pmac_nvram.c 10.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/*
 *  arch/ppc/platforms/pmac_nvram.c
 *
 *  Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
 *  Todo: - add support for the OF persistent properties
 */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/bootmem.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <asm/sections.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/nvram.h>

#define DEBUG

#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif

#define NVRAM_SIZE		0x2000	/* 8kB of non-volatile RAM */

#define CORE99_SIGNATURE	0x5a
#define CORE99_ADLER_START	0x14

/* On Core99, nvram is either a sharp, a micron or an AMD flash */
#define SM_FLASH_STATUS_DONE	0x80
#define SM_FLASH_STATUS_ERR	0x38

#define SM_FLASH_CMD_ERASE_CONFIRM	0xd0
#define SM_FLASH_CMD_ERASE_SETUP	0x20
#define SM_FLASH_CMD_RESET		0xff
#define SM_FLASH_CMD_WRITE_SETUP	0x40
#define SM_FLASH_CMD_CLEAR_STATUS	0x50
#define SM_FLASH_CMD_READ_STATUS	0x70

/* CHRP NVRAM header */
struct chrp_header {
  u8		signature;
  u8		cksum;
  u16		len;
  char          name[12];
  u8		data[0];
};

struct core99_header {
  struct chrp_header	hdr;
  u32			adler;
  u32			generation;
  u32			reserved[2];
};

/*
 * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
 */
static volatile unsigned char *nvram_data;
static int core99_bank = 0;
// XXX Turn that into a sem
static DEFINE_SPINLOCK(nv_lock);

extern int system_running;

static int (*core99_write_bank)(int bank, u8* datas);
static int (*core99_erase_bank)(int bank);

static char *nvram_image __pmacdata;


static ssize_t __pmac core99_nvram_read(char *buf, size_t count, loff_t *index)
{
	int i;

	if (nvram_image == NULL)
		return -ENODEV;
	if (*index > NVRAM_SIZE)
		return 0;

	i = *index;
	if (i + count > NVRAM_SIZE)
		count = NVRAM_SIZE - i;

	memcpy(buf, &nvram_image[i], count);
	*index = i + count;
	return count;
}

static ssize_t __pmac core99_nvram_write(char *buf, size_t count, loff_t *index)
{
	int i;

	if (nvram_image == NULL)
		return -ENODEV;
	if (*index > NVRAM_SIZE)
		return 0;

	i = *index;
	if (i + count > NVRAM_SIZE)
		count = NVRAM_SIZE - i;

	memcpy(&nvram_image[i], buf, count);
	*index = i + count;
	return count;
}

static ssize_t __pmac core99_nvram_size(void)
{
	if (nvram_image == NULL)
		return -ENODEV;
	return NVRAM_SIZE;
}

static u8 __pmac chrp_checksum(struct chrp_header* hdr)
{
	u8 *ptr;
	u16 sum = hdr->signature;
	for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
		sum += *ptr;
	while (sum > 0xFF)
		sum = (sum & 0xFF) + (sum>>8);
	return sum;
}

static u32 __pmac core99_calc_adler(u8 *buffer)
{
	int cnt;
	u32 low, high;

   	buffer += CORE99_ADLER_START;
	low = 1;
	high = 0;
	for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
		if ((cnt % 5000) == 0) {
			high  %= 65521UL;
			high %= 65521UL;
		}
		low += buffer[cnt];
		high += low;
	}
	low  %= 65521UL;
	high %= 65521UL;

	return (high << 16) | low;
}

static u32 __pmac core99_check(u8* datas)
{
	struct core99_header* hdr99 = (struct core99_header*)datas;

	if (hdr99->hdr.signature != CORE99_SIGNATURE) {
		DBG("Invalid signature\n");
		return 0;
	}
	if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
		DBG("Invalid checksum\n");
		return 0;
	}
	if (hdr99->adler != core99_calc_adler(datas)) {
		DBG("Invalid adler\n");
		return 0;
	}
	return hdr99->generation;
}

static int __pmac sm_erase_bank(int bank)
{
	int stat, i;
	unsigned long timeout;

	u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;

       	DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);

	out_8(base, SM_FLASH_CMD_ERASE_SETUP);
	out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
	timeout = 0;
	do {
		if (++timeout > 1000000) {
			printk(KERN_ERR "nvram: Sharp/Miron flash erase timeout !\n");
			break;
		}
		out_8(base, SM_FLASH_CMD_READ_STATUS);
		stat = in_8(base);
	} while (!(stat & SM_FLASH_STATUS_DONE));

	out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
	out_8(base, SM_FLASH_CMD_RESET);

	for (i=0; i<NVRAM_SIZE; i++)
		if (base[i] != 0xff) {
			printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
			return -ENXIO;
		}
	return 0;
}

static int __pmac sm_write_bank(int bank, u8* datas)
{
	int i, stat = 0;
	unsigned long timeout;

	u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;

       	DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);

	for (i=0; i<NVRAM_SIZE; i++) {
		out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
		udelay(1);
		out_8(base+i, datas[i]);
		timeout = 0;
		do {
			if (++timeout > 1000000) {
				printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
				break;
			}
			out_8(base, SM_FLASH_CMD_READ_STATUS);
			stat = in_8(base);
		} while (!(stat & SM_FLASH_STATUS_DONE));
		if (!(stat & SM_FLASH_STATUS_DONE))
			break;
	}
	out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
	out_8(base, SM_FLASH_CMD_RESET);
	for (i=0; i<NVRAM_SIZE; i++)
		if (base[i] != datas[i]) {
			printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
			return -ENXIO;
		}
	return 0;
}

static int __pmac amd_erase_bank(int bank)
{
	int i, stat = 0;
	unsigned long timeout;

	u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;

       	DBG("nvram: AMD Erasing bank %d...\n", bank);

	/* Unlock 1 */
	out_8(base+0x555, 0xaa);
	udelay(1);
	/* Unlock 2 */
	out_8(base+0x2aa, 0x55);
	udelay(1);

	/* Sector-Erase */
	out_8(base+0x555, 0x80);
	udelay(1);
	out_8(base+0x555, 0xaa);
	udelay(1);
	out_8(base+0x2aa, 0x55);
	udelay(1);
	out_8(base, 0x30);
	udelay(1);

	timeout = 0;
	do {
		if (++timeout > 1000000) {
			printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
			break;
		}
		stat = in_8(base) ^ in_8(base);
	} while (stat != 0);
	
	/* Reset */
	out_8(base, 0xf0);
	udelay(1);
	
	for (i=0; i<NVRAM_SIZE; i++)
		if (base[i] != 0xff) {
			printk(KERN_ERR "nvram: AMD flash erase failed !\n");
			return -ENXIO;
		}
	return 0;
}

static int __pmac amd_write_bank(int bank, u8* datas)
{
	int i, stat = 0;
	unsigned long timeout;

	u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE;

       	DBG("nvram: AMD Writing bank %d...\n", bank);

	for (i=0; i<NVRAM_SIZE; i++) {
		/* Unlock 1 */
		out_8(base+0x555, 0xaa);
		udelay(1);
		/* Unlock 2 */
		out_8(base+0x2aa, 0x55);
		udelay(1);

		/* Write single word */
		out_8(base+0x555, 0xa0);
		udelay(1);
		out_8(base+i, datas[i]);
		
		timeout = 0;
		do {
			if (++timeout > 1000000) {
				printk(KERN_ERR "nvram: AMD flash write timeout !\n");
				break;
			}
			stat = in_8(base) ^ in_8(base);
		} while (stat != 0);
		if (stat != 0)
			break;
	}

	/* Reset */
	out_8(base, 0xf0);
	udelay(1);

	for (i=0; i<NVRAM_SIZE; i++)
		if (base[i] != datas[i]) {
			printk(KERN_ERR "nvram: AMD flash write failed !\n");
			return -ENXIO;
		}
	return 0;
}


static int __pmac core99_nvram_sync(void)
{
	struct core99_header* hdr99;
	unsigned long flags;

	spin_lock_irqsave(&nv_lock, flags);
	if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
		NVRAM_SIZE))
		goto bail;

	DBG("Updating nvram...\n");

	hdr99 = (struct core99_header*)nvram_image;
	hdr99->generation++;
	hdr99->hdr.signature = CORE99_SIGNATURE;
	hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
	hdr99->adler = core99_calc_adler(nvram_image);
	core99_bank = core99_bank ? 0 : 1;
	if (core99_erase_bank)
		if (core99_erase_bank(core99_bank)) {
			printk("nvram: Error erasing bank %d\n", core99_bank);
			goto bail;
		}
	if (core99_write_bank)
		if (core99_write_bank(core99_bank, nvram_image))
			printk("nvram: Error writing bank %d\n", core99_bank);
 bail:
	spin_unlock_irqrestore(&nv_lock, flags);

	return 0;
}

int __init pmac_nvram_init(void)
{
	struct device_node *dp;
	u32 gen_bank0, gen_bank1;
	int i;

	dp = find_devices("nvram");
	if (dp == NULL) {
		printk(KERN_ERR "Can't find NVRAM device\n");
		return -ENODEV;
	}
	if (!device_is_compatible(dp, "nvram,flash")) {
		printk(KERN_ERR "Incompatible type of NVRAM\n");
		return -ENXIO;
	}

	nvram_image = alloc_bootmem(NVRAM_SIZE);
	if (nvram_image == NULL) {
		printk(KERN_ERR "nvram: can't allocate ram image\n");
		return -ENOMEM;
	}
	nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2);
	
	DBG("nvram: Checking bank 0...\n");

	gen_bank0 = core99_check((u8 *)nvram_data);
	gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
	core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;

	DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
	DBG("nvram: Active bank is: %d\n", core99_bank);

	for (i=0; i<NVRAM_SIZE; i++)
		nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];

	ppc_md.nvram_read	= core99_nvram_read;
	ppc_md.nvram_write	= core99_nvram_write;
	ppc_md.nvram_size	= core99_nvram_size;
	ppc_md.nvram_sync	= core99_nvram_sync;
	
	/* 
	 * Maybe we could be smarter here though making an exclusive list
	 * of known flash chips is a bit nasty as older OF didn't provide us
	 * with a useful "compatible" entry. A solution would be to really
	 * identify the chip using flash id commands and base ourselves on
	 * a list of known chips IDs
	 */
	if (device_is_compatible(dp, "amd-0137")) {
		core99_erase_bank = amd_erase_bank;
		core99_write_bank = amd_write_bank;
	} else {
		core99_erase_bank = sm_erase_bank;
		core99_write_bank = sm_write_bank;
	}

	return 0;
}

int __pmac pmac_get_partition(int partition)
{
	struct nvram_partition *part;
	const char *name;
	int sig;

	switch(partition) {
	case pmac_nvram_OF:
		name = "common";
		sig = NVRAM_SIG_SYS;
		break;
	case pmac_nvram_XPRAM:
		name = "APL,MacOS75";
		sig = NVRAM_SIG_OS;
		break;
	case pmac_nvram_NR:
	default:
		/* Oldworld stuff */
		return -ENODEV;
	}

	part = nvram_find_partition(sig, name);
	if (part == NULL)
		return 0;

	return part->index;
}

u8 __pmac pmac_xpram_read(int xpaddr)
{
	int offset = pmac_get_partition(pmac_nvram_XPRAM);
	loff_t index;
	u8 buf;
	ssize_t count;

	if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
		return 0xff;
	index = offset + xpaddr;

	count = ppc_md.nvram_read(&buf, 1, &index);
	if (count != 1)
		return 0xff;
	return buf;
}

void __pmac pmac_xpram_write(int xpaddr, u8 data)
{
	int offset = pmac_get_partition(pmac_nvram_XPRAM);
	loff_t index;
	u8 buf;

	if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
		return;
	index = offset + xpaddr;
	buf = data;

	ppc_md.nvram_write(&buf, 1, &index);
}

EXPORT_SYMBOL(pmac_get_partition);
EXPORT_SYMBOL(pmac_xpram_read);
EXPORT_SYMBOL(pmac_xpram_write);