19 Jan, 2006

1 commit

  • Some bits for zone reclaim exists in 2.6.15 but they are not usable. This
    patch fixes them up, removes unused code and makes zone reclaim usable.

    Zone reclaim allows the reclaiming of pages from a zone if the number of
    free pages falls below the watermarks even if other zones still have enough
    pages available. Zone reclaim is of particular importance for NUMA
    machines. It can be more beneficial to reclaim a page than taking the
    performance penalties that come with allocating a page on a remote zone.

    Zone reclaim is enabled if the maximum distance to another node is higher
    than RECLAIM_DISTANCE, which may be defined by an arch. By default
    RECLAIM_DISTANCE is 20. 20 is the distance to another node in the same
    component (enclosure or motherboard) on IA64. The meaning of the NUMA
    distance information seems to vary by arch.

    If zone reclaim is not successful then no further reclaim attempts will
    occur for a certain time period (ZONE_RECLAIM_INTERVAL).

    This patch was discussed before. See

    http://marc.theaimsgroup.com/?l=linux-kernel&m=113519961504207&w=2
    http://marc.theaimsgroup.com/?l=linux-kernel&m=113408418232531&w=2
    http://marc.theaimsgroup.com/?l=linux-kernel&m=113389027420032&w=2
    http://marc.theaimsgroup.com/?l=linux-kernel&m=113380938612205&w=2

    Signed-off-by: Christoph Lameter
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Christoph Lameter
     

13 Jan, 2006

1 commit

  • )

    From: Ingo Molnar

    This is the latest version of the scheduler cache-hot-auto-tune patch.

    The first problem was that detection time scaled with O(N^2), which is
    unacceptable on larger SMP and NUMA systems. To solve this:

    - I've added a 'domain distance' function, which is used to cache
    measurement results. Each distance is only measured once. This means
    that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
    distances 0 and 1, and on SMP distance 0 is measured. The code walks
    the domain tree to determine the distance, so it automatically follows
    whatever hierarchy an architecture sets up. This cuts down on the boot
    time significantly and removes the O(N^2) limit. The only assumption
    is that migration costs can be expressed as a function of domain
    distance - this covers the overwhelming majority of existing systems,
    and is a good guess even for more assymetric systems.

    [ People hacking systems that have assymetries that break this
    assumption (e.g. different CPU speeds) should experiment a bit with
    the cpu_distance() function. Adding a ->migration_distance factor to
    the domain structure would be one possible solution - but lets first
    see the problem systems, if they exist at all. Lets not overdesign. ]

    Another problem was that only a single cache-size was used for measuring
    the cost of migration, and most architectures didnt set that variable
    up. Furthermore, a single cache-size does not fit NUMA hierarchies with
    L3 caches and does not fit HT setups, where different CPUs will often
    have different 'effective cache sizes'. To solve this problem:

    - Instead of relying on a single cache-size provided by the platform and
    sticking to it, the code now auto-detects the 'effective migration
    cost' between two measured CPUs, via iterating through a wide range of
    cachesizes. The code searches for the maximum migration cost, which
    occurs when the working set of the test-workload falls just below the
    'effective cache size'. I.e. real-life optimized search is done for
    the maximum migration cost, between two real CPUs.

    This, amongst other things, has the positive effect hat if e.g. two
    CPUs share a L2/L3 cache, a different (and accurate) migration cost
    will be found than between two CPUs on the same system that dont share
    any caches.

    (The reliable measurement of migration costs is tricky - see the source
    for details.)

    Furthermore i've added various boot-time options to override/tune
    migration behavior.

    Firstly, there's a blanket override for autodetection:

    migration_cost=1000,2000,3000

    will override the depth 0/1/2 values with 1msec/2msec/3msec values.

    Secondly, there's a global factor that can be used to increase (or
    decrease) the autodetected values:

    migration_factor=120

    will increase the autodetected values by 20%. This option is useful to
    tune things in a workload-dependent way - e.g. if a workload is
    cache-insensitive then CPU utilization can be maximized by specifying
    migration_factor=0.

    I've tested the autodetection code quite extensively on x86, on 3
    P3/Xeon/2MB, and the autodetected values look pretty good:

    Dual Celeron (128K L2 cache):

    ---------------------
    migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
    ---------------------
    [00] [01]
    [00]: - 1.7(1)
    [01]: 1.7(1) -
    ---------------------
    cacheflush times [2]: 0.0 (0) 1.7 (1784008)
    ---------------------

    Here the slow memory subsystem dominates system performance, and even
    though caches are small, the migration cost is 1.7 msecs.

    Dual HT P4 (512K L2 cache):

    ---------------------
    migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
    ---------------------
    [00] [01] [02] [03]
    [00]: - 0.4(1) 0.0(0) 0.4(1)
    [01]: 0.4(1) - 0.4(1) 0.0(0)
    [02]: 0.0(0) 0.4(1) - 0.4(1)
    [03]: 0.4(1) 0.0(0) 0.4(1) -
    ---------------------
    cacheflush times [2]: 0.0 (33900) 0.4 (448514)
    ---------------------

    Here it can be seen that there is no migration cost between two HT
    siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
    system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.

    8-way P3/Xeon [2MB L2 cache]:

    ---------------------
    migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
    ---------------------
    [00] [01] [02] [03] [04] [05] [06] [07]
    [00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
    [01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
    [02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
    [03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1)
    [04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1)
    [05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1)
    [06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1)
    [07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) -
    ---------------------
    cacheflush times [2]: 0.0 (0) 19.2 (19281756)
    ---------------------

    This one has huge caches and a relatively slow memory subsystem - so the
    migration cost is 19 msecs.

    Signed-off-by: Ingo Molnar
    Signed-off-by: Ashok Raj
    Signed-off-by: Ken Chen
    Cc:
    Signed-off-by: John Hawkes
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    akpm@osdl.org
     

08 Sep, 2005

1 commit


26 Jun, 2005

4 commits

  • Do some basic initial tuning.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     
  • Reimplement the balance on exec balancing to be sched-domains aware. Use this
    to also do balance on fork balancing. Make x86_64 do balance on fork over the
    NUMA domain.

    The problem that the non sched domains aware blancing became apparent on dual
    core, multi socket opterons. What we want is for the new tasks to be sent to
    a different socket, but more often than not, we would first load up our
    sibling core, or fill two cores of a single remote socket before selecting a
    new one.

    This gives large improvements to STREAM on such systems.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     
  • Remove the very aggressive idle stuff that has recently gone into 2.6 - it is
    going against the direction we are trying to go. Hopefully we can regain
    performance through other methods.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     
  • Do CPU load averaging over a number of different intervals. Allow each
    interval to be chosen by sending a parameter to source_load and target_load.
    0 is instantaneous, idx > 0 returns a decaying average with the most recent
    sample weighted at 2^(idx-1). To a maximum of 3 (could be easily increased).

    So generally a higher number will result in more conservative balancing.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     

17 Apr, 2005

1 commit

  • Initial git repository build. I'm not bothering with the full history,
    even though we have it. We can create a separate "historical" git
    archive of that later if we want to, and in the meantime it's about
    3.2GB when imported into git - space that would just make the early
    git days unnecessarily complicated, when we don't have a lot of good
    infrastructure for it.

    Let it rip!

    Linus Torvalds