_FLAG_ADT7461_EXT)
648 return (val - 0x4000) / 64 * 250; 648 return (val - 0x4000) / 64 * 250;
649 else 649 else
650 return temp_from_s16(val); 650 return temp_from_s16(val);
651 } 651 }
652 652
653 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val) 653 static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
654 { 654 {
655 if (data->flags & LM90_FLAG_ADT7461_EXT) { 655 if (data->flags & LM90_FLAG_ADT7461_EXT) {
656 if (val <= -64000) 656 if (val <= -64000)
657 return 0; 657 return 0;
658 if (val >= 191000) 658 if (val >= 191000)
659 return 0xFF; 659 return 0xFF;
660 return (val + 500 + 64000) / 1000; 660 return (val + 500 + 64000) / 1000;
661 } else { 661 } else {
662 if (val <= 0) 662 if (val <= 0)
663 return 0; 663 return 0;
664 if (val >= 127000) 664 if (val >= 127000)
665 return 127; 665 return 127;
666 return (val + 500) / 1000; 666 return (val + 500) / 1000;
667 } 667 }
668 } 668 }
669 669
670 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val) 670 static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
671 { 671 {
672 if (data->flags & LM90_FLAG_ADT7461_EXT) { 672 if (data->flags & LM90_FLAG_ADT7461_EXT) {
673 if (val <= -64000) 673 if (val <= -64000)
674 return 0; 674 return 0;
675 if (val >= 191750) 675 if (val >= 191750)
676 return 0xFFC0; 676 return 0xFFC0;
677 return (val + 64000 + 125) / 250 * 64; 677 return (val + 64000 + 125) / 250 * 64;
678 } else { 678 } else {
679 if (val <= 0) 679 if (val <= 0)
680 return 0; 680 return 0;
681 if (val >= 127750) 681 if (val >= 127750)
682 return 0x7FC0; 682 return 0x7FC0;
683 return (val + 125) / 250 * 64; 683 return (val + 125) / 250 * 64;
684 } 684 }
685 } 685 }
686 686
687 /* 687 /*
688 * Sysfs stuff 688 * Sysfs stuff
689 */ 689 */
690 690
691 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr, 691 static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
692 char *buf) 692 char *buf)
693 { 693 {
694 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 694 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
695 struct lm90_data *data = lm90_update_device(dev); 695 struct lm90_data *data = lm90_update_device(dev);
696 int temp; 696 int temp;
697 697
698 if (data->kind == adt7461) 698 if (data->kind == adt7461)
699 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]); 699 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
700 else if (data->kind == max6646) 700 else if (data->kind == max6646)
701 temp = temp_from_u8(data->temp8[attr->index]); 701 temp = temp_from_u8(data->temp8[attr->index]);
702 else 702 else
703 temp = temp_from_s8(data->temp8[attr->index]); 703 temp = temp_from_s8(data->temp8[attr->index]);
704 704
705 /* +16 degrees offset for temp2 for the LM99 */ 705 /* +16 degrees offset for temp2 for the LM99 */
706 if (data->kind == lm99 && attr->index == 3) 706 if (data->kind == lm99 && attr->index == 3)
707 temp += 16000; 707 temp += 16000;
708 708
709 return sprintf(buf, "%d\n", temp); 709 return sprintf(buf, "%d\n", temp);
710 } 710 }
711 711
712 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr, 712 static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
713 const char *buf, size_t count) 713 const char *buf, size_t count)
714 { 714 {
715 static const u8 reg[8] = { 715 static const u8 reg[8] = {
716 LM90_REG_W_LOCAL_LOW, 716 LM90_REG_W_LOCAL_LOW,
717 LM90_REG_W_LOCAL_HIGH, 717 LM90_REG_W_LOCAL_HIGH,
718 LM90_REG_W_LOCAL_CRIT, 718 LM90_REG_W_LOCAL_CRIT,
719 LM90_REG_W_REMOTE_CRIT, 719 LM90_REG_W_REMOTE_CRIT,
720 MAX6659_REG_W_LOCAL_EMERG, 720 MAX6659_REG_W_LOCAL_EMERG,
721 MAX6659_REG_W_REMOTE_EMERG, 721 MAX6659_REG_W_REMOTE_EMERG,
722 LM90_REG_W_REMOTE_CRIT, 722 LM90_REG_W_REMOTE_CRIT,
723 MAX6659_REG_W_REMOTE_EMERG, 723 MAX6659_REG_W_REMOTE_EMERG,
724 }; 724 };
725 725
726 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 726 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
727 struct i2c_client *client = to_i2c_client(dev); 727 struct i2c_client *client = to_i2c_client(dev);
728 struct lm90_data *data = i2c_get_clientdata(client); 728 struct lm90_data *data = i2c_get_clientdata(client);
729 int nr = attr->index; 729 int nr = attr->index;
730 long val; 730 long val;
731 int err; 731 int err;
732 732
733 err = kstrtol(buf, 10, &val); 733 err = kstrtol(buf, 10, &val);
734 if (err < 0) 734 if (err < 0)
735 return err; 735 return err;
736 736
737 /* +16 degrees offset for temp2 for the LM99 */ 737 /* +16 degrees offset for temp2 for the LM99 */
738 if (data->kind == lm99 && attr->index == 3) 738 if (data->kind == lm99 && attr->index == 3)
739 val -= 16000; 739 val -= 16000;
740 740
741 mutex_lock(&data->update_lock); 741 mutex_lock(&data->update_lock);
742 if (data->kind == adt7461) 742 if (data->kind == adt7461)
743 data->temp8[nr] = temp_to_u8_adt7461(data, val); 743 data->temp8[nr] = temp_to_u8_adt7461(data, val);
744 else if (data->kind == max6646) 744 else if (data->kind == max6646)
745 data->temp8[nr] = temp_to_u8(val); 745 data->temp8[nr] = temp_to_u8(val);
746 else 746 else
747 data->temp8[nr] = temp_to_s8(val); 747 data->temp8[nr] = temp_to_s8(val);
748 748
749 lm90_select_remote_channel(client, data, nr >= 6); 749 lm90_select_remote_channel(client, data, nr >= 6);
750 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]); 750 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
751 lm90_select_remote_channel(client, data, 0); 751 lm90_select_remote_channel(client, data, 0);
752 752
753 mutex_unlock(&data->update_lock); 753 mutex_unlock(&data->update_lock);
754 return count; 754 return count;
755 } 755 }
756 756
757 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr, 757 static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
758 char *buf) 758 char *buf)
759 { 759 {
760 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 760 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
761 struct lm90_data *data = lm90_update_device(dev); 761 struct lm90_data *data = lm90_update_device(dev);
762 int temp; 762 int temp;
763 763
764 if (data->kind == adt7461) 764 if (data->kind == adt7461)
765 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]); 765 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
766 else if (data->kind == max6646) 766 else if (data->kind == max6646)
767 temp = temp_from_u16(data->temp11[attr->index]); 767 temp = temp_from_u16(data->temp11[attr->index]);
768 else 768 else
769 temp = temp_from_s16(data->temp11[attr->index]); 769 temp = temp_from_s16(data->temp11[attr->index]);
770 770
771 /* +16 degrees offset for temp2 for the LM99 */ 771 /* +16 degrees offset for temp2 for the LM99 */
772 if (data->kind == lm99 && attr->index <= 2) 772 if (data->kind == lm99 && attr->index <= 2)
773 temp += 16000; 773 temp += 16000;
774 774
775 return sprintf(buf, "%d\n", temp); 775 return sprintf(buf, "%d\n", temp);
776 } 776 }
777 777
778 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr, 778 static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
779 const char *buf, size_t count) 779 const char *buf, size_t count)
780 { 780 {
781 struct { 781 struct {
782 u8 high; 782 u8 high;
783 u8 low; 783 u8 low;
784 int channel; 784 int channel;
785 } reg[5] = { 785 } reg[5] = {
786 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 }, 786 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
787 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 }, 787 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
788 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 }, 788 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
789 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 }, 789 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
790 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 } 790 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
791 }; 791 };
792 792
793 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 793 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
794 struct i2c_client *client = to_i2c_client(dev); 794 struct i2c_client *client = to_i2c_client(dev);
795 struct lm90_data *data = i2c_get_clientdata(client); 795 struct lm90_data *data = i2c_get_clientdata(client);
796 int nr = attr->nr; 796 int nr = attr->nr;
797 int index = attr->index; 797 int index = attr->index;
798 long val; 798 long val;
799 int err; 799 int err;
800 800
801 err = kstrtol(buf, 10, &val); 801 err = kstrtol(buf, 10, &val);
802 if (err < 0) 802 if (err < 0)
803 return err; 803 return err;
804 804
805 /* +16 degrees offset for temp2 for the LM99 */ 805 /* +16 degrees offset for temp2 for the LM99 */
806 if (data->kind == lm99 && index <= 2) 806 if (data->kind == lm99 && index <= 2)
807 val -= 16000; 807 val -= 16000;
808 808
809 mutex_lock(&data->update_lock); 809 mutex_lock(&data->update_lock);
810 if (data->kind == adt7461) 810 if (data->kind == adt7461)
811 data->temp11[index] = temp_to_u16_adt7461(data, val); 811 data->temp11[index] = temp_to_u16_adt7461(data, val);
812 else if (data->kind == max6646) 812 else if (data->kind == max6646)
813 data->temp11[index] = temp_to_u8(val) << 8; 813 data->temp11[index] = temp_to_u8(val) << 8;
814 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 814 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
815 data->temp11[index] = temp_to_s16(val); 815 data->temp11[index] = temp_to_s16(val);
816 else 816 else
817 data->temp11[index] = temp_to_s8(val) << 8; 817 data->temp11[index] = temp_to_s8(val) << 8;
818 818
819 lm90_select_remote_channel(client, data, reg[nr].channel); 819 lm90_select_remote_channel(client, data, reg[nr].channel);
820 i2c_smbus_write_byte_data(client, reg[nr].high, 820 i2c_smbus_write_byte_data(client, reg[nr].high,
821 data->temp11[index] >> 8); 821 data->temp11[index] >> 8);
822 if (data->flags & LM90_HAVE_REM_LIMIT_EXT) 822 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
823 i2c_smbus_write_byte_data(client, reg[nr].low, 823 i2c_smbus_write_byte_data(client, reg[nr].low,
824 data->temp11[index] & 0xff); 824 data->temp11[index] & 0xff);
825 lm90_select_remote_channel(client, data, 0); 825 lm90_select_remote_channel(client, data, 0);
826 826
827 mutex_unlock(&data->update_lock); 827 mutex_unlock(&data->update_lock);
828 return count; 828 return count;
829 } 829 }
830 830
831 static ssize_t show_temphyst(struct device *dev, 831 static ssize_t show_temphyst(struct device *dev,
832 struct device_attribute *devattr, 832 struct device_attribute *devattr,
833 char *buf) 833 char *buf)
834 { 834 {
835 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 835 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
836 struct lm90_data *data = lm90_update_device(dev); 836 struct lm90_data *data = lm90_update_device(dev);
837 int temp; 837 int temp;
838 838
839 if (data->kind == adt7461) 839 if (data->kind == adt7461)
840 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]); 840 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
841 else if (data->kind == max6646) 841 else if (data->kind == max6646)
842 temp = temp_from_u8(data->temp8[attr->index]); 842 temp = temp_from_u8(data->temp8[attr->index]);
843 else 843 else
844 temp = temp_from_s8(data->temp8[attr->index]); 844 temp = temp_from_s8(data->temp8[attr->index]);
845 845
846 /* +16 degrees offset for temp2 for the LM99 */ 846 /* +16 degrees offset for temp2 for the LM99 */
847 if (data->kind == lm99 && attr->index == 3) 847 if (data->kind == lm99 && attr->index == 3)
848 temp += 16000; 848 temp += 16000;
849 849
850 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst)); 850 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
851 } 851 }
852 852
853 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy, 853 static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
854 const char *buf, size_t count) 854 const char *buf, size_t count)
855 { 855 {
856 struct i2c_client *client = to_i2c_client(dev); 856 struct i2c_client *client = to_i2c_client(dev);
857 struct lm90_data *data = i2c_get_clientdata(client); 857 struct lm90_data *data = i2c_get_clientdata(client);
858 long val; 858 long val;
859 int err; 859 int err;
860 int temp; 860 int temp;
861 861
862 err = kstrtol(buf, 10, &val); 862 err = kstrtol(buf, 10, &val);
863 if (err < 0) 863 if (err < 0)
864 return err; 864 return err;
865 865
866 mutex_lock(&data->update_lock); 866 mutex_lock(&data->update_lock);
867 if (data->kind == adt7461) 867 if (data->kind == adt7461)
868 temp = temp_from_u8_adt7461(data, data->temp8[2]); 868 temp = temp_from_u8_adt7461(data, data->temp8[2]);
869 else if (data->kind == max6646) 869 else if (data->kind == max6646)
870 temp = temp_from_u8(data->temp8[2]); 870 temp = temp_from_u8(data->temp8[2]);
871 else 871 else
872 temp = temp_from_s8(data->temp8[2]); 872 temp = temp_from_s8(data->temp8[2]);
873 873
874 data->temp_hyst = hyst_to_reg(temp - val); 874 data->temp_hyst = hyst_to_reg(temp - val);
875 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, 875 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
876 data->temp_hyst); 876 data->temp_hyst);
877 mutex_unlock(&data->update_lock); 877 mutex_unlock(&data->update_lock);
878 return count; 878 return count;
879 } 879 }
880 880
881 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy, 881 static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
882 char *buf) 882 char *buf)
883 { 883 {
884 struct lm90_data *data = lm90_update_device(dev); 884 struct lm90_data *data = lm90_update_device(dev);
885 return sprintf(buf, "%d\n", data->alarms); 885 return sprintf(buf, "%d\n", data->alarms);
886 } 886 }
887 887
888 static ssize_t show_alarm(struct device *dev, struct device_attribute 888 static ssize_t show_alarm(struct device *dev, struct device_attribute
889 *devattr, char *buf) 889 *devattr, char *buf)
890 { 890 {
891 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); 891 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
892 struct lm90_data *data = lm90_update_device(dev); 892 struct lm90_data *data = lm90_update_device(dev);
893 int bitnr = attr->index; 893 int bitnr = attr->index;
894 894
895 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); 895 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
896 } 896 }
897 897
898 static ssize_t show_update_interval(struct device *dev, 898 static ssize_t show_update_interval(struct device *dev,
899 struct device_attribute *attr, char *buf) 899 struct device_attribute *attr, char *buf)
900 { 900 {
901 struct lm90_data *data = dev_get_drvdata(dev); 901 struct lm90_data *data = dev_get_drvdata(dev);
902 902
903 return sprintf(buf, "%u\n", data->update_interval); 903 return sprintf(buf, "%u\n", data->update_interval);
904 } 904 }
905 905
906 static ssize_t set_update_interval(struct device *dev, 906 static ssize_t set_update_interval(struct device *dev,
907 struct device_attribute *attr, 907 struct device_attribute *attr,
908 const char *buf, size_t count) 908 const char *buf, size_t count)
909 { 909 {
910 struct i2c_client *client = to_i2c_client(dev); 910 struct i2c_client *client = to_i2c_client(dev);
911 struct lm90_data *data = i2c_get_clientdata(client); 911 struct lm90_data *data = i2c_get_clientdata(client);
912 unsigned long val; 912 unsigned long val;
913 int err; 913 int err;
914 914
915 err = kstrtoul(buf, 10, &val); 915 err = kstrtoul(buf, 10, &val);
916 if (err) 916 if (err)
917 return err; 917 return err;
918 918
919 mutex_lock(&data->update_lock); 919 mutex_lock(&data->update_lock);
920 lm90_set_convrate(client, data, val); 920 lm90_set_convrate(client, data, SENSORS_LIMIT(val, 0, 100000));
921 mutex_unlock(&data->update_lock); 921 mutex_unlock(&data->update_lock);
922 922
923 return count; 923 return count;
924 } 924 }
925 925
926 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4); 926 static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4);
927 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0); 927 static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0);
928 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8, 928 static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
929 set_temp8, 0); 929 set_temp8, 0);
930 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11, 930 static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
931 set_temp11, 0, 1); 931 set_temp11, 0, 1);
932 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8, 932 static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
933 set_temp8, 1); 933 set_temp8, 1);
934 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11, 934 static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
935 set_temp11, 1, 2); 935 set_temp11, 1, 2);
936 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8, 936 static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
937 set_temp8, 2); 937 set_temp8, 2);
938 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8, 938 static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
939 set_temp8, 3); 939 set_temp8, 3);
940 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst, 940 static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
941 set_temphyst, 2); 941 set_temphyst, 2);
942 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3); 942 static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3);
943 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11, 943 static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
944 set_temp11, 2, 3); 944 set_temp11, 2, 3);
945 945
946 /* Individual alarm files */ 946 /* Individual alarm files */
947 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0); 947 static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
948 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1); 948 static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
949 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2); 949 static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
950 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3); 950 static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
951 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4); 951 static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
952 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5); 952 static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
953 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); 953 static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
954 /* Raw alarm file for compatibility */ 954 /* Raw alarm file for compatibility */
955 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); 955 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
956 956
957 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval, 957 static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
958 set_update_interval); 958 set_update_interval);
959 959
960 static struct attribute *lm90_attributes[] = { 960 static struct attribute *lm90_attributes[] = {
961 &sensor_dev_attr_temp1_input.dev_attr.attr, 961 &sensor_dev_attr_temp1_input.dev_attr.attr,
962 &sensor_dev_attr_temp2_input.dev_attr.attr, 962 &sensor_dev_attr_temp2_input.dev_attr.attr,
963 &sensor_dev_attr_temp1_min.dev_attr.attr, 963 &sensor_dev_attr_temp1_min.dev_attr.attr,
964 &sensor_dev_attr_temp2_min.dev_attr.attr, 964 &sensor_dev_attr_temp2_min.dev_attr.attr,
965 &sensor_dev_attr_temp1_max.dev_attr.attr, 965 &sensor_dev_attr_temp1_max.dev_attr.attr,
966 &sensor_dev_attr_temp2_max.dev_attr.attr, 966 &sensor_dev_attr_temp2_max.dev_attr.attr,
967 &sensor_dev_attr_temp1_crit.dev_attr.attr, 967 &sensor_dev_attr_temp1_crit.dev_attr.attr,
968 &sensor_dev_attr_temp2_crit.dev_attr.attr, 968 &sensor_dev_attr_temp2_crit.dev_attr.attr,
969 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, 969 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
970 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, 970 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
971 971
972 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, 972 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
973 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, 973 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
974 &sensor_dev_attr_temp2_fault.dev_attr.attr, 974 &sensor_dev_attr_temp2_fault.dev_attr.attr,
975 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, 975 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
976 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, 976 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
977 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, 977 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
978 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, 978 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
979 &dev_attr_alarms.attr, 979 &dev_attr_alarms.attr,
980 &dev_attr_update_interval.attr, 980 &dev_attr_update_interval.attr,
981 NULL 981 NULL
982 }; 982 };
983 983
984 static const struct attribute_group lm90_group = { 984 static const struct attribute_group lm90_group = {
985 .attrs = lm90_attributes, 985 .attrs = lm90_attributes,
986 }; 986 };
987 987
988 /* 988 /*
989 * Additional attributes for devices with emergency sensors 989 * Additional attributes for devices with emergency sensors
990 */ 990 */
991 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8, 991 static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
992 set_temp8, 4); 992 set_temp8, 4);
993 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8, 993 static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
994 set_temp8, 5); 994 set_temp8, 5);
995 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst, 995 static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
996 NULL, 4); 996 NULL, 4);
997 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst, 997 static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
998 NULL, 5); 998 NULL, 5);
999 999
1000 static struct attribute *lm90_emergency_attributes[] = { 1000 static struct attribute *lm90_emergency_attributes[] = {
1001 &sensor_dev_attr_temp1_emergency.dev_attr.attr, 1001 &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1002 &sensor_dev_attr_temp2_emergency.dev_attr.attr, 1002 &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1003 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr, 1003 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1004 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr, 1004 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1005 NULL 1005 NULL
1006 }; 1006 };
1007 1007
1008 static const struct attribute_group lm90_emergency_group = { 1008 static const struct attribute_group lm90_emergency_group = {
1009 .attrs = lm90_emergency_attributes, 1009 .attrs = lm90_emergency_attributes,
1010 }; 1010 };
1011 1011
1012 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15); 1012 static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1013 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13); 1013 static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1014 1014
1015 static struct attribute *lm90_emergency_alarm_attributes[] = { 1015 static struct attribute *lm90_emergency_alarm_attributes[] = {
1016 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr, 1016 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1017 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr, 1017 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1018 NULL 1018 NULL
1019 }; 1019 };
1020 1020
1021 static const struct attribute_group lm90_emergency_alarm_group = { 1021 static const struct attribute_group lm90_emergency_alarm_group = {
1022 .attrs = lm90_emergency_alarm_attributes, 1022 .attrs = lm90_emergency_alarm_attributes,
1023 }; 1023 };
1024 1024
1025 /* 1025 /*
1026 * Additional attributes for devices with 3 temperature sensors 1026 * Additional attributes for devices with 3 temperature sensors
1027 */ 1027 */
1028 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5); 1028 static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5);
1029 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11, 1029 static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1030 set_temp11, 3, 6); 1030 set_temp11, 3, 6);
1031 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11, 1031 static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1032 set_temp11, 4, 7); 1032 set_temp11, 4, 7);
1033 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8, 1033 static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1034 set_temp8, 6); 1034 set_temp8, 6);
1035 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6); 1035 static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6);
1036 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8, 1036 static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1037 set_temp8, 7); 1037 set_temp8, 7);
1038 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst, 1038 static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1039 NULL, 7); 1039 NULL, 7);
1040 1040
1041 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9); 1041 static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1042 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10); 1042 static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1043 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11); 1043 static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1044 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12); 1044 static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1045 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14); 1045 static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1046 1046
1047 static struct attribute *lm90_temp3_attributes[] = { 1047 static struct attribute *lm90_temp3_attributes[] = {
1048 &sensor_dev_attr_temp3_input.dev_attr.attr, 1048 &sensor_dev_attr_temp3_input.dev_attr.attr,
1049 &sensor_dev_attr_temp3_min.dev_attr.attr, 1049 &sensor_dev_attr_temp3_min.dev_attr.attr,
1050 &sensor_dev_attr_temp3_max.dev_attr.attr, 1050 &sensor_dev_attr_temp3_max.dev_attr.attr,
1051 &sensor_dev_attr_temp3_crit.dev_attr.attr, 1051 &sensor_dev_attr_temp3_crit.dev_attr.attr,
1052 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, 1052 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1053 &sensor_dev_attr_temp3_emergency.dev_attr.attr, 1053 &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1054 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr, 1054 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1055 1055
1056 &sensor_dev_attr_temp3_fault.dev_attr.attr, 1056 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1057 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, 1057 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1058 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, 1058 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1059 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, 1059 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1060 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr, 1060 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1061 NULL 1061 NULL
1062 }; 1062 };
1063 1063
1064 static const struct attribute_group lm90_temp3_group = { 1064 static const struct attribute_group lm90_temp3_group = {
1065 .attrs = lm90_temp3_attributes, 1065 .attrs = lm90_temp3_attributes,
1066 }; 1066 };
1067 1067
1068 /* pec used for ADM1032 only */ 1068 /* pec used for ADM1032 only */
1069 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy, 1069 static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1070 char *buf) 1070 char *buf)
1071 { 1071 {
1072 struct i2c_client *client = to_i2c_client(dev); 1072 struct i2c_client *client = to_i2c_client(dev);
1073 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); 1073 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1074 } 1074 }
1075 1075
1076 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy, 1076 static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1077 const char *buf, size_t count) 1077 const char *buf, size_t count)
1078 { 1078 {
1079 struct i2c_client *client = to_i2c_client(dev); 1079 struct i2c_client *client = to_i2c_client(dev);
1080 long val; 1080 long val;
1081 int err; 1081 int err;
1082 1082
1083 err = kstrtol(buf, 10, &val); 1083 err = kstrtol(buf, 10, &val);
1084 if (err < 0) 1084 if (err < 0)
1085 return err; 1085 return err;
1086 1086
1087 switch (val) { 1087 switch (val) {
1088 case 0: 1088 case 0:
1089 client->flags &= ~I2C_CLIENT_PEC; 1089 client->flags &= ~I2C_CLIENT_PEC;
1090 break; 1090 break;
1091 case 1: 1091 case 1:
1092 client->flags |= I2C_CLIENT_PEC; 1092 client->flags |= I2C_CLIENT_PEC;
1093 break; 1093 break;
1094 default: 1094 default:
1095 return -EINVAL; 1095 return -EINVAL;
1096 } 1096 }
1097 1097
1098 return count; 1098 return count;
1099 } 1099 }
1100 1100
1101 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec); 1101 static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1102 1102
1103 /* 1103 /*
1104 * Real code 1104 * Real code
1105 */ 1105 */
1106 1106
1107 /* Return 0 if detection is successful, -ENODEV otherwise */ 1107 /* Return 0 if detection is successful, -ENODEV otherwise */
1108 static int lm90_detect(struct i2c_client *client, 1108 static int lm90_detect(struct i2c_client *client,
1109 struct i2c_board_info *info) 1109 struct i2c_board_info *info)
1110 { 1110 {
1111 struct i2c_adapter *adapter = client->adapter; 1111 struct i2c_adapter *adapter = client->adapter;
1112 int address = client->addr; 1112 int address = client->addr;
1113 const char *name = NULL; 1113 const char *name = NULL;
1114 int man_id, chip_id, config1, config2, convrate; 1114 int man_id, chip_id, config1, config2, convrate;
1115 1115
1116 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) 1116 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1117 return -ENODEV; 1117 return -ENODEV;
1118 1118
1119 /* detection and identification */ 1119 /* detection and identification */
1120 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); 1120 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1121 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID); 1121 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1122 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); 1122 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1123 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE); 1123 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1124 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0) 1124 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1125 return -ENODEV; 1125 return -ENODEV;
1126 1126
1127 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) { 1127 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1128 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2); 1128 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1129 if (config2 < 0) 1129 if (config2 < 0)
1130 return -ENODEV; 1130 return -ENODEV;
1131 } else 1131 } else
1132 config2 = 0; /* Make compiler happy */ 1132 config2 = 0; /* Make compiler happy */
1133 1133
1134 if ((address == 0x4C || address == 0x4D) 1134 if ((address == 0x4C || address == 0x4D)
1135 && man_id == 0x01) { /* National Semiconductor */ 1135 && man_id == 0x01) { /* National Semiconductor */
1136 if ((config1 & 0x2A) == 0x00 1136 if ((config1 & 0x2A) == 0x00
1137 && (config2 & 0xF8) == 0x00 1137 && (config2 & 0xF8) == 0x00
1138 && convrate <= 0x09) { 1138 && convrate <= 0x09) {
1139 if (address == 0x4C 1139 if (address == 0x4C
1140 && (chip_id & 0xF0) == 0x20) { /* LM90 */ 1140 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1141 name = "lm90"; 1141 name = "lm90";
1142 } else 1142 } else
1143 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ 1143 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1144 name = "lm99"; 1144 name = "lm99";
1145 dev_info(&adapter->dev, 1145 dev_info(&adapter->dev,
1146 "Assuming LM99 chip at 0x%02x\n", 1146 "Assuming LM99 chip at 0x%02x\n",
1147 address); 1147 address);
1148 dev_info(&adapter->dev, 1148 dev_info(&adapter->dev,
1149 "If it is an LM89, instantiate it " 1149 "If it is an LM89, instantiate it "
1150 "with the new_device sysfs " 1150 "with the new_device sysfs "
1151 "interface\n"); 1151 "interface\n");
1152 } else 1152 } else
1153 if (address == 0x4C 1153 if (address == 0x4C
1154 && (chip_id & 0xF0) == 0x10) { /* LM86 */ 1154 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1155 name = "lm86"; 1155 name = "lm86";
1156 } 1156 }
1157 } 1157 }
1158 } else 1158 } else
1159 if ((address == 0x4C || address == 0x4D) 1159 if ((address == 0x4C || address == 0x4D)
1160 && man_id == 0x41) { /* Analog Devices */ 1160 && man_id == 0x41) { /* Analog Devices */
1161 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */ 1161 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1162 && (config1 & 0x3F) == 0x00 1162 && (config1 & 0x3F) == 0x00
1163 && convrate <= 0x0A) { 1163 && convrate <= 0x0A) {
1164 name = "adm1032"; 1164 name = "adm1032";
1165 /* The ADM1032 supports PEC, but only if combined 1165 /* The ADM1032 supports PEC, but only if combined
1166 transactions are not used. */ 1166 transactions are not used. */
1167 if (i2c_check_functionality(adapter, 1167 if (i2c_check_functionality(adapter,
1168 I2C_FUNC_SMBUS_BYTE)) 1168 I2C_FUNC_SMBUS_BYTE))
1169 info->flags |= I2C_CLIENT_PEC; 1169 info->flags |= I2C_CLIENT_PEC;
1170 } else 1170 } else
1171 if (chip_id == 0x51 /* ADT7461 */ 1171 if (chip_id == 0x51 /* ADT7461 */
1172 && (config1 & 0x1B) == 0x00 1172 && (config1 & 0x1B) == 0x00
1173 && convrate <= 0x0A) { 1173 && convrate <= 0x0A) {
1174 name = "adt7461"; 1174 name = "adt7461";
1175 } else 1175 } else
1176 if (chip_id == 0x57 /* ADT7461A, NCT1008 */ 1176 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1177 && (config1 & 0x1B) == 0x00 1177 && (config1 & 0x1B) == 0x00
1178 && convrate <= 0x0A) { 1178 && convrate <= 0x0A) {
1179 name = "adt7461a"; 1179 name = "adt7461a";
1180 } 1180 }
1181 } else 1181 } else
1182 if (man_id == 0x4D) { /* Maxim */ 1182 if (man_id == 0x4D) { /* Maxim */
1183 int emerg, emerg2, status2; 1183 int emerg, emerg2, status2;
1184 1184
1185 /* 1185 /*
1186 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read 1186 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1187 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG 1187 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1188 * exists, both readings will reflect the same value. Otherwise, 1188 * exists, both readings will reflect the same value. Otherwise,
1189 * the readings will be different. 1189 * the readings will be different.
1190 */ 1190 */
1191 emerg = i2c_smbus_read_byte_data(client, 1191 emerg = i2c_smbus_read_byte_data(client,
1192 MAX6659_REG_R_REMOTE_EMERG); 1192 MAX6659_REG_R_REMOTE_EMERG);
1193 man_id = i2c_smbus_read_byte_data(client, 1193 man_id = i2c_smbus_read_byte_data(client,
1194 LM90_REG_R_MAN_ID); 1194 LM90_REG_R_MAN_ID);
1195 emerg2 = i2c_smbus_read_byte_data(client, 1195 emerg2 = i2c_smbus_read_byte_data(client,
1196 MAX6659_REG_R_REMOTE_EMERG); 1196 MAX6659_REG_R_REMOTE_EMERG);
1197 status2 = i2c_smbus_read_byte_data(client, 1197 status2 = i2c_smbus_read_byte_data(client,
1198 MAX6696_REG_R_STATUS2); 1198 MAX6696_REG_R_STATUS2);
1199 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) 1199 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1200 return -ENODEV; 1200 return -ENODEV;
1201 1201
1202 /* 1202 /*
1203 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id 1203 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1204 * register. Reading from that address will return the last 1204 * register. Reading from that address will return the last
1205 * read value, which in our case is those of the man_id 1205 * read value, which in our case is those of the man_id
1206 * register. Likewise, the config1 register seems to lack a 1206 * register. Likewise, the config1 register seems to lack a
1207 * low nibble, so the value will be those of the previous 1207 * low nibble, so the value will be those of the previous
1208 * read, so in our case those of the man_id register. 1208 * read, so in our case those of the man_id register.
1209 * MAX6659 has a third set of upper temperature limit registers. 1209 * MAX6659 has a third set of upper temperature limit registers.
1210 * Those registers also return values on MAX6657 and MAX6658, 1210 * Those registers also return values on MAX6657 and MAX6658,
1211 * thus the only way to detect MAX6659 is by its address. 1211 * thus the only way to detect MAX6659 is by its address.
1212 * For this reason it will be mis-detected as MAX6657 if its 1212 * For this reason it will be mis-detected as MAX6657 if its
1213 * address is 0x4C. 1213 * address is 0x4C.
1214 */ 1214 */
1215 if (chip_id == man_id 1215 if (chip_id == man_id
1216 && (address == 0x4C || address == 0x4D || address == 0x4E) 1216 && (address == 0x4C || address == 0x4D || address == 0x4E)
1217 && (config1 & 0x1F) == (man_id & 0x0F) 1217 && (config1 & 0x1F) == (man_id & 0x0F)
1218 && convrate <= 0x09) { 1218 && convrate <= 0x09) {
1219 if (address == 0x4C) 1219 if (address == 0x4C)
1220 name = "max6657"; 1220 name = "max6657";
1221 else 1221 else
1222 name = "max6659"; 1222 name = "max6659";
1223 } else 1223 } else
1224 /* 1224 /*
1225 * Even though MAX6695 and MAX6696 do not have a chip ID 1225 * Even though MAX6695 and MAX6696 do not have a chip ID
1226 * register, reading it returns 0x01. Bit 4 of the config1 1226 * register, reading it returns 0x01. Bit 4 of the config1
1227 * register is unused and should return zero when read. Bit 0 of 1227 * register is unused and should return zero when read. Bit 0 of
1228 * the status2 register is unused and should return zero when 1228 * the status2 register is unused and should return zero when
1229 * read. 1229 * read.
1230 * 1230 *
1231 * MAX6695 and MAX6696 have an additional set of temperature 1231 * MAX6695 and MAX6696 have an additional set of temperature
1232 * limit registers. We can detect those chips by checking if 1232 * limit registers. We can detect those chips by checking if
1233 * one of those registers exists. 1233 * one of those registers exists.
1234 */ 1234 */
1235 if (chip_id == 0x01 1235 if (chip_id == 0x01
1236 && (config1 & 0x10) == 0x00 1236 && (config1 & 0x10) == 0x00
1237 && (status2 & 0x01) == 0x00 1237 && (status2 & 0x01) == 0x00
1238 && emerg == emerg2 1238 && emerg == emerg2
1239 && convrate <= 0x07) { 1239 && convrate <= 0x07) {
1240 name = "max6696"; 1240 name = "max6696";
1241 } else 1241 } else
1242 /* 1242 /*
1243 * The chip_id register of the MAX6680 and MAX6681 holds the 1243 * The chip_id register of the MAX6680 and MAX6681 holds the
1244 * revision of the chip. The lowest bit of the config1 register 1244 * revision of the chip. The lowest bit of the config1 register
1245 * is unused and should return zero when read, so should the 1245 * is unused and should return zero when read, so should the
1246 * second to last bit of config1 (software reset). 1246 * second to last bit of config1 (software reset).
1247 */ 1247 */
1248 if (chip_id == 0x01 1248 if (chip_id == 0x01
1249 && (config1 & 0x03) == 0x00 1249 && (config1 & 0x03) == 0x00
1250 && convrate <= 0x07) { 1250 && convrate <= 0x07) {
1251 name = "max6680"; 1251 name = "max6680";
1252 } else 1252 } else
1253 /* 1253 /*
1254 * The chip_id register of the MAX6646/6647/6649 holds the 1254 * The chip_id register of the MAX6646/6647/6649 holds the
1255 * revision of the chip. The lowest 6 bits of the config1 1255 * revision of the chip. The lowest 6 bits of the config1
1256 * register are unused and should return zero when read. 1256 * register are unused and should return zero when read.
1257 */ 1257 */
1258 if (chip_id == 0x59 1258 if (chip_id == 0x59
1259 && (config1 & 0x3f) == 0x00 1259 && (config1 & 0x3f) == 0x00
1260 && convrate <= 0x07) { 1260 && convrate <= 0x07) {
1261 name = "max6646"; 1261 name = "max6646";
1262 } 1262 }
1263 } else 1263 } else
1264 if (address == 0x4C 1264 if (address == 0x4C
1265 && man_id == 0x5C) { /* Winbond/Nuvoton */ 1265 && man_id == 0x5C) { /* Winbond/Nuvoton */
1266 if ((config1 & 0x2A) == 0x00 1266 if ((config1 & 0x2A) == 0x00
1267 && (config2 & 0xF8) == 0x00) { 1267 && (config2 & 0xF8) == 0x00) {
1268 if (chip_id == 0x01 /* W83L771W/G */ 1268 if (chip_id == 0x01 /* W83L771W/G */
1269 && convrate <= 0x09) { 1269 && convrate <= 0x09) {
1270 name = "w83l771"; 1270 name = "w83l771";
1271 } else 1271 } else
1272 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */ 1272 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1273 && convrate <= 0x08) { 1273 && convrate <= 0x08) {
1274 name = "w83l771"; 1274 name = "w83l771";
1275 } 1275 }
1276 } 1276 }
1277 } else 1277 } else
1278 if (address >= 0x48 && address <= 0x4F 1278 if (address >= 0x48 && address <= 0x4F
1279 && man_id == 0xA1) { /* NXP Semiconductor/Philips */ 1279 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1280 if (chip_id == 0x00 1280 if (chip_id == 0x00
1281 && (config1 & 0x2A) == 0x00 1281 && (config1 & 0x2A) == 0x00
1282 && (config2 & 0xFE) == 0x00 1282 && (config2 & 0xFE) == 0x00
1283 && convrate <= 0x09) { 1283 && convrate <= 0x09) {
1284 name = "sa56004"; 1284 name = "sa56004";
1285 } 1285 }
1286 } 1286 }
1287 1287
1288 if (!name) { /* identification failed */ 1288 if (!name) { /* identification failed */
1289 dev_dbg(&adapter->dev, 1289 dev_dbg(&adapter->dev,
1290 "Unsupported chip at 0x%02x (man_id=0x%02X, " 1290 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1291 "chip_id=0x%02X)\n", address, man_id, chip_id); 1291 "chip_id=0x%02X)\n", address, man_id, chip_id);
1292 return -ENODEV; 1292 return -ENODEV;
1293 } 1293 }
1294 1294
1295 strlcpy(info->type, name, I2C_NAME_SIZE); 1295 strlcpy(info->type, name, I2C_NAME_SIZE);
1296 1296
1297 return 0; 1297 return 0;
1298 } 1298 }
1299 1299
1300 static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data) 1300 static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data)
1301 { 1301 {
1302 struct device *dev = &client->dev; 1302 struct device *dev = &client->dev;
1303 1303
1304 if (data->flags & LM90_HAVE_TEMP3) 1304 if (data->flags & LM90_HAVE_TEMP3)
1305 sysfs_remove_group(&dev->kobj, &lm90_temp3_group); 1305 sysfs_remove_group(&dev->kobj, &lm90_temp3_group);
1306 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) 1306 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1307 sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group); 1307 sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group);
1308 if (data->flags & LM90_HAVE_EMERGENCY) 1308 if (data->flags & LM90_HAVE_EMERGENCY)
1309 sysfs_remove_group(&dev->kobj, &lm90_emergency_group); 1309 sysfs_remove_group(&dev->kobj, &lm90_emergency_group);
1310 if (data->flags & LM90_HAVE_OFFSET) 1310 if (data->flags & LM90_HAVE_OFFSET)
1311 device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr); 1311 device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr);
1312 device_remove_file(dev, &dev_attr_pec); 1312 device_remove_file(dev, &dev_attr_pec);
1313 sysfs_remove_group(&dev->kobj, &lm90_group); 1313 sysfs_remove_group(&dev->kobj, &lm90_group);
1314 } 1314 }
1315 1315
1316 static void lm90_init_client(struct i2c_client *client) 1316 static void lm90_init_client(struct i2c_client *client)
1317 { 1317 {
1318 u8 config, convrate; 1318 u8 config, convrate;
1319 struct lm90_data *data = i2c_get_clientdata(client); 1319 struct lm90_data *data = i2c_get_clientdata(client);
1320 1320
1321 if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) { 1321 if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1322 dev_warn(&client->dev, "Failed to read convrate register!\n"); 1322 dev_warn(&client->dev, "Failed to read convrate register!\n");
1323 convrate = LM90_DEF_CONVRATE_RVAL; 1323 convrate = LM90_DEF_CONVRATE_RVAL;
1324 } 1324 }
1325 data->convrate_orig = convrate; 1325 data->convrate_orig = convrate;
1326 1326
1327 /* 1327 /*
1328 * Start the conversions. 1328 * Start the conversions.
1329 */ 1329 */
1330 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ 1330 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1331 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) { 1331 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1332 dev_warn(&client->dev, "Initialization failed!\n"); 1332 dev_warn(&client->dev, "Initialization failed!\n");
1333 return; 1333 return;
1334 } 1334 }
1335 data->config_orig = config; 1335 data->config_orig = config;
1336 1336
1337 /* Check Temperature Range Select */ 1337 /* Check Temperature Range Select */
1338 if (data->kind == adt7461) { 1338 if (data->kind == adt7461) {
1339 if (config & 0x04) 1339 if (config & 0x04)
1340 data->flags |= LM90_FLAG_ADT7461_EXT; 1340 data->flags |= LM90_FLAG_ADT7461_EXT;
1341 } 1341 }
1342 1342
1343 /* 1343 /*
1344 * Put MAX6680/MAX8881 into extended resolution (bit 0x10, 1344 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1345 * 0.125 degree resolution) and range (0x08, extend range 1345 * 0.125 degree resolution) and range (0x08, extend range
1346 * to -64 degree) mode for the remote temperature sensor. 1346 * to -64 degree) mode for the remote temperature sensor.
1347 */ 1347 */
1348 if (data->kind == max6680) 1348 if (data->kind == max6680)
1349 config |= 0x18; 1349 config |= 0x18;
1350 1350
1351 /* 1351 /*
1352 * Select external channel 0 for max6695/96 1352 * Select external channel 0 for max6695/96
1353 */ 1353 */
1354 if (data->kind == max6696) 1354 if (data->kind == max6696)
1355 config &= ~0x08; 1355 config &= ~0x08;
1356 1356
1357 config &= 0xBF; /* run */ 1357 config &= 0xBF; /* run */
1358 if (config != data->config_orig) /* Only write if changed */ 1358 if (config != data->config_orig) /* Only write if changed */
1359 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config); 1359 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1360 } 1360 }
1361 1361
1362 static int lm90_probe(struct i2c_client *client, 1362 static int lm90_probe(struct i2c_client *client,
1363 const struct i2c_device_id *id) 1363 const struct i2c_device_id *id)
1364 { 1364 {
1365 struct device *dev = &client->dev; 1365 struct device *dev = &client->dev;
1366 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent); 1366 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1367 struct lm90_data *data; 1367 struct lm90_data *data;
1368 int err; 1368 int err;
1369 1369
1370 data = kzalloc(sizeof(struct lm90_data), GFP_KERNEL); 1370 data = kzalloc(sizeof(struct lm90_data), GFP_KERNEL);
1371 if (!data) { 1371 if (!data) {
1372 err = -ENOMEM; 1372 err = -ENOMEM;
1373 goto exit; 1373 goto exit;
1374 } 1374 }
1375 i2c_set_clientdata(client, data); 1375 i2c_set_clientdata(client, data);
1376 mutex_init(&data->update_lock); 1376 mutex_init(&data->update_lock);
1377 1377
1378 /* Set the device type */ 1378 /* Set the device type */
1379 data->kind = id->driver_data; 1379 data->kind = id->driver_data;
1380 if (data->kind == adm1032) { 1380 if (data->kind == adm1032) {
1381 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) 1381 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1382 client->flags &= ~I2C_CLIENT_PEC; 1382 client->flags &= ~I2C_CLIENT_PEC;
1383 } 1383 }
1384 1384
1385 /* Different devices have different alarm bits triggering the 1385 /* Different devices have different alarm bits triggering the
1386 * ALERT# output */ 1386 * ALERT# output */
1387 data->alert_alarms = lm90_params[data->kind].alert_alarms; 1387 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1388 1388
1389 /* Set chip capabilities */ 1389 /* Set chip capabilities */
1390 data->flags = lm90_params[data->kind].flags; 1390 data->flags = lm90_params[data->kind].flags;
1391 data->reg_local_ext = lm90_params[data->kind].reg_local_ext; 1391 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1392 1392
1393 /* Set maximum conversion rate */ 1393 /* Set maximum conversion rate */
1394 data->max_convrate = lm90_params[data->kind].max_convrate; 1394 data->max_convrate = lm90_params[data->kind].max_convrate;
1395 1395
1396 /* Initialize the LM90 chip */ 1396 /* Initialize the LM90 chip */
1397 lm90_init_client(client); 1397 lm90_init_client(client);
1398 1398
1399 /* Register sysfs hooks */ 1399 /* Register sysfs hooks */
1400 err = sysfs_create_group(&dev->kobj, &lm90_group); 1400 err = sysfs_create_group(&dev->kobj, &lm90_group);
1401 if (err) 1401 if (err)
1402 goto exit_free; 1402 goto exit_free;
1403 if (client->flags & I2C_CLIENT_PEC) { 1403 if (client->flags & I2C_CLIENT_PEC) {
1404 err = device_create_file(dev, &dev_attr_pec); 1404 err = device_create_file(dev, &dev_attr_pec);
1405 if (err) 1405 if (err)
1406 goto exit_remove_files; 1406 goto exit_remove_files;
1407 } 1407 }
1408 if (data->flags & LM90_HAVE_OFFSET) { 1408 if (data->flags & LM90_HAVE_OFFSET) {
1409 err = device_create_file(dev, 1409 err = device_create_file(dev,
1410 &sensor_dev_attr_temp2_offset.dev_attr); 1410 &sensor_dev_attr_temp2_offset.dev_attr);
1411 if (err) 1411 if (err)
1412 goto exit_remove_files; 1412 goto exit_remove_files;
1413 } 1413 }
1414 if (data->flags & LM90_HAVE_EMERGENCY) { 1414 if (data->flags & LM90_HAVE_EMERGENCY) {
1415 err = sysfs_create_group(&dev->kobj, &lm90_emergency_group); 1415 err = sysfs_create_group(&dev->kobj, &lm90_emergency_group);
1416 if (err) 1416 if (err)
1417 goto exit_remove_files; 1417 goto exit_remove_files;
1418 } 1418 }
1419 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { 1419 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1420 err = sysfs_create_group(&dev->kobj, 1420 err = sysfs_create_group(&dev->kobj,
1421 &lm90_emergency_alarm_group); 1421 &lm90_emergency_alarm_group);
1422 if (err) 1422 if (err)
1423 goto exit_remove_files; 1423 goto exit_remove_files;
1424 } 1424 }
1425 if (data->flags & LM90_HAVE_TEMP3) { 1425 if (data->flags & LM90_HAVE_TEMP3) {
1426 err = sysfs_create_group(&dev->kobj, &lm90_temp3_group); 1426 err = sysfs_create_group(&dev->kobj, &lm90_temp3_group);
1427 if (err) 1427 if (err)
1428 goto exit_remove_files; 1428 goto exit_remove_files;
1429 } 1429 }
1430 1430
1431 data->hwmon_dev = hwmon_device_register(dev); 1431 data->hwmon_dev = hwmon_device_register(dev);
1432 if (IS_ERR(data->hwmon_dev)) { 1432 if (IS_ERR(data->hwmon_dev)) {
1433 err = PTR_ERR(data->hwmon_dev); 1433 err = PTR_ERR(data->hwmon_dev);
1434 goto exit_remove_files; 1434 goto exit_remove_files;
1435 } 1435 }
1436 1436
1437 return 0; 1437 return 0;
1438 1438
1439 exit_remove_files: 1439 exit_remove_files:
1440 lm90_remove_files(client, data); 1440 lm90_remove_files(client, data);
1441 exit_free: 1441 exit_free:
1442 kfree(data); 1442 kfree(data);
1443 exit: 1443 exit:
1444 return err; 1444 return err;
1445 } 1445 }
1446 1446
1447 static int lm90_remove(struct i2c_client *client) 1447 static int lm90_remove(struct i2c_client *client)
1448 { 1448 {
1449 struct lm90_data *data = i2c_get_clientdata(client); 1449 struct lm90_data *data = i2c_get_clientdata(client);
1450 1450
1451 hwmon_device_unregister(data->hwmon_dev); 1451 hwmon_device_unregister(data->hwmon_dev);
1452 lm90_remove_files(client, data); 1452 lm90_remove_files(client, data);
1453 1453
1454 /* Restore initial configuration */ 1454 /* Restore initial configuration */
1455 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, 1455 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1456 data->convrate_orig); 1456 data->convrate_orig);
1457 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 1457 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1458 data->config_orig); 1458 data->config_orig);
1459 1459
1460 kfree(data); 1460 kfree(data);
1461 return 0; 1461 return 0;
1462 } 1462 }
1463 1463
1464 static void lm90_alert(struct i2c_client *client, unsigned int flag) 1464 static void lm90_alert(struct i2c_client *client, unsigned int flag)
1465 { 1465 {
1466 struct lm90_data *data = i2c_get_clientdata(client); 1466 struct lm90_data *data = i2c_get_clientdata(client);
1467 u8 config, alarms, alarms2 = 0; 1467 u8 config, alarms, alarms2 = 0;
1468 1468
1469 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms); 1469 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
1470 1470
1471 if (data->kind == max6696) 1471 if (data->kind == max6696)
1472 lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2); 1472 lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2);
1473 1473
1474 if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) { 1474 if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) {
1475 dev_info(&client->dev, "Everything OK\n"); 1475 dev_info(&client->dev, "Everything OK\n");
1476 } else { 1476 } else {
1477 if (alarms & 0x61) 1477 if (alarms & 0x61)
1478 dev_warn(&client->dev, 1478 dev_warn(&client->dev,
1479 "temp%d out of range, please check!\n", 1); 1479 "temp%d out of range, please check!\n", 1);
1480 if (alarms & 0x1a) 1480 if (alarms & 0x1a)
1481 dev_warn(&client->dev, 1481 dev_warn(&client->dev,
1482 "temp%d out of range, please check!\n", 2); 1482 "temp%d out of range, please check!\n", 2);
1483 if (alarms & 0x04) 1483 if (alarms & 0x04)
1484 dev_warn(&client->dev, 1484 dev_warn(&client->dev,
1485 "temp%d diode open, please check!\n", 2); 1485 "temp%d diode open, please check!\n", 2);
1486 1486
1487 if (alarms2 & 0x18) 1487 if (alarms2 & 0x18)
1488 dev_warn(&client->dev, 1488 dev_warn(&client->dev,
1489 "temp%d out of range, please check!\n", 3); 1489 "temp%d out of range, please check!\n", 3);
1490 1490
1491 /* Disable ALERT# output, because these chips don't implement 1491 /* Disable ALERT# output, because these chips don't implement
1492 SMBus alert correctly; they should only hold the alert line 1492 SMBus alert correctly; they should only hold the alert line
1493 low briefly. */ 1493 low briefly. */
1494 if ((data->flags & LM90_HAVE_BROKEN_ALERT) 1494 if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1495 && (alarms & data->alert_alarms)) { 1495 && (alarms & data->alert_alarms)) {
1496 dev_dbg(&client->dev, "Disabling ALERT#\n"); 1496 dev_dbg(&client->dev, "Disabling ALERT#\n");
1497 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); 1497 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1498 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, 1498 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1499 config | 0x80); 1499 config | 0x80);
1500 } 1500 }
1501 } 1501 }
1502 } 1502 }
1503 1503
1504 static struct i2c_driver lm90_driver = { 1504 static struct i2c_driver lm90_driver = {
1505 .class = I2C_CLASS_HWMON, 1505 .class = I2C_CLASS_HWMON,
1506 .driver = { 1506 .driver = {
1507 .name = "lm90", 1507 .name = "lm90",
1508 }, 1508 },
1509 .probe = lm90_probe, 1509 .probe = lm90_probe,
1510 .remove = lm90_remove, 1510 .remove = lm90_remove,
1511 .alert = lm90_alert, 1511 .alert = lm90_alert,
1512 .id_table = lm90_id, 1512 .id_table = lm90_id,
1513 .detect = lm90_detect, 1513 .detect = lm90_detect,
1514 .address_list = normal_i2c, 1514 .address_list = normal_i2c,
1515 }; 1515 };
1516 1516
1517 static int __init sensors_lm90_init(void) 1517 static int __init sensors_lm90_init(void)
1518 { 1518 {
1519 return i2c_add_driver(&lm90_driver); 1519 return i2c_add_driver(&lm90_driver);
1520 } 1520 }
1521 1521
1522 static void __exit sensors_lm90_exit(void) 1522 static void __exit sensors_lm90_exit(void)
1523 { 1523 {
1524 i2c_del_driver(&lm90_driver); 1524 i2c_del_driver(&lm90_driver);
1525 } 1525 }
1526 1526
1527 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>"); 1527 MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
1528 MODULE_DESCRIPTION("LM90/ADM1032 driver"); 1528 MODULE_DESCRIPTION("LM90/ADM1032 driver");
1529 MODULE_LICENSE("GPL"); 1529 MODULE_LICENSE("GPL");
1530 1530
1531 module_init(sensors_lm90_init); 1531 module_init(sensors_lm90_init);
1532 module_exit(sensors_lm90_exit); 1532 module_exit(sensors_lm90_exit);
1533 1533