Commit 84d4faaba27991bde9fa5ec0716d14ad279ba8ab

Authored by Seth Jennings
Committed by Greg Kroah-Hartman
1 parent aafefe932a

staging: zsmalloc: add ZS_MAX_PAGES_PER_ZSPAGE

This patch moves where max_zspage_order is declared and
changes its meaning.  "Order" typically implies 2^order
of something; however, it is currently being used as the
"maximum number of single pages in a zspage".  To add clarity,
ZS_MAX_ZSPAGE_ORDER is now used to calculate ZS_MAX_PAGES_PER_ZSPAGE,
which is 2^ZS_MAX_ZSPAGE_ORDER and is the upper bound on the number
of pages in a zspage.

Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Acked-by: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

Showing 2 changed files with 8 additions and 7 deletions Side-by-side Diff

drivers/staging/zsmalloc/zsmalloc-main.c
... ... @@ -186,7 +186,7 @@
186 186 /* zspage order which gives maximum used size per KB */
187 187 int max_usedpc_order = 1;
188 188  
189   - for (i = 1; i <= max_zspage_order; i++) {
  189 + for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
190 190 int zspage_size;
191 191 int waste, usedpc;
192 192  
drivers/staging/zsmalloc/zsmalloc_int.h
... ... @@ -26,6 +26,13 @@
26 26 #define ZS_ALIGN 8
27 27  
28 28 /*
  29 + * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  30 + * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  31 + */
  32 +#define ZS_MAX_ZSPAGE_ORDER 2
  33 +#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  34 +
  35 +/*
29 36 * Object location (<PFN>, <obj_idx>) is encoded as
30 37 * as single (void *) handle value.
31 38 *
... ... @@ -57,12 +64,6 @@
57 64 #define ZS_SIZE_CLASS_DELTA 16
58 65 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
59 66 ZS_SIZE_CLASS_DELTA + 1)
60   -
61   -/*
62   - * A single 'zspage' is composed of N discontiguous 0-order (single) pages.
63   - * This defines upper limit on N.
64   - */
65   -static const int max_zspage_order = 4;
66 67  
67 68 /*
68 69 * We do not maintain any list for completely empty or full pages