wbuf.c 36.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright © 2001-2007 Red Hat, Inc.
 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
 *
 * Created by David Woodhouse <dwmw2@infradead.org>
 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
 *
 * For licensing information, see the file 'LICENCE' in this directory.
 *
 */

#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/crc32.h>
#include <linux/mtd/nand.h>
#include <linux/jiffies.h>
#include <linux/sched.h>

#include "nodelist.h"

/* For testing write failures */
#undef BREAKME
#undef BREAKMEHEADER

#ifdef BREAKME
static unsigned char *brokenbuf;
#endif

#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )

/* max. erase failures before we mark a block bad */
#define MAX_ERASE_FAILURES 	2

struct jffs2_inodirty {
	uint32_t ino;
	struct jffs2_inodirty *next;
};

static struct jffs2_inodirty inodirty_nomem;

static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
{
	struct jffs2_inodirty *this = c->wbuf_inodes;

	/* If a malloc failed, consider _everything_ dirty */
	if (this == &inodirty_nomem)
		return 1;

	/* If ino == 0, _any_ non-GC writes mean 'yes' */
	if (this && !ino)
		return 1;

	/* Look to see if the inode in question is pending in the wbuf */
	while (this) {
		if (this->ino == ino)
			return 1;
		this = this->next;
	}
	return 0;
}

static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
{
	struct jffs2_inodirty *this;

	this = c->wbuf_inodes;

	if (this != &inodirty_nomem) {
		while (this) {
			struct jffs2_inodirty *next = this->next;
			kfree(this);
			this = next;
		}
	}
	c->wbuf_inodes = NULL;
}

static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
{
	struct jffs2_inodirty *new;

	/* Mark the superblock dirty so that kupdated will flush... */
	jffs2_erase_pending_trigger(c);

	if (jffs2_wbuf_pending_for_ino(c, ino))
		return;

	new = kmalloc(sizeof(*new), GFP_KERNEL);
	if (!new) {
		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
		jffs2_clear_wbuf_ino_list(c);
		c->wbuf_inodes = &inodirty_nomem;
		return;
	}
	new->ino = ino;
	new->next = c->wbuf_inodes;
	c->wbuf_inodes = new;
	return;
}

static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
{
	struct list_head *this, *next;
	static int n;

	if (list_empty(&c->erasable_pending_wbuf_list))
		return;

	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);

		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
		list_del(this);
		if ((jiffies + (n++)) & 127) {
			/* Most of the time, we just erase it immediately. Otherwise we
			   spend ages scanning it on mount, etc. */
			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
			list_add_tail(&jeb->list, &c->erase_pending_list);
			c->nr_erasing_blocks++;
			jffs2_erase_pending_trigger(c);
		} else {
			/* Sometimes, however, we leave it elsewhere so it doesn't get
			   immediately reused, and we spread the load a bit. */
			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
			list_add_tail(&jeb->list, &c->erasable_list);
		}
	}
}

#define REFILE_NOTEMPTY 0
#define REFILE_ANYWAY   1

static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
{
	D1(printk("About to refile bad block at %08x\n", jeb->offset));

	/* File the existing block on the bad_used_list.... */
	if (c->nextblock == jeb)
		c->nextblock = NULL;
	else /* Not sure this should ever happen... need more coffee */
		list_del(&jeb->list);
	if (jeb->first_node) {
		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
		list_add(&jeb->list, &c->bad_used_list);
	} else {
		BUG_ON(allow_empty == REFILE_NOTEMPTY);
		/* It has to have had some nodes or we couldn't be here */
		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
		list_add(&jeb->list, &c->erase_pending_list);
		c->nr_erasing_blocks++;
		jffs2_erase_pending_trigger(c);
	}

	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
		uint32_t oldfree = jeb->free_size;

		jffs2_link_node_ref(c, jeb, 
				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
				    oldfree, NULL);
		/* convert to wasted */
		c->wasted_size += oldfree;
		jeb->wasted_size += oldfree;
		c->dirty_size -= oldfree;
		jeb->dirty_size -= oldfree;
	}

	jffs2_dbg_dump_block_lists_nolock(c);
	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
}

static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
							    struct jffs2_inode_info *f,
							    struct jffs2_raw_node_ref *raw,
							    union jffs2_node_union *node)
{
	struct jffs2_node_frag *frag;
	struct jffs2_full_dirent *fd;

	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));

	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
	       je16_to_cpu(node->u.magic) != 0);

	switch (je16_to_cpu(node->u.nodetype)) {
	case JFFS2_NODETYPE_INODE:
		if (f->metadata && f->metadata->raw == raw) {
			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
			return &f->metadata->raw;
		}
		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
		BUG_ON(!frag);
		/* Find a frag which refers to the full_dnode we want to modify */
		while (!frag->node || frag->node->raw != raw) {
			frag = frag_next(frag);
			BUG_ON(!frag);
		}
		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
		return &frag->node->raw;

	case JFFS2_NODETYPE_DIRENT:
		for (fd = f->dents; fd; fd = fd->next) {
			if (fd->raw == raw) {
				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
				return &fd->raw;
			}
		}
		BUG();

	default:
		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
			    je16_to_cpu(node->u.nodetype));
		break;
	}
	return NULL;
}

#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
			      uint32_t ofs)
{
	int ret;
	size_t retlen;
	char *eccstr;

	ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
		return ret;
	} else if (retlen != c->wbuf_pagesize) {
		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
		return -EIO;
	}
	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
		return 0;

	if (ret == -EUCLEAN)
		eccstr = "corrected";
	else if (ret == -EBADMSG)
		eccstr = "correction failed";
	else
		eccstr = "OK or unused";

	printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
	       eccstr, c->wbuf_ofs);
	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
		       c->wbuf, c->wbuf_pagesize, 0);

	printk(KERN_WARNING "Read back:\n");
	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
		       c->wbuf_verify, c->wbuf_pagesize, 0);

	return -EIO;
}
#else
#define jffs2_verify_write(c,b,o) (0)
#endif

/* Recover from failure to write wbuf. Recover the nodes up to the
 * wbuf, not the one which we were starting to try to write. */

static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
{
	struct jffs2_eraseblock *jeb, *new_jeb;
	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
	size_t retlen;
	int ret;
	int nr_refile = 0;
	unsigned char *buf;
	uint32_t start, end, ofs, len;

	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];

	spin_lock(&c->erase_completion_lock);
	if (c->wbuf_ofs % c->mtd->erasesize)
		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
	else
		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
	spin_unlock(&c->erase_completion_lock);

	BUG_ON(!ref_obsolete(jeb->last_node));

	/* Find the first node to be recovered, by skipping over every
	   node which ends before the wbuf starts, or which is obsolete. */
	for (next = raw = jeb->first_node; next; raw = next) {
		next = ref_next(raw);

		if (ref_obsolete(raw) || 
		    (next && ref_offset(next) <= c->wbuf_ofs)) {
			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
				    ref_offset(raw), ref_flags(raw),
				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
				    c->wbuf_ofs);
			continue;
		}
		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
			    ref_offset(raw), ref_flags(raw),
			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));

		first_raw = raw;
		break;
	}

	if (!first_raw) {
		/* All nodes were obsolete. Nothing to recover. */
		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
		c->wbuf_len = 0;
		return;
	}

	start = ref_offset(first_raw);
	end = ref_offset(jeb->last_node);
	nr_refile = 1;

	/* Count the number of refs which need to be copied */
	while ((raw = ref_next(raw)) != jeb->last_node)
		nr_refile++;

	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
		    start, end, end - start, nr_refile);

	buf = NULL;
	if (start < c->wbuf_ofs) {
		/* First affected node was already partially written.
		 * Attempt to reread the old data into our buffer. */

		buf = kmalloc(end - start, GFP_KERNEL);
		if (!buf) {
			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");

			goto read_failed;
		}

		/* Do the read... */
		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);

		/* ECC recovered ? */
		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
		    (retlen == c->wbuf_ofs - start))
			ret = 0;

		if (ret || retlen != c->wbuf_ofs - start) {
			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");

			kfree(buf);
			buf = NULL;
		read_failed:
			first_raw = ref_next(first_raw);
			nr_refile--;
			while (first_raw && ref_obsolete(first_raw)) {
				first_raw = ref_next(first_raw);
				nr_refile--;
			}

			/* If this was the only node to be recovered, give up */
			if (!first_raw) {
				c->wbuf_len = 0;
				return;
			}

			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
			start = ref_offset(first_raw);
			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
				    start, end, end - start, nr_refile);

		} else {
			/* Read succeeded. Copy the remaining data from the wbuf */
			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
		}
	}
	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
	   Either 'buf' contains the data, or we find it in the wbuf */

	/* ... and get an allocation of space from a shiny new block instead */
	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
	if (ret) {
		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
		kfree(buf);
		return;
	}

	/* The summary is not recovered, so it must be disabled for this erase block */
	jffs2_sum_disable_collecting(c->summary);

	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
	if (ret) {
		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
		kfree(buf);
		return;
	}

	ofs = write_ofs(c);

	if (end-start >= c->wbuf_pagesize) {
		/* Need to do another write immediately, but it's possible
		   that this is just because the wbuf itself is completely
		   full, and there's nothing earlier read back from the
		   flash. Hence 'buf' isn't necessarily what we're writing
		   from. */
		unsigned char *rewrite_buf = buf?:c->wbuf;
		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);

		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
			  towrite, ofs));

#ifdef BREAKMEHEADER
		static int breakme;
		if (breakme++ == 20) {
			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
			breakme = 0;
			c->mtd->write(c->mtd, ofs, towrite, &retlen,
				      brokenbuf);
			ret = -EIO;
		} else
#endif
			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
					    rewrite_buf);

		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
			/* Argh. We tried. Really we did. */
			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
			kfree(buf);

			if (retlen)
				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);

			return;
		}
		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);

		c->wbuf_len = (end - start) - towrite;
		c->wbuf_ofs = ofs + towrite;
		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
	} else {
		/* OK, now we're left with the dregs in whichever buffer we're using */
		if (buf) {
			memcpy(c->wbuf, buf, end-start);
		} else {
			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
		}
		c->wbuf_ofs = ofs;
		c->wbuf_len = end - start;
	}

	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
	new_jeb = &c->blocks[ofs / c->sector_size];

	spin_lock(&c->erase_completion_lock);
	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
		uint32_t rawlen = ref_totlen(c, jeb, raw);
		struct jffs2_inode_cache *ic;
		struct jffs2_raw_node_ref *new_ref;
		struct jffs2_raw_node_ref **adjust_ref = NULL;
		struct jffs2_inode_info *f = NULL;

		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
			  rawlen, ref_offset(raw), ref_flags(raw), ofs));

		ic = jffs2_raw_ref_to_ic(raw);

		/* Ick. This XATTR mess should be fixed shortly... */
		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
			struct jffs2_xattr_datum *xd = (void *)ic;
			BUG_ON(xd->node != raw);
			adjust_ref = &xd->node;
			raw->next_in_ino = NULL;
			ic = NULL;
		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
			struct jffs2_xattr_datum *xr = (void *)ic;
			BUG_ON(xr->node != raw);
			adjust_ref = &xr->node;
			raw->next_in_ino = NULL;
			ic = NULL;
		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
			struct jffs2_raw_node_ref **p = &ic->nodes;

			/* Remove the old node from the per-inode list */
			while (*p && *p != (void *)ic) {
				if (*p == raw) {
					(*p) = (raw->next_in_ino);
					raw->next_in_ino = NULL;
					break;
				}
				p = &((*p)->next_in_ino);
			}

			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
				/* If it's an in-core inode, then we have to adjust any
				   full_dirent or full_dnode structure to point to the
				   new version instead of the old */
				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
				if (IS_ERR(f)) {
					/* Should never happen; it _must_ be present */
					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
						    ic->ino, PTR_ERR(f));
					BUG();
				}
				/* We don't lock f->sem. There's a number of ways we could
				   end up in here with it already being locked, and nobody's
				   going to modify it on us anyway because we hold the
				   alloc_sem. We're only changing one ->raw pointer too,
				   which we can get away with without upsetting readers. */
				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
					    ic->state != INO_STATE_CHECKEDABSENT &&
					    ic->state != INO_STATE_GC)) {
				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
				BUG();
			}
		}

		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);

		if (adjust_ref) {
			BUG_ON(*adjust_ref != raw);
			*adjust_ref = new_ref;
		}
		if (f)
			jffs2_gc_release_inode(c, f);

		if (!ref_obsolete(raw)) {
			jeb->dirty_size += rawlen;
			jeb->used_size  -= rawlen;
			c->dirty_size += rawlen;
			c->used_size -= rawlen;
			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
			BUG_ON(raw->next_in_ino);
		}
		ofs += rawlen;
	}

	kfree(buf);

	/* Fix up the original jeb now it's on the bad_list */
	if (first_raw == jeb->first_node) {
		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
		list_move(&jeb->list, &c->erase_pending_list);
		c->nr_erasing_blocks++;
		jffs2_erase_pending_trigger(c);
	}

	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);

	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);

	spin_unlock(&c->erase_completion_lock);

	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));

}

/* Meaning of pad argument:
   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
   1: Pad, do not adjust nextblock free_size
   2: Pad, adjust nextblock free_size
*/
#define NOPAD		0
#define PAD_NOACCOUNT	1
#define PAD_ACCOUNTING	2

static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
{
	struct jffs2_eraseblock *wbuf_jeb;
	int ret;
	size_t retlen;

	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
	   del_timer() the timer we never initialised. */
	if (!jffs2_is_writebuffered(c))
		return 0;

	if (mutex_trylock(&c->alloc_sem)) {
		mutex_unlock(&c->alloc_sem);
		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
		BUG();
	}

	if (!c->wbuf_len)	/* already checked c->wbuf above */
		return 0;

	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
		return -ENOMEM;

	/* claim remaining space on the page
	   this happens, if we have a change to a new block,
	   or if fsync forces us to flush the writebuffer.
	   if we have a switch to next page, we will not have
	   enough remaining space for this.
	*/
	if (pad ) {
		c->wbuf_len = PAD(c->wbuf_len);

		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
		   with 8 byte page size */
		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);

		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
		}
	}
	/* else jffs2_flash_writev has actually filled in the rest of the
	   buffer for us, and will deal with the node refs etc. later. */

#ifdef BREAKME
	static int breakme;
	if (breakme++ == 20) {
		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
		breakme = 0;
		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
			      brokenbuf);
		ret = -EIO;
	} else
#endif

		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);

	if (ret) {
		printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
		goto wfail;
	} else if (retlen != c->wbuf_pagesize) {
		printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
		       retlen, c->wbuf_pagesize);
		ret = -EIO;
		goto wfail;
	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
	wfail:
		jffs2_wbuf_recover(c);

		return ret;
	}

	/* Adjust free size of the block if we padded. */
	if (pad) {
		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;

		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));

		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
		   padded. If there is less free space in the block than that,
		   something screwed up */
		if (wbuf_jeb->free_size < waste) {
			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
			       c->wbuf_ofs, c->wbuf_len, waste);
			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
			       wbuf_jeb->offset, wbuf_jeb->free_size);
			BUG();
		}

		spin_lock(&c->erase_completion_lock);

		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
		/* FIXME: that made it count as dirty. Convert to wasted */
		wbuf_jeb->dirty_size -= waste;
		c->dirty_size -= waste;
		wbuf_jeb->wasted_size += waste;
		c->wasted_size += waste;
	} else
		spin_lock(&c->erase_completion_lock);

	/* Stick any now-obsoleted blocks on the erase_pending_list */
	jffs2_refile_wbuf_blocks(c);
	jffs2_clear_wbuf_ino_list(c);
	spin_unlock(&c->erase_completion_lock);

	memset(c->wbuf,0xff,c->wbuf_pagesize);
	/* adjust write buffer offset, else we get a non contiguous write bug */
	c->wbuf_ofs += c->wbuf_pagesize;
	c->wbuf_len = 0;
	return 0;
}

/* Trigger garbage collection to flush the write-buffer.
   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
   outstanding. If ino arg non-zero, do it only if a write for the
   given inode is outstanding. */
int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
{
	uint32_t old_wbuf_ofs;
	uint32_t old_wbuf_len;
	int ret = 0;

	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));

	if (!c->wbuf)
		return 0;

	mutex_lock(&c->alloc_sem);
	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
		mutex_unlock(&c->alloc_sem);
		return 0;
	}

	old_wbuf_ofs = c->wbuf_ofs;
	old_wbuf_len = c->wbuf_len;

	if (c->unchecked_size) {
		/* GC won't make any progress for a while */
		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
		down_write(&c->wbuf_sem);
		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
		/* retry flushing wbuf in case jffs2_wbuf_recover
		   left some data in the wbuf */
		if (ret)
			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
		up_write(&c->wbuf_sem);
	} else while (old_wbuf_len &&
		      old_wbuf_ofs == c->wbuf_ofs) {

		mutex_unlock(&c->alloc_sem);

		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));

		ret = jffs2_garbage_collect_pass(c);
		if (ret) {
			/* GC failed. Flush it with padding instead */
			mutex_lock(&c->alloc_sem);
			down_write(&c->wbuf_sem);
			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
			/* retry flushing wbuf in case jffs2_wbuf_recover
			   left some data in the wbuf */
			if (ret)
				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
			up_write(&c->wbuf_sem);
			break;
		}
		mutex_lock(&c->alloc_sem);
	}

	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));

	mutex_unlock(&c->alloc_sem);
	return ret;
}

/* Pad write-buffer to end and write it, wasting space. */
int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
{
	int ret;

	if (!c->wbuf)
		return 0;

	down_write(&c->wbuf_sem);
	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
	/* retry - maybe wbuf recover left some data in wbuf. */
	if (ret)
		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
	up_write(&c->wbuf_sem);

	return ret;
}

static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
			      size_t len)
{
	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
		return 0;

	if (len > (c->wbuf_pagesize - c->wbuf_len))
		len = c->wbuf_pagesize - c->wbuf_len;
	memcpy(c->wbuf + c->wbuf_len, buf, len);
	c->wbuf_len += (uint32_t) len;
	return len;
}

int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
		       unsigned long count, loff_t to, size_t *retlen,
		       uint32_t ino)
{
	struct jffs2_eraseblock *jeb;
	size_t wbuf_retlen, donelen = 0;
	uint32_t outvec_to = to;
	int ret, invec;

	/* If not writebuffered flash, don't bother */
	if (!jffs2_is_writebuffered(c))
		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);

	down_write(&c->wbuf_sem);

	/* If wbuf_ofs is not initialized, set it to target address */
	if (c->wbuf_ofs == 0xFFFFFFFF) {
		c->wbuf_ofs = PAGE_DIV(to);
		c->wbuf_len = PAGE_MOD(to);
		memset(c->wbuf,0xff,c->wbuf_pagesize);
	}

	/*
	 * Sanity checks on target address.  It's permitted to write
	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
	 * write at the beginning of a new erase block. Anything else,
	 * and you die.  New block starts at xxx000c (0-b = block
	 * header)
	 */
	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
		/* It's a write to a new block */
		if (c->wbuf_len) {
			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
				  "causes flush of wbuf at 0x%08x\n",
				  (unsigned long)to, c->wbuf_ofs));
			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
			if (ret)
				goto outerr;
		}
		/* set pointer to new block */
		c->wbuf_ofs = PAGE_DIV(to);
		c->wbuf_len = PAGE_MOD(to);
	}

	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
		/* We're not writing immediately after the writebuffer. Bad. */
		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
		       "to %08lx\n", (unsigned long)to);
		if (c->wbuf_len)
			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
		BUG();
	}

	/* adjust alignment offset */
	if (c->wbuf_len != PAGE_MOD(to)) {
		c->wbuf_len = PAGE_MOD(to);
		/* take care of alignment to next page */
		if (!c->wbuf_len) {
			c->wbuf_len = c->wbuf_pagesize;
			ret = __jffs2_flush_wbuf(c, NOPAD);
			if (ret)
				goto outerr;
		}
	}

	for (invec = 0; invec < count; invec++) {
		int vlen = invecs[invec].iov_len;
		uint8_t *v = invecs[invec].iov_base;

		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);

		if (c->wbuf_len == c->wbuf_pagesize) {
			ret = __jffs2_flush_wbuf(c, NOPAD);
			if (ret)
				goto outerr;
		}
		vlen -= wbuf_retlen;
		outvec_to += wbuf_retlen;
		donelen += wbuf_retlen;
		v += wbuf_retlen;

		if (vlen >= c->wbuf_pagesize) {
			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
					    &wbuf_retlen, v);
			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
				goto outfile;

			vlen -= wbuf_retlen;
			outvec_to += wbuf_retlen;
			c->wbuf_ofs = outvec_to;
			donelen += wbuf_retlen;
			v += wbuf_retlen;
		}

		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
		if (c->wbuf_len == c->wbuf_pagesize) {
			ret = __jffs2_flush_wbuf(c, NOPAD);
			if (ret)
				goto outerr;
		}

		outvec_to += wbuf_retlen;
		donelen += wbuf_retlen;
	}

	/*
	 * If there's a remainder in the wbuf and it's a non-GC write,
	 * remember that the wbuf affects this ino
	 */
	*retlen = donelen;

	if (jffs2_sum_active()) {
		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
		if (res)
			return res;
	}

	if (c->wbuf_len && ino)
		jffs2_wbuf_dirties_inode(c, ino);

	ret = 0;
	up_write(&c->wbuf_sem);
	return ret;

outfile:
	/*
	 * At this point we have no problem, c->wbuf is empty. However
	 * refile nextblock to avoid writing again to same address.
	 */

	spin_lock(&c->erase_completion_lock);

	jeb = &c->blocks[outvec_to / c->sector_size];
	jffs2_block_refile(c, jeb, REFILE_ANYWAY);

	spin_unlock(&c->erase_completion_lock);

outerr:
	*retlen = 0;
	up_write(&c->wbuf_sem);
	return ret;
}

/*
 *	This is the entry for flash write.
 *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
*/
int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
		      size_t *retlen, const u_char *buf)
{
	struct kvec vecs[1];

	if (!jffs2_is_writebuffered(c))
		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);

	vecs[0].iov_base = (unsigned char *) buf;
	vecs[0].iov_len = len;
	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
}

/*
	Handle readback from writebuffer and ECC failure return
*/
int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
{
	loff_t	orbf = 0, owbf = 0, lwbf = 0;
	int	ret;

	if (!jffs2_is_writebuffered(c))
		return c->mtd->read(c->mtd, ofs, len, retlen, buf);

	/* Read flash */
	down_read(&c->wbuf_sem);
	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);

	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
		if (ret == -EBADMSG)
			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
			       " returned ECC error\n", len, ofs);
		/*
		 * We have the raw data without ECC correction in the buffer,
		 * maybe we are lucky and all data or parts are correct. We
		 * check the node.  If data are corrupted node check will sort
		 * it out.  We keep this block, it will fail on write or erase
		 * and the we mark it bad. Or should we do that now? But we
		 * should give him a chance.  Maybe we had a system crash or
		 * power loss before the ecc write or a erase was completed.
		 * So we return success. :)
		 */
		ret = 0;
	}

	/* if no writebuffer available or write buffer empty, return */
	if (!c->wbuf_pagesize || !c->wbuf_len)
		goto exit;

	/* if we read in a different block, return */
	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
		goto exit;

	if (ofs >= c->wbuf_ofs) {
		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
			goto exit;
		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
		if (lwbf > len)
			lwbf = len;
	} else {
		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
		if (orbf > len)			/* is write beyond write buffer ? */
			goto exit;
		lwbf = len - orbf;		/* number of bytes to copy */
		if (lwbf > c->wbuf_len)
			lwbf = c->wbuf_len;
	}
	if (lwbf > 0)
		memcpy(buf+orbf,c->wbuf+owbf,lwbf);

exit:
	up_read(&c->wbuf_sem);
	return ret;
}

#define NR_OOB_SCAN_PAGES 4

/* For historical reasons we use only 8 bytes for OOB clean marker */
#define OOB_CM_SIZE 8

static const struct jffs2_unknown_node oob_cleanmarker =
{
	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
	.totlen = constant_cpu_to_je32(8)
};

/*
 * Check, if the out of band area is empty. This function knows about the clean
 * marker and if it is present in OOB, treats the OOB as empty anyway.
 */
int jffs2_check_oob_empty(struct jffs2_sb_info *c,
			  struct jffs2_eraseblock *jeb, int mode)
{
	int i, ret;
	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
	struct mtd_oob_ops ops;

	ops.mode = MTD_OOB_AUTO;
	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
	ops.oobbuf = c->oobbuf;
	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
	ops.datbuf = NULL;

	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
	if (ret || ops.oobretlen != ops.ooblen) {
		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
				" bytes, read %zd bytes, error %d\n",
				jeb->offset, ops.ooblen, ops.oobretlen, ret);
		if (!ret)
			ret = -EIO;
		return ret;
	}

	for(i = 0; i < ops.ooblen; i++) {
		if (mode && i < cmlen)
			/* Yeah, we know about the cleanmarker */
			continue;

		if (ops.oobbuf[i] != 0xFF) {
			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
			return 1;
		}
	}

	return 0;
}

/*
 * Check for a valid cleanmarker.
 * Returns: 0 if a valid cleanmarker was found
 *	    1 if no cleanmarker was found
 *	    negative error code if an error occurred
 */
int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
				 struct jffs2_eraseblock *jeb)
{
	struct mtd_oob_ops ops;
	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);

	ops.mode = MTD_OOB_AUTO;
	ops.ooblen = cmlen;
	ops.oobbuf = c->oobbuf;
	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
	ops.datbuf = NULL;

	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
	if (ret || ops.oobretlen != ops.ooblen) {
		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
				" bytes, read %zd bytes, error %d\n",
				jeb->offset, ops.ooblen, ops.oobretlen, ret);
		if (!ret)
			ret = -EIO;
		return ret;
	}

	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
}

int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
				 struct jffs2_eraseblock *jeb)
{
	int ret;
	struct mtd_oob_ops ops;
	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);

	ops.mode = MTD_OOB_AUTO;
	ops.ooblen = cmlen;
	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
	ops.datbuf = NULL;

	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
	if (ret || ops.oobretlen != ops.ooblen) {
		printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
				" bytes, read %zd bytes, error %d\n",
				jeb->offset, ops.ooblen, ops.oobretlen, ret);
		if (!ret)
			ret = -EIO;
		return ret;
	}

	return 0;
}

/*
 * On NAND we try to mark this block bad. If the block was erased more
 * than MAX_ERASE_FAILURES we mark it finaly bad.
 * Don't care about failures. This block remains on the erase-pending
 * or badblock list as long as nobody manipulates the flash with
 * a bootloader or something like that.
 */

int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
{
	int 	ret;

	/* if the count is < max, we try to write the counter to the 2nd page oob area */
	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
		return 0;

	if (!c->mtd->block_markbad)
		return 1; // What else can we do?

	printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
	ret = c->mtd->block_markbad(c->mtd, bad_offset);

	if (ret) {
		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
		return ret;
	}
	return 1;
}

int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
{
	struct nand_ecclayout *oinfo = c->mtd->ecclayout;

	if (!c->mtd->oobsize)
		return 0;

	/* Cleanmarker is out-of-band, so inline size zero */
	c->cleanmarker_size = 0;

	if (!oinfo || oinfo->oobavail == 0) {
		printk(KERN_ERR "inconsistent device description\n");
		return -EINVAL;
	}

	D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));

	c->oobavail = oinfo->oobavail;

	/* Initialise write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = c->mtd->writesize;
	c->wbuf_ofs = 0xFFFFFFFF;

	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
	if (!c->oobbuf) {
		kfree(c->wbuf);
		return -ENOMEM;
	}

#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf_verify) {
		kfree(c->oobbuf);
		kfree(c->wbuf);
		return -ENOMEM;
	}
#endif
	return 0;
}

void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
{
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	kfree(c->wbuf_verify);
#endif
	kfree(c->wbuf);
	kfree(c->oobbuf);
}

int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
	c->cleanmarker_size = 0;		/* No cleanmarkers needed */

	/* Initialize write buffer */
	init_rwsem(&c->wbuf_sem);


	c->wbuf_pagesize =  c->mtd->erasesize;

	/* Find a suitable c->sector_size
	 * - Not too much sectors
	 * - Sectors have to be at least 4 K + some bytes
	 * - All known dataflashes have erase sizes of 528 or 1056
	 * - we take at least 8 eraseblocks and want to have at least 8K size
	 * - The concatenation should be a power of 2
	*/

	c->sector_size = 8 * c->mtd->erasesize;

	while (c->sector_size < 8192) {
		c->sector_size *= 2;
	}

	/* It may be necessary to adjust the flash size */
	c->flash_size = c->mtd->size;

	if ((c->flash_size % c->sector_size) != 0) {
		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
	};

	c->wbuf_ofs = 0xFFFFFFFF;
	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf_verify) {
		kfree(c->oobbuf);
		kfree(c->wbuf);
		return -ENOMEM;
	}
#endif

	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);

	return 0;
}

void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	kfree(c->wbuf_verify);
#endif
	kfree(c->wbuf);
}

int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
	/* Cleanmarker currently occupies whole programming regions,
	 * either one or 2 for 8Byte STMicro flashes. */
	c->cleanmarker_size = max(16u, c->mtd->writesize);

	/* Initialize write buffer */
	init_rwsem(&c->wbuf_sem);
	c->wbuf_pagesize = c->mtd->writesize;
	c->wbuf_ofs = 0xFFFFFFFF;

	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf_verify) {
		kfree(c->wbuf);
		return -ENOMEM;
	}
#endif
	return 0;
}

void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
	kfree(c->wbuf_verify);
#endif
	kfree(c->wbuf);
}

int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
	c->cleanmarker_size = 0;

	if (c->mtd->writesize == 1)
		/* We do not need write-buffer */
		return 0;

	init_rwsem(&c->wbuf_sem);

	c->wbuf_pagesize =  c->mtd->writesize;
	c->wbuf_ofs = 0xFFFFFFFF;
	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
	if (!c->wbuf)
		return -ENOMEM;

	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);

	return 0;
}

void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
	kfree(c->wbuf);
}