Commit 203babb650d0c99a8be08f479d4a05d420988d89

Authored by Stephen Hemminger
Committed by Jeff Garzik
1 parent c68ce71a34

[PATCH] skge: formmating and whitespace cleanup

Reformat some code to make it easier to read. And whitespace
fixes.

Signed-off-by: Stephen Hemminger <sheminger@osdl.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>

Showing 1 changed file with 18 additions and 12 deletions Inline Diff

1 /* 1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and 3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers. 4 * FreeBSD if_sk drivers.
5 * 5 *
6 * This driver intentionally does not support all the features 6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because 7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels. 8 * those should be done at higher levels.
9 * 9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 * 11 *
12 * This program is free software; you can redistribute it and/or modify 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by 13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or 14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version. 15 * (at your option) any later version.
16 * 16 *
17 * This program is distributed in the hope that it will be useful, 17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details. 20 * GNU General Public License for more details.
21 * 21 *
22 * You should have received a copy of the GNU General Public License 22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software 23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */ 25 */
26 26
27 #include <linux/config.h> 27 #include <linux/config.h>
28 #include <linux/in.h> 28 #include <linux/in.h>
29 #include <linux/kernel.h> 29 #include <linux/kernel.h>
30 #include <linux/module.h> 30 #include <linux/module.h>
31 #include <linux/moduleparam.h> 31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h> 32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h> 33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h> 34 #include <linux/ethtool.h>
35 #include <linux/pci.h> 35 #include <linux/pci.h>
36 #include <linux/if_vlan.h> 36 #include <linux/if_vlan.h>
37 #include <linux/ip.h> 37 #include <linux/ip.h>
38 #include <linux/delay.h> 38 #include <linux/delay.h>
39 #include <linux/crc32.h> 39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h> 40 #include <linux/dma-mapping.h>
41 #include <linux/mii.h> 41 #include <linux/mii.h>
42 #include <asm/irq.h> 42 #include <asm/irq.h>
43 43
44 #include "skge.h" 44 #include "skge.h"
45 45
46 #define DRV_NAME "skge" 46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.3" 47 #define DRV_VERSION "1.3"
48 #define PFX DRV_NAME " " 48 #define PFX DRV_NAME " "
49 49
50 #define DEFAULT_TX_RING_SIZE 128 50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512 51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024 52 #define MAX_TX_RING_SIZE 1024
53 #define MAX_RX_RING_SIZE 4096 53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128 54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536 55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000 56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000 57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ) 58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64 59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250 60 #define BLINK_MS 250
61 61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); 63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL"); 64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION); 65 MODULE_VERSION(DRV_VERSION);
66 66
67 static const u32 default_msg 67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK 68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; 69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70 70
71 static int debug = -1; /* defaults above */ 71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0); 72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74 74
75 static const struct pci_device_id skge_id_table[] = { 75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, 76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, 77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, 78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, 79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), }, 80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, 81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
83 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, 83 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, 84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
85 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, }, 85 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
86 { 0 } 86 { 0 }
87 }; 87 };
88 MODULE_DEVICE_TABLE(pci, skge_id_table); 88 MODULE_DEVICE_TABLE(pci, skge_id_table);
89 89
90 static int skge_up(struct net_device *dev); 90 static int skge_up(struct net_device *dev);
91 static int skge_down(struct net_device *dev); 91 static int skge_down(struct net_device *dev);
92 static void skge_phy_reset(struct skge_port *skge); 92 static void skge_phy_reset(struct skge_port *skge);
93 static void skge_tx_clean(struct skge_port *skge); 93 static void skge_tx_clean(struct skge_port *skge);
94 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 94 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
95 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 95 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static void genesis_get_stats(struct skge_port *skge, u64 *data); 96 static void genesis_get_stats(struct skge_port *skge, u64 *data);
97 static void yukon_get_stats(struct skge_port *skge, u64 *data); 97 static void yukon_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_init(struct skge_hw *hw, int port); 98 static void yukon_init(struct skge_hw *hw, int port);
99 static void genesis_mac_init(struct skge_hw *hw, int port); 99 static void genesis_mac_init(struct skge_hw *hw, int port);
100 static void genesis_link_up(struct skge_port *skge); 100 static void genesis_link_up(struct skge_port *skge);
101 101
102 /* Avoid conditionals by using array */ 102 /* Avoid conditionals by using array */
103 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 103 static const int txqaddr[] = { Q_XA1, Q_XA2 };
104 static const int rxqaddr[] = { Q_R1, Q_R2 }; 104 static const int rxqaddr[] = { Q_R1, Q_R2 };
105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
107 107
108 static int skge_get_regs_len(struct net_device *dev) 108 static int skge_get_regs_len(struct net_device *dev)
109 { 109 {
110 return 0x4000; 110 return 0x4000;
111 } 111 }
112 112
113 /* 113 /*
114 * Returns copy of whole control register region 114 * Returns copy of whole control register region
115 * Note: skip RAM address register because accessing it will 115 * Note: skip RAM address register because accessing it will
116 * cause bus hangs! 116 * cause bus hangs!
117 */ 117 */
118 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 118 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
119 void *p) 119 void *p)
120 { 120 {
121 const struct skge_port *skge = netdev_priv(dev); 121 const struct skge_port *skge = netdev_priv(dev);
122 const void __iomem *io = skge->hw->regs; 122 const void __iomem *io = skge->hw->regs;
123 123
124 regs->version = 1; 124 regs->version = 1;
125 memset(p, 0, regs->len); 125 memset(p, 0, regs->len);
126 memcpy_fromio(p, io, B3_RAM_ADDR); 126 memcpy_fromio(p, io, B3_RAM_ADDR);
127 127
128 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 128 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
129 regs->len - B3_RI_WTO_R1); 129 regs->len - B3_RI_WTO_R1);
130 } 130 }
131 131
132 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 132 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
133 static int wol_supported(const struct skge_hw *hw) 133 static int wol_supported(const struct skge_hw *hw)
134 { 134 {
135 return !((hw->chip_id == CHIP_ID_GENESIS || 135 return !((hw->chip_id == CHIP_ID_GENESIS ||
136 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0))); 136 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
137 } 137 }
138 138
139 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 139 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
140 { 140 {
141 struct skge_port *skge = netdev_priv(dev); 141 struct skge_port *skge = netdev_priv(dev);
142 142
143 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0; 143 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
144 wol->wolopts = skge->wol ? WAKE_MAGIC : 0; 144 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
145 } 145 }
146 146
147 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 147 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
148 { 148 {
149 struct skge_port *skge = netdev_priv(dev); 149 struct skge_port *skge = netdev_priv(dev);
150 struct skge_hw *hw = skge->hw; 150 struct skge_hw *hw = skge->hw;
151 151
152 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 152 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
153 return -EOPNOTSUPP; 153 return -EOPNOTSUPP;
154 154
155 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) 155 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
156 return -EOPNOTSUPP; 156 return -EOPNOTSUPP;
157 157
158 skge->wol = wol->wolopts == WAKE_MAGIC; 158 skge->wol = wol->wolopts == WAKE_MAGIC;
159 159
160 if (skge->wol) { 160 if (skge->wol) {
161 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); 161 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
162 162
163 skge_write16(hw, WOL_CTRL_STAT, 163 skge_write16(hw, WOL_CTRL_STAT,
164 WOL_CTL_ENA_PME_ON_MAGIC_PKT | 164 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
165 WOL_CTL_ENA_MAGIC_PKT_UNIT); 165 WOL_CTL_ENA_MAGIC_PKT_UNIT);
166 } else 166 } else
167 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); 167 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
168 168
169 return 0; 169 return 0;
170 } 170 }
171 171
172 /* Determine supported/advertised modes based on hardware. 172 /* Determine supported/advertised modes based on hardware.
173 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 173 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
174 */ 174 */
175 static u32 skge_supported_modes(const struct skge_hw *hw) 175 static u32 skge_supported_modes(const struct skge_hw *hw)
176 { 176 {
177 u32 supported; 177 u32 supported;
178 178
179 if (hw->copper) { 179 if (hw->copper) {
180 supported = SUPPORTED_10baseT_Half 180 supported = SUPPORTED_10baseT_Half
181 | SUPPORTED_10baseT_Full 181 | SUPPORTED_10baseT_Full
182 | SUPPORTED_100baseT_Half 182 | SUPPORTED_100baseT_Half
183 | SUPPORTED_100baseT_Full 183 | SUPPORTED_100baseT_Full
184 | SUPPORTED_1000baseT_Half 184 | SUPPORTED_1000baseT_Half
185 | SUPPORTED_1000baseT_Full 185 | SUPPORTED_1000baseT_Full
186 | SUPPORTED_Autoneg| SUPPORTED_TP; 186 | SUPPORTED_Autoneg| SUPPORTED_TP;
187 187
188 if (hw->chip_id == CHIP_ID_GENESIS) 188 if (hw->chip_id == CHIP_ID_GENESIS)
189 supported &= ~(SUPPORTED_10baseT_Half 189 supported &= ~(SUPPORTED_10baseT_Half
190 | SUPPORTED_10baseT_Full 190 | SUPPORTED_10baseT_Full
191 | SUPPORTED_100baseT_Half 191 | SUPPORTED_100baseT_Half
192 | SUPPORTED_100baseT_Full); 192 | SUPPORTED_100baseT_Full);
193 193
194 else if (hw->chip_id == CHIP_ID_YUKON) 194 else if (hw->chip_id == CHIP_ID_YUKON)
195 supported &= ~SUPPORTED_1000baseT_Half; 195 supported &= ~SUPPORTED_1000baseT_Half;
196 } else 196 } else
197 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE 197 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
198 | SUPPORTED_Autoneg; 198 | SUPPORTED_Autoneg;
199 199
200 return supported; 200 return supported;
201 } 201 }
202 202
203 static int skge_get_settings(struct net_device *dev, 203 static int skge_get_settings(struct net_device *dev,
204 struct ethtool_cmd *ecmd) 204 struct ethtool_cmd *ecmd)
205 { 205 {
206 struct skge_port *skge = netdev_priv(dev); 206 struct skge_port *skge = netdev_priv(dev);
207 struct skge_hw *hw = skge->hw; 207 struct skge_hw *hw = skge->hw;
208 208
209 ecmd->transceiver = XCVR_INTERNAL; 209 ecmd->transceiver = XCVR_INTERNAL;
210 ecmd->supported = skge_supported_modes(hw); 210 ecmd->supported = skge_supported_modes(hw);
211 211
212 if (hw->copper) { 212 if (hw->copper) {
213 ecmd->port = PORT_TP; 213 ecmd->port = PORT_TP;
214 ecmd->phy_address = hw->phy_addr; 214 ecmd->phy_address = hw->phy_addr;
215 } else 215 } else
216 ecmd->port = PORT_FIBRE; 216 ecmd->port = PORT_FIBRE;
217 217
218 ecmd->advertising = skge->advertising; 218 ecmd->advertising = skge->advertising;
219 ecmd->autoneg = skge->autoneg; 219 ecmd->autoneg = skge->autoneg;
220 ecmd->speed = skge->speed; 220 ecmd->speed = skge->speed;
221 ecmd->duplex = skge->duplex; 221 ecmd->duplex = skge->duplex;
222 return 0; 222 return 0;
223 } 223 }
224 224
225 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 225 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
226 { 226 {
227 struct skge_port *skge = netdev_priv(dev); 227 struct skge_port *skge = netdev_priv(dev);
228 const struct skge_hw *hw = skge->hw; 228 const struct skge_hw *hw = skge->hw;
229 u32 supported = skge_supported_modes(hw); 229 u32 supported = skge_supported_modes(hw);
230 230
231 if (ecmd->autoneg == AUTONEG_ENABLE) { 231 if (ecmd->autoneg == AUTONEG_ENABLE) {
232 ecmd->advertising = supported; 232 ecmd->advertising = supported;
233 skge->duplex = -1; 233 skge->duplex = -1;
234 skge->speed = -1; 234 skge->speed = -1;
235 } else { 235 } else {
236 u32 setting; 236 u32 setting;
237 237
238 switch (ecmd->speed) { 238 switch (ecmd->speed) {
239 case SPEED_1000: 239 case SPEED_1000:
240 if (ecmd->duplex == DUPLEX_FULL) 240 if (ecmd->duplex == DUPLEX_FULL)
241 setting = SUPPORTED_1000baseT_Full; 241 setting = SUPPORTED_1000baseT_Full;
242 else if (ecmd->duplex == DUPLEX_HALF) 242 else if (ecmd->duplex == DUPLEX_HALF)
243 setting = SUPPORTED_1000baseT_Half; 243 setting = SUPPORTED_1000baseT_Half;
244 else 244 else
245 return -EINVAL; 245 return -EINVAL;
246 break; 246 break;
247 case SPEED_100: 247 case SPEED_100:
248 if (ecmd->duplex == DUPLEX_FULL) 248 if (ecmd->duplex == DUPLEX_FULL)
249 setting = SUPPORTED_100baseT_Full; 249 setting = SUPPORTED_100baseT_Full;
250 else if (ecmd->duplex == DUPLEX_HALF) 250 else if (ecmd->duplex == DUPLEX_HALF)
251 setting = SUPPORTED_100baseT_Half; 251 setting = SUPPORTED_100baseT_Half;
252 else 252 else
253 return -EINVAL; 253 return -EINVAL;
254 break; 254 break;
255 255
256 case SPEED_10: 256 case SPEED_10:
257 if (ecmd->duplex == DUPLEX_FULL) 257 if (ecmd->duplex == DUPLEX_FULL)
258 setting = SUPPORTED_10baseT_Full; 258 setting = SUPPORTED_10baseT_Full;
259 else if (ecmd->duplex == DUPLEX_HALF) 259 else if (ecmd->duplex == DUPLEX_HALF)
260 setting = SUPPORTED_10baseT_Half; 260 setting = SUPPORTED_10baseT_Half;
261 else 261 else
262 return -EINVAL; 262 return -EINVAL;
263 break; 263 break;
264 default: 264 default:
265 return -EINVAL; 265 return -EINVAL;
266 } 266 }
267 267
268 if ((setting & supported) == 0) 268 if ((setting & supported) == 0)
269 return -EINVAL; 269 return -EINVAL;
270 270
271 skge->speed = ecmd->speed; 271 skge->speed = ecmd->speed;
272 skge->duplex = ecmd->duplex; 272 skge->duplex = ecmd->duplex;
273 } 273 }
274 274
275 skge->autoneg = ecmd->autoneg; 275 skge->autoneg = ecmd->autoneg;
276 skge->advertising = ecmd->advertising; 276 skge->advertising = ecmd->advertising;
277 277
278 if (netif_running(dev)) 278 if (netif_running(dev))
279 skge_phy_reset(skge); 279 skge_phy_reset(skge);
280 280
281 return (0); 281 return (0);
282 } 282 }
283 283
284 static void skge_get_drvinfo(struct net_device *dev, 284 static void skge_get_drvinfo(struct net_device *dev,
285 struct ethtool_drvinfo *info) 285 struct ethtool_drvinfo *info)
286 { 286 {
287 struct skge_port *skge = netdev_priv(dev); 287 struct skge_port *skge = netdev_priv(dev);
288 288
289 strcpy(info->driver, DRV_NAME); 289 strcpy(info->driver, DRV_NAME);
290 strcpy(info->version, DRV_VERSION); 290 strcpy(info->version, DRV_VERSION);
291 strcpy(info->fw_version, "N/A"); 291 strcpy(info->fw_version, "N/A");
292 strcpy(info->bus_info, pci_name(skge->hw->pdev)); 292 strcpy(info->bus_info, pci_name(skge->hw->pdev));
293 } 293 }
294 294
295 static const struct skge_stat { 295 static const struct skge_stat {
296 char name[ETH_GSTRING_LEN]; 296 char name[ETH_GSTRING_LEN];
297 u16 xmac_offset; 297 u16 xmac_offset;
298 u16 gma_offset; 298 u16 gma_offset;
299 } skge_stats[] = { 299 } skge_stats[] = {
300 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 300 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
301 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 301 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
302 302
303 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 303 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
304 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 304 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
305 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 305 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
306 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 306 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
307 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 307 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
308 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 308 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
309 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 309 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
310 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 310 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
311 311
312 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 312 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
313 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 313 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
314 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 314 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
315 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 315 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
316 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 316 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
317 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 317 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
318 318
319 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 319 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
320 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 320 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
321 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 321 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
322 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 322 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
323 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 323 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
324 }; 324 };
325 325
326 static int skge_get_stats_count(struct net_device *dev) 326 static int skge_get_stats_count(struct net_device *dev)
327 { 327 {
328 return ARRAY_SIZE(skge_stats); 328 return ARRAY_SIZE(skge_stats);
329 } 329 }
330 330
331 static void skge_get_ethtool_stats(struct net_device *dev, 331 static void skge_get_ethtool_stats(struct net_device *dev,
332 struct ethtool_stats *stats, u64 *data) 332 struct ethtool_stats *stats, u64 *data)
333 { 333 {
334 struct skge_port *skge = netdev_priv(dev); 334 struct skge_port *skge = netdev_priv(dev);
335 335
336 if (skge->hw->chip_id == CHIP_ID_GENESIS) 336 if (skge->hw->chip_id == CHIP_ID_GENESIS)
337 genesis_get_stats(skge, data); 337 genesis_get_stats(skge, data);
338 else 338 else
339 yukon_get_stats(skge, data); 339 yukon_get_stats(skge, data);
340 } 340 }
341 341
342 /* Use hardware MIB variables for critical path statistics and 342 /* Use hardware MIB variables for critical path statistics and
343 * transmit feedback not reported at interrupt. 343 * transmit feedback not reported at interrupt.
344 * Other errors are accounted for in interrupt handler. 344 * Other errors are accounted for in interrupt handler.
345 */ 345 */
346 static struct net_device_stats *skge_get_stats(struct net_device *dev) 346 static struct net_device_stats *skge_get_stats(struct net_device *dev)
347 { 347 {
348 struct skge_port *skge = netdev_priv(dev); 348 struct skge_port *skge = netdev_priv(dev);
349 u64 data[ARRAY_SIZE(skge_stats)]; 349 u64 data[ARRAY_SIZE(skge_stats)];
350 350
351 if (skge->hw->chip_id == CHIP_ID_GENESIS) 351 if (skge->hw->chip_id == CHIP_ID_GENESIS)
352 genesis_get_stats(skge, data); 352 genesis_get_stats(skge, data);
353 else 353 else
354 yukon_get_stats(skge, data); 354 yukon_get_stats(skge, data);
355 355
356 skge->net_stats.tx_bytes = data[0]; 356 skge->net_stats.tx_bytes = data[0];
357 skge->net_stats.rx_bytes = data[1]; 357 skge->net_stats.rx_bytes = data[1];
358 skge->net_stats.tx_packets = data[2] + data[4] + data[6]; 358 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
359 skge->net_stats.rx_packets = data[3] + data[5] + data[7]; 359 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
360 skge->net_stats.multicast = data[5] + data[7]; 360 skge->net_stats.multicast = data[5] + data[7];
361 skge->net_stats.collisions = data[10]; 361 skge->net_stats.collisions = data[10];
362 skge->net_stats.tx_aborted_errors = data[12]; 362 skge->net_stats.tx_aborted_errors = data[12];
363 363
364 return &skge->net_stats; 364 return &skge->net_stats;
365 } 365 }
366 366
367 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 367 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
368 { 368 {
369 int i; 369 int i;
370 370
371 switch (stringset) { 371 switch (stringset) {
372 case ETH_SS_STATS: 372 case ETH_SS_STATS:
373 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 373 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
374 memcpy(data + i * ETH_GSTRING_LEN, 374 memcpy(data + i * ETH_GSTRING_LEN,
375 skge_stats[i].name, ETH_GSTRING_LEN); 375 skge_stats[i].name, ETH_GSTRING_LEN);
376 break; 376 break;
377 } 377 }
378 } 378 }
379 379
380 static void skge_get_ring_param(struct net_device *dev, 380 static void skge_get_ring_param(struct net_device *dev,
381 struct ethtool_ringparam *p) 381 struct ethtool_ringparam *p)
382 { 382 {
383 struct skge_port *skge = netdev_priv(dev); 383 struct skge_port *skge = netdev_priv(dev);
384 384
385 p->rx_max_pending = MAX_RX_RING_SIZE; 385 p->rx_max_pending = MAX_RX_RING_SIZE;
386 p->tx_max_pending = MAX_TX_RING_SIZE; 386 p->tx_max_pending = MAX_TX_RING_SIZE;
387 p->rx_mini_max_pending = 0; 387 p->rx_mini_max_pending = 0;
388 p->rx_jumbo_max_pending = 0; 388 p->rx_jumbo_max_pending = 0;
389 389
390 p->rx_pending = skge->rx_ring.count; 390 p->rx_pending = skge->rx_ring.count;
391 p->tx_pending = skge->tx_ring.count; 391 p->tx_pending = skge->tx_ring.count;
392 p->rx_mini_pending = 0; 392 p->rx_mini_pending = 0;
393 p->rx_jumbo_pending = 0; 393 p->rx_jumbo_pending = 0;
394 } 394 }
395 395
396 static int skge_set_ring_param(struct net_device *dev, 396 static int skge_set_ring_param(struct net_device *dev,
397 struct ethtool_ringparam *p) 397 struct ethtool_ringparam *p)
398 { 398 {
399 struct skge_port *skge = netdev_priv(dev); 399 struct skge_port *skge = netdev_priv(dev);
400 int err; 400 int err;
401 401
402 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 402 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
403 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE) 403 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
404 return -EINVAL; 404 return -EINVAL;
405 405
406 skge->rx_ring.count = p->rx_pending; 406 skge->rx_ring.count = p->rx_pending;
407 skge->tx_ring.count = p->tx_pending; 407 skge->tx_ring.count = p->tx_pending;
408 408
409 if (netif_running(dev)) { 409 if (netif_running(dev)) {
410 skge_down(dev); 410 skge_down(dev);
411 err = skge_up(dev); 411 err = skge_up(dev);
412 if (err) 412 if (err)
413 dev_close(dev); 413 dev_close(dev);
414 } 414 }
415 415
416 return 0; 416 return 0;
417 } 417 }
418 418
419 static u32 skge_get_msglevel(struct net_device *netdev) 419 static u32 skge_get_msglevel(struct net_device *netdev)
420 { 420 {
421 struct skge_port *skge = netdev_priv(netdev); 421 struct skge_port *skge = netdev_priv(netdev);
422 return skge->msg_enable; 422 return skge->msg_enable;
423 } 423 }
424 424
425 static void skge_set_msglevel(struct net_device *netdev, u32 value) 425 static void skge_set_msglevel(struct net_device *netdev, u32 value)
426 { 426 {
427 struct skge_port *skge = netdev_priv(netdev); 427 struct skge_port *skge = netdev_priv(netdev);
428 skge->msg_enable = value; 428 skge->msg_enable = value;
429 } 429 }
430 430
431 static int skge_nway_reset(struct net_device *dev) 431 static int skge_nway_reset(struct net_device *dev)
432 { 432 {
433 struct skge_port *skge = netdev_priv(dev); 433 struct skge_port *skge = netdev_priv(dev);
434 434
435 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 435 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
436 return -EINVAL; 436 return -EINVAL;
437 437
438 skge_phy_reset(skge); 438 skge_phy_reset(skge);
439 return 0; 439 return 0;
440 } 440 }
441 441
442 static int skge_set_sg(struct net_device *dev, u32 data) 442 static int skge_set_sg(struct net_device *dev, u32 data)
443 { 443 {
444 struct skge_port *skge = netdev_priv(dev); 444 struct skge_port *skge = netdev_priv(dev);
445 struct skge_hw *hw = skge->hw; 445 struct skge_hw *hw = skge->hw;
446 446
447 if (hw->chip_id == CHIP_ID_GENESIS && data) 447 if (hw->chip_id == CHIP_ID_GENESIS && data)
448 return -EOPNOTSUPP; 448 return -EOPNOTSUPP;
449 return ethtool_op_set_sg(dev, data); 449 return ethtool_op_set_sg(dev, data);
450 } 450 }
451 451
452 static int skge_set_tx_csum(struct net_device *dev, u32 data) 452 static int skge_set_tx_csum(struct net_device *dev, u32 data)
453 { 453 {
454 struct skge_port *skge = netdev_priv(dev); 454 struct skge_port *skge = netdev_priv(dev);
455 struct skge_hw *hw = skge->hw; 455 struct skge_hw *hw = skge->hw;
456 456
457 if (hw->chip_id == CHIP_ID_GENESIS && data) 457 if (hw->chip_id == CHIP_ID_GENESIS && data)
458 return -EOPNOTSUPP; 458 return -EOPNOTSUPP;
459 459
460 return ethtool_op_set_tx_csum(dev, data); 460 return ethtool_op_set_tx_csum(dev, data);
461 } 461 }
462 462
463 static u32 skge_get_rx_csum(struct net_device *dev) 463 static u32 skge_get_rx_csum(struct net_device *dev)
464 { 464 {
465 struct skge_port *skge = netdev_priv(dev); 465 struct skge_port *skge = netdev_priv(dev);
466 466
467 return skge->rx_csum; 467 return skge->rx_csum;
468 } 468 }
469 469
470 /* Only Yukon supports checksum offload. */ 470 /* Only Yukon supports checksum offload. */
471 static int skge_set_rx_csum(struct net_device *dev, u32 data) 471 static int skge_set_rx_csum(struct net_device *dev, u32 data)
472 { 472 {
473 struct skge_port *skge = netdev_priv(dev); 473 struct skge_port *skge = netdev_priv(dev);
474 474
475 if (skge->hw->chip_id == CHIP_ID_GENESIS && data) 475 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
476 return -EOPNOTSUPP; 476 return -EOPNOTSUPP;
477 477
478 skge->rx_csum = data; 478 skge->rx_csum = data;
479 return 0; 479 return 0;
480 } 480 }
481 481
482 static void skge_get_pauseparam(struct net_device *dev, 482 static void skge_get_pauseparam(struct net_device *dev,
483 struct ethtool_pauseparam *ecmd) 483 struct ethtool_pauseparam *ecmd)
484 { 484 {
485 struct skge_port *skge = netdev_priv(dev); 485 struct skge_port *skge = netdev_priv(dev);
486 486
487 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND) 487 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
488 || (skge->flow_control == FLOW_MODE_SYMMETRIC); 488 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND) 489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
490 || (skge->flow_control == FLOW_MODE_SYMMETRIC); 490 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
491 491
492 ecmd->autoneg = skge->autoneg; 492 ecmd->autoneg = skge->autoneg;
493 } 493 }
494 494
495 static int skge_set_pauseparam(struct net_device *dev, 495 static int skge_set_pauseparam(struct net_device *dev,
496 struct ethtool_pauseparam *ecmd) 496 struct ethtool_pauseparam *ecmd)
497 { 497 {
498 struct skge_port *skge = netdev_priv(dev); 498 struct skge_port *skge = netdev_priv(dev);
499 499
500 skge->autoneg = ecmd->autoneg; 500 skge->autoneg = ecmd->autoneg;
501 if (ecmd->rx_pause && ecmd->tx_pause) 501 if (ecmd->rx_pause && ecmd->tx_pause)
502 skge->flow_control = FLOW_MODE_SYMMETRIC; 502 skge->flow_control = FLOW_MODE_SYMMETRIC;
503 else if (ecmd->rx_pause && !ecmd->tx_pause) 503 else if (ecmd->rx_pause && !ecmd->tx_pause)
504 skge->flow_control = FLOW_MODE_REM_SEND; 504 skge->flow_control = FLOW_MODE_REM_SEND;
505 else if (!ecmd->rx_pause && ecmd->tx_pause) 505 else if (!ecmd->rx_pause && ecmd->tx_pause)
506 skge->flow_control = FLOW_MODE_LOC_SEND; 506 skge->flow_control = FLOW_MODE_LOC_SEND;
507 else 507 else
508 skge->flow_control = FLOW_MODE_NONE; 508 skge->flow_control = FLOW_MODE_NONE;
509 509
510 if (netif_running(dev)) 510 if (netif_running(dev))
511 skge_phy_reset(skge); 511 skge_phy_reset(skge);
512 return 0; 512 return 0;
513 } 513 }
514 514
515 /* Chip internal frequency for clock calculations */ 515 /* Chip internal frequency for clock calculations */
516 static inline u32 hwkhz(const struct skge_hw *hw) 516 static inline u32 hwkhz(const struct skge_hw *hw)
517 { 517 {
518 if (hw->chip_id == CHIP_ID_GENESIS) 518 if (hw->chip_id == CHIP_ID_GENESIS)
519 return 53215; /* or: 53.125 MHz */ 519 return 53215; /* or: 53.125 MHz */
520 else 520 else
521 return 78215; /* or: 78.125 MHz */ 521 return 78215; /* or: 78.125 MHz */
522 } 522 }
523 523
524 /* Chip HZ to microseconds */ 524 /* Chip HZ to microseconds */
525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
526 { 526 {
527 return (ticks * 1000) / hwkhz(hw); 527 return (ticks * 1000) / hwkhz(hw);
528 } 528 }
529 529
530 /* Microseconds to chip HZ */ 530 /* Microseconds to chip HZ */
531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
532 { 532 {
533 return hwkhz(hw) * usec / 1000; 533 return hwkhz(hw) * usec / 1000;
534 } 534 }
535 535
536 static int skge_get_coalesce(struct net_device *dev, 536 static int skge_get_coalesce(struct net_device *dev,
537 struct ethtool_coalesce *ecmd) 537 struct ethtool_coalesce *ecmd)
538 { 538 {
539 struct skge_port *skge = netdev_priv(dev); 539 struct skge_port *skge = netdev_priv(dev);
540 struct skge_hw *hw = skge->hw; 540 struct skge_hw *hw = skge->hw;
541 int port = skge->port; 541 int port = skge->port;
542 542
543 ecmd->rx_coalesce_usecs = 0; 543 ecmd->rx_coalesce_usecs = 0;
544 ecmd->tx_coalesce_usecs = 0; 544 ecmd->tx_coalesce_usecs = 0;
545 545
546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
548 u32 msk = skge_read32(hw, B2_IRQM_MSK); 548 u32 msk = skge_read32(hw, B2_IRQM_MSK);
549 549
550 if (msk & rxirqmask[port]) 550 if (msk & rxirqmask[port])
551 ecmd->rx_coalesce_usecs = delay; 551 ecmd->rx_coalesce_usecs = delay;
552 if (msk & txirqmask[port]) 552 if (msk & txirqmask[port])
553 ecmd->tx_coalesce_usecs = delay; 553 ecmd->tx_coalesce_usecs = delay;
554 } 554 }
555 555
556 return 0; 556 return 0;
557 } 557 }
558 558
559 /* Note: interrupt timer is per board, but can turn on/off per port */ 559 /* Note: interrupt timer is per board, but can turn on/off per port */
560 static int skge_set_coalesce(struct net_device *dev, 560 static int skge_set_coalesce(struct net_device *dev,
561 struct ethtool_coalesce *ecmd) 561 struct ethtool_coalesce *ecmd)
562 { 562 {
563 struct skge_port *skge = netdev_priv(dev); 563 struct skge_port *skge = netdev_priv(dev);
564 struct skge_hw *hw = skge->hw; 564 struct skge_hw *hw = skge->hw;
565 int port = skge->port; 565 int port = skge->port;
566 u32 msk = skge_read32(hw, B2_IRQM_MSK); 566 u32 msk = skge_read32(hw, B2_IRQM_MSK);
567 u32 delay = 25; 567 u32 delay = 25;
568 568
569 if (ecmd->rx_coalesce_usecs == 0) 569 if (ecmd->rx_coalesce_usecs == 0)
570 msk &= ~rxirqmask[port]; 570 msk &= ~rxirqmask[port];
571 else if (ecmd->rx_coalesce_usecs < 25 || 571 else if (ecmd->rx_coalesce_usecs < 25 ||
572 ecmd->rx_coalesce_usecs > 33333) 572 ecmd->rx_coalesce_usecs > 33333)
573 return -EINVAL; 573 return -EINVAL;
574 else { 574 else {
575 msk |= rxirqmask[port]; 575 msk |= rxirqmask[port];
576 delay = ecmd->rx_coalesce_usecs; 576 delay = ecmd->rx_coalesce_usecs;
577 } 577 }
578 578
579 if (ecmd->tx_coalesce_usecs == 0) 579 if (ecmd->tx_coalesce_usecs == 0)
580 msk &= ~txirqmask[port]; 580 msk &= ~txirqmask[port];
581 else if (ecmd->tx_coalesce_usecs < 25 || 581 else if (ecmd->tx_coalesce_usecs < 25 ||
582 ecmd->tx_coalesce_usecs > 33333) 582 ecmd->tx_coalesce_usecs > 33333)
583 return -EINVAL; 583 return -EINVAL;
584 else { 584 else {
585 msk |= txirqmask[port]; 585 msk |= txirqmask[port];
586 delay = min(delay, ecmd->rx_coalesce_usecs); 586 delay = min(delay, ecmd->rx_coalesce_usecs);
587 } 587 }
588 588
589 skge_write32(hw, B2_IRQM_MSK, msk); 589 skge_write32(hw, B2_IRQM_MSK, msk);
590 if (msk == 0) 590 if (msk == 0)
591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
592 else { 592 else {
593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
594 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 594 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
595 } 595 }
596 return 0; 596 return 0;
597 } 597 }
598 598
599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
600 static void skge_led(struct skge_port *skge, enum led_mode mode) 600 static void skge_led(struct skge_port *skge, enum led_mode mode)
601 { 601 {
602 struct skge_hw *hw = skge->hw; 602 struct skge_hw *hw = skge->hw;
603 int port = skge->port; 603 int port = skge->port;
604 604
605 spin_lock_bh(&hw->phy_lock); 605 spin_lock_bh(&hw->phy_lock);
606 if (hw->chip_id == CHIP_ID_GENESIS) { 606 if (hw->chip_id == CHIP_ID_GENESIS) {
607 switch (mode) { 607 switch (mode) {
608 case LED_MODE_OFF: 608 case LED_MODE_OFF:
609 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 609 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
610 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 610 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
611 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 611 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
612 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 612 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
613 break; 613 break;
614 614
615 case LED_MODE_ON: 615 case LED_MODE_ON:
616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
618 618
619 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 619 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
620 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 620 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
621 621
622 break; 622 break;
623 623
624 case LED_MODE_TST: 624 case LED_MODE_TST:
625 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 625 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
626 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 626 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
627 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 627 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
628 628
629 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 629 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
630 break; 630 break;
631 } 631 }
632 } else { 632 } else {
633 switch (mode) { 633 switch (mode) {
634 case LED_MODE_OFF: 634 case LED_MODE_OFF:
635 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 635 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
636 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 636 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
637 PHY_M_LED_MO_DUP(MO_LED_OFF) | 637 PHY_M_LED_MO_DUP(MO_LED_OFF) |
638 PHY_M_LED_MO_10(MO_LED_OFF) | 638 PHY_M_LED_MO_10(MO_LED_OFF) |
639 PHY_M_LED_MO_100(MO_LED_OFF) | 639 PHY_M_LED_MO_100(MO_LED_OFF) |
640 PHY_M_LED_MO_1000(MO_LED_OFF) | 640 PHY_M_LED_MO_1000(MO_LED_OFF) |
641 PHY_M_LED_MO_RX(MO_LED_OFF)); 641 PHY_M_LED_MO_RX(MO_LED_OFF));
642 break; 642 break;
643 case LED_MODE_ON: 643 case LED_MODE_ON:
644 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 644 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
645 PHY_M_LED_PULS_DUR(PULS_170MS) | 645 PHY_M_LED_PULS_DUR(PULS_170MS) |
646 PHY_M_LED_BLINK_RT(BLINK_84MS) | 646 PHY_M_LED_BLINK_RT(BLINK_84MS) |
647 PHY_M_LEDC_TX_CTRL | 647 PHY_M_LEDC_TX_CTRL |
648 PHY_M_LEDC_DP_CTRL); 648 PHY_M_LEDC_DP_CTRL);
649 649
650 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 650 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
651 PHY_M_LED_MO_RX(MO_LED_OFF) | 651 PHY_M_LED_MO_RX(MO_LED_OFF) |
652 (skge->speed == SPEED_100 ? 652 (skge->speed == SPEED_100 ?
653 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 653 PHY_M_LED_MO_100(MO_LED_ON) : 0));
654 break; 654 break;
655 case LED_MODE_TST: 655 case LED_MODE_TST:
656 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 656 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
657 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 657 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
658 PHY_M_LED_MO_DUP(MO_LED_ON) | 658 PHY_M_LED_MO_DUP(MO_LED_ON) |
659 PHY_M_LED_MO_10(MO_LED_ON) | 659 PHY_M_LED_MO_10(MO_LED_ON) |
660 PHY_M_LED_MO_100(MO_LED_ON) | 660 PHY_M_LED_MO_100(MO_LED_ON) |
661 PHY_M_LED_MO_1000(MO_LED_ON) | 661 PHY_M_LED_MO_1000(MO_LED_ON) |
662 PHY_M_LED_MO_RX(MO_LED_ON)); 662 PHY_M_LED_MO_RX(MO_LED_ON));
663 } 663 }
664 } 664 }
665 spin_unlock_bh(&hw->phy_lock); 665 spin_unlock_bh(&hw->phy_lock);
666 } 666 }
667 667
668 /* blink LED's for finding board */ 668 /* blink LED's for finding board */
669 static int skge_phys_id(struct net_device *dev, u32 data) 669 static int skge_phys_id(struct net_device *dev, u32 data)
670 { 670 {
671 struct skge_port *skge = netdev_priv(dev); 671 struct skge_port *skge = netdev_priv(dev);
672 unsigned long ms; 672 unsigned long ms;
673 enum led_mode mode = LED_MODE_TST; 673 enum led_mode mode = LED_MODE_TST;
674 674
675 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 675 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
676 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; 676 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
677 else 677 else
678 ms = data * 1000; 678 ms = data * 1000;
679 679
680 while (ms > 0) { 680 while (ms > 0) {
681 skge_led(skge, mode); 681 skge_led(skge, mode);
682 mode ^= LED_MODE_TST; 682 mode ^= LED_MODE_TST;
683 683
684 if (msleep_interruptible(BLINK_MS)) 684 if (msleep_interruptible(BLINK_MS))
685 break; 685 break;
686 ms -= BLINK_MS; 686 ms -= BLINK_MS;
687 } 687 }
688 688
689 /* back to regular LED state */ 689 /* back to regular LED state */
690 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 690 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
691 691
692 return 0; 692 return 0;
693 } 693 }
694 694
695 static struct ethtool_ops skge_ethtool_ops = { 695 static struct ethtool_ops skge_ethtool_ops = {
696 .get_settings = skge_get_settings, 696 .get_settings = skge_get_settings,
697 .set_settings = skge_set_settings, 697 .set_settings = skge_set_settings,
698 .get_drvinfo = skge_get_drvinfo, 698 .get_drvinfo = skge_get_drvinfo,
699 .get_regs_len = skge_get_regs_len, 699 .get_regs_len = skge_get_regs_len,
700 .get_regs = skge_get_regs, 700 .get_regs = skge_get_regs,
701 .get_wol = skge_get_wol, 701 .get_wol = skge_get_wol,
702 .set_wol = skge_set_wol, 702 .set_wol = skge_set_wol,
703 .get_msglevel = skge_get_msglevel, 703 .get_msglevel = skge_get_msglevel,
704 .set_msglevel = skge_set_msglevel, 704 .set_msglevel = skge_set_msglevel,
705 .nway_reset = skge_nway_reset, 705 .nway_reset = skge_nway_reset,
706 .get_link = ethtool_op_get_link, 706 .get_link = ethtool_op_get_link,
707 .get_ringparam = skge_get_ring_param, 707 .get_ringparam = skge_get_ring_param,
708 .set_ringparam = skge_set_ring_param, 708 .set_ringparam = skge_set_ring_param,
709 .get_pauseparam = skge_get_pauseparam, 709 .get_pauseparam = skge_get_pauseparam,
710 .set_pauseparam = skge_set_pauseparam, 710 .set_pauseparam = skge_set_pauseparam,
711 .get_coalesce = skge_get_coalesce, 711 .get_coalesce = skge_get_coalesce,
712 .set_coalesce = skge_set_coalesce, 712 .set_coalesce = skge_set_coalesce,
713 .get_sg = ethtool_op_get_sg, 713 .get_sg = ethtool_op_get_sg,
714 .set_sg = skge_set_sg, 714 .set_sg = skge_set_sg,
715 .get_tx_csum = ethtool_op_get_tx_csum, 715 .get_tx_csum = ethtool_op_get_tx_csum,
716 .set_tx_csum = skge_set_tx_csum, 716 .set_tx_csum = skge_set_tx_csum,
717 .get_rx_csum = skge_get_rx_csum, 717 .get_rx_csum = skge_get_rx_csum,
718 .set_rx_csum = skge_set_rx_csum, 718 .set_rx_csum = skge_set_rx_csum,
719 .get_strings = skge_get_strings, 719 .get_strings = skge_get_strings,
720 .phys_id = skge_phys_id, 720 .phys_id = skge_phys_id,
721 .get_stats_count = skge_get_stats_count, 721 .get_stats_count = skge_get_stats_count,
722 .get_ethtool_stats = skge_get_ethtool_stats, 722 .get_ethtool_stats = skge_get_ethtool_stats,
723 .get_perm_addr = ethtool_op_get_perm_addr, 723 .get_perm_addr = ethtool_op_get_perm_addr,
724 }; 724 };
725 725
726 /* 726 /*
727 * Allocate ring elements and chain them together 727 * Allocate ring elements and chain them together
728 * One-to-one association of board descriptors with ring elements 728 * One-to-one association of board descriptors with ring elements
729 */ 729 */
730 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 730 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
731 { 731 {
732 struct skge_tx_desc *d; 732 struct skge_tx_desc *d;
733 struct skge_element *e; 733 struct skge_element *e;
734 int i; 734 int i;
735 735
736 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL); 736 ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
737 if (!ring->start) 737 if (!ring->start)
738 return -ENOMEM; 738 return -ENOMEM;
739 739
740 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 740 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
741 e->desc = d; 741 e->desc = d;
742 if (i == ring->count - 1) { 742 if (i == ring->count - 1) {
743 e->next = ring->start; 743 e->next = ring->start;
744 d->next_offset = base; 744 d->next_offset = base;
745 } else { 745 } else {
746 e->next = e + 1; 746 e->next = e + 1;
747 d->next_offset = base + (i+1) * sizeof(*d); 747 d->next_offset = base + (i+1) * sizeof(*d);
748 } 748 }
749 } 749 }
750 ring->to_use = ring->to_clean = ring->start; 750 ring->to_use = ring->to_clean = ring->start;
751 751
752 return 0; 752 return 0;
753 } 753 }
754 754
755 /* Allocate and setup a new buffer for receiving */ 755 /* Allocate and setup a new buffer for receiving */
756 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, 756 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
757 struct sk_buff *skb, unsigned int bufsize) 757 struct sk_buff *skb, unsigned int bufsize)
758 { 758 {
759 struct skge_rx_desc *rd = e->desc; 759 struct skge_rx_desc *rd = e->desc;
760 u64 map; 760 u64 map;
761 761
762 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 762 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
763 PCI_DMA_FROMDEVICE); 763 PCI_DMA_FROMDEVICE);
764 764
765 rd->dma_lo = map; 765 rd->dma_lo = map;
766 rd->dma_hi = map >> 32; 766 rd->dma_hi = map >> 32;
767 e->skb = skb; 767 e->skb = skb;
768 rd->csum1_start = ETH_HLEN; 768 rd->csum1_start = ETH_HLEN;
769 rd->csum2_start = ETH_HLEN; 769 rd->csum2_start = ETH_HLEN;
770 rd->csum1 = 0; 770 rd->csum1 = 0;
771 rd->csum2 = 0; 771 rd->csum2 = 0;
772 772
773 wmb(); 773 wmb();
774 774
775 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 775 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
776 pci_unmap_addr_set(e, mapaddr, map); 776 pci_unmap_addr_set(e, mapaddr, map);
777 pci_unmap_len_set(e, maplen, bufsize); 777 pci_unmap_len_set(e, maplen, bufsize);
778 } 778 }
779 779
780 /* Resume receiving using existing skb, 780 /* Resume receiving using existing skb,
781 * Note: DMA address is not changed by chip. 781 * Note: DMA address is not changed by chip.
782 * MTU not changed while receiver active. 782 * MTU not changed while receiver active.
783 */ 783 */
784 static void skge_rx_reuse(struct skge_element *e, unsigned int size) 784 static void skge_rx_reuse(struct skge_element *e, unsigned int size)
785 { 785 {
786 struct skge_rx_desc *rd = e->desc; 786 struct skge_rx_desc *rd = e->desc;
787 787
788 rd->csum2 = 0; 788 rd->csum2 = 0;
789 rd->csum2_start = ETH_HLEN; 789 rd->csum2_start = ETH_HLEN;
790 790
791 wmb(); 791 wmb();
792 792
793 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 793 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
794 } 794 }
795 795
796 796
797 /* Free all buffers in receive ring, assumes receiver stopped */ 797 /* Free all buffers in receive ring, assumes receiver stopped */
798 static void skge_rx_clean(struct skge_port *skge) 798 static void skge_rx_clean(struct skge_port *skge)
799 { 799 {
800 struct skge_hw *hw = skge->hw; 800 struct skge_hw *hw = skge->hw;
801 struct skge_ring *ring = &skge->rx_ring; 801 struct skge_ring *ring = &skge->rx_ring;
802 struct skge_element *e; 802 struct skge_element *e;
803 803
804 e = ring->start; 804 e = ring->start;
805 do { 805 do {
806 struct skge_rx_desc *rd = e->desc; 806 struct skge_rx_desc *rd = e->desc;
807 rd->control = 0; 807 rd->control = 0;
808 if (e->skb) { 808 if (e->skb) {
809 pci_unmap_single(hw->pdev, 809 pci_unmap_single(hw->pdev,
810 pci_unmap_addr(e, mapaddr), 810 pci_unmap_addr(e, mapaddr),
811 pci_unmap_len(e, maplen), 811 pci_unmap_len(e, maplen),
812 PCI_DMA_FROMDEVICE); 812 PCI_DMA_FROMDEVICE);
813 dev_kfree_skb(e->skb); 813 dev_kfree_skb(e->skb);
814 e->skb = NULL; 814 e->skb = NULL;
815 } 815 }
816 } while ((e = e->next) != ring->start); 816 } while ((e = e->next) != ring->start);
817 } 817 }
818 818
819 819
820 /* Allocate buffers for receive ring 820 /* Allocate buffers for receive ring
821 * For receive: to_clean is next received frame. 821 * For receive: to_clean is next received frame.
822 */ 822 */
823 static int skge_rx_fill(struct skge_port *skge) 823 static int skge_rx_fill(struct skge_port *skge)
824 { 824 {
825 struct skge_ring *ring = &skge->rx_ring; 825 struct skge_ring *ring = &skge->rx_ring;
826 struct skge_element *e; 826 struct skge_element *e;
827 827
828 e = ring->start; 828 e = ring->start;
829 do { 829 do {
830 struct sk_buff *skb; 830 struct sk_buff *skb;
831 831
832 skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); 832 skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
833 if (!skb) 833 if (!skb)
834 return -ENOMEM; 834 return -ENOMEM;
835 835
836 skb_reserve(skb, NET_IP_ALIGN); 836 skb_reserve(skb, NET_IP_ALIGN);
837 skge_rx_setup(skge, e, skb, skge->rx_buf_size); 837 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
838 } while ( (e = e->next) != ring->start); 838 } while ( (e = e->next) != ring->start);
839 839
840 ring->to_clean = ring->start; 840 ring->to_clean = ring->start;
841 return 0; 841 return 0;
842 } 842 }
843 843
844 static void skge_link_up(struct skge_port *skge) 844 static void skge_link_up(struct skge_port *skge)
845 { 845 {
846 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 846 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
847 LED_BLK_OFF|LED_SYNC_OFF|LED_ON); 847 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
848 848
849 netif_carrier_on(skge->netdev); 849 netif_carrier_on(skge->netdev);
850 if (skge->tx_avail > MAX_SKB_FRAGS + 1) 850 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
851 netif_wake_queue(skge->netdev); 851 netif_wake_queue(skge->netdev);
852 852
853 if (netif_msg_link(skge)) 853 if (netif_msg_link(skge))
854 printk(KERN_INFO PFX 854 printk(KERN_INFO PFX
855 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", 855 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
856 skge->netdev->name, skge->speed, 856 skge->netdev->name, skge->speed,
857 skge->duplex == DUPLEX_FULL ? "full" : "half", 857 skge->duplex == DUPLEX_FULL ? "full" : "half",
858 (skge->flow_control == FLOW_MODE_NONE) ? "none" : 858 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
859 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" : 859 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
860 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" : 860 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
861 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" : 861 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
862 "unknown"); 862 "unknown");
863 } 863 }
864 864
865 static void skge_link_down(struct skge_port *skge) 865 static void skge_link_down(struct skge_port *skge)
866 { 866 {
867 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 867 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
868 netif_carrier_off(skge->netdev); 868 netif_carrier_off(skge->netdev);
869 netif_stop_queue(skge->netdev); 869 netif_stop_queue(skge->netdev);
870 870
871 if (netif_msg_link(skge)) 871 if (netif_msg_link(skge))
872 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); 872 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
873 } 873 }
874 874
875 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 875 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
876 { 876 {
877 int i; 877 int i;
878 878
879 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 879 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
880 *val = xm_read16(hw, port, XM_PHY_DATA); 880 *val = xm_read16(hw, port, XM_PHY_DATA);
881 881
882 for (i = 0; i < PHY_RETRIES; i++) { 882 for (i = 0; i < PHY_RETRIES; i++) {
883 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 883 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
884 goto ready; 884 goto ready;
885 udelay(1); 885 udelay(1);
886 } 886 }
887 887
888 return -ETIMEDOUT; 888 return -ETIMEDOUT;
889 ready: 889 ready:
890 *val = xm_read16(hw, port, XM_PHY_DATA); 890 *val = xm_read16(hw, port, XM_PHY_DATA);
891 891
892 return 0; 892 return 0;
893 } 893 }
894 894
895 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 895 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
896 { 896 {
897 u16 v = 0; 897 u16 v = 0;
898 if (__xm_phy_read(hw, port, reg, &v)) 898 if (__xm_phy_read(hw, port, reg, &v))
899 printk(KERN_WARNING PFX "%s: phy read timed out\n", 899 printk(KERN_WARNING PFX "%s: phy read timed out\n",
900 hw->dev[port]->name); 900 hw->dev[port]->name);
901 return v; 901 return v;
902 } 902 }
903 903
904 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 904 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
905 { 905 {
906 int i; 906 int i;
907 907
908 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 908 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
909 for (i = 0; i < PHY_RETRIES; i++) { 909 for (i = 0; i < PHY_RETRIES; i++) {
910 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 910 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
911 goto ready; 911 goto ready;
912 udelay(1); 912 udelay(1);
913 } 913 }
914 return -EIO; 914 return -EIO;
915 915
916 ready: 916 ready:
917 xm_write16(hw, port, XM_PHY_DATA, val); 917 xm_write16(hw, port, XM_PHY_DATA, val);
918 for (i = 0; i < PHY_RETRIES; i++) { 918 for (i = 0; i < PHY_RETRIES; i++) {
919 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 919 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
920 return 0; 920 return 0;
921 udelay(1); 921 udelay(1);
922 } 922 }
923 return -ETIMEDOUT; 923 return -ETIMEDOUT;
924 } 924 }
925 925
926 static void genesis_init(struct skge_hw *hw) 926 static void genesis_init(struct skge_hw *hw)
927 { 927 {
928 /* set blink source counter */ 928 /* set blink source counter */
929 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 929 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
930 skge_write8(hw, B2_BSC_CTRL, BSC_START); 930 skge_write8(hw, B2_BSC_CTRL, BSC_START);
931 931
932 /* configure mac arbiter */ 932 /* configure mac arbiter */
933 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 933 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
934 934
935 /* configure mac arbiter timeout values */ 935 /* configure mac arbiter timeout values */
936 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 936 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
937 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 937 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
938 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 938 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
939 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 939 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
940 940
941 skge_write8(hw, B3_MA_RCINI_RX1, 0); 941 skge_write8(hw, B3_MA_RCINI_RX1, 0);
942 skge_write8(hw, B3_MA_RCINI_RX2, 0); 942 skge_write8(hw, B3_MA_RCINI_RX2, 0);
943 skge_write8(hw, B3_MA_RCINI_TX1, 0); 943 skge_write8(hw, B3_MA_RCINI_TX1, 0);
944 skge_write8(hw, B3_MA_RCINI_TX2, 0); 944 skge_write8(hw, B3_MA_RCINI_TX2, 0);
945 945
946 /* configure packet arbiter timeout */ 946 /* configure packet arbiter timeout */
947 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 947 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
948 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 948 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
949 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 949 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
950 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 950 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
951 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 951 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
952 } 952 }
953 953
954 static void genesis_reset(struct skge_hw *hw, int port) 954 static void genesis_reset(struct skge_hw *hw, int port)
955 { 955 {
956 const u8 zero[8] = { 0 }; 956 const u8 zero[8] = { 0 };
957 957
958 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 958 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
959 959
960 /* reset the statistics module */ 960 /* reset the statistics module */
961 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 961 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
962 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ 962 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
963 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 963 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
964 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 964 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
965 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 965 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
966 966
967 /* disable Broadcom PHY IRQ */ 967 /* disable Broadcom PHY IRQ */
968 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 968 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
969 969
970 xm_outhash(hw, port, XM_HSM, zero); 970 xm_outhash(hw, port, XM_HSM, zero);
971 } 971 }
972 972
973 973
974 /* Convert mode to MII values */ 974 /* Convert mode to MII values */
975 static const u16 phy_pause_map[] = { 975 static const u16 phy_pause_map[] = {
976 [FLOW_MODE_NONE] = 0, 976 [FLOW_MODE_NONE] = 0,
977 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 977 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
978 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 978 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
979 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 979 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
980 }; 980 };
981 981
982 982
983 /* Check status of Broadcom phy link */ 983 /* Check status of Broadcom phy link */
984 static void bcom_check_link(struct skge_hw *hw, int port) 984 static void bcom_check_link(struct skge_hw *hw, int port)
985 { 985 {
986 struct net_device *dev = hw->dev[port]; 986 struct net_device *dev = hw->dev[port];
987 struct skge_port *skge = netdev_priv(dev); 987 struct skge_port *skge = netdev_priv(dev);
988 u16 status; 988 u16 status;
989 989
990 /* read twice because of latch */ 990 /* read twice because of latch */
991 (void) xm_phy_read(hw, port, PHY_BCOM_STAT); 991 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
992 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 992 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
993 993
994 if ((status & PHY_ST_LSYNC) == 0) { 994 if ((status & PHY_ST_LSYNC) == 0) {
995 u16 cmd = xm_read16(hw, port, XM_MMU_CMD); 995 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
996 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 996 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
997 xm_write16(hw, port, XM_MMU_CMD, cmd); 997 xm_write16(hw, port, XM_MMU_CMD, cmd);
998 /* dummy read to ensure writing */ 998 /* dummy read to ensure writing */
999 (void) xm_read16(hw, port, XM_MMU_CMD); 999 (void) xm_read16(hw, port, XM_MMU_CMD);
1000 1000
1001 if (netif_carrier_ok(dev)) 1001 if (netif_carrier_ok(dev))
1002 skge_link_down(skge); 1002 skge_link_down(skge);
1003 } else { 1003 } else {
1004 if (skge->autoneg == AUTONEG_ENABLE && 1004 if (skge->autoneg == AUTONEG_ENABLE &&
1005 (status & PHY_ST_AN_OVER)) { 1005 (status & PHY_ST_AN_OVER)) {
1006 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP); 1006 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1007 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1007 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1008 1008
1009 if (lpa & PHY_B_AN_RF) { 1009 if (lpa & PHY_B_AN_RF) {
1010 printk(KERN_NOTICE PFX "%s: remote fault\n", 1010 printk(KERN_NOTICE PFX "%s: remote fault\n",
1011 dev->name); 1011 dev->name);
1012 return; 1012 return;
1013 } 1013 }
1014 1014
1015 /* Check Duplex mismatch */ 1015 /* Check Duplex mismatch */
1016 switch (aux & PHY_B_AS_AN_RES_MSK) { 1016 switch (aux & PHY_B_AS_AN_RES_MSK) {
1017 case PHY_B_RES_1000FD: 1017 case PHY_B_RES_1000FD:
1018 skge->duplex = DUPLEX_FULL; 1018 skge->duplex = DUPLEX_FULL;
1019 break; 1019 break;
1020 case PHY_B_RES_1000HD: 1020 case PHY_B_RES_1000HD:
1021 skge->duplex = DUPLEX_HALF; 1021 skge->duplex = DUPLEX_HALF;
1022 break; 1022 break;
1023 default: 1023 default:
1024 printk(KERN_NOTICE PFX "%s: duplex mismatch\n", 1024 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1025 dev->name); 1025 dev->name);
1026 return; 1026 return;
1027 } 1027 }
1028 1028
1029 1029
1030 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1030 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1031 switch (aux & PHY_B_AS_PAUSE_MSK) { 1031 switch (aux & PHY_B_AS_PAUSE_MSK) {
1032 case PHY_B_AS_PAUSE_MSK: 1032 case PHY_B_AS_PAUSE_MSK:
1033 skge->flow_control = FLOW_MODE_SYMMETRIC; 1033 skge->flow_control = FLOW_MODE_SYMMETRIC;
1034 break; 1034 break;
1035 case PHY_B_AS_PRR: 1035 case PHY_B_AS_PRR:
1036 skge->flow_control = FLOW_MODE_REM_SEND; 1036 skge->flow_control = FLOW_MODE_REM_SEND;
1037 break; 1037 break;
1038 case PHY_B_AS_PRT: 1038 case PHY_B_AS_PRT:
1039 skge->flow_control = FLOW_MODE_LOC_SEND; 1039 skge->flow_control = FLOW_MODE_LOC_SEND;
1040 break; 1040 break;
1041 default: 1041 default:
1042 skge->flow_control = FLOW_MODE_NONE; 1042 skge->flow_control = FLOW_MODE_NONE;
1043 } 1043 }
1044 1044
1045 skge->speed = SPEED_1000; 1045 skge->speed = SPEED_1000;
1046 } 1046 }
1047 1047
1048 if (!netif_carrier_ok(dev)) 1048 if (!netif_carrier_ok(dev))
1049 genesis_link_up(skge); 1049 genesis_link_up(skge);
1050 } 1050 }
1051 } 1051 }
1052 1052
1053 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1053 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1054 * Phy on for 100 or 10Mbit operation 1054 * Phy on for 100 or 10Mbit operation
1055 */ 1055 */
1056 static void bcom_phy_init(struct skge_port *skge, int jumbo) 1056 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1057 { 1057 {
1058 struct skge_hw *hw = skge->hw; 1058 struct skge_hw *hw = skge->hw;
1059 int port = skge->port; 1059 int port = skge->port;
1060 int i; 1060 int i;
1061 u16 id1, r, ext, ctl; 1061 u16 id1, r, ext, ctl;
1062 1062
1063 /* magic workaround patterns for Broadcom */ 1063 /* magic workaround patterns for Broadcom */
1064 static const struct { 1064 static const struct {
1065 u16 reg; 1065 u16 reg;
1066 u16 val; 1066 u16 val;
1067 } A1hack[] = { 1067 } A1hack[] = {
1068 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1068 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1069 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1069 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1070 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1070 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1071 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1071 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1072 }, C0hack[] = { 1072 }, C0hack[] = {
1073 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1073 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1074 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1074 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1075 }; 1075 };
1076 1076
1077 /* read Id from external PHY (all have the same address) */ 1077 /* read Id from external PHY (all have the same address) */
1078 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1078 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1079 1079
1080 /* Optimize MDIO transfer by suppressing preamble. */ 1080 /* Optimize MDIO transfer by suppressing preamble. */
1081 r = xm_read16(hw, port, XM_MMU_CMD); 1081 r = xm_read16(hw, port, XM_MMU_CMD);
1082 r |= XM_MMU_NO_PRE; 1082 r |= XM_MMU_NO_PRE;
1083 xm_write16(hw, port, XM_MMU_CMD,r); 1083 xm_write16(hw, port, XM_MMU_CMD,r);
1084 1084
1085 switch (id1) { 1085 switch (id1) {
1086 case PHY_BCOM_ID1_C0: 1086 case PHY_BCOM_ID1_C0:
1087 /* 1087 /*
1088 * Workaround BCOM Errata for the C0 type. 1088 * Workaround BCOM Errata for the C0 type.
1089 * Write magic patterns to reserved registers. 1089 * Write magic patterns to reserved registers.
1090 */ 1090 */
1091 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1091 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1092 xm_phy_write(hw, port, 1092 xm_phy_write(hw, port,
1093 C0hack[i].reg, C0hack[i].val); 1093 C0hack[i].reg, C0hack[i].val);
1094 1094
1095 break; 1095 break;
1096 case PHY_BCOM_ID1_A1: 1096 case PHY_BCOM_ID1_A1:
1097 /* 1097 /*
1098 * Workaround BCOM Errata for the A1 type. 1098 * Workaround BCOM Errata for the A1 type.
1099 * Write magic patterns to reserved registers. 1099 * Write magic patterns to reserved registers.
1100 */ 1100 */
1101 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1101 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1102 xm_phy_write(hw, port, 1102 xm_phy_write(hw, port,
1103 A1hack[i].reg, A1hack[i].val); 1103 A1hack[i].reg, A1hack[i].val);
1104 break; 1104 break;
1105 } 1105 }
1106 1106
1107 /* 1107 /*
1108 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1108 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1109 * Disable Power Management after reset. 1109 * Disable Power Management after reset.
1110 */ 1110 */
1111 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1111 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1112 r |= PHY_B_AC_DIS_PM; 1112 r |= PHY_B_AC_DIS_PM;
1113 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1113 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1114 1114
1115 /* Dummy read */ 1115 /* Dummy read */
1116 xm_read16(hw, port, XM_ISRC); 1116 xm_read16(hw, port, XM_ISRC);
1117 1117
1118 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1118 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1119 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1119 ctl = PHY_CT_SP1000; /* always 1000mbit */
1120 1120
1121 if (skge->autoneg == AUTONEG_ENABLE) { 1121 if (skge->autoneg == AUTONEG_ENABLE) {
1122 /* 1122 /*
1123 * Workaround BCOM Errata #1 for the C5 type. 1123 * Workaround BCOM Errata #1 for the C5 type.
1124 * 1000Base-T Link Acquisition Failure in Slave Mode 1124 * 1000Base-T Link Acquisition Failure in Slave Mode
1125 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1125 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1126 */ 1126 */
1127 u16 adv = PHY_B_1000C_RD; 1127 u16 adv = PHY_B_1000C_RD;
1128 if (skge->advertising & ADVERTISED_1000baseT_Half) 1128 if (skge->advertising & ADVERTISED_1000baseT_Half)
1129 adv |= PHY_B_1000C_AHD; 1129 adv |= PHY_B_1000C_AHD;
1130 if (skge->advertising & ADVERTISED_1000baseT_Full) 1130 if (skge->advertising & ADVERTISED_1000baseT_Full)
1131 adv |= PHY_B_1000C_AFD; 1131 adv |= PHY_B_1000C_AFD;
1132 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1132 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1133 1133
1134 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1134 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1135 } else { 1135 } else {
1136 if (skge->duplex == DUPLEX_FULL) 1136 if (skge->duplex == DUPLEX_FULL)
1137 ctl |= PHY_CT_DUP_MD; 1137 ctl |= PHY_CT_DUP_MD;
1138 /* Force to slave */ 1138 /* Force to slave */
1139 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1139 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1140 } 1140 }
1141 1141
1142 /* Set autonegotiation pause parameters */ 1142 /* Set autonegotiation pause parameters */
1143 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1143 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1144 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1144 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1145 1145
1146 /* Handle Jumbo frames */ 1146 /* Handle Jumbo frames */
1147 if (jumbo) { 1147 if (jumbo) {
1148 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1148 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1149 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1149 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1150 1150
1151 ext |= PHY_B_PEC_HIGH_LA; 1151 ext |= PHY_B_PEC_HIGH_LA;
1152 1152
1153 } 1153 }
1154 1154
1155 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1155 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1156 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1156 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1157 1157
1158 /* Use link status change interrupt */ 1158 /* Use link status change interrupt */
1159 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1159 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1160 1160
1161 bcom_check_link(hw, port); 1161 bcom_check_link(hw, port);
1162 } 1162 }
1163 1163
1164 static void genesis_mac_init(struct skge_hw *hw, int port) 1164 static void genesis_mac_init(struct skge_hw *hw, int port)
1165 { 1165 {
1166 struct net_device *dev = hw->dev[port]; 1166 struct net_device *dev = hw->dev[port];
1167 struct skge_port *skge = netdev_priv(dev); 1167 struct skge_port *skge = netdev_priv(dev);
1168 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1168 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1169 int i; 1169 int i;
1170 u32 r; 1170 u32 r;
1171 const u8 zero[6] = { 0 }; 1171 const u8 zero[6] = { 0 };
1172 1172
1173 for (i = 0; i < 10; i++) { 1173 for (i = 0; i < 10; i++) {
1174 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1174 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1175 MFF_SET_MAC_RST); 1175 MFF_SET_MAC_RST);
1176 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1176 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1177 goto reset_ok; 1177 goto reset_ok;
1178 udelay(1); 1178 udelay(1);
1179 } 1179 }
1180 1180
1181 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name); 1181 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1182 1182
1183 reset_ok: 1183 reset_ok:
1184 /* Unreset the XMAC. */ 1184 /* Unreset the XMAC. */
1185 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1185 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1186 1186
1187 /* 1187 /*
1188 * Perform additional initialization for external PHYs, 1188 * Perform additional initialization for external PHYs,
1189 * namely for the 1000baseTX cards that use the XMAC's 1189 * namely for the 1000baseTX cards that use the XMAC's
1190 * GMII mode. 1190 * GMII mode.
1191 */ 1191 */
1192 /* Take external Phy out of reset */ 1192 /* Take external Phy out of reset */
1193 r = skge_read32(hw, B2_GP_IO); 1193 r = skge_read32(hw, B2_GP_IO);
1194 if (port == 0) 1194 if (port == 0)
1195 r |= GP_DIR_0|GP_IO_0; 1195 r |= GP_DIR_0|GP_IO_0;
1196 else 1196 else
1197 r |= GP_DIR_2|GP_IO_2; 1197 r |= GP_DIR_2|GP_IO_2;
1198 1198
1199 skge_write32(hw, B2_GP_IO, r); 1199 skge_write32(hw, B2_GP_IO, r);
1200 1200
1201 1201
1202 /* Enable GMII interface */ 1202 /* Enable GMII interface */
1203 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1203 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1204 1204
1205 bcom_phy_init(skge, jumbo); 1205 bcom_phy_init(skge, jumbo);
1206 1206
1207 /* Set Station Address */ 1207 /* Set Station Address */
1208 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1208 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1209 1209
1210 /* We don't use match addresses so clear */ 1210 /* We don't use match addresses so clear */
1211 for (i = 1; i < 16; i++) 1211 for (i = 1; i < 16; i++)
1212 xm_outaddr(hw, port, XM_EXM(i), zero); 1212 xm_outaddr(hw, port, XM_EXM(i), zero);
1213 1213
1214 /* Clear MIB counters */ 1214 /* Clear MIB counters */
1215 xm_write16(hw, port, XM_STAT_CMD, 1215 xm_write16(hw, port, XM_STAT_CMD,
1216 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1216 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1217 /* Clear two times according to Errata #3 */ 1217 /* Clear two times according to Errata #3 */
1218 xm_write16(hw, port, XM_STAT_CMD, 1218 xm_write16(hw, port, XM_STAT_CMD,
1219 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1219 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1220 1220
1221 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1221 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1222 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1222 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1223 1223
1224 /* We don't need the FCS appended to the packet. */ 1224 /* We don't need the FCS appended to the packet. */
1225 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1225 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1226 if (jumbo) 1226 if (jumbo)
1227 r |= XM_RX_BIG_PK_OK; 1227 r |= XM_RX_BIG_PK_OK;
1228 1228
1229 if (skge->duplex == DUPLEX_HALF) { 1229 if (skge->duplex == DUPLEX_HALF) {
1230 /* 1230 /*
1231 * If in manual half duplex mode the other side might be in 1231 * If in manual half duplex mode the other side might be in
1232 * full duplex mode, so ignore if a carrier extension is not seen 1232 * full duplex mode, so ignore if a carrier extension is not seen
1233 * on frames received 1233 * on frames received
1234 */ 1234 */
1235 r |= XM_RX_DIS_CEXT; 1235 r |= XM_RX_DIS_CEXT;
1236 } 1236 }
1237 xm_write16(hw, port, XM_RX_CMD, r); 1237 xm_write16(hw, port, XM_RX_CMD, r);
1238 1238
1239 1239
1240 /* We want short frames padded to 60 bytes. */ 1240 /* We want short frames padded to 60 bytes. */
1241 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1241 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1242 1242
1243 /* 1243 /*
1244 * Bump up the transmit threshold. This helps hold off transmit 1244 * Bump up the transmit threshold. This helps hold off transmit
1245 * underruns when we're blasting traffic from both ports at once. 1245 * underruns when we're blasting traffic from both ports at once.
1246 */ 1246 */
1247 xm_write16(hw, port, XM_TX_THR, 512); 1247 xm_write16(hw, port, XM_TX_THR, 512);
1248 1248
1249 /* 1249 /*
1250 * Enable the reception of all error frames. This is is 1250 * Enable the reception of all error frames. This is is
1251 * a necessary evil due to the design of the XMAC. The 1251 * a necessary evil due to the design of the XMAC. The
1252 * XMAC's receive FIFO is only 8K in size, however jumbo 1252 * XMAC's receive FIFO is only 8K in size, however jumbo
1253 * frames can be up to 9000 bytes in length. When bad 1253 * frames can be up to 9000 bytes in length. When bad
1254 * frame filtering is enabled, the XMAC's RX FIFO operates 1254 * frame filtering is enabled, the XMAC's RX FIFO operates
1255 * in 'store and forward' mode. For this to work, the 1255 * in 'store and forward' mode. For this to work, the
1256 * entire frame has to fit into the FIFO, but that means 1256 * entire frame has to fit into the FIFO, but that means
1257 * that jumbo frames larger than 8192 bytes will be 1257 * that jumbo frames larger than 8192 bytes will be
1258 * truncated. Disabling all bad frame filtering causes 1258 * truncated. Disabling all bad frame filtering causes
1259 * the RX FIFO to operate in streaming mode, in which 1259 * the RX FIFO to operate in streaming mode, in which
1260 * case the XMAC will start transferring frames out of the 1260 * case the XMAC will start transferring frames out of the
1261 * RX FIFO as soon as the FIFO threshold is reached. 1261 * RX FIFO as soon as the FIFO threshold is reached.
1262 */ 1262 */
1263 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1263 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1264 1264
1265 1265
1266 /* 1266 /*
1267 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1267 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1268 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1268 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1269 * and 'Octets Rx OK Hi Cnt Ov'. 1269 * and 'Octets Rx OK Hi Cnt Ov'.
1270 */ 1270 */
1271 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1271 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1272 1272
1273 /* 1273 /*
1274 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1274 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1275 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1275 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1276 * and 'Octets Tx OK Hi Cnt Ov'. 1276 * and 'Octets Tx OK Hi Cnt Ov'.
1277 */ 1277 */
1278 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1278 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1279 1279
1280 /* Configure MAC arbiter */ 1280 /* Configure MAC arbiter */
1281 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1281 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1282 1282
1283 /* configure timeout values */ 1283 /* configure timeout values */
1284 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1284 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1285 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1285 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1286 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1286 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1287 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1287 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1288 1288
1289 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1289 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1290 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1290 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1291 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1291 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1292 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1292 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1293 1293
1294 /* Configure Rx MAC FIFO */ 1294 /* Configure Rx MAC FIFO */
1295 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1295 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1296 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1296 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1297 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1297 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1298 1298
1299 /* Configure Tx MAC FIFO */ 1299 /* Configure Tx MAC FIFO */
1300 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1300 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1301 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1301 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1302 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1302 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1303 1303
1304 if (jumbo) { 1304 if (jumbo) {
1305 /* Enable frame flushing if jumbo frames used */ 1305 /* Enable frame flushing if jumbo frames used */
1306 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); 1306 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1307 } else { 1307 } else {
1308 /* enable timeout timers if normal frames */ 1308 /* enable timeout timers if normal frames */
1309 skge_write16(hw, B3_PA_CTRL, 1309 skge_write16(hw, B3_PA_CTRL,
1310 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1310 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1311 } 1311 }
1312 } 1312 }
1313 1313
1314 static void genesis_stop(struct skge_port *skge) 1314 static void genesis_stop(struct skge_port *skge)
1315 { 1315 {
1316 struct skge_hw *hw = skge->hw; 1316 struct skge_hw *hw = skge->hw;
1317 int port = skge->port; 1317 int port = skge->port;
1318 u32 reg; 1318 u32 reg;
1319 1319
1320 genesis_reset(hw, port); 1320 genesis_reset(hw, port);
1321 1321
1322 /* Clear Tx packet arbiter timeout IRQ */ 1322 /* Clear Tx packet arbiter timeout IRQ */
1323 skge_write16(hw, B3_PA_CTRL, 1323 skge_write16(hw, B3_PA_CTRL,
1324 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1324 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1325 1325
1326 /* 1326 /*
1327 * If the transfer sticks at the MAC the STOP command will not 1327 * If the transfer sticks at the MAC the STOP command will not
1328 * terminate if we don't flush the XMAC's transmit FIFO ! 1328 * terminate if we don't flush the XMAC's transmit FIFO !
1329 */ 1329 */
1330 xm_write32(hw, port, XM_MODE, 1330 xm_write32(hw, port, XM_MODE,
1331 xm_read32(hw, port, XM_MODE)|XM_MD_FTF); 1331 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1332 1332
1333 1333
1334 /* Reset the MAC */ 1334 /* Reset the MAC */
1335 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1335 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1336 1336
1337 /* For external PHYs there must be special handling */ 1337 /* For external PHYs there must be special handling */
1338 reg = skge_read32(hw, B2_GP_IO); 1338 reg = skge_read32(hw, B2_GP_IO);
1339 if (port == 0) { 1339 if (port == 0) {
1340 reg |= GP_DIR_0; 1340 reg |= GP_DIR_0;
1341 reg &= ~GP_IO_0; 1341 reg &= ~GP_IO_0;
1342 } else { 1342 } else {
1343 reg |= GP_DIR_2; 1343 reg |= GP_DIR_2;
1344 reg &= ~GP_IO_2; 1344 reg &= ~GP_IO_2;
1345 } 1345 }
1346 skge_write32(hw, B2_GP_IO, reg); 1346 skge_write32(hw, B2_GP_IO, reg);
1347 skge_read32(hw, B2_GP_IO); 1347 skge_read32(hw, B2_GP_IO);
1348 1348
1349 xm_write16(hw, port, XM_MMU_CMD, 1349 xm_write16(hw, port, XM_MMU_CMD,
1350 xm_read16(hw, port, XM_MMU_CMD) 1350 xm_read16(hw, port, XM_MMU_CMD)
1351 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1351 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1352 1352
1353 xm_read16(hw, port, XM_MMU_CMD); 1353 xm_read16(hw, port, XM_MMU_CMD);
1354 } 1354 }
1355 1355
1356 1356
1357 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1357 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1358 { 1358 {
1359 struct skge_hw *hw = skge->hw; 1359 struct skge_hw *hw = skge->hw;
1360 int port = skge->port; 1360 int port = skge->port;
1361 int i; 1361 int i;
1362 unsigned long timeout = jiffies + HZ; 1362 unsigned long timeout = jiffies + HZ;
1363 1363
1364 xm_write16(hw, port, 1364 xm_write16(hw, port,
1365 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1365 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1366 1366
1367 /* wait for update to complete */ 1367 /* wait for update to complete */
1368 while (xm_read16(hw, port, XM_STAT_CMD) 1368 while (xm_read16(hw, port, XM_STAT_CMD)
1369 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1369 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1370 if (time_after(jiffies, timeout)) 1370 if (time_after(jiffies, timeout))
1371 break; 1371 break;
1372 udelay(10); 1372 udelay(10);
1373 } 1373 }
1374 1374
1375 /* special case for 64 bit octet counter */ 1375 /* special case for 64 bit octet counter */
1376 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1376 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1377 | xm_read32(hw, port, XM_TXO_OK_LO); 1377 | xm_read32(hw, port, XM_TXO_OK_LO);
1378 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1378 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1379 | xm_read32(hw, port, XM_RXO_OK_LO); 1379 | xm_read32(hw, port, XM_RXO_OK_LO);
1380 1380
1381 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1381 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1382 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1382 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1383 } 1383 }
1384 1384
1385 static void genesis_mac_intr(struct skge_hw *hw, int port) 1385 static void genesis_mac_intr(struct skge_hw *hw, int port)
1386 { 1386 {
1387 struct skge_port *skge = netdev_priv(hw->dev[port]); 1387 struct skge_port *skge = netdev_priv(hw->dev[port]);
1388 u16 status = xm_read16(hw, port, XM_ISRC); 1388 u16 status = xm_read16(hw, port, XM_ISRC);
1389 1389
1390 if (netif_msg_intr(skge)) 1390 if (netif_msg_intr(skge))
1391 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", 1391 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1392 skge->netdev->name, status); 1392 skge->netdev->name, status);
1393 1393
1394 if (status & XM_IS_TXF_UR) { 1394 if (status & XM_IS_TXF_UR) {
1395 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1395 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1396 ++skge->net_stats.tx_fifo_errors; 1396 ++skge->net_stats.tx_fifo_errors;
1397 } 1397 }
1398 if (status & XM_IS_RXF_OV) { 1398 if (status & XM_IS_RXF_OV) {
1399 xm_write32(hw, port, XM_MODE, XM_MD_FRF); 1399 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1400 ++skge->net_stats.rx_fifo_errors; 1400 ++skge->net_stats.rx_fifo_errors;
1401 } 1401 }
1402 } 1402 }
1403 1403
1404 static void genesis_link_up(struct skge_port *skge) 1404 static void genesis_link_up(struct skge_port *skge)
1405 { 1405 {
1406 struct skge_hw *hw = skge->hw; 1406 struct skge_hw *hw = skge->hw;
1407 int port = skge->port; 1407 int port = skge->port;
1408 u16 cmd; 1408 u16 cmd;
1409 u32 mode, msk; 1409 u32 mode, msk;
1410 1410
1411 cmd = xm_read16(hw, port, XM_MMU_CMD); 1411 cmd = xm_read16(hw, port, XM_MMU_CMD);
1412 1412
1413 /* 1413 /*
1414 * enabling pause frame reception is required for 1000BT 1414 * enabling pause frame reception is required for 1000BT
1415 * because the XMAC is not reset if the link is going down 1415 * because the XMAC is not reset if the link is going down
1416 */ 1416 */
1417 if (skge->flow_control == FLOW_MODE_NONE || 1417 if (skge->flow_control == FLOW_MODE_NONE ||
1418 skge->flow_control == FLOW_MODE_LOC_SEND) 1418 skge->flow_control == FLOW_MODE_LOC_SEND)
1419 /* Disable Pause Frame Reception */ 1419 /* Disable Pause Frame Reception */
1420 cmd |= XM_MMU_IGN_PF; 1420 cmd |= XM_MMU_IGN_PF;
1421 else 1421 else
1422 /* Enable Pause Frame Reception */ 1422 /* Enable Pause Frame Reception */
1423 cmd &= ~XM_MMU_IGN_PF; 1423 cmd &= ~XM_MMU_IGN_PF;
1424 1424
1425 xm_write16(hw, port, XM_MMU_CMD, cmd); 1425 xm_write16(hw, port, XM_MMU_CMD, cmd);
1426 1426
1427 mode = xm_read32(hw, port, XM_MODE); 1427 mode = xm_read32(hw, port, XM_MODE);
1428 if (skge->flow_control == FLOW_MODE_SYMMETRIC || 1428 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1429 skge->flow_control == FLOW_MODE_LOC_SEND) { 1429 skge->flow_control == FLOW_MODE_LOC_SEND) {
1430 /* 1430 /*
1431 * Configure Pause Frame Generation 1431 * Configure Pause Frame Generation
1432 * Use internal and external Pause Frame Generation. 1432 * Use internal and external Pause Frame Generation.
1433 * Sending pause frames is edge triggered. 1433 * Sending pause frames is edge triggered.
1434 * Send a Pause frame with the maximum pause time if 1434 * Send a Pause frame with the maximum pause time if
1435 * internal oder external FIFO full condition occurs. 1435 * internal oder external FIFO full condition occurs.
1436 * Send a zero pause time frame to re-start transmission. 1436 * Send a zero pause time frame to re-start transmission.
1437 */ 1437 */
1438 /* XM_PAUSE_DA = '010000C28001' (default) */ 1438 /* XM_PAUSE_DA = '010000C28001' (default) */
1439 /* XM_MAC_PTIME = 0xffff (maximum) */ 1439 /* XM_MAC_PTIME = 0xffff (maximum) */
1440 /* remember this value is defined in big endian (!) */ 1440 /* remember this value is defined in big endian (!) */
1441 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1441 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1442 1442
1443 mode |= XM_PAUSE_MODE; 1443 mode |= XM_PAUSE_MODE;
1444 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1444 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1445 } else { 1445 } else {
1446 /* 1446 /*
1447 * disable pause frame generation is required for 1000BT 1447 * disable pause frame generation is required for 1000BT
1448 * because the XMAC is not reset if the link is going down 1448 * because the XMAC is not reset if the link is going down
1449 */ 1449 */
1450 /* Disable Pause Mode in Mode Register */ 1450 /* Disable Pause Mode in Mode Register */
1451 mode &= ~XM_PAUSE_MODE; 1451 mode &= ~XM_PAUSE_MODE;
1452 1452
1453 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1453 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1454 } 1454 }
1455 1455
1456 xm_write32(hw, port, XM_MODE, mode); 1456 xm_write32(hw, port, XM_MODE, mode);
1457 1457
1458 msk = XM_DEF_MSK; 1458 msk = XM_DEF_MSK;
1459 /* disable GP0 interrupt bit for external Phy */ 1459 /* disable GP0 interrupt bit for external Phy */
1460 msk |= XM_IS_INP_ASS; 1460 msk |= XM_IS_INP_ASS;
1461 1461
1462 xm_write16(hw, port, XM_IMSK, msk); 1462 xm_write16(hw, port, XM_IMSK, msk);
1463 xm_read16(hw, port, XM_ISRC); 1463 xm_read16(hw, port, XM_ISRC);
1464 1464
1465 /* get MMU Command Reg. */ 1465 /* get MMU Command Reg. */
1466 cmd = xm_read16(hw, port, XM_MMU_CMD); 1466 cmd = xm_read16(hw, port, XM_MMU_CMD);
1467 if (skge->duplex == DUPLEX_FULL) 1467 if (skge->duplex == DUPLEX_FULL)
1468 cmd |= XM_MMU_GMII_FD; 1468 cmd |= XM_MMU_GMII_FD;
1469 1469
1470 /* 1470 /*
1471 * Workaround BCOM Errata (#10523) for all BCom Phys 1471 * Workaround BCOM Errata (#10523) for all BCom Phys
1472 * Enable Power Management after link up 1472 * Enable Power Management after link up
1473 */ 1473 */
1474 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1474 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1475 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1475 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1476 & ~PHY_B_AC_DIS_PM); 1476 & ~PHY_B_AC_DIS_PM);
1477 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1477 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1478 1478
1479 /* enable Rx/Tx */ 1479 /* enable Rx/Tx */
1480 xm_write16(hw, port, XM_MMU_CMD, 1480 xm_write16(hw, port, XM_MMU_CMD,
1481 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1481 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1482 skge_link_up(skge); 1482 skge_link_up(skge);
1483 } 1483 }
1484 1484
1485 1485
1486 static inline void bcom_phy_intr(struct skge_port *skge) 1486 static inline void bcom_phy_intr(struct skge_port *skge)
1487 { 1487 {
1488 struct skge_hw *hw = skge->hw; 1488 struct skge_hw *hw = skge->hw;
1489 int port = skge->port; 1489 int port = skge->port;
1490 u16 isrc; 1490 u16 isrc;
1491 1491
1492 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1492 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1493 if (netif_msg_intr(skge)) 1493 if (netif_msg_intr(skge))
1494 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", 1494 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1495 skge->netdev->name, isrc); 1495 skge->netdev->name, isrc);
1496 1496
1497 if (isrc & PHY_B_IS_PSE) 1497 if (isrc & PHY_B_IS_PSE)
1498 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", 1498 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1499 hw->dev[port]->name); 1499 hw->dev[port]->name);
1500 1500
1501 /* Workaround BCom Errata: 1501 /* Workaround BCom Errata:
1502 * enable and disable loopback mode if "NO HCD" occurs. 1502 * enable and disable loopback mode if "NO HCD" occurs.
1503 */ 1503 */
1504 if (isrc & PHY_B_IS_NO_HDCL) { 1504 if (isrc & PHY_B_IS_NO_HDCL) {
1505 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1505 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1506 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1506 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1507 ctrl | PHY_CT_LOOP); 1507 ctrl | PHY_CT_LOOP);
1508 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1508 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1509 ctrl & ~PHY_CT_LOOP); 1509 ctrl & ~PHY_CT_LOOP);
1510 } 1510 }
1511 1511
1512 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1512 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1513 bcom_check_link(hw, port); 1513 bcom_check_link(hw, port);
1514 1514
1515 } 1515 }
1516 1516
1517 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1517 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1518 { 1518 {
1519 int i; 1519 int i;
1520 1520
1521 gma_write16(hw, port, GM_SMI_DATA, val); 1521 gma_write16(hw, port, GM_SMI_DATA, val);
1522 gma_write16(hw, port, GM_SMI_CTRL, 1522 gma_write16(hw, port, GM_SMI_CTRL,
1523 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1523 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1524 for (i = 0; i < PHY_RETRIES; i++) { 1524 for (i = 0; i < PHY_RETRIES; i++) {
1525 udelay(1); 1525 udelay(1);
1526 1526
1527 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1527 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1528 return 0; 1528 return 0;
1529 } 1529 }
1530 1530
1531 printk(KERN_WARNING PFX "%s: phy write timeout\n", 1531 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1532 hw->dev[port]->name); 1532 hw->dev[port]->name);
1533 return -EIO; 1533 return -EIO;
1534 } 1534 }
1535 1535
1536 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1536 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1537 { 1537 {
1538 int i; 1538 int i;
1539 1539
1540 gma_write16(hw, port, GM_SMI_CTRL, 1540 gma_write16(hw, port, GM_SMI_CTRL,
1541 GM_SMI_CT_PHY_AD(hw->phy_addr) 1541 GM_SMI_CT_PHY_AD(hw->phy_addr)
1542 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1542 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1543 1543
1544 for (i = 0; i < PHY_RETRIES; i++) { 1544 for (i = 0; i < PHY_RETRIES; i++) {
1545 udelay(1); 1545 udelay(1);
1546 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1546 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1547 goto ready; 1547 goto ready;
1548 } 1548 }
1549 1549
1550 return -ETIMEDOUT; 1550 return -ETIMEDOUT;
1551 ready: 1551 ready:
1552 *val = gma_read16(hw, port, GM_SMI_DATA); 1552 *val = gma_read16(hw, port, GM_SMI_DATA);
1553 return 0; 1553 return 0;
1554 } 1554 }
1555 1555
1556 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1556 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1557 { 1557 {
1558 u16 v = 0; 1558 u16 v = 0;
1559 if (__gm_phy_read(hw, port, reg, &v)) 1559 if (__gm_phy_read(hw, port, reg, &v))
1560 printk(KERN_WARNING PFX "%s: phy read timeout\n", 1560 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1561 hw->dev[port]->name); 1561 hw->dev[port]->name);
1562 return v; 1562 return v;
1563 } 1563 }
1564 1564
1565 /* Marvell Phy Initialization */ 1565 /* Marvell Phy Initialization */
1566 static void yukon_init(struct skge_hw *hw, int port) 1566 static void yukon_init(struct skge_hw *hw, int port)
1567 { 1567 {
1568 struct skge_port *skge = netdev_priv(hw->dev[port]); 1568 struct skge_port *skge = netdev_priv(hw->dev[port]);
1569 u16 ctrl, ct1000, adv; 1569 u16 ctrl, ct1000, adv;
1570 1570
1571 if (skge->autoneg == AUTONEG_ENABLE) { 1571 if (skge->autoneg == AUTONEG_ENABLE) {
1572 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1572 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1573 1573
1574 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1574 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1575 PHY_M_EC_MAC_S_MSK); 1575 PHY_M_EC_MAC_S_MSK);
1576 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1576 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1577 1577
1578 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1578 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1579 1579
1580 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1580 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1581 } 1581 }
1582 1582
1583 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1583 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1584 if (skge->autoneg == AUTONEG_DISABLE) 1584 if (skge->autoneg == AUTONEG_DISABLE)
1585 ctrl &= ~PHY_CT_ANE; 1585 ctrl &= ~PHY_CT_ANE;
1586 1586
1587 ctrl |= PHY_CT_RESET; 1587 ctrl |= PHY_CT_RESET;
1588 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1588 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1589 1589
1590 ctrl = 0; 1590 ctrl = 0;
1591 ct1000 = 0; 1591 ct1000 = 0;
1592 adv = PHY_AN_CSMA; 1592 adv = PHY_AN_CSMA;
1593 1593
1594 if (skge->autoneg == AUTONEG_ENABLE) { 1594 if (skge->autoneg == AUTONEG_ENABLE) {
1595 if (hw->copper) { 1595 if (hw->copper) {
1596 if (skge->advertising & ADVERTISED_1000baseT_Full) 1596 if (skge->advertising & ADVERTISED_1000baseT_Full)
1597 ct1000 |= PHY_M_1000C_AFD; 1597 ct1000 |= PHY_M_1000C_AFD;
1598 if (skge->advertising & ADVERTISED_1000baseT_Half) 1598 if (skge->advertising & ADVERTISED_1000baseT_Half)
1599 ct1000 |= PHY_M_1000C_AHD; 1599 ct1000 |= PHY_M_1000C_AHD;
1600 if (skge->advertising & ADVERTISED_100baseT_Full) 1600 if (skge->advertising & ADVERTISED_100baseT_Full)
1601 adv |= PHY_M_AN_100_FD; 1601 adv |= PHY_M_AN_100_FD;
1602 if (skge->advertising & ADVERTISED_100baseT_Half) 1602 if (skge->advertising & ADVERTISED_100baseT_Half)
1603 adv |= PHY_M_AN_100_HD; 1603 adv |= PHY_M_AN_100_HD;
1604 if (skge->advertising & ADVERTISED_10baseT_Full) 1604 if (skge->advertising & ADVERTISED_10baseT_Full)
1605 adv |= PHY_M_AN_10_FD; 1605 adv |= PHY_M_AN_10_FD;
1606 if (skge->advertising & ADVERTISED_10baseT_Half) 1606 if (skge->advertising & ADVERTISED_10baseT_Half)
1607 adv |= PHY_M_AN_10_HD; 1607 adv |= PHY_M_AN_10_HD;
1608 } else /* special defines for FIBER (88E1011S only) */ 1608 } else /* special defines for FIBER (88E1011S only) */
1609 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; 1609 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1610 1610
1611 /* Set Flow-control capabilities */ 1611 /* Set Flow-control capabilities */
1612 adv |= phy_pause_map[skge->flow_control]; 1612 adv |= phy_pause_map[skge->flow_control];
1613 1613
1614 /* Restart Auto-negotiation */ 1614 /* Restart Auto-negotiation */
1615 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1615 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1616 } else { 1616 } else {
1617 /* forced speed/duplex settings */ 1617 /* forced speed/duplex settings */
1618 ct1000 = PHY_M_1000C_MSE; 1618 ct1000 = PHY_M_1000C_MSE;
1619 1619
1620 if (skge->duplex == DUPLEX_FULL) 1620 if (skge->duplex == DUPLEX_FULL)
1621 ctrl |= PHY_CT_DUP_MD; 1621 ctrl |= PHY_CT_DUP_MD;
1622 1622
1623 switch (skge->speed) { 1623 switch (skge->speed) {
1624 case SPEED_1000: 1624 case SPEED_1000:
1625 ctrl |= PHY_CT_SP1000; 1625 ctrl |= PHY_CT_SP1000;
1626 break; 1626 break;
1627 case SPEED_100: 1627 case SPEED_100:
1628 ctrl |= PHY_CT_SP100; 1628 ctrl |= PHY_CT_SP100;
1629 break; 1629 break;
1630 } 1630 }
1631 1631
1632 ctrl |= PHY_CT_RESET; 1632 ctrl |= PHY_CT_RESET;
1633 } 1633 }
1634 1634
1635 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 1635 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1636 1636
1637 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 1637 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1638 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1638 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1639 1639
1640 /* Enable phy interrupt on autonegotiation complete (or link up) */ 1640 /* Enable phy interrupt on autonegotiation complete (or link up) */
1641 if (skge->autoneg == AUTONEG_ENABLE) 1641 if (skge->autoneg == AUTONEG_ENABLE)
1642 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 1642 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1643 else 1643 else
1644 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 1644 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1645 } 1645 }
1646 1646
1647 static void yukon_reset(struct skge_hw *hw, int port) 1647 static void yukon_reset(struct skge_hw *hw, int port)
1648 { 1648 {
1649 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 1649 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1650 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 1650 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1651 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 1651 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1652 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 1652 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1653 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 1653 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1654 1654
1655 gma_write16(hw, port, GM_RX_CTRL, 1655 gma_write16(hw, port, GM_RX_CTRL,
1656 gma_read16(hw, port, GM_RX_CTRL) 1656 gma_read16(hw, port, GM_RX_CTRL)
1657 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 1657 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1658 } 1658 }
1659 1659
1660 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 1660 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1661 static int is_yukon_lite_a0(struct skge_hw *hw) 1661 static int is_yukon_lite_a0(struct skge_hw *hw)
1662 { 1662 {
1663 u32 reg; 1663 u32 reg;
1664 int ret; 1664 int ret;
1665 1665
1666 if (hw->chip_id != CHIP_ID_YUKON) 1666 if (hw->chip_id != CHIP_ID_YUKON)
1667 return 0; 1667 return 0;
1668 1668
1669 reg = skge_read32(hw, B2_FAR); 1669 reg = skge_read32(hw, B2_FAR);
1670 skge_write8(hw, B2_FAR + 3, 0xff); 1670 skge_write8(hw, B2_FAR + 3, 0xff);
1671 ret = (skge_read8(hw, B2_FAR + 3) != 0); 1671 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1672 skge_write32(hw, B2_FAR, reg); 1672 skge_write32(hw, B2_FAR, reg);
1673 return ret; 1673 return ret;
1674 } 1674 }
1675 1675
1676 static void yukon_mac_init(struct skge_hw *hw, int port) 1676 static void yukon_mac_init(struct skge_hw *hw, int port)
1677 { 1677 {
1678 struct skge_port *skge = netdev_priv(hw->dev[port]); 1678 struct skge_port *skge = netdev_priv(hw->dev[port]);
1679 int i; 1679 int i;
1680 u32 reg; 1680 u32 reg;
1681 const u8 *addr = hw->dev[port]->dev_addr; 1681 const u8 *addr = hw->dev[port]->dev_addr;
1682 1682
1683 /* WA code for COMA mode -- set PHY reset */ 1683 /* WA code for COMA mode -- set PHY reset */
1684 if (hw->chip_id == CHIP_ID_YUKON_LITE && 1684 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1685 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 1685 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1686 reg = skge_read32(hw, B2_GP_IO); 1686 reg = skge_read32(hw, B2_GP_IO);
1687 reg |= GP_DIR_9 | GP_IO_9; 1687 reg |= GP_DIR_9 | GP_IO_9;
1688 skge_write32(hw, B2_GP_IO, reg); 1688 skge_write32(hw, B2_GP_IO, reg);
1689 } 1689 }
1690 1690
1691 /* hard reset */ 1691 /* hard reset */
1692 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 1692 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1693 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 1693 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1694 1694
1695 /* WA code for COMA mode -- clear PHY reset */ 1695 /* WA code for COMA mode -- clear PHY reset */
1696 if (hw->chip_id == CHIP_ID_YUKON_LITE && 1696 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1697 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 1697 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1698 reg = skge_read32(hw, B2_GP_IO); 1698 reg = skge_read32(hw, B2_GP_IO);
1699 reg |= GP_DIR_9; 1699 reg |= GP_DIR_9;
1700 reg &= ~GP_IO_9; 1700 reg &= ~GP_IO_9;
1701 skge_write32(hw, B2_GP_IO, reg); 1701 skge_write32(hw, B2_GP_IO, reg);
1702 } 1702 }
1703 1703
1704 /* Set hardware config mode */ 1704 /* Set hardware config mode */
1705 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 1705 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1706 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 1706 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1707 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 1707 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1708 1708
1709 /* Clear GMC reset */ 1709 /* Clear GMC reset */
1710 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 1710 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1712 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 1712 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1713 1713
1714 if (skge->autoneg == AUTONEG_DISABLE) { 1714 if (skge->autoneg == AUTONEG_DISABLE) {
1715 reg = GM_GPCR_AU_ALL_DIS; 1715 reg = GM_GPCR_AU_ALL_DIS;
1716 gma_write16(hw, port, GM_GP_CTRL, 1716 gma_write16(hw, port, GM_GP_CTRL,
1717 gma_read16(hw, port, GM_GP_CTRL) | reg); 1717 gma_read16(hw, port, GM_GP_CTRL) | reg);
1718 1718
1719 switch (skge->speed) { 1719 switch (skge->speed) {
1720 case SPEED_1000: 1720 case SPEED_1000:
1721 reg &= ~GM_GPCR_SPEED_100; 1721 reg &= ~GM_GPCR_SPEED_100;
1722 reg |= GM_GPCR_SPEED_1000; 1722 reg |= GM_GPCR_SPEED_1000;
1723 break; 1723 break;
1724 case SPEED_100: 1724 case SPEED_100:
1725 reg &= ~GM_GPCR_SPEED_1000; 1725 reg &= ~GM_GPCR_SPEED_1000;
1726 reg |= GM_GPCR_SPEED_100; 1726 reg |= GM_GPCR_SPEED_100;
1727 break; 1727 break;
1728 case SPEED_10: 1728 case SPEED_10:
1729 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 1729 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1730 break; 1730 break;
1731 } 1731 }
1732 1732
1733 if (skge->duplex == DUPLEX_FULL) 1733 if (skge->duplex == DUPLEX_FULL)
1734 reg |= GM_GPCR_DUP_FULL; 1734 reg |= GM_GPCR_DUP_FULL;
1735 } else 1735 } else
1736 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 1736 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1737 1737
1738 switch (skge->flow_control) { 1738 switch (skge->flow_control) {
1739 case FLOW_MODE_NONE: 1739 case FLOW_MODE_NONE:
1740 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 1740 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1741 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 1741 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1742 break; 1742 break;
1743 case FLOW_MODE_LOC_SEND: 1743 case FLOW_MODE_LOC_SEND:
1744 /* disable Rx flow-control */ 1744 /* disable Rx flow-control */
1745 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 1745 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1746 } 1746 }
1747 1747
1748 gma_write16(hw, port, GM_GP_CTRL, reg); 1748 gma_write16(hw, port, GM_GP_CTRL, reg);
1749 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 1749 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1750 1750
1751 yukon_init(hw, port); 1751 yukon_init(hw, port);
1752 1752
1753 /* MIB clear */ 1753 /* MIB clear */
1754 reg = gma_read16(hw, port, GM_PHY_ADDR); 1754 reg = gma_read16(hw, port, GM_PHY_ADDR);
1755 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 1755 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1756 1756
1757 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 1757 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1758 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 1758 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1759 gma_write16(hw, port, GM_PHY_ADDR, reg); 1759 gma_write16(hw, port, GM_PHY_ADDR, reg);
1760 1760
1761 /* transmit control */ 1761 /* transmit control */
1762 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 1762 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1763 1763
1764 /* receive control reg: unicast + multicast + no FCS */ 1764 /* receive control reg: unicast + multicast + no FCS */
1765 gma_write16(hw, port, GM_RX_CTRL, 1765 gma_write16(hw, port, GM_RX_CTRL,
1766 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 1766 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1767 1767
1768 /* transmit flow control */ 1768 /* transmit flow control */
1769 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 1769 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1770 1770
1771 /* transmit parameter */ 1771 /* transmit parameter */
1772 gma_write16(hw, port, GM_TX_PARAM, 1772 gma_write16(hw, port, GM_TX_PARAM,
1773 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 1773 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1774 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 1774 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1775 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 1775 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1776 1776
1777 /* serial mode register */ 1777 /* serial mode register */
1778 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 1778 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1779 if (hw->dev[port]->mtu > 1500) 1779 if (hw->dev[port]->mtu > 1500)
1780 reg |= GM_SMOD_JUMBO_ENA; 1780 reg |= GM_SMOD_JUMBO_ENA;
1781 1781
1782 gma_write16(hw, port, GM_SERIAL_MODE, reg); 1782 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1783 1783
1784 /* physical address: used for pause frames */ 1784 /* physical address: used for pause frames */
1785 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 1785 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1786 /* virtual address for data */ 1786 /* virtual address for data */
1787 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 1787 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1788 1788
1789 /* enable interrupt mask for counter overflows */ 1789 /* enable interrupt mask for counter overflows */
1790 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 1790 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1791 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 1791 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1792 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 1792 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1793 1793
1794 /* Initialize Mac Fifo */ 1794 /* Initialize Mac Fifo */
1795 1795
1796 /* Configure Rx MAC FIFO */ 1796 /* Configure Rx MAC FIFO */
1797 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 1797 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1798 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 1798 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1799 1799
1800 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 1800 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1801 if (is_yukon_lite_a0(hw)) 1801 if (is_yukon_lite_a0(hw))
1802 reg &= ~GMF_RX_F_FL_ON; 1802 reg &= ~GMF_RX_F_FL_ON;
1803 1803
1804 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 1804 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1805 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 1805 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1806 /* 1806 /*
1807 * because Pause Packet Truncation in GMAC is not working 1807 * because Pause Packet Truncation in GMAC is not working
1808 * we have to increase the Flush Threshold to 64 bytes 1808 * we have to increase the Flush Threshold to 64 bytes
1809 * in order to flush pause packets in Rx FIFO on Yukon-1 1809 * in order to flush pause packets in Rx FIFO on Yukon-1
1810 */ 1810 */
1811 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 1811 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1812 1812
1813 /* Configure Tx MAC FIFO */ 1813 /* Configure Tx MAC FIFO */
1814 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 1814 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1815 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 1815 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1816 } 1816 }
1817 1817
1818 /* Go into power down mode */ 1818 /* Go into power down mode */
1819 static void yukon_suspend(struct skge_hw *hw, int port) 1819 static void yukon_suspend(struct skge_hw *hw, int port)
1820 { 1820 {
1821 u16 ctrl; 1821 u16 ctrl;
1822 1822
1823 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 1823 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1824 ctrl |= PHY_M_PC_POL_R_DIS; 1824 ctrl |= PHY_M_PC_POL_R_DIS;
1825 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 1825 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1826 1826
1827 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1827 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1828 ctrl |= PHY_CT_RESET; 1828 ctrl |= PHY_CT_RESET;
1829 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1829 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1830 1830
1831 /* switch IEEE compatible power down mode on */ 1831 /* switch IEEE compatible power down mode on */
1832 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1832 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1833 ctrl |= PHY_CT_PDOWN; 1833 ctrl |= PHY_CT_PDOWN;
1834 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1834 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1835 } 1835 }
1836 1836
1837 static void yukon_stop(struct skge_port *skge) 1837 static void yukon_stop(struct skge_port *skge)
1838 { 1838 {
1839 struct skge_hw *hw = skge->hw; 1839 struct skge_hw *hw = skge->hw;
1840 int port = skge->port; 1840 int port = skge->port;
1841 1841
1842 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1842 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1843 yukon_reset(hw, port); 1843 yukon_reset(hw, port);
1844 1844
1845 gma_write16(hw, port, GM_GP_CTRL, 1845 gma_write16(hw, port, GM_GP_CTRL,
1846 gma_read16(hw, port, GM_GP_CTRL) 1846 gma_read16(hw, port, GM_GP_CTRL)
1847 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 1847 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1848 gma_read16(hw, port, GM_GP_CTRL); 1848 gma_read16(hw, port, GM_GP_CTRL);
1849 1849
1850 yukon_suspend(hw, port); 1850 yukon_suspend(hw, port);
1851 1851
1852 /* set GPHY Control reset */ 1852 /* set GPHY Control reset */
1853 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 1853 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1854 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 1854 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1855 } 1855 }
1856 1856
1857 static void yukon_get_stats(struct skge_port *skge, u64 *data) 1857 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1858 { 1858 {
1859 struct skge_hw *hw = skge->hw; 1859 struct skge_hw *hw = skge->hw;
1860 int port = skge->port; 1860 int port = skge->port;
1861 int i; 1861 int i;
1862 1862
1863 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 1863 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1864 | gma_read32(hw, port, GM_TXO_OK_LO); 1864 | gma_read32(hw, port, GM_TXO_OK_LO);
1865 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 1865 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1866 | gma_read32(hw, port, GM_RXO_OK_LO); 1866 | gma_read32(hw, port, GM_RXO_OK_LO);
1867 1867
1868 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1868 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1869 data[i] = gma_read32(hw, port, 1869 data[i] = gma_read32(hw, port,
1870 skge_stats[i].gma_offset); 1870 skge_stats[i].gma_offset);
1871 } 1871 }
1872 1872
1873 static void yukon_mac_intr(struct skge_hw *hw, int port) 1873 static void yukon_mac_intr(struct skge_hw *hw, int port)
1874 { 1874 {
1875 struct net_device *dev = hw->dev[port]; 1875 struct net_device *dev = hw->dev[port];
1876 struct skge_port *skge = netdev_priv(dev); 1876 struct skge_port *skge = netdev_priv(dev);
1877 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 1877 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1878 1878
1879 if (netif_msg_intr(skge)) 1879 if (netif_msg_intr(skge))
1880 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", 1880 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1881 dev->name, status); 1881 dev->name, status);
1882 1882
1883 if (status & GM_IS_RX_FF_OR) { 1883 if (status & GM_IS_RX_FF_OR) {
1884 ++skge->net_stats.rx_fifo_errors; 1884 ++skge->net_stats.rx_fifo_errors;
1885 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 1885 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1886 } 1886 }
1887 1887
1888 if (status & GM_IS_TX_FF_UR) { 1888 if (status & GM_IS_TX_FF_UR) {
1889 ++skge->net_stats.tx_fifo_errors; 1889 ++skge->net_stats.tx_fifo_errors;
1890 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 1890 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1891 } 1891 }
1892 1892
1893 } 1893 }
1894 1894
1895 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 1895 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1896 { 1896 {
1897 switch (aux & PHY_M_PS_SPEED_MSK) { 1897 switch (aux & PHY_M_PS_SPEED_MSK) {
1898 case PHY_M_PS_SPEED_1000: 1898 case PHY_M_PS_SPEED_1000:
1899 return SPEED_1000; 1899 return SPEED_1000;
1900 case PHY_M_PS_SPEED_100: 1900 case PHY_M_PS_SPEED_100:
1901 return SPEED_100; 1901 return SPEED_100;
1902 default: 1902 default:
1903 return SPEED_10; 1903 return SPEED_10;
1904 } 1904 }
1905 } 1905 }
1906 1906
1907 static void yukon_link_up(struct skge_port *skge) 1907 static void yukon_link_up(struct skge_port *skge)
1908 { 1908 {
1909 struct skge_hw *hw = skge->hw; 1909 struct skge_hw *hw = skge->hw;
1910 int port = skge->port; 1910 int port = skge->port;
1911 u16 reg; 1911 u16 reg;
1912 1912
1913 /* Enable Transmit FIFO Underrun */ 1913 /* Enable Transmit FIFO Underrun */
1914 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 1914 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1915 1915
1916 reg = gma_read16(hw, port, GM_GP_CTRL); 1916 reg = gma_read16(hw, port, GM_GP_CTRL);
1917 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 1917 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1918 reg |= GM_GPCR_DUP_FULL; 1918 reg |= GM_GPCR_DUP_FULL;
1919 1919
1920 /* enable Rx/Tx */ 1920 /* enable Rx/Tx */
1921 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 1921 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1922 gma_write16(hw, port, GM_GP_CTRL, reg); 1922 gma_write16(hw, port, GM_GP_CTRL, reg);
1923 1923
1924 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 1924 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1925 skge_link_up(skge); 1925 skge_link_up(skge);
1926 } 1926 }
1927 1927
1928 static void yukon_link_down(struct skge_port *skge) 1928 static void yukon_link_down(struct skge_port *skge)
1929 { 1929 {
1930 struct skge_hw *hw = skge->hw; 1930 struct skge_hw *hw = skge->hw;
1931 int port = skge->port; 1931 int port = skge->port;
1932 u16 ctrl; 1932 u16 ctrl;
1933 1933
1934 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); 1934 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1935 1935
1936 ctrl = gma_read16(hw, port, GM_GP_CTRL); 1936 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1937 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 1937 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1938 gma_write16(hw, port, GM_GP_CTRL, ctrl); 1938 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1939 1939
1940 if (skge->flow_control == FLOW_MODE_REM_SEND) { 1940 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1941 /* restore Asymmetric Pause bit */ 1941 /* restore Asymmetric Pause bit */
1942 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 1942 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1943 gm_phy_read(hw, port, 1943 gm_phy_read(hw, port,
1944 PHY_MARV_AUNE_ADV) 1944 PHY_MARV_AUNE_ADV)
1945 | PHY_M_AN_ASP); 1945 | PHY_M_AN_ASP);
1946 1946
1947 } 1947 }
1948 1948
1949 yukon_reset(hw, port); 1949 yukon_reset(hw, port);
1950 skge_link_down(skge); 1950 skge_link_down(skge);
1951 1951
1952 yukon_init(hw, port); 1952 yukon_init(hw, port);
1953 } 1953 }
1954 1954
1955 static void yukon_phy_intr(struct skge_port *skge) 1955 static void yukon_phy_intr(struct skge_port *skge)
1956 { 1956 {
1957 struct skge_hw *hw = skge->hw; 1957 struct skge_hw *hw = skge->hw;
1958 int port = skge->port; 1958 int port = skge->port;
1959 const char *reason = NULL; 1959 const char *reason = NULL;
1960 u16 istatus, phystat; 1960 u16 istatus, phystat;
1961 1961
1962 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 1962 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1963 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 1963 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1964 1964
1965 if (netif_msg_intr(skge)) 1965 if (netif_msg_intr(skge))
1966 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", 1966 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1967 skge->netdev->name, istatus, phystat); 1967 skge->netdev->name, istatus, phystat);
1968 1968
1969 if (istatus & PHY_M_IS_AN_COMPL) { 1969 if (istatus & PHY_M_IS_AN_COMPL) {
1970 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 1970 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1971 & PHY_M_AN_RF) { 1971 & PHY_M_AN_RF) {
1972 reason = "remote fault"; 1972 reason = "remote fault";
1973 goto failed; 1973 goto failed;
1974 } 1974 }
1975 1975
1976 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 1976 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1977 reason = "master/slave fault"; 1977 reason = "master/slave fault";
1978 goto failed; 1978 goto failed;
1979 } 1979 }
1980 1980
1981 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 1981 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1982 reason = "speed/duplex"; 1982 reason = "speed/duplex";
1983 goto failed; 1983 goto failed;
1984 } 1984 }
1985 1985
1986 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 1986 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1987 ? DUPLEX_FULL : DUPLEX_HALF; 1987 ? DUPLEX_FULL : DUPLEX_HALF;
1988 skge->speed = yukon_speed(hw, phystat); 1988 skge->speed = yukon_speed(hw, phystat);
1989 1989
1990 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1990 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1991 switch (phystat & PHY_M_PS_PAUSE_MSK) { 1991 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1992 case PHY_M_PS_PAUSE_MSK: 1992 case PHY_M_PS_PAUSE_MSK:
1993 skge->flow_control = FLOW_MODE_SYMMETRIC; 1993 skge->flow_control = FLOW_MODE_SYMMETRIC;
1994 break; 1994 break;
1995 case PHY_M_PS_RX_P_EN: 1995 case PHY_M_PS_RX_P_EN:
1996 skge->flow_control = FLOW_MODE_REM_SEND; 1996 skge->flow_control = FLOW_MODE_REM_SEND;
1997 break; 1997 break;
1998 case PHY_M_PS_TX_P_EN: 1998 case PHY_M_PS_TX_P_EN:
1999 skge->flow_control = FLOW_MODE_LOC_SEND; 1999 skge->flow_control = FLOW_MODE_LOC_SEND;
2000 break; 2000 break;
2001 default: 2001 default:
2002 skge->flow_control = FLOW_MODE_NONE; 2002 skge->flow_control = FLOW_MODE_NONE;
2003 } 2003 }
2004 2004
2005 if (skge->flow_control == FLOW_MODE_NONE || 2005 if (skge->flow_control == FLOW_MODE_NONE ||
2006 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2006 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2007 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2007 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2008 else 2008 else
2009 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2009 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2010 yukon_link_up(skge); 2010 yukon_link_up(skge);
2011 return; 2011 return;
2012 } 2012 }
2013 2013
2014 if (istatus & PHY_M_IS_LSP_CHANGE) 2014 if (istatus & PHY_M_IS_LSP_CHANGE)
2015 skge->speed = yukon_speed(hw, phystat); 2015 skge->speed = yukon_speed(hw, phystat);
2016 2016
2017 if (istatus & PHY_M_IS_DUP_CHANGE) 2017 if (istatus & PHY_M_IS_DUP_CHANGE)
2018 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2018 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2019 if (istatus & PHY_M_IS_LST_CHANGE) { 2019 if (istatus & PHY_M_IS_LST_CHANGE) {
2020 if (phystat & PHY_M_PS_LINK_UP) 2020 if (phystat & PHY_M_PS_LINK_UP)
2021 yukon_link_up(skge); 2021 yukon_link_up(skge);
2022 else 2022 else
2023 yukon_link_down(skge); 2023 yukon_link_down(skge);
2024 } 2024 }
2025 return; 2025 return;
2026 failed: 2026 failed:
2027 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", 2027 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2028 skge->netdev->name, reason); 2028 skge->netdev->name, reason);
2029 2029
2030 /* XXX restart autonegotiation? */ 2030 /* XXX restart autonegotiation? */
2031 } 2031 }
2032 2032
2033 static void skge_phy_reset(struct skge_port *skge) 2033 static void skge_phy_reset(struct skge_port *skge)
2034 { 2034 {
2035 struct skge_hw *hw = skge->hw; 2035 struct skge_hw *hw = skge->hw;
2036 int port = skge->port; 2036 int port = skge->port;
2037 2037
2038 netif_stop_queue(skge->netdev); 2038 netif_stop_queue(skge->netdev);
2039 netif_carrier_off(skge->netdev); 2039 netif_carrier_off(skge->netdev);
2040 2040
2041 spin_lock_bh(&hw->phy_lock); 2041 spin_lock_bh(&hw->phy_lock);
2042 if (hw->chip_id == CHIP_ID_GENESIS) { 2042 if (hw->chip_id == CHIP_ID_GENESIS) {
2043 genesis_reset(hw, port); 2043 genesis_reset(hw, port);
2044 genesis_mac_init(hw, port); 2044 genesis_mac_init(hw, port);
2045 } else { 2045 } else {
2046 yukon_reset(hw, port); 2046 yukon_reset(hw, port);
2047 yukon_init(hw, port); 2047 yukon_init(hw, port);
2048 } 2048 }
2049 spin_unlock_bh(&hw->phy_lock); 2049 spin_unlock_bh(&hw->phy_lock);
2050 } 2050 }
2051 2051
2052 /* Basic MII support */ 2052 /* Basic MII support */
2053 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2053 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2054 { 2054 {
2055 struct mii_ioctl_data *data = if_mii(ifr); 2055 struct mii_ioctl_data *data = if_mii(ifr);
2056 struct skge_port *skge = netdev_priv(dev); 2056 struct skge_port *skge = netdev_priv(dev);
2057 struct skge_hw *hw = skge->hw; 2057 struct skge_hw *hw = skge->hw;
2058 int err = -EOPNOTSUPP; 2058 int err = -EOPNOTSUPP;
2059 2059
2060 if (!netif_running(dev)) 2060 if (!netif_running(dev))
2061 return -ENODEV; /* Phy still in reset */ 2061 return -ENODEV; /* Phy still in reset */
2062 2062
2063 switch(cmd) { 2063 switch(cmd) {
2064 case SIOCGMIIPHY: 2064 case SIOCGMIIPHY:
2065 data->phy_id = hw->phy_addr; 2065 data->phy_id = hw->phy_addr;
2066 2066
2067 /* fallthru */ 2067 /* fallthru */
2068 case SIOCGMIIREG: { 2068 case SIOCGMIIREG: {
2069 u16 val = 0; 2069 u16 val = 0;
2070 spin_lock_bh(&hw->phy_lock); 2070 spin_lock_bh(&hw->phy_lock);
2071 if (hw->chip_id == CHIP_ID_GENESIS) 2071 if (hw->chip_id == CHIP_ID_GENESIS)
2072 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2072 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2073 else 2073 else
2074 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2074 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2075 spin_unlock_bh(&hw->phy_lock); 2075 spin_unlock_bh(&hw->phy_lock);
2076 data->val_out = val; 2076 data->val_out = val;
2077 break; 2077 break;
2078 } 2078 }
2079 2079
2080 case SIOCSMIIREG: 2080 case SIOCSMIIREG:
2081 if (!capable(CAP_NET_ADMIN)) 2081 if (!capable(CAP_NET_ADMIN))
2082 return -EPERM; 2082 return -EPERM;
2083 2083
2084 spin_lock_bh(&hw->phy_lock); 2084 spin_lock_bh(&hw->phy_lock);
2085 if (hw->chip_id == CHIP_ID_GENESIS) 2085 if (hw->chip_id == CHIP_ID_GENESIS)
2086 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2086 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2087 data->val_in); 2087 data->val_in);
2088 else 2088 else
2089 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2089 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2090 data->val_in); 2090 data->val_in);
2091 spin_unlock_bh(&hw->phy_lock); 2091 spin_unlock_bh(&hw->phy_lock);
2092 break; 2092 break;
2093 } 2093 }
2094 return err; 2094 return err;
2095 } 2095 }
2096 2096
2097 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2097 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2098 { 2098 {
2099 u32 end; 2099 u32 end;
2100 2100
2101 start /= 8; 2101 start /= 8;
2102 len /= 8; 2102 len /= 8;
2103 end = start + len - 1; 2103 end = start + len - 1;
2104 2104
2105 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2105 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2106 skge_write32(hw, RB_ADDR(q, RB_START), start); 2106 skge_write32(hw, RB_ADDR(q, RB_START), start);
2107 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2107 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2108 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2108 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2109 skge_write32(hw, RB_ADDR(q, RB_END), end); 2109 skge_write32(hw, RB_ADDR(q, RB_END), end);
2110 2110
2111 if (q == Q_R1 || q == Q_R2) { 2111 if (q == Q_R1 || q == Q_R2) {
2112 /* Set thresholds on receive queue's */ 2112 /* Set thresholds on receive queue's */
2113 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2113 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2114 start + (2*len)/3); 2114 start + (2*len)/3);
2115 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2115 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2116 start + (len/3)); 2116 start + (len/3));
2117 } else { 2117 } else {
2118 /* Enable store & forward on Tx queue's because 2118 /* Enable store & forward on Tx queue's because
2119 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2119 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2120 */ 2120 */
2121 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2121 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2122 } 2122 }
2123 2123
2124 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2124 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2125 } 2125 }
2126 2126
2127 /* Setup Bus Memory Interface */ 2127 /* Setup Bus Memory Interface */
2128 static void skge_qset(struct skge_port *skge, u16 q, 2128 static void skge_qset(struct skge_port *skge, u16 q,
2129 const struct skge_element *e) 2129 const struct skge_element *e)
2130 { 2130 {
2131 struct skge_hw *hw = skge->hw; 2131 struct skge_hw *hw = skge->hw;
2132 u32 watermark = 0x600; 2132 u32 watermark = 0x600;
2133 u64 base = skge->dma + (e->desc - skge->mem); 2133 u64 base = skge->dma + (e->desc - skge->mem);
2134 2134
2135 /* optimization to reduce window on 32bit/33mhz */ 2135 /* optimization to reduce window on 32bit/33mhz */
2136 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2136 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2137 watermark /= 2; 2137 watermark /= 2;
2138 2138
2139 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2139 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2140 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2140 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2141 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2141 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2142 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2142 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2143 } 2143 }
2144 2144
2145 static int skge_up(struct net_device *dev) 2145 static int skge_up(struct net_device *dev)
2146 { 2146 {
2147 struct skge_port *skge = netdev_priv(dev); 2147 struct skge_port *skge = netdev_priv(dev);
2148 struct skge_hw *hw = skge->hw; 2148 struct skge_hw *hw = skge->hw;
2149 int port = skge->port; 2149 int port = skge->port;
2150 u32 chunk, ram_addr; 2150 u32 chunk, ram_addr;
2151 size_t rx_size, tx_size; 2151 size_t rx_size, tx_size;
2152 int err; 2152 int err;
2153 2153
2154 if (netif_msg_ifup(skge)) 2154 if (netif_msg_ifup(skge))
2155 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); 2155 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2156 2156
2157 if (dev->mtu > RX_BUF_SIZE) 2157 if (dev->mtu > RX_BUF_SIZE)
2158 skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN; 2158 skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
2159 else 2159 else
2160 skge->rx_buf_size = RX_BUF_SIZE; 2160 skge->rx_buf_size = RX_BUF_SIZE;
2161 2161
2162 2162
2163 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2163 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2164 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2164 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2165 skge->mem_size = tx_size + rx_size; 2165 skge->mem_size = tx_size + rx_size;
2166 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2166 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2167 if (!skge->mem) 2167 if (!skge->mem)
2168 return -ENOMEM; 2168 return -ENOMEM;
2169 2169
2170 BUG_ON(skge->dma & 7); 2170 BUG_ON(skge->dma & 7);
2171 2171
2172 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { 2172 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2173 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n"); 2173 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2174 err = -EINVAL; 2174 err = -EINVAL;
2175 goto free_pci_mem; 2175 goto free_pci_mem;
2176 } 2176 }
2177 2177
2178 memset(skge->mem, 0, skge->mem_size); 2178 memset(skge->mem, 0, skge->mem_size);
2179 2179
2180 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma))) 2180 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2181 if (err)
2181 goto free_pci_mem; 2182 goto free_pci_mem;
2182 2183
2183 err = skge_rx_fill(skge); 2184 err = skge_rx_fill(skge);
2184 if (err) 2185 if (err)
2185 goto free_rx_ring; 2186 goto free_rx_ring;
2186 2187
2187 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2188 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2188 skge->dma + rx_size))) 2189 skge->dma + rx_size);
2190 if (err)
2189 goto free_rx_ring; 2191 goto free_rx_ring;
2190 2192
2191 skge->tx_avail = skge->tx_ring.count - 1; 2193 skge->tx_avail = skge->tx_ring.count - 1;
2192 2194
2193 /* Initialize MAC */ 2195 /* Initialize MAC */
2194 spin_lock_bh(&hw->phy_lock); 2196 spin_lock_bh(&hw->phy_lock);
2195 if (hw->chip_id == CHIP_ID_GENESIS) 2197 if (hw->chip_id == CHIP_ID_GENESIS)
2196 genesis_mac_init(hw, port); 2198 genesis_mac_init(hw, port);
2197 else 2199 else
2198 yukon_mac_init(hw, port); 2200 yukon_mac_init(hw, port);
2199 spin_unlock_bh(&hw->phy_lock); 2201 spin_unlock_bh(&hw->phy_lock);
2200 2202
2201 /* Configure RAMbuffers */ 2203 /* Configure RAMbuffers */
2202 chunk = hw->ram_size / ((hw->ports + 1)*2); 2204 chunk = hw->ram_size / ((hw->ports + 1)*2);
2203 ram_addr = hw->ram_offset + 2 * chunk * port; 2205 ram_addr = hw->ram_offset + 2 * chunk * port;
2204 2206
2205 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2207 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2206 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2208 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2207 2209
2208 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2210 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2209 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2211 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2210 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2212 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2211 2213
2212 /* Start receiver BMU */ 2214 /* Start receiver BMU */
2213 wmb(); 2215 wmb();
2214 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2216 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2215 skge_led(skge, LED_MODE_ON); 2217 skge_led(skge, LED_MODE_ON);
2216 2218
2217 return 0; 2219 return 0;
2218 2220
2219 free_rx_ring: 2221 free_rx_ring:
2220 skge_rx_clean(skge); 2222 skge_rx_clean(skge);
2221 kfree(skge->rx_ring.start); 2223 kfree(skge->rx_ring.start);
2222 free_pci_mem: 2224 free_pci_mem:
2223 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2225 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2224 skge->mem = NULL; 2226 skge->mem = NULL;
2225 2227
2226 return err; 2228 return err;
2227 } 2229 }
2228 2230
2229 static int skge_down(struct net_device *dev) 2231 static int skge_down(struct net_device *dev)
2230 { 2232 {
2231 struct skge_port *skge = netdev_priv(dev); 2233 struct skge_port *skge = netdev_priv(dev);
2232 struct skge_hw *hw = skge->hw; 2234 struct skge_hw *hw = skge->hw;
2233 int port = skge->port; 2235 int port = skge->port;
2234 2236
2235 if (skge->mem == NULL) 2237 if (skge->mem == NULL)
2236 return 0; 2238 return 0;
2237 2239
2238 if (netif_msg_ifdown(skge)) 2240 if (netif_msg_ifdown(skge))
2239 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); 2241 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2240 2242
2241 netif_stop_queue(dev); 2243 netif_stop_queue(dev);
2242 2244
2243 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 2245 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2244 if (hw->chip_id == CHIP_ID_GENESIS) 2246 if (hw->chip_id == CHIP_ID_GENESIS)
2245 genesis_stop(skge); 2247 genesis_stop(skge);
2246 else 2248 else
2247 yukon_stop(skge); 2249 yukon_stop(skge);
2248 2250
2249 /* Stop transmitter */ 2251 /* Stop transmitter */
2250 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2252 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2251 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2253 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2252 RB_RST_SET|RB_DIS_OP_MD); 2254 RB_RST_SET|RB_DIS_OP_MD);
2253 2255
2254 2256
2255 /* Disable Force Sync bit and Enable Alloc bit */ 2257 /* Disable Force Sync bit and Enable Alloc bit */
2256 skge_write8(hw, SK_REG(port, TXA_CTRL), 2258 skge_write8(hw, SK_REG(port, TXA_CTRL),
2257 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2259 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2258 2260
2259 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2261 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2260 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2262 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2261 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2263 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2262 2264
2263 /* Reset PCI FIFO */ 2265 /* Reset PCI FIFO */
2264 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2266 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2265 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2267 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2266 2268
2267 /* Reset the RAM Buffer async Tx queue */ 2269 /* Reset the RAM Buffer async Tx queue */
2268 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2270 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2269 /* stop receiver */ 2271 /* stop receiver */
2270 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2272 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2271 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2273 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2272 RB_RST_SET|RB_DIS_OP_MD); 2274 RB_RST_SET|RB_DIS_OP_MD);
2273 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2275 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2274 2276
2275 if (hw->chip_id == CHIP_ID_GENESIS) { 2277 if (hw->chip_id == CHIP_ID_GENESIS) {
2276 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2278 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2277 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2279 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2278 } else { 2280 } else {
2279 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2281 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2280 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2282 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2281 } 2283 }
2282 2284
2283 skge_led(skge, LED_MODE_OFF); 2285 skge_led(skge, LED_MODE_OFF);
2284 2286
2285 skge_tx_clean(skge); 2287 skge_tx_clean(skge);
2286 skge_rx_clean(skge); 2288 skge_rx_clean(skge);
2287 2289
2288 kfree(skge->rx_ring.start); 2290 kfree(skge->rx_ring.start);
2289 kfree(skge->tx_ring.start); 2291 kfree(skge->tx_ring.start);
2290 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2292 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2291 skge->mem = NULL; 2293 skge->mem = NULL;
2292 return 0; 2294 return 0;
2293 } 2295 }
2294 2296
2295 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) 2297 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2296 { 2298 {
2297 struct skge_port *skge = netdev_priv(dev); 2299 struct skge_port *skge = netdev_priv(dev);
2298 struct skge_hw *hw = skge->hw; 2300 struct skge_hw *hw = skge->hw;
2299 struct skge_ring *ring = &skge->tx_ring; 2301 struct skge_ring *ring = &skge->tx_ring;
2300 struct skge_element *e; 2302 struct skge_element *e;
2301 struct skge_tx_desc *td; 2303 struct skge_tx_desc *td;
2302 int i; 2304 int i;
2303 u32 control, len; 2305 u32 control, len;
2304 u64 map; 2306 u64 map;
2305 2307
2306 skb = skb_padto(skb, ETH_ZLEN); 2308 skb = skb_padto(skb, ETH_ZLEN);
2307 if (!skb) 2309 if (!skb)
2308 return NETDEV_TX_OK; 2310 return NETDEV_TX_OK;
2309 2311
2310 if (!spin_trylock(&skge->tx_lock)) { 2312 if (!spin_trylock(&skge->tx_lock)) {
2311 /* Collision - tell upper layer to requeue */ 2313 /* Collision - tell upper layer to requeue */
2312 return NETDEV_TX_LOCKED; 2314 return NETDEV_TX_LOCKED;
2313 } 2315 }
2314 2316
2315 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) { 2317 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
2316 if (!netif_queue_stopped(dev)) { 2318 if (!netif_queue_stopped(dev)) {
2317 netif_stop_queue(dev); 2319 netif_stop_queue(dev);
2318 2320
2319 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", 2321 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2320 dev->name); 2322 dev->name);
2321 } 2323 }
2322 spin_unlock(&skge->tx_lock); 2324 spin_unlock(&skge->tx_lock);
2323 return NETDEV_TX_BUSY; 2325 return NETDEV_TX_BUSY;
2324 } 2326 }
2325 2327
2326 e = ring->to_use; 2328 e = ring->to_use;
2327 td = e->desc; 2329 td = e->desc;
2328 e->skb = skb; 2330 e->skb = skb;
2329 len = skb_headlen(skb); 2331 len = skb_headlen(skb);
2330 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2332 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2331 pci_unmap_addr_set(e, mapaddr, map); 2333 pci_unmap_addr_set(e, mapaddr, map);
2332 pci_unmap_len_set(e, maplen, len); 2334 pci_unmap_len_set(e, maplen, len);
2333 2335
2334 td->dma_lo = map; 2336 td->dma_lo = map;
2335 td->dma_hi = map >> 32; 2337 td->dma_hi = map >> 32;
2336 2338
2337 if (skb->ip_summed == CHECKSUM_HW) { 2339 if (skb->ip_summed == CHECKSUM_HW) {
2338 int offset = skb->h.raw - skb->data; 2340 int offset = skb->h.raw - skb->data;
2339 2341
2340 /* This seems backwards, but it is what the sk98lin 2342 /* This seems backwards, but it is what the sk98lin
2341 * does. Looks like hardware is wrong? 2343 * does. Looks like hardware is wrong?
2342 */ 2344 */
2343 if (skb->h.ipiph->protocol == IPPROTO_UDP 2345 if (skb->h.ipiph->protocol == IPPROTO_UDP
2344 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2346 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2345 control = BMU_TCP_CHECK; 2347 control = BMU_TCP_CHECK;
2346 else 2348 else
2347 control = BMU_UDP_CHECK; 2349 control = BMU_UDP_CHECK;
2348 2350
2349 td->csum_offs = 0; 2351 td->csum_offs = 0;
2350 td->csum_start = offset; 2352 td->csum_start = offset;
2351 td->csum_write = offset + skb->csum; 2353 td->csum_write = offset + skb->csum;
2352 } else 2354 } else
2353 control = BMU_CHECK; 2355 control = BMU_CHECK;
2354 2356
2355 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2357 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2356 control |= BMU_EOF| BMU_IRQ_EOF; 2358 control |= BMU_EOF| BMU_IRQ_EOF;
2357 else { 2359 else {
2358 struct skge_tx_desc *tf = td; 2360 struct skge_tx_desc *tf = td;
2359 2361
2360 control |= BMU_STFWD; 2362 control |= BMU_STFWD;
2361 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2362 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2364 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2363 2365
2364 map = pci_map_page(hw->pdev, frag->page, frag->page_offset, 2366 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2365 frag->size, PCI_DMA_TODEVICE); 2367 frag->size, PCI_DMA_TODEVICE);
2366 2368
2367 e = e->next; 2369 e = e->next;
2368 e->skb = NULL; 2370 e->skb = NULL;
2369 tf = e->desc; 2371 tf = e->desc;
2370 tf->dma_lo = map; 2372 tf->dma_lo = map;
2371 tf->dma_hi = (u64) map >> 32; 2373 tf->dma_hi = (u64) map >> 32;
2372 pci_unmap_addr_set(e, mapaddr, map); 2374 pci_unmap_addr_set(e, mapaddr, map);
2373 pci_unmap_len_set(e, maplen, frag->size); 2375 pci_unmap_len_set(e, maplen, frag->size);
2374 2376
2375 tf->control = BMU_OWN | BMU_SW | control | frag->size; 2377 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2376 } 2378 }
2377 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2379 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2378 } 2380 }
2379 /* Make sure all the descriptors written */ 2381 /* Make sure all the descriptors written */
2380 wmb(); 2382 wmb();
2381 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2383 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2382 wmb(); 2384 wmb();
2383 2385
2384 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2386 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2385 2387
2386 if (netif_msg_tx_queued(skge)) 2388 if (netif_msg_tx_queued(skge))
2387 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", 2389 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2388 dev->name, e - ring->start, skb->len); 2390 dev->name, e - ring->start, skb->len);
2389 2391
2390 ring->to_use = e->next; 2392 ring->to_use = e->next;
2391 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1; 2393 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
2392 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) { 2394 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
2393 pr_debug("%s: transmit queue full\n", dev->name); 2395 pr_debug("%s: transmit queue full\n", dev->name);
2394 netif_stop_queue(dev); 2396 netif_stop_queue(dev);
2395 } 2397 }
2396 2398
2397 mmiowb(); 2399 mmiowb();
2398 spin_unlock(&skge->tx_lock); 2400 spin_unlock(&skge->tx_lock);
2399 2401
2400 dev->trans_start = jiffies; 2402 dev->trans_start = jiffies;
2401 2403
2402 return NETDEV_TX_OK; 2404 return NETDEV_TX_OK;
2403 } 2405 }
2404 2406
2405 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e) 2407 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
2406 { 2408 {
2407 /* This ring element can be skb or fragment */ 2409 /* This ring element can be skb or fragment */
2408 if (e->skb) { 2410 if (e->skb) {
2409 pci_unmap_single(hw->pdev, 2411 pci_unmap_single(hw->pdev,
2410 pci_unmap_addr(e, mapaddr), 2412 pci_unmap_addr(e, mapaddr),
2411 pci_unmap_len(e, maplen), 2413 pci_unmap_len(e, maplen),
2412 PCI_DMA_TODEVICE); 2414 PCI_DMA_TODEVICE);
2413 dev_kfree_skb(e->skb); 2415 dev_kfree_skb(e->skb);
2414 e->skb = NULL; 2416 e->skb = NULL;
2415 } else { 2417 } else {
2416 pci_unmap_page(hw->pdev, 2418 pci_unmap_page(hw->pdev,
2417 pci_unmap_addr(e, mapaddr), 2419 pci_unmap_addr(e, mapaddr),
2418 pci_unmap_len(e, maplen), 2420 pci_unmap_len(e, maplen),
2419 PCI_DMA_TODEVICE); 2421 PCI_DMA_TODEVICE);
2420 } 2422 }
2421 } 2423 }
2422 2424
2423 static void skge_tx_clean(struct skge_port *skge) 2425 static void skge_tx_clean(struct skge_port *skge)
2424 { 2426 {
2425 struct skge_ring *ring = &skge->tx_ring; 2427 struct skge_ring *ring = &skge->tx_ring;
2426 struct skge_element *e; 2428 struct skge_element *e;
2427 2429
2428 spin_lock_bh(&skge->tx_lock); 2430 spin_lock_bh(&skge->tx_lock);
2429 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 2431 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2430 ++skge->tx_avail; 2432 ++skge->tx_avail;
2431 skge_tx_free(skge->hw, e); 2433 skge_tx_free(skge->hw, e);
2432 } 2434 }
2433 ring->to_clean = e; 2435 ring->to_clean = e;
2434 spin_unlock_bh(&skge->tx_lock); 2436 spin_unlock_bh(&skge->tx_lock);
2435 } 2437 }
2436 2438
2437 static void skge_tx_timeout(struct net_device *dev) 2439 static void skge_tx_timeout(struct net_device *dev)
2438 { 2440 {
2439 struct skge_port *skge = netdev_priv(dev); 2441 struct skge_port *skge = netdev_priv(dev);
2440 2442
2441 if (netif_msg_timer(skge)) 2443 if (netif_msg_timer(skge))
2442 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); 2444 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2443 2445
2444 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2446 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2445 skge_tx_clean(skge); 2447 skge_tx_clean(skge);
2446 } 2448 }
2447 2449
2448 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2450 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2449 { 2451 {
2450 int err; 2452 int err;
2451 2453
2452 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) 2454 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2453 return -EINVAL; 2455 return -EINVAL;
2454 2456
2455 if (!netif_running(dev)) { 2457 if (!netif_running(dev)) {
2456 dev->mtu = new_mtu; 2458 dev->mtu = new_mtu;
2457 return 0; 2459 return 0;
2458 } 2460 }
2459 2461
2460 skge_down(dev); 2462 skge_down(dev);
2461 2463
2462 dev->mtu = new_mtu; 2464 dev->mtu = new_mtu;
2463 2465
2464 err = skge_up(dev); 2466 err = skge_up(dev);
2465 if (err) 2467 if (err)
2466 dev_close(dev); 2468 dev_close(dev);
2467 2469
2468 return err; 2470 return err;
2469 } 2471 }
2470 2472
2471 static void genesis_set_multicast(struct net_device *dev) 2473 static void genesis_set_multicast(struct net_device *dev)
2472 { 2474 {
2473 struct skge_port *skge = netdev_priv(dev); 2475 struct skge_port *skge = netdev_priv(dev);
2474 struct skge_hw *hw = skge->hw; 2476 struct skge_hw *hw = skge->hw;
2475 int port = skge->port; 2477 int port = skge->port;
2476 int i, count = dev->mc_count; 2478 int i, count = dev->mc_count;
2477 struct dev_mc_list *list = dev->mc_list; 2479 struct dev_mc_list *list = dev->mc_list;
2478 u32 mode; 2480 u32 mode;
2479 u8 filter[8]; 2481 u8 filter[8];
2480 2482
2481 mode = xm_read32(hw, port, XM_MODE); 2483 mode = xm_read32(hw, port, XM_MODE);
2482 mode |= XM_MD_ENA_HASH; 2484 mode |= XM_MD_ENA_HASH;
2483 if (dev->flags & IFF_PROMISC) 2485 if (dev->flags & IFF_PROMISC)
2484 mode |= XM_MD_ENA_PROM; 2486 mode |= XM_MD_ENA_PROM;
2485 else 2487 else
2486 mode &= ~XM_MD_ENA_PROM; 2488 mode &= ~XM_MD_ENA_PROM;
2487 2489
2488 if (dev->flags & IFF_ALLMULTI) 2490 if (dev->flags & IFF_ALLMULTI)
2489 memset(filter, 0xff, sizeof(filter)); 2491 memset(filter, 0xff, sizeof(filter));
2490 else { 2492 else {
2491 memset(filter, 0, sizeof(filter)); 2493 memset(filter, 0, sizeof(filter));
2492 for (i = 0; list && i < count; i++, list = list->next) { 2494 for (i = 0; list && i < count; i++, list = list->next) {
2493 u32 crc, bit; 2495 u32 crc, bit;
2494 crc = ether_crc_le(ETH_ALEN, list->dmi_addr); 2496 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2495 bit = ~crc & 0x3f; 2497 bit = ~crc & 0x3f;
2496 filter[bit/8] |= 1 << (bit%8); 2498 filter[bit/8] |= 1 << (bit%8);
2497 } 2499 }
2498 } 2500 }
2499 2501
2500 xm_write32(hw, port, XM_MODE, mode); 2502 xm_write32(hw, port, XM_MODE, mode);
2501 xm_outhash(hw, port, XM_HSM, filter); 2503 xm_outhash(hw, port, XM_HSM, filter);
2502 } 2504 }
2503 2505
2504 static void yukon_set_multicast(struct net_device *dev) 2506 static void yukon_set_multicast(struct net_device *dev)
2505 { 2507 {
2506 struct skge_port *skge = netdev_priv(dev); 2508 struct skge_port *skge = netdev_priv(dev);
2507 struct skge_hw *hw = skge->hw; 2509 struct skge_hw *hw = skge->hw;
2508 int port = skge->port; 2510 int port = skge->port;
2509 struct dev_mc_list *list = dev->mc_list; 2511 struct dev_mc_list *list = dev->mc_list;
2510 u16 reg; 2512 u16 reg;
2511 u8 filter[8]; 2513 u8 filter[8];
2512 2514
2513 memset(filter, 0, sizeof(filter)); 2515 memset(filter, 0, sizeof(filter));
2514 2516
2515 reg = gma_read16(hw, port, GM_RX_CTRL); 2517 reg = gma_read16(hw, port, GM_RX_CTRL);
2516 reg |= GM_RXCR_UCF_ENA; 2518 reg |= GM_RXCR_UCF_ENA;
2517 2519
2518 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2520 if (dev->flags & IFF_PROMISC) /* promiscuous */
2519 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2521 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2520 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2522 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2521 memset(filter, 0xff, sizeof(filter)); 2523 memset(filter, 0xff, sizeof(filter));
2522 else if (dev->mc_count == 0) /* no multicast */ 2524 else if (dev->mc_count == 0) /* no multicast */
2523 reg &= ~GM_RXCR_MCF_ENA; 2525 reg &= ~GM_RXCR_MCF_ENA;
2524 else { 2526 else {
2525 int i; 2527 int i;
2526 reg |= GM_RXCR_MCF_ENA; 2528 reg |= GM_RXCR_MCF_ENA;
2527 2529
2528 for (i = 0; list && i < dev->mc_count; i++, list = list->next) { 2530 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2529 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; 2531 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2530 filter[bit/8] |= 1 << (bit%8); 2532 filter[bit/8] |= 1 << (bit%8);
2531 } 2533 }
2532 } 2534 }
2533 2535
2534 2536
2535 gma_write16(hw, port, GM_MC_ADDR_H1, 2537 gma_write16(hw, port, GM_MC_ADDR_H1,
2536 (u16)filter[0] | ((u16)filter[1] << 8)); 2538 (u16)filter[0] | ((u16)filter[1] << 8));
2537 gma_write16(hw, port, GM_MC_ADDR_H2, 2539 gma_write16(hw, port, GM_MC_ADDR_H2,
2538 (u16)filter[2] | ((u16)filter[3] << 8)); 2540 (u16)filter[2] | ((u16)filter[3] << 8));
2539 gma_write16(hw, port, GM_MC_ADDR_H3, 2541 gma_write16(hw, port, GM_MC_ADDR_H3,
2540 (u16)filter[4] | ((u16)filter[5] << 8)); 2542 (u16)filter[4] | ((u16)filter[5] << 8));
2541 gma_write16(hw, port, GM_MC_ADDR_H4, 2543 gma_write16(hw, port, GM_MC_ADDR_H4,
2542 (u16)filter[6] | ((u16)filter[7] << 8)); 2544 (u16)filter[6] | ((u16)filter[7] << 8));
2543 2545
2544 gma_write16(hw, port, GM_RX_CTRL, reg); 2546 gma_write16(hw, port, GM_RX_CTRL, reg);
2545 } 2547 }
2546 2548
2547 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 2549 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2548 { 2550 {
2549 if (hw->chip_id == CHIP_ID_GENESIS) 2551 if (hw->chip_id == CHIP_ID_GENESIS)
2550 return status >> XMR_FS_LEN_SHIFT; 2552 return status >> XMR_FS_LEN_SHIFT;
2551 else 2553 else
2552 return status >> GMR_FS_LEN_SHIFT; 2554 return status >> GMR_FS_LEN_SHIFT;
2553 } 2555 }
2554 2556
2555 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 2557 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2556 { 2558 {
2557 if (hw->chip_id == CHIP_ID_GENESIS) 2559 if (hw->chip_id == CHIP_ID_GENESIS)
2558 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 2560 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2559 else 2561 else
2560 return (status & GMR_FS_ANY_ERR) || 2562 return (status & GMR_FS_ANY_ERR) ||
2561 (status & GMR_FS_RX_OK) == 0; 2563 (status & GMR_FS_RX_OK) == 0;
2562 } 2564 }
2563 2565
2564 2566
2565 /* Get receive buffer from descriptor. 2567 /* Get receive buffer from descriptor.
2566 * Handles copy of small buffers and reallocation failures 2568 * Handles copy of small buffers and reallocation failures
2567 */ 2569 */
2568 static inline struct sk_buff *skge_rx_get(struct skge_port *skge, 2570 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2569 struct skge_element *e, 2571 struct skge_element *e,
2570 u32 control, u32 status, u16 csum) 2572 u32 control, u32 status, u16 csum)
2571 { 2573 {
2572 struct sk_buff *skb; 2574 struct sk_buff *skb;
2573 u16 len = control & BMU_BBC; 2575 u16 len = control & BMU_BBC;
2574 2576
2575 if (unlikely(netif_msg_rx_status(skge))) 2577 if (unlikely(netif_msg_rx_status(skge)))
2576 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", 2578 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2577 skge->netdev->name, e - skge->rx_ring.start, 2579 skge->netdev->name, e - skge->rx_ring.start,
2578 status, len); 2580 status, len);
2579 2581
2580 if (len > skge->rx_buf_size) 2582 if (len > skge->rx_buf_size)
2581 goto error; 2583 goto error;
2582 2584
2583 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 2585 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2584 goto error; 2586 goto error;
2585 2587
2586 if (bad_phy_status(skge->hw, status)) 2588 if (bad_phy_status(skge->hw, status))
2587 goto error; 2589 goto error;
2588 2590
2589 if (phy_length(skge->hw, status) != len) 2591 if (phy_length(skge->hw, status) != len)
2590 goto error; 2592 goto error;
2591 2593
2592 if (len < RX_COPY_THRESHOLD) { 2594 if (len < RX_COPY_THRESHOLD) {
2593 skb = dev_alloc_skb(len + 2); 2595 skb = dev_alloc_skb(len + 2);
2594 if (!skb) 2596 if (!skb)
2595 goto resubmit; 2597 goto resubmit;
2596 2598
2597 skb_reserve(skb, 2); 2599 skb_reserve(skb, 2);
2598 pci_dma_sync_single_for_cpu(skge->hw->pdev, 2600 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2599 pci_unmap_addr(e, mapaddr), 2601 pci_unmap_addr(e, mapaddr),
2600 len, PCI_DMA_FROMDEVICE); 2602 len, PCI_DMA_FROMDEVICE);
2601 memcpy(skb->data, e->skb->data, len); 2603 memcpy(skb->data, e->skb->data, len);
2602 pci_dma_sync_single_for_device(skge->hw->pdev, 2604 pci_dma_sync_single_for_device(skge->hw->pdev,
2603 pci_unmap_addr(e, mapaddr), 2605 pci_unmap_addr(e, mapaddr),
2604 len, PCI_DMA_FROMDEVICE); 2606 len, PCI_DMA_FROMDEVICE);
2605 skge_rx_reuse(e, skge->rx_buf_size); 2607 skge_rx_reuse(e, skge->rx_buf_size);
2606 } else { 2608 } else {
2607 struct sk_buff *nskb; 2609 struct sk_buff *nskb;
2608 nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); 2610 nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
2609 if (!nskb) 2611 if (!nskb)
2610 goto resubmit; 2612 goto resubmit;
2611 2613
2612 pci_unmap_single(skge->hw->pdev, 2614 pci_unmap_single(skge->hw->pdev,
2613 pci_unmap_addr(e, mapaddr), 2615 pci_unmap_addr(e, mapaddr),
2614 pci_unmap_len(e, maplen), 2616 pci_unmap_len(e, maplen),
2615 PCI_DMA_FROMDEVICE); 2617 PCI_DMA_FROMDEVICE);
2616 skb = e->skb; 2618 skb = e->skb;
2617 prefetch(skb->data); 2619 prefetch(skb->data);
2618 skge_rx_setup(skge, e, nskb, skge->rx_buf_size); 2620 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2619 } 2621 }
2620 2622
2621 skb_put(skb, len); 2623 skb_put(skb, len);
2622 skb->dev = skge->netdev; 2624 skb->dev = skge->netdev;
2623 if (skge->rx_csum) { 2625 if (skge->rx_csum) {
2624 skb->csum = csum; 2626 skb->csum = csum;
2625 skb->ip_summed = CHECKSUM_HW; 2627 skb->ip_summed = CHECKSUM_HW;
2626 } 2628 }
2627 2629
2628 skb->protocol = eth_type_trans(skb, skge->netdev); 2630 skb->protocol = eth_type_trans(skb, skge->netdev);
2629 2631
2630 return skb; 2632 return skb;
2631 error: 2633 error:
2632 2634
2633 if (netif_msg_rx_err(skge)) 2635 if (netif_msg_rx_err(skge))
2634 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", 2636 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2635 skge->netdev->name, e - skge->rx_ring.start, 2637 skge->netdev->name, e - skge->rx_ring.start,
2636 control, status); 2638 control, status);
2637 2639
2638 if (skge->hw->chip_id == CHIP_ID_GENESIS) { 2640 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2639 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 2641 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2640 skge->net_stats.rx_length_errors++; 2642 skge->net_stats.rx_length_errors++;
2641 if (status & XMR_FS_FRA_ERR) 2643 if (status & XMR_FS_FRA_ERR)
2642 skge->net_stats.rx_frame_errors++; 2644 skge->net_stats.rx_frame_errors++;
2643 if (status & XMR_FS_FCS_ERR) 2645 if (status & XMR_FS_FCS_ERR)
2644 skge->net_stats.rx_crc_errors++; 2646 skge->net_stats.rx_crc_errors++;
2645 } else { 2647 } else {
2646 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 2648 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2647 skge->net_stats.rx_length_errors++; 2649 skge->net_stats.rx_length_errors++;
2648 if (status & GMR_FS_FRAGMENT) 2650 if (status & GMR_FS_FRAGMENT)
2649 skge->net_stats.rx_frame_errors++; 2651 skge->net_stats.rx_frame_errors++;
2650 if (status & GMR_FS_CRC_ERR) 2652 if (status & GMR_FS_CRC_ERR)
2651 skge->net_stats.rx_crc_errors++; 2653 skge->net_stats.rx_crc_errors++;
2652 } 2654 }
2653 2655
2654 resubmit: 2656 resubmit:
2655 skge_rx_reuse(e, skge->rx_buf_size); 2657 skge_rx_reuse(e, skge->rx_buf_size);
2656 return NULL; 2658 return NULL;
2657 } 2659 }
2658 2660
2659 static void skge_tx_done(struct skge_port *skge) 2661 static void skge_tx_done(struct skge_port *skge)
2660 { 2662 {
2661 struct skge_ring *ring = &skge->tx_ring; 2663 struct skge_ring *ring = &skge->tx_ring;
2662 struct skge_element *e; 2664 struct skge_element *e;
2663 2665
2664 spin_lock(&skge->tx_lock); 2666 spin_lock(&skge->tx_lock);
2665 for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) { 2667 for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) {
2666 struct skge_tx_desc *td = e->desc; 2668 struct skge_tx_desc *td = e->desc;
2667 u32 control; 2669 u32 control;
2668 2670
2669 rmb(); 2671 rmb();
2670 control = td->control; 2672 control = td->control;
2671 if (control & BMU_OWN) 2673 if (control & BMU_OWN)
2672 break; 2674 break;
2673 2675
2674 if (unlikely(netif_msg_tx_done(skge))) 2676 if (unlikely(netif_msg_tx_done(skge)))
2675 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n", 2677 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2676 skge->netdev->name, e - ring->start, td->status); 2678 skge->netdev->name, e - ring->start, td->status);
2677 2679
2678 skge_tx_free(skge->hw, e); 2680 skge_tx_free(skge->hw, e);
2679 e->skb = NULL; 2681 e->skb = NULL;
2680 ++skge->tx_avail; 2682 ++skge->tx_avail;
2681 } 2683 }
2682 ring->to_clean = e; 2684 ring->to_clean = e;
2683 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 2685 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2684 2686
2685 if (skge->tx_avail > MAX_SKB_FRAGS + 1) 2687 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
2686 netif_wake_queue(skge->netdev); 2688 netif_wake_queue(skge->netdev);
2687 2689
2688 spin_unlock(&skge->tx_lock); 2690 spin_unlock(&skge->tx_lock);
2689 } 2691 }
2690 2692
2691 static int skge_poll(struct net_device *dev, int *budget) 2693 static int skge_poll(struct net_device *dev, int *budget)
2692 { 2694 {
2693 struct skge_port *skge = netdev_priv(dev); 2695 struct skge_port *skge = netdev_priv(dev);
2694 struct skge_hw *hw = skge->hw; 2696 struct skge_hw *hw = skge->hw;
2695 struct skge_ring *ring = &skge->rx_ring; 2697 struct skge_ring *ring = &skge->rx_ring;
2696 struct skge_element *e; 2698 struct skge_element *e;
2697 int to_do = min(dev->quota, *budget); 2699 int to_do = min(dev->quota, *budget);
2698 int work_done = 0; 2700 int work_done = 0;
2699 2701
2700 skge_tx_done(skge); 2702 skge_tx_done(skge);
2701 2703
2702 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { 2704 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2703 struct skge_rx_desc *rd = e->desc; 2705 struct skge_rx_desc *rd = e->desc;
2704 struct sk_buff *skb; 2706 struct sk_buff *skb;
2705 u32 control; 2707 u32 control;
2706 2708
2707 rmb(); 2709 rmb();
2708 control = rd->control; 2710 control = rd->control;
2709 if (control & BMU_OWN) 2711 if (control & BMU_OWN)
2710 break; 2712 break;
2711 2713
2712 skb = skge_rx_get(skge, e, control, rd->status, 2714 skb = skge_rx_get(skge, e, control, rd->status,
2713 le16_to_cpu(rd->csum2)); 2715 le16_to_cpu(rd->csum2));
2714 if (likely(skb)) { 2716 if (likely(skb)) {
2715 dev->last_rx = jiffies; 2717 dev->last_rx = jiffies;
2716 netif_receive_skb(skb); 2718 netif_receive_skb(skb);
2717 2719
2718 ++work_done; 2720 ++work_done;
2719 } else 2721 } else
2720 skge_rx_reuse(e, skge->rx_buf_size); 2722 skge_rx_reuse(e, skge->rx_buf_size);
2721 } 2723 }
2722 ring->to_clean = e; 2724 ring->to_clean = e;
2723 2725
2724 /* restart receiver */ 2726 /* restart receiver */
2725 wmb(); 2727 wmb();
2726 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 2728 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2727 2729
2728 *budget -= work_done; 2730 *budget -= work_done;
2729 dev->quota -= work_done; 2731 dev->quota -= work_done;
2730 2732
2731 if (work_done >= to_do) 2733 if (work_done >= to_do)
2732 return 1; /* not done */ 2734 return 1; /* not done */
2733 2735
2734 netif_rx_complete(dev); 2736 netif_rx_complete(dev);
2735 mmiowb(); 2737 mmiowb();
2736 2738
2737 hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F); 2739 hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F);
2738 skge_write32(hw, B0_IMSK, hw->intr_mask); 2740 skge_write32(hw, B0_IMSK, hw->intr_mask);
2739 2741
2740 return 0; 2742 return 0;
2741 } 2743 }
2742 2744
2743 /* Parity errors seem to happen when Genesis is connected to a switch 2745 /* Parity errors seem to happen when Genesis is connected to a switch
2744 * with no other ports present. Heartbeat error?? 2746 * with no other ports present. Heartbeat error??
2745 */ 2747 */
2746 static void skge_mac_parity(struct skge_hw *hw, int port) 2748 static void skge_mac_parity(struct skge_hw *hw, int port)
2747 { 2749 {
2748 struct net_device *dev = hw->dev[port]; 2750 struct net_device *dev = hw->dev[port];
2749 2751
2750 if (dev) { 2752 if (dev) {
2751 struct skge_port *skge = netdev_priv(dev); 2753 struct skge_port *skge = netdev_priv(dev);
2752 ++skge->net_stats.tx_heartbeat_errors; 2754 ++skge->net_stats.tx_heartbeat_errors;
2753 } 2755 }
2754 2756
2755 if (hw->chip_id == CHIP_ID_GENESIS) 2757 if (hw->chip_id == CHIP_ID_GENESIS)
2756 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 2758 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2757 MFF_CLR_PERR); 2759 MFF_CLR_PERR);
2758 else 2760 else
2759 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 2761 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2760 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 2762 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2761 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 2763 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2762 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 2764 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2763 } 2765 }
2764 2766
2765 static void skge_pci_clear(struct skge_hw *hw) 2767 static void skge_pci_clear(struct skge_hw *hw)
2766 { 2768 {
2767 u16 status; 2769 u16 status;
2768 2770
2769 pci_read_config_word(hw->pdev, PCI_STATUS, &status); 2771 pci_read_config_word(hw->pdev, PCI_STATUS, &status);
2770 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 2772 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2771 pci_write_config_word(hw->pdev, PCI_STATUS, 2773 pci_write_config_word(hw->pdev, PCI_STATUS,
2772 status | PCI_STATUS_ERROR_BITS); 2774 status | PCI_STATUS_ERROR_BITS);
2773 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 2775 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2774 } 2776 }
2775 2777
2776 static void skge_mac_intr(struct skge_hw *hw, int port) 2778 static void skge_mac_intr(struct skge_hw *hw, int port)
2777 { 2779 {
2778 if (hw->chip_id == CHIP_ID_GENESIS) 2780 if (hw->chip_id == CHIP_ID_GENESIS)
2779 genesis_mac_intr(hw, port); 2781 genesis_mac_intr(hw, port);
2780 else 2782 else
2781 yukon_mac_intr(hw, port); 2783 yukon_mac_intr(hw, port);
2782 } 2784 }
2783 2785
2784 /* Handle device specific framing and timeout interrupts */ 2786 /* Handle device specific framing and timeout interrupts */
2785 static void skge_error_irq(struct skge_hw *hw) 2787 static void skge_error_irq(struct skge_hw *hw)
2786 { 2788 {
2787 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 2789 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2788 2790
2789 if (hw->chip_id == CHIP_ID_GENESIS) { 2791 if (hw->chip_id == CHIP_ID_GENESIS) {
2790 /* clear xmac errors */ 2792 /* clear xmac errors */
2791 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 2793 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2792 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 2794 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2793 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 2795 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2794 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 2796 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2795 } else { 2797 } else {
2796 /* Timestamp (unused) overflow */ 2798 /* Timestamp (unused) overflow */
2797 if (hwstatus & IS_IRQ_TIST_OV) 2799 if (hwstatus & IS_IRQ_TIST_OV)
2798 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 2800 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2799 } 2801 }
2800 2802
2801 if (hwstatus & IS_RAM_RD_PAR) { 2803 if (hwstatus & IS_RAM_RD_PAR) {
2802 printk(KERN_ERR PFX "Ram read data parity error\n"); 2804 printk(KERN_ERR PFX "Ram read data parity error\n");
2803 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 2805 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2804 } 2806 }
2805 2807
2806 if (hwstatus & IS_RAM_WR_PAR) { 2808 if (hwstatus & IS_RAM_WR_PAR) {
2807 printk(KERN_ERR PFX "Ram write data parity error\n"); 2809 printk(KERN_ERR PFX "Ram write data parity error\n");
2808 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 2810 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2809 } 2811 }
2810 2812
2811 if (hwstatus & IS_M1_PAR_ERR) 2813 if (hwstatus & IS_M1_PAR_ERR)
2812 skge_mac_parity(hw, 0); 2814 skge_mac_parity(hw, 0);
2813 2815
2814 if (hwstatus & IS_M2_PAR_ERR) 2816 if (hwstatus & IS_M2_PAR_ERR)
2815 skge_mac_parity(hw, 1); 2817 skge_mac_parity(hw, 1);
2816 2818
2817 if (hwstatus & IS_R1_PAR_ERR) 2819 if (hwstatus & IS_R1_PAR_ERR)
2818 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 2820 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2819 2821
2820 if (hwstatus & IS_R2_PAR_ERR) 2822 if (hwstatus & IS_R2_PAR_ERR)
2821 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 2823 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2822 2824
2823 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 2825 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2824 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n", 2826 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
2825 hwstatus); 2827 hwstatus);
2826 2828
2827 skge_pci_clear(hw); 2829 skge_pci_clear(hw);
2828 2830
2829 /* if error still set then just ignore it */ 2831 /* if error still set then just ignore it */
2830 hwstatus = skge_read32(hw, B0_HWE_ISRC); 2832 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2831 if (hwstatus & IS_IRQ_STAT) { 2833 if (hwstatus & IS_IRQ_STAT) {
2832 pr_debug("IRQ status %x: still set ignoring hardware errors\n", 2834 pr_debug("IRQ status %x: still set ignoring hardware errors\n",
2833 hwstatus); 2835 hwstatus);
2834 hw->intr_mask &= ~IS_HW_ERR; 2836 hw->intr_mask &= ~IS_HW_ERR;
2835 } 2837 }
2836 } 2838 }
2837 } 2839 }
2838 2840
2839 /* 2841 /*
2840 * Interrupt from PHY are handled in tasklet (soft irq) 2842 * Interrupt from PHY are handled in tasklet (soft irq)
2841 * because accessing phy registers requires spin wait which might 2843 * because accessing phy registers requires spin wait which might
2842 * cause excess interrupt latency. 2844 * cause excess interrupt latency.
2843 */ 2845 */
2844 static void skge_extirq(unsigned long data) 2846 static void skge_extirq(unsigned long data)
2845 { 2847 {
2846 struct skge_hw *hw = (struct skge_hw *) data; 2848 struct skge_hw *hw = (struct skge_hw *) data;
2847 int port; 2849 int port;
2848 2850
2849 spin_lock(&hw->phy_lock); 2851 spin_lock(&hw->phy_lock);
2850 for (port = 0; port < hw->ports; port++) { 2852 for (port = 0; port < hw->ports; port++) {
2851 struct net_device *dev = hw->dev[port]; 2853 struct net_device *dev = hw->dev[port];
2852 struct skge_port *skge = netdev_priv(dev); 2854 struct skge_port *skge = netdev_priv(dev);
2853 2855
2854 if (netif_running(dev)) { 2856 if (netif_running(dev)) {
2855 if (hw->chip_id != CHIP_ID_GENESIS) 2857 if (hw->chip_id != CHIP_ID_GENESIS)
2856 yukon_phy_intr(skge); 2858 yukon_phy_intr(skge);
2857 else 2859 else
2858 bcom_phy_intr(skge); 2860 bcom_phy_intr(skge);
2859 } 2861 }
2860 } 2862 }
2861 spin_unlock(&hw->phy_lock); 2863 spin_unlock(&hw->phy_lock);
2862 2864
2863 hw->intr_mask |= IS_EXT_REG; 2865 hw->intr_mask |= IS_EXT_REG;
2864 skge_write32(hw, B0_IMSK, hw->intr_mask); 2866 skge_write32(hw, B0_IMSK, hw->intr_mask);
2865 } 2867 }
2866 2868
2867 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) 2869 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2868 { 2870 {
2869 struct skge_hw *hw = dev_id; 2871 struct skge_hw *hw = dev_id;
2870 u32 status; 2872 u32 status;
2871 2873
2872 /* Reading this register masks IRQ */ 2874 /* Reading this register masks IRQ */
2873 status = skge_read32(hw, B0_SP_ISRC); 2875 status = skge_read32(hw, B0_SP_ISRC);
2874 if (status == 0) 2876 if (status == 0)
2875 return IRQ_NONE; 2877 return IRQ_NONE;
2876 2878
2877 if (status & IS_EXT_REG) { 2879 if (status & IS_EXT_REG) {
2878 hw->intr_mask &= ~IS_EXT_REG; 2880 hw->intr_mask &= ~IS_EXT_REG;
2879 tasklet_schedule(&hw->ext_tasklet); 2881 tasklet_schedule(&hw->ext_tasklet);
2880 } 2882 }
2881 2883
2882 if (status & (IS_R1_F|IS_XA1_F)) { 2884 if (status & (IS_R1_F|IS_XA1_F)) {
2883 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F); 2885 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2884 hw->intr_mask &= ~(IS_R1_F|IS_XA1_F); 2886 hw->intr_mask &= ~(IS_R1_F|IS_XA1_F);
2885 netif_rx_schedule(hw->dev[0]); 2887 netif_rx_schedule(hw->dev[0]);
2886 } 2888 }
2887 2889
2888 if (status & (IS_R2_F|IS_XA2_F)) { 2890 if (status & (IS_R2_F|IS_XA2_F)) {
2889 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F); 2891 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2890 hw->intr_mask &= ~(IS_R2_F|IS_XA2_F); 2892 hw->intr_mask &= ~(IS_R2_F|IS_XA2_F);
2891 netif_rx_schedule(hw->dev[1]); 2893 netif_rx_schedule(hw->dev[1]);
2892 } 2894 }
2893 2895
2894 if (likely((status & hw->intr_mask) == 0)) 2896 if (likely((status & hw->intr_mask) == 0))
2895 return IRQ_HANDLED; 2897 return IRQ_HANDLED;
2896 2898
2897 if (status & IS_PA_TO_RX1) { 2899 if (status & IS_PA_TO_RX1) {
2898 struct skge_port *skge = netdev_priv(hw->dev[0]); 2900 struct skge_port *skge = netdev_priv(hw->dev[0]);
2899 ++skge->net_stats.rx_over_errors; 2901 ++skge->net_stats.rx_over_errors;
2900 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 2902 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2901 } 2903 }
2902 2904
2903 if (status & IS_PA_TO_RX2) { 2905 if (status & IS_PA_TO_RX2) {
2904 struct skge_port *skge = netdev_priv(hw->dev[1]); 2906 struct skge_port *skge = netdev_priv(hw->dev[1]);
2905 ++skge->net_stats.rx_over_errors; 2907 ++skge->net_stats.rx_over_errors;
2906 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 2908 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2907 } 2909 }
2908 2910
2909 if (status & IS_PA_TO_TX1) 2911 if (status & IS_PA_TO_TX1)
2910 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 2912 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2911 2913
2912 if (status & IS_PA_TO_TX2) 2914 if (status & IS_PA_TO_TX2)
2913 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 2915 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2914 2916
2915 if (status & IS_MAC1) 2917 if (status & IS_MAC1)
2916 skge_mac_intr(hw, 0); 2918 skge_mac_intr(hw, 0);
2917 2919
2918 if (status & IS_MAC2) 2920 if (status & IS_MAC2)
2919 skge_mac_intr(hw, 1); 2921 skge_mac_intr(hw, 1);
2920 2922
2921 if (status & IS_HW_ERR) 2923 if (status & IS_HW_ERR)
2922 skge_error_irq(hw); 2924 skge_error_irq(hw);
2923 2925
2924 skge_write32(hw, B0_IMSK, hw->intr_mask); 2926 skge_write32(hw, B0_IMSK, hw->intr_mask);
2925 2927
2926 return IRQ_HANDLED; 2928 return IRQ_HANDLED;
2927 } 2929 }
2928 2930
2929 #ifdef CONFIG_NET_POLL_CONTROLLER 2931 #ifdef CONFIG_NET_POLL_CONTROLLER
2930 static void skge_netpoll(struct net_device *dev) 2932 static void skge_netpoll(struct net_device *dev)
2931 { 2933 {
2932 struct skge_port *skge = netdev_priv(dev); 2934 struct skge_port *skge = netdev_priv(dev);
2933 2935
2934 disable_irq(dev->irq); 2936 disable_irq(dev->irq);
2935 skge_intr(dev->irq, skge->hw, NULL); 2937 skge_intr(dev->irq, skge->hw, NULL);
2936 enable_irq(dev->irq); 2938 enable_irq(dev->irq);
2937 } 2939 }
2938 #endif 2940 #endif
2939 2941
2940 static int skge_set_mac_address(struct net_device *dev, void *p) 2942 static int skge_set_mac_address(struct net_device *dev, void *p)
2941 { 2943 {
2942 struct skge_port *skge = netdev_priv(dev); 2944 struct skge_port *skge = netdev_priv(dev);
2943 struct skge_hw *hw = skge->hw; 2945 struct skge_hw *hw = skge->hw;
2944 unsigned port = skge->port; 2946 unsigned port = skge->port;
2945 const struct sockaddr *addr = p; 2947 const struct sockaddr *addr = p;
2946 2948
2947 if (!is_valid_ether_addr(addr->sa_data)) 2949 if (!is_valid_ether_addr(addr->sa_data))
2948 return -EADDRNOTAVAIL; 2950 return -EADDRNOTAVAIL;
2949 2951
2950 spin_lock_bh(&hw->phy_lock); 2952 spin_lock_bh(&hw->phy_lock);
2951 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 2953 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2952 memcpy_toio(hw->regs + B2_MAC_1 + port*8, 2954 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2953 dev->dev_addr, ETH_ALEN); 2955 dev->dev_addr, ETH_ALEN);
2954 memcpy_toio(hw->regs + B2_MAC_2 + port*8, 2956 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2955 dev->dev_addr, ETH_ALEN); 2957 dev->dev_addr, ETH_ALEN);
2956 2958
2957 if (hw->chip_id == CHIP_ID_GENESIS) 2959 if (hw->chip_id == CHIP_ID_GENESIS)
2958 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 2960 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2959 else { 2961 else {
2960 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 2962 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2961 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 2963 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2962 } 2964 }
2963 spin_unlock_bh(&hw->phy_lock); 2965 spin_unlock_bh(&hw->phy_lock);
2964 2966
2965 return 0; 2967 return 0;
2966 } 2968 }
2967 2969
2968 static const struct { 2970 static const struct {
2969 u8 id; 2971 u8 id;
2970 const char *name; 2972 const char *name;
2971 } skge_chips[] = { 2973 } skge_chips[] = {
2972 { CHIP_ID_GENESIS, "Genesis" }, 2974 { CHIP_ID_GENESIS, "Genesis" },
2973 { CHIP_ID_YUKON, "Yukon" }, 2975 { CHIP_ID_YUKON, "Yukon" },
2974 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 2976 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2975 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 2977 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2976 }; 2978 };
2977 2979
2978 static const char *skge_board_name(const struct skge_hw *hw) 2980 static const char *skge_board_name(const struct skge_hw *hw)
2979 { 2981 {
2980 int i; 2982 int i;
2981 static char buf[16]; 2983 static char buf[16];
2982 2984
2983 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 2985 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2984 if (skge_chips[i].id == hw->chip_id) 2986 if (skge_chips[i].id == hw->chip_id)
2985 return skge_chips[i].name; 2987 return skge_chips[i].name;
2986 2988
2987 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); 2989 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2988 return buf; 2990 return buf;
2989 } 2991 }
2990 2992
2991 2993
2992 /* 2994 /*
2993 * Setup the board data structure, but don't bring up 2995 * Setup the board data structure, but don't bring up
2994 * the port(s) 2996 * the port(s)
2995 */ 2997 */
2996 static int skge_reset(struct skge_hw *hw) 2998 static int skge_reset(struct skge_hw *hw)
2997 { 2999 {
2998 u32 reg; 3000 u32 reg;
2999 u16 ctst; 3001 u16 ctst;
3000 u8 t8, mac_cfg, pmd_type, phy_type; 3002 u8 t8, mac_cfg, pmd_type, phy_type;
3001 int i; 3003 int i;
3002 3004
3003 ctst = skge_read16(hw, B0_CTST); 3005 ctst = skge_read16(hw, B0_CTST);
3004 3006
3005 /* do a SW reset */ 3007 /* do a SW reset */
3006 skge_write8(hw, B0_CTST, CS_RST_SET); 3008 skge_write8(hw, B0_CTST, CS_RST_SET);
3007 skge_write8(hw, B0_CTST, CS_RST_CLR); 3009 skge_write8(hw, B0_CTST, CS_RST_CLR);
3008 3010
3009 /* clear PCI errors, if any */ 3011 /* clear PCI errors, if any */
3010 skge_pci_clear(hw); 3012 skge_pci_clear(hw);
3011 3013
3012 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3014 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3013 3015
3014 /* restore CLK_RUN bits (for Yukon-Lite) */ 3016 /* restore CLK_RUN bits (for Yukon-Lite) */
3015 skge_write16(hw, B0_CTST, 3017 skge_write16(hw, B0_CTST,
3016 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3018 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3017 3019
3018 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3020 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3019 phy_type = skge_read8(hw, B2_E_1) & 0xf; 3021 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3020 pmd_type = skge_read8(hw, B2_PMD_TYP); 3022 pmd_type = skge_read8(hw, B2_PMD_TYP);
3021 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3023 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3022 3024
3023 switch (hw->chip_id) { 3025 switch (hw->chip_id) {
3024 case CHIP_ID_GENESIS: 3026 case CHIP_ID_GENESIS:
3025 switch (phy_type) { 3027 switch (phy_type) {
3026 case SK_PHY_BCOM: 3028 case SK_PHY_BCOM:
3027 hw->phy_addr = PHY_ADDR_BCOM; 3029 hw->phy_addr = PHY_ADDR_BCOM;
3028 break; 3030 break;
3029 default: 3031 default:
3030 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n", 3032 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3031 pci_name(hw->pdev), phy_type); 3033 pci_name(hw->pdev), phy_type);
3032 return -EOPNOTSUPP; 3034 return -EOPNOTSUPP;
3033 } 3035 }
3034 break; 3036 break;
3035 3037
3036 case CHIP_ID_YUKON: 3038 case CHIP_ID_YUKON:
3037 case CHIP_ID_YUKON_LITE: 3039 case CHIP_ID_YUKON_LITE:
3038 case CHIP_ID_YUKON_LP: 3040 case CHIP_ID_YUKON_LP:
3039 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3041 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3040 hw->copper = 1; 3042 hw->copper = 1;
3041 3043
3042 hw->phy_addr = PHY_ADDR_MARV; 3044 hw->phy_addr = PHY_ADDR_MARV;
3043 break; 3045 break;
3044 3046
3045 default: 3047 default:
3046 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", 3048 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3047 pci_name(hw->pdev), hw->chip_id); 3049 pci_name(hw->pdev), hw->chip_id);
3048 return -EOPNOTSUPP; 3050 return -EOPNOTSUPP;
3049 } 3051 }
3050 3052
3051 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3053 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3052 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3054 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3053 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3055 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3054 3056
3055 /* read the adapters RAM size */ 3057 /* read the adapters RAM size */
3056 t8 = skge_read8(hw, B2_E_0); 3058 t8 = skge_read8(hw, B2_E_0);
3057 if (hw->chip_id == CHIP_ID_GENESIS) { 3059 if (hw->chip_id == CHIP_ID_GENESIS) {
3058 if (t8 == 3) { 3060 if (t8 == 3) {
3059 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3061 /* special case: 4 x 64k x 36, offset = 0x80000 */
3060 hw->ram_size = 0x100000; 3062 hw->ram_size = 0x100000;
3061 hw->ram_offset = 0x80000; 3063 hw->ram_offset = 0x80000;
3062 } else 3064 } else
3063 hw->ram_size = t8 * 512; 3065 hw->ram_size = t8 * 512;
3064 } 3066 }
3065 else if (t8 == 0) 3067 else if (t8 == 0)
3066 hw->ram_size = 0x20000; 3068 hw->ram_size = 0x20000;
3067 else 3069 else
3068 hw->ram_size = t8 * 4096; 3070 hw->ram_size = t8 * 4096;
3069 3071
3070 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1; 3072 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3071 if (hw->ports > 1) 3073 if (hw->ports > 1)
3072 hw->intr_mask |= IS_PORT_2; 3074 hw->intr_mask |= IS_PORT_2;
3073 3075
3074 if (hw->chip_id == CHIP_ID_GENESIS) 3076 if (hw->chip_id == CHIP_ID_GENESIS)
3075 genesis_init(hw); 3077 genesis_init(hw);
3076 else { 3078 else {
3077 /* switch power to VCC (WA for VAUX problem) */ 3079 /* switch power to VCC (WA for VAUX problem) */
3078 skge_write8(hw, B0_POWER_CTRL, 3080 skge_write8(hw, B0_POWER_CTRL,
3079 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3081 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3080 3082
3081 /* avoid boards with stuck Hardware error bits */ 3083 /* avoid boards with stuck Hardware error bits */
3082 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3084 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3083 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3085 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3084 printk(KERN_WARNING PFX "stuck hardware sensor bit\n"); 3086 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3085 hw->intr_mask &= ~IS_HW_ERR; 3087 hw->intr_mask &= ~IS_HW_ERR;
3086 } 3088 }
3087 3089
3088 /* Clear PHY COMA */ 3090 /* Clear PHY COMA */
3089 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3091 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3090 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg); 3092 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3091 reg &= ~PCI_PHY_COMA; 3093 reg &= ~PCI_PHY_COMA;
3092 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3094 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3093 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3095 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3094 3096
3095 3097
3096 for (i = 0; i < hw->ports; i++) { 3098 for (i = 0; i < hw->ports; i++) {
3097 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3099 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3098 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3100 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3099 } 3101 }
3100 } 3102 }
3101 3103
3102 /* turn off hardware timer (unused) */ 3104 /* turn off hardware timer (unused) */
3103 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3105 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3104 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3106 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3105 skge_write8(hw, B0_LED, LED_STAT_ON); 3107 skge_write8(hw, B0_LED, LED_STAT_ON);
3106 3108
3107 /* enable the Tx Arbiters */ 3109 /* enable the Tx Arbiters */
3108 for (i = 0; i < hw->ports; i++) 3110 for (i = 0; i < hw->ports; i++)
3109 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3111 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3110 3112
3111 /* Initialize ram interface */ 3113 /* Initialize ram interface */
3112 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3114 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3113 3115
3114 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3116 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3115 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3117 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3116 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3118 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3117 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3119 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3118 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3120 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3119 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3121 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3120 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3122 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3121 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3123 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3122 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3124 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3123 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3125 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3124 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3126 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3125 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3127 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3126 3128
3127 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3129 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3128 3130
3129 /* Set interrupt moderation for Transmit only 3131 /* Set interrupt moderation for Transmit only
3130 * Receive interrupts avoided by NAPI 3132 * Receive interrupts avoided by NAPI
3131 */ 3133 */
3132 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3134 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3133 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3135 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3134 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3136 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3135 3137
3136 skge_write32(hw, B0_IMSK, hw->intr_mask); 3138 skge_write32(hw, B0_IMSK, hw->intr_mask);
3137 3139
3138 spin_lock_bh(&hw->phy_lock); 3140 spin_lock_bh(&hw->phy_lock);
3139 for (i = 0; i < hw->ports; i++) { 3141 for (i = 0; i < hw->ports; i++) {
3140 if (hw->chip_id == CHIP_ID_GENESIS) 3142 if (hw->chip_id == CHIP_ID_GENESIS)
3141 genesis_reset(hw, i); 3143 genesis_reset(hw, i);
3142 else 3144 else
3143 yukon_reset(hw, i); 3145 yukon_reset(hw, i);
3144 } 3146 }
3145 spin_unlock_bh(&hw->phy_lock); 3147 spin_unlock_bh(&hw->phy_lock);
3146 3148
3147 return 0; 3149 return 0;
3148 } 3150 }
3149 3151
3150 /* Initialize network device */ 3152 /* Initialize network device */
3151 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3153 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3152 int highmem) 3154 int highmem)
3153 { 3155 {
3154 struct skge_port *skge; 3156 struct skge_port *skge;
3155 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3157 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3156 3158
3157 if (!dev) { 3159 if (!dev) {
3158 printk(KERN_ERR "skge etherdev alloc failed"); 3160 printk(KERN_ERR "skge etherdev alloc failed");
3159 return NULL; 3161 return NULL;
3160 } 3162 }
3161 3163
3162 SET_MODULE_OWNER(dev); 3164 SET_MODULE_OWNER(dev);
3163 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3165 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3164 dev->open = skge_up; 3166 dev->open = skge_up;
3165 dev->stop = skge_down; 3167 dev->stop = skge_down;
3166 dev->do_ioctl = skge_ioctl; 3168 dev->do_ioctl = skge_ioctl;
3167 dev->hard_start_xmit = skge_xmit_frame; 3169 dev->hard_start_xmit = skge_xmit_frame;
3168 dev->get_stats = skge_get_stats; 3170 dev->get_stats = skge_get_stats;
3169 if (hw->chip_id == CHIP_ID_GENESIS) 3171 if (hw->chip_id == CHIP_ID_GENESIS)
3170 dev->set_multicast_list = genesis_set_multicast; 3172 dev->set_multicast_list = genesis_set_multicast;
3171 else 3173 else
3172 dev->set_multicast_list = yukon_set_multicast; 3174 dev->set_multicast_list = yukon_set_multicast;
3173 3175
3174 dev->set_mac_address = skge_set_mac_address; 3176 dev->set_mac_address = skge_set_mac_address;
3175 dev->change_mtu = skge_change_mtu; 3177 dev->change_mtu = skge_change_mtu;
3176 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); 3178 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3177 dev->tx_timeout = skge_tx_timeout; 3179 dev->tx_timeout = skge_tx_timeout;
3178 dev->watchdog_timeo = TX_WATCHDOG; 3180 dev->watchdog_timeo = TX_WATCHDOG;
3179 dev->poll = skge_poll; 3181 dev->poll = skge_poll;
3180 dev->weight = NAPI_WEIGHT; 3182 dev->weight = NAPI_WEIGHT;
3181 #ifdef CONFIG_NET_POLL_CONTROLLER 3183 #ifdef CONFIG_NET_POLL_CONTROLLER
3182 dev->poll_controller = skge_netpoll; 3184 dev->poll_controller = skge_netpoll;
3183 #endif 3185 #endif
3184 dev->irq = hw->pdev->irq; 3186 dev->irq = hw->pdev->irq;
3185 dev->features = NETIF_F_LLTX; 3187 dev->features = NETIF_F_LLTX;
3186 if (highmem) 3188 if (highmem)
3187 dev->features |= NETIF_F_HIGHDMA; 3189 dev->features |= NETIF_F_HIGHDMA;
3188 3190
3189 skge = netdev_priv(dev); 3191 skge = netdev_priv(dev);
3190 skge->netdev = dev; 3192 skge->netdev = dev;
3191 skge->hw = hw; 3193 skge->hw = hw;
3192 skge->msg_enable = netif_msg_init(debug, default_msg); 3194 skge->msg_enable = netif_msg_init(debug, default_msg);
3193 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3195 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3194 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3196 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3195 3197
3196 /* Auto speed and flow control */ 3198 /* Auto speed and flow control */
3197 skge->autoneg = AUTONEG_ENABLE; 3199 skge->autoneg = AUTONEG_ENABLE;
3198 skge->flow_control = FLOW_MODE_SYMMETRIC; 3200 skge->flow_control = FLOW_MODE_SYMMETRIC;
3199 skge->duplex = -1; 3201 skge->duplex = -1;
3200 skge->speed = -1; 3202 skge->speed = -1;
3201 skge->advertising = skge_supported_modes(hw); 3203 skge->advertising = skge_supported_modes(hw);
3202 3204
3203 hw->dev[port] = dev; 3205 hw->dev[port] = dev;
3204 3206
3205 skge->port = port; 3207 skge->port = port;
3206 3208
3207 spin_lock_init(&skge->tx_lock); 3209 spin_lock_init(&skge->tx_lock);
3208 3210
3209 if (hw->chip_id != CHIP_ID_GENESIS) { 3211 if (hw->chip_id != CHIP_ID_GENESIS) {
3210 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 3212 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3211 skge->rx_csum = 1; 3213 skge->rx_csum = 1;
3212 } 3214 }
3213 3215
3214 /* read the mac address */ 3216 /* read the mac address */
3215 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3217 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3216 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 3218 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3217 3219
3218 /* device is off until link detection */ 3220 /* device is off until link detection */
3219 netif_carrier_off(dev); 3221 netif_carrier_off(dev);
3220 netif_stop_queue(dev); 3222 netif_stop_queue(dev);
3221 3223
3222 return dev; 3224 return dev;
3223 } 3225 }
3224 3226
3225 static void __devinit skge_show_addr(struct net_device *dev) 3227 static void __devinit skge_show_addr(struct net_device *dev)
3226 { 3228 {
3227 const struct skge_port *skge = netdev_priv(dev); 3229 const struct skge_port *skge = netdev_priv(dev);
3228 3230
3229 if (netif_msg_probe(skge)) 3231 if (netif_msg_probe(skge))
3230 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", 3232 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3231 dev->name, 3233 dev->name,
3232 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 3234 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3233 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 3235 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3234 } 3236 }
3235 3237
3236 static int __devinit skge_probe(struct pci_dev *pdev, 3238 static int __devinit skge_probe(struct pci_dev *pdev,
3237 const struct pci_device_id *ent) 3239 const struct pci_device_id *ent)
3238 { 3240 {
3239 struct net_device *dev, *dev1; 3241 struct net_device *dev, *dev1;
3240 struct skge_hw *hw; 3242 struct skge_hw *hw;
3241 int err, using_dac = 0; 3243 int err, using_dac = 0;
3242 3244
3243 if ((err = pci_enable_device(pdev))) { 3245 err = pci_enable_device(pdev);
3246 if (err) {
3244 printk(KERN_ERR PFX "%s cannot enable PCI device\n", 3247 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3245 pci_name(pdev)); 3248 pci_name(pdev));
3246 goto err_out; 3249 goto err_out;
3247 } 3250 }
3248 3251
3249 if ((err = pci_request_regions(pdev, DRV_NAME))) { 3252 err = pci_request_regions(pdev, DRV_NAME);
3253 if (err) {
3250 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", 3254 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3251 pci_name(pdev)); 3255 pci_name(pdev));
3252 goto err_out_disable_pdev; 3256 goto err_out_disable_pdev;
3253 } 3257 }
3254 3258
3255 pci_set_master(pdev); 3259 pci_set_master(pdev);
3256 3260
3257 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { 3261 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3258 using_dac = 1; 3262 using_dac = 1;
3259 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 3263 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3260 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 3264 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3261 using_dac = 0; 3265 using_dac = 0;
3262 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); 3266 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3263 } 3267 }
3264 3268
3265 if (err) { 3269 if (err) {
3266 printk(KERN_ERR PFX "%s no usable DMA configuration\n", 3270 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3267 pci_name(pdev)); 3271 pci_name(pdev));
3268 goto err_out_free_regions; 3272 goto err_out_free_regions;
3269 } 3273 }
3270 3274
3271 #ifdef __BIG_ENDIAN 3275 #ifdef __BIG_ENDIAN
3272 /* byte swap descriptors in hardware */ 3276 /* byte swap descriptors in hardware */
3273 { 3277 {
3274 u32 reg; 3278 u32 reg;
3275 3279
3276 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg); 3280 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3277 reg |= PCI_REV_DESC; 3281 reg |= PCI_REV_DESC;
3278 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3282 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3279 } 3283 }
3280 #endif 3284 #endif
3281 3285
3282 err = -ENOMEM; 3286 err = -ENOMEM;
3283 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 3287 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3284 if (!hw) { 3288 if (!hw) {
3285 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", 3289 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3286 pci_name(pdev)); 3290 pci_name(pdev));
3287 goto err_out_free_regions; 3291 goto err_out_free_regions;
3288 } 3292 }
3289 3293
3290 hw->pdev = pdev; 3294 hw->pdev = pdev;
3291 spin_lock_init(&hw->phy_lock); 3295 spin_lock_init(&hw->phy_lock);
3292 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw); 3296 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3293 3297
3294 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3298 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3295 if (!hw->regs) { 3299 if (!hw->regs) {
3296 printk(KERN_ERR PFX "%s: cannot map device registers\n", 3300 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3297 pci_name(pdev)); 3301 pci_name(pdev));
3298 goto err_out_free_hw; 3302 goto err_out_free_hw;
3299 } 3303 }
3300 3304
3301 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) { 3305 err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw);
3306 if (err) {
3302 printk(KERN_ERR PFX "%s: cannot assign irq %d\n", 3307 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3303 pci_name(pdev), pdev->irq); 3308 pci_name(pdev), pdev->irq);
3304 goto err_out_iounmap; 3309 goto err_out_iounmap;
3305 } 3310 }
3306 pci_set_drvdata(pdev, hw); 3311 pci_set_drvdata(pdev, hw);
3307 3312
3308 err = skge_reset(hw); 3313 err = skge_reset(hw);
3309 if (err) 3314 if (err)
3310 goto err_out_free_irq; 3315 goto err_out_free_irq;
3311 3316
3312 printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n", 3317 printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
3313 pci_resource_start(pdev, 0), pdev->irq, 3318 pci_resource_start(pdev, 0), pdev->irq,
3314 skge_board_name(hw), hw->chip_rev); 3319 skge_board_name(hw), hw->chip_rev);
3315 3320
3316 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL) 3321 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3317 goto err_out_led_off; 3322 goto err_out_led_off;
3318 3323
3319 if ((err = register_netdev(dev))) { 3324 err = register_netdev(dev);
3325 if (err) {
3320 printk(KERN_ERR PFX "%s: cannot register net device\n", 3326 printk(KERN_ERR PFX "%s: cannot register net device\n",
3321 pci_name(pdev)); 3327 pci_name(pdev));
3322 goto err_out_free_netdev; 3328 goto err_out_free_netdev;
3323 } 3329 }
3324 3330
3325 skge_show_addr(dev); 3331 skge_show_addr(dev);
3326 3332
3327 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) { 3333 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3328 if (register_netdev(dev1) == 0) 3334 if (register_netdev(dev1) == 0)
3329 skge_show_addr(dev1); 3335 skge_show_addr(dev1);
3330 else { 3336 else {
3331 /* Failure to register second port need not be fatal */ 3337 /* Failure to register second port need not be fatal */
3332 printk(KERN_WARNING PFX "register of second port failed\n"); 3338 printk(KERN_WARNING PFX "register of second port failed\n");
3333 hw->dev[1] = NULL; 3339 hw->dev[1] = NULL;
3334 free_netdev(dev1); 3340 free_netdev(dev1);
3335 } 3341 }
3336 } 3342 }
3337 3343
3338 return 0; 3344 return 0;
3339 3345
3340 err_out_free_netdev: 3346 err_out_free_netdev:
3341 free_netdev(dev); 3347 free_netdev(dev);
3342 err_out_led_off: 3348 err_out_led_off:
3343 skge_write16(hw, B0_LED, LED_STAT_OFF); 3349 skge_write16(hw, B0_LED, LED_STAT_OFF);
3344 err_out_free_irq: 3350 err_out_free_irq:
3345 free_irq(pdev->irq, hw); 3351 free_irq(pdev->irq, hw);
3346 err_out_iounmap: 3352 err_out_iounmap:
3347 iounmap(hw->regs); 3353 iounmap(hw->regs);
3348 err_out_free_hw: 3354 err_out_free_hw:
3349 kfree(hw); 3355 kfree(hw);
3350 err_out_free_regions: 3356 err_out_free_regions:
3351 pci_release_regions(pdev); 3357 pci_release_regions(pdev);
3352 err_out_disable_pdev: 3358 err_out_disable_pdev:
3353 pci_disable_device(pdev); 3359 pci_disable_device(pdev);
3354 pci_set_drvdata(pdev, NULL); 3360 pci_set_drvdata(pdev, NULL);
3355 err_out: 3361 err_out:
3356 return err; 3362 return err;
3357 } 3363 }
3358 3364
3359 static void __devexit skge_remove(struct pci_dev *pdev) 3365 static void __devexit skge_remove(struct pci_dev *pdev)
3360 { 3366 {
3361 struct skge_hw *hw = pci_get_drvdata(pdev); 3367 struct skge_hw *hw = pci_get_drvdata(pdev);
3362 struct net_device *dev0, *dev1; 3368 struct net_device *dev0, *dev1;
3363 3369
3364 if (!hw) 3370 if (!hw)
3365 return; 3371 return;
3366 3372
3367 if ((dev1 = hw->dev[1])) 3373 if ((dev1 = hw->dev[1]))
3368 unregister_netdev(dev1); 3374 unregister_netdev(dev1);
3369 dev0 = hw->dev[0]; 3375 dev0 = hw->dev[0];
3370 unregister_netdev(dev0); 3376 unregister_netdev(dev0);
3371 3377
3372 skge_write32(hw, B0_IMSK, 0); 3378 skge_write32(hw, B0_IMSK, 0);
3373 skge_write16(hw, B0_LED, LED_STAT_OFF); 3379 skge_write16(hw, B0_LED, LED_STAT_OFF);
3374 skge_pci_clear(hw); 3380 skge_pci_clear(hw);
3375 skge_write8(hw, B0_CTST, CS_RST_SET); 3381 skge_write8(hw, B0_CTST, CS_RST_SET);
3376 3382
3377 tasklet_kill(&hw->ext_tasklet); 3383 tasklet_kill(&hw->ext_tasklet);
3378 3384
3379 free_irq(pdev->irq, hw); 3385 free_irq(pdev->irq, hw);
3380 pci_release_regions(pdev); 3386 pci_release_regions(pdev);
3381 pci_disable_device(pdev); 3387 pci_disable_device(pdev);
3382 if (dev1) 3388 if (dev1)
3383 free_netdev(dev1); 3389 free_netdev(dev1);
3384 free_netdev(dev0); 3390 free_netdev(dev0);
3385 3391
3386 iounmap(hw->regs); 3392 iounmap(hw->regs);
3387 kfree(hw); 3393 kfree(hw);
3388 pci_set_drvdata(pdev, NULL); 3394 pci_set_drvdata(pdev, NULL);
3389 } 3395 }
3390 3396
3391 #ifdef CONFIG_PM 3397 #ifdef CONFIG_PM
3392 static int skge_suspend(struct pci_dev *pdev, pm_message_t state) 3398 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3393 { 3399 {
3394 struct skge_hw *hw = pci_get_drvdata(pdev); 3400 struct skge_hw *hw = pci_get_drvdata(pdev);
3395 int i, wol = 0; 3401 int i, wol = 0;
3396 3402
3397 for (i = 0; i < 2; i++) { 3403 for (i = 0; i < 2; i++) {
3398 struct net_device *dev = hw->dev[i]; 3404 struct net_device *dev = hw->dev[i];
3399 3405
3400 if (dev) { 3406 if (dev) {
3401 struct skge_port *skge = netdev_priv(dev); 3407 struct skge_port *skge = netdev_priv(dev);
3402 if (netif_running(dev)) { 3408 if (netif_running(dev)) {
3403 netif_carrier_off(dev); 3409 netif_carrier_off(dev);
3404 if (skge->wol) 3410 if (skge->wol)
3405 netif_stop_queue(dev); 3411 netif_stop_queue(dev);
3406 else 3412 else
3407 skge_down(dev); 3413 skge_down(dev);
3408 } 3414 }
3409 netif_device_detach(dev); 3415 netif_device_detach(dev);
3410 wol |= skge->wol; 3416 wol |= skge->wol;
3411 } 3417 }
3412 } 3418 }
3413 3419
3414 pci_save_state(pdev); 3420 pci_save_state(pdev);
3415 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); 3421 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3416 pci_disable_device(pdev); 3422 pci_disable_device(pdev);
3417 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3423 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3418 3424
3419 return 0; 3425 return 0;
3420 } 3426 }
3421 3427
3422 static int skge_resume(struct pci_dev *pdev) 3428 static int skge_resume(struct pci_dev *pdev)
3423 { 3429 {
3424 struct skge_hw *hw = pci_get_drvdata(pdev); 3430 struct skge_hw *hw = pci_get_drvdata(pdev);
3425 int i; 3431 int i;
3426 3432
3427 pci_set_power_state(pdev, PCI_D0); 3433 pci_set_power_state(pdev, PCI_D0);
3428 pci_restore_state(pdev); 3434 pci_restore_state(pdev);
3429 pci_enable_wake(pdev, PCI_D0, 0); 3435 pci_enable_wake(pdev, PCI_D0, 0);
3430 3436
3431 skge_reset(hw); 3437 skge_reset(hw);
3432 3438
3433 for (i = 0; i < 2; i++) { 3439 for (i = 0; i < 2; i++) {
3434 struct net_device *dev = hw->dev[i]; 3440 struct net_device *dev = hw->dev[i];
3435 if (dev) { 3441 if (dev) {
3436 netif_device_attach(dev); 3442 netif_device_attach(dev);
3437 if (netif_running(dev) && skge_up(dev)) 3443 if (netif_running(dev) && skge_up(dev))
3438 dev_close(dev); 3444 dev_close(dev);
3439 } 3445 }
3440 } 3446 }
3441 return 0; 3447 return 0;
3442 } 3448 }
3443 #endif 3449 #endif
3444 3450
3445 static struct pci_driver skge_driver = { 3451 static struct pci_driver skge_driver = {
3446 .name = DRV_NAME, 3452 .name = DRV_NAME,
3447 .id_table = skge_id_table, 3453 .id_table = skge_id_table,
3448 .probe = skge_probe, 3454 .probe = skge_probe,
3449 .remove = __devexit_p(skge_remove), 3455 .remove = __devexit_p(skge_remove),
3450 #ifdef CONFIG_PM 3456 #ifdef CONFIG_PM
3451 .suspend = skge_suspend, 3457 .suspend = skge_suspend,
3452 .resume = skge_resume, 3458 .resume = skge_resume,
3453 #endif 3459 #endif
3454 }; 3460 };
3455 3461
3456 static int __init skge_init_module(void) 3462 static int __init skge_init_module(void)
3457 { 3463 {
3458 return pci_module_init(&skge_driver); 3464 return pci_module_init(&skge_driver);
3459 } 3465 }
3460 3466
3461 static void __exit skge_cleanup_module(void) 3467 static void __exit skge_cleanup_module(void)
3462 { 3468 {
3463 pci_unregister_driver(&skge_driver); 3469 pci_unregister_driver(&skge_driver);
3464 } 3470 }
3465 3471
3466 module_init(skge_init_module); 3472 module_init(skge_init_module);
3467 module_exit(skge_cleanup_module); 3473 module_exit(skge_cleanup_module);
3468 3474