Commit 7924cd5e0b3acaeafd0d7628d9e9fb8488b8fb13

Authored by Daniel Borkmann
Committed by David S. Miller
1 parent 3f356385e8

filter: doc: improve BPF documentation

This patch significantly updates the BPF documentation and describes
its internal architecture, Linux extensions, and handling of the
kernel's BPF and JIT engine, plus documents how development can be
facilitated with the help of bpf_dbg, bpf_asm, bpf_jit_disasm.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>

Showing 1 changed file with 561 additions and 47 deletions Side-by-side Diff

Documentation/networking/filter.txt
1   -filter.txt: Linux Socket Filtering
2   -Written by: Jay Schulist <jschlst@samba.org>
  1 +Linux Socket Filtering aka Berkeley Packet Filter (BPF)
  2 +=======================================================
3 3  
4 4 Introduction
5   -============
  5 +------------
6 6  
7   - Linux Socket Filtering is derived from the Berkeley
8   -Packet Filter. There are some distinct differences between
9   -the BSD and Linux Kernel Filtering.
  7 +Linux Socket Filtering (LSF) is derived from the Berkeley Packet Filter.
  8 +Though there are some distinct differences between the BSD and Linux
  9 +Kernel filtering, but when we speak of BPF or LSF in Linux context, we
  10 +mean the very same mechanism of filtering in the Linux kernel.
10 11  
11   -Linux Socket Filtering (LSF) allows a user-space program to
12   -attach a filter onto any socket and allow or disallow certain
13   -types of data to come through the socket. LSF follows exactly
14   -the same filter code structure as the BSD Berkeley Packet Filter
15   -(BPF), so referring to the BSD bpf.4 manpage is very helpful in
16   -creating filters.
  12 +BPF allows a user-space program to attach a filter onto any socket and
  13 +allow or disallow certain types of data to come through the socket. LSF
  14 +follows exactly the same filter code structure as BSD's BPF, so referring
  15 +to the BSD bpf.4 manpage is very helpful in creating filters.
17 16  
18   -LSF is much simpler than BPF. One does not have to worry about
19   -devices or anything like that. You simply create your filter
20   -code, send it to the kernel via the SO_ATTACH_FILTER option and
21   -if your filter code passes the kernel check on it, you then
22   -immediately begin filtering data on that socket.
  17 +On Linux, BPF is much simpler than on BSD. One does not have to worry
  18 +about devices or anything like that. You simply create your filter code,
  19 +send it to the kernel via the SO_ATTACH_FILTER option and if your filter
  20 +code passes the kernel check on it, you then immediately begin filtering
  21 +data on that socket.
23 22  
24   -You can also detach filters from your socket via the
25   -SO_DETACH_FILTER option. This will probably not be used much
26   -since when you close a socket that has a filter on it the
27   -filter is automagically removed. The other less common case
28   -may be adding a different filter on the same socket where you had another
29   -filter that is still running: the kernel takes care of removing
30   -the old one and placing your new one in its place, assuming your
31   -filter has passed the checks, otherwise if it fails the old filter
32   -will remain on that socket.
  23 +You can also detach filters from your socket via the SO_DETACH_FILTER
  24 +option. This will probably not be used much since when you close a socket
  25 +that has a filter on it the filter is automagically removed. The other
  26 +less common case may be adding a different filter on the same socket where
  27 +you had another filter that is still running: the kernel takes care of
  28 +removing the old one and placing your new one in its place, assuming your
  29 +filter has passed the checks, otherwise if it fails the old filter will
  30 +remain on that socket.
33 31  
34   -SO_LOCK_FILTER option allows to lock the filter attached to a
35   -socket. Once set, a filter cannot be removed or changed. This allows
36   -one process to setup a socket, attach a filter, lock it then drop
37   -privileges and be assured that the filter will be kept until the
38   -socket is closed.
  32 +SO_LOCK_FILTER option allows to lock the filter attached to a socket. Once
  33 +set, a filter cannot be removed or changed. This allows one process to
  34 +setup a socket, attach a filter, lock it then drop privileges and be
  35 +assured that the filter will be kept until the socket is closed.
39 36  
40   -Examples
41   -========
  37 +The biggest user of this construct might be libpcap. Issuing a high-level
  38 +filter command like `tcpdump -i em1 port 22` passes through the libpcap
  39 +internal compiler that generates a structure that can eventually be loaded
  40 +via SO_ATTACH_FILTER to the kernel. `tcpdump -i em1 port 22 -ddd`
  41 +displays what is being placed into this structure.
42 42  
43   -Ioctls-
44   -setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_FILTER, &Filter, sizeof(Filter));
45   -setsockopt(sockfd, SOL_SOCKET, SO_DETACH_FILTER, &value, sizeof(value));
46   -setsockopt(sockfd, SOL_SOCKET, SO_LOCK_FILTER, &value, sizeof(value));
  43 +Although we were only speaking about sockets here, BPF in Linux is used
  44 +in many more places. There's xt_bpf for netfilter, cls_bpf in the kernel
  45 +qdisc layer, SECCOMP-BPF (SECure COMPuting [1]), and lots of other places
  46 +such as team driver, PTP code, etc where BPF is being used.
47 47  
48   -See the BSD bpf.4 manpage and the BSD Packet Filter paper written by
49   -Steven McCanne and Van Jacobson of Lawrence Berkeley Laboratory.
  48 + [1] Documentation/prctl/seccomp_filter.txt
  49 +
  50 +Original BPF paper:
  51 +
  52 +Steven McCanne and Van Jacobson. 1993. The BSD packet filter: a new
  53 +architecture for user-level packet capture. In Proceedings of the
  54 +USENIX Winter 1993 Conference Proceedings on USENIX Winter 1993
  55 +Conference Proceedings (USENIX'93). USENIX Association, Berkeley,
  56 +CA, USA, 2-2. [http://www.tcpdump.org/papers/bpf-usenix93.pdf]
  57 +
  58 +Structure
  59 +---------
  60 +
  61 +User space applications include <linux/filter.h> which contains the
  62 +following relevant structures:
  63 +
  64 +struct sock_filter { /* Filter block */
  65 + __u16 code; /* Actual filter code */
  66 + __u8 jt; /* Jump true */
  67 + __u8 jf; /* Jump false */
  68 + __u32 k; /* Generic multiuse field */
  69 +};
  70 +
  71 +Such a structure is assembled as an array of 4-tuples, that contains
  72 +a code, jt, jf and k value. jt and jf are jump offsets and k a generic
  73 +value to be used for a provided code.
  74 +
  75 +struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
  76 + unsigned short len; /* Number of filter blocks */
  77 + struct sock_filter __user *filter;
  78 +};
  79 +
  80 +For socket filtering, a pointer to this structure (as shown in
  81 +follow-up example) is being passed to the kernel through setsockopt(2).
  82 +
  83 +Example
  84 +-------
  85 +
  86 +#include <sys/socket.h>
  87 +#include <sys/types.h>
  88 +#include <arpa/inet.h>
  89 +#include <linux/if_ether.h>
  90 +/* ... */
  91 +
  92 +/* From the example above: tcpdump -i em1 port 22 -dd */
  93 +struct sock_filter code[] = {
  94 + { 0x28, 0, 0, 0x0000000c },
  95 + { 0x15, 0, 8, 0x000086dd },
  96 + { 0x30, 0, 0, 0x00000014 },
  97 + { 0x15, 2, 0, 0x00000084 },
  98 + { 0x15, 1, 0, 0x00000006 },
  99 + { 0x15, 0, 17, 0x00000011 },
  100 + { 0x28, 0, 0, 0x00000036 },
  101 + { 0x15, 14, 0, 0x00000016 },
  102 + { 0x28, 0, 0, 0x00000038 },
  103 + { 0x15, 12, 13, 0x00000016 },
  104 + { 0x15, 0, 12, 0x00000800 },
  105 + { 0x30, 0, 0, 0x00000017 },
  106 + { 0x15, 2, 0, 0x00000084 },
  107 + { 0x15, 1, 0, 0x00000006 },
  108 + { 0x15, 0, 8, 0x00000011 },
  109 + { 0x28, 0, 0, 0x00000014 },
  110 + { 0x45, 6, 0, 0x00001fff },
  111 + { 0xb1, 0, 0, 0x0000000e },
  112 + { 0x48, 0, 0, 0x0000000e },
  113 + { 0x15, 2, 0, 0x00000016 },
  114 + { 0x48, 0, 0, 0x00000010 },
  115 + { 0x15, 0, 1, 0x00000016 },
  116 + { 0x06, 0, 0, 0x0000ffff },
  117 + { 0x06, 0, 0, 0x00000000 },
  118 +};
  119 +
  120 +struct sock_fprog bpf = {
  121 + .len = ARRAY_SIZE(code),
  122 + .filter = code,
  123 +};
  124 +
  125 +sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
  126 +if (sock < 0)
  127 + /* ... bail out ... */
  128 +
  129 +ret = setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
  130 +if (ret < 0)
  131 + /* ... bail out ... */
  132 +
  133 +/* ... */
  134 +close(sock);
  135 +
  136 +The above example code attaches a socket filter for a PF_PACKET socket
  137 +in order to let all IPv4/IPv6 packets with port 22 pass. The rest will
  138 +be dropped for this socket.
  139 +
  140 +The setsockopt(2) call to SO_DETACH_FILTER doesn't need any arguments
  141 +and SO_LOCK_FILTER for preventing the filter to be detached, takes an
  142 +integer value with 0 or 1.
  143 +
  144 +Note that socket filters are not restricted to PF_PACKET sockets only,
  145 +but can also be used on other socket families.
  146 +
  147 +Summary of system calls:
  148 +
  149 + * setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_FILTER, &val, sizeof(val));
  150 + * setsockopt(sockfd, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val));
  151 + * setsockopt(sockfd, SOL_SOCKET, SO_LOCK_FILTER, &val, sizeof(val));
  152 +
  153 +Normally, most use cases for socket filtering on packet sockets will be
  154 +covered by libpcap in high-level syntax, so as an application developer
  155 +you should stick to that. libpcap wraps its own layer around all that.
  156 +
  157 +Unless i) using/linking to libpcap is not an option, ii) the required BPF
  158 +filters use Linux extensions that are not supported by libpcap's compiler,
  159 +iii) a filter might be more complex and not cleanly implementable with
  160 +libpcap's compiler, or iv) particular filter codes should be optimized
  161 +differently than libpcap's internal compiler does; then in such cases
  162 +writing such a filter "by hand" can be of an alternative. For example,
  163 +xt_bpf and cls_bpf users might have requirements that could result in
  164 +more complex filter code, or one that cannot be expressed with libpcap
  165 +(e.g. different return codes for various code paths). Moreover, BPF JIT
  166 +implementors may wish to manually write test cases and thus need low-level
  167 +access to BPF code as well.
  168 +
  169 +BPF engine and instruction set
  170 +------------------------------
  171 +
  172 +Under tools/net/ there's a small helper tool called bpf_asm which can
  173 +be used to write low-level filters for example scenarios mentioned in the
  174 +previous section. Asm-like syntax mentioned here has been implemented in
  175 +bpf_asm and will be used for further explanations (instead of dealing with
  176 +less readable opcodes directly, principles are the same). The syntax is
  177 +closely modelled after Steven McCanne's and Van Jacobson's BPF paper.
  178 +
  179 +The BPF architecture consists of the following basic elements:
  180 +
  181 + Element Description
  182 +
  183 + A 32 bit wide accumulator
  184 + X 32 bit wide X register
  185 + M[] 16 x 32 bit wide misc registers aka "scratch memory
  186 + store", addressable from 0 to 15
  187 +
  188 +A program, that is translated by bpf_asm into "opcodes" is an array that
  189 +consists of the following elements (as already mentioned):
  190 +
  191 + op:16, jt:8, jf:8, k:32
  192 +
  193 +The element op is a 16 bit wide opcode that has a particular instruction
  194 +encoded. jt and jf are two 8 bit wide jump targets, one for condition
  195 +"jump if true", the other one "jump if false". Eventually, element k
  196 +contains a miscellaneous argument that can be interpreted in different
  197 +ways depending on the given instruction in op.
  198 +
  199 +The instruction set consists of load, store, branch, alu, miscellaneous
  200 +and return instructions that are also represented in bpf_asm syntax. This
  201 +table lists all bpf_asm instructions available resp. what their underlying
  202 +opcodes as defined in linux/filter.h stand for:
  203 +
  204 + Instruction Addressing mode Description
  205 +
  206 + ld 1, 2, 3, 4, 10 Load word into A
  207 + ldi 4 Load word into A
  208 + ldh 1, 2 Load half-word into A
  209 + ldb 1, 2 Load byte into A
  210 + ldx 3, 4, 5, 10 Load word into X
  211 + ldxi 4 Load word into X
  212 + ldxb 5 Load byte into X
  213 +
  214 + st 3 Store A into M[]
  215 + stx 3 Store X into M[]
  216 +
  217 + jmp 6 Jump to label
  218 + ja 6 Jump to label
  219 + jeq 7, 8 Jump on k == A
  220 + jneq 8 Jump on k != A
  221 + jne 8 Jump on k != A
  222 + jlt 8 Jump on k < A
  223 + jle 8 Jump on k <= A
  224 + jgt 7, 8 Jump on k > A
  225 + jge 7, 8 Jump on k >= A
  226 + jset 7, 8 Jump on k & A
  227 +
  228 + add 0, 4 A + <x>
  229 + sub 0, 4 A - <x>
  230 + mul 0, 4 A * <x>
  231 + div 0, 4 A / <x>
  232 + mod 0, 4 A % <x>
  233 + neg 0, 4 !A
  234 + and 0, 4 A & <x>
  235 + or 0, 4 A | <x>
  236 + xor 0, 4 A ^ <x>
  237 + lsh 0, 4 A << <x>
  238 + rsh 0, 4 A >> <x>
  239 +
  240 + tax Copy A into X
  241 + txa Copy X into A
  242 +
  243 + ret 4, 9 Return
  244 +
  245 +The next table shows addressing formats from the 2nd column:
  246 +
  247 + Addressing mode Syntax Description
  248 +
  249 + 0 x/%x Register X
  250 + 1 [k] BHW at byte offset k in the packet
  251 + 2 [x + k] BHW at the offset X + k in the packet
  252 + 3 M[k] Word at offset k in M[]
  253 + 4 #k Literal value stored in k
  254 + 5 4*([k]&0xf) Lower nibble * 4 at byte offset k in the packet
  255 + 6 L Jump label L
  256 + 7 #k,Lt,Lf Jump to Lt if true, otherwise jump to Lf
  257 + 8 #k,Lt Jump to Lt if predicate is true
  258 + 9 a/%a Accumulator A
  259 + 10 extension BPF extension
  260 +
  261 +The Linux kernel also has a couple of BPF extensions that are used along
  262 +with the class of load instructions by "overloading" the k argument with
  263 +a negative offset + a particular extension offset. The result of such BPF
  264 +extensions are loaded into A.
  265 +
  266 +Possible BPF extensions are shown in the following table:
  267 +
  268 + Extension Description
  269 +
  270 + len skb->len
  271 + proto skb->protocol
  272 + type skb->pkt_type
  273 + poff Payload start offset
  274 + ifidx skb->dev->ifindex
  275 + nla Netlink attribute of type X with offset A
  276 + nlan Nested Netlink attribute of type X with offset A
  277 + mark skb->mark
  278 + queue skb->queue_mapping
  279 + hatype skb->dev->type
  280 + rxhash skb->rxhash
  281 + cpu raw_smp_processor_id()
  282 + vlan_tci vlan_tx_tag_get(skb)
  283 + vlan_pr vlan_tx_tag_present(skb)
  284 +
  285 +These extensions can also be prefixed with '#'.
  286 +Examples for low-level BPF:
  287 +
  288 +** ARP packets:
  289 +
  290 + ldh [12]
  291 + jne #0x806, drop
  292 + ret #-1
  293 + drop: ret #0
  294 +
  295 +** IPv4 TCP packets:
  296 +
  297 + ldh [12]
  298 + jne #0x800, drop
  299 + ldb [23]
  300 + jneq #6, drop
  301 + ret #-1
  302 + drop: ret #0
  303 +
  304 +** (Accelerated) VLAN w/ id 10:
  305 +
  306 + ld vlan_tci
  307 + jneq #10, drop
  308 + ret #-1
  309 + drop: ret #0
  310 +
  311 +** SECCOMP filter example:
  312 +
  313 + ld [4] /* offsetof(struct seccomp_data, arch) */
  314 + jne #0xc000003e, bad /* AUDIT_ARCH_X86_64 */
  315 + ld [0] /* offsetof(struct seccomp_data, nr) */
  316 + jeq #15, good /* __NR_rt_sigreturn */
  317 + jeq #231, good /* __NR_exit_group */
  318 + jeq #60, good /* __NR_exit */
  319 + jeq #0, good /* __NR_read */
  320 + jeq #1, good /* __NR_write */
  321 + jeq #5, good /* __NR_fstat */
  322 + jeq #9, good /* __NR_mmap */
  323 + jeq #14, good /* __NR_rt_sigprocmask */
  324 + jeq #13, good /* __NR_rt_sigaction */
  325 + jeq #35, good /* __NR_nanosleep */
  326 + bad: ret #0 /* SECCOMP_RET_KILL */
  327 + good: ret #0x7fff0000 /* SECCOMP_RET_ALLOW */
  328 +
  329 +The above example code can be placed into a file (here called "foo"), and
  330 +then be passed to the bpf_asm tool for generating opcodes, output that xt_bpf
  331 +and cls_bpf understands and can directly be loaded with. Example with above
  332 +ARP code:
  333 +
  334 +$ ./bpf_asm foo
  335 +4,40 0 0 12,21 0 1 2054,6 0 0 4294967295,6 0 0 0,
  336 +
  337 +In copy and paste C-like output:
  338 +
  339 +$ ./bpf_asm -c foo
  340 +{ 0x28, 0, 0, 0x0000000c },
  341 +{ 0x15, 0, 1, 0x00000806 },
  342 +{ 0x06, 0, 0, 0xffffffff },
  343 +{ 0x06, 0, 0, 0000000000 },
  344 +
  345 +In particular, as usage with xt_bpf or cls_bpf can result in more complex BPF
  346 +filters that might not be obvious at first, it's good to test filters before
  347 +attaching to a live system. For that purpose, there's a small tool called
  348 +bpf_dbg under tools/net/ in the kernel source directory. This debugger allows
  349 +for testing BPF filters against given pcap files, single stepping through the
  350 +BPF code on the pcap's packets and to do BPF machine register dumps.
  351 +
  352 +Starting bpf_dbg is trivial and just requires issuing:
  353 +
  354 +# ./bpf_dbg
  355 +
  356 +In case input and output do not equal stdin/stdout, bpf_dbg takes an
  357 +alternative stdin source as a first argument, and an alternative stdout
  358 +sink as a second one, e.g. `./bpf_dbg test_in.txt test_out.txt`.
  359 +
  360 +Other than that, a particular libreadline configuration can be set via
  361 +file "~/.bpf_dbg_init" and the command history is stored in the file
  362 +"~/.bpf_dbg_history".
  363 +
  364 +Interaction in bpf_dbg happens through a shell that also has auto-completion
  365 +support (follow-up example commands starting with '>' denote bpf_dbg shell).
  366 +The usual workflow would be to ...
  367 +
  368 +> load bpf 6,40 0 0 12,21 0 3 2048,48 0 0 23,21 0 1 1,6 0 0 65535,6 0 0 0
  369 + Loads a BPF filter from standard output of bpf_asm, or transformed via
  370 + e.g. `tcpdump -iem1 -ddd port 22 | tr '\n' ','`. Note that for JIT
  371 + debugging (next section), this command creates a temporary socket and
  372 + loads the BPF code into the kernel. Thus, this will also be useful for
  373 + JIT developers.
  374 +
  375 +> load pcap foo.pcap
  376 + Loads standard tcpdump pcap file.
  377 +
  378 +> run [<n>]
  379 +bpf passes:1 fails:9
  380 + Runs through all packets from a pcap to account how many passes and fails
  381 + the filter will generate. A limit of packets to traverse can be given.
  382 +
  383 +> disassemble
  384 +l0: ldh [12]
  385 +l1: jeq #0x800, l2, l5
  386 +l2: ldb [23]
  387 +l3: jeq #0x1, l4, l5
  388 +l4: ret #0xffff
  389 +l5: ret #0
  390 + Prints out BPF code disassembly.
  391 +
  392 +> dump
  393 +/* { op, jt, jf, k }, */
  394 +{ 0x28, 0, 0, 0x0000000c },
  395 +{ 0x15, 0, 3, 0x00000800 },
  396 +{ 0x30, 0, 0, 0x00000017 },
  397 +{ 0x15, 0, 1, 0x00000001 },
  398 +{ 0x06, 0, 0, 0x0000ffff },
  399 +{ 0x06, 0, 0, 0000000000 },
  400 + Prints out C-style BPF code dump.
  401 +
  402 +> breakpoint 0
  403 +breakpoint at: l0: ldh [12]
  404 +> breakpoint 1
  405 +breakpoint at: l1: jeq #0x800, l2, l5
  406 + ...
  407 + Sets breakpoints at particular BPF instructions. Issuing a `run` command
  408 + will walk through the pcap file continuing from the current packet and
  409 + break when a breakpoint is being hit (another `run` will continue from
  410 + the currently active breakpoint executing next instructions):
  411 +
  412 + > run
  413 + -- register dump --
  414 + pc: [0] <-- program counter
  415 + code: [40] jt[0] jf[0] k[12] <-- plain BPF code of current instruction
  416 + curr: l0: ldh [12] <-- disassembly of current instruction
  417 + A: [00000000][0] <-- content of A (hex, decimal)
  418 + X: [00000000][0] <-- content of X (hex, decimal)
  419 + M[0,15]: [00000000][0] <-- folded content of M (hex, decimal)
  420 + -- packet dump -- <-- Current packet from pcap (hex)
  421 + len: 42
  422 + 0: 00 19 cb 55 55 a4 00 14 a4 43 78 69 08 06 00 01
  423 + 16: 08 00 06 04 00 01 00 14 a4 43 78 69 0a 3b 01 26
  424 + 32: 00 00 00 00 00 00 0a 3b 01 01
  425 + (breakpoint)
  426 + >
  427 +
  428 +> breakpoint
  429 +breakpoints: 0 1
  430 + Prints currently set breakpoints.
  431 +
  432 +> step [-<n>, +<n>]
  433 + Performs single stepping through the BPF program from the current pc
  434 + offset. Thus, on each step invocation, above register dump is issued.
  435 + This can go forwards and backwards in time, a plain `step` will break
  436 + on the next BPF instruction, thus +1. (No `run` needs to be issued here.)
  437 +
  438 +> select <n>
  439 + Selects a given packet from the pcap file to continue from. Thus, on
  440 + the next `run` or `step`, the BPF program is being evaluated against
  441 + the user pre-selected packet. Numbering starts just as in Wireshark
  442 + with index 1.
  443 +
  444 +> quit
  445 +#
  446 + Exits bpf_dbg.
  447 +
  448 +JIT compiler
  449 +------------
  450 +
  451 +The Linux kernel has a built-in BPF JIT compiler for x86_64, SPARC, PowerPC,
  452 +ARM and s390 and can be enabled through CONFIG_BPF_JIT. The JIT compiler is
  453 +transparently invoked for each attached filter from user space or for internal
  454 +kernel users if it has been previously enabled by root:
  455 +
  456 + echo 1 > /proc/sys/net/core/bpf_jit_enable
  457 +
  458 +For JIT developers, doing audits etc, each compile run can output the generated
  459 +opcode image into the kernel log via:
  460 +
  461 + echo 2 > /proc/sys/net/core/bpf_jit_enable
  462 +
  463 +Example output from dmesg:
  464 +
  465 +[ 3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f
  466 +[ 3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
  467 +[ 3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
  468 +[ 3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
  469 +[ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
  470 +[ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
  471 +
  472 +In the kernel source tree under tools/net/, there's bpf_jit_disasm for
  473 +generating disassembly out of the kernel log's hexdump:
  474 +
  475 +# ./bpf_jit_disasm
  476 +70 bytes emitted from JIT compiler (pass:3, flen:6)
  477 +ffffffffa0069c8f + <x>:
  478 + 0: push %rbp
  479 + 1: mov %rsp,%rbp
  480 + 4: sub $0x60,%rsp
  481 + 8: mov %rbx,-0x8(%rbp)
  482 + c: mov 0x68(%rdi),%r9d
  483 + 10: sub 0x6c(%rdi),%r9d
  484 + 14: mov 0xd8(%rdi),%r8
  485 + 1b: mov $0xc,%esi
  486 + 20: callq 0xffffffffe0ff9442
  487 + 25: cmp $0x800,%eax
  488 + 2a: jne 0x0000000000000042
  489 + 2c: mov $0x17,%esi
  490 + 31: callq 0xffffffffe0ff945e
  491 + 36: cmp $0x1,%eax
  492 + 39: jne 0x0000000000000042
  493 + 3b: mov $0xffff,%eax
  494 + 40: jmp 0x0000000000000044
  495 + 42: xor %eax,%eax
  496 + 44: leaveq
  497 + 45: retq
  498 +
  499 +Issuing option `-o` will "annotate" opcodes to resulting assembler
  500 +instructions, which can be very useful for JIT developers:
  501 +
  502 +# ./bpf_jit_disasm -o
  503 +70 bytes emitted from JIT compiler (pass:3, flen:6)
  504 +ffffffffa0069c8f + <x>:
  505 + 0: push %rbp
  506 + 55
  507 + 1: mov %rsp,%rbp
  508 + 48 89 e5
  509 + 4: sub $0x60,%rsp
  510 + 48 83 ec 60
  511 + 8: mov %rbx,-0x8(%rbp)
  512 + 48 89 5d f8
  513 + c: mov 0x68(%rdi),%r9d
  514 + 44 8b 4f 68
  515 + 10: sub 0x6c(%rdi),%r9d
  516 + 44 2b 4f 6c
  517 + 14: mov 0xd8(%rdi),%r8
  518 + 4c 8b 87 d8 00 00 00
  519 + 1b: mov $0xc,%esi
  520 + be 0c 00 00 00
  521 + 20: callq 0xffffffffe0ff9442
  522 + e8 1d 94 ff e0
  523 + 25: cmp $0x800,%eax
  524 + 3d 00 08 00 00
  525 + 2a: jne 0x0000000000000042
  526 + 75 16
  527 + 2c: mov $0x17,%esi
  528 + be 17 00 00 00
  529 + 31: callq 0xffffffffe0ff945e
  530 + e8 28 94 ff e0
  531 + 36: cmp $0x1,%eax
  532 + 83 f8 01
  533 + 39: jne 0x0000000000000042
  534 + 75 07
  535 + 3b: mov $0xffff,%eax
  536 + b8 ff ff 00 00
  537 + 40: jmp 0x0000000000000044
  538 + eb 02
  539 + 42: xor %eax,%eax
  540 + 31 c0
  541 + 44: leaveq
  542 + c9
  543 + 45: retq
  544 + c3
  545 +
  546 +For BPF JIT developers, bpf_jit_disasm, bpf_asm and bpf_dbg provides a useful
  547 +toolchain for developing and testing the kernel's JIT compiler.
  548 +
  549 +Misc
  550 +----
  551 +
  552 +Also trinity, the Linux syscall fuzzer, has built-in support for BPF and
  553 +SECCOMP-BPF kernel fuzzing.
  554 +
  555 +Written by
  556 +----------
  557 +
  558 +The document was written in the hope that it is found useful and in order
  559 +to give potential BPF hackers or security auditors a better overview of
  560 +the underlying architecture.
  561 +
  562 +Jay Schulist <jschlst@samba.org>
  563 +Daniel Borkmann <dborkman@redhat.com>