Commit 3beb2077125d8457118140653e75efc998ac6630

Authored by Tejun Heo
Committed by Jens Axboe
1 parent 5a7c47eefb

[BLOCK] elevator: elv_latter/former_request update

With generic dispatch queue update, implicit former/latter request
handling using rq->queuelist.prev/next doesn't work as expected
anymore.  Also, the only iosched dependent on this feature was
noop-iosched and it has been reimplemented to have its own
latter/former methods.  This patch removes implicit former/latter
handling.

Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jens Axboe <axboe@suse.de>

Showing 1 changed file with 0 additions and 14 deletions Inline Diff

1 /* 1 /*
2 * linux/drivers/block/elevator.c 2 * linux/drivers/block/elevator.c
3 * 3 *
4 * Block device elevator/IO-scheduler. 4 * Block device elevator/IO-scheduler.
5 * 5 *
6 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * 7 *
8 * 30042000 Jens Axboe <axboe@suse.de> : 8 * 30042000 Jens Axboe <axboe@suse.de> :
9 * 9 *
10 * Split the elevator a bit so that it is possible to choose a different 10 * Split the elevator a bit so that it is possible to choose a different
11 * one or even write a new "plug in". There are three pieces: 11 * one or even write a new "plug in". There are three pieces:
12 * - elevator_fn, inserts a new request in the queue list 12 * - elevator_fn, inserts a new request in the queue list
13 * - elevator_merge_fn, decides whether a new buffer can be merged with 13 * - elevator_merge_fn, decides whether a new buffer can be merged with
14 * an existing request 14 * an existing request
15 * - elevator_dequeue_fn, called when a request is taken off the active list 15 * - elevator_dequeue_fn, called when a request is taken off the active list
16 * 16 *
17 * 20082000 Dave Jones <davej@suse.de> : 17 * 20082000 Dave Jones <davej@suse.de> :
18 * Removed tests for max-bomb-segments, which was breaking elvtune 18 * Removed tests for max-bomb-segments, which was breaking elvtune
19 * when run without -bN 19 * when run without -bN
20 * 20 *
21 * Jens: 21 * Jens:
22 * - Rework again to work with bio instead of buffer_heads 22 * - Rework again to work with bio instead of buffer_heads
23 * - loose bi_dev comparisons, partition handling is right now 23 * - loose bi_dev comparisons, partition handling is right now
24 * - completely modularize elevator setup and teardown 24 * - completely modularize elevator setup and teardown
25 * 25 *
26 */ 26 */
27 #include <linux/kernel.h> 27 #include <linux/kernel.h>
28 #include <linux/fs.h> 28 #include <linux/fs.h>
29 #include <linux/blkdev.h> 29 #include <linux/blkdev.h>
30 #include <linux/elevator.h> 30 #include <linux/elevator.h>
31 #include <linux/bio.h> 31 #include <linux/bio.h>
32 #include <linux/config.h> 32 #include <linux/config.h>
33 #include <linux/module.h> 33 #include <linux/module.h>
34 #include <linux/slab.h> 34 #include <linux/slab.h>
35 #include <linux/init.h> 35 #include <linux/init.h>
36 #include <linux/compiler.h> 36 #include <linux/compiler.h>
37 #include <linux/delay.h> 37 #include <linux/delay.h>
38 38
39 #include <asm/uaccess.h> 39 #include <asm/uaccess.h>
40 40
41 static DEFINE_SPINLOCK(elv_list_lock); 41 static DEFINE_SPINLOCK(elv_list_lock);
42 static LIST_HEAD(elv_list); 42 static LIST_HEAD(elv_list);
43 43
44 /* 44 /*
45 * can we safely merge with this request? 45 * can we safely merge with this request?
46 */ 46 */
47 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) 47 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
48 { 48 {
49 if (!rq_mergeable(rq)) 49 if (!rq_mergeable(rq))
50 return 0; 50 return 0;
51 51
52 /* 52 /*
53 * different data direction or already started, don't merge 53 * different data direction or already started, don't merge
54 */ 54 */
55 if (bio_data_dir(bio) != rq_data_dir(rq)) 55 if (bio_data_dir(bio) != rq_data_dir(rq))
56 return 0; 56 return 0;
57 57
58 /* 58 /*
59 * same device and no special stuff set, merge is ok 59 * same device and no special stuff set, merge is ok
60 */ 60 */
61 if (rq->rq_disk == bio->bi_bdev->bd_disk && 61 if (rq->rq_disk == bio->bi_bdev->bd_disk &&
62 !rq->waiting && !rq->special) 62 !rq->waiting && !rq->special)
63 return 1; 63 return 1;
64 64
65 return 0; 65 return 0;
66 } 66 }
67 EXPORT_SYMBOL(elv_rq_merge_ok); 67 EXPORT_SYMBOL(elv_rq_merge_ok);
68 68
69 inline int elv_try_merge(struct request *__rq, struct bio *bio) 69 inline int elv_try_merge(struct request *__rq, struct bio *bio)
70 { 70 {
71 int ret = ELEVATOR_NO_MERGE; 71 int ret = ELEVATOR_NO_MERGE;
72 72
73 /* 73 /*
74 * we can merge and sequence is ok, check if it's possible 74 * we can merge and sequence is ok, check if it's possible
75 */ 75 */
76 if (elv_rq_merge_ok(__rq, bio)) { 76 if (elv_rq_merge_ok(__rq, bio)) {
77 if (__rq->sector + __rq->nr_sectors == bio->bi_sector) 77 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
78 ret = ELEVATOR_BACK_MERGE; 78 ret = ELEVATOR_BACK_MERGE;
79 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) 79 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
80 ret = ELEVATOR_FRONT_MERGE; 80 ret = ELEVATOR_FRONT_MERGE;
81 } 81 }
82 82
83 return ret; 83 return ret;
84 } 84 }
85 EXPORT_SYMBOL(elv_try_merge); 85 EXPORT_SYMBOL(elv_try_merge);
86 86
87 static struct elevator_type *elevator_find(const char *name) 87 static struct elevator_type *elevator_find(const char *name)
88 { 88 {
89 struct elevator_type *e = NULL; 89 struct elevator_type *e = NULL;
90 struct list_head *entry; 90 struct list_head *entry;
91 91
92 list_for_each(entry, &elv_list) { 92 list_for_each(entry, &elv_list) {
93 struct elevator_type *__e; 93 struct elevator_type *__e;
94 94
95 __e = list_entry(entry, struct elevator_type, list); 95 __e = list_entry(entry, struct elevator_type, list);
96 96
97 if (!strcmp(__e->elevator_name, name)) { 97 if (!strcmp(__e->elevator_name, name)) {
98 e = __e; 98 e = __e;
99 break; 99 break;
100 } 100 }
101 } 101 }
102 102
103 return e; 103 return e;
104 } 104 }
105 105
106 static void elevator_put(struct elevator_type *e) 106 static void elevator_put(struct elevator_type *e)
107 { 107 {
108 module_put(e->elevator_owner); 108 module_put(e->elevator_owner);
109 } 109 }
110 110
111 static struct elevator_type *elevator_get(const char *name) 111 static struct elevator_type *elevator_get(const char *name)
112 { 112 {
113 struct elevator_type *e; 113 struct elevator_type *e;
114 114
115 spin_lock_irq(&elv_list_lock); 115 spin_lock_irq(&elv_list_lock);
116 116
117 e = elevator_find(name); 117 e = elevator_find(name);
118 if (e && !try_module_get(e->elevator_owner)) 118 if (e && !try_module_get(e->elevator_owner))
119 e = NULL; 119 e = NULL;
120 120
121 spin_unlock_irq(&elv_list_lock); 121 spin_unlock_irq(&elv_list_lock);
122 122
123 return e; 123 return e;
124 } 124 }
125 125
126 static int elevator_attach(request_queue_t *q, struct elevator_type *e, 126 static int elevator_attach(request_queue_t *q, struct elevator_type *e,
127 struct elevator_queue *eq) 127 struct elevator_queue *eq)
128 { 128 {
129 int ret = 0; 129 int ret = 0;
130 130
131 memset(eq, 0, sizeof(*eq)); 131 memset(eq, 0, sizeof(*eq));
132 eq->ops = &e->ops; 132 eq->ops = &e->ops;
133 eq->elevator_type = e; 133 eq->elevator_type = e;
134 134
135 q->elevator = eq; 135 q->elevator = eq;
136 136
137 if (eq->ops->elevator_init_fn) 137 if (eq->ops->elevator_init_fn)
138 ret = eq->ops->elevator_init_fn(q, eq); 138 ret = eq->ops->elevator_init_fn(q, eq);
139 139
140 return ret; 140 return ret;
141 } 141 }
142 142
143 static char chosen_elevator[16]; 143 static char chosen_elevator[16];
144 144
145 static void elevator_setup_default(void) 145 static void elevator_setup_default(void)
146 { 146 {
147 struct elevator_type *e; 147 struct elevator_type *e;
148 148
149 /* 149 /*
150 * If default has not been set, use the compiled-in selection. 150 * If default has not been set, use the compiled-in selection.
151 */ 151 */
152 if (!chosen_elevator[0]) 152 if (!chosen_elevator[0])
153 strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED); 153 strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED);
154 154
155 /* 155 /*
156 * If the given scheduler is not available, fall back to no-op. 156 * If the given scheduler is not available, fall back to no-op.
157 */ 157 */
158 if ((e = elevator_find(chosen_elevator))) 158 if ((e = elevator_find(chosen_elevator)))
159 elevator_put(e); 159 elevator_put(e);
160 else 160 else
161 strcpy(chosen_elevator, "noop"); 161 strcpy(chosen_elevator, "noop");
162 } 162 }
163 163
164 static int __init elevator_setup(char *str) 164 static int __init elevator_setup(char *str)
165 { 165 {
166 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); 166 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
167 return 0; 167 return 0;
168 } 168 }
169 169
170 __setup("elevator=", elevator_setup); 170 __setup("elevator=", elevator_setup);
171 171
172 int elevator_init(request_queue_t *q, char *name) 172 int elevator_init(request_queue_t *q, char *name)
173 { 173 {
174 struct elevator_type *e = NULL; 174 struct elevator_type *e = NULL;
175 struct elevator_queue *eq; 175 struct elevator_queue *eq;
176 int ret = 0; 176 int ret = 0;
177 177
178 INIT_LIST_HEAD(&q->queue_head); 178 INIT_LIST_HEAD(&q->queue_head);
179 q->last_merge = NULL; 179 q->last_merge = NULL;
180 q->end_sector = 0; 180 q->end_sector = 0;
181 q->boundary_rq = NULL; 181 q->boundary_rq = NULL;
182 182
183 elevator_setup_default(); 183 elevator_setup_default();
184 184
185 if (!name) 185 if (!name)
186 name = chosen_elevator; 186 name = chosen_elevator;
187 187
188 e = elevator_get(name); 188 e = elevator_get(name);
189 if (!e) 189 if (!e)
190 return -EINVAL; 190 return -EINVAL;
191 191
192 eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL); 192 eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
193 if (!eq) { 193 if (!eq) {
194 elevator_put(e); 194 elevator_put(e);
195 return -ENOMEM; 195 return -ENOMEM;
196 } 196 }
197 197
198 ret = elevator_attach(q, e, eq); 198 ret = elevator_attach(q, e, eq);
199 if (ret) { 199 if (ret) {
200 kfree(eq); 200 kfree(eq);
201 elevator_put(e); 201 elevator_put(e);
202 } 202 }
203 203
204 return ret; 204 return ret;
205 } 205 }
206 206
207 void elevator_exit(elevator_t *e) 207 void elevator_exit(elevator_t *e)
208 { 208 {
209 if (e->ops->elevator_exit_fn) 209 if (e->ops->elevator_exit_fn)
210 e->ops->elevator_exit_fn(e); 210 e->ops->elevator_exit_fn(e);
211 211
212 elevator_put(e->elevator_type); 212 elevator_put(e->elevator_type);
213 e->elevator_type = NULL; 213 e->elevator_type = NULL;
214 kfree(e); 214 kfree(e);
215 } 215 }
216 216
217 /* 217 /*
218 * Insert rq into dispatch queue of q. Queue lock must be held on 218 * Insert rq into dispatch queue of q. Queue lock must be held on
219 * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be 219 * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
220 * appended to the dispatch queue. To be used by specific elevators. 220 * appended to the dispatch queue. To be used by specific elevators.
221 */ 221 */
222 void elv_dispatch_sort(request_queue_t *q, struct request *rq) 222 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
223 { 223 {
224 sector_t boundary; 224 sector_t boundary;
225 struct list_head *entry; 225 struct list_head *entry;
226 226
227 if (q->last_merge == rq) 227 if (q->last_merge == rq)
228 q->last_merge = NULL; 228 q->last_merge = NULL;
229 q->nr_sorted--; 229 q->nr_sorted--;
230 230
231 boundary = q->end_sector; 231 boundary = q->end_sector;
232 232
233 list_for_each_prev(entry, &q->queue_head) { 233 list_for_each_prev(entry, &q->queue_head) {
234 struct request *pos = list_entry_rq(entry); 234 struct request *pos = list_entry_rq(entry);
235 235
236 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED)) 236 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
237 break; 237 break;
238 if (rq->sector >= boundary) { 238 if (rq->sector >= boundary) {
239 if (pos->sector < boundary) 239 if (pos->sector < boundary)
240 continue; 240 continue;
241 } else { 241 } else {
242 if (pos->sector >= boundary) 242 if (pos->sector >= boundary)
243 break; 243 break;
244 } 244 }
245 if (rq->sector >= pos->sector) 245 if (rq->sector >= pos->sector)
246 break; 246 break;
247 } 247 }
248 248
249 list_add(&rq->queuelist, entry); 249 list_add(&rq->queuelist, entry);
250 } 250 }
251 251
252 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio) 252 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
253 { 253 {
254 elevator_t *e = q->elevator; 254 elevator_t *e = q->elevator;
255 int ret; 255 int ret;
256 256
257 if (q->last_merge) { 257 if (q->last_merge) {
258 ret = elv_try_merge(q->last_merge, bio); 258 ret = elv_try_merge(q->last_merge, bio);
259 if (ret != ELEVATOR_NO_MERGE) { 259 if (ret != ELEVATOR_NO_MERGE) {
260 *req = q->last_merge; 260 *req = q->last_merge;
261 return ret; 261 return ret;
262 } 262 }
263 } 263 }
264 264
265 if (e->ops->elevator_merge_fn) 265 if (e->ops->elevator_merge_fn)
266 return e->ops->elevator_merge_fn(q, req, bio); 266 return e->ops->elevator_merge_fn(q, req, bio);
267 267
268 return ELEVATOR_NO_MERGE; 268 return ELEVATOR_NO_MERGE;
269 } 269 }
270 270
271 void elv_merged_request(request_queue_t *q, struct request *rq) 271 void elv_merged_request(request_queue_t *q, struct request *rq)
272 { 272 {
273 elevator_t *e = q->elevator; 273 elevator_t *e = q->elevator;
274 274
275 if (e->ops->elevator_merged_fn) 275 if (e->ops->elevator_merged_fn)
276 e->ops->elevator_merged_fn(q, rq); 276 e->ops->elevator_merged_fn(q, rq);
277 277
278 q->last_merge = rq; 278 q->last_merge = rq;
279 } 279 }
280 280
281 void elv_merge_requests(request_queue_t *q, struct request *rq, 281 void elv_merge_requests(request_queue_t *q, struct request *rq,
282 struct request *next) 282 struct request *next)
283 { 283 {
284 elevator_t *e = q->elevator; 284 elevator_t *e = q->elevator;
285 285
286 if (e->ops->elevator_merge_req_fn) 286 if (e->ops->elevator_merge_req_fn)
287 e->ops->elevator_merge_req_fn(q, rq, next); 287 e->ops->elevator_merge_req_fn(q, rq, next);
288 q->nr_sorted--; 288 q->nr_sorted--;
289 289
290 q->last_merge = rq; 290 q->last_merge = rq;
291 } 291 }
292 292
293 void elv_requeue_request(request_queue_t *q, struct request *rq) 293 void elv_requeue_request(request_queue_t *q, struct request *rq)
294 { 294 {
295 elevator_t *e = q->elevator; 295 elevator_t *e = q->elevator;
296 296
297 /* 297 /*
298 * it already went through dequeue, we need to decrement the 298 * it already went through dequeue, we need to decrement the
299 * in_flight count again 299 * in_flight count again
300 */ 300 */
301 if (blk_account_rq(rq)) { 301 if (blk_account_rq(rq)) {
302 q->in_flight--; 302 q->in_flight--;
303 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn) 303 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
304 e->ops->elevator_deactivate_req_fn(q, rq); 304 e->ops->elevator_deactivate_req_fn(q, rq);
305 } 305 }
306 306
307 rq->flags &= ~REQ_STARTED; 307 rq->flags &= ~REQ_STARTED;
308 308
309 /* 309 /*
310 * if this is the flush, requeue the original instead and drop the flush 310 * if this is the flush, requeue the original instead and drop the flush
311 */ 311 */
312 if (rq->flags & REQ_BAR_FLUSH) { 312 if (rq->flags & REQ_BAR_FLUSH) {
313 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); 313 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
314 rq = rq->end_io_data; 314 rq = rq->end_io_data;
315 } 315 }
316 316
317 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0); 317 __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
318 } 318 }
319 319
320 static void elv_drain_elevator(request_queue_t *q) 320 static void elv_drain_elevator(request_queue_t *q)
321 { 321 {
322 static int printed; 322 static int printed;
323 while (q->elevator->ops->elevator_dispatch_fn(q, 1)) 323 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
324 ; 324 ;
325 if (q->nr_sorted == 0) 325 if (q->nr_sorted == 0)
326 return; 326 return;
327 if (printed++ < 10) { 327 if (printed++ < 10) {
328 printk(KERN_ERR "%s: forced dispatching is broken " 328 printk(KERN_ERR "%s: forced dispatching is broken "
329 "(nr_sorted=%u), please report this\n", 329 "(nr_sorted=%u), please report this\n",
330 q->elevator->elevator_type->elevator_name, q->nr_sorted); 330 q->elevator->elevator_type->elevator_name, q->nr_sorted);
331 } 331 }
332 } 332 }
333 333
334 void __elv_add_request(request_queue_t *q, struct request *rq, int where, 334 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
335 int plug) 335 int plug)
336 { 336 {
337 if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { 337 if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
338 /* 338 /*
339 * barriers implicitly indicate back insertion 339 * barriers implicitly indicate back insertion
340 */ 340 */
341 if (where == ELEVATOR_INSERT_SORT) 341 if (where == ELEVATOR_INSERT_SORT)
342 where = ELEVATOR_INSERT_BACK; 342 where = ELEVATOR_INSERT_BACK;
343 343
344 /* 344 /*
345 * this request is scheduling boundary, update end_sector 345 * this request is scheduling boundary, update end_sector
346 */ 346 */
347 if (blk_fs_request(rq)) { 347 if (blk_fs_request(rq)) {
348 q->end_sector = rq_end_sector(rq); 348 q->end_sector = rq_end_sector(rq);
349 q->boundary_rq = rq; 349 q->boundary_rq = rq;
350 } 350 }
351 } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT) 351 } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
352 where = ELEVATOR_INSERT_BACK; 352 where = ELEVATOR_INSERT_BACK;
353 353
354 if (plug) 354 if (plug)
355 blk_plug_device(q); 355 blk_plug_device(q);
356 356
357 rq->q = q; 357 rq->q = q;
358 358
359 switch (where) { 359 switch (where) {
360 case ELEVATOR_INSERT_FRONT: 360 case ELEVATOR_INSERT_FRONT:
361 rq->flags |= REQ_SOFTBARRIER; 361 rq->flags |= REQ_SOFTBARRIER;
362 362
363 list_add(&rq->queuelist, &q->queue_head); 363 list_add(&rq->queuelist, &q->queue_head);
364 break; 364 break;
365 365
366 case ELEVATOR_INSERT_BACK: 366 case ELEVATOR_INSERT_BACK:
367 rq->flags |= REQ_SOFTBARRIER; 367 rq->flags |= REQ_SOFTBARRIER;
368 elv_drain_elevator(q); 368 elv_drain_elevator(q);
369 list_add_tail(&rq->queuelist, &q->queue_head); 369 list_add_tail(&rq->queuelist, &q->queue_head);
370 /* 370 /*
371 * We kick the queue here for the following reasons. 371 * We kick the queue here for the following reasons.
372 * - The elevator might have returned NULL previously 372 * - The elevator might have returned NULL previously
373 * to delay requests and returned them now. As the 373 * to delay requests and returned them now. As the
374 * queue wasn't empty before this request, ll_rw_blk 374 * queue wasn't empty before this request, ll_rw_blk
375 * won't run the queue on return, resulting in hang. 375 * won't run the queue on return, resulting in hang.
376 * - Usually, back inserted requests won't be merged 376 * - Usually, back inserted requests won't be merged
377 * with anything. There's no point in delaying queue 377 * with anything. There's no point in delaying queue
378 * processing. 378 * processing.
379 */ 379 */
380 blk_remove_plug(q); 380 blk_remove_plug(q);
381 q->request_fn(q); 381 q->request_fn(q);
382 break; 382 break;
383 383
384 case ELEVATOR_INSERT_SORT: 384 case ELEVATOR_INSERT_SORT:
385 BUG_ON(!blk_fs_request(rq)); 385 BUG_ON(!blk_fs_request(rq));
386 rq->flags |= REQ_SORTED; 386 rq->flags |= REQ_SORTED;
387 q->nr_sorted++; 387 q->nr_sorted++;
388 if (q->last_merge == NULL && rq_mergeable(rq)) 388 if (q->last_merge == NULL && rq_mergeable(rq))
389 q->last_merge = rq; 389 q->last_merge = rq;
390 /* 390 /*
391 * Some ioscheds (cfq) run q->request_fn directly, so 391 * Some ioscheds (cfq) run q->request_fn directly, so
392 * rq cannot be accessed after calling 392 * rq cannot be accessed after calling
393 * elevator_add_req_fn. 393 * elevator_add_req_fn.
394 */ 394 */
395 q->elevator->ops->elevator_add_req_fn(q, rq); 395 q->elevator->ops->elevator_add_req_fn(q, rq);
396 break; 396 break;
397 397
398 default: 398 default:
399 printk(KERN_ERR "%s: bad insertion point %d\n", 399 printk(KERN_ERR "%s: bad insertion point %d\n",
400 __FUNCTION__, where); 400 __FUNCTION__, where);
401 BUG(); 401 BUG();
402 } 402 }
403 403
404 if (blk_queue_plugged(q)) { 404 if (blk_queue_plugged(q)) {
405 int nrq = q->rq.count[READ] + q->rq.count[WRITE] 405 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
406 - q->in_flight; 406 - q->in_flight;
407 407
408 if (nrq >= q->unplug_thresh) 408 if (nrq >= q->unplug_thresh)
409 __generic_unplug_device(q); 409 __generic_unplug_device(q);
410 } 410 }
411 } 411 }
412 412
413 void elv_add_request(request_queue_t *q, struct request *rq, int where, 413 void elv_add_request(request_queue_t *q, struct request *rq, int where,
414 int plug) 414 int plug)
415 { 415 {
416 unsigned long flags; 416 unsigned long flags;
417 417
418 spin_lock_irqsave(q->queue_lock, flags); 418 spin_lock_irqsave(q->queue_lock, flags);
419 __elv_add_request(q, rq, where, plug); 419 __elv_add_request(q, rq, where, plug);
420 spin_unlock_irqrestore(q->queue_lock, flags); 420 spin_unlock_irqrestore(q->queue_lock, flags);
421 } 421 }
422 422
423 static inline struct request *__elv_next_request(request_queue_t *q) 423 static inline struct request *__elv_next_request(request_queue_t *q)
424 { 424 {
425 struct request *rq; 425 struct request *rq;
426 426
427 if (unlikely(list_empty(&q->queue_head) && 427 if (unlikely(list_empty(&q->queue_head) &&
428 !q->elevator->ops->elevator_dispatch_fn(q, 0))) 428 !q->elevator->ops->elevator_dispatch_fn(q, 0)))
429 return NULL; 429 return NULL;
430 430
431 rq = list_entry_rq(q->queue_head.next); 431 rq = list_entry_rq(q->queue_head.next);
432 432
433 /* 433 /*
434 * if this is a barrier write and the device has to issue a 434 * if this is a barrier write and the device has to issue a
435 * flush sequence to support it, check how far we are 435 * flush sequence to support it, check how far we are
436 */ 436 */
437 if (blk_fs_request(rq) && blk_barrier_rq(rq)) { 437 if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
438 BUG_ON(q->ordered == QUEUE_ORDERED_NONE); 438 BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
439 439
440 if (q->ordered == QUEUE_ORDERED_FLUSH && 440 if (q->ordered == QUEUE_ORDERED_FLUSH &&
441 !blk_barrier_preflush(rq)) 441 !blk_barrier_preflush(rq))
442 rq = blk_start_pre_flush(q, rq); 442 rq = blk_start_pre_flush(q, rq);
443 } 443 }
444 444
445 return rq; 445 return rq;
446 } 446 }
447 447
448 struct request *elv_next_request(request_queue_t *q) 448 struct request *elv_next_request(request_queue_t *q)
449 { 449 {
450 struct request *rq; 450 struct request *rq;
451 int ret; 451 int ret;
452 452
453 while ((rq = __elv_next_request(q)) != NULL) { 453 while ((rq = __elv_next_request(q)) != NULL) {
454 if (!(rq->flags & REQ_STARTED)) { 454 if (!(rq->flags & REQ_STARTED)) {
455 elevator_t *e = q->elevator; 455 elevator_t *e = q->elevator;
456 456
457 /* 457 /*
458 * This is the first time the device driver 458 * This is the first time the device driver
459 * sees this request (possibly after 459 * sees this request (possibly after
460 * requeueing). Notify IO scheduler. 460 * requeueing). Notify IO scheduler.
461 */ 461 */
462 if (blk_sorted_rq(rq) && 462 if (blk_sorted_rq(rq) &&
463 e->ops->elevator_activate_req_fn) 463 e->ops->elevator_activate_req_fn)
464 e->ops->elevator_activate_req_fn(q, rq); 464 e->ops->elevator_activate_req_fn(q, rq);
465 465
466 /* 466 /*
467 * just mark as started even if we don't start 467 * just mark as started even if we don't start
468 * it, a request that has been delayed should 468 * it, a request that has been delayed should
469 * not be passed by new incoming requests 469 * not be passed by new incoming requests
470 */ 470 */
471 rq->flags |= REQ_STARTED; 471 rq->flags |= REQ_STARTED;
472 } 472 }
473 473
474 if (!q->boundary_rq || q->boundary_rq == rq) { 474 if (!q->boundary_rq || q->boundary_rq == rq) {
475 q->end_sector = rq_end_sector(rq); 475 q->end_sector = rq_end_sector(rq);
476 q->boundary_rq = NULL; 476 q->boundary_rq = NULL;
477 } 477 }
478 478
479 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn) 479 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
480 break; 480 break;
481 481
482 ret = q->prep_rq_fn(q, rq); 482 ret = q->prep_rq_fn(q, rq);
483 if (ret == BLKPREP_OK) { 483 if (ret == BLKPREP_OK) {
484 break; 484 break;
485 } else if (ret == BLKPREP_DEFER) { 485 } else if (ret == BLKPREP_DEFER) {
486 /* 486 /*
487 * the request may have been (partially) prepped. 487 * the request may have been (partially) prepped.
488 * we need to keep this request in the front to 488 * we need to keep this request in the front to
489 * avoid resource deadlock. REQ_STARTED will 489 * avoid resource deadlock. REQ_STARTED will
490 * prevent other fs requests from passing this one. 490 * prevent other fs requests from passing this one.
491 */ 491 */
492 rq = NULL; 492 rq = NULL;
493 break; 493 break;
494 } else if (ret == BLKPREP_KILL) { 494 } else if (ret == BLKPREP_KILL) {
495 int nr_bytes = rq->hard_nr_sectors << 9; 495 int nr_bytes = rq->hard_nr_sectors << 9;
496 496
497 if (!nr_bytes) 497 if (!nr_bytes)
498 nr_bytes = rq->data_len; 498 nr_bytes = rq->data_len;
499 499
500 blkdev_dequeue_request(rq); 500 blkdev_dequeue_request(rq);
501 rq->flags |= REQ_QUIET; 501 rq->flags |= REQ_QUIET;
502 end_that_request_chunk(rq, 0, nr_bytes); 502 end_that_request_chunk(rq, 0, nr_bytes);
503 end_that_request_last(rq); 503 end_that_request_last(rq);
504 } else { 504 } else {
505 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, 505 printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
506 ret); 506 ret);
507 break; 507 break;
508 } 508 }
509 } 509 }
510 510
511 return rq; 511 return rq;
512 } 512 }
513 513
514 void elv_dequeue_request(request_queue_t *q, struct request *rq) 514 void elv_dequeue_request(request_queue_t *q, struct request *rq)
515 { 515 {
516 BUG_ON(list_empty(&rq->queuelist)); 516 BUG_ON(list_empty(&rq->queuelist));
517 517
518 list_del_init(&rq->queuelist); 518 list_del_init(&rq->queuelist);
519 519
520 /* 520 /*
521 * the time frame between a request being removed from the lists 521 * the time frame between a request being removed from the lists
522 * and to it is freed is accounted as io that is in progress at 522 * and to it is freed is accounted as io that is in progress at
523 * the driver side. 523 * the driver side.
524 */ 524 */
525 if (blk_account_rq(rq)) 525 if (blk_account_rq(rq))
526 q->in_flight++; 526 q->in_flight++;
527 } 527 }
528 528
529 int elv_queue_empty(request_queue_t *q) 529 int elv_queue_empty(request_queue_t *q)
530 { 530 {
531 elevator_t *e = q->elevator; 531 elevator_t *e = q->elevator;
532 532
533 if (!list_empty(&q->queue_head)) 533 if (!list_empty(&q->queue_head))
534 return 0; 534 return 0;
535 535
536 if (e->ops->elevator_queue_empty_fn) 536 if (e->ops->elevator_queue_empty_fn)
537 return e->ops->elevator_queue_empty_fn(q); 537 return e->ops->elevator_queue_empty_fn(q);
538 538
539 return 1; 539 return 1;
540 } 540 }
541 541
542 struct request *elv_latter_request(request_queue_t *q, struct request *rq) 542 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
543 { 543 {
544 struct list_head *next;
545
546 elevator_t *e = q->elevator; 544 elevator_t *e = q->elevator;
547 545
548 if (e->ops->elevator_latter_req_fn) 546 if (e->ops->elevator_latter_req_fn)
549 return e->ops->elevator_latter_req_fn(q, rq); 547 return e->ops->elevator_latter_req_fn(q, rq);
550
551 next = rq->queuelist.next;
552 if (next != &q->queue_head && next != &rq->queuelist)
553 return list_entry_rq(next);
554
555 return NULL; 548 return NULL;
556 } 549 }
557 550
558 struct request *elv_former_request(request_queue_t *q, struct request *rq) 551 struct request *elv_former_request(request_queue_t *q, struct request *rq)
559 { 552 {
560 struct list_head *prev;
561
562 elevator_t *e = q->elevator; 553 elevator_t *e = q->elevator;
563 554
564 if (e->ops->elevator_former_req_fn) 555 if (e->ops->elevator_former_req_fn)
565 return e->ops->elevator_former_req_fn(q, rq); 556 return e->ops->elevator_former_req_fn(q, rq);
566
567 prev = rq->queuelist.prev;
568 if (prev != &q->queue_head && prev != &rq->queuelist)
569 return list_entry_rq(prev);
570
571 return NULL; 557 return NULL;
572 } 558 }
573 559
574 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio, 560 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
575 gfp_t gfp_mask) 561 gfp_t gfp_mask)
576 { 562 {
577 elevator_t *e = q->elevator; 563 elevator_t *e = q->elevator;
578 564
579 if (e->ops->elevator_set_req_fn) 565 if (e->ops->elevator_set_req_fn)
580 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask); 566 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
581 567
582 rq->elevator_private = NULL; 568 rq->elevator_private = NULL;
583 return 0; 569 return 0;
584 } 570 }
585 571
586 void elv_put_request(request_queue_t *q, struct request *rq) 572 void elv_put_request(request_queue_t *q, struct request *rq)
587 { 573 {
588 elevator_t *e = q->elevator; 574 elevator_t *e = q->elevator;
589 575
590 if (e->ops->elevator_put_req_fn) 576 if (e->ops->elevator_put_req_fn)
591 e->ops->elevator_put_req_fn(q, rq); 577 e->ops->elevator_put_req_fn(q, rq);
592 } 578 }
593 579
594 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio) 580 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
595 { 581 {
596 elevator_t *e = q->elevator; 582 elevator_t *e = q->elevator;
597 583
598 if (e->ops->elevator_may_queue_fn) 584 if (e->ops->elevator_may_queue_fn)
599 return e->ops->elevator_may_queue_fn(q, rw, bio); 585 return e->ops->elevator_may_queue_fn(q, rw, bio);
600 586
601 return ELV_MQUEUE_MAY; 587 return ELV_MQUEUE_MAY;
602 } 588 }
603 589
604 void elv_completed_request(request_queue_t *q, struct request *rq) 590 void elv_completed_request(request_queue_t *q, struct request *rq)
605 { 591 {
606 elevator_t *e = q->elevator; 592 elevator_t *e = q->elevator;
607 593
608 /* 594 /*
609 * request is released from the driver, io must be done 595 * request is released from the driver, io must be done
610 */ 596 */
611 if (blk_account_rq(rq)) { 597 if (blk_account_rq(rq)) {
612 q->in_flight--; 598 q->in_flight--;
613 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) 599 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
614 e->ops->elevator_completed_req_fn(q, rq); 600 e->ops->elevator_completed_req_fn(q, rq);
615 } 601 }
616 } 602 }
617 603
618 int elv_register_queue(struct request_queue *q) 604 int elv_register_queue(struct request_queue *q)
619 { 605 {
620 elevator_t *e = q->elevator; 606 elevator_t *e = q->elevator;
621 607
622 e->kobj.parent = kobject_get(&q->kobj); 608 e->kobj.parent = kobject_get(&q->kobj);
623 if (!e->kobj.parent) 609 if (!e->kobj.parent)
624 return -EBUSY; 610 return -EBUSY;
625 611
626 snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); 612 snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
627 e->kobj.ktype = e->elevator_type->elevator_ktype; 613 e->kobj.ktype = e->elevator_type->elevator_ktype;
628 614
629 return kobject_register(&e->kobj); 615 return kobject_register(&e->kobj);
630 } 616 }
631 617
632 void elv_unregister_queue(struct request_queue *q) 618 void elv_unregister_queue(struct request_queue *q)
633 { 619 {
634 if (q) { 620 if (q) {
635 elevator_t *e = q->elevator; 621 elevator_t *e = q->elevator;
636 kobject_unregister(&e->kobj); 622 kobject_unregister(&e->kobj);
637 kobject_put(&q->kobj); 623 kobject_put(&q->kobj);
638 } 624 }
639 } 625 }
640 626
641 int elv_register(struct elevator_type *e) 627 int elv_register(struct elevator_type *e)
642 { 628 {
643 spin_lock_irq(&elv_list_lock); 629 spin_lock_irq(&elv_list_lock);
644 if (elevator_find(e->elevator_name)) 630 if (elevator_find(e->elevator_name))
645 BUG(); 631 BUG();
646 list_add_tail(&e->list, &elv_list); 632 list_add_tail(&e->list, &elv_list);
647 spin_unlock_irq(&elv_list_lock); 633 spin_unlock_irq(&elv_list_lock);
648 634
649 printk(KERN_INFO "io scheduler %s registered", e->elevator_name); 635 printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
650 if (!strcmp(e->elevator_name, chosen_elevator)) 636 if (!strcmp(e->elevator_name, chosen_elevator))
651 printk(" (default)"); 637 printk(" (default)");
652 printk("\n"); 638 printk("\n");
653 return 0; 639 return 0;
654 } 640 }
655 EXPORT_SYMBOL_GPL(elv_register); 641 EXPORT_SYMBOL_GPL(elv_register);
656 642
657 void elv_unregister(struct elevator_type *e) 643 void elv_unregister(struct elevator_type *e)
658 { 644 {
659 struct task_struct *g, *p; 645 struct task_struct *g, *p;
660 646
661 /* 647 /*
662 * Iterate every thread in the process to remove the io contexts. 648 * Iterate every thread in the process to remove the io contexts.
663 */ 649 */
664 read_lock(&tasklist_lock); 650 read_lock(&tasklist_lock);
665 do_each_thread(g, p) { 651 do_each_thread(g, p) {
666 struct io_context *ioc = p->io_context; 652 struct io_context *ioc = p->io_context;
667 if (ioc && ioc->cic) { 653 if (ioc && ioc->cic) {
668 ioc->cic->exit(ioc->cic); 654 ioc->cic->exit(ioc->cic);
669 ioc->cic->dtor(ioc->cic); 655 ioc->cic->dtor(ioc->cic);
670 ioc->cic = NULL; 656 ioc->cic = NULL;
671 } 657 }
672 if (ioc && ioc->aic) { 658 if (ioc && ioc->aic) {
673 ioc->aic->exit(ioc->aic); 659 ioc->aic->exit(ioc->aic);
674 ioc->aic->dtor(ioc->aic); 660 ioc->aic->dtor(ioc->aic);
675 ioc->aic = NULL; 661 ioc->aic = NULL;
676 } 662 }
677 } while_each_thread(g, p); 663 } while_each_thread(g, p);
678 read_unlock(&tasklist_lock); 664 read_unlock(&tasklist_lock);
679 665
680 spin_lock_irq(&elv_list_lock); 666 spin_lock_irq(&elv_list_lock);
681 list_del_init(&e->list); 667 list_del_init(&e->list);
682 spin_unlock_irq(&elv_list_lock); 668 spin_unlock_irq(&elv_list_lock);
683 } 669 }
684 EXPORT_SYMBOL_GPL(elv_unregister); 670 EXPORT_SYMBOL_GPL(elv_unregister);
685 671
686 /* 672 /*
687 * switch to new_e io scheduler. be careful not to introduce deadlocks - 673 * switch to new_e io scheduler. be careful not to introduce deadlocks -
688 * we don't free the old io scheduler, before we have allocated what we 674 * we don't free the old io scheduler, before we have allocated what we
689 * need for the new one. this way we have a chance of going back to the old 675 * need for the new one. this way we have a chance of going back to the old
690 * one, if the new one fails init for some reason. 676 * one, if the new one fails init for some reason.
691 */ 677 */
692 static void elevator_switch(request_queue_t *q, struct elevator_type *new_e) 678 static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
693 { 679 {
694 elevator_t *old_elevator, *e; 680 elevator_t *old_elevator, *e;
695 681
696 /* 682 /*
697 * Allocate new elevator 683 * Allocate new elevator
698 */ 684 */
699 e = kmalloc(sizeof(elevator_t), GFP_KERNEL); 685 e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
700 if (!e) 686 if (!e)
701 goto error; 687 goto error;
702 688
703 /* 689 /*
704 * Turn on BYPASS and drain all requests w/ elevator private data 690 * Turn on BYPASS and drain all requests w/ elevator private data
705 */ 691 */
706 spin_lock_irq(q->queue_lock); 692 spin_lock_irq(q->queue_lock);
707 693
708 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 694 set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
709 695
710 elv_drain_elevator(q); 696 elv_drain_elevator(q);
711 697
712 while (q->rq.elvpriv) { 698 while (q->rq.elvpriv) {
713 blk_remove_plug(q); 699 blk_remove_plug(q);
714 q->request_fn(q); 700 q->request_fn(q);
715 spin_unlock_irq(q->queue_lock); 701 spin_unlock_irq(q->queue_lock);
716 msleep(10); 702 msleep(10);
717 spin_lock_irq(q->queue_lock); 703 spin_lock_irq(q->queue_lock);
718 elv_drain_elevator(q); 704 elv_drain_elevator(q);
719 } 705 }
720 706
721 spin_unlock_irq(q->queue_lock); 707 spin_unlock_irq(q->queue_lock);
722 708
723 /* 709 /*
724 * unregister old elevator data 710 * unregister old elevator data
725 */ 711 */
726 elv_unregister_queue(q); 712 elv_unregister_queue(q);
727 old_elevator = q->elevator; 713 old_elevator = q->elevator;
728 714
729 /* 715 /*
730 * attach and start new elevator 716 * attach and start new elevator
731 */ 717 */
732 if (elevator_attach(q, new_e, e)) 718 if (elevator_attach(q, new_e, e))
733 goto fail; 719 goto fail;
734 720
735 if (elv_register_queue(q)) 721 if (elv_register_queue(q))
736 goto fail_register; 722 goto fail_register;
737 723
738 /* 724 /*
739 * finally exit old elevator and turn off BYPASS. 725 * finally exit old elevator and turn off BYPASS.
740 */ 726 */
741 elevator_exit(old_elevator); 727 elevator_exit(old_elevator);
742 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 728 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
743 return; 729 return;
744 730
745 fail_register: 731 fail_register:
746 /* 732 /*
747 * switch failed, exit the new io scheduler and reattach the old 733 * switch failed, exit the new io scheduler and reattach the old
748 * one again (along with re-adding the sysfs dir) 734 * one again (along with re-adding the sysfs dir)
749 */ 735 */
750 elevator_exit(e); 736 elevator_exit(e);
751 e = NULL; 737 e = NULL;
752 fail: 738 fail:
753 q->elevator = old_elevator; 739 q->elevator = old_elevator;
754 elv_register_queue(q); 740 elv_register_queue(q);
755 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 741 clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
756 kfree(e); 742 kfree(e);
757 error: 743 error:
758 elevator_put(new_e); 744 elevator_put(new_e);
759 printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name); 745 printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
760 } 746 }
761 747
762 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count) 748 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
763 { 749 {
764 char elevator_name[ELV_NAME_MAX]; 750 char elevator_name[ELV_NAME_MAX];
765 size_t len; 751 size_t len;
766 struct elevator_type *e; 752 struct elevator_type *e;
767 753
768 elevator_name[sizeof(elevator_name) - 1] = '\0'; 754 elevator_name[sizeof(elevator_name) - 1] = '\0';
769 strncpy(elevator_name, name, sizeof(elevator_name) - 1); 755 strncpy(elevator_name, name, sizeof(elevator_name) - 1);
770 len = strlen(elevator_name); 756 len = strlen(elevator_name);
771 757
772 if (len && elevator_name[len - 1] == '\n') 758 if (len && elevator_name[len - 1] == '\n')
773 elevator_name[len - 1] = '\0'; 759 elevator_name[len - 1] = '\0';
774 760
775 e = elevator_get(elevator_name); 761 e = elevator_get(elevator_name);
776 if (!e) { 762 if (!e) {
777 printk(KERN_ERR "elevator: type %s not found\n", elevator_name); 763 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
778 return -EINVAL; 764 return -EINVAL;
779 } 765 }
780 766
781 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { 767 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
782 elevator_put(e); 768 elevator_put(e);
783 return count; 769 return count;
784 } 770 }
785 771
786 elevator_switch(q, e); 772 elevator_switch(q, e);
787 return count; 773 return count;
788 } 774 }
789 775
790 ssize_t elv_iosched_show(request_queue_t *q, char *name) 776 ssize_t elv_iosched_show(request_queue_t *q, char *name)
791 { 777 {
792 elevator_t *e = q->elevator; 778 elevator_t *e = q->elevator;
793 struct elevator_type *elv = e->elevator_type; 779 struct elevator_type *elv = e->elevator_type;
794 struct list_head *entry; 780 struct list_head *entry;
795 int len = 0; 781 int len = 0;
796 782
797 spin_lock_irq(q->queue_lock); 783 spin_lock_irq(q->queue_lock);
798 list_for_each(entry, &elv_list) { 784 list_for_each(entry, &elv_list) {
799 struct elevator_type *__e; 785 struct elevator_type *__e;
800 786
801 __e = list_entry(entry, struct elevator_type, list); 787 __e = list_entry(entry, struct elevator_type, list);
802 if (!strcmp(elv->elevator_name, __e->elevator_name)) 788 if (!strcmp(elv->elevator_name, __e->elevator_name))
803 len += sprintf(name+len, "[%s] ", elv->elevator_name); 789 len += sprintf(name+len, "[%s] ", elv->elevator_name);
804 else 790 else
805 len += sprintf(name+len, "%s ", __e->elevator_name); 791 len += sprintf(name+len, "%s ", __e->elevator_name);
806 } 792 }
807 spin_unlock_irq(q->queue_lock); 793 spin_unlock_irq(q->queue_lock);
808 794
809 len += sprintf(len+name, "\n"); 795 len += sprintf(len+name, "\n");
810 return len; 796 return len;
811 } 797 }
812 798
813 EXPORT_SYMBOL(elv_dispatch_sort); 799 EXPORT_SYMBOL(elv_dispatch_sort);
814 EXPORT_SYMBOL(elv_add_request); 800 EXPORT_SYMBOL(elv_add_request);
815 EXPORT_SYMBOL(__elv_add_request); 801 EXPORT_SYMBOL(__elv_add_request);
816 EXPORT_SYMBOL(elv_requeue_request); 802 EXPORT_SYMBOL(elv_requeue_request);
817 EXPORT_SYMBOL(elv_next_request); 803 EXPORT_SYMBOL(elv_next_request);
818 EXPORT_SYMBOL(elv_dequeue_request); 804 EXPORT_SYMBOL(elv_dequeue_request);
819 EXPORT_SYMBOL(elv_queue_empty); 805 EXPORT_SYMBOL(elv_queue_empty);
820 EXPORT_SYMBOL(elv_completed_request); 806 EXPORT_SYMBOL(elv_completed_request);
821 EXPORT_SYMBOL(elevator_exit); 807 EXPORT_SYMBOL(elevator_exit);
822 EXPORT_SYMBOL(elevator_init); 808 EXPORT_SYMBOL(elevator_init);
823 809