hugetlbpage.c 13.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
/*
 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 *
 * Copyright (C) 2003 David Gibson, IBM Corporation.
 *
 * Based on the IA-32 version:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/mm.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>

#define PAGE_SHIFT_64K	16
#define PAGE_SHIFT_16M	24
#define PAGE_SHIFT_16G	34

#define MAX_NUMBER_GPAGES	1024

/* Tracks the 16G pages after the device tree is scanned and before the
 * huge_boot_pages list is ready.  */
static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
static unsigned nr_gpages;

/* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 * will choke on pointers to hugepte tables, which is handy for
 * catching screwups early. */

static inline int shift_to_mmu_psize(unsigned int shift)
{
	int psize;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
		if (mmu_psize_defs[psize].shift == shift)
			return psize;
	return -1;
}

static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
	if (mmu_psize_defs[mmu_psize].shift)
		return mmu_psize_defs[mmu_psize].shift;
	BUG();
}

#define hugepd_none(hpd)	((hpd).pd == 0)

static inline pte_t *hugepd_page(hugepd_t hpd)
{
	BUG_ON(!hugepd_ok(hpd));
	return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
}

static inline unsigned int hugepd_shift(hugepd_t hpd)
{
	return hpd.pd & HUGEPD_SHIFT_MASK;
}

static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
{
	unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
	pte_t *dir = hugepd_page(*hpdp);

	return dir + idx;
}

pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pdshift = PGDIR_SHIFT;

	if (shift)
		*shift = 0;

	pg = pgdir + pgd_index(ea);
	if (is_hugepd(pg)) {
		hpdp = (hugepd_t *)pg;
	} else if (!pgd_none(*pg)) {
		pdshift = PUD_SHIFT;
		pu = pud_offset(pg, ea);
		if (is_hugepd(pu))
			hpdp = (hugepd_t *)pu;
		else if (!pud_none(*pu)) {
			pdshift = PMD_SHIFT;
			pm = pmd_offset(pu, ea);
			if (is_hugepd(pm))
				hpdp = (hugepd_t *)pm;
			else if (!pmd_none(*pm)) {
				return pte_offset_map(pm, ea);
			}
		}
	}

	if (!hpdp)
		return NULL;

	if (shift)
		*shift = hugepd_shift(*hpdp);
	return hugepte_offset(hpdp, ea, pdshift);
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
}

static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
			   unsigned long address, unsigned pdshift, unsigned pshift)
{
	pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
				       GFP_KERNEL|__GFP_REPEAT);

	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);

	if (! new)
		return -ENOMEM;

	spin_lock(&mm->page_table_lock);
	if (!hugepd_none(*hpdp))
		kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
	else
		hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
	spin_unlock(&mm->page_table_lock);
	return 0;
}

pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
{
	pgd_t *pg;
	pud_t *pu;
	pmd_t *pm;
	hugepd_t *hpdp = NULL;
	unsigned pshift = __ffs(sz);
	unsigned pdshift = PGDIR_SHIFT;

	addr &= ~(sz-1);

	pg = pgd_offset(mm, addr);
	if (pshift >= PUD_SHIFT) {
		hpdp = (hugepd_t *)pg;
	} else {
		pdshift = PUD_SHIFT;
		pu = pud_alloc(mm, pg, addr);
		if (pshift >= PMD_SHIFT) {
			hpdp = (hugepd_t *)pu;
		} else {
			pdshift = PMD_SHIFT;
			pm = pmd_alloc(mm, pu, addr);
			hpdp = (hugepd_t *)pm;
		}
	}

	if (!hpdp)
		return NULL;

	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));

	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
		return NULL;

	return hugepte_offset(hpdp, addr, pdshift);
}

/* Build list of addresses of gigantic pages.  This function is used in early
 * boot before the buddy or bootmem allocator is setup.
 */
void add_gpage(unsigned long addr, unsigned long page_size,
	unsigned long number_of_pages)
{
	if (!addr)
		return;
	while (number_of_pages > 0) {
		gpage_freearray[nr_gpages] = addr;
		nr_gpages++;
		number_of_pages--;
		addr += page_size;
	}
}

/* Moves the gigantic page addresses from the temporary list to the
 * huge_boot_pages list.
 */
int alloc_bootmem_huge_page(struct hstate *hstate)
{
	struct huge_bootmem_page *m;
	if (nr_gpages == 0)
		return 0;
	m = phys_to_virt(gpage_freearray[--nr_gpages]);
	gpage_freearray[nr_gpages] = 0;
	list_add(&m->list, &huge_boot_pages);
	m->hstate = hstate;
	return 1;
}

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}

static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
			      unsigned long start, unsigned long end,
			      unsigned long floor, unsigned long ceiling)
{
	pte_t *hugepte = hugepd_page(*hpdp);
	unsigned shift = hugepd_shift(*hpdp);
	unsigned long pdmask = ~((1UL << pdshift) - 1);

	start &= pdmask;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= pdmask;
		if (! ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	hpdp->pd = 0;
	tlb->need_flush = 1;
	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
}

static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pmd_t *pmd;
	unsigned long next;
	unsigned long start;

	start = addr;
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none(*pmd))
			continue;
		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
				  addr, next, floor, ceiling);
	} while (pmd++, addr = next, addr != end);

	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
	pmd_free_tlb(tlb, pmd, start);
}

static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   unsigned long floor, unsigned long ceiling)
{
	pud_t *pud;
	unsigned long next;
	unsigned long start;

	start = addr;
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (!is_hugepd(pud)) {
			if (pud_none_or_clear_bad(pud))
				continue;
			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
					       ceiling);
		} else {
			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (pud++, addr = next, addr != end);

	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
	pud_free_tlb(tlb, pud, start);
}

/*
 * This function frees user-level page tables of a process.
 *
 * Must be called with pagetable lock held.
 */
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
			    unsigned long addr, unsigned long end,
			    unsigned long floor, unsigned long ceiling)
{
	pgd_t *pgd;
	unsigned long next;

	/*
	 * Because there are a number of different possible pagetable
	 * layouts for hugepage ranges, we limit knowledge of how
	 * things should be laid out to the allocation path
	 * (huge_pte_alloc(), above).  Everything else works out the
	 * structure as it goes from information in the hugepd
	 * pointers.  That means that we can't here use the
	 * optimization used in the normal page free_pgd_range(), of
	 * checking whether we're actually covering a large enough
	 * range to have to do anything at the top level of the walk
	 * instead of at the bottom.
	 *
	 * To make sense of this, you should probably go read the big
	 * block comment at the top of the normal free_pgd_range(),
	 * too.
	 */

	pgd = pgd_offset(tlb->mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (!is_hugepd(pgd)) {
			if (pgd_none_or_clear_bad(pgd))
				continue;
			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
		} else {
			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
					  addr, next, floor, ceiling);
		}
	} while (pgd++, addr = next, addr != end);
}

struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
	pte_t *ptep;
	struct page *page;
	unsigned shift;
	unsigned long mask;

	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);

	/* Verify it is a huge page else bail. */
	if (!ptep || !shift)
		return ERR_PTR(-EINVAL);

	mask = (1UL << shift) - 1;
	page = pte_page(*ptep);
	if (page)
		page += (address & mask) / PAGE_SIZE;

	return page;
}

int pmd_huge(pmd_t pmd)
{
	return 0;
}

int pud_huge(pud_t pud)
{
	return 0;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	BUG();
	return NULL;
}

static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
		       unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

	pte = *ptep;
	mask = _PAGE_PRESENT | _PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	if ((pte_val(pte) & mask) != mask)
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);

	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);

	if (!page_cache_add_speculative(head, refs)) {
		*nr -= refs;
		return 0;
	}

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
		/* Could be optimized better */
		while (*nr) {
			put_page(page);
			(*nr)--;
		}
	}

	return 1;
}

static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
	       unsigned long addr, unsigned long end,
	       int write, struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(*hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}

unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
					unsigned long len, unsigned long pgoff,
					unsigned long flags)
{
	struct hstate *hstate = hstate_file(file);
	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));

	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
}

unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);

	return 1UL << mmu_psize_to_shift(psize);
}

static int __init add_huge_page_size(unsigned long long size)
{
	int shift = __ffs(size);
	int mmu_psize;

	/* Check that it is a page size supported by the hardware and
	 * that it fits within pagetable and slice limits. */
	if (!is_power_of_2(size)
	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
		return -EINVAL;

	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
		return -EINVAL;

#ifdef CONFIG_SPU_FS_64K_LS
	/* Disable support for 64K huge pages when 64K SPU local store
	 * support is enabled as the current implementation conflicts.
	 */
	if (shift == PAGE_SHIFT_64K)
		return -EINVAL;
#endif /* CONFIG_SPU_FS_64K_LS */

	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);

	/* Return if huge page size has already been setup */
	if (size_to_hstate(size))
		return 0;

	hugetlb_add_hstate(shift - PAGE_SHIFT);

	return 0;
}

static int __init hugepage_setup_sz(char *str)
{
	unsigned long long size;

	size = memparse(str, &str);

	if (add_huge_page_size(size) != 0)
		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);

	return 1;
}
__setup("hugepagesz=", hugepage_setup_sz);

static int __init hugetlbpage_init(void)
{
	int psize;

	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
		return -ENODEV;

	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
		unsigned shift;
		unsigned pdshift;

		if (!mmu_psize_defs[psize].shift)
			continue;

		shift = mmu_psize_to_shift(psize);

		if (add_huge_page_size(1ULL << shift) < 0)
			continue;

		if (shift < PMD_SHIFT)
			pdshift = PMD_SHIFT;
		else if (shift < PUD_SHIFT)
			pdshift = PUD_SHIFT;
		else
			pdshift = PGDIR_SHIFT;

		pgtable_cache_add(pdshift - shift, NULL);
		if (!PGT_CACHE(pdshift - shift))
			panic("hugetlbpage_init(): could not create "
			      "pgtable cache for %d bit pagesize\n", shift);
	}

	/* Set default large page size. Currently, we pick 16M or 1M
	 * depending on what is available
	 */
	if (mmu_psize_defs[MMU_PAGE_16M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;

	return 0;
}

module_init(hugetlbpage_init);

void flush_dcache_icache_hugepage(struct page *page)
{
	int i;

	BUG_ON(!PageCompound(page));

	for (i = 0; i < (1UL << compound_order(page)); i++)
		__flush_dcache_icache(page_address(page+i));
}