Commit 7fccf0326536c1b245b98740d489abb9aab69a12
Committed by
Linus Torvalds
1 parent
f1d8269802
Exists in
master
and in
4 other branches
kernel/kexec.c: make 'kimage_terminate' void
Since kimage_terminate() always returns 0, make it void. Signed-off-by: WANG Cong <wangcong@zeuux.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 1 changed file with 2 additions and 6 deletions Inline Diff
kernel/kexec.c
1 | /* | 1 | /* |
2 | * kexec.c - kexec system call | 2 | * kexec.c - kexec system call |
3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | 3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
4 | * | 4 | * |
5 | * This source code is licensed under the GNU General Public License, | 5 | * This source code is licensed under the GNU General Public License, |
6 | * Version 2. See the file COPYING for more details. | 6 | * Version 2. See the file COPYING for more details. |
7 | */ | 7 | */ |
8 | 8 | ||
9 | #include <linux/capability.h> | 9 | #include <linux/capability.h> |
10 | #include <linux/mm.h> | 10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | 11 | #include <linux/file.h> |
12 | #include <linux/slab.h> | 12 | #include <linux/slab.h> |
13 | #include <linux/fs.h> | 13 | #include <linux/fs.h> |
14 | #include <linux/kexec.h> | 14 | #include <linux/kexec.h> |
15 | #include <linux/spinlock.h> | 15 | #include <linux/spinlock.h> |
16 | #include <linux/list.h> | 16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> | 17 | #include <linux/highmem.h> |
18 | #include <linux/syscalls.h> | 18 | #include <linux/syscalls.h> |
19 | #include <linux/reboot.h> | 19 | #include <linux/reboot.h> |
20 | #include <linux/ioport.h> | 20 | #include <linux/ioport.h> |
21 | #include <linux/hardirq.h> | 21 | #include <linux/hardirq.h> |
22 | #include <linux/elf.h> | 22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> | 23 | #include <linux/elfcore.h> |
24 | #include <linux/utsrelease.h> | 24 | #include <linux/utsrelease.h> |
25 | #include <linux/utsname.h> | 25 | #include <linux/utsname.h> |
26 | #include <linux/numa.h> | 26 | #include <linux/numa.h> |
27 | 27 | ||
28 | #include <asm/page.h> | 28 | #include <asm/page.h> |
29 | #include <asm/uaccess.h> | 29 | #include <asm/uaccess.h> |
30 | #include <asm/io.h> | 30 | #include <asm/io.h> |
31 | #include <asm/system.h> | 31 | #include <asm/system.h> |
32 | #include <asm/sections.h> | 32 | #include <asm/sections.h> |
33 | 33 | ||
34 | /* Per cpu memory for storing cpu states in case of system crash. */ | 34 | /* Per cpu memory for storing cpu states in case of system crash. */ |
35 | note_buf_t* crash_notes; | 35 | note_buf_t* crash_notes; |
36 | 36 | ||
37 | /* vmcoreinfo stuff */ | 37 | /* vmcoreinfo stuff */ |
38 | unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | 38 | unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
39 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | 39 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
40 | size_t vmcoreinfo_size; | 40 | size_t vmcoreinfo_size; |
41 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | 41 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); |
42 | 42 | ||
43 | /* Location of the reserved area for the crash kernel */ | 43 | /* Location of the reserved area for the crash kernel */ |
44 | struct resource crashk_res = { | 44 | struct resource crashk_res = { |
45 | .name = "Crash kernel", | 45 | .name = "Crash kernel", |
46 | .start = 0, | 46 | .start = 0, |
47 | .end = 0, | 47 | .end = 0, |
48 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | 48 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
49 | }; | 49 | }; |
50 | 50 | ||
51 | int kexec_should_crash(struct task_struct *p) | 51 | int kexec_should_crash(struct task_struct *p) |
52 | { | 52 | { |
53 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | 53 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
54 | return 1; | 54 | return 1; |
55 | return 0; | 55 | return 0; |
56 | } | 56 | } |
57 | 57 | ||
58 | /* | 58 | /* |
59 | * When kexec transitions to the new kernel there is a one-to-one | 59 | * When kexec transitions to the new kernel there is a one-to-one |
60 | * mapping between physical and virtual addresses. On processors | 60 | * mapping between physical and virtual addresses. On processors |
61 | * where you can disable the MMU this is trivial, and easy. For | 61 | * where you can disable the MMU this is trivial, and easy. For |
62 | * others it is still a simple predictable page table to setup. | 62 | * others it is still a simple predictable page table to setup. |
63 | * | 63 | * |
64 | * In that environment kexec copies the new kernel to its final | 64 | * In that environment kexec copies the new kernel to its final |
65 | * resting place. This means I can only support memory whose | 65 | * resting place. This means I can only support memory whose |
66 | * physical address can fit in an unsigned long. In particular | 66 | * physical address can fit in an unsigned long. In particular |
67 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | 67 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. |
68 | * If the assembly stub has more restrictive requirements | 68 | * If the assembly stub has more restrictive requirements |
69 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | 69 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be |
70 | * defined more restrictively in <asm/kexec.h>. | 70 | * defined more restrictively in <asm/kexec.h>. |
71 | * | 71 | * |
72 | * The code for the transition from the current kernel to the | 72 | * The code for the transition from the current kernel to the |
73 | * the new kernel is placed in the control_code_buffer, whose size | 73 | * the new kernel is placed in the control_code_buffer, whose size |
74 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | 74 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single |
75 | * page of memory is necessary, but some architectures require more. | 75 | * page of memory is necessary, but some architectures require more. |
76 | * Because this memory must be identity mapped in the transition from | 76 | * Because this memory must be identity mapped in the transition from |
77 | * virtual to physical addresses it must live in the range | 77 | * virtual to physical addresses it must live in the range |
78 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | 78 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily |
79 | * modifiable. | 79 | * modifiable. |
80 | * | 80 | * |
81 | * The assembly stub in the control code buffer is passed a linked list | 81 | * The assembly stub in the control code buffer is passed a linked list |
82 | * of descriptor pages detailing the source pages of the new kernel, | 82 | * of descriptor pages detailing the source pages of the new kernel, |
83 | * and the destination addresses of those source pages. As this data | 83 | * and the destination addresses of those source pages. As this data |
84 | * structure is not used in the context of the current OS, it must | 84 | * structure is not used in the context of the current OS, it must |
85 | * be self-contained. | 85 | * be self-contained. |
86 | * | 86 | * |
87 | * The code has been made to work with highmem pages and will use a | 87 | * The code has been made to work with highmem pages and will use a |
88 | * destination page in its final resting place (if it happens | 88 | * destination page in its final resting place (if it happens |
89 | * to allocate it). The end product of this is that most of the | 89 | * to allocate it). The end product of this is that most of the |
90 | * physical address space, and most of RAM can be used. | 90 | * physical address space, and most of RAM can be used. |
91 | * | 91 | * |
92 | * Future directions include: | 92 | * Future directions include: |
93 | * - allocating a page table with the control code buffer identity | 93 | * - allocating a page table with the control code buffer identity |
94 | * mapped, to simplify machine_kexec and make kexec_on_panic more | 94 | * mapped, to simplify machine_kexec and make kexec_on_panic more |
95 | * reliable. | 95 | * reliable. |
96 | */ | 96 | */ |
97 | 97 | ||
98 | /* | 98 | /* |
99 | * KIMAGE_NO_DEST is an impossible destination address..., for | 99 | * KIMAGE_NO_DEST is an impossible destination address..., for |
100 | * allocating pages whose destination address we do not care about. | 100 | * allocating pages whose destination address we do not care about. |
101 | */ | 101 | */ |
102 | #define KIMAGE_NO_DEST (-1UL) | 102 | #define KIMAGE_NO_DEST (-1UL) |
103 | 103 | ||
104 | static int kimage_is_destination_range(struct kimage *image, | 104 | static int kimage_is_destination_range(struct kimage *image, |
105 | unsigned long start, unsigned long end); | 105 | unsigned long start, unsigned long end); |
106 | static struct page *kimage_alloc_page(struct kimage *image, | 106 | static struct page *kimage_alloc_page(struct kimage *image, |
107 | gfp_t gfp_mask, | 107 | gfp_t gfp_mask, |
108 | unsigned long dest); | 108 | unsigned long dest); |
109 | 109 | ||
110 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | 110 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, |
111 | unsigned long nr_segments, | 111 | unsigned long nr_segments, |
112 | struct kexec_segment __user *segments) | 112 | struct kexec_segment __user *segments) |
113 | { | 113 | { |
114 | size_t segment_bytes; | 114 | size_t segment_bytes; |
115 | struct kimage *image; | 115 | struct kimage *image; |
116 | unsigned long i; | 116 | unsigned long i; |
117 | int result; | 117 | int result; |
118 | 118 | ||
119 | /* Allocate a controlling structure */ | 119 | /* Allocate a controlling structure */ |
120 | result = -ENOMEM; | 120 | result = -ENOMEM; |
121 | image = kzalloc(sizeof(*image), GFP_KERNEL); | 121 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
122 | if (!image) | 122 | if (!image) |
123 | goto out; | 123 | goto out; |
124 | 124 | ||
125 | image->head = 0; | 125 | image->head = 0; |
126 | image->entry = &image->head; | 126 | image->entry = &image->head; |
127 | image->last_entry = &image->head; | 127 | image->last_entry = &image->head; |
128 | image->control_page = ~0; /* By default this does not apply */ | 128 | image->control_page = ~0; /* By default this does not apply */ |
129 | image->start = entry; | 129 | image->start = entry; |
130 | image->type = KEXEC_TYPE_DEFAULT; | 130 | image->type = KEXEC_TYPE_DEFAULT; |
131 | 131 | ||
132 | /* Initialize the list of control pages */ | 132 | /* Initialize the list of control pages */ |
133 | INIT_LIST_HEAD(&image->control_pages); | 133 | INIT_LIST_HEAD(&image->control_pages); |
134 | 134 | ||
135 | /* Initialize the list of destination pages */ | 135 | /* Initialize the list of destination pages */ |
136 | INIT_LIST_HEAD(&image->dest_pages); | 136 | INIT_LIST_HEAD(&image->dest_pages); |
137 | 137 | ||
138 | /* Initialize the list of unuseable pages */ | 138 | /* Initialize the list of unuseable pages */ |
139 | INIT_LIST_HEAD(&image->unuseable_pages); | 139 | INIT_LIST_HEAD(&image->unuseable_pages); |
140 | 140 | ||
141 | /* Read in the segments */ | 141 | /* Read in the segments */ |
142 | image->nr_segments = nr_segments; | 142 | image->nr_segments = nr_segments; |
143 | segment_bytes = nr_segments * sizeof(*segments); | 143 | segment_bytes = nr_segments * sizeof(*segments); |
144 | result = copy_from_user(image->segment, segments, segment_bytes); | 144 | result = copy_from_user(image->segment, segments, segment_bytes); |
145 | if (result) | 145 | if (result) |
146 | goto out; | 146 | goto out; |
147 | 147 | ||
148 | /* | 148 | /* |
149 | * Verify we have good destination addresses. The caller is | 149 | * Verify we have good destination addresses. The caller is |
150 | * responsible for making certain we don't attempt to load | 150 | * responsible for making certain we don't attempt to load |
151 | * the new image into invalid or reserved areas of RAM. This | 151 | * the new image into invalid or reserved areas of RAM. This |
152 | * just verifies it is an address we can use. | 152 | * just verifies it is an address we can use. |
153 | * | 153 | * |
154 | * Since the kernel does everything in page size chunks ensure | 154 | * Since the kernel does everything in page size chunks ensure |
155 | * the destination addreses are page aligned. Too many | 155 | * the destination addreses are page aligned. Too many |
156 | * special cases crop of when we don't do this. The most | 156 | * special cases crop of when we don't do this. The most |
157 | * insidious is getting overlapping destination addresses | 157 | * insidious is getting overlapping destination addresses |
158 | * simply because addresses are changed to page size | 158 | * simply because addresses are changed to page size |
159 | * granularity. | 159 | * granularity. |
160 | */ | 160 | */ |
161 | result = -EADDRNOTAVAIL; | 161 | result = -EADDRNOTAVAIL; |
162 | for (i = 0; i < nr_segments; i++) { | 162 | for (i = 0; i < nr_segments; i++) { |
163 | unsigned long mstart, mend; | 163 | unsigned long mstart, mend; |
164 | 164 | ||
165 | mstart = image->segment[i].mem; | 165 | mstart = image->segment[i].mem; |
166 | mend = mstart + image->segment[i].memsz; | 166 | mend = mstart + image->segment[i].memsz; |
167 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | 167 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) |
168 | goto out; | 168 | goto out; |
169 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | 169 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) |
170 | goto out; | 170 | goto out; |
171 | } | 171 | } |
172 | 172 | ||
173 | /* Verify our destination addresses do not overlap. | 173 | /* Verify our destination addresses do not overlap. |
174 | * If we alloed overlapping destination addresses | 174 | * If we alloed overlapping destination addresses |
175 | * through very weird things can happen with no | 175 | * through very weird things can happen with no |
176 | * easy explanation as one segment stops on another. | 176 | * easy explanation as one segment stops on another. |
177 | */ | 177 | */ |
178 | result = -EINVAL; | 178 | result = -EINVAL; |
179 | for (i = 0; i < nr_segments; i++) { | 179 | for (i = 0; i < nr_segments; i++) { |
180 | unsigned long mstart, mend; | 180 | unsigned long mstart, mend; |
181 | unsigned long j; | 181 | unsigned long j; |
182 | 182 | ||
183 | mstart = image->segment[i].mem; | 183 | mstart = image->segment[i].mem; |
184 | mend = mstart + image->segment[i].memsz; | 184 | mend = mstart + image->segment[i].memsz; |
185 | for (j = 0; j < i; j++) { | 185 | for (j = 0; j < i; j++) { |
186 | unsigned long pstart, pend; | 186 | unsigned long pstart, pend; |
187 | pstart = image->segment[j].mem; | 187 | pstart = image->segment[j].mem; |
188 | pend = pstart + image->segment[j].memsz; | 188 | pend = pstart + image->segment[j].memsz; |
189 | /* Do the segments overlap ? */ | 189 | /* Do the segments overlap ? */ |
190 | if ((mend > pstart) && (mstart < pend)) | 190 | if ((mend > pstart) && (mstart < pend)) |
191 | goto out; | 191 | goto out; |
192 | } | 192 | } |
193 | } | 193 | } |
194 | 194 | ||
195 | /* Ensure our buffer sizes are strictly less than | 195 | /* Ensure our buffer sizes are strictly less than |
196 | * our memory sizes. This should always be the case, | 196 | * our memory sizes. This should always be the case, |
197 | * and it is easier to check up front than to be surprised | 197 | * and it is easier to check up front than to be surprised |
198 | * later on. | 198 | * later on. |
199 | */ | 199 | */ |
200 | result = -EINVAL; | 200 | result = -EINVAL; |
201 | for (i = 0; i < nr_segments; i++) { | 201 | for (i = 0; i < nr_segments; i++) { |
202 | if (image->segment[i].bufsz > image->segment[i].memsz) | 202 | if (image->segment[i].bufsz > image->segment[i].memsz) |
203 | goto out; | 203 | goto out; |
204 | } | 204 | } |
205 | 205 | ||
206 | result = 0; | 206 | result = 0; |
207 | out: | 207 | out: |
208 | if (result == 0) | 208 | if (result == 0) |
209 | *rimage = image; | 209 | *rimage = image; |
210 | else | 210 | else |
211 | kfree(image); | 211 | kfree(image); |
212 | 212 | ||
213 | return result; | 213 | return result; |
214 | 214 | ||
215 | } | 215 | } |
216 | 216 | ||
217 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | 217 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, |
218 | unsigned long nr_segments, | 218 | unsigned long nr_segments, |
219 | struct kexec_segment __user *segments) | 219 | struct kexec_segment __user *segments) |
220 | { | 220 | { |
221 | int result; | 221 | int result; |
222 | struct kimage *image; | 222 | struct kimage *image; |
223 | 223 | ||
224 | /* Allocate and initialize a controlling structure */ | 224 | /* Allocate and initialize a controlling structure */ |
225 | image = NULL; | 225 | image = NULL; |
226 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | 226 | result = do_kimage_alloc(&image, entry, nr_segments, segments); |
227 | if (result) | 227 | if (result) |
228 | goto out; | 228 | goto out; |
229 | 229 | ||
230 | *rimage = image; | 230 | *rimage = image; |
231 | 231 | ||
232 | /* | 232 | /* |
233 | * Find a location for the control code buffer, and add it | 233 | * Find a location for the control code buffer, and add it |
234 | * the vector of segments so that it's pages will also be | 234 | * the vector of segments so that it's pages will also be |
235 | * counted as destination pages. | 235 | * counted as destination pages. |
236 | */ | 236 | */ |
237 | result = -ENOMEM; | 237 | result = -ENOMEM; |
238 | image->control_code_page = kimage_alloc_control_pages(image, | 238 | image->control_code_page = kimage_alloc_control_pages(image, |
239 | get_order(KEXEC_CONTROL_CODE_SIZE)); | 239 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
240 | if (!image->control_code_page) { | 240 | if (!image->control_code_page) { |
241 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 241 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
242 | goto out; | 242 | goto out; |
243 | } | 243 | } |
244 | 244 | ||
245 | result = 0; | 245 | result = 0; |
246 | out: | 246 | out: |
247 | if (result == 0) | 247 | if (result == 0) |
248 | *rimage = image; | 248 | *rimage = image; |
249 | else | 249 | else |
250 | kfree(image); | 250 | kfree(image); |
251 | 251 | ||
252 | return result; | 252 | return result; |
253 | } | 253 | } |
254 | 254 | ||
255 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | 255 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, |
256 | unsigned long nr_segments, | 256 | unsigned long nr_segments, |
257 | struct kexec_segment __user *segments) | 257 | struct kexec_segment __user *segments) |
258 | { | 258 | { |
259 | int result; | 259 | int result; |
260 | struct kimage *image; | 260 | struct kimage *image; |
261 | unsigned long i; | 261 | unsigned long i; |
262 | 262 | ||
263 | image = NULL; | 263 | image = NULL; |
264 | /* Verify we have a valid entry point */ | 264 | /* Verify we have a valid entry point */ |
265 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | 265 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { |
266 | result = -EADDRNOTAVAIL; | 266 | result = -EADDRNOTAVAIL; |
267 | goto out; | 267 | goto out; |
268 | } | 268 | } |
269 | 269 | ||
270 | /* Allocate and initialize a controlling structure */ | 270 | /* Allocate and initialize a controlling structure */ |
271 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | 271 | result = do_kimage_alloc(&image, entry, nr_segments, segments); |
272 | if (result) | 272 | if (result) |
273 | goto out; | 273 | goto out; |
274 | 274 | ||
275 | /* Enable the special crash kernel control page | 275 | /* Enable the special crash kernel control page |
276 | * allocation policy. | 276 | * allocation policy. |
277 | */ | 277 | */ |
278 | image->control_page = crashk_res.start; | 278 | image->control_page = crashk_res.start; |
279 | image->type = KEXEC_TYPE_CRASH; | 279 | image->type = KEXEC_TYPE_CRASH; |
280 | 280 | ||
281 | /* | 281 | /* |
282 | * Verify we have good destination addresses. Normally | 282 | * Verify we have good destination addresses. Normally |
283 | * the caller is responsible for making certain we don't | 283 | * the caller is responsible for making certain we don't |
284 | * attempt to load the new image into invalid or reserved | 284 | * attempt to load the new image into invalid or reserved |
285 | * areas of RAM. But crash kernels are preloaded into a | 285 | * areas of RAM. But crash kernels are preloaded into a |
286 | * reserved area of ram. We must ensure the addresses | 286 | * reserved area of ram. We must ensure the addresses |
287 | * are in the reserved area otherwise preloading the | 287 | * are in the reserved area otherwise preloading the |
288 | * kernel could corrupt things. | 288 | * kernel could corrupt things. |
289 | */ | 289 | */ |
290 | result = -EADDRNOTAVAIL; | 290 | result = -EADDRNOTAVAIL; |
291 | for (i = 0; i < nr_segments; i++) { | 291 | for (i = 0; i < nr_segments; i++) { |
292 | unsigned long mstart, mend; | 292 | unsigned long mstart, mend; |
293 | 293 | ||
294 | mstart = image->segment[i].mem; | 294 | mstart = image->segment[i].mem; |
295 | mend = mstart + image->segment[i].memsz - 1; | 295 | mend = mstart + image->segment[i].memsz - 1; |
296 | /* Ensure we are within the crash kernel limits */ | 296 | /* Ensure we are within the crash kernel limits */ |
297 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | 297 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) |
298 | goto out; | 298 | goto out; |
299 | } | 299 | } |
300 | 300 | ||
301 | /* | 301 | /* |
302 | * Find a location for the control code buffer, and add | 302 | * Find a location for the control code buffer, and add |
303 | * the vector of segments so that it's pages will also be | 303 | * the vector of segments so that it's pages will also be |
304 | * counted as destination pages. | 304 | * counted as destination pages. |
305 | */ | 305 | */ |
306 | result = -ENOMEM; | 306 | result = -ENOMEM; |
307 | image->control_code_page = kimage_alloc_control_pages(image, | 307 | image->control_code_page = kimage_alloc_control_pages(image, |
308 | get_order(KEXEC_CONTROL_CODE_SIZE)); | 308 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
309 | if (!image->control_code_page) { | 309 | if (!image->control_code_page) { |
310 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | 310 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
311 | goto out; | 311 | goto out; |
312 | } | 312 | } |
313 | 313 | ||
314 | result = 0; | 314 | result = 0; |
315 | out: | 315 | out: |
316 | if (result == 0) | 316 | if (result == 0) |
317 | *rimage = image; | 317 | *rimage = image; |
318 | else | 318 | else |
319 | kfree(image); | 319 | kfree(image); |
320 | 320 | ||
321 | return result; | 321 | return result; |
322 | } | 322 | } |
323 | 323 | ||
324 | static int kimage_is_destination_range(struct kimage *image, | 324 | static int kimage_is_destination_range(struct kimage *image, |
325 | unsigned long start, | 325 | unsigned long start, |
326 | unsigned long end) | 326 | unsigned long end) |
327 | { | 327 | { |
328 | unsigned long i; | 328 | unsigned long i; |
329 | 329 | ||
330 | for (i = 0; i < image->nr_segments; i++) { | 330 | for (i = 0; i < image->nr_segments; i++) { |
331 | unsigned long mstart, mend; | 331 | unsigned long mstart, mend; |
332 | 332 | ||
333 | mstart = image->segment[i].mem; | 333 | mstart = image->segment[i].mem; |
334 | mend = mstart + image->segment[i].memsz; | 334 | mend = mstart + image->segment[i].memsz; |
335 | if ((end > mstart) && (start < mend)) | 335 | if ((end > mstart) && (start < mend)) |
336 | return 1; | 336 | return 1; |
337 | } | 337 | } |
338 | 338 | ||
339 | return 0; | 339 | return 0; |
340 | } | 340 | } |
341 | 341 | ||
342 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | 342 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
343 | { | 343 | { |
344 | struct page *pages; | 344 | struct page *pages; |
345 | 345 | ||
346 | pages = alloc_pages(gfp_mask, order); | 346 | pages = alloc_pages(gfp_mask, order); |
347 | if (pages) { | 347 | if (pages) { |
348 | unsigned int count, i; | 348 | unsigned int count, i; |
349 | pages->mapping = NULL; | 349 | pages->mapping = NULL; |
350 | set_page_private(pages, order); | 350 | set_page_private(pages, order); |
351 | count = 1 << order; | 351 | count = 1 << order; |
352 | for (i = 0; i < count; i++) | 352 | for (i = 0; i < count; i++) |
353 | SetPageReserved(pages + i); | 353 | SetPageReserved(pages + i); |
354 | } | 354 | } |
355 | 355 | ||
356 | return pages; | 356 | return pages; |
357 | } | 357 | } |
358 | 358 | ||
359 | static void kimage_free_pages(struct page *page) | 359 | static void kimage_free_pages(struct page *page) |
360 | { | 360 | { |
361 | unsigned int order, count, i; | 361 | unsigned int order, count, i; |
362 | 362 | ||
363 | order = page_private(page); | 363 | order = page_private(page); |
364 | count = 1 << order; | 364 | count = 1 << order; |
365 | for (i = 0; i < count; i++) | 365 | for (i = 0; i < count; i++) |
366 | ClearPageReserved(page + i); | 366 | ClearPageReserved(page + i); |
367 | __free_pages(page, order); | 367 | __free_pages(page, order); |
368 | } | 368 | } |
369 | 369 | ||
370 | static void kimage_free_page_list(struct list_head *list) | 370 | static void kimage_free_page_list(struct list_head *list) |
371 | { | 371 | { |
372 | struct list_head *pos, *next; | 372 | struct list_head *pos, *next; |
373 | 373 | ||
374 | list_for_each_safe(pos, next, list) { | 374 | list_for_each_safe(pos, next, list) { |
375 | struct page *page; | 375 | struct page *page; |
376 | 376 | ||
377 | page = list_entry(pos, struct page, lru); | 377 | page = list_entry(pos, struct page, lru); |
378 | list_del(&page->lru); | 378 | list_del(&page->lru); |
379 | kimage_free_pages(page); | 379 | kimage_free_pages(page); |
380 | } | 380 | } |
381 | } | 381 | } |
382 | 382 | ||
383 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | 383 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
384 | unsigned int order) | 384 | unsigned int order) |
385 | { | 385 | { |
386 | /* Control pages are special, they are the intermediaries | 386 | /* Control pages are special, they are the intermediaries |
387 | * that are needed while we copy the rest of the pages | 387 | * that are needed while we copy the rest of the pages |
388 | * to their final resting place. As such they must | 388 | * to their final resting place. As such they must |
389 | * not conflict with either the destination addresses | 389 | * not conflict with either the destination addresses |
390 | * or memory the kernel is already using. | 390 | * or memory the kernel is already using. |
391 | * | 391 | * |
392 | * The only case where we really need more than one of | 392 | * The only case where we really need more than one of |
393 | * these are for architectures where we cannot disable | 393 | * these are for architectures where we cannot disable |
394 | * the MMU and must instead generate an identity mapped | 394 | * the MMU and must instead generate an identity mapped |
395 | * page table for all of the memory. | 395 | * page table for all of the memory. |
396 | * | 396 | * |
397 | * At worst this runs in O(N) of the image size. | 397 | * At worst this runs in O(N) of the image size. |
398 | */ | 398 | */ |
399 | struct list_head extra_pages; | 399 | struct list_head extra_pages; |
400 | struct page *pages; | 400 | struct page *pages; |
401 | unsigned int count; | 401 | unsigned int count; |
402 | 402 | ||
403 | count = 1 << order; | 403 | count = 1 << order; |
404 | INIT_LIST_HEAD(&extra_pages); | 404 | INIT_LIST_HEAD(&extra_pages); |
405 | 405 | ||
406 | /* Loop while I can allocate a page and the page allocated | 406 | /* Loop while I can allocate a page and the page allocated |
407 | * is a destination page. | 407 | * is a destination page. |
408 | */ | 408 | */ |
409 | do { | 409 | do { |
410 | unsigned long pfn, epfn, addr, eaddr; | 410 | unsigned long pfn, epfn, addr, eaddr; |
411 | 411 | ||
412 | pages = kimage_alloc_pages(GFP_KERNEL, order); | 412 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
413 | if (!pages) | 413 | if (!pages) |
414 | break; | 414 | break; |
415 | pfn = page_to_pfn(pages); | 415 | pfn = page_to_pfn(pages); |
416 | epfn = pfn + count; | 416 | epfn = pfn + count; |
417 | addr = pfn << PAGE_SHIFT; | 417 | addr = pfn << PAGE_SHIFT; |
418 | eaddr = epfn << PAGE_SHIFT; | 418 | eaddr = epfn << PAGE_SHIFT; |
419 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | 419 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || |
420 | kimage_is_destination_range(image, addr, eaddr)) { | 420 | kimage_is_destination_range(image, addr, eaddr)) { |
421 | list_add(&pages->lru, &extra_pages); | 421 | list_add(&pages->lru, &extra_pages); |
422 | pages = NULL; | 422 | pages = NULL; |
423 | } | 423 | } |
424 | } while (!pages); | 424 | } while (!pages); |
425 | 425 | ||
426 | if (pages) { | 426 | if (pages) { |
427 | /* Remember the allocated page... */ | 427 | /* Remember the allocated page... */ |
428 | list_add(&pages->lru, &image->control_pages); | 428 | list_add(&pages->lru, &image->control_pages); |
429 | 429 | ||
430 | /* Because the page is already in it's destination | 430 | /* Because the page is already in it's destination |
431 | * location we will never allocate another page at | 431 | * location we will never allocate another page at |
432 | * that address. Therefore kimage_alloc_pages | 432 | * that address. Therefore kimage_alloc_pages |
433 | * will not return it (again) and we don't need | 433 | * will not return it (again) and we don't need |
434 | * to give it an entry in image->segment[]. | 434 | * to give it an entry in image->segment[]. |
435 | */ | 435 | */ |
436 | } | 436 | } |
437 | /* Deal with the destination pages I have inadvertently allocated. | 437 | /* Deal with the destination pages I have inadvertently allocated. |
438 | * | 438 | * |
439 | * Ideally I would convert multi-page allocations into single | 439 | * Ideally I would convert multi-page allocations into single |
440 | * page allocations, and add everyting to image->dest_pages. | 440 | * page allocations, and add everyting to image->dest_pages. |
441 | * | 441 | * |
442 | * For now it is simpler to just free the pages. | 442 | * For now it is simpler to just free the pages. |
443 | */ | 443 | */ |
444 | kimage_free_page_list(&extra_pages); | 444 | kimage_free_page_list(&extra_pages); |
445 | 445 | ||
446 | return pages; | 446 | return pages; |
447 | } | 447 | } |
448 | 448 | ||
449 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | 449 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
450 | unsigned int order) | 450 | unsigned int order) |
451 | { | 451 | { |
452 | /* Control pages are special, they are the intermediaries | 452 | /* Control pages are special, they are the intermediaries |
453 | * that are needed while we copy the rest of the pages | 453 | * that are needed while we copy the rest of the pages |
454 | * to their final resting place. As such they must | 454 | * to their final resting place. As such they must |
455 | * not conflict with either the destination addresses | 455 | * not conflict with either the destination addresses |
456 | * or memory the kernel is already using. | 456 | * or memory the kernel is already using. |
457 | * | 457 | * |
458 | * Control pages are also the only pags we must allocate | 458 | * Control pages are also the only pags we must allocate |
459 | * when loading a crash kernel. All of the other pages | 459 | * when loading a crash kernel. All of the other pages |
460 | * are specified by the segments and we just memcpy | 460 | * are specified by the segments and we just memcpy |
461 | * into them directly. | 461 | * into them directly. |
462 | * | 462 | * |
463 | * The only case where we really need more than one of | 463 | * The only case where we really need more than one of |
464 | * these are for architectures where we cannot disable | 464 | * these are for architectures where we cannot disable |
465 | * the MMU and must instead generate an identity mapped | 465 | * the MMU and must instead generate an identity mapped |
466 | * page table for all of the memory. | 466 | * page table for all of the memory. |
467 | * | 467 | * |
468 | * Given the low demand this implements a very simple | 468 | * Given the low demand this implements a very simple |
469 | * allocator that finds the first hole of the appropriate | 469 | * allocator that finds the first hole of the appropriate |
470 | * size in the reserved memory region, and allocates all | 470 | * size in the reserved memory region, and allocates all |
471 | * of the memory up to and including the hole. | 471 | * of the memory up to and including the hole. |
472 | */ | 472 | */ |
473 | unsigned long hole_start, hole_end, size; | 473 | unsigned long hole_start, hole_end, size; |
474 | struct page *pages; | 474 | struct page *pages; |
475 | 475 | ||
476 | pages = NULL; | 476 | pages = NULL; |
477 | size = (1 << order) << PAGE_SHIFT; | 477 | size = (1 << order) << PAGE_SHIFT; |
478 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | 478 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); |
479 | hole_end = hole_start + size - 1; | 479 | hole_end = hole_start + size - 1; |
480 | while (hole_end <= crashk_res.end) { | 480 | while (hole_end <= crashk_res.end) { |
481 | unsigned long i; | 481 | unsigned long i; |
482 | 482 | ||
483 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | 483 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) |
484 | break; | 484 | break; |
485 | if (hole_end > crashk_res.end) | 485 | if (hole_end > crashk_res.end) |
486 | break; | 486 | break; |
487 | /* See if I overlap any of the segments */ | 487 | /* See if I overlap any of the segments */ |
488 | for (i = 0; i < image->nr_segments; i++) { | 488 | for (i = 0; i < image->nr_segments; i++) { |
489 | unsigned long mstart, mend; | 489 | unsigned long mstart, mend; |
490 | 490 | ||
491 | mstart = image->segment[i].mem; | 491 | mstart = image->segment[i].mem; |
492 | mend = mstart + image->segment[i].memsz - 1; | 492 | mend = mstart + image->segment[i].memsz - 1; |
493 | if ((hole_end >= mstart) && (hole_start <= mend)) { | 493 | if ((hole_end >= mstart) && (hole_start <= mend)) { |
494 | /* Advance the hole to the end of the segment */ | 494 | /* Advance the hole to the end of the segment */ |
495 | hole_start = (mend + (size - 1)) & ~(size - 1); | 495 | hole_start = (mend + (size - 1)) & ~(size - 1); |
496 | hole_end = hole_start + size - 1; | 496 | hole_end = hole_start + size - 1; |
497 | break; | 497 | break; |
498 | } | 498 | } |
499 | } | 499 | } |
500 | /* If I don't overlap any segments I have found my hole! */ | 500 | /* If I don't overlap any segments I have found my hole! */ |
501 | if (i == image->nr_segments) { | 501 | if (i == image->nr_segments) { |
502 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | 502 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); |
503 | break; | 503 | break; |
504 | } | 504 | } |
505 | } | 505 | } |
506 | if (pages) | 506 | if (pages) |
507 | image->control_page = hole_end; | 507 | image->control_page = hole_end; |
508 | 508 | ||
509 | return pages; | 509 | return pages; |
510 | } | 510 | } |
511 | 511 | ||
512 | 512 | ||
513 | struct page *kimage_alloc_control_pages(struct kimage *image, | 513 | struct page *kimage_alloc_control_pages(struct kimage *image, |
514 | unsigned int order) | 514 | unsigned int order) |
515 | { | 515 | { |
516 | struct page *pages = NULL; | 516 | struct page *pages = NULL; |
517 | 517 | ||
518 | switch (image->type) { | 518 | switch (image->type) { |
519 | case KEXEC_TYPE_DEFAULT: | 519 | case KEXEC_TYPE_DEFAULT: |
520 | pages = kimage_alloc_normal_control_pages(image, order); | 520 | pages = kimage_alloc_normal_control_pages(image, order); |
521 | break; | 521 | break; |
522 | case KEXEC_TYPE_CRASH: | 522 | case KEXEC_TYPE_CRASH: |
523 | pages = kimage_alloc_crash_control_pages(image, order); | 523 | pages = kimage_alloc_crash_control_pages(image, order); |
524 | break; | 524 | break; |
525 | } | 525 | } |
526 | 526 | ||
527 | return pages; | 527 | return pages; |
528 | } | 528 | } |
529 | 529 | ||
530 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | 530 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) |
531 | { | 531 | { |
532 | if (*image->entry != 0) | 532 | if (*image->entry != 0) |
533 | image->entry++; | 533 | image->entry++; |
534 | 534 | ||
535 | if (image->entry == image->last_entry) { | 535 | if (image->entry == image->last_entry) { |
536 | kimage_entry_t *ind_page; | 536 | kimage_entry_t *ind_page; |
537 | struct page *page; | 537 | struct page *page; |
538 | 538 | ||
539 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | 539 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
540 | if (!page) | 540 | if (!page) |
541 | return -ENOMEM; | 541 | return -ENOMEM; |
542 | 542 | ||
543 | ind_page = page_address(page); | 543 | ind_page = page_address(page); |
544 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | 544 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; |
545 | image->entry = ind_page; | 545 | image->entry = ind_page; |
546 | image->last_entry = ind_page + | 546 | image->last_entry = ind_page + |
547 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | 547 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); |
548 | } | 548 | } |
549 | *image->entry = entry; | 549 | *image->entry = entry; |
550 | image->entry++; | 550 | image->entry++; |
551 | *image->entry = 0; | 551 | *image->entry = 0; |
552 | 552 | ||
553 | return 0; | 553 | return 0; |
554 | } | 554 | } |
555 | 555 | ||
556 | static int kimage_set_destination(struct kimage *image, | 556 | static int kimage_set_destination(struct kimage *image, |
557 | unsigned long destination) | 557 | unsigned long destination) |
558 | { | 558 | { |
559 | int result; | 559 | int result; |
560 | 560 | ||
561 | destination &= PAGE_MASK; | 561 | destination &= PAGE_MASK; |
562 | result = kimage_add_entry(image, destination | IND_DESTINATION); | 562 | result = kimage_add_entry(image, destination | IND_DESTINATION); |
563 | if (result == 0) | 563 | if (result == 0) |
564 | image->destination = destination; | 564 | image->destination = destination; |
565 | 565 | ||
566 | return result; | 566 | return result; |
567 | } | 567 | } |
568 | 568 | ||
569 | 569 | ||
570 | static int kimage_add_page(struct kimage *image, unsigned long page) | 570 | static int kimage_add_page(struct kimage *image, unsigned long page) |
571 | { | 571 | { |
572 | int result; | 572 | int result; |
573 | 573 | ||
574 | page &= PAGE_MASK; | 574 | page &= PAGE_MASK; |
575 | result = kimage_add_entry(image, page | IND_SOURCE); | 575 | result = kimage_add_entry(image, page | IND_SOURCE); |
576 | if (result == 0) | 576 | if (result == 0) |
577 | image->destination += PAGE_SIZE; | 577 | image->destination += PAGE_SIZE; |
578 | 578 | ||
579 | return result; | 579 | return result; |
580 | } | 580 | } |
581 | 581 | ||
582 | 582 | ||
583 | static void kimage_free_extra_pages(struct kimage *image) | 583 | static void kimage_free_extra_pages(struct kimage *image) |
584 | { | 584 | { |
585 | /* Walk through and free any extra destination pages I may have */ | 585 | /* Walk through and free any extra destination pages I may have */ |
586 | kimage_free_page_list(&image->dest_pages); | 586 | kimage_free_page_list(&image->dest_pages); |
587 | 587 | ||
588 | /* Walk through and free any unuseable pages I have cached */ | 588 | /* Walk through and free any unuseable pages I have cached */ |
589 | kimage_free_page_list(&image->unuseable_pages); | 589 | kimage_free_page_list(&image->unuseable_pages); |
590 | 590 | ||
591 | } | 591 | } |
592 | static int kimage_terminate(struct kimage *image) | 592 | static void kimage_terminate(struct kimage *image) |
593 | { | 593 | { |
594 | if (*image->entry != 0) | 594 | if (*image->entry != 0) |
595 | image->entry++; | 595 | image->entry++; |
596 | 596 | ||
597 | *image->entry = IND_DONE; | 597 | *image->entry = IND_DONE; |
598 | |||
599 | return 0; | ||
600 | } | 598 | } |
601 | 599 | ||
602 | #define for_each_kimage_entry(image, ptr, entry) \ | 600 | #define for_each_kimage_entry(image, ptr, entry) \ |
603 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | 601 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ |
604 | ptr = (entry & IND_INDIRECTION)? \ | 602 | ptr = (entry & IND_INDIRECTION)? \ |
605 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | 603 | phys_to_virt((entry & PAGE_MASK)): ptr +1) |
606 | 604 | ||
607 | static void kimage_free_entry(kimage_entry_t entry) | 605 | static void kimage_free_entry(kimage_entry_t entry) |
608 | { | 606 | { |
609 | struct page *page; | 607 | struct page *page; |
610 | 608 | ||
611 | page = pfn_to_page(entry >> PAGE_SHIFT); | 609 | page = pfn_to_page(entry >> PAGE_SHIFT); |
612 | kimage_free_pages(page); | 610 | kimage_free_pages(page); |
613 | } | 611 | } |
614 | 612 | ||
615 | static void kimage_free(struct kimage *image) | 613 | static void kimage_free(struct kimage *image) |
616 | { | 614 | { |
617 | kimage_entry_t *ptr, entry; | 615 | kimage_entry_t *ptr, entry; |
618 | kimage_entry_t ind = 0; | 616 | kimage_entry_t ind = 0; |
619 | 617 | ||
620 | if (!image) | 618 | if (!image) |
621 | return; | 619 | return; |
622 | 620 | ||
623 | kimage_free_extra_pages(image); | 621 | kimage_free_extra_pages(image); |
624 | for_each_kimage_entry(image, ptr, entry) { | 622 | for_each_kimage_entry(image, ptr, entry) { |
625 | if (entry & IND_INDIRECTION) { | 623 | if (entry & IND_INDIRECTION) { |
626 | /* Free the previous indirection page */ | 624 | /* Free the previous indirection page */ |
627 | if (ind & IND_INDIRECTION) | 625 | if (ind & IND_INDIRECTION) |
628 | kimage_free_entry(ind); | 626 | kimage_free_entry(ind); |
629 | /* Save this indirection page until we are | 627 | /* Save this indirection page until we are |
630 | * done with it. | 628 | * done with it. |
631 | */ | 629 | */ |
632 | ind = entry; | 630 | ind = entry; |
633 | } | 631 | } |
634 | else if (entry & IND_SOURCE) | 632 | else if (entry & IND_SOURCE) |
635 | kimage_free_entry(entry); | 633 | kimage_free_entry(entry); |
636 | } | 634 | } |
637 | /* Free the final indirection page */ | 635 | /* Free the final indirection page */ |
638 | if (ind & IND_INDIRECTION) | 636 | if (ind & IND_INDIRECTION) |
639 | kimage_free_entry(ind); | 637 | kimage_free_entry(ind); |
640 | 638 | ||
641 | /* Handle any machine specific cleanup */ | 639 | /* Handle any machine specific cleanup */ |
642 | machine_kexec_cleanup(image); | 640 | machine_kexec_cleanup(image); |
643 | 641 | ||
644 | /* Free the kexec control pages... */ | 642 | /* Free the kexec control pages... */ |
645 | kimage_free_page_list(&image->control_pages); | 643 | kimage_free_page_list(&image->control_pages); |
646 | kfree(image); | 644 | kfree(image); |
647 | } | 645 | } |
648 | 646 | ||
649 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | 647 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
650 | unsigned long page) | 648 | unsigned long page) |
651 | { | 649 | { |
652 | kimage_entry_t *ptr, entry; | 650 | kimage_entry_t *ptr, entry; |
653 | unsigned long destination = 0; | 651 | unsigned long destination = 0; |
654 | 652 | ||
655 | for_each_kimage_entry(image, ptr, entry) { | 653 | for_each_kimage_entry(image, ptr, entry) { |
656 | if (entry & IND_DESTINATION) | 654 | if (entry & IND_DESTINATION) |
657 | destination = entry & PAGE_MASK; | 655 | destination = entry & PAGE_MASK; |
658 | else if (entry & IND_SOURCE) { | 656 | else if (entry & IND_SOURCE) { |
659 | if (page == destination) | 657 | if (page == destination) |
660 | return ptr; | 658 | return ptr; |
661 | destination += PAGE_SIZE; | 659 | destination += PAGE_SIZE; |
662 | } | 660 | } |
663 | } | 661 | } |
664 | 662 | ||
665 | return NULL; | 663 | return NULL; |
666 | } | 664 | } |
667 | 665 | ||
668 | static struct page *kimage_alloc_page(struct kimage *image, | 666 | static struct page *kimage_alloc_page(struct kimage *image, |
669 | gfp_t gfp_mask, | 667 | gfp_t gfp_mask, |
670 | unsigned long destination) | 668 | unsigned long destination) |
671 | { | 669 | { |
672 | /* | 670 | /* |
673 | * Here we implement safeguards to ensure that a source page | 671 | * Here we implement safeguards to ensure that a source page |
674 | * is not copied to its destination page before the data on | 672 | * is not copied to its destination page before the data on |
675 | * the destination page is no longer useful. | 673 | * the destination page is no longer useful. |
676 | * | 674 | * |
677 | * To do this we maintain the invariant that a source page is | 675 | * To do this we maintain the invariant that a source page is |
678 | * either its own destination page, or it is not a | 676 | * either its own destination page, or it is not a |
679 | * destination page at all. | 677 | * destination page at all. |
680 | * | 678 | * |
681 | * That is slightly stronger than required, but the proof | 679 | * That is slightly stronger than required, but the proof |
682 | * that no problems will not occur is trivial, and the | 680 | * that no problems will not occur is trivial, and the |
683 | * implementation is simply to verify. | 681 | * implementation is simply to verify. |
684 | * | 682 | * |
685 | * When allocating all pages normally this algorithm will run | 683 | * When allocating all pages normally this algorithm will run |
686 | * in O(N) time, but in the worst case it will run in O(N^2) | 684 | * in O(N) time, but in the worst case it will run in O(N^2) |
687 | * time. If the runtime is a problem the data structures can | 685 | * time. If the runtime is a problem the data structures can |
688 | * be fixed. | 686 | * be fixed. |
689 | */ | 687 | */ |
690 | struct page *page; | 688 | struct page *page; |
691 | unsigned long addr; | 689 | unsigned long addr; |
692 | 690 | ||
693 | /* | 691 | /* |
694 | * Walk through the list of destination pages, and see if I | 692 | * Walk through the list of destination pages, and see if I |
695 | * have a match. | 693 | * have a match. |
696 | */ | 694 | */ |
697 | list_for_each_entry(page, &image->dest_pages, lru) { | 695 | list_for_each_entry(page, &image->dest_pages, lru) { |
698 | addr = page_to_pfn(page) << PAGE_SHIFT; | 696 | addr = page_to_pfn(page) << PAGE_SHIFT; |
699 | if (addr == destination) { | 697 | if (addr == destination) { |
700 | list_del(&page->lru); | 698 | list_del(&page->lru); |
701 | return page; | 699 | return page; |
702 | } | 700 | } |
703 | } | 701 | } |
704 | page = NULL; | 702 | page = NULL; |
705 | while (1) { | 703 | while (1) { |
706 | kimage_entry_t *old; | 704 | kimage_entry_t *old; |
707 | 705 | ||
708 | /* Allocate a page, if we run out of memory give up */ | 706 | /* Allocate a page, if we run out of memory give up */ |
709 | page = kimage_alloc_pages(gfp_mask, 0); | 707 | page = kimage_alloc_pages(gfp_mask, 0); |
710 | if (!page) | 708 | if (!page) |
711 | return NULL; | 709 | return NULL; |
712 | /* If the page cannot be used file it away */ | 710 | /* If the page cannot be used file it away */ |
713 | if (page_to_pfn(page) > | 711 | if (page_to_pfn(page) > |
714 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | 712 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { |
715 | list_add(&page->lru, &image->unuseable_pages); | 713 | list_add(&page->lru, &image->unuseable_pages); |
716 | continue; | 714 | continue; |
717 | } | 715 | } |
718 | addr = page_to_pfn(page) << PAGE_SHIFT; | 716 | addr = page_to_pfn(page) << PAGE_SHIFT; |
719 | 717 | ||
720 | /* If it is the destination page we want use it */ | 718 | /* If it is the destination page we want use it */ |
721 | if (addr == destination) | 719 | if (addr == destination) |
722 | break; | 720 | break; |
723 | 721 | ||
724 | /* If the page is not a destination page use it */ | 722 | /* If the page is not a destination page use it */ |
725 | if (!kimage_is_destination_range(image, addr, | 723 | if (!kimage_is_destination_range(image, addr, |
726 | addr + PAGE_SIZE)) | 724 | addr + PAGE_SIZE)) |
727 | break; | 725 | break; |
728 | 726 | ||
729 | /* | 727 | /* |
730 | * I know that the page is someones destination page. | 728 | * I know that the page is someones destination page. |
731 | * See if there is already a source page for this | 729 | * See if there is already a source page for this |
732 | * destination page. And if so swap the source pages. | 730 | * destination page. And if so swap the source pages. |
733 | */ | 731 | */ |
734 | old = kimage_dst_used(image, addr); | 732 | old = kimage_dst_used(image, addr); |
735 | if (old) { | 733 | if (old) { |
736 | /* If so move it */ | 734 | /* If so move it */ |
737 | unsigned long old_addr; | 735 | unsigned long old_addr; |
738 | struct page *old_page; | 736 | struct page *old_page; |
739 | 737 | ||
740 | old_addr = *old & PAGE_MASK; | 738 | old_addr = *old & PAGE_MASK; |
741 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | 739 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); |
742 | copy_highpage(page, old_page); | 740 | copy_highpage(page, old_page); |
743 | *old = addr | (*old & ~PAGE_MASK); | 741 | *old = addr | (*old & ~PAGE_MASK); |
744 | 742 | ||
745 | /* The old page I have found cannot be a | 743 | /* The old page I have found cannot be a |
746 | * destination page, so return it. | 744 | * destination page, so return it. |
747 | */ | 745 | */ |
748 | addr = old_addr; | 746 | addr = old_addr; |
749 | page = old_page; | 747 | page = old_page; |
750 | break; | 748 | break; |
751 | } | 749 | } |
752 | else { | 750 | else { |
753 | /* Place the page on the destination list I | 751 | /* Place the page on the destination list I |
754 | * will use it later. | 752 | * will use it later. |
755 | */ | 753 | */ |
756 | list_add(&page->lru, &image->dest_pages); | 754 | list_add(&page->lru, &image->dest_pages); |
757 | } | 755 | } |
758 | } | 756 | } |
759 | 757 | ||
760 | return page; | 758 | return page; |
761 | } | 759 | } |
762 | 760 | ||
763 | static int kimage_load_normal_segment(struct kimage *image, | 761 | static int kimage_load_normal_segment(struct kimage *image, |
764 | struct kexec_segment *segment) | 762 | struct kexec_segment *segment) |
765 | { | 763 | { |
766 | unsigned long maddr; | 764 | unsigned long maddr; |
767 | unsigned long ubytes, mbytes; | 765 | unsigned long ubytes, mbytes; |
768 | int result; | 766 | int result; |
769 | unsigned char __user *buf; | 767 | unsigned char __user *buf; |
770 | 768 | ||
771 | result = 0; | 769 | result = 0; |
772 | buf = segment->buf; | 770 | buf = segment->buf; |
773 | ubytes = segment->bufsz; | 771 | ubytes = segment->bufsz; |
774 | mbytes = segment->memsz; | 772 | mbytes = segment->memsz; |
775 | maddr = segment->mem; | 773 | maddr = segment->mem; |
776 | 774 | ||
777 | result = kimage_set_destination(image, maddr); | 775 | result = kimage_set_destination(image, maddr); |
778 | if (result < 0) | 776 | if (result < 0) |
779 | goto out; | 777 | goto out; |
780 | 778 | ||
781 | while (mbytes) { | 779 | while (mbytes) { |
782 | struct page *page; | 780 | struct page *page; |
783 | char *ptr; | 781 | char *ptr; |
784 | size_t uchunk, mchunk; | 782 | size_t uchunk, mchunk; |
785 | 783 | ||
786 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | 784 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
787 | if (!page) { | 785 | if (!page) { |
788 | result = -ENOMEM; | 786 | result = -ENOMEM; |
789 | goto out; | 787 | goto out; |
790 | } | 788 | } |
791 | result = kimage_add_page(image, page_to_pfn(page) | 789 | result = kimage_add_page(image, page_to_pfn(page) |
792 | << PAGE_SHIFT); | 790 | << PAGE_SHIFT); |
793 | if (result < 0) | 791 | if (result < 0) |
794 | goto out; | 792 | goto out; |
795 | 793 | ||
796 | ptr = kmap(page); | 794 | ptr = kmap(page); |
797 | /* Start with a clear page */ | 795 | /* Start with a clear page */ |
798 | memset(ptr, 0, PAGE_SIZE); | 796 | memset(ptr, 0, PAGE_SIZE); |
799 | ptr += maddr & ~PAGE_MASK; | 797 | ptr += maddr & ~PAGE_MASK; |
800 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | 798 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); |
801 | if (mchunk > mbytes) | 799 | if (mchunk > mbytes) |
802 | mchunk = mbytes; | 800 | mchunk = mbytes; |
803 | 801 | ||
804 | uchunk = mchunk; | 802 | uchunk = mchunk; |
805 | if (uchunk > ubytes) | 803 | if (uchunk > ubytes) |
806 | uchunk = ubytes; | 804 | uchunk = ubytes; |
807 | 805 | ||
808 | result = copy_from_user(ptr, buf, uchunk); | 806 | result = copy_from_user(ptr, buf, uchunk); |
809 | kunmap(page); | 807 | kunmap(page); |
810 | if (result) { | 808 | if (result) { |
811 | result = (result < 0) ? result : -EIO; | 809 | result = (result < 0) ? result : -EIO; |
812 | goto out; | 810 | goto out; |
813 | } | 811 | } |
814 | ubytes -= uchunk; | 812 | ubytes -= uchunk; |
815 | maddr += mchunk; | 813 | maddr += mchunk; |
816 | buf += mchunk; | 814 | buf += mchunk; |
817 | mbytes -= mchunk; | 815 | mbytes -= mchunk; |
818 | } | 816 | } |
819 | out: | 817 | out: |
820 | return result; | 818 | return result; |
821 | } | 819 | } |
822 | 820 | ||
823 | static int kimage_load_crash_segment(struct kimage *image, | 821 | static int kimage_load_crash_segment(struct kimage *image, |
824 | struct kexec_segment *segment) | 822 | struct kexec_segment *segment) |
825 | { | 823 | { |
826 | /* For crash dumps kernels we simply copy the data from | 824 | /* For crash dumps kernels we simply copy the data from |
827 | * user space to it's destination. | 825 | * user space to it's destination. |
828 | * We do things a page at a time for the sake of kmap. | 826 | * We do things a page at a time for the sake of kmap. |
829 | */ | 827 | */ |
830 | unsigned long maddr; | 828 | unsigned long maddr; |
831 | unsigned long ubytes, mbytes; | 829 | unsigned long ubytes, mbytes; |
832 | int result; | 830 | int result; |
833 | unsigned char __user *buf; | 831 | unsigned char __user *buf; |
834 | 832 | ||
835 | result = 0; | 833 | result = 0; |
836 | buf = segment->buf; | 834 | buf = segment->buf; |
837 | ubytes = segment->bufsz; | 835 | ubytes = segment->bufsz; |
838 | mbytes = segment->memsz; | 836 | mbytes = segment->memsz; |
839 | maddr = segment->mem; | 837 | maddr = segment->mem; |
840 | while (mbytes) { | 838 | while (mbytes) { |
841 | struct page *page; | 839 | struct page *page; |
842 | char *ptr; | 840 | char *ptr; |
843 | size_t uchunk, mchunk; | 841 | size_t uchunk, mchunk; |
844 | 842 | ||
845 | page = pfn_to_page(maddr >> PAGE_SHIFT); | 843 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
846 | if (!page) { | 844 | if (!page) { |
847 | result = -ENOMEM; | 845 | result = -ENOMEM; |
848 | goto out; | 846 | goto out; |
849 | } | 847 | } |
850 | ptr = kmap(page); | 848 | ptr = kmap(page); |
851 | ptr += maddr & ~PAGE_MASK; | 849 | ptr += maddr & ~PAGE_MASK; |
852 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | 850 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); |
853 | if (mchunk > mbytes) | 851 | if (mchunk > mbytes) |
854 | mchunk = mbytes; | 852 | mchunk = mbytes; |
855 | 853 | ||
856 | uchunk = mchunk; | 854 | uchunk = mchunk; |
857 | if (uchunk > ubytes) { | 855 | if (uchunk > ubytes) { |
858 | uchunk = ubytes; | 856 | uchunk = ubytes; |
859 | /* Zero the trailing part of the page */ | 857 | /* Zero the trailing part of the page */ |
860 | memset(ptr + uchunk, 0, mchunk - uchunk); | 858 | memset(ptr + uchunk, 0, mchunk - uchunk); |
861 | } | 859 | } |
862 | result = copy_from_user(ptr, buf, uchunk); | 860 | result = copy_from_user(ptr, buf, uchunk); |
863 | kexec_flush_icache_page(page); | 861 | kexec_flush_icache_page(page); |
864 | kunmap(page); | 862 | kunmap(page); |
865 | if (result) { | 863 | if (result) { |
866 | result = (result < 0) ? result : -EIO; | 864 | result = (result < 0) ? result : -EIO; |
867 | goto out; | 865 | goto out; |
868 | } | 866 | } |
869 | ubytes -= uchunk; | 867 | ubytes -= uchunk; |
870 | maddr += mchunk; | 868 | maddr += mchunk; |
871 | buf += mchunk; | 869 | buf += mchunk; |
872 | mbytes -= mchunk; | 870 | mbytes -= mchunk; |
873 | } | 871 | } |
874 | out: | 872 | out: |
875 | return result; | 873 | return result; |
876 | } | 874 | } |
877 | 875 | ||
878 | static int kimage_load_segment(struct kimage *image, | 876 | static int kimage_load_segment(struct kimage *image, |
879 | struct kexec_segment *segment) | 877 | struct kexec_segment *segment) |
880 | { | 878 | { |
881 | int result = -ENOMEM; | 879 | int result = -ENOMEM; |
882 | 880 | ||
883 | switch (image->type) { | 881 | switch (image->type) { |
884 | case KEXEC_TYPE_DEFAULT: | 882 | case KEXEC_TYPE_DEFAULT: |
885 | result = kimage_load_normal_segment(image, segment); | 883 | result = kimage_load_normal_segment(image, segment); |
886 | break; | 884 | break; |
887 | case KEXEC_TYPE_CRASH: | 885 | case KEXEC_TYPE_CRASH: |
888 | result = kimage_load_crash_segment(image, segment); | 886 | result = kimage_load_crash_segment(image, segment); |
889 | break; | 887 | break; |
890 | } | 888 | } |
891 | 889 | ||
892 | return result; | 890 | return result; |
893 | } | 891 | } |
894 | 892 | ||
895 | /* | 893 | /* |
896 | * Exec Kernel system call: for obvious reasons only root may call it. | 894 | * Exec Kernel system call: for obvious reasons only root may call it. |
897 | * | 895 | * |
898 | * This call breaks up into three pieces. | 896 | * This call breaks up into three pieces. |
899 | * - A generic part which loads the new kernel from the current | 897 | * - A generic part which loads the new kernel from the current |
900 | * address space, and very carefully places the data in the | 898 | * address space, and very carefully places the data in the |
901 | * allocated pages. | 899 | * allocated pages. |
902 | * | 900 | * |
903 | * - A generic part that interacts with the kernel and tells all of | 901 | * - A generic part that interacts with the kernel and tells all of |
904 | * the devices to shut down. Preventing on-going dmas, and placing | 902 | * the devices to shut down. Preventing on-going dmas, and placing |
905 | * the devices in a consistent state so a later kernel can | 903 | * the devices in a consistent state so a later kernel can |
906 | * reinitialize them. | 904 | * reinitialize them. |
907 | * | 905 | * |
908 | * - A machine specific part that includes the syscall number | 906 | * - A machine specific part that includes the syscall number |
909 | * and the copies the image to it's final destination. And | 907 | * and the copies the image to it's final destination. And |
910 | * jumps into the image at entry. | 908 | * jumps into the image at entry. |
911 | * | 909 | * |
912 | * kexec does not sync, or unmount filesystems so if you need | 910 | * kexec does not sync, or unmount filesystems so if you need |
913 | * that to happen you need to do that yourself. | 911 | * that to happen you need to do that yourself. |
914 | */ | 912 | */ |
915 | struct kimage *kexec_image; | 913 | struct kimage *kexec_image; |
916 | struct kimage *kexec_crash_image; | 914 | struct kimage *kexec_crash_image; |
917 | /* | 915 | /* |
918 | * A home grown binary mutex. | 916 | * A home grown binary mutex. |
919 | * Nothing can wait so this mutex is safe to use | 917 | * Nothing can wait so this mutex is safe to use |
920 | * in interrupt context :) | 918 | * in interrupt context :) |
921 | */ | 919 | */ |
922 | static int kexec_lock; | 920 | static int kexec_lock; |
923 | 921 | ||
924 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, | 922 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, |
925 | struct kexec_segment __user *segments, | 923 | struct kexec_segment __user *segments, |
926 | unsigned long flags) | 924 | unsigned long flags) |
927 | { | 925 | { |
928 | struct kimage **dest_image, *image; | 926 | struct kimage **dest_image, *image; |
929 | int locked; | 927 | int locked; |
930 | int result; | 928 | int result; |
931 | 929 | ||
932 | /* We only trust the superuser with rebooting the system. */ | 930 | /* We only trust the superuser with rebooting the system. */ |
933 | if (!capable(CAP_SYS_BOOT)) | 931 | if (!capable(CAP_SYS_BOOT)) |
934 | return -EPERM; | 932 | return -EPERM; |
935 | 933 | ||
936 | /* | 934 | /* |
937 | * Verify we have a legal set of flags | 935 | * Verify we have a legal set of flags |
938 | * This leaves us room for future extensions. | 936 | * This leaves us room for future extensions. |
939 | */ | 937 | */ |
940 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | 938 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) |
941 | return -EINVAL; | 939 | return -EINVAL; |
942 | 940 | ||
943 | /* Verify we are on the appropriate architecture */ | 941 | /* Verify we are on the appropriate architecture */ |
944 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | 942 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && |
945 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | 943 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) |
946 | return -EINVAL; | 944 | return -EINVAL; |
947 | 945 | ||
948 | /* Put an artificial cap on the number | 946 | /* Put an artificial cap on the number |
949 | * of segments passed to kexec_load. | 947 | * of segments passed to kexec_load. |
950 | */ | 948 | */ |
951 | if (nr_segments > KEXEC_SEGMENT_MAX) | 949 | if (nr_segments > KEXEC_SEGMENT_MAX) |
952 | return -EINVAL; | 950 | return -EINVAL; |
953 | 951 | ||
954 | image = NULL; | 952 | image = NULL; |
955 | result = 0; | 953 | result = 0; |
956 | 954 | ||
957 | /* Because we write directly to the reserved memory | 955 | /* Because we write directly to the reserved memory |
958 | * region when loading crash kernels we need a mutex here to | 956 | * region when loading crash kernels we need a mutex here to |
959 | * prevent multiple crash kernels from attempting to load | 957 | * prevent multiple crash kernels from attempting to load |
960 | * simultaneously, and to prevent a crash kernel from loading | 958 | * simultaneously, and to prevent a crash kernel from loading |
961 | * over the top of a in use crash kernel. | 959 | * over the top of a in use crash kernel. |
962 | * | 960 | * |
963 | * KISS: always take the mutex. | 961 | * KISS: always take the mutex. |
964 | */ | 962 | */ |
965 | locked = xchg(&kexec_lock, 1); | 963 | locked = xchg(&kexec_lock, 1); |
966 | if (locked) | 964 | if (locked) |
967 | return -EBUSY; | 965 | return -EBUSY; |
968 | 966 | ||
969 | dest_image = &kexec_image; | 967 | dest_image = &kexec_image; |
970 | if (flags & KEXEC_ON_CRASH) | 968 | if (flags & KEXEC_ON_CRASH) |
971 | dest_image = &kexec_crash_image; | 969 | dest_image = &kexec_crash_image; |
972 | if (nr_segments > 0) { | 970 | if (nr_segments > 0) { |
973 | unsigned long i; | 971 | unsigned long i; |
974 | 972 | ||
975 | /* Loading another kernel to reboot into */ | 973 | /* Loading another kernel to reboot into */ |
976 | if ((flags & KEXEC_ON_CRASH) == 0) | 974 | if ((flags & KEXEC_ON_CRASH) == 0) |
977 | result = kimage_normal_alloc(&image, entry, | 975 | result = kimage_normal_alloc(&image, entry, |
978 | nr_segments, segments); | 976 | nr_segments, segments); |
979 | /* Loading another kernel to switch to if this one crashes */ | 977 | /* Loading another kernel to switch to if this one crashes */ |
980 | else if (flags & KEXEC_ON_CRASH) { | 978 | else if (flags & KEXEC_ON_CRASH) { |
981 | /* Free any current crash dump kernel before | 979 | /* Free any current crash dump kernel before |
982 | * we corrupt it. | 980 | * we corrupt it. |
983 | */ | 981 | */ |
984 | kimage_free(xchg(&kexec_crash_image, NULL)); | 982 | kimage_free(xchg(&kexec_crash_image, NULL)); |
985 | result = kimage_crash_alloc(&image, entry, | 983 | result = kimage_crash_alloc(&image, entry, |
986 | nr_segments, segments); | 984 | nr_segments, segments); |
987 | } | 985 | } |
988 | if (result) | 986 | if (result) |
989 | goto out; | 987 | goto out; |
990 | 988 | ||
991 | result = machine_kexec_prepare(image); | 989 | result = machine_kexec_prepare(image); |
992 | if (result) | 990 | if (result) |
993 | goto out; | 991 | goto out; |
994 | 992 | ||
995 | for (i = 0; i < nr_segments; i++) { | 993 | for (i = 0; i < nr_segments; i++) { |
996 | result = kimage_load_segment(image, &image->segment[i]); | 994 | result = kimage_load_segment(image, &image->segment[i]); |
997 | if (result) | 995 | if (result) |
998 | goto out; | 996 | goto out; |
999 | } | 997 | } |
1000 | result = kimage_terminate(image); | 998 | kimage_terminate(image); |
1001 | if (result) | ||
1002 | goto out; | ||
1003 | } | 999 | } |
1004 | /* Install the new kernel, and Uninstall the old */ | 1000 | /* Install the new kernel, and Uninstall the old */ |
1005 | image = xchg(dest_image, image); | 1001 | image = xchg(dest_image, image); |
1006 | 1002 | ||
1007 | out: | 1003 | out: |
1008 | locked = xchg(&kexec_lock, 0); /* Release the mutex */ | 1004 | locked = xchg(&kexec_lock, 0); /* Release the mutex */ |
1009 | BUG_ON(!locked); | 1005 | BUG_ON(!locked); |
1010 | kimage_free(image); | 1006 | kimage_free(image); |
1011 | 1007 | ||
1012 | return result; | 1008 | return result; |
1013 | } | 1009 | } |
1014 | 1010 | ||
1015 | #ifdef CONFIG_COMPAT | 1011 | #ifdef CONFIG_COMPAT |
1016 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | 1012 | asmlinkage long compat_sys_kexec_load(unsigned long entry, |
1017 | unsigned long nr_segments, | 1013 | unsigned long nr_segments, |
1018 | struct compat_kexec_segment __user *segments, | 1014 | struct compat_kexec_segment __user *segments, |
1019 | unsigned long flags) | 1015 | unsigned long flags) |
1020 | { | 1016 | { |
1021 | struct compat_kexec_segment in; | 1017 | struct compat_kexec_segment in; |
1022 | struct kexec_segment out, __user *ksegments; | 1018 | struct kexec_segment out, __user *ksegments; |
1023 | unsigned long i, result; | 1019 | unsigned long i, result; |
1024 | 1020 | ||
1025 | /* Don't allow clients that don't understand the native | 1021 | /* Don't allow clients that don't understand the native |
1026 | * architecture to do anything. | 1022 | * architecture to do anything. |
1027 | */ | 1023 | */ |
1028 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) | 1024 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
1029 | return -EINVAL; | 1025 | return -EINVAL; |
1030 | 1026 | ||
1031 | if (nr_segments > KEXEC_SEGMENT_MAX) | 1027 | if (nr_segments > KEXEC_SEGMENT_MAX) |
1032 | return -EINVAL; | 1028 | return -EINVAL; |
1033 | 1029 | ||
1034 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | 1030 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); |
1035 | for (i=0; i < nr_segments; i++) { | 1031 | for (i=0; i < nr_segments; i++) { |
1036 | result = copy_from_user(&in, &segments[i], sizeof(in)); | 1032 | result = copy_from_user(&in, &segments[i], sizeof(in)); |
1037 | if (result) | 1033 | if (result) |
1038 | return -EFAULT; | 1034 | return -EFAULT; |
1039 | 1035 | ||
1040 | out.buf = compat_ptr(in.buf); | 1036 | out.buf = compat_ptr(in.buf); |
1041 | out.bufsz = in.bufsz; | 1037 | out.bufsz = in.bufsz; |
1042 | out.mem = in.mem; | 1038 | out.mem = in.mem; |
1043 | out.memsz = in.memsz; | 1039 | out.memsz = in.memsz; |
1044 | 1040 | ||
1045 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | 1041 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); |
1046 | if (result) | 1042 | if (result) |
1047 | return -EFAULT; | 1043 | return -EFAULT; |
1048 | } | 1044 | } |
1049 | 1045 | ||
1050 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | 1046 | return sys_kexec_load(entry, nr_segments, ksegments, flags); |
1051 | } | 1047 | } |
1052 | #endif | 1048 | #endif |
1053 | 1049 | ||
1054 | void crash_kexec(struct pt_regs *regs) | 1050 | void crash_kexec(struct pt_regs *regs) |
1055 | { | 1051 | { |
1056 | int locked; | 1052 | int locked; |
1057 | 1053 | ||
1058 | 1054 | ||
1059 | /* Take the kexec_lock here to prevent sys_kexec_load | 1055 | /* Take the kexec_lock here to prevent sys_kexec_load |
1060 | * running on one cpu from replacing the crash kernel | 1056 | * running on one cpu from replacing the crash kernel |
1061 | * we are using after a panic on a different cpu. | 1057 | * we are using after a panic on a different cpu. |
1062 | * | 1058 | * |
1063 | * If the crash kernel was not located in a fixed area | 1059 | * If the crash kernel was not located in a fixed area |
1064 | * of memory the xchg(&kexec_crash_image) would be | 1060 | * of memory the xchg(&kexec_crash_image) would be |
1065 | * sufficient. But since I reuse the memory... | 1061 | * sufficient. But since I reuse the memory... |
1066 | */ | 1062 | */ |
1067 | locked = xchg(&kexec_lock, 1); | 1063 | locked = xchg(&kexec_lock, 1); |
1068 | if (!locked) { | 1064 | if (!locked) { |
1069 | if (kexec_crash_image) { | 1065 | if (kexec_crash_image) { |
1070 | struct pt_regs fixed_regs; | 1066 | struct pt_regs fixed_regs; |
1071 | crash_setup_regs(&fixed_regs, regs); | 1067 | crash_setup_regs(&fixed_regs, regs); |
1072 | crash_save_vmcoreinfo(); | 1068 | crash_save_vmcoreinfo(); |
1073 | machine_crash_shutdown(&fixed_regs); | 1069 | machine_crash_shutdown(&fixed_regs); |
1074 | machine_kexec(kexec_crash_image); | 1070 | machine_kexec(kexec_crash_image); |
1075 | } | 1071 | } |
1076 | locked = xchg(&kexec_lock, 0); | 1072 | locked = xchg(&kexec_lock, 0); |
1077 | BUG_ON(!locked); | 1073 | BUG_ON(!locked); |
1078 | } | 1074 | } |
1079 | } | 1075 | } |
1080 | 1076 | ||
1081 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, | 1077 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1082 | size_t data_len) | 1078 | size_t data_len) |
1083 | { | 1079 | { |
1084 | struct elf_note note; | 1080 | struct elf_note note; |
1085 | 1081 | ||
1086 | note.n_namesz = strlen(name) + 1; | 1082 | note.n_namesz = strlen(name) + 1; |
1087 | note.n_descsz = data_len; | 1083 | note.n_descsz = data_len; |
1088 | note.n_type = type; | 1084 | note.n_type = type; |
1089 | memcpy(buf, ¬e, sizeof(note)); | 1085 | memcpy(buf, ¬e, sizeof(note)); |
1090 | buf += (sizeof(note) + 3)/4; | 1086 | buf += (sizeof(note) + 3)/4; |
1091 | memcpy(buf, name, note.n_namesz); | 1087 | memcpy(buf, name, note.n_namesz); |
1092 | buf += (note.n_namesz + 3)/4; | 1088 | buf += (note.n_namesz + 3)/4; |
1093 | memcpy(buf, data, note.n_descsz); | 1089 | memcpy(buf, data, note.n_descsz); |
1094 | buf += (note.n_descsz + 3)/4; | 1090 | buf += (note.n_descsz + 3)/4; |
1095 | 1091 | ||
1096 | return buf; | 1092 | return buf; |
1097 | } | 1093 | } |
1098 | 1094 | ||
1099 | static void final_note(u32 *buf) | 1095 | static void final_note(u32 *buf) |
1100 | { | 1096 | { |
1101 | struct elf_note note; | 1097 | struct elf_note note; |
1102 | 1098 | ||
1103 | note.n_namesz = 0; | 1099 | note.n_namesz = 0; |
1104 | note.n_descsz = 0; | 1100 | note.n_descsz = 0; |
1105 | note.n_type = 0; | 1101 | note.n_type = 0; |
1106 | memcpy(buf, ¬e, sizeof(note)); | 1102 | memcpy(buf, ¬e, sizeof(note)); |
1107 | } | 1103 | } |
1108 | 1104 | ||
1109 | void crash_save_cpu(struct pt_regs *regs, int cpu) | 1105 | void crash_save_cpu(struct pt_regs *regs, int cpu) |
1110 | { | 1106 | { |
1111 | struct elf_prstatus prstatus; | 1107 | struct elf_prstatus prstatus; |
1112 | u32 *buf; | 1108 | u32 *buf; |
1113 | 1109 | ||
1114 | if ((cpu < 0) || (cpu >= NR_CPUS)) | 1110 | if ((cpu < 0) || (cpu >= NR_CPUS)) |
1115 | return; | 1111 | return; |
1116 | 1112 | ||
1117 | /* Using ELF notes here is opportunistic. | 1113 | /* Using ELF notes here is opportunistic. |
1118 | * I need a well defined structure format | 1114 | * I need a well defined structure format |
1119 | * for the data I pass, and I need tags | 1115 | * for the data I pass, and I need tags |
1120 | * on the data to indicate what information I have | 1116 | * on the data to indicate what information I have |
1121 | * squirrelled away. ELF notes happen to provide | 1117 | * squirrelled away. ELF notes happen to provide |
1122 | * all of that, so there is no need to invent something new. | 1118 | * all of that, so there is no need to invent something new. |
1123 | */ | 1119 | */ |
1124 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | 1120 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); |
1125 | if (!buf) | 1121 | if (!buf) |
1126 | return; | 1122 | return; |
1127 | memset(&prstatus, 0, sizeof(prstatus)); | 1123 | memset(&prstatus, 0, sizeof(prstatus)); |
1128 | prstatus.pr_pid = current->pid; | 1124 | prstatus.pr_pid = current->pid; |
1129 | elf_core_copy_regs(&prstatus.pr_reg, regs); | 1125 | elf_core_copy_regs(&prstatus.pr_reg, regs); |
1130 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | 1126 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1131 | &prstatus, sizeof(prstatus)); | 1127 | &prstatus, sizeof(prstatus)); |
1132 | final_note(buf); | 1128 | final_note(buf); |
1133 | } | 1129 | } |
1134 | 1130 | ||
1135 | static int __init crash_notes_memory_init(void) | 1131 | static int __init crash_notes_memory_init(void) |
1136 | { | 1132 | { |
1137 | /* Allocate memory for saving cpu registers. */ | 1133 | /* Allocate memory for saving cpu registers. */ |
1138 | crash_notes = alloc_percpu(note_buf_t); | 1134 | crash_notes = alloc_percpu(note_buf_t); |
1139 | if (!crash_notes) { | 1135 | if (!crash_notes) { |
1140 | printk("Kexec: Memory allocation for saving cpu register" | 1136 | printk("Kexec: Memory allocation for saving cpu register" |
1141 | " states failed\n"); | 1137 | " states failed\n"); |
1142 | return -ENOMEM; | 1138 | return -ENOMEM; |
1143 | } | 1139 | } |
1144 | return 0; | 1140 | return 0; |
1145 | } | 1141 | } |
1146 | module_init(crash_notes_memory_init) | 1142 | module_init(crash_notes_memory_init) |
1147 | 1143 | ||
1148 | 1144 | ||
1149 | /* | 1145 | /* |
1150 | * parsing the "crashkernel" commandline | 1146 | * parsing the "crashkernel" commandline |
1151 | * | 1147 | * |
1152 | * this code is intended to be called from architecture specific code | 1148 | * this code is intended to be called from architecture specific code |
1153 | */ | 1149 | */ |
1154 | 1150 | ||
1155 | 1151 | ||
1156 | /* | 1152 | /* |
1157 | * This function parses command lines in the format | 1153 | * This function parses command lines in the format |
1158 | * | 1154 | * |
1159 | * crashkernel=ramsize-range:size[,...][@offset] | 1155 | * crashkernel=ramsize-range:size[,...][@offset] |
1160 | * | 1156 | * |
1161 | * The function returns 0 on success and -EINVAL on failure. | 1157 | * The function returns 0 on success and -EINVAL on failure. |
1162 | */ | 1158 | */ |
1163 | static int __init parse_crashkernel_mem(char *cmdline, | 1159 | static int __init parse_crashkernel_mem(char *cmdline, |
1164 | unsigned long long system_ram, | 1160 | unsigned long long system_ram, |
1165 | unsigned long long *crash_size, | 1161 | unsigned long long *crash_size, |
1166 | unsigned long long *crash_base) | 1162 | unsigned long long *crash_base) |
1167 | { | 1163 | { |
1168 | char *cur = cmdline, *tmp; | 1164 | char *cur = cmdline, *tmp; |
1169 | 1165 | ||
1170 | /* for each entry of the comma-separated list */ | 1166 | /* for each entry of the comma-separated list */ |
1171 | do { | 1167 | do { |
1172 | unsigned long long start, end = ULLONG_MAX, size; | 1168 | unsigned long long start, end = ULLONG_MAX, size; |
1173 | 1169 | ||
1174 | /* get the start of the range */ | 1170 | /* get the start of the range */ |
1175 | start = memparse(cur, &tmp); | 1171 | start = memparse(cur, &tmp); |
1176 | if (cur == tmp) { | 1172 | if (cur == tmp) { |
1177 | pr_warning("crashkernel: Memory value expected\n"); | 1173 | pr_warning("crashkernel: Memory value expected\n"); |
1178 | return -EINVAL; | 1174 | return -EINVAL; |
1179 | } | 1175 | } |
1180 | cur = tmp; | 1176 | cur = tmp; |
1181 | if (*cur != '-') { | 1177 | if (*cur != '-') { |
1182 | pr_warning("crashkernel: '-' expected\n"); | 1178 | pr_warning("crashkernel: '-' expected\n"); |
1183 | return -EINVAL; | 1179 | return -EINVAL; |
1184 | } | 1180 | } |
1185 | cur++; | 1181 | cur++; |
1186 | 1182 | ||
1187 | /* if no ':' is here, than we read the end */ | 1183 | /* if no ':' is here, than we read the end */ |
1188 | if (*cur != ':') { | 1184 | if (*cur != ':') { |
1189 | end = memparse(cur, &tmp); | 1185 | end = memparse(cur, &tmp); |
1190 | if (cur == tmp) { | 1186 | if (cur == tmp) { |
1191 | pr_warning("crashkernel: Memory " | 1187 | pr_warning("crashkernel: Memory " |
1192 | "value expected\n"); | 1188 | "value expected\n"); |
1193 | return -EINVAL; | 1189 | return -EINVAL; |
1194 | } | 1190 | } |
1195 | cur = tmp; | 1191 | cur = tmp; |
1196 | if (end <= start) { | 1192 | if (end <= start) { |
1197 | pr_warning("crashkernel: end <= start\n"); | 1193 | pr_warning("crashkernel: end <= start\n"); |
1198 | return -EINVAL; | 1194 | return -EINVAL; |
1199 | } | 1195 | } |
1200 | } | 1196 | } |
1201 | 1197 | ||
1202 | if (*cur != ':') { | 1198 | if (*cur != ':') { |
1203 | pr_warning("crashkernel: ':' expected\n"); | 1199 | pr_warning("crashkernel: ':' expected\n"); |
1204 | return -EINVAL; | 1200 | return -EINVAL; |
1205 | } | 1201 | } |
1206 | cur++; | 1202 | cur++; |
1207 | 1203 | ||
1208 | size = memparse(cur, &tmp); | 1204 | size = memparse(cur, &tmp); |
1209 | if (cur == tmp) { | 1205 | if (cur == tmp) { |
1210 | pr_warning("Memory value expected\n"); | 1206 | pr_warning("Memory value expected\n"); |
1211 | return -EINVAL; | 1207 | return -EINVAL; |
1212 | } | 1208 | } |
1213 | cur = tmp; | 1209 | cur = tmp; |
1214 | if (size >= system_ram) { | 1210 | if (size >= system_ram) { |
1215 | pr_warning("crashkernel: invalid size\n"); | 1211 | pr_warning("crashkernel: invalid size\n"); |
1216 | return -EINVAL; | 1212 | return -EINVAL; |
1217 | } | 1213 | } |
1218 | 1214 | ||
1219 | /* match ? */ | 1215 | /* match ? */ |
1220 | if (system_ram >= start && system_ram < end) { | 1216 | if (system_ram >= start && system_ram < end) { |
1221 | *crash_size = size; | 1217 | *crash_size = size; |
1222 | break; | 1218 | break; |
1223 | } | 1219 | } |
1224 | } while (*cur++ == ','); | 1220 | } while (*cur++ == ','); |
1225 | 1221 | ||
1226 | if (*crash_size > 0) { | 1222 | if (*crash_size > 0) { |
1227 | while (*cur != ' ' && *cur != '@') | 1223 | while (*cur != ' ' && *cur != '@') |
1228 | cur++; | 1224 | cur++; |
1229 | if (*cur == '@') { | 1225 | if (*cur == '@') { |
1230 | cur++; | 1226 | cur++; |
1231 | *crash_base = memparse(cur, &tmp); | 1227 | *crash_base = memparse(cur, &tmp); |
1232 | if (cur == tmp) { | 1228 | if (cur == tmp) { |
1233 | pr_warning("Memory value expected " | 1229 | pr_warning("Memory value expected " |
1234 | "after '@'\n"); | 1230 | "after '@'\n"); |
1235 | return -EINVAL; | 1231 | return -EINVAL; |
1236 | } | 1232 | } |
1237 | } | 1233 | } |
1238 | } | 1234 | } |
1239 | 1235 | ||
1240 | return 0; | 1236 | return 0; |
1241 | } | 1237 | } |
1242 | 1238 | ||
1243 | /* | 1239 | /* |
1244 | * That function parses "simple" (old) crashkernel command lines like | 1240 | * That function parses "simple" (old) crashkernel command lines like |
1245 | * | 1241 | * |
1246 | * crashkernel=size[@offset] | 1242 | * crashkernel=size[@offset] |
1247 | * | 1243 | * |
1248 | * It returns 0 on success and -EINVAL on failure. | 1244 | * It returns 0 on success and -EINVAL on failure. |
1249 | */ | 1245 | */ |
1250 | static int __init parse_crashkernel_simple(char *cmdline, | 1246 | static int __init parse_crashkernel_simple(char *cmdline, |
1251 | unsigned long long *crash_size, | 1247 | unsigned long long *crash_size, |
1252 | unsigned long long *crash_base) | 1248 | unsigned long long *crash_base) |
1253 | { | 1249 | { |
1254 | char *cur = cmdline; | 1250 | char *cur = cmdline; |
1255 | 1251 | ||
1256 | *crash_size = memparse(cmdline, &cur); | 1252 | *crash_size = memparse(cmdline, &cur); |
1257 | if (cmdline == cur) { | 1253 | if (cmdline == cur) { |
1258 | pr_warning("crashkernel: memory value expected\n"); | 1254 | pr_warning("crashkernel: memory value expected\n"); |
1259 | return -EINVAL; | 1255 | return -EINVAL; |
1260 | } | 1256 | } |
1261 | 1257 | ||
1262 | if (*cur == '@') | 1258 | if (*cur == '@') |
1263 | *crash_base = memparse(cur+1, &cur); | 1259 | *crash_base = memparse(cur+1, &cur); |
1264 | 1260 | ||
1265 | return 0; | 1261 | return 0; |
1266 | } | 1262 | } |
1267 | 1263 | ||
1268 | /* | 1264 | /* |
1269 | * That function is the entry point for command line parsing and should be | 1265 | * That function is the entry point for command line parsing and should be |
1270 | * called from the arch-specific code. | 1266 | * called from the arch-specific code. |
1271 | */ | 1267 | */ |
1272 | int __init parse_crashkernel(char *cmdline, | 1268 | int __init parse_crashkernel(char *cmdline, |
1273 | unsigned long long system_ram, | 1269 | unsigned long long system_ram, |
1274 | unsigned long long *crash_size, | 1270 | unsigned long long *crash_size, |
1275 | unsigned long long *crash_base) | 1271 | unsigned long long *crash_base) |
1276 | { | 1272 | { |
1277 | char *p = cmdline, *ck_cmdline = NULL; | 1273 | char *p = cmdline, *ck_cmdline = NULL; |
1278 | char *first_colon, *first_space; | 1274 | char *first_colon, *first_space; |
1279 | 1275 | ||
1280 | BUG_ON(!crash_size || !crash_base); | 1276 | BUG_ON(!crash_size || !crash_base); |
1281 | *crash_size = 0; | 1277 | *crash_size = 0; |
1282 | *crash_base = 0; | 1278 | *crash_base = 0; |
1283 | 1279 | ||
1284 | /* find crashkernel and use the last one if there are more */ | 1280 | /* find crashkernel and use the last one if there are more */ |
1285 | p = strstr(p, "crashkernel="); | 1281 | p = strstr(p, "crashkernel="); |
1286 | while (p) { | 1282 | while (p) { |
1287 | ck_cmdline = p; | 1283 | ck_cmdline = p; |
1288 | p = strstr(p+1, "crashkernel="); | 1284 | p = strstr(p+1, "crashkernel="); |
1289 | } | 1285 | } |
1290 | 1286 | ||
1291 | if (!ck_cmdline) | 1287 | if (!ck_cmdline) |
1292 | return -EINVAL; | 1288 | return -EINVAL; |
1293 | 1289 | ||
1294 | ck_cmdline += 12; /* strlen("crashkernel=") */ | 1290 | ck_cmdline += 12; /* strlen("crashkernel=") */ |
1295 | 1291 | ||
1296 | /* | 1292 | /* |
1297 | * if the commandline contains a ':', then that's the extended | 1293 | * if the commandline contains a ':', then that's the extended |
1298 | * syntax -- if not, it must be the classic syntax | 1294 | * syntax -- if not, it must be the classic syntax |
1299 | */ | 1295 | */ |
1300 | first_colon = strchr(ck_cmdline, ':'); | 1296 | first_colon = strchr(ck_cmdline, ':'); |
1301 | first_space = strchr(ck_cmdline, ' '); | 1297 | first_space = strchr(ck_cmdline, ' '); |
1302 | if (first_colon && (!first_space || first_colon < first_space)) | 1298 | if (first_colon && (!first_space || first_colon < first_space)) |
1303 | return parse_crashkernel_mem(ck_cmdline, system_ram, | 1299 | return parse_crashkernel_mem(ck_cmdline, system_ram, |
1304 | crash_size, crash_base); | 1300 | crash_size, crash_base); |
1305 | else | 1301 | else |
1306 | return parse_crashkernel_simple(ck_cmdline, crash_size, | 1302 | return parse_crashkernel_simple(ck_cmdline, crash_size, |
1307 | crash_base); | 1303 | crash_base); |
1308 | 1304 | ||
1309 | return 0; | 1305 | return 0; |
1310 | } | 1306 | } |
1311 | 1307 | ||
1312 | 1308 | ||
1313 | 1309 | ||
1314 | void crash_save_vmcoreinfo(void) | 1310 | void crash_save_vmcoreinfo(void) |
1315 | { | 1311 | { |
1316 | u32 *buf; | 1312 | u32 *buf; |
1317 | 1313 | ||
1318 | if (!vmcoreinfo_size) | 1314 | if (!vmcoreinfo_size) |
1319 | return; | 1315 | return; |
1320 | 1316 | ||
1321 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); | 1317 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); |
1322 | 1318 | ||
1323 | buf = (u32 *)vmcoreinfo_note; | 1319 | buf = (u32 *)vmcoreinfo_note; |
1324 | 1320 | ||
1325 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | 1321 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, |
1326 | vmcoreinfo_size); | 1322 | vmcoreinfo_size); |
1327 | 1323 | ||
1328 | final_note(buf); | 1324 | final_note(buf); |
1329 | } | 1325 | } |
1330 | 1326 | ||
1331 | void vmcoreinfo_append_str(const char *fmt, ...) | 1327 | void vmcoreinfo_append_str(const char *fmt, ...) |
1332 | { | 1328 | { |
1333 | va_list args; | 1329 | va_list args; |
1334 | char buf[0x50]; | 1330 | char buf[0x50]; |
1335 | int r; | 1331 | int r; |
1336 | 1332 | ||
1337 | va_start(args, fmt); | 1333 | va_start(args, fmt); |
1338 | r = vsnprintf(buf, sizeof(buf), fmt, args); | 1334 | r = vsnprintf(buf, sizeof(buf), fmt, args); |
1339 | va_end(args); | 1335 | va_end(args); |
1340 | 1336 | ||
1341 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | 1337 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) |
1342 | r = vmcoreinfo_max_size - vmcoreinfo_size; | 1338 | r = vmcoreinfo_max_size - vmcoreinfo_size; |
1343 | 1339 | ||
1344 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | 1340 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); |
1345 | 1341 | ||
1346 | vmcoreinfo_size += r; | 1342 | vmcoreinfo_size += r; |
1347 | } | 1343 | } |
1348 | 1344 | ||
1349 | /* | 1345 | /* |
1350 | * provide an empty default implementation here -- architecture | 1346 | * provide an empty default implementation here -- architecture |
1351 | * code may override this | 1347 | * code may override this |
1352 | */ | 1348 | */ |
1353 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | 1349 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) |
1354 | {} | 1350 | {} |
1355 | 1351 | ||
1356 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | 1352 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) |
1357 | { | 1353 | { |
1358 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | 1354 | return __pa((unsigned long)(char *)&vmcoreinfo_note); |
1359 | } | 1355 | } |
1360 | 1356 | ||
1361 | static int __init crash_save_vmcoreinfo_init(void) | 1357 | static int __init crash_save_vmcoreinfo_init(void) |
1362 | { | 1358 | { |
1363 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); | 1359 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1364 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | 1360 | VMCOREINFO_PAGESIZE(PAGE_SIZE); |
1365 | 1361 | ||
1366 | VMCOREINFO_SYMBOL(init_uts_ns); | 1362 | VMCOREINFO_SYMBOL(init_uts_ns); |
1367 | VMCOREINFO_SYMBOL(node_online_map); | 1363 | VMCOREINFO_SYMBOL(node_online_map); |
1368 | VMCOREINFO_SYMBOL(swapper_pg_dir); | 1364 | VMCOREINFO_SYMBOL(swapper_pg_dir); |
1369 | VMCOREINFO_SYMBOL(_stext); | 1365 | VMCOREINFO_SYMBOL(_stext); |
1370 | 1366 | ||
1371 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 1367 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1372 | VMCOREINFO_SYMBOL(mem_map); | 1368 | VMCOREINFO_SYMBOL(mem_map); |
1373 | VMCOREINFO_SYMBOL(contig_page_data); | 1369 | VMCOREINFO_SYMBOL(contig_page_data); |
1374 | #endif | 1370 | #endif |
1375 | #ifdef CONFIG_SPARSEMEM | 1371 | #ifdef CONFIG_SPARSEMEM |
1376 | VMCOREINFO_SYMBOL(mem_section); | 1372 | VMCOREINFO_SYMBOL(mem_section); |
1377 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | 1373 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); |
1378 | VMCOREINFO_STRUCT_SIZE(mem_section); | 1374 | VMCOREINFO_STRUCT_SIZE(mem_section); |
1379 | VMCOREINFO_OFFSET(mem_section, section_mem_map); | 1375 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
1380 | #endif | 1376 | #endif |
1381 | VMCOREINFO_STRUCT_SIZE(page); | 1377 | VMCOREINFO_STRUCT_SIZE(page); |
1382 | VMCOREINFO_STRUCT_SIZE(pglist_data); | 1378 | VMCOREINFO_STRUCT_SIZE(pglist_data); |
1383 | VMCOREINFO_STRUCT_SIZE(zone); | 1379 | VMCOREINFO_STRUCT_SIZE(zone); |
1384 | VMCOREINFO_STRUCT_SIZE(free_area); | 1380 | VMCOREINFO_STRUCT_SIZE(free_area); |
1385 | VMCOREINFO_STRUCT_SIZE(list_head); | 1381 | VMCOREINFO_STRUCT_SIZE(list_head); |
1386 | VMCOREINFO_SIZE(nodemask_t); | 1382 | VMCOREINFO_SIZE(nodemask_t); |
1387 | VMCOREINFO_OFFSET(page, flags); | 1383 | VMCOREINFO_OFFSET(page, flags); |
1388 | VMCOREINFO_OFFSET(page, _count); | 1384 | VMCOREINFO_OFFSET(page, _count); |
1389 | VMCOREINFO_OFFSET(page, mapping); | 1385 | VMCOREINFO_OFFSET(page, mapping); |
1390 | VMCOREINFO_OFFSET(page, lru); | 1386 | VMCOREINFO_OFFSET(page, lru); |
1391 | VMCOREINFO_OFFSET(pglist_data, node_zones); | 1387 | VMCOREINFO_OFFSET(pglist_data, node_zones); |
1392 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | 1388 | VMCOREINFO_OFFSET(pglist_data, nr_zones); |
1393 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | 1389 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1394 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); | 1390 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
1395 | #endif | 1391 | #endif |
1396 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); | 1392 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1397 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | 1393 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); |
1398 | VMCOREINFO_OFFSET(pglist_data, node_id); | 1394 | VMCOREINFO_OFFSET(pglist_data, node_id); |
1399 | VMCOREINFO_OFFSET(zone, free_area); | 1395 | VMCOREINFO_OFFSET(zone, free_area); |
1400 | VMCOREINFO_OFFSET(zone, vm_stat); | 1396 | VMCOREINFO_OFFSET(zone, vm_stat); |
1401 | VMCOREINFO_OFFSET(zone, spanned_pages); | 1397 | VMCOREINFO_OFFSET(zone, spanned_pages); |
1402 | VMCOREINFO_OFFSET(free_area, free_list); | 1398 | VMCOREINFO_OFFSET(free_area, free_list); |
1403 | VMCOREINFO_OFFSET(list_head, next); | 1399 | VMCOREINFO_OFFSET(list_head, next); |
1404 | VMCOREINFO_OFFSET(list_head, prev); | 1400 | VMCOREINFO_OFFSET(list_head, prev); |
1405 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | 1401 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
1406 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | 1402 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
1407 | VMCOREINFO_NUMBER(NR_FREE_PAGES); | 1403 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
1408 | VMCOREINFO_NUMBER(PG_lru); | 1404 | VMCOREINFO_NUMBER(PG_lru); |
1409 | VMCOREINFO_NUMBER(PG_private); | 1405 | VMCOREINFO_NUMBER(PG_private); |
1410 | VMCOREINFO_NUMBER(PG_swapcache); | 1406 | VMCOREINFO_NUMBER(PG_swapcache); |
1411 | 1407 | ||
1412 | arch_crash_save_vmcoreinfo(); | 1408 | arch_crash_save_vmcoreinfo(); |
1413 | 1409 | ||
1414 | return 0; | 1410 | return 0; |
1415 | } | 1411 | } |
1416 | 1412 | ||
1417 | module_init(crash_save_vmcoreinfo_init) | 1413 | module_init(crash_save_vmcoreinfo_init) |
1418 | 1414 |