ffsport.c 21.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
/*
 * NAND Flash Controller Device Driver
 * Copyright (c) 2009, Intel Corporation and its suppliers.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include "ffsport.h"
#include "flash.h"
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/log2.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/async.h>

/**** Helper functions used for Div, Remainder operation on u64 ****/

/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function:     GLOB_Calc_Used_Bits
* Inputs:       Power of 2 number
* Outputs:      Number of Used Bits
*               0, if the argument is 0
* Description:  Calculate the number of bits used by a given power of 2 number
*               Number can be up to 32 bit
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
int GLOB_Calc_Used_Bits(u32 n)
{
	int tot_bits = 0;

	if (n >= 1 << 16) {
		n >>= 16;
		tot_bits += 16;
	}

	if (n >= 1 << 8) {
		n >>=  8;
		tot_bits +=  8;
	}

	if (n >= 1 << 4) {
		n >>=  4;
		tot_bits +=  4;
	}

	if (n >= 1 << 2) {
		n >>=  2;
		tot_bits +=  2;
	}

	if (n >= 1 << 1)
		tot_bits +=  1;

	return ((n == 0) ? (0) : tot_bits);
}

/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function:     GLOB_u64_Div
* Inputs:       Number of u64
*               A power of 2 number as Division
* Outputs:      Quotient of the Divisor operation
* Description:  It divides the address by divisor by using bit shift operation
*               (essentially without explicitely using "/").
*               Divisor is a power of 2 number and Divided is of u64
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
u64 GLOB_u64_Div(u64 addr, u32 divisor)
{
	return  (u64)(addr >> GLOB_Calc_Used_Bits(divisor));
}

/*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
* Function:     GLOB_u64_Remainder
* Inputs:       Number of u64
*               Divisor Type (1 -PageAddress, 2- BlockAddress)
* Outputs:      Remainder of the Division operation
* Description:  It calculates the remainder of a number (of u64) by
*               divisor(power of 2 number ) by using bit shifting and multiply
*               operation(essentially without explicitely using "/").
*&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*/
u64 GLOB_u64_Remainder(u64 addr, u32 divisor_type)
{
	u64 result = 0;

	if (divisor_type == 1) { /* Remainder -- Page */
		result = (addr >> DeviceInfo.nBitsInPageDataSize);
		result = result * DeviceInfo.wPageDataSize;
	} else if (divisor_type == 2) { /* Remainder -- Block */
		result = (addr >> DeviceInfo.nBitsInBlockDataSize);
		result = result * DeviceInfo.wBlockDataSize;
	}

	result = addr - result;

	return result;
}

#define NUM_DEVICES             1
#define PARTITIONS              8

#define GLOB_SBD_NAME          "nd"
#define GLOB_SBD_IRQ_NUM       (29)

#define GLOB_SBD_IOCTL_GC                        (0x7701)
#define GLOB_SBD_IOCTL_WL                        (0x7702)
#define GLOB_SBD_IOCTL_FORMAT                    (0x7703)
#define GLOB_SBD_IOCTL_ERASE_FLASH               (0x7704)
#define GLOB_SBD_IOCTL_FLUSH_CACHE               (0x7705)
#define GLOB_SBD_IOCTL_COPY_BLK_TABLE            (0x7706)
#define GLOB_SBD_IOCTL_COPY_WEAR_LEVELING_TABLE  (0x7707)
#define GLOB_SBD_IOCTL_GET_NAND_INFO             (0x7708)
#define GLOB_SBD_IOCTL_WRITE_DATA                (0x7709)
#define GLOB_SBD_IOCTL_READ_DATA                 (0x770A)

static int reserved_mb = 0;
module_param(reserved_mb, int, 0);
MODULE_PARM_DESC(reserved_mb, "Reserved space for OS image, in MiB (default 25 MiB)");

int nand_debug_level;
module_param(nand_debug_level, int, 0644);
MODULE_PARM_DESC(nand_debug_level, "debug level value: 1-3");

MODULE_LICENSE("GPL");

struct spectra_nand_dev {
	struct pci_dev *dev;
	u64 size;
	u16 users;
	spinlock_t qlock;
	void __iomem *ioaddr;  /* Mapped address */
	struct request_queue *queue;
	struct task_struct *thread;
	struct gendisk *gd;
	u8 *tmp_buf;
};


static int GLOB_SBD_majornum;

static char *GLOB_version = GLOB_VERSION;

static struct spectra_nand_dev nand_device[NUM_DEVICES];

static struct mutex spectra_lock;

static int res_blks_os = 1;

struct spectra_indentfy_dev_tag IdentifyDeviceData;

static int force_flush_cache(void)
{
	nand_dbg_print(NAND_DBG_DEBUG, "%s, Line %d, Function: %s\n",
		__FILE__, __LINE__, __func__);

	if (ERR == GLOB_FTL_Flush_Cache()) {
		printk(KERN_ERR "Fail to Flush FTL Cache!\n");
		return -EFAULT;
	}
#if CMD_DMA
		if (glob_ftl_execute_cmds())
			return -EIO;
		else
			return 0;
#endif
	return 0;
}

struct ioctl_rw_page_info {
	u8 *data;
	unsigned int page;
};

static int ioctl_read_page_data(unsigned long arg)
{
	u8 *buf;
	struct ioctl_rw_page_info info;
	int result = PASS;

	if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
		return -EFAULT;

	buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
	if (!buf) {
		printk(KERN_ERR "ioctl_read_page_data: "
		       "failed to allocate memory\n");
		return -ENOMEM;
	}

	mutex_lock(&spectra_lock);
	result = GLOB_FTL_Page_Read(buf,
		(u64)info.page * IdentifyDeviceData.PageDataSize);
	mutex_unlock(&spectra_lock);

	if (copy_to_user((void __user *)info.data, buf,
			   IdentifyDeviceData.PageDataSize)) {
		printk(KERN_ERR "ioctl_read_page_data: "
		       "failed to copy user data\n");
		kfree(buf);
		return -EFAULT;
	}

	kfree(buf);
	return result;
}

static int ioctl_write_page_data(unsigned long arg)
{
	u8 *buf;
	struct ioctl_rw_page_info info;
	int result = PASS;

	if (copy_from_user(&info, (void __user *)arg, sizeof(info)))
		return -EFAULT;

	buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
	if (!buf) {
		printk(KERN_ERR "ioctl_write_page_data: "
		       "failed to allocate memory\n");
		return -ENOMEM;
	}

	if (copy_from_user(buf, (void __user *)info.data,
			   IdentifyDeviceData.PageDataSize)) {
		printk(KERN_ERR "ioctl_write_page_data: "
		       "failed to copy user data\n");
		kfree(buf);
		return -EFAULT;
	}

	mutex_lock(&spectra_lock);
	result = GLOB_FTL_Page_Write(buf,
		(u64)info.page * IdentifyDeviceData.PageDataSize);
	mutex_unlock(&spectra_lock);

	kfree(buf);
	return result;
}

/* Return how many blocks should be reserved for bad block replacement */
static int get_res_blk_num_bad_blk(void)
{
	return IdentifyDeviceData.wDataBlockNum / 10;
}

/* Return how many blocks should be reserved for OS image */
static int get_res_blk_num_os(void)
{
	u32 res_blks, blk_size;

	blk_size = IdentifyDeviceData.PageDataSize *
		IdentifyDeviceData.PagesPerBlock;

	res_blks = (reserved_mb * 1024 * 1024) / blk_size;

	if ((res_blks < 1) || (res_blks >= IdentifyDeviceData.wDataBlockNum))
		res_blks = 1; /* Reserved 1 block for block table */

	return res_blks;
}

/* Transfer a full request. */
static int do_transfer(struct spectra_nand_dev *tr, struct request *req)
{
	u64 start_addr, addr;
	u32 logical_start_sect, hd_start_sect;
	u32 nsect, hd_sects;
	u32 rsect, tsect = 0;
	char *buf;
	u32 ratio = IdentifyDeviceData.PageDataSize >> 9;

	start_addr = (u64)(blk_rq_pos(req)) << 9;
	/* Add a big enough offset to prevent the OS Image from
	*  being accessed or damaged by file system */
	start_addr += IdentifyDeviceData.PageDataSize *
			IdentifyDeviceData.PagesPerBlock *
			res_blks_os;

	if (req->cmd_type & REQ_FLUSH) {
		if (force_flush_cache()) /* Fail to flush cache */
			return -EIO;
		else
			return 0;
	}

	if (req->cmd_type != REQ_TYPE_FS)
		return -EIO;

	if (blk_rq_pos(req) + blk_rq_cur_sectors(req) > get_capacity(tr->gd)) {
		printk(KERN_ERR "Spectra error: request over the NAND "
			"capacity!sector %d, current_nr_sectors %d, "
			"while capacity is %d\n",
			(int)blk_rq_pos(req),
			blk_rq_cur_sectors(req),
			(int)get_capacity(tr->gd));
		return -EIO;
	}

	logical_start_sect = start_addr >> 9;
	hd_start_sect = logical_start_sect / ratio;
	rsect = logical_start_sect - hd_start_sect * ratio;

	addr = (u64)hd_start_sect * ratio * 512;
	buf = req->buffer;
	nsect = blk_rq_cur_sectors(req);

	if (rsect)
		tsect =  (ratio - rsect) < nsect ? (ratio - rsect) : nsect;

	switch (rq_data_dir(req)) {
	case READ:
		/* Read the first NAND page */
		if (rsect) {
			if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			memcpy(buf, tr->tmp_buf + (rsect << 9), tsect << 9);
			addr += IdentifyDeviceData.PageDataSize;
			buf += tsect << 9;
			nsect -= tsect;
		}

		/* Read the other NAND pages */
		for (hd_sects = nsect / ratio; hd_sects > 0; hd_sects--) {
			if (GLOB_FTL_Page_Read(buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			addr += IdentifyDeviceData.PageDataSize;
			buf += IdentifyDeviceData.PageDataSize;
		}

		/* Read the last NAND pages */
		if (nsect % ratio) {
			if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			memcpy(buf, tr->tmp_buf, (nsect % ratio) << 9);
		}
#if CMD_DMA
		if (glob_ftl_execute_cmds())
			return -EIO;
		else
			return 0;
#endif
		return 0;

	case WRITE:
		/* Write the first NAND page */
		if (rsect) {
			if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			memcpy(tr->tmp_buf + (rsect << 9), buf, tsect << 9);
			if (GLOB_FTL_Page_Write(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			addr += IdentifyDeviceData.PageDataSize;
			buf += tsect << 9;
			nsect -= tsect;
		}

		/* Write the other NAND pages */
		for (hd_sects = nsect / ratio; hd_sects > 0; hd_sects--) {
			if (GLOB_FTL_Page_Write(buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			addr += IdentifyDeviceData.PageDataSize;
			buf += IdentifyDeviceData.PageDataSize;
		}

		/* Write the last NAND pages */
		if (nsect % ratio) {
			if (GLOB_FTL_Page_Read(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
			memcpy(tr->tmp_buf, buf, (nsect % ratio) << 9);
			if (GLOB_FTL_Page_Write(tr->tmp_buf, addr)) {
				printk(KERN_ERR "Error in %s, Line %d\n",
					__FILE__, __LINE__);
				return -EIO;
			}
		}
#if CMD_DMA
		if (glob_ftl_execute_cmds())
			return -EIO;
		else
			return 0;
#endif
		return 0;

	default:
		printk(KERN_NOTICE "Unknown request %u\n", rq_data_dir(req));
		return -EIO;
	}
}

/* This function is copied from drivers/mtd/mtd_blkdevs.c */
static int spectra_trans_thread(void *arg)
{
	struct spectra_nand_dev *tr = arg;
	struct request_queue *rq = tr->queue;
	struct request *req = NULL;

	/* we might get involved when memory gets low, so use PF_MEMALLOC */
	current->flags |= PF_MEMALLOC;

	spin_lock_irq(rq->queue_lock);
	while (!kthread_should_stop()) {
		int res;

		if (!req) {
			req = blk_fetch_request(rq);
			if (!req) {
				set_current_state(TASK_INTERRUPTIBLE);
				spin_unlock_irq(rq->queue_lock);
				schedule();
				spin_lock_irq(rq->queue_lock);
				continue;
			}
		}

		spin_unlock_irq(rq->queue_lock);

		mutex_lock(&spectra_lock);
		res = do_transfer(tr, req);
		mutex_unlock(&spectra_lock);

		spin_lock_irq(rq->queue_lock);

		if (!__blk_end_request_cur(req, res))
			req = NULL;
	}

	if (req)
		__blk_end_request_all(req, -EIO);

	spin_unlock_irq(rq->queue_lock);

	return 0;
}


/* Request function that "handles clustering". */
static void GLOB_SBD_request(struct request_queue *rq)
{
	struct spectra_nand_dev *pdev = rq->queuedata;
	wake_up_process(pdev->thread);
}

static int GLOB_SBD_open(struct block_device *bdev, fmode_t mode)

{
	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);
	return 0;
}

static int GLOB_SBD_release(struct gendisk *disk, fmode_t mode)
{
	int ret;

	nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	mutex_lock(&spectra_lock);
	ret = force_flush_cache();
	mutex_unlock(&spectra_lock);

	return 0;
}

static int GLOB_SBD_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
	geo->heads = 4;
	geo->sectors = 16;
	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);

	nand_dbg_print(NAND_DBG_DEBUG,
		"heads: %d, sectors: %d, cylinders: %d\n",
		geo->heads, geo->sectors, geo->cylinders);

	return 0;
}

int GLOB_SBD_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	int ret;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	switch (cmd) {
	case GLOB_SBD_IOCTL_GC:
		nand_dbg_print(NAND_DBG_DEBUG,
			       "Spectra IOCTL: Garbage Collection "
			       "being performed\n");
		if (PASS != GLOB_FTL_Garbage_Collection())
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_WL:
		nand_dbg_print(NAND_DBG_DEBUG,
			       "Spectra IOCTL: Static Wear Leveling "
			       "being performed\n");
		if (PASS != GLOB_FTL_Wear_Leveling())
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_FORMAT:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: Flash format "
			       "being performed\n");
		if (PASS != GLOB_FTL_Flash_Format())
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_FLUSH_CACHE:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: Cache flush "
			       "being performed\n");
		mutex_lock(&spectra_lock);
		ret = force_flush_cache();
		mutex_unlock(&spectra_lock);
		return ret;

	case GLOB_SBD_IOCTL_COPY_BLK_TABLE:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
			       "Copy block table\n");
		if (copy_to_user((void __user *)arg,
			get_blk_table_start_addr(),
			get_blk_table_len()))
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_COPY_WEAR_LEVELING_TABLE:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
			       "Copy wear leveling table\n");
		if (copy_to_user((void __user *)arg,
			get_wear_leveling_table_start_addr(),
			get_wear_leveling_table_len()))
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_GET_NAND_INFO:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
			       "Get NAND info\n");
		if (copy_to_user((void __user *)arg, &IdentifyDeviceData,
			sizeof(IdentifyDeviceData)))
			return -EFAULT;
		return 0;

	case GLOB_SBD_IOCTL_WRITE_DATA:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
			       "Write one page data\n");
		return ioctl_write_page_data(arg);

	case GLOB_SBD_IOCTL_READ_DATA:
		nand_dbg_print(NAND_DBG_DEBUG, "Spectra IOCTL: "
			       "Read one page data\n");
		return ioctl_read_page_data(arg);
	}

	return -ENOTTY;
}

static DEFINE_MUTEX(ffsport_mutex);

int GLOB_SBD_unlocked_ioctl(struct block_device *bdev, fmode_t mode,
		unsigned int cmd, unsigned long arg)
{
	int ret;

	mutex_lock(&ffsport_mutex);
	ret = GLOB_SBD_ioctl(bdev, mode, cmd, arg);
	mutex_unlock(&ffsport_mutex);

	return ret;
}

static struct block_device_operations GLOB_SBD_ops = {
	.owner = THIS_MODULE,
	.open = GLOB_SBD_open,
	.release = GLOB_SBD_release,
	.ioctl = GLOB_SBD_unlocked_ioctl,
	.getgeo = GLOB_SBD_getgeo,
};

static int SBD_setup_device(struct spectra_nand_dev *dev, int which)
{
	int res_blks;
	u32 sects;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	memset(dev, 0, sizeof(struct spectra_nand_dev));

	nand_dbg_print(NAND_DBG_WARN, "Reserved %d blocks "
		"for OS image, %d blocks for bad block replacement.\n",
		get_res_blk_num_os(),
		get_res_blk_num_bad_blk());

	res_blks = get_res_blk_num_bad_blk() + get_res_blk_num_os();

	dev->size = (u64)IdentifyDeviceData.PageDataSize *
		IdentifyDeviceData.PagesPerBlock *
		(IdentifyDeviceData.wDataBlockNum - res_blks);

	res_blks_os = get_res_blk_num_os();

	spin_lock_init(&dev->qlock);

	dev->tmp_buf = kmalloc(IdentifyDeviceData.PageDataSize, GFP_ATOMIC);
	if (!dev->tmp_buf) {
		printk(KERN_ERR "Failed to kmalloc memory in %s Line %d, exit.\n",
			__FILE__, __LINE__);
		goto out_vfree;
	}

	dev->queue = blk_init_queue(GLOB_SBD_request, &dev->qlock);
	if (dev->queue == NULL) {
		printk(KERN_ERR
		       "Spectra: Request queue could not be initialized."
			" Aborting\n ");
		goto out_vfree;
	}
	dev->queue->queuedata = dev;

	/* As Linux block layer doesn't support >4KB hardware sector,  */
	/* Here we force report 512 byte hardware sector size to Kernel */
	blk_queue_logical_block_size(dev->queue, 512);

	blk_queue_flush(dev->queue, REQ_FLUSH);

	dev->thread = kthread_run(spectra_trans_thread, dev, "nand_thd");
	if (IS_ERR(dev->thread)) {
		blk_cleanup_queue(dev->queue);
		unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);
		return PTR_ERR(dev->thread);
	}

	dev->gd = alloc_disk(PARTITIONS);
	if (!dev->gd) {
		printk(KERN_ERR
		       "Spectra: Could not allocate disk. Aborting \n ");
		goto out_vfree;
	}
	dev->gd->major = GLOB_SBD_majornum;
	dev->gd->first_minor = which * PARTITIONS;
	dev->gd->fops = &GLOB_SBD_ops;
	dev->gd->queue = dev->queue;
	dev->gd->private_data = dev;
	snprintf(dev->gd->disk_name, 32, "%s%c", GLOB_SBD_NAME, which + 'a');

	sects = dev->size >> 9;
	nand_dbg_print(NAND_DBG_WARN, "Capacity sects: %d\n", sects);
	set_capacity(dev->gd, sects);

	add_disk(dev->gd);

	return 0;
out_vfree:
	return -ENOMEM;
}

/*
static ssize_t show_nand_block_num(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n",
		(int)IdentifyDeviceData.wDataBlockNum);
}

static ssize_t show_nand_pages_per_block(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n",
		(int)IdentifyDeviceData.PagesPerBlock);
}

static ssize_t show_nand_page_size(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n",
		(int)IdentifyDeviceData.PageDataSize);
}

static DEVICE_ATTR(nand_block_num, 0444, show_nand_block_num, NULL);
static DEVICE_ATTR(nand_pages_per_block, 0444, show_nand_pages_per_block, NULL);
static DEVICE_ATTR(nand_page_size, 0444, show_nand_page_size, NULL);

static void create_sysfs_entry(struct device *dev)
{
	if (device_create_file(dev, &dev_attr_nand_block_num))
		printk(KERN_ERR "Spectra: "
			"failed to create sysfs entry nand_block_num.\n");
	if (device_create_file(dev, &dev_attr_nand_pages_per_block))
		printk(KERN_ERR "Spectra: "
		"failed to create sysfs entry nand_pages_per_block.\n");
	if (device_create_file(dev, &dev_attr_nand_page_size))
		printk(KERN_ERR "Spectra: "
		"failed to create sysfs entry nand_page_size.\n");
}
*/

static void register_spectra_ftl_async(void *unused, async_cookie_t cookie)
{
	int i;

	/* create_sysfs_entry(&dev->dev); */

	if (PASS != GLOB_FTL_IdentifyDevice(&IdentifyDeviceData)) {
		printk(KERN_ERR "Spectra: Unable to Read Flash Device. "
		       "Aborting\n");
		return;
	} else {
		nand_dbg_print(NAND_DBG_WARN, "In GLOB_SBD_init: "
			       "Num blocks=%d, pagesperblock=%d, "
			       "pagedatasize=%d, ECCBytesPerSector=%d\n",
		       (int)IdentifyDeviceData.NumBlocks,
		       (int)IdentifyDeviceData.PagesPerBlock,
		       (int)IdentifyDeviceData.PageDataSize,
		       (int)IdentifyDeviceData.wECCBytesPerSector);
	}

	printk(KERN_ALERT "Spectra: searching block table, please wait ...\n");
	if (GLOB_FTL_Init() != PASS) {
		printk(KERN_ERR "Spectra: Unable to Initialize FTL Layer. "
		       "Aborting\n");
		goto out_ftl_flash_register;
	}
	printk(KERN_ALERT "Spectra: block table has been found.\n");

	GLOB_SBD_majornum = register_blkdev(0, GLOB_SBD_NAME);
	if (GLOB_SBD_majornum <= 0) {
		printk(KERN_ERR "Unable to get the major %d for Spectra",
		       GLOB_SBD_majornum);
		goto out_ftl_flash_register;
	}

	for (i = 0; i < NUM_DEVICES; i++)
		if (SBD_setup_device(&nand_device[i], i) == -ENOMEM)
			goto out_blk_register;

	nand_dbg_print(NAND_DBG_DEBUG,
		       "Spectra: module loaded with major number %d\n",
		       GLOB_SBD_majornum);

	return;

out_blk_register:
	unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);
out_ftl_flash_register:
	GLOB_FTL_Cache_Release();
	printk(KERN_ERR "Spectra: Module load failed.\n");
}

int register_spectra_ftl()
{
	async_schedule(register_spectra_ftl_async, NULL);
	return 0;
}
EXPORT_SYMBOL_GPL(register_spectra_ftl);

static int GLOB_SBD_init(void)
{
	/* Set debug output level (0~3) here. 3 is most verbose */
	printk(KERN_ALERT "Spectra: %s\n", GLOB_version);

	mutex_init(&spectra_lock);

	if (PASS != GLOB_FTL_Flash_Init()) {
		printk(KERN_ERR "Spectra: Unable to Initialize Flash Device. "
		       "Aborting\n");
		return -ENODEV;
	}
	return 0;
}

static void __exit GLOB_SBD_exit(void)
{
	int i;

	nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
		       __FILE__, __LINE__, __func__);

	for (i = 0; i < NUM_DEVICES; i++) {
		struct spectra_nand_dev *dev = &nand_device[i];
		if (dev->gd) {
			del_gendisk(dev->gd);
			put_disk(dev->gd);
		}
		if (dev->queue)
			blk_cleanup_queue(dev->queue);
		kfree(dev->tmp_buf);
	}

	unregister_blkdev(GLOB_SBD_majornum, GLOB_SBD_NAME);

	mutex_lock(&spectra_lock);
	force_flush_cache();
	mutex_unlock(&spectra_lock);

	GLOB_FTL_Cache_Release();

	GLOB_FTL_Flash_Release();

	nand_dbg_print(NAND_DBG_DEBUG,
		       "Spectra FTL module (major number %d) unloaded.\n",
		       GLOB_SBD_majornum);
}

module_init(GLOB_SBD_init);
module_exit(GLOB_SBD_exit);