lirc_sir.c 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
 *
 * lirc_sir - Device driver for use with SIR (serial infra red)
 * mode of IrDA on many notebooks.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *
 * 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
 *  added timeout and relaxed pulse detection, removed gap bug
 *
 * 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
 *   added support for Tekram Irmate 210 (sending does not work yet,
 *   kind of disappointing that nobody was able to implement that
 *   before),
 *   major clean-up
 *
 * 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
 *   added support for StrongARM SA1100 embedded microprocessor
 *   parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
 */

#include <linux/module.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/serial_reg.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <asm/system.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <linux/fcntl.h>
#ifdef LIRC_ON_SA1100
#include <asm/hardware.h>
#ifdef CONFIG_SA1100_COLLIE
#include <asm/arch/tc35143.h>
#include <asm/ucb1200.h>
#endif
#endif

#include <linux/timer.h>

#include <media/lirc.h>
#include <media/lirc_dev.h>

/* SECTION: Definitions */

/*** Tekram dongle ***/
#ifdef LIRC_SIR_TEKRAM
/* stolen from kernel source */
/* definitions for Tekram dongle */
#define TEKRAM_115200 0x00
#define TEKRAM_57600  0x01
#define TEKRAM_38400  0x02
#define TEKRAM_19200  0x03
#define TEKRAM_9600   0x04
#define TEKRAM_2400   0x08

#define TEKRAM_PW 0x10 /* Pulse select bit */

/* 10bit * 1s/115200bit in milliseconds = 87ms*/
#define TIME_CONST (10000000ul/115200ul)

#endif

#ifdef LIRC_SIR_ACTISYS_ACT200L
static void init_act200(void);
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
static void init_act220(void);
#endif

/*** SA1100 ***/
#ifdef LIRC_ON_SA1100
struct sa1100_ser2_registers {
	/* HSSP control register */
	unsigned char hscr0;
	/* UART registers */
	unsigned char utcr0;
	unsigned char utcr1;
	unsigned char utcr2;
	unsigned char utcr3;
	unsigned char utcr4;
	unsigned char utdr;
	unsigned char utsr0;
	unsigned char utsr1;
} sr;

static int irq = IRQ_Ser2ICP;

#define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0

/* pulse/space ratio of 50/50 */
static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
/* 1000000/freq-pulse_width */
static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
static unsigned int freq = 38000;      /* modulation frequency */
static unsigned int duty_cycle = 50;   /* duty cycle of 50% */

#endif

#define RBUF_LEN 1024
#define WBUF_LEN 1024

#define LIRC_DRIVER_NAME "lirc_sir"

#define PULSE '['

#ifndef LIRC_SIR_TEKRAM
/* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
#define TIME_CONST (9000000ul/115200ul)
#endif


/* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
#define SIR_TIMEOUT	(HZ*5/100)

#ifndef LIRC_ON_SA1100
#ifndef LIRC_IRQ
#define LIRC_IRQ 4
#endif
#ifndef LIRC_PORT
/* for external dongles, default to com1 */
#if defined(LIRC_SIR_ACTISYS_ACT200L)         || \
	    defined(LIRC_SIR_ACTISYS_ACT220L) || \
	    defined(LIRC_SIR_TEKRAM)
#define LIRC_PORT 0x3f8
#else
/* onboard sir ports are typically com3 */
#define LIRC_PORT 0x3e8
#endif
#endif

static int io = LIRC_PORT;
static int irq = LIRC_IRQ;
static int threshold = 3;
#endif

static DEFINE_SPINLOCK(timer_lock);
static struct timer_list timerlist;
/* time of last signal change detected */
static struct timeval last_tv = {0, 0};
/* time of last UART data ready interrupt */
static struct timeval last_intr_tv = {0, 0};
static int last_value;

static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);

static DEFINE_SPINLOCK(hardware_lock);

static int rx_buf[RBUF_LEN];
static unsigned int rx_tail, rx_head;

static int debug;
#define dprintk(fmt, args...)						\
	do {								\
		if (debug)						\
			printk(KERN_DEBUG LIRC_DRIVER_NAME ": "		\
				fmt, ## args);				\
	} while (0)

/* SECTION: Prototypes */

/* Communication with user-space */
static unsigned int lirc_poll(struct file *file, poll_table *wait);
static ssize_t lirc_read(struct file *file, char *buf, size_t count,
		loff_t *ppos);
static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
		loff_t *pos);
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
static void add_read_queue(int flag, unsigned long val);
static int init_chrdev(void);
static void drop_chrdev(void);
/* Hardware */
static irqreturn_t sir_interrupt(int irq, void *dev_id);
static void send_space(unsigned long len);
static void send_pulse(unsigned long len);
static int init_hardware(void);
static void drop_hardware(void);
/* Initialisation */
static int init_port(void);
static void drop_port(void);

#ifdef LIRC_ON_SA1100
static void on(void)
{
	PPSR |= PPC_TXD2;
}

static void off(void)
{
	PPSR &= ~PPC_TXD2;
}
#else
static inline unsigned int sinp(int offset)
{
	return inb(io + offset);
}

static inline void soutp(int offset, int value)
{
	outb(value, io + offset);
}
#endif

#ifndef MAX_UDELAY_MS
#define MAX_UDELAY_US 5000
#else
#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
#endif

static void safe_udelay(unsigned long usecs)
{
	while (usecs > MAX_UDELAY_US) {
		udelay(MAX_UDELAY_US);
		usecs -= MAX_UDELAY_US;
	}
	udelay(usecs);
}

/* SECTION: Communication with user-space */

static unsigned int lirc_poll(struct file *file, poll_table *wait)
{
	poll_wait(file, &lirc_read_queue, wait);
	if (rx_head != rx_tail)
		return POLLIN | POLLRDNORM;
	return 0;
}

static ssize_t lirc_read(struct file *file, char *buf, size_t count,
		loff_t *ppos)
{
	int n = 0;
	int retval = 0;
	DECLARE_WAITQUEUE(wait, current);

	if (count % sizeof(int))
		return -EINVAL;

	add_wait_queue(&lirc_read_queue, &wait);
	set_current_state(TASK_INTERRUPTIBLE);
	while (n < count) {
		if (rx_head != rx_tail) {
			if (copy_to_user((void *) buf + n,
					(void *) (rx_buf + rx_head),
					sizeof(int))) {
				retval = -EFAULT;
				break;
			}
			rx_head = (rx_head + 1) & (RBUF_LEN - 1);
			n += sizeof(int);
		} else {
			if (file->f_flags & O_NONBLOCK) {
				retval = -EAGAIN;
				break;
			}
			if (signal_pending(current)) {
				retval = -ERESTARTSYS;
				break;
			}
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
		}
	}
	remove_wait_queue(&lirc_read_queue, &wait);
	set_current_state(TASK_RUNNING);
	return n ? n : retval;
}
static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
				loff_t *pos)
{
	unsigned long flags;
	int i, count;
	int *tx_buf;

	count = n / sizeof(int);
	if (n % sizeof(int) || count % 2 == 0)
		return -EINVAL;
	tx_buf = memdup_user(buf, n);
	if (IS_ERR(tx_buf))
		return PTR_ERR(tx_buf);
	i = 0;
#ifdef LIRC_ON_SA1100
	/* disable receiver */
	Ser2UTCR3 = 0;
#endif
	local_irq_save(flags);
	while (1) {
		if (i >= count)
			break;
		if (tx_buf[i])
			send_pulse(tx_buf[i]);
		i++;
		if (i >= count)
			break;
		if (tx_buf[i])
			send_space(tx_buf[i]);
		i++;
	}
	local_irq_restore(flags);
#ifdef LIRC_ON_SA1100
	off();
	udelay(1000); /* wait 1ms for IR diode to recover */
	Ser2UTCR3 = 0;
	/* clear status register to prevent unwanted interrupts */
	Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
	/* enable receiver */
	Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
#endif
	kfree(tx_buf);
	return count;
}

static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
	int retval = 0;
	__u32 value = 0;
#ifdef LIRC_ON_SA1100

	if (cmd == LIRC_GET_FEATURES)
		value = LIRC_CAN_SEND_PULSE |
			LIRC_CAN_SET_SEND_DUTY_CYCLE |
			LIRC_CAN_SET_SEND_CARRIER |
			LIRC_CAN_REC_MODE2;
	else if (cmd == LIRC_GET_SEND_MODE)
		value = LIRC_MODE_PULSE;
	else if (cmd == LIRC_GET_REC_MODE)
		value = LIRC_MODE_MODE2;
#else
	if (cmd == LIRC_GET_FEATURES)
		value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
	else if (cmd == LIRC_GET_SEND_MODE)
		value = LIRC_MODE_PULSE;
	else if (cmd == LIRC_GET_REC_MODE)
		value = LIRC_MODE_MODE2;
#endif

	switch (cmd) {
	case LIRC_GET_FEATURES:
	case LIRC_GET_SEND_MODE:
	case LIRC_GET_REC_MODE:
		retval = put_user(value, (__u32 *) arg);
		break;

	case LIRC_SET_SEND_MODE:
	case LIRC_SET_REC_MODE:
		retval = get_user(value, (__u32 *) arg);
		break;
#ifdef LIRC_ON_SA1100
	case LIRC_SET_SEND_DUTY_CYCLE:
		retval = get_user(value, (__u32 *) arg);
		if (retval)
			return retval;
		if (value <= 0 || value > 100)
			return -EINVAL;
		/* (value/100)*(1000000/freq) */
		duty_cycle = value;
		pulse_width = (unsigned long) duty_cycle*10000/freq;
		space_width = (unsigned long) 1000000L/freq-pulse_width;
		if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
			pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
		if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
			space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
		break;
	case LIRC_SET_SEND_CARRIER:
		retval = get_user(value, (__u32 *) arg);
		if (retval)
			return retval;
		if (value > 500000 || value < 20000)
			return -EINVAL;
		freq = value;
		pulse_width = (unsigned long) duty_cycle*10000/freq;
		space_width = (unsigned long) 1000000L/freq-pulse_width;
		if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
			pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
		if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
			space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
		break;
#endif
	default:
		retval = -ENOIOCTLCMD;

	}

	if (retval)
		return retval;
	if (cmd == LIRC_SET_REC_MODE) {
		if (value != LIRC_MODE_MODE2)
			retval = -ENOSYS;
	} else if (cmd == LIRC_SET_SEND_MODE) {
		if (value != LIRC_MODE_PULSE)
			retval = -ENOSYS;
	}

	return retval;
}

static void add_read_queue(int flag, unsigned long val)
{
	unsigned int new_rx_tail;
	int newval;

	dprintk("add flag %d with val %lu\n", flag, val);

	newval = val & PULSE_MASK;

	/*
	 * statistically, pulses are ~TIME_CONST/2 too long. we could
	 * maybe make this more exact, but this is good enough
	 */
	if (flag) {
		/* pulse */
		if (newval > TIME_CONST/2)
			newval -= TIME_CONST/2;
		else /* should not ever happen */
			newval = 1;
		newval |= PULSE_BIT;
	} else {
		newval += TIME_CONST/2;
	}
	new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
	if (new_rx_tail == rx_head) {
		dprintk("Buffer overrun.\n");
		return;
	}
	rx_buf[rx_tail] = newval;
	rx_tail = new_rx_tail;
	wake_up_interruptible(&lirc_read_queue);
}

static const struct file_operations lirc_fops = {
	.owner		= THIS_MODULE,
	.read		= lirc_read,
	.write		= lirc_write,
	.poll		= lirc_poll,
	.unlocked_ioctl	= lirc_ioctl,
#ifdef CONFIG_COMPAT
	.compat_ioctl	= lirc_ioctl,
#endif
	.open		= lirc_dev_fop_open,
	.release	= lirc_dev_fop_close,
	.llseek		= no_llseek,
};

static int set_use_inc(void *data)
{
	return 0;
}

static void set_use_dec(void *data)
{
}

static struct lirc_driver driver = {
	.name		= LIRC_DRIVER_NAME,
	.minor		= -1,
	.code_length	= 1,
	.sample_rate	= 0,
	.data		= NULL,
	.add_to_buf	= NULL,
	.set_use_inc	= set_use_inc,
	.set_use_dec	= set_use_dec,
	.fops		= &lirc_fops,
	.dev		= NULL,
	.owner		= THIS_MODULE,
};


static int init_chrdev(void)
{
	driver.minor = lirc_register_driver(&driver);
	if (driver.minor < 0) {
		printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
		return -EIO;
	}
	return 0;
}

static void drop_chrdev(void)
{
	lirc_unregister_driver(driver.minor);
}

/* SECTION: Hardware */
static long delta(struct timeval *tv1, struct timeval *tv2)
{
	unsigned long deltv;

	deltv = tv2->tv_sec - tv1->tv_sec;
	if (deltv > 15)
		deltv = 0xFFFFFF;
	else
		deltv = deltv*1000000 +
			tv2->tv_usec -
			tv1->tv_usec;
	return deltv;
}

static void sir_timeout(unsigned long data)
{
	/*
	 * if last received signal was a pulse, but receiving stopped
	 * within the 9 bit frame, we need to finish this pulse and
	 * simulate a signal change to from pulse to space. Otherwise
	 * upper layers will receive two sequences next time.
	 */

	unsigned long flags;
	unsigned long pulse_end;

	/* avoid interference with interrupt */
	spin_lock_irqsave(&timer_lock, flags);
	if (last_value) {
#ifndef LIRC_ON_SA1100
		/* clear unread bits in UART and restart */
		outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
#endif
		/* determine 'virtual' pulse end: */
		pulse_end = delta(&last_tv, &last_intr_tv);
		dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
		add_read_queue(last_value, pulse_end);
		last_value = 0;
		last_tv = last_intr_tv;
	}
	spin_unlock_irqrestore(&timer_lock, flags);
}

static irqreturn_t sir_interrupt(int irq, void *dev_id)
{
	unsigned char data;
	struct timeval curr_tv;
	static unsigned long deltv;
#ifdef LIRC_ON_SA1100
	int status;
	static int n;

	status = Ser2UTSR0;
	/*
	 * Deal with any receive errors first.  The bytes in error may be
	 * the only bytes in the receive FIFO, so we do this first.
	 */
	while (status & UTSR0_EIF) {
		int bstat;

		if (debug) {
			dprintk("EIF\n");
			bstat = Ser2UTSR1;

			if (bstat & UTSR1_FRE)
				dprintk("frame error\n");
			if (bstat & UTSR1_ROR)
				dprintk("receive fifo overrun\n");
			if (bstat & UTSR1_PRE)
				dprintk("parity error\n");
		}

		bstat = Ser2UTDR;
		n++;
		status = Ser2UTSR0;
	}

	if (status & (UTSR0_RFS | UTSR0_RID)) {
		do_gettimeofday(&curr_tv);
		deltv = delta(&last_tv, &curr_tv);
		do {
			data = Ser2UTDR;
			dprintk("%d data: %u\n", n, (unsigned int) data);
			n++;
		} while (status & UTSR0_RID && /* do not empty fifo in order to
						* get UTSR0_RID in any case */
		      Ser2UTSR1 & UTSR1_RNE); /* data ready */

		if (status&UTSR0_RID) {
			add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
			add_read_queue(1, n * TIME_CONST); /*pulse*/
			n = 0;
			last_tv = curr_tv;
		}
	}

	if (status & UTSR0_TFS)
		printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");

	/* We must clear certain bits. */
	status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
	if (status)
		Ser2UTSR0 = status;
#else
	unsigned long deltintrtv;
	unsigned long flags;
	int iir, lsr;

	while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
		switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
		case UART_IIR_MSI:
			(void) inb(io + UART_MSR);
			break;
		case UART_IIR_RLSI:
			(void) inb(io + UART_LSR);
			break;
		case UART_IIR_THRI:
#if 0
			if (lsr & UART_LSR_THRE) /* FIFO is empty */
				outb(data, io + UART_TX)
#endif
			break;
		case UART_IIR_RDI:
			/* avoid interference with timer */
			spin_lock_irqsave(&timer_lock, flags);
			do {
				del_timer(&timerlist);
				data = inb(io + UART_RX);
				do_gettimeofday(&curr_tv);
				deltv = delta(&last_tv, &curr_tv);
				deltintrtv = delta(&last_intr_tv, &curr_tv);
				dprintk("t %lu, d %d\n", deltintrtv, (int)data);
				/*
				 * if nothing came in last X cycles,
				 * it was gap
				 */
				if (deltintrtv > TIME_CONST * threshold) {
					if (last_value) {
						dprintk("GAP\n");
						/* simulate signal change */
						add_read_queue(last_value,
							       deltv -
							       deltintrtv);
						last_value = 0;
						last_tv.tv_sec =
							last_intr_tv.tv_sec;
						last_tv.tv_usec =
							last_intr_tv.tv_usec;
						deltv = deltintrtv;
					}
				}
				data = 1;
				if (data ^ last_value) {
					/*
					 * deltintrtv > 2*TIME_CONST, remember?
					 * the other case is timeout
					 */
					add_read_queue(last_value,
						       deltv-TIME_CONST);
					last_value = data;
					last_tv = curr_tv;
					if (last_tv.tv_usec >= TIME_CONST) {
						last_tv.tv_usec -= TIME_CONST;
					} else {
						last_tv.tv_sec--;
						last_tv.tv_usec += 1000000 -
							TIME_CONST;
					}
				}
				last_intr_tv = curr_tv;
				if (data) {
					/*
					 * start timer for end of
					 * sequence detection
					 */
					timerlist.expires = jiffies +
								SIR_TIMEOUT;
					add_timer(&timerlist);
				}

				lsr = inb(io + UART_LSR);
			} while (lsr & UART_LSR_DR); /* data ready */
			spin_unlock_irqrestore(&timer_lock, flags);
			break;
		default:
			break;
		}
	}
#endif
	return IRQ_RETVAL(IRQ_HANDLED);
}

#ifdef LIRC_ON_SA1100
static void send_pulse(unsigned long length)
{
	unsigned long k, delay;
	int flag;

	if (length == 0)
		return;
	/*
	 * this won't give us the carrier frequency we really want
	 * due to integer arithmetic, but we can accept this inaccuracy
	 */

	for (k = flag = 0; k < length; k += delay, flag = !flag) {
		if (flag) {
			off();
			delay = space_width;
		} else {
			on();
			delay = pulse_width;
		}
		safe_udelay(delay);
	}
	off();
}

static void send_space(unsigned long length)
{
	if (length == 0)
		return;
	off();
	safe_udelay(length);
}
#else
static void send_space(unsigned long len)
{
	safe_udelay(len);
}

static void send_pulse(unsigned long len)
{
	long bytes_out = len / TIME_CONST;

	if (bytes_out == 0)
		bytes_out++;

	while (bytes_out--) {
		outb(PULSE, io + UART_TX);
		/* FIXME treba seriozne cakanie z char/serial.c */
		while (!(inb(io + UART_LSR) & UART_LSR_THRE))
			;
	}
}
#endif

#ifdef CONFIG_SA1100_COLLIE
static int sa1100_irda_set_power_collie(int state)
{
	if (state) {
		/*
		 *  0 - off
		 *  1 - short range, lowest power
		 *  2 - medium range, medium power
		 *  3 - maximum range, high power
		 */
		ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
					 TC35143_IODIR_OUTPUT);
		ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
		udelay(100);
	} else {
		/* OFF */
		ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
					 TC35143_IODIR_OUTPUT);
		ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
	}
	return 0;
}
#endif

static int init_hardware(void)
{
	unsigned long flags;

	spin_lock_irqsave(&hardware_lock, flags);
	/* reset UART */
#ifdef LIRC_ON_SA1100
#ifdef CONFIG_SA1100_BITSY
	if (machine_is_bitsy()) {
		printk(KERN_INFO "Power on IR module\n");
		set_bitsy_egpio(EGPIO_BITSY_IR_ON);
	}
#endif
#ifdef CONFIG_SA1100_COLLIE
	sa1100_irda_set_power_collie(3);	/* power on */
#endif
	sr.hscr0 = Ser2HSCR0;

	sr.utcr0 = Ser2UTCR0;
	sr.utcr1 = Ser2UTCR1;
	sr.utcr2 = Ser2UTCR2;
	sr.utcr3 = Ser2UTCR3;
	sr.utcr4 = Ser2UTCR4;

	sr.utdr = Ser2UTDR;
	sr.utsr0 = Ser2UTSR0;
	sr.utsr1 = Ser2UTSR1;

	/* configure GPIO */
	/* output */
	PPDR |= PPC_TXD2;
	PSDR |= PPC_TXD2;
	/* set output to 0 */
	off();

	/* Enable HP-SIR modulation, and ensure that the port is disabled. */
	Ser2UTCR3 = 0;
	Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);

	/* clear status register to prevent unwanted interrupts */
	Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);

	/* 7N1 */
	Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
	/* 115200 */
	Ser2UTCR1 = 0;
	Ser2UTCR2 = 1;
	/* use HPSIR, 1.6 usec pulses */
	Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;

	/* enable receiver, receive fifo interrupt */
	Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;

	/* clear status register to prevent unwanted interrupts */
	Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);

#elif defined(LIRC_SIR_TEKRAM)
	/* disable FIFO */
	soutp(UART_FCR,
	      UART_FCR_CLEAR_RCVR|
	      UART_FCR_CLEAR_XMIT|
	      UART_FCR_TRIGGER_1);

	/* Set DLAB 0. */
	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));

	/* First of all, disable all interrupts */
	soutp(UART_IER, sinp(UART_IER) &
	      (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));

	/* Set DLAB 1. */
	soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);

	/* Set divisor to 12 => 9600 Baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 12);

	/* Set DLAB 0. */
	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));

	/* power supply */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	safe_udelay(50*1000);

	/* -DTR low -> reset PIC */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
	udelay(1*1000);

	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	udelay(100);


	/* -RTS low -> send control byte */
	soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
	udelay(7);
	soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);

	/* one byte takes ~1042 usec to transmit at 9600,8N1 */
	udelay(1500);

	/* back to normal operation */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	udelay(50);

	udelay(1500);

	/* read previous control byte */
	printk(KERN_INFO LIRC_DRIVER_NAME
	       ": 0x%02x\n", sinp(UART_RX));

	/* Set DLAB 1. */
	soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);

	/* Set divisor to 1 => 115200 Baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 1);

	/* Set DLAB 0, 8 Bit */
	soutp(UART_LCR, UART_LCR_WLEN8);
	/* enable interrupts */
	soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
#else
	outb(0, io + UART_MCR);
	outb(0, io + UART_IER);
	/* init UART */
	/* set DLAB, speed = 115200 */
	outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
	outb(1, io + UART_DLL); outb(0, io + UART_DLM);
	/* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
	outb(UART_LCR_WLEN7, io + UART_LCR);
	/* FIFO operation */
	outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
	/* interrupts */
	/* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
	outb(UART_IER_RDI, io + UART_IER);
	/* turn on UART */
	outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
#ifdef LIRC_SIR_ACTISYS_ACT200L
	init_act200();
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
	init_act220();
#endif
#endif
	spin_unlock_irqrestore(&hardware_lock, flags);
	return 0;
}

static void drop_hardware(void)
{
	unsigned long flags;

	spin_lock_irqsave(&hardware_lock, flags);

#ifdef LIRC_ON_SA1100
	Ser2UTCR3 = 0;

	Ser2UTCR0 = sr.utcr0;
	Ser2UTCR1 = sr.utcr1;
	Ser2UTCR2 = sr.utcr2;
	Ser2UTCR4 = sr.utcr4;
	Ser2UTCR3 = sr.utcr3;

	Ser2HSCR0 = sr.hscr0;
#ifdef CONFIG_SA1100_BITSY
	if (machine_is_bitsy())
		clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
#endif
#ifdef CONFIG_SA1100_COLLIE
	sa1100_irda_set_power_collie(0);	/* power off */
#endif
#else
	/* turn off interrupts */
	outb(0, io + UART_IER);
#endif
	spin_unlock_irqrestore(&hardware_lock, flags);
}

/* SECTION: Initialisation */

static int init_port(void)
{
	int retval;

	/* get I/O port access and IRQ line */
#ifndef LIRC_ON_SA1100
	if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
		printk(KERN_ERR LIRC_DRIVER_NAME
		       ": i/o port 0x%.4x already in use.\n", io);
		return -EBUSY;
	}
#endif
	retval = request_irq(irq, sir_interrupt, IRQF_DISABLED,
			     LIRC_DRIVER_NAME, NULL);
	if (retval < 0) {
#               ifndef LIRC_ON_SA1100
		release_region(io, 8);
#               endif
		printk(KERN_ERR LIRC_DRIVER_NAME
			": IRQ %d already in use.\n",
			irq);
		return retval;
	}
#ifndef LIRC_ON_SA1100
	printk(KERN_INFO LIRC_DRIVER_NAME
		": I/O port 0x%.4x, IRQ %d.\n",
		io, irq);
#endif

	init_timer(&timerlist);
	timerlist.function = sir_timeout;
	timerlist.data = 0xabadcafe;

	return 0;
}

static void drop_port(void)
{
	free_irq(irq, NULL);
	del_timer_sync(&timerlist);
#ifndef LIRC_ON_SA1100
	release_region(io, 8);
#endif
}

#ifdef LIRC_SIR_ACTISYS_ACT200L
/* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
/* some code borrowed from Linux IRDA driver */

/* Register 0: Control register #1 */
#define ACT200L_REG0    0x00
#define ACT200L_TXEN    0x01 /* Enable transmitter */
#define ACT200L_RXEN    0x02 /* Enable receiver */
#define ACT200L_ECHO    0x08 /* Echo control chars */

/* Register 1: Control register #2 */
#define ACT200L_REG1    0x10
#define ACT200L_LODB    0x01 /* Load new baud rate count value */
#define ACT200L_WIDE    0x04 /* Expand the maximum allowable pulse */

/* Register 3: Transmit mode register #2 */
#define ACT200L_REG3    0x30
#define ACT200L_B0      0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
#define ACT200L_B1      0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
#define ACT200L_CHSY    0x04 /* StartBit Synced 0=bittime, 1=startbit */

/* Register 4: Output Power register */
#define ACT200L_REG4    0x40
#define ACT200L_OP0     0x01 /* Enable LED1C output */
#define ACT200L_OP1     0x02 /* Enable LED2C output */
#define ACT200L_BLKR    0x04

/* Register 5: Receive Mode register */
#define ACT200L_REG5    0x50
#define ACT200L_RWIDL   0x01 /* fixed 1.6us pulse mode */
    /*.. other various IRDA bit modes, and TV remote modes..*/

/* Register 6: Receive Sensitivity register #1 */
#define ACT200L_REG6    0x60
#define ACT200L_RS0     0x01 /* receive threshold bit 0 */
#define ACT200L_RS1     0x02 /* receive threshold bit 1 */

/* Register 7: Receive Sensitivity register #2 */
#define ACT200L_REG7    0x70
#define ACT200L_ENPOS   0x04 /* Ignore the falling edge */

/* Register 8,9: Baud Rate Divider register #1,#2 */
#define ACT200L_REG8    0x80
#define ACT200L_REG9    0x90

#define ACT200L_2400    0x5f
#define ACT200L_9600    0x17
#define ACT200L_19200   0x0b
#define ACT200L_38400   0x05
#define ACT200L_57600   0x03
#define ACT200L_115200  0x01

/* Register 13: Control register #3 */
#define ACT200L_REG13   0xd0
#define ACT200L_SHDW    0x01 /* Enable access to shadow registers */

/* Register 15: Status register */
#define ACT200L_REG15   0xf0

/* Register 21: Control register #4 */
#define ACT200L_REG21   0x50
#define ACT200L_EXCK    0x02 /* Disable clock output driver */
#define ACT200L_OSCL    0x04 /* oscillator in low power, medium accuracy mode */

static void init_act200(void)
{
	int i;
	__u8 control[] = {
		ACT200L_REG15,
		ACT200L_REG13 | ACT200L_SHDW,
		ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
		ACT200L_REG13,
		ACT200L_REG7  | ACT200L_ENPOS,
		ACT200L_REG6  | ACT200L_RS0  | ACT200L_RS1,
		ACT200L_REG5  | ACT200L_RWIDL,
		ACT200L_REG4  | ACT200L_OP0  | ACT200L_OP1 | ACT200L_BLKR,
		ACT200L_REG3  | ACT200L_B0,
		ACT200L_REG0  | ACT200L_TXEN | ACT200L_RXEN,
		ACT200L_REG8 |  (ACT200L_115200       & 0x0f),
		ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
		ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
	};

	/* Set DLAB 1. */
	soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);

	/* Set divisor to 12 => 9600 Baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 12);

	/* Set DLAB 0. */
	soutp(UART_LCR, UART_LCR_WLEN8);
	/* Set divisor to 12 => 9600 Baud */

	/* power supply */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	for (i = 0; i < 50; i++)
		safe_udelay(1000);

		/* Reset the dongle : set RTS low for 25 ms */
	soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
	for (i = 0; i < 25; i++)
		udelay(1000);

	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	udelay(100);

	/* Clear DTR and set RTS to enter command mode */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
	udelay(7);

	/* send out the control register settings for 115K 7N1 SIR operation */
	for (i = 0; i < sizeof(control); i++) {
		soutp(UART_TX, control[i]);
		/* one byte takes ~1042 usec to transmit at 9600,8N1 */
		udelay(1500);
	}

	/* back to normal operation */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	udelay(50);

	udelay(1500);
	soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);

	/* Set DLAB 1. */
	soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);

	/* Set divisor to 1 => 115200 Baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 1);

	/* Set DLAB 0. */
	soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));

	/* Set DLAB 0, 7 Bit */
	soutp(UART_LCR, UART_LCR_WLEN7);

	/* enable interrupts */
	soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
}
#endif

#ifdef LIRC_SIR_ACTISYS_ACT220L
/*
 * Derived from linux IrDA driver (net/irda/actisys.c)
 * Drop me a mail for any kind of comment: maxx@spaceboyz.net
 */

void init_act220(void)
{
	int i;

	/* DLAB 1 */
	soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);

	/* 9600 baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 12);

	/* DLAB 0 */
	soutp(UART_LCR, UART_LCR_WLEN7);

	/* reset the dongle, set DTR low for 10us */
	soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
	udelay(10);

	/* back to normal (still 9600) */
	soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);

	/*
	 * send RTS pulses until we reach 115200
	 * i hope this is really the same for act220l/act220l+
	 */
	for (i = 0; i < 3; i++) {
		udelay(10);
		/* set RTS low for 10 us */
		soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
		udelay(10);
		/* set RTS high for 10 us */
		soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
	}

	/* back to normal operation */
	udelay(1500); /* better safe than sorry ;) */

	/* Set DLAB 1. */
	soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);

	/* Set divisor to 1 => 115200 Baud */
	soutp(UART_DLM, 0);
	soutp(UART_DLL, 1);

	/* Set DLAB 0, 7 Bit */
	/* The dongle doesn't seem to have any problems with operation at 7N1 */
	soutp(UART_LCR, UART_LCR_WLEN7);

	/* enable interrupts */
	soutp(UART_IER, UART_IER_RDI);
}
#endif

static int init_lirc_sir(void)
{
	int retval;

	init_waitqueue_head(&lirc_read_queue);
	retval = init_port();
	if (retval < 0)
		return retval;
	init_hardware();
	printk(KERN_INFO LIRC_DRIVER_NAME
		": Installed.\n");
	return 0;
}


static int __init lirc_sir_init(void)
{
	int retval;

	retval = init_chrdev();
	if (retval < 0)
		return retval;
	retval = init_lirc_sir();
	if (retval) {
		drop_chrdev();
		return retval;
	}
	return 0;
}

static void __exit lirc_sir_exit(void)
{
	drop_hardware();
	drop_chrdev();
	drop_port();
	printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
}

module_init(lirc_sir_init);
module_exit(lirc_sir_exit);

#ifdef LIRC_SIR_TEKRAM
MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
MODULE_AUTHOR("Christoph Bartelmus");
#elif defined(LIRC_ON_SA1100)
MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
MODULE_AUTHOR("Christoph Bartelmus");
#elif defined(LIRC_SIR_ACTISYS_ACT200L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
MODULE_AUTHOR("Karl Bongers");
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
MODULE_AUTHOR("Jan Roemisch");
#else
MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
MODULE_AUTHOR("Milan Pikula");
#endif
MODULE_LICENSE("GPL");

#ifdef LIRC_ON_SA1100
module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (16)");
#else
module_param(io, int, S_IRUGO);
MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");

module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");

module_param(threshold, int, S_IRUGO);
MODULE_PARM_DESC(threshold, "space detection threshold (3)");
#endif

module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging messages");