Commit 93aea718c69d44ee492f233929686b15b5b3702d

Authored by Stephen Hemminger
Committed by Jeff Garzik
1 parent c3da144740

[PATCH] skge: dma configuration cleanup

Cleanup of the part of the code that sets up DMA configuration.
Should cause no real change in operation, just clearer.

Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: Jeff Garzik <jeff@garzik.org>

Showing 1 changed file with 10 additions and 14 deletions Inline Diff

1 /* 1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and 3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers. 4 * FreeBSD if_sk drivers.
5 * 5 *
6 * This driver intentionally does not support all the features 6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because 7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels. 8 * those should be done at higher levels.
9 * 9 *
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11 * 11 *
12 * This program is free software; you can redistribute it and/or modify 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by 13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or 14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version. 15 * (at your option) any later version.
16 * 16 *
17 * This program is distributed in the hope that it will be useful, 17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details. 20 * GNU General Public License for more details.
21 * 21 *
22 * You should have received a copy of the GNU General Public License 22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software 23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */ 25 */
26 26
27 #include <linux/config.h> 27 #include <linux/config.h>
28 #include <linux/in.h> 28 #include <linux/in.h>
29 #include <linux/kernel.h> 29 #include <linux/kernel.h>
30 #include <linux/module.h> 30 #include <linux/module.h>
31 #include <linux/moduleparam.h> 31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h> 32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h> 33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h> 34 #include <linux/ethtool.h>
35 #include <linux/pci.h> 35 #include <linux/pci.h>
36 #include <linux/if_vlan.h> 36 #include <linux/if_vlan.h>
37 #include <linux/ip.h> 37 #include <linux/ip.h>
38 #include <linux/delay.h> 38 #include <linux/delay.h>
39 #include <linux/crc32.h> 39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h> 40 #include <linux/dma-mapping.h>
41 #include <linux/mii.h> 41 #include <linux/mii.h>
42 #include <asm/irq.h> 42 #include <asm/irq.h>
43 43
44 #include "skge.h" 44 #include "skge.h"
45 45
46 #define DRV_NAME "skge" 46 #define DRV_NAME "skge"
47 #define DRV_VERSION "1.3" 47 #define DRV_VERSION "1.3"
48 #define PFX DRV_NAME " " 48 #define PFX DRV_NAME " "
49 49
50 #define DEFAULT_TX_RING_SIZE 128 50 #define DEFAULT_TX_RING_SIZE 128
51 #define DEFAULT_RX_RING_SIZE 512 51 #define DEFAULT_RX_RING_SIZE 512
52 #define MAX_TX_RING_SIZE 1024 52 #define MAX_TX_RING_SIZE 1024
53 #define MAX_RX_RING_SIZE 4096 53 #define MAX_RX_RING_SIZE 4096
54 #define RX_COPY_THRESHOLD 128 54 #define RX_COPY_THRESHOLD 128
55 #define RX_BUF_SIZE 1536 55 #define RX_BUF_SIZE 1536
56 #define PHY_RETRIES 1000 56 #define PHY_RETRIES 1000
57 #define ETH_JUMBO_MTU 9000 57 #define ETH_JUMBO_MTU 9000
58 #define TX_WATCHDOG (5 * HZ) 58 #define TX_WATCHDOG (5 * HZ)
59 #define NAPI_WEIGHT 64 59 #define NAPI_WEIGHT 64
60 #define BLINK_MS 250 60 #define BLINK_MS 250
61 61
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>"); 63 MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
64 MODULE_LICENSE("GPL"); 64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION); 65 MODULE_VERSION(DRV_VERSION);
66 66
67 static const u32 default_msg 67 static const u32 default_msg
68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK 68 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN; 69 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
70 70
71 static int debug = -1; /* defaults above */ 71 static int debug = -1; /* defaults above */
72 module_param(debug, int, 0); 72 module_param(debug, int, 0);
73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 73 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
74 74
75 static const struct pci_device_id skge_id_table[] = { 75 static const struct pci_device_id skge_id_table[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) }, 76 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) }, 77 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) }, 78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) }, 79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), }, 80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, 81 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
83 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) }, 83 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) }, 84 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
85 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, }, 85 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
86 { 0 } 86 { 0 }
87 }; 87 };
88 MODULE_DEVICE_TABLE(pci, skge_id_table); 88 MODULE_DEVICE_TABLE(pci, skge_id_table);
89 89
90 static int skge_up(struct net_device *dev); 90 static int skge_up(struct net_device *dev);
91 static int skge_down(struct net_device *dev); 91 static int skge_down(struct net_device *dev);
92 static void skge_phy_reset(struct skge_port *skge); 92 static void skge_phy_reset(struct skge_port *skge);
93 static void skge_tx_clean(struct skge_port *skge); 93 static void skge_tx_clean(struct skge_port *skge);
94 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 94 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
95 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 95 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static void genesis_get_stats(struct skge_port *skge, u64 *data); 96 static void genesis_get_stats(struct skge_port *skge, u64 *data);
97 static void yukon_get_stats(struct skge_port *skge, u64 *data); 97 static void yukon_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_init(struct skge_hw *hw, int port); 98 static void yukon_init(struct skge_hw *hw, int port);
99 static void genesis_mac_init(struct skge_hw *hw, int port); 99 static void genesis_mac_init(struct skge_hw *hw, int port);
100 static void genesis_link_up(struct skge_port *skge); 100 static void genesis_link_up(struct skge_port *skge);
101 101
102 /* Avoid conditionals by using array */ 102 /* Avoid conditionals by using array */
103 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 103 static const int txqaddr[] = { Q_XA1, Q_XA2 };
104 static const int rxqaddr[] = { Q_R1, Q_R2 }; 104 static const int rxqaddr[] = { Q_R1, Q_R2 };
105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 105 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 106 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
107 107
108 static int skge_get_regs_len(struct net_device *dev) 108 static int skge_get_regs_len(struct net_device *dev)
109 { 109 {
110 return 0x4000; 110 return 0x4000;
111 } 111 }
112 112
113 /* 113 /*
114 * Returns copy of whole control register region 114 * Returns copy of whole control register region
115 * Note: skip RAM address register because accessing it will 115 * Note: skip RAM address register because accessing it will
116 * cause bus hangs! 116 * cause bus hangs!
117 */ 117 */
118 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 118 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
119 void *p) 119 void *p)
120 { 120 {
121 const struct skge_port *skge = netdev_priv(dev); 121 const struct skge_port *skge = netdev_priv(dev);
122 const void __iomem *io = skge->hw->regs; 122 const void __iomem *io = skge->hw->regs;
123 123
124 regs->version = 1; 124 regs->version = 1;
125 memset(p, 0, regs->len); 125 memset(p, 0, regs->len);
126 memcpy_fromio(p, io, B3_RAM_ADDR); 126 memcpy_fromio(p, io, B3_RAM_ADDR);
127 127
128 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 128 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
129 regs->len - B3_RI_WTO_R1); 129 regs->len - B3_RI_WTO_R1);
130 } 130 }
131 131
132 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 132 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
133 static int wol_supported(const struct skge_hw *hw) 133 static int wol_supported(const struct skge_hw *hw)
134 { 134 {
135 return !((hw->chip_id == CHIP_ID_GENESIS || 135 return !((hw->chip_id == CHIP_ID_GENESIS ||
136 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0))); 136 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
137 } 137 }
138 138
139 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 139 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
140 { 140 {
141 struct skge_port *skge = netdev_priv(dev); 141 struct skge_port *skge = netdev_priv(dev);
142 142
143 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0; 143 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
144 wol->wolopts = skge->wol ? WAKE_MAGIC : 0; 144 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
145 } 145 }
146 146
147 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 147 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
148 { 148 {
149 struct skge_port *skge = netdev_priv(dev); 149 struct skge_port *skge = netdev_priv(dev);
150 struct skge_hw *hw = skge->hw; 150 struct skge_hw *hw = skge->hw;
151 151
152 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 152 if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
153 return -EOPNOTSUPP; 153 return -EOPNOTSUPP;
154 154
155 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw)) 155 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
156 return -EOPNOTSUPP; 156 return -EOPNOTSUPP;
157 157
158 skge->wol = wol->wolopts == WAKE_MAGIC; 158 skge->wol = wol->wolopts == WAKE_MAGIC;
159 159
160 if (skge->wol) { 160 if (skge->wol) {
161 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN); 161 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
162 162
163 skge_write16(hw, WOL_CTRL_STAT, 163 skge_write16(hw, WOL_CTRL_STAT,
164 WOL_CTL_ENA_PME_ON_MAGIC_PKT | 164 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
165 WOL_CTL_ENA_MAGIC_PKT_UNIT); 165 WOL_CTL_ENA_MAGIC_PKT_UNIT);
166 } else 166 } else
167 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT); 167 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
168 168
169 return 0; 169 return 0;
170 } 170 }
171 171
172 /* Determine supported/advertised modes based on hardware. 172 /* Determine supported/advertised modes based on hardware.
173 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 173 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
174 */ 174 */
175 static u32 skge_supported_modes(const struct skge_hw *hw) 175 static u32 skge_supported_modes(const struct skge_hw *hw)
176 { 176 {
177 u32 supported; 177 u32 supported;
178 178
179 if (hw->copper) { 179 if (hw->copper) {
180 supported = SUPPORTED_10baseT_Half 180 supported = SUPPORTED_10baseT_Half
181 | SUPPORTED_10baseT_Full 181 | SUPPORTED_10baseT_Full
182 | SUPPORTED_100baseT_Half 182 | SUPPORTED_100baseT_Half
183 | SUPPORTED_100baseT_Full 183 | SUPPORTED_100baseT_Full
184 | SUPPORTED_1000baseT_Half 184 | SUPPORTED_1000baseT_Half
185 | SUPPORTED_1000baseT_Full 185 | SUPPORTED_1000baseT_Full
186 | SUPPORTED_Autoneg| SUPPORTED_TP; 186 | SUPPORTED_Autoneg| SUPPORTED_TP;
187 187
188 if (hw->chip_id == CHIP_ID_GENESIS) 188 if (hw->chip_id == CHIP_ID_GENESIS)
189 supported &= ~(SUPPORTED_10baseT_Half 189 supported &= ~(SUPPORTED_10baseT_Half
190 | SUPPORTED_10baseT_Full 190 | SUPPORTED_10baseT_Full
191 | SUPPORTED_100baseT_Half 191 | SUPPORTED_100baseT_Half
192 | SUPPORTED_100baseT_Full); 192 | SUPPORTED_100baseT_Full);
193 193
194 else if (hw->chip_id == CHIP_ID_YUKON) 194 else if (hw->chip_id == CHIP_ID_YUKON)
195 supported &= ~SUPPORTED_1000baseT_Half; 195 supported &= ~SUPPORTED_1000baseT_Half;
196 } else 196 } else
197 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE 197 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
198 | SUPPORTED_Autoneg; 198 | SUPPORTED_Autoneg;
199 199
200 return supported; 200 return supported;
201 } 201 }
202 202
203 static int skge_get_settings(struct net_device *dev, 203 static int skge_get_settings(struct net_device *dev,
204 struct ethtool_cmd *ecmd) 204 struct ethtool_cmd *ecmd)
205 { 205 {
206 struct skge_port *skge = netdev_priv(dev); 206 struct skge_port *skge = netdev_priv(dev);
207 struct skge_hw *hw = skge->hw; 207 struct skge_hw *hw = skge->hw;
208 208
209 ecmd->transceiver = XCVR_INTERNAL; 209 ecmd->transceiver = XCVR_INTERNAL;
210 ecmd->supported = skge_supported_modes(hw); 210 ecmd->supported = skge_supported_modes(hw);
211 211
212 if (hw->copper) { 212 if (hw->copper) {
213 ecmd->port = PORT_TP; 213 ecmd->port = PORT_TP;
214 ecmd->phy_address = hw->phy_addr; 214 ecmd->phy_address = hw->phy_addr;
215 } else 215 } else
216 ecmd->port = PORT_FIBRE; 216 ecmd->port = PORT_FIBRE;
217 217
218 ecmd->advertising = skge->advertising; 218 ecmd->advertising = skge->advertising;
219 ecmd->autoneg = skge->autoneg; 219 ecmd->autoneg = skge->autoneg;
220 ecmd->speed = skge->speed; 220 ecmd->speed = skge->speed;
221 ecmd->duplex = skge->duplex; 221 ecmd->duplex = skge->duplex;
222 return 0; 222 return 0;
223 } 223 }
224 224
225 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 225 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
226 { 226 {
227 struct skge_port *skge = netdev_priv(dev); 227 struct skge_port *skge = netdev_priv(dev);
228 const struct skge_hw *hw = skge->hw; 228 const struct skge_hw *hw = skge->hw;
229 u32 supported = skge_supported_modes(hw); 229 u32 supported = skge_supported_modes(hw);
230 230
231 if (ecmd->autoneg == AUTONEG_ENABLE) { 231 if (ecmd->autoneg == AUTONEG_ENABLE) {
232 ecmd->advertising = supported; 232 ecmd->advertising = supported;
233 skge->duplex = -1; 233 skge->duplex = -1;
234 skge->speed = -1; 234 skge->speed = -1;
235 } else { 235 } else {
236 u32 setting; 236 u32 setting;
237 237
238 switch (ecmd->speed) { 238 switch (ecmd->speed) {
239 case SPEED_1000: 239 case SPEED_1000:
240 if (ecmd->duplex == DUPLEX_FULL) 240 if (ecmd->duplex == DUPLEX_FULL)
241 setting = SUPPORTED_1000baseT_Full; 241 setting = SUPPORTED_1000baseT_Full;
242 else if (ecmd->duplex == DUPLEX_HALF) 242 else if (ecmd->duplex == DUPLEX_HALF)
243 setting = SUPPORTED_1000baseT_Half; 243 setting = SUPPORTED_1000baseT_Half;
244 else 244 else
245 return -EINVAL; 245 return -EINVAL;
246 break; 246 break;
247 case SPEED_100: 247 case SPEED_100:
248 if (ecmd->duplex == DUPLEX_FULL) 248 if (ecmd->duplex == DUPLEX_FULL)
249 setting = SUPPORTED_100baseT_Full; 249 setting = SUPPORTED_100baseT_Full;
250 else if (ecmd->duplex == DUPLEX_HALF) 250 else if (ecmd->duplex == DUPLEX_HALF)
251 setting = SUPPORTED_100baseT_Half; 251 setting = SUPPORTED_100baseT_Half;
252 else 252 else
253 return -EINVAL; 253 return -EINVAL;
254 break; 254 break;
255 255
256 case SPEED_10: 256 case SPEED_10:
257 if (ecmd->duplex == DUPLEX_FULL) 257 if (ecmd->duplex == DUPLEX_FULL)
258 setting = SUPPORTED_10baseT_Full; 258 setting = SUPPORTED_10baseT_Full;
259 else if (ecmd->duplex == DUPLEX_HALF) 259 else if (ecmd->duplex == DUPLEX_HALF)
260 setting = SUPPORTED_10baseT_Half; 260 setting = SUPPORTED_10baseT_Half;
261 else 261 else
262 return -EINVAL; 262 return -EINVAL;
263 break; 263 break;
264 default: 264 default:
265 return -EINVAL; 265 return -EINVAL;
266 } 266 }
267 267
268 if ((setting & supported) == 0) 268 if ((setting & supported) == 0)
269 return -EINVAL; 269 return -EINVAL;
270 270
271 skge->speed = ecmd->speed; 271 skge->speed = ecmd->speed;
272 skge->duplex = ecmd->duplex; 272 skge->duplex = ecmd->duplex;
273 } 273 }
274 274
275 skge->autoneg = ecmd->autoneg; 275 skge->autoneg = ecmd->autoneg;
276 skge->advertising = ecmd->advertising; 276 skge->advertising = ecmd->advertising;
277 277
278 if (netif_running(dev)) 278 if (netif_running(dev))
279 skge_phy_reset(skge); 279 skge_phy_reset(skge);
280 280
281 return (0); 281 return (0);
282 } 282 }
283 283
284 static void skge_get_drvinfo(struct net_device *dev, 284 static void skge_get_drvinfo(struct net_device *dev,
285 struct ethtool_drvinfo *info) 285 struct ethtool_drvinfo *info)
286 { 286 {
287 struct skge_port *skge = netdev_priv(dev); 287 struct skge_port *skge = netdev_priv(dev);
288 288
289 strcpy(info->driver, DRV_NAME); 289 strcpy(info->driver, DRV_NAME);
290 strcpy(info->version, DRV_VERSION); 290 strcpy(info->version, DRV_VERSION);
291 strcpy(info->fw_version, "N/A"); 291 strcpy(info->fw_version, "N/A");
292 strcpy(info->bus_info, pci_name(skge->hw->pdev)); 292 strcpy(info->bus_info, pci_name(skge->hw->pdev));
293 } 293 }
294 294
295 static const struct skge_stat { 295 static const struct skge_stat {
296 char name[ETH_GSTRING_LEN]; 296 char name[ETH_GSTRING_LEN];
297 u16 xmac_offset; 297 u16 xmac_offset;
298 u16 gma_offset; 298 u16 gma_offset;
299 } skge_stats[] = { 299 } skge_stats[] = {
300 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 300 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
301 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 301 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
302 302
303 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 303 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
304 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 304 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
305 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 305 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
306 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 306 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
307 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 307 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
308 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 308 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
309 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 309 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
310 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 310 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
311 311
312 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 312 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
313 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 313 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
314 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 314 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
315 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 315 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
316 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 316 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
317 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 317 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
318 318
319 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 319 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
320 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 320 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
321 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 321 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
322 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 322 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
323 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 323 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
324 }; 324 };
325 325
326 static int skge_get_stats_count(struct net_device *dev) 326 static int skge_get_stats_count(struct net_device *dev)
327 { 327 {
328 return ARRAY_SIZE(skge_stats); 328 return ARRAY_SIZE(skge_stats);
329 } 329 }
330 330
331 static void skge_get_ethtool_stats(struct net_device *dev, 331 static void skge_get_ethtool_stats(struct net_device *dev,
332 struct ethtool_stats *stats, u64 *data) 332 struct ethtool_stats *stats, u64 *data)
333 { 333 {
334 struct skge_port *skge = netdev_priv(dev); 334 struct skge_port *skge = netdev_priv(dev);
335 335
336 if (skge->hw->chip_id == CHIP_ID_GENESIS) 336 if (skge->hw->chip_id == CHIP_ID_GENESIS)
337 genesis_get_stats(skge, data); 337 genesis_get_stats(skge, data);
338 else 338 else
339 yukon_get_stats(skge, data); 339 yukon_get_stats(skge, data);
340 } 340 }
341 341
342 /* Use hardware MIB variables for critical path statistics and 342 /* Use hardware MIB variables for critical path statistics and
343 * transmit feedback not reported at interrupt. 343 * transmit feedback not reported at interrupt.
344 * Other errors are accounted for in interrupt handler. 344 * Other errors are accounted for in interrupt handler.
345 */ 345 */
346 static struct net_device_stats *skge_get_stats(struct net_device *dev) 346 static struct net_device_stats *skge_get_stats(struct net_device *dev)
347 { 347 {
348 struct skge_port *skge = netdev_priv(dev); 348 struct skge_port *skge = netdev_priv(dev);
349 u64 data[ARRAY_SIZE(skge_stats)]; 349 u64 data[ARRAY_SIZE(skge_stats)];
350 350
351 if (skge->hw->chip_id == CHIP_ID_GENESIS) 351 if (skge->hw->chip_id == CHIP_ID_GENESIS)
352 genesis_get_stats(skge, data); 352 genesis_get_stats(skge, data);
353 else 353 else
354 yukon_get_stats(skge, data); 354 yukon_get_stats(skge, data);
355 355
356 skge->net_stats.tx_bytes = data[0]; 356 skge->net_stats.tx_bytes = data[0];
357 skge->net_stats.rx_bytes = data[1]; 357 skge->net_stats.rx_bytes = data[1];
358 skge->net_stats.tx_packets = data[2] + data[4] + data[6]; 358 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
359 skge->net_stats.rx_packets = data[3] + data[5] + data[7]; 359 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
360 skge->net_stats.multicast = data[5] + data[7]; 360 skge->net_stats.multicast = data[5] + data[7];
361 skge->net_stats.collisions = data[10]; 361 skge->net_stats.collisions = data[10];
362 skge->net_stats.tx_aborted_errors = data[12]; 362 skge->net_stats.tx_aborted_errors = data[12];
363 363
364 return &skge->net_stats; 364 return &skge->net_stats;
365 } 365 }
366 366
367 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 367 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
368 { 368 {
369 int i; 369 int i;
370 370
371 switch (stringset) { 371 switch (stringset) {
372 case ETH_SS_STATS: 372 case ETH_SS_STATS:
373 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 373 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
374 memcpy(data + i * ETH_GSTRING_LEN, 374 memcpy(data + i * ETH_GSTRING_LEN,
375 skge_stats[i].name, ETH_GSTRING_LEN); 375 skge_stats[i].name, ETH_GSTRING_LEN);
376 break; 376 break;
377 } 377 }
378 } 378 }
379 379
380 static void skge_get_ring_param(struct net_device *dev, 380 static void skge_get_ring_param(struct net_device *dev,
381 struct ethtool_ringparam *p) 381 struct ethtool_ringparam *p)
382 { 382 {
383 struct skge_port *skge = netdev_priv(dev); 383 struct skge_port *skge = netdev_priv(dev);
384 384
385 p->rx_max_pending = MAX_RX_RING_SIZE; 385 p->rx_max_pending = MAX_RX_RING_SIZE;
386 p->tx_max_pending = MAX_TX_RING_SIZE; 386 p->tx_max_pending = MAX_TX_RING_SIZE;
387 p->rx_mini_max_pending = 0; 387 p->rx_mini_max_pending = 0;
388 p->rx_jumbo_max_pending = 0; 388 p->rx_jumbo_max_pending = 0;
389 389
390 p->rx_pending = skge->rx_ring.count; 390 p->rx_pending = skge->rx_ring.count;
391 p->tx_pending = skge->tx_ring.count; 391 p->tx_pending = skge->tx_ring.count;
392 p->rx_mini_pending = 0; 392 p->rx_mini_pending = 0;
393 p->rx_jumbo_pending = 0; 393 p->rx_jumbo_pending = 0;
394 } 394 }
395 395
396 static int skge_set_ring_param(struct net_device *dev, 396 static int skge_set_ring_param(struct net_device *dev,
397 struct ethtool_ringparam *p) 397 struct ethtool_ringparam *p)
398 { 398 {
399 struct skge_port *skge = netdev_priv(dev); 399 struct skge_port *skge = netdev_priv(dev);
400 int err; 400 int err;
401 401
402 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 402 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
403 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE) 403 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
404 return -EINVAL; 404 return -EINVAL;
405 405
406 skge->rx_ring.count = p->rx_pending; 406 skge->rx_ring.count = p->rx_pending;
407 skge->tx_ring.count = p->tx_pending; 407 skge->tx_ring.count = p->tx_pending;
408 408
409 if (netif_running(dev)) { 409 if (netif_running(dev)) {
410 skge_down(dev); 410 skge_down(dev);
411 err = skge_up(dev); 411 err = skge_up(dev);
412 if (err) 412 if (err)
413 dev_close(dev); 413 dev_close(dev);
414 } 414 }
415 415
416 return 0; 416 return 0;
417 } 417 }
418 418
419 static u32 skge_get_msglevel(struct net_device *netdev) 419 static u32 skge_get_msglevel(struct net_device *netdev)
420 { 420 {
421 struct skge_port *skge = netdev_priv(netdev); 421 struct skge_port *skge = netdev_priv(netdev);
422 return skge->msg_enable; 422 return skge->msg_enable;
423 } 423 }
424 424
425 static void skge_set_msglevel(struct net_device *netdev, u32 value) 425 static void skge_set_msglevel(struct net_device *netdev, u32 value)
426 { 426 {
427 struct skge_port *skge = netdev_priv(netdev); 427 struct skge_port *skge = netdev_priv(netdev);
428 skge->msg_enable = value; 428 skge->msg_enable = value;
429 } 429 }
430 430
431 static int skge_nway_reset(struct net_device *dev) 431 static int skge_nway_reset(struct net_device *dev)
432 { 432 {
433 struct skge_port *skge = netdev_priv(dev); 433 struct skge_port *skge = netdev_priv(dev);
434 434
435 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 435 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
436 return -EINVAL; 436 return -EINVAL;
437 437
438 skge_phy_reset(skge); 438 skge_phy_reset(skge);
439 return 0; 439 return 0;
440 } 440 }
441 441
442 static int skge_set_sg(struct net_device *dev, u32 data) 442 static int skge_set_sg(struct net_device *dev, u32 data)
443 { 443 {
444 struct skge_port *skge = netdev_priv(dev); 444 struct skge_port *skge = netdev_priv(dev);
445 struct skge_hw *hw = skge->hw; 445 struct skge_hw *hw = skge->hw;
446 446
447 if (hw->chip_id == CHIP_ID_GENESIS && data) 447 if (hw->chip_id == CHIP_ID_GENESIS && data)
448 return -EOPNOTSUPP; 448 return -EOPNOTSUPP;
449 return ethtool_op_set_sg(dev, data); 449 return ethtool_op_set_sg(dev, data);
450 } 450 }
451 451
452 static int skge_set_tx_csum(struct net_device *dev, u32 data) 452 static int skge_set_tx_csum(struct net_device *dev, u32 data)
453 { 453 {
454 struct skge_port *skge = netdev_priv(dev); 454 struct skge_port *skge = netdev_priv(dev);
455 struct skge_hw *hw = skge->hw; 455 struct skge_hw *hw = skge->hw;
456 456
457 if (hw->chip_id == CHIP_ID_GENESIS && data) 457 if (hw->chip_id == CHIP_ID_GENESIS && data)
458 return -EOPNOTSUPP; 458 return -EOPNOTSUPP;
459 459
460 return ethtool_op_set_tx_csum(dev, data); 460 return ethtool_op_set_tx_csum(dev, data);
461 } 461 }
462 462
463 static u32 skge_get_rx_csum(struct net_device *dev) 463 static u32 skge_get_rx_csum(struct net_device *dev)
464 { 464 {
465 struct skge_port *skge = netdev_priv(dev); 465 struct skge_port *skge = netdev_priv(dev);
466 466
467 return skge->rx_csum; 467 return skge->rx_csum;
468 } 468 }
469 469
470 /* Only Yukon supports checksum offload. */ 470 /* Only Yukon supports checksum offload. */
471 static int skge_set_rx_csum(struct net_device *dev, u32 data) 471 static int skge_set_rx_csum(struct net_device *dev, u32 data)
472 { 472 {
473 struct skge_port *skge = netdev_priv(dev); 473 struct skge_port *skge = netdev_priv(dev);
474 474
475 if (skge->hw->chip_id == CHIP_ID_GENESIS && data) 475 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
476 return -EOPNOTSUPP; 476 return -EOPNOTSUPP;
477 477
478 skge->rx_csum = data; 478 skge->rx_csum = data;
479 return 0; 479 return 0;
480 } 480 }
481 481
482 static void skge_get_pauseparam(struct net_device *dev, 482 static void skge_get_pauseparam(struct net_device *dev,
483 struct ethtool_pauseparam *ecmd) 483 struct ethtool_pauseparam *ecmd)
484 { 484 {
485 struct skge_port *skge = netdev_priv(dev); 485 struct skge_port *skge = netdev_priv(dev);
486 486
487 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND) 487 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
488 || (skge->flow_control == FLOW_MODE_SYMMETRIC); 488 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND) 489 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
490 || (skge->flow_control == FLOW_MODE_SYMMETRIC); 490 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
491 491
492 ecmd->autoneg = skge->autoneg; 492 ecmd->autoneg = skge->autoneg;
493 } 493 }
494 494
495 static int skge_set_pauseparam(struct net_device *dev, 495 static int skge_set_pauseparam(struct net_device *dev,
496 struct ethtool_pauseparam *ecmd) 496 struct ethtool_pauseparam *ecmd)
497 { 497 {
498 struct skge_port *skge = netdev_priv(dev); 498 struct skge_port *skge = netdev_priv(dev);
499 499
500 skge->autoneg = ecmd->autoneg; 500 skge->autoneg = ecmd->autoneg;
501 if (ecmd->rx_pause && ecmd->tx_pause) 501 if (ecmd->rx_pause && ecmd->tx_pause)
502 skge->flow_control = FLOW_MODE_SYMMETRIC; 502 skge->flow_control = FLOW_MODE_SYMMETRIC;
503 else if (ecmd->rx_pause && !ecmd->tx_pause) 503 else if (ecmd->rx_pause && !ecmd->tx_pause)
504 skge->flow_control = FLOW_MODE_REM_SEND; 504 skge->flow_control = FLOW_MODE_REM_SEND;
505 else if (!ecmd->rx_pause && ecmd->tx_pause) 505 else if (!ecmd->rx_pause && ecmd->tx_pause)
506 skge->flow_control = FLOW_MODE_LOC_SEND; 506 skge->flow_control = FLOW_MODE_LOC_SEND;
507 else 507 else
508 skge->flow_control = FLOW_MODE_NONE; 508 skge->flow_control = FLOW_MODE_NONE;
509 509
510 if (netif_running(dev)) 510 if (netif_running(dev))
511 skge_phy_reset(skge); 511 skge_phy_reset(skge);
512 return 0; 512 return 0;
513 } 513 }
514 514
515 /* Chip internal frequency for clock calculations */ 515 /* Chip internal frequency for clock calculations */
516 static inline u32 hwkhz(const struct skge_hw *hw) 516 static inline u32 hwkhz(const struct skge_hw *hw)
517 { 517 {
518 if (hw->chip_id == CHIP_ID_GENESIS) 518 if (hw->chip_id == CHIP_ID_GENESIS)
519 return 53215; /* or: 53.125 MHz */ 519 return 53215; /* or: 53.125 MHz */
520 else 520 else
521 return 78215; /* or: 78.125 MHz */ 521 return 78215; /* or: 78.125 MHz */
522 } 522 }
523 523
524 /* Chip HZ to microseconds */ 524 /* Chip HZ to microseconds */
525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 525 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
526 { 526 {
527 return (ticks * 1000) / hwkhz(hw); 527 return (ticks * 1000) / hwkhz(hw);
528 } 528 }
529 529
530 /* Microseconds to chip HZ */ 530 /* Microseconds to chip HZ */
531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 531 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
532 { 532 {
533 return hwkhz(hw) * usec / 1000; 533 return hwkhz(hw) * usec / 1000;
534 } 534 }
535 535
536 static int skge_get_coalesce(struct net_device *dev, 536 static int skge_get_coalesce(struct net_device *dev,
537 struct ethtool_coalesce *ecmd) 537 struct ethtool_coalesce *ecmd)
538 { 538 {
539 struct skge_port *skge = netdev_priv(dev); 539 struct skge_port *skge = netdev_priv(dev);
540 struct skge_hw *hw = skge->hw; 540 struct skge_hw *hw = skge->hw;
541 int port = skge->port; 541 int port = skge->port;
542 542
543 ecmd->rx_coalesce_usecs = 0; 543 ecmd->rx_coalesce_usecs = 0;
544 ecmd->tx_coalesce_usecs = 0; 544 ecmd->tx_coalesce_usecs = 0;
545 545
546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 546 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 547 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
548 u32 msk = skge_read32(hw, B2_IRQM_MSK); 548 u32 msk = skge_read32(hw, B2_IRQM_MSK);
549 549
550 if (msk & rxirqmask[port]) 550 if (msk & rxirqmask[port])
551 ecmd->rx_coalesce_usecs = delay; 551 ecmd->rx_coalesce_usecs = delay;
552 if (msk & txirqmask[port]) 552 if (msk & txirqmask[port])
553 ecmd->tx_coalesce_usecs = delay; 553 ecmd->tx_coalesce_usecs = delay;
554 } 554 }
555 555
556 return 0; 556 return 0;
557 } 557 }
558 558
559 /* Note: interrupt timer is per board, but can turn on/off per port */ 559 /* Note: interrupt timer is per board, but can turn on/off per port */
560 static int skge_set_coalesce(struct net_device *dev, 560 static int skge_set_coalesce(struct net_device *dev,
561 struct ethtool_coalesce *ecmd) 561 struct ethtool_coalesce *ecmd)
562 { 562 {
563 struct skge_port *skge = netdev_priv(dev); 563 struct skge_port *skge = netdev_priv(dev);
564 struct skge_hw *hw = skge->hw; 564 struct skge_hw *hw = skge->hw;
565 int port = skge->port; 565 int port = skge->port;
566 u32 msk = skge_read32(hw, B2_IRQM_MSK); 566 u32 msk = skge_read32(hw, B2_IRQM_MSK);
567 u32 delay = 25; 567 u32 delay = 25;
568 568
569 if (ecmd->rx_coalesce_usecs == 0) 569 if (ecmd->rx_coalesce_usecs == 0)
570 msk &= ~rxirqmask[port]; 570 msk &= ~rxirqmask[port];
571 else if (ecmd->rx_coalesce_usecs < 25 || 571 else if (ecmd->rx_coalesce_usecs < 25 ||
572 ecmd->rx_coalesce_usecs > 33333) 572 ecmd->rx_coalesce_usecs > 33333)
573 return -EINVAL; 573 return -EINVAL;
574 else { 574 else {
575 msk |= rxirqmask[port]; 575 msk |= rxirqmask[port];
576 delay = ecmd->rx_coalesce_usecs; 576 delay = ecmd->rx_coalesce_usecs;
577 } 577 }
578 578
579 if (ecmd->tx_coalesce_usecs == 0) 579 if (ecmd->tx_coalesce_usecs == 0)
580 msk &= ~txirqmask[port]; 580 msk &= ~txirqmask[port];
581 else if (ecmd->tx_coalesce_usecs < 25 || 581 else if (ecmd->tx_coalesce_usecs < 25 ||
582 ecmd->tx_coalesce_usecs > 33333) 582 ecmd->tx_coalesce_usecs > 33333)
583 return -EINVAL; 583 return -EINVAL;
584 else { 584 else {
585 msk |= txirqmask[port]; 585 msk |= txirqmask[port];
586 delay = min(delay, ecmd->rx_coalesce_usecs); 586 delay = min(delay, ecmd->rx_coalesce_usecs);
587 } 587 }
588 588
589 skge_write32(hw, B2_IRQM_MSK, msk); 589 skge_write32(hw, B2_IRQM_MSK, msk);
590 if (msk == 0) 590 if (msk == 0)
591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 591 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
592 else { 592 else {
593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 593 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
594 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 594 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
595 } 595 }
596 return 0; 596 return 0;
597 } 597 }
598 598
599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 599 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
600 static void skge_led(struct skge_port *skge, enum led_mode mode) 600 static void skge_led(struct skge_port *skge, enum led_mode mode)
601 { 601 {
602 struct skge_hw *hw = skge->hw; 602 struct skge_hw *hw = skge->hw;
603 int port = skge->port; 603 int port = skge->port;
604 604
605 spin_lock_bh(&hw->phy_lock); 605 spin_lock_bh(&hw->phy_lock);
606 if (hw->chip_id == CHIP_ID_GENESIS) { 606 if (hw->chip_id == CHIP_ID_GENESIS) {
607 switch (mode) { 607 switch (mode) {
608 case LED_MODE_OFF: 608 case LED_MODE_OFF:
609 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 609 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
610 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 610 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
611 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 611 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
612 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 612 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
613 break; 613 break;
614 614
615 case LED_MODE_ON: 615 case LED_MODE_ON:
616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 616 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 617 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
618 618
619 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 619 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
620 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 620 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
621 621
622 break; 622 break;
623 623
624 case LED_MODE_TST: 624 case LED_MODE_TST:
625 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 625 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
626 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 626 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
627 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 627 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
628 628
629 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 629 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
630 break; 630 break;
631 } 631 }
632 } else { 632 } else {
633 switch (mode) { 633 switch (mode) {
634 case LED_MODE_OFF: 634 case LED_MODE_OFF:
635 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 635 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
636 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 636 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
637 PHY_M_LED_MO_DUP(MO_LED_OFF) | 637 PHY_M_LED_MO_DUP(MO_LED_OFF) |
638 PHY_M_LED_MO_10(MO_LED_OFF) | 638 PHY_M_LED_MO_10(MO_LED_OFF) |
639 PHY_M_LED_MO_100(MO_LED_OFF) | 639 PHY_M_LED_MO_100(MO_LED_OFF) |
640 PHY_M_LED_MO_1000(MO_LED_OFF) | 640 PHY_M_LED_MO_1000(MO_LED_OFF) |
641 PHY_M_LED_MO_RX(MO_LED_OFF)); 641 PHY_M_LED_MO_RX(MO_LED_OFF));
642 break; 642 break;
643 case LED_MODE_ON: 643 case LED_MODE_ON:
644 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 644 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
645 PHY_M_LED_PULS_DUR(PULS_170MS) | 645 PHY_M_LED_PULS_DUR(PULS_170MS) |
646 PHY_M_LED_BLINK_RT(BLINK_84MS) | 646 PHY_M_LED_BLINK_RT(BLINK_84MS) |
647 PHY_M_LEDC_TX_CTRL | 647 PHY_M_LEDC_TX_CTRL |
648 PHY_M_LEDC_DP_CTRL); 648 PHY_M_LEDC_DP_CTRL);
649 649
650 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 650 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
651 PHY_M_LED_MO_RX(MO_LED_OFF) | 651 PHY_M_LED_MO_RX(MO_LED_OFF) |
652 (skge->speed == SPEED_100 ? 652 (skge->speed == SPEED_100 ?
653 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 653 PHY_M_LED_MO_100(MO_LED_ON) : 0));
654 break; 654 break;
655 case LED_MODE_TST: 655 case LED_MODE_TST:
656 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 656 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
657 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 657 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
658 PHY_M_LED_MO_DUP(MO_LED_ON) | 658 PHY_M_LED_MO_DUP(MO_LED_ON) |
659 PHY_M_LED_MO_10(MO_LED_ON) | 659 PHY_M_LED_MO_10(MO_LED_ON) |
660 PHY_M_LED_MO_100(MO_LED_ON) | 660 PHY_M_LED_MO_100(MO_LED_ON) |
661 PHY_M_LED_MO_1000(MO_LED_ON) | 661 PHY_M_LED_MO_1000(MO_LED_ON) |
662 PHY_M_LED_MO_RX(MO_LED_ON)); 662 PHY_M_LED_MO_RX(MO_LED_ON));
663 } 663 }
664 } 664 }
665 spin_unlock_bh(&hw->phy_lock); 665 spin_unlock_bh(&hw->phy_lock);
666 } 666 }
667 667
668 /* blink LED's for finding board */ 668 /* blink LED's for finding board */
669 static int skge_phys_id(struct net_device *dev, u32 data) 669 static int skge_phys_id(struct net_device *dev, u32 data)
670 { 670 {
671 struct skge_port *skge = netdev_priv(dev); 671 struct skge_port *skge = netdev_priv(dev);
672 unsigned long ms; 672 unsigned long ms;
673 enum led_mode mode = LED_MODE_TST; 673 enum led_mode mode = LED_MODE_TST;
674 674
675 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 675 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
676 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000; 676 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
677 else 677 else
678 ms = data * 1000; 678 ms = data * 1000;
679 679
680 while (ms > 0) { 680 while (ms > 0) {
681 skge_led(skge, mode); 681 skge_led(skge, mode);
682 mode ^= LED_MODE_TST; 682 mode ^= LED_MODE_TST;
683 683
684 if (msleep_interruptible(BLINK_MS)) 684 if (msleep_interruptible(BLINK_MS))
685 break; 685 break;
686 ms -= BLINK_MS; 686 ms -= BLINK_MS;
687 } 687 }
688 688
689 /* back to regular LED state */ 689 /* back to regular LED state */
690 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 690 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
691 691
692 return 0; 692 return 0;
693 } 693 }
694 694
695 static struct ethtool_ops skge_ethtool_ops = { 695 static struct ethtool_ops skge_ethtool_ops = {
696 .get_settings = skge_get_settings, 696 .get_settings = skge_get_settings,
697 .set_settings = skge_set_settings, 697 .set_settings = skge_set_settings,
698 .get_drvinfo = skge_get_drvinfo, 698 .get_drvinfo = skge_get_drvinfo,
699 .get_regs_len = skge_get_regs_len, 699 .get_regs_len = skge_get_regs_len,
700 .get_regs = skge_get_regs, 700 .get_regs = skge_get_regs,
701 .get_wol = skge_get_wol, 701 .get_wol = skge_get_wol,
702 .set_wol = skge_set_wol, 702 .set_wol = skge_set_wol,
703 .get_msglevel = skge_get_msglevel, 703 .get_msglevel = skge_get_msglevel,
704 .set_msglevel = skge_set_msglevel, 704 .set_msglevel = skge_set_msglevel,
705 .nway_reset = skge_nway_reset, 705 .nway_reset = skge_nway_reset,
706 .get_link = ethtool_op_get_link, 706 .get_link = ethtool_op_get_link,
707 .get_ringparam = skge_get_ring_param, 707 .get_ringparam = skge_get_ring_param,
708 .set_ringparam = skge_set_ring_param, 708 .set_ringparam = skge_set_ring_param,
709 .get_pauseparam = skge_get_pauseparam, 709 .get_pauseparam = skge_get_pauseparam,
710 .set_pauseparam = skge_set_pauseparam, 710 .set_pauseparam = skge_set_pauseparam,
711 .get_coalesce = skge_get_coalesce, 711 .get_coalesce = skge_get_coalesce,
712 .set_coalesce = skge_set_coalesce, 712 .set_coalesce = skge_set_coalesce,
713 .get_sg = ethtool_op_get_sg, 713 .get_sg = ethtool_op_get_sg,
714 .set_sg = skge_set_sg, 714 .set_sg = skge_set_sg,
715 .get_tx_csum = ethtool_op_get_tx_csum, 715 .get_tx_csum = ethtool_op_get_tx_csum,
716 .set_tx_csum = skge_set_tx_csum, 716 .set_tx_csum = skge_set_tx_csum,
717 .get_rx_csum = skge_get_rx_csum, 717 .get_rx_csum = skge_get_rx_csum,
718 .set_rx_csum = skge_set_rx_csum, 718 .set_rx_csum = skge_set_rx_csum,
719 .get_strings = skge_get_strings, 719 .get_strings = skge_get_strings,
720 .phys_id = skge_phys_id, 720 .phys_id = skge_phys_id,
721 .get_stats_count = skge_get_stats_count, 721 .get_stats_count = skge_get_stats_count,
722 .get_ethtool_stats = skge_get_ethtool_stats, 722 .get_ethtool_stats = skge_get_ethtool_stats,
723 .get_perm_addr = ethtool_op_get_perm_addr, 723 .get_perm_addr = ethtool_op_get_perm_addr,
724 }; 724 };
725 725
726 /* 726 /*
727 * Allocate ring elements and chain them together 727 * Allocate ring elements and chain them together
728 * One-to-one association of board descriptors with ring elements 728 * One-to-one association of board descriptors with ring elements
729 */ 729 */
730 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 730 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
731 { 731 {
732 struct skge_tx_desc *d; 732 struct skge_tx_desc *d;
733 struct skge_element *e; 733 struct skge_element *e;
734 int i; 734 int i;
735 735
736 ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL); 736 ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
737 if (!ring->start) 737 if (!ring->start)
738 return -ENOMEM; 738 return -ENOMEM;
739 739
740 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 740 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
741 e->desc = d; 741 e->desc = d;
742 e->skb = NULL; 742 e->skb = NULL;
743 if (i == ring->count - 1) { 743 if (i == ring->count - 1) {
744 e->next = ring->start; 744 e->next = ring->start;
745 d->next_offset = base; 745 d->next_offset = base;
746 } else { 746 } else {
747 e->next = e + 1; 747 e->next = e + 1;
748 d->next_offset = base + (i+1) * sizeof(*d); 748 d->next_offset = base + (i+1) * sizeof(*d);
749 } 749 }
750 } 750 }
751 ring->to_use = ring->to_clean = ring->start; 751 ring->to_use = ring->to_clean = ring->start;
752 752
753 return 0; 753 return 0;
754 } 754 }
755 755
756 /* Allocate and setup a new buffer for receiving */ 756 /* Allocate and setup a new buffer for receiving */
757 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, 757 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
758 struct sk_buff *skb, unsigned int bufsize) 758 struct sk_buff *skb, unsigned int bufsize)
759 { 759 {
760 struct skge_rx_desc *rd = e->desc; 760 struct skge_rx_desc *rd = e->desc;
761 u64 map; 761 u64 map;
762 762
763 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 763 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
764 PCI_DMA_FROMDEVICE); 764 PCI_DMA_FROMDEVICE);
765 765
766 rd->dma_lo = map; 766 rd->dma_lo = map;
767 rd->dma_hi = map >> 32; 767 rd->dma_hi = map >> 32;
768 e->skb = skb; 768 e->skb = skb;
769 rd->csum1_start = ETH_HLEN; 769 rd->csum1_start = ETH_HLEN;
770 rd->csum2_start = ETH_HLEN; 770 rd->csum2_start = ETH_HLEN;
771 rd->csum1 = 0; 771 rd->csum1 = 0;
772 rd->csum2 = 0; 772 rd->csum2 = 0;
773 773
774 wmb(); 774 wmb();
775 775
776 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 776 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
777 pci_unmap_addr_set(e, mapaddr, map); 777 pci_unmap_addr_set(e, mapaddr, map);
778 pci_unmap_len_set(e, maplen, bufsize); 778 pci_unmap_len_set(e, maplen, bufsize);
779 } 779 }
780 780
781 /* Resume receiving using existing skb, 781 /* Resume receiving using existing skb,
782 * Note: DMA address is not changed by chip. 782 * Note: DMA address is not changed by chip.
783 * MTU not changed while receiver active. 783 * MTU not changed while receiver active.
784 */ 784 */
785 static void skge_rx_reuse(struct skge_element *e, unsigned int size) 785 static void skge_rx_reuse(struct skge_element *e, unsigned int size)
786 { 786 {
787 struct skge_rx_desc *rd = e->desc; 787 struct skge_rx_desc *rd = e->desc;
788 788
789 rd->csum2 = 0; 789 rd->csum2 = 0;
790 rd->csum2_start = ETH_HLEN; 790 rd->csum2_start = ETH_HLEN;
791 791
792 wmb(); 792 wmb();
793 793
794 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 794 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
795 } 795 }
796 796
797 797
798 /* Free all buffers in receive ring, assumes receiver stopped */ 798 /* Free all buffers in receive ring, assumes receiver stopped */
799 static void skge_rx_clean(struct skge_port *skge) 799 static void skge_rx_clean(struct skge_port *skge)
800 { 800 {
801 struct skge_hw *hw = skge->hw; 801 struct skge_hw *hw = skge->hw;
802 struct skge_ring *ring = &skge->rx_ring; 802 struct skge_ring *ring = &skge->rx_ring;
803 struct skge_element *e; 803 struct skge_element *e;
804 804
805 e = ring->start; 805 e = ring->start;
806 do { 806 do {
807 struct skge_rx_desc *rd = e->desc; 807 struct skge_rx_desc *rd = e->desc;
808 rd->control = 0; 808 rd->control = 0;
809 if (e->skb) { 809 if (e->skb) {
810 pci_unmap_single(hw->pdev, 810 pci_unmap_single(hw->pdev,
811 pci_unmap_addr(e, mapaddr), 811 pci_unmap_addr(e, mapaddr),
812 pci_unmap_len(e, maplen), 812 pci_unmap_len(e, maplen),
813 PCI_DMA_FROMDEVICE); 813 PCI_DMA_FROMDEVICE);
814 dev_kfree_skb(e->skb); 814 dev_kfree_skb(e->skb);
815 e->skb = NULL; 815 e->skb = NULL;
816 } 816 }
817 } while ((e = e->next) != ring->start); 817 } while ((e = e->next) != ring->start);
818 } 818 }
819 819
820 820
821 /* Allocate buffers for receive ring 821 /* Allocate buffers for receive ring
822 * For receive: to_clean is next received frame. 822 * For receive: to_clean is next received frame.
823 */ 823 */
824 static int skge_rx_fill(struct skge_port *skge) 824 static int skge_rx_fill(struct skge_port *skge)
825 { 825 {
826 struct skge_ring *ring = &skge->rx_ring; 826 struct skge_ring *ring = &skge->rx_ring;
827 struct skge_element *e; 827 struct skge_element *e;
828 828
829 e = ring->start; 829 e = ring->start;
830 do { 830 do {
831 struct sk_buff *skb; 831 struct sk_buff *skb;
832 832
833 skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); 833 skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
834 if (!skb) 834 if (!skb)
835 return -ENOMEM; 835 return -ENOMEM;
836 836
837 skb_reserve(skb, NET_IP_ALIGN); 837 skb_reserve(skb, NET_IP_ALIGN);
838 skge_rx_setup(skge, e, skb, skge->rx_buf_size); 838 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
839 } while ( (e = e->next) != ring->start); 839 } while ( (e = e->next) != ring->start);
840 840
841 ring->to_clean = ring->start; 841 ring->to_clean = ring->start;
842 return 0; 842 return 0;
843 } 843 }
844 844
845 static void skge_link_up(struct skge_port *skge) 845 static void skge_link_up(struct skge_port *skge)
846 { 846 {
847 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 847 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
848 LED_BLK_OFF|LED_SYNC_OFF|LED_ON); 848 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
849 849
850 netif_carrier_on(skge->netdev); 850 netif_carrier_on(skge->netdev);
851 if (skge->tx_avail > MAX_SKB_FRAGS + 1) 851 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
852 netif_wake_queue(skge->netdev); 852 netif_wake_queue(skge->netdev);
853 853
854 if (netif_msg_link(skge)) 854 if (netif_msg_link(skge))
855 printk(KERN_INFO PFX 855 printk(KERN_INFO PFX
856 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", 856 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
857 skge->netdev->name, skge->speed, 857 skge->netdev->name, skge->speed,
858 skge->duplex == DUPLEX_FULL ? "full" : "half", 858 skge->duplex == DUPLEX_FULL ? "full" : "half",
859 (skge->flow_control == FLOW_MODE_NONE) ? "none" : 859 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
860 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" : 860 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
861 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" : 861 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
862 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" : 862 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
863 "unknown"); 863 "unknown");
864 } 864 }
865 865
866 static void skge_link_down(struct skge_port *skge) 866 static void skge_link_down(struct skge_port *skge)
867 { 867 {
868 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 868 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
869 netif_carrier_off(skge->netdev); 869 netif_carrier_off(skge->netdev);
870 netif_stop_queue(skge->netdev); 870 netif_stop_queue(skge->netdev);
871 871
872 if (netif_msg_link(skge)) 872 if (netif_msg_link(skge))
873 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name); 873 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
874 } 874 }
875 875
876 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 876 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
877 { 877 {
878 int i; 878 int i;
879 879
880 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 880 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
881 *val = xm_read16(hw, port, XM_PHY_DATA); 881 *val = xm_read16(hw, port, XM_PHY_DATA);
882 882
883 for (i = 0; i < PHY_RETRIES; i++) { 883 for (i = 0; i < PHY_RETRIES; i++) {
884 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 884 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
885 goto ready; 885 goto ready;
886 udelay(1); 886 udelay(1);
887 } 887 }
888 888
889 return -ETIMEDOUT; 889 return -ETIMEDOUT;
890 ready: 890 ready:
891 *val = xm_read16(hw, port, XM_PHY_DATA); 891 *val = xm_read16(hw, port, XM_PHY_DATA);
892 892
893 return 0; 893 return 0;
894 } 894 }
895 895
896 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 896 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
897 { 897 {
898 u16 v = 0; 898 u16 v = 0;
899 if (__xm_phy_read(hw, port, reg, &v)) 899 if (__xm_phy_read(hw, port, reg, &v))
900 printk(KERN_WARNING PFX "%s: phy read timed out\n", 900 printk(KERN_WARNING PFX "%s: phy read timed out\n",
901 hw->dev[port]->name); 901 hw->dev[port]->name);
902 return v; 902 return v;
903 } 903 }
904 904
905 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 905 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
906 { 906 {
907 int i; 907 int i;
908 908
909 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 909 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
910 for (i = 0; i < PHY_RETRIES; i++) { 910 for (i = 0; i < PHY_RETRIES; i++) {
911 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 911 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
912 goto ready; 912 goto ready;
913 udelay(1); 913 udelay(1);
914 } 914 }
915 return -EIO; 915 return -EIO;
916 916
917 ready: 917 ready:
918 xm_write16(hw, port, XM_PHY_DATA, val); 918 xm_write16(hw, port, XM_PHY_DATA, val);
919 for (i = 0; i < PHY_RETRIES; i++) { 919 for (i = 0; i < PHY_RETRIES; i++) {
920 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 920 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
921 return 0; 921 return 0;
922 udelay(1); 922 udelay(1);
923 } 923 }
924 return -ETIMEDOUT; 924 return -ETIMEDOUT;
925 } 925 }
926 926
927 static void genesis_init(struct skge_hw *hw) 927 static void genesis_init(struct skge_hw *hw)
928 { 928 {
929 /* set blink source counter */ 929 /* set blink source counter */
930 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 930 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
931 skge_write8(hw, B2_BSC_CTRL, BSC_START); 931 skge_write8(hw, B2_BSC_CTRL, BSC_START);
932 932
933 /* configure mac arbiter */ 933 /* configure mac arbiter */
934 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 934 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
935 935
936 /* configure mac arbiter timeout values */ 936 /* configure mac arbiter timeout values */
937 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 937 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
938 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 938 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
939 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 939 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
940 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 940 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
941 941
942 skge_write8(hw, B3_MA_RCINI_RX1, 0); 942 skge_write8(hw, B3_MA_RCINI_RX1, 0);
943 skge_write8(hw, B3_MA_RCINI_RX2, 0); 943 skge_write8(hw, B3_MA_RCINI_RX2, 0);
944 skge_write8(hw, B3_MA_RCINI_TX1, 0); 944 skge_write8(hw, B3_MA_RCINI_TX1, 0);
945 skge_write8(hw, B3_MA_RCINI_TX2, 0); 945 skge_write8(hw, B3_MA_RCINI_TX2, 0);
946 946
947 /* configure packet arbiter timeout */ 947 /* configure packet arbiter timeout */
948 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 948 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
949 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 949 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
950 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 950 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
951 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 951 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
952 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 952 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
953 } 953 }
954 954
955 static void genesis_reset(struct skge_hw *hw, int port) 955 static void genesis_reset(struct skge_hw *hw, int port)
956 { 956 {
957 const u8 zero[8] = { 0 }; 957 const u8 zero[8] = { 0 };
958 958
959 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 959 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
960 960
961 /* reset the statistics module */ 961 /* reset the statistics module */
962 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 962 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
963 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */ 963 xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
964 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 964 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
965 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 965 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
966 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 966 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
967 967
968 /* disable Broadcom PHY IRQ */ 968 /* disable Broadcom PHY IRQ */
969 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 969 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
970 970
971 xm_outhash(hw, port, XM_HSM, zero); 971 xm_outhash(hw, port, XM_HSM, zero);
972 } 972 }
973 973
974 974
975 /* Convert mode to MII values */ 975 /* Convert mode to MII values */
976 static const u16 phy_pause_map[] = { 976 static const u16 phy_pause_map[] = {
977 [FLOW_MODE_NONE] = 0, 977 [FLOW_MODE_NONE] = 0,
978 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 978 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
979 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 979 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
980 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 980 [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
981 }; 981 };
982 982
983 983
984 /* Check status of Broadcom phy link */ 984 /* Check status of Broadcom phy link */
985 static void bcom_check_link(struct skge_hw *hw, int port) 985 static void bcom_check_link(struct skge_hw *hw, int port)
986 { 986 {
987 struct net_device *dev = hw->dev[port]; 987 struct net_device *dev = hw->dev[port];
988 struct skge_port *skge = netdev_priv(dev); 988 struct skge_port *skge = netdev_priv(dev);
989 u16 status; 989 u16 status;
990 990
991 /* read twice because of latch */ 991 /* read twice because of latch */
992 (void) xm_phy_read(hw, port, PHY_BCOM_STAT); 992 (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
993 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 993 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
994 994
995 if ((status & PHY_ST_LSYNC) == 0) { 995 if ((status & PHY_ST_LSYNC) == 0) {
996 u16 cmd = xm_read16(hw, port, XM_MMU_CMD); 996 u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
997 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 997 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
998 xm_write16(hw, port, XM_MMU_CMD, cmd); 998 xm_write16(hw, port, XM_MMU_CMD, cmd);
999 /* dummy read to ensure writing */ 999 /* dummy read to ensure writing */
1000 (void) xm_read16(hw, port, XM_MMU_CMD); 1000 (void) xm_read16(hw, port, XM_MMU_CMD);
1001 1001
1002 if (netif_carrier_ok(dev)) 1002 if (netif_carrier_ok(dev))
1003 skge_link_down(skge); 1003 skge_link_down(skge);
1004 } else { 1004 } else {
1005 if (skge->autoneg == AUTONEG_ENABLE && 1005 if (skge->autoneg == AUTONEG_ENABLE &&
1006 (status & PHY_ST_AN_OVER)) { 1006 (status & PHY_ST_AN_OVER)) {
1007 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP); 1007 u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
1008 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1008 u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1009 1009
1010 if (lpa & PHY_B_AN_RF) { 1010 if (lpa & PHY_B_AN_RF) {
1011 printk(KERN_NOTICE PFX "%s: remote fault\n", 1011 printk(KERN_NOTICE PFX "%s: remote fault\n",
1012 dev->name); 1012 dev->name);
1013 return; 1013 return;
1014 } 1014 }
1015 1015
1016 /* Check Duplex mismatch */ 1016 /* Check Duplex mismatch */
1017 switch (aux & PHY_B_AS_AN_RES_MSK) { 1017 switch (aux & PHY_B_AS_AN_RES_MSK) {
1018 case PHY_B_RES_1000FD: 1018 case PHY_B_RES_1000FD:
1019 skge->duplex = DUPLEX_FULL; 1019 skge->duplex = DUPLEX_FULL;
1020 break; 1020 break;
1021 case PHY_B_RES_1000HD: 1021 case PHY_B_RES_1000HD:
1022 skge->duplex = DUPLEX_HALF; 1022 skge->duplex = DUPLEX_HALF;
1023 break; 1023 break;
1024 default: 1024 default:
1025 printk(KERN_NOTICE PFX "%s: duplex mismatch\n", 1025 printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
1026 dev->name); 1026 dev->name);
1027 return; 1027 return;
1028 } 1028 }
1029 1029
1030 1030
1031 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1031 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1032 switch (aux & PHY_B_AS_PAUSE_MSK) { 1032 switch (aux & PHY_B_AS_PAUSE_MSK) {
1033 case PHY_B_AS_PAUSE_MSK: 1033 case PHY_B_AS_PAUSE_MSK:
1034 skge->flow_control = FLOW_MODE_SYMMETRIC; 1034 skge->flow_control = FLOW_MODE_SYMMETRIC;
1035 break; 1035 break;
1036 case PHY_B_AS_PRR: 1036 case PHY_B_AS_PRR:
1037 skge->flow_control = FLOW_MODE_REM_SEND; 1037 skge->flow_control = FLOW_MODE_REM_SEND;
1038 break; 1038 break;
1039 case PHY_B_AS_PRT: 1039 case PHY_B_AS_PRT:
1040 skge->flow_control = FLOW_MODE_LOC_SEND; 1040 skge->flow_control = FLOW_MODE_LOC_SEND;
1041 break; 1041 break;
1042 default: 1042 default:
1043 skge->flow_control = FLOW_MODE_NONE; 1043 skge->flow_control = FLOW_MODE_NONE;
1044 } 1044 }
1045 1045
1046 skge->speed = SPEED_1000; 1046 skge->speed = SPEED_1000;
1047 } 1047 }
1048 1048
1049 if (!netif_carrier_ok(dev)) 1049 if (!netif_carrier_ok(dev))
1050 genesis_link_up(skge); 1050 genesis_link_up(skge);
1051 } 1051 }
1052 } 1052 }
1053 1053
1054 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1054 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1055 * Phy on for 100 or 10Mbit operation 1055 * Phy on for 100 or 10Mbit operation
1056 */ 1056 */
1057 static void bcom_phy_init(struct skge_port *skge, int jumbo) 1057 static void bcom_phy_init(struct skge_port *skge, int jumbo)
1058 { 1058 {
1059 struct skge_hw *hw = skge->hw; 1059 struct skge_hw *hw = skge->hw;
1060 int port = skge->port; 1060 int port = skge->port;
1061 int i; 1061 int i;
1062 u16 id1, r, ext, ctl; 1062 u16 id1, r, ext, ctl;
1063 1063
1064 /* magic workaround patterns for Broadcom */ 1064 /* magic workaround patterns for Broadcom */
1065 static const struct { 1065 static const struct {
1066 u16 reg; 1066 u16 reg;
1067 u16 val; 1067 u16 val;
1068 } A1hack[] = { 1068 } A1hack[] = {
1069 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1069 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1070 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1070 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1071 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1071 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1072 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1072 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1073 }, C0hack[] = { 1073 }, C0hack[] = {
1074 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1074 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1075 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1075 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1076 }; 1076 };
1077 1077
1078 /* read Id from external PHY (all have the same address) */ 1078 /* read Id from external PHY (all have the same address) */
1079 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1079 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1080 1080
1081 /* Optimize MDIO transfer by suppressing preamble. */ 1081 /* Optimize MDIO transfer by suppressing preamble. */
1082 r = xm_read16(hw, port, XM_MMU_CMD); 1082 r = xm_read16(hw, port, XM_MMU_CMD);
1083 r |= XM_MMU_NO_PRE; 1083 r |= XM_MMU_NO_PRE;
1084 xm_write16(hw, port, XM_MMU_CMD,r); 1084 xm_write16(hw, port, XM_MMU_CMD,r);
1085 1085
1086 switch (id1) { 1086 switch (id1) {
1087 case PHY_BCOM_ID1_C0: 1087 case PHY_BCOM_ID1_C0:
1088 /* 1088 /*
1089 * Workaround BCOM Errata for the C0 type. 1089 * Workaround BCOM Errata for the C0 type.
1090 * Write magic patterns to reserved registers. 1090 * Write magic patterns to reserved registers.
1091 */ 1091 */
1092 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1092 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1093 xm_phy_write(hw, port, 1093 xm_phy_write(hw, port,
1094 C0hack[i].reg, C0hack[i].val); 1094 C0hack[i].reg, C0hack[i].val);
1095 1095
1096 break; 1096 break;
1097 case PHY_BCOM_ID1_A1: 1097 case PHY_BCOM_ID1_A1:
1098 /* 1098 /*
1099 * Workaround BCOM Errata for the A1 type. 1099 * Workaround BCOM Errata for the A1 type.
1100 * Write magic patterns to reserved registers. 1100 * Write magic patterns to reserved registers.
1101 */ 1101 */
1102 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1102 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1103 xm_phy_write(hw, port, 1103 xm_phy_write(hw, port,
1104 A1hack[i].reg, A1hack[i].val); 1104 A1hack[i].reg, A1hack[i].val);
1105 break; 1105 break;
1106 } 1106 }
1107 1107
1108 /* 1108 /*
1109 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1109 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1110 * Disable Power Management after reset. 1110 * Disable Power Management after reset.
1111 */ 1111 */
1112 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1112 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1113 r |= PHY_B_AC_DIS_PM; 1113 r |= PHY_B_AC_DIS_PM;
1114 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1114 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1115 1115
1116 /* Dummy read */ 1116 /* Dummy read */
1117 xm_read16(hw, port, XM_ISRC); 1117 xm_read16(hw, port, XM_ISRC);
1118 1118
1119 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1119 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1120 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1120 ctl = PHY_CT_SP1000; /* always 1000mbit */
1121 1121
1122 if (skge->autoneg == AUTONEG_ENABLE) { 1122 if (skge->autoneg == AUTONEG_ENABLE) {
1123 /* 1123 /*
1124 * Workaround BCOM Errata #1 for the C5 type. 1124 * Workaround BCOM Errata #1 for the C5 type.
1125 * 1000Base-T Link Acquisition Failure in Slave Mode 1125 * 1000Base-T Link Acquisition Failure in Slave Mode
1126 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1126 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1127 */ 1127 */
1128 u16 adv = PHY_B_1000C_RD; 1128 u16 adv = PHY_B_1000C_RD;
1129 if (skge->advertising & ADVERTISED_1000baseT_Half) 1129 if (skge->advertising & ADVERTISED_1000baseT_Half)
1130 adv |= PHY_B_1000C_AHD; 1130 adv |= PHY_B_1000C_AHD;
1131 if (skge->advertising & ADVERTISED_1000baseT_Full) 1131 if (skge->advertising & ADVERTISED_1000baseT_Full)
1132 adv |= PHY_B_1000C_AFD; 1132 adv |= PHY_B_1000C_AFD;
1133 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1133 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1134 1134
1135 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1135 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1136 } else { 1136 } else {
1137 if (skge->duplex == DUPLEX_FULL) 1137 if (skge->duplex == DUPLEX_FULL)
1138 ctl |= PHY_CT_DUP_MD; 1138 ctl |= PHY_CT_DUP_MD;
1139 /* Force to slave */ 1139 /* Force to slave */
1140 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1140 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1141 } 1141 }
1142 1142
1143 /* Set autonegotiation pause parameters */ 1143 /* Set autonegotiation pause parameters */
1144 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1144 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1145 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1145 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1146 1146
1147 /* Handle Jumbo frames */ 1147 /* Handle Jumbo frames */
1148 if (jumbo) { 1148 if (jumbo) {
1149 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1149 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1150 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1150 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1151 1151
1152 ext |= PHY_B_PEC_HIGH_LA; 1152 ext |= PHY_B_PEC_HIGH_LA;
1153 1153
1154 } 1154 }
1155 1155
1156 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1156 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1157 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1157 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1158 1158
1159 /* Use link status change interrupt */ 1159 /* Use link status change interrupt */
1160 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1160 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1161 1161
1162 bcom_check_link(hw, port); 1162 bcom_check_link(hw, port);
1163 } 1163 }
1164 1164
1165 static void genesis_mac_init(struct skge_hw *hw, int port) 1165 static void genesis_mac_init(struct skge_hw *hw, int port)
1166 { 1166 {
1167 struct net_device *dev = hw->dev[port]; 1167 struct net_device *dev = hw->dev[port];
1168 struct skge_port *skge = netdev_priv(dev); 1168 struct skge_port *skge = netdev_priv(dev);
1169 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1169 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1170 int i; 1170 int i;
1171 u32 r; 1171 u32 r;
1172 const u8 zero[6] = { 0 }; 1172 const u8 zero[6] = { 0 };
1173 1173
1174 for (i = 0; i < 10; i++) { 1174 for (i = 0; i < 10; i++) {
1175 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1175 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1176 MFF_SET_MAC_RST); 1176 MFF_SET_MAC_RST);
1177 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1177 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1178 goto reset_ok; 1178 goto reset_ok;
1179 udelay(1); 1179 udelay(1);
1180 } 1180 }
1181 1181
1182 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name); 1182 printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
1183 1183
1184 reset_ok: 1184 reset_ok:
1185 /* Unreset the XMAC. */ 1185 /* Unreset the XMAC. */
1186 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1186 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1187 1187
1188 /* 1188 /*
1189 * Perform additional initialization for external PHYs, 1189 * Perform additional initialization for external PHYs,
1190 * namely for the 1000baseTX cards that use the XMAC's 1190 * namely for the 1000baseTX cards that use the XMAC's
1191 * GMII mode. 1191 * GMII mode.
1192 */ 1192 */
1193 /* Take external Phy out of reset */ 1193 /* Take external Phy out of reset */
1194 r = skge_read32(hw, B2_GP_IO); 1194 r = skge_read32(hw, B2_GP_IO);
1195 if (port == 0) 1195 if (port == 0)
1196 r |= GP_DIR_0|GP_IO_0; 1196 r |= GP_DIR_0|GP_IO_0;
1197 else 1197 else
1198 r |= GP_DIR_2|GP_IO_2; 1198 r |= GP_DIR_2|GP_IO_2;
1199 1199
1200 skge_write32(hw, B2_GP_IO, r); 1200 skge_write32(hw, B2_GP_IO, r);
1201 1201
1202 1202
1203 /* Enable GMII interface */ 1203 /* Enable GMII interface */
1204 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1204 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1205 1205
1206 bcom_phy_init(skge, jumbo); 1206 bcom_phy_init(skge, jumbo);
1207 1207
1208 /* Set Station Address */ 1208 /* Set Station Address */
1209 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1209 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1210 1210
1211 /* We don't use match addresses so clear */ 1211 /* We don't use match addresses so clear */
1212 for (i = 1; i < 16; i++) 1212 for (i = 1; i < 16; i++)
1213 xm_outaddr(hw, port, XM_EXM(i), zero); 1213 xm_outaddr(hw, port, XM_EXM(i), zero);
1214 1214
1215 /* Clear MIB counters */ 1215 /* Clear MIB counters */
1216 xm_write16(hw, port, XM_STAT_CMD, 1216 xm_write16(hw, port, XM_STAT_CMD,
1217 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1217 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1218 /* Clear two times according to Errata #3 */ 1218 /* Clear two times according to Errata #3 */
1219 xm_write16(hw, port, XM_STAT_CMD, 1219 xm_write16(hw, port, XM_STAT_CMD,
1220 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1220 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1221 1221
1222 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1222 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1223 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1223 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1224 1224
1225 /* We don't need the FCS appended to the packet. */ 1225 /* We don't need the FCS appended to the packet. */
1226 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1226 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1227 if (jumbo) 1227 if (jumbo)
1228 r |= XM_RX_BIG_PK_OK; 1228 r |= XM_RX_BIG_PK_OK;
1229 1229
1230 if (skge->duplex == DUPLEX_HALF) { 1230 if (skge->duplex == DUPLEX_HALF) {
1231 /* 1231 /*
1232 * If in manual half duplex mode the other side might be in 1232 * If in manual half duplex mode the other side might be in
1233 * full duplex mode, so ignore if a carrier extension is not seen 1233 * full duplex mode, so ignore if a carrier extension is not seen
1234 * on frames received 1234 * on frames received
1235 */ 1235 */
1236 r |= XM_RX_DIS_CEXT; 1236 r |= XM_RX_DIS_CEXT;
1237 } 1237 }
1238 xm_write16(hw, port, XM_RX_CMD, r); 1238 xm_write16(hw, port, XM_RX_CMD, r);
1239 1239
1240 1240
1241 /* We want short frames padded to 60 bytes. */ 1241 /* We want short frames padded to 60 bytes. */
1242 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1242 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1243 1243
1244 /* 1244 /*
1245 * Bump up the transmit threshold. This helps hold off transmit 1245 * Bump up the transmit threshold. This helps hold off transmit
1246 * underruns when we're blasting traffic from both ports at once. 1246 * underruns when we're blasting traffic from both ports at once.
1247 */ 1247 */
1248 xm_write16(hw, port, XM_TX_THR, 512); 1248 xm_write16(hw, port, XM_TX_THR, 512);
1249 1249
1250 /* 1250 /*
1251 * Enable the reception of all error frames. This is is 1251 * Enable the reception of all error frames. This is is
1252 * a necessary evil due to the design of the XMAC. The 1252 * a necessary evil due to the design of the XMAC. The
1253 * XMAC's receive FIFO is only 8K in size, however jumbo 1253 * XMAC's receive FIFO is only 8K in size, however jumbo
1254 * frames can be up to 9000 bytes in length. When bad 1254 * frames can be up to 9000 bytes in length. When bad
1255 * frame filtering is enabled, the XMAC's RX FIFO operates 1255 * frame filtering is enabled, the XMAC's RX FIFO operates
1256 * in 'store and forward' mode. For this to work, the 1256 * in 'store and forward' mode. For this to work, the
1257 * entire frame has to fit into the FIFO, but that means 1257 * entire frame has to fit into the FIFO, but that means
1258 * that jumbo frames larger than 8192 bytes will be 1258 * that jumbo frames larger than 8192 bytes will be
1259 * truncated. Disabling all bad frame filtering causes 1259 * truncated. Disabling all bad frame filtering causes
1260 * the RX FIFO to operate in streaming mode, in which 1260 * the RX FIFO to operate in streaming mode, in which
1261 * case the XMAC will start transferring frames out of the 1261 * case the XMAC will start transferring frames out of the
1262 * RX FIFO as soon as the FIFO threshold is reached. 1262 * RX FIFO as soon as the FIFO threshold is reached.
1263 */ 1263 */
1264 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1264 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1265 1265
1266 1266
1267 /* 1267 /*
1268 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1268 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1269 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1269 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1270 * and 'Octets Rx OK Hi Cnt Ov'. 1270 * and 'Octets Rx OK Hi Cnt Ov'.
1271 */ 1271 */
1272 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1272 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1273 1273
1274 /* 1274 /*
1275 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1275 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1276 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1276 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1277 * and 'Octets Tx OK Hi Cnt Ov'. 1277 * and 'Octets Tx OK Hi Cnt Ov'.
1278 */ 1278 */
1279 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1279 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1280 1280
1281 /* Configure MAC arbiter */ 1281 /* Configure MAC arbiter */
1282 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1282 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1283 1283
1284 /* configure timeout values */ 1284 /* configure timeout values */
1285 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1285 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1286 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1286 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1287 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1287 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1288 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1288 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1289 1289
1290 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1290 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1291 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1291 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1292 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1292 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1293 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1293 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1294 1294
1295 /* Configure Rx MAC FIFO */ 1295 /* Configure Rx MAC FIFO */
1296 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1296 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1297 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1297 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1298 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1298 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1299 1299
1300 /* Configure Tx MAC FIFO */ 1300 /* Configure Tx MAC FIFO */
1301 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1301 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1302 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1302 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1303 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1303 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1304 1304
1305 if (jumbo) { 1305 if (jumbo) {
1306 /* Enable frame flushing if jumbo frames used */ 1306 /* Enable frame flushing if jumbo frames used */
1307 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH); 1307 skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1308 } else { 1308 } else {
1309 /* enable timeout timers if normal frames */ 1309 /* enable timeout timers if normal frames */
1310 skge_write16(hw, B3_PA_CTRL, 1310 skge_write16(hw, B3_PA_CTRL,
1311 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1311 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1312 } 1312 }
1313 } 1313 }
1314 1314
1315 static void genesis_stop(struct skge_port *skge) 1315 static void genesis_stop(struct skge_port *skge)
1316 { 1316 {
1317 struct skge_hw *hw = skge->hw; 1317 struct skge_hw *hw = skge->hw;
1318 int port = skge->port; 1318 int port = skge->port;
1319 u32 reg; 1319 u32 reg;
1320 1320
1321 genesis_reset(hw, port); 1321 genesis_reset(hw, port);
1322 1322
1323 /* Clear Tx packet arbiter timeout IRQ */ 1323 /* Clear Tx packet arbiter timeout IRQ */
1324 skge_write16(hw, B3_PA_CTRL, 1324 skge_write16(hw, B3_PA_CTRL,
1325 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1325 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1326 1326
1327 /* 1327 /*
1328 * If the transfer sticks at the MAC the STOP command will not 1328 * If the transfer sticks at the MAC the STOP command will not
1329 * terminate if we don't flush the XMAC's transmit FIFO ! 1329 * terminate if we don't flush the XMAC's transmit FIFO !
1330 */ 1330 */
1331 xm_write32(hw, port, XM_MODE, 1331 xm_write32(hw, port, XM_MODE,
1332 xm_read32(hw, port, XM_MODE)|XM_MD_FTF); 1332 xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1333 1333
1334 1334
1335 /* Reset the MAC */ 1335 /* Reset the MAC */
1336 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1336 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1337 1337
1338 /* For external PHYs there must be special handling */ 1338 /* For external PHYs there must be special handling */
1339 reg = skge_read32(hw, B2_GP_IO); 1339 reg = skge_read32(hw, B2_GP_IO);
1340 if (port == 0) { 1340 if (port == 0) {
1341 reg |= GP_DIR_0; 1341 reg |= GP_DIR_0;
1342 reg &= ~GP_IO_0; 1342 reg &= ~GP_IO_0;
1343 } else { 1343 } else {
1344 reg |= GP_DIR_2; 1344 reg |= GP_DIR_2;
1345 reg &= ~GP_IO_2; 1345 reg &= ~GP_IO_2;
1346 } 1346 }
1347 skge_write32(hw, B2_GP_IO, reg); 1347 skge_write32(hw, B2_GP_IO, reg);
1348 skge_read32(hw, B2_GP_IO); 1348 skge_read32(hw, B2_GP_IO);
1349 1349
1350 xm_write16(hw, port, XM_MMU_CMD, 1350 xm_write16(hw, port, XM_MMU_CMD,
1351 xm_read16(hw, port, XM_MMU_CMD) 1351 xm_read16(hw, port, XM_MMU_CMD)
1352 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1352 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1353 1353
1354 xm_read16(hw, port, XM_MMU_CMD); 1354 xm_read16(hw, port, XM_MMU_CMD);
1355 } 1355 }
1356 1356
1357 1357
1358 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1358 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1359 { 1359 {
1360 struct skge_hw *hw = skge->hw; 1360 struct skge_hw *hw = skge->hw;
1361 int port = skge->port; 1361 int port = skge->port;
1362 int i; 1362 int i;
1363 unsigned long timeout = jiffies + HZ; 1363 unsigned long timeout = jiffies + HZ;
1364 1364
1365 xm_write16(hw, port, 1365 xm_write16(hw, port,
1366 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1366 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1367 1367
1368 /* wait for update to complete */ 1368 /* wait for update to complete */
1369 while (xm_read16(hw, port, XM_STAT_CMD) 1369 while (xm_read16(hw, port, XM_STAT_CMD)
1370 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1370 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1371 if (time_after(jiffies, timeout)) 1371 if (time_after(jiffies, timeout))
1372 break; 1372 break;
1373 udelay(10); 1373 udelay(10);
1374 } 1374 }
1375 1375
1376 /* special case for 64 bit octet counter */ 1376 /* special case for 64 bit octet counter */
1377 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1377 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1378 | xm_read32(hw, port, XM_TXO_OK_LO); 1378 | xm_read32(hw, port, XM_TXO_OK_LO);
1379 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1379 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1380 | xm_read32(hw, port, XM_RXO_OK_LO); 1380 | xm_read32(hw, port, XM_RXO_OK_LO);
1381 1381
1382 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1382 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1383 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1383 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1384 } 1384 }
1385 1385
1386 static void genesis_mac_intr(struct skge_hw *hw, int port) 1386 static void genesis_mac_intr(struct skge_hw *hw, int port)
1387 { 1387 {
1388 struct skge_port *skge = netdev_priv(hw->dev[port]); 1388 struct skge_port *skge = netdev_priv(hw->dev[port]);
1389 u16 status = xm_read16(hw, port, XM_ISRC); 1389 u16 status = xm_read16(hw, port, XM_ISRC);
1390 1390
1391 if (netif_msg_intr(skge)) 1391 if (netif_msg_intr(skge))
1392 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", 1392 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1393 skge->netdev->name, status); 1393 skge->netdev->name, status);
1394 1394
1395 if (status & XM_IS_TXF_UR) { 1395 if (status & XM_IS_TXF_UR) {
1396 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1396 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1397 ++skge->net_stats.tx_fifo_errors; 1397 ++skge->net_stats.tx_fifo_errors;
1398 } 1398 }
1399 if (status & XM_IS_RXF_OV) { 1399 if (status & XM_IS_RXF_OV) {
1400 xm_write32(hw, port, XM_MODE, XM_MD_FRF); 1400 xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1401 ++skge->net_stats.rx_fifo_errors; 1401 ++skge->net_stats.rx_fifo_errors;
1402 } 1402 }
1403 } 1403 }
1404 1404
1405 static void genesis_link_up(struct skge_port *skge) 1405 static void genesis_link_up(struct skge_port *skge)
1406 { 1406 {
1407 struct skge_hw *hw = skge->hw; 1407 struct skge_hw *hw = skge->hw;
1408 int port = skge->port; 1408 int port = skge->port;
1409 u16 cmd; 1409 u16 cmd;
1410 u32 mode, msk; 1410 u32 mode, msk;
1411 1411
1412 cmd = xm_read16(hw, port, XM_MMU_CMD); 1412 cmd = xm_read16(hw, port, XM_MMU_CMD);
1413 1413
1414 /* 1414 /*
1415 * enabling pause frame reception is required for 1000BT 1415 * enabling pause frame reception is required for 1000BT
1416 * because the XMAC is not reset if the link is going down 1416 * because the XMAC is not reset if the link is going down
1417 */ 1417 */
1418 if (skge->flow_control == FLOW_MODE_NONE || 1418 if (skge->flow_control == FLOW_MODE_NONE ||
1419 skge->flow_control == FLOW_MODE_LOC_SEND) 1419 skge->flow_control == FLOW_MODE_LOC_SEND)
1420 /* Disable Pause Frame Reception */ 1420 /* Disable Pause Frame Reception */
1421 cmd |= XM_MMU_IGN_PF; 1421 cmd |= XM_MMU_IGN_PF;
1422 else 1422 else
1423 /* Enable Pause Frame Reception */ 1423 /* Enable Pause Frame Reception */
1424 cmd &= ~XM_MMU_IGN_PF; 1424 cmd &= ~XM_MMU_IGN_PF;
1425 1425
1426 xm_write16(hw, port, XM_MMU_CMD, cmd); 1426 xm_write16(hw, port, XM_MMU_CMD, cmd);
1427 1427
1428 mode = xm_read32(hw, port, XM_MODE); 1428 mode = xm_read32(hw, port, XM_MODE);
1429 if (skge->flow_control == FLOW_MODE_SYMMETRIC || 1429 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1430 skge->flow_control == FLOW_MODE_LOC_SEND) { 1430 skge->flow_control == FLOW_MODE_LOC_SEND) {
1431 /* 1431 /*
1432 * Configure Pause Frame Generation 1432 * Configure Pause Frame Generation
1433 * Use internal and external Pause Frame Generation. 1433 * Use internal and external Pause Frame Generation.
1434 * Sending pause frames is edge triggered. 1434 * Sending pause frames is edge triggered.
1435 * Send a Pause frame with the maximum pause time if 1435 * Send a Pause frame with the maximum pause time if
1436 * internal oder external FIFO full condition occurs. 1436 * internal oder external FIFO full condition occurs.
1437 * Send a zero pause time frame to re-start transmission. 1437 * Send a zero pause time frame to re-start transmission.
1438 */ 1438 */
1439 /* XM_PAUSE_DA = '010000C28001' (default) */ 1439 /* XM_PAUSE_DA = '010000C28001' (default) */
1440 /* XM_MAC_PTIME = 0xffff (maximum) */ 1440 /* XM_MAC_PTIME = 0xffff (maximum) */
1441 /* remember this value is defined in big endian (!) */ 1441 /* remember this value is defined in big endian (!) */
1442 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1442 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1443 1443
1444 mode |= XM_PAUSE_MODE; 1444 mode |= XM_PAUSE_MODE;
1445 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1445 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1446 } else { 1446 } else {
1447 /* 1447 /*
1448 * disable pause frame generation is required for 1000BT 1448 * disable pause frame generation is required for 1000BT
1449 * because the XMAC is not reset if the link is going down 1449 * because the XMAC is not reset if the link is going down
1450 */ 1450 */
1451 /* Disable Pause Mode in Mode Register */ 1451 /* Disable Pause Mode in Mode Register */
1452 mode &= ~XM_PAUSE_MODE; 1452 mode &= ~XM_PAUSE_MODE;
1453 1453
1454 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1454 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1455 } 1455 }
1456 1456
1457 xm_write32(hw, port, XM_MODE, mode); 1457 xm_write32(hw, port, XM_MODE, mode);
1458 1458
1459 msk = XM_DEF_MSK; 1459 msk = XM_DEF_MSK;
1460 /* disable GP0 interrupt bit for external Phy */ 1460 /* disable GP0 interrupt bit for external Phy */
1461 msk |= XM_IS_INP_ASS; 1461 msk |= XM_IS_INP_ASS;
1462 1462
1463 xm_write16(hw, port, XM_IMSK, msk); 1463 xm_write16(hw, port, XM_IMSK, msk);
1464 xm_read16(hw, port, XM_ISRC); 1464 xm_read16(hw, port, XM_ISRC);
1465 1465
1466 /* get MMU Command Reg. */ 1466 /* get MMU Command Reg. */
1467 cmd = xm_read16(hw, port, XM_MMU_CMD); 1467 cmd = xm_read16(hw, port, XM_MMU_CMD);
1468 if (skge->duplex == DUPLEX_FULL) 1468 if (skge->duplex == DUPLEX_FULL)
1469 cmd |= XM_MMU_GMII_FD; 1469 cmd |= XM_MMU_GMII_FD;
1470 1470
1471 /* 1471 /*
1472 * Workaround BCOM Errata (#10523) for all BCom Phys 1472 * Workaround BCOM Errata (#10523) for all BCom Phys
1473 * Enable Power Management after link up 1473 * Enable Power Management after link up
1474 */ 1474 */
1475 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1475 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1476 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1476 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1477 & ~PHY_B_AC_DIS_PM); 1477 & ~PHY_B_AC_DIS_PM);
1478 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1478 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1479 1479
1480 /* enable Rx/Tx */ 1480 /* enable Rx/Tx */
1481 xm_write16(hw, port, XM_MMU_CMD, 1481 xm_write16(hw, port, XM_MMU_CMD,
1482 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1482 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1483 skge_link_up(skge); 1483 skge_link_up(skge);
1484 } 1484 }
1485 1485
1486 1486
1487 static inline void bcom_phy_intr(struct skge_port *skge) 1487 static inline void bcom_phy_intr(struct skge_port *skge)
1488 { 1488 {
1489 struct skge_hw *hw = skge->hw; 1489 struct skge_hw *hw = skge->hw;
1490 int port = skge->port; 1490 int port = skge->port;
1491 u16 isrc; 1491 u16 isrc;
1492 1492
1493 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1493 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1494 if (netif_msg_intr(skge)) 1494 if (netif_msg_intr(skge))
1495 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n", 1495 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
1496 skge->netdev->name, isrc); 1496 skge->netdev->name, isrc);
1497 1497
1498 if (isrc & PHY_B_IS_PSE) 1498 if (isrc & PHY_B_IS_PSE)
1499 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n", 1499 printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
1500 hw->dev[port]->name); 1500 hw->dev[port]->name);
1501 1501
1502 /* Workaround BCom Errata: 1502 /* Workaround BCom Errata:
1503 * enable and disable loopback mode if "NO HCD" occurs. 1503 * enable and disable loopback mode if "NO HCD" occurs.
1504 */ 1504 */
1505 if (isrc & PHY_B_IS_NO_HDCL) { 1505 if (isrc & PHY_B_IS_NO_HDCL) {
1506 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1506 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1507 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1507 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1508 ctrl | PHY_CT_LOOP); 1508 ctrl | PHY_CT_LOOP);
1509 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1509 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1510 ctrl & ~PHY_CT_LOOP); 1510 ctrl & ~PHY_CT_LOOP);
1511 } 1511 }
1512 1512
1513 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1513 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1514 bcom_check_link(hw, port); 1514 bcom_check_link(hw, port);
1515 1515
1516 } 1516 }
1517 1517
1518 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1518 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1519 { 1519 {
1520 int i; 1520 int i;
1521 1521
1522 gma_write16(hw, port, GM_SMI_DATA, val); 1522 gma_write16(hw, port, GM_SMI_DATA, val);
1523 gma_write16(hw, port, GM_SMI_CTRL, 1523 gma_write16(hw, port, GM_SMI_CTRL,
1524 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1524 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1525 for (i = 0; i < PHY_RETRIES; i++) { 1525 for (i = 0; i < PHY_RETRIES; i++) {
1526 udelay(1); 1526 udelay(1);
1527 1527
1528 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1528 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1529 return 0; 1529 return 0;
1530 } 1530 }
1531 1531
1532 printk(KERN_WARNING PFX "%s: phy write timeout\n", 1532 printk(KERN_WARNING PFX "%s: phy write timeout\n",
1533 hw->dev[port]->name); 1533 hw->dev[port]->name);
1534 return -EIO; 1534 return -EIO;
1535 } 1535 }
1536 1536
1537 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1537 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1538 { 1538 {
1539 int i; 1539 int i;
1540 1540
1541 gma_write16(hw, port, GM_SMI_CTRL, 1541 gma_write16(hw, port, GM_SMI_CTRL,
1542 GM_SMI_CT_PHY_AD(hw->phy_addr) 1542 GM_SMI_CT_PHY_AD(hw->phy_addr)
1543 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1543 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1544 1544
1545 for (i = 0; i < PHY_RETRIES; i++) { 1545 for (i = 0; i < PHY_RETRIES; i++) {
1546 udelay(1); 1546 udelay(1);
1547 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1547 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1548 goto ready; 1548 goto ready;
1549 } 1549 }
1550 1550
1551 return -ETIMEDOUT; 1551 return -ETIMEDOUT;
1552 ready: 1552 ready:
1553 *val = gma_read16(hw, port, GM_SMI_DATA); 1553 *val = gma_read16(hw, port, GM_SMI_DATA);
1554 return 0; 1554 return 0;
1555 } 1555 }
1556 1556
1557 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1557 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1558 { 1558 {
1559 u16 v = 0; 1559 u16 v = 0;
1560 if (__gm_phy_read(hw, port, reg, &v)) 1560 if (__gm_phy_read(hw, port, reg, &v))
1561 printk(KERN_WARNING PFX "%s: phy read timeout\n", 1561 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1562 hw->dev[port]->name); 1562 hw->dev[port]->name);
1563 return v; 1563 return v;
1564 } 1564 }
1565 1565
1566 /* Marvell Phy Initialization */ 1566 /* Marvell Phy Initialization */
1567 static void yukon_init(struct skge_hw *hw, int port) 1567 static void yukon_init(struct skge_hw *hw, int port)
1568 { 1568 {
1569 struct skge_port *skge = netdev_priv(hw->dev[port]); 1569 struct skge_port *skge = netdev_priv(hw->dev[port]);
1570 u16 ctrl, ct1000, adv; 1570 u16 ctrl, ct1000, adv;
1571 1571
1572 if (skge->autoneg == AUTONEG_ENABLE) { 1572 if (skge->autoneg == AUTONEG_ENABLE) {
1573 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1573 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1574 1574
1575 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1575 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1576 PHY_M_EC_MAC_S_MSK); 1576 PHY_M_EC_MAC_S_MSK);
1577 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1577 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1578 1578
1579 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1579 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1580 1580
1581 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1581 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1582 } 1582 }
1583 1583
1584 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1584 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1585 if (skge->autoneg == AUTONEG_DISABLE) 1585 if (skge->autoneg == AUTONEG_DISABLE)
1586 ctrl &= ~PHY_CT_ANE; 1586 ctrl &= ~PHY_CT_ANE;
1587 1587
1588 ctrl |= PHY_CT_RESET; 1588 ctrl |= PHY_CT_RESET;
1589 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1589 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1590 1590
1591 ctrl = 0; 1591 ctrl = 0;
1592 ct1000 = 0; 1592 ct1000 = 0;
1593 adv = PHY_AN_CSMA; 1593 adv = PHY_AN_CSMA;
1594 1594
1595 if (skge->autoneg == AUTONEG_ENABLE) { 1595 if (skge->autoneg == AUTONEG_ENABLE) {
1596 if (hw->copper) { 1596 if (hw->copper) {
1597 if (skge->advertising & ADVERTISED_1000baseT_Full) 1597 if (skge->advertising & ADVERTISED_1000baseT_Full)
1598 ct1000 |= PHY_M_1000C_AFD; 1598 ct1000 |= PHY_M_1000C_AFD;
1599 if (skge->advertising & ADVERTISED_1000baseT_Half) 1599 if (skge->advertising & ADVERTISED_1000baseT_Half)
1600 ct1000 |= PHY_M_1000C_AHD; 1600 ct1000 |= PHY_M_1000C_AHD;
1601 if (skge->advertising & ADVERTISED_100baseT_Full) 1601 if (skge->advertising & ADVERTISED_100baseT_Full)
1602 adv |= PHY_M_AN_100_FD; 1602 adv |= PHY_M_AN_100_FD;
1603 if (skge->advertising & ADVERTISED_100baseT_Half) 1603 if (skge->advertising & ADVERTISED_100baseT_Half)
1604 adv |= PHY_M_AN_100_HD; 1604 adv |= PHY_M_AN_100_HD;
1605 if (skge->advertising & ADVERTISED_10baseT_Full) 1605 if (skge->advertising & ADVERTISED_10baseT_Full)
1606 adv |= PHY_M_AN_10_FD; 1606 adv |= PHY_M_AN_10_FD;
1607 if (skge->advertising & ADVERTISED_10baseT_Half) 1607 if (skge->advertising & ADVERTISED_10baseT_Half)
1608 adv |= PHY_M_AN_10_HD; 1608 adv |= PHY_M_AN_10_HD;
1609 } else /* special defines for FIBER (88E1011S only) */ 1609 } else /* special defines for FIBER (88E1011S only) */
1610 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD; 1610 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1611 1611
1612 /* Set Flow-control capabilities */ 1612 /* Set Flow-control capabilities */
1613 adv |= phy_pause_map[skge->flow_control]; 1613 adv |= phy_pause_map[skge->flow_control];
1614 1614
1615 /* Restart Auto-negotiation */ 1615 /* Restart Auto-negotiation */
1616 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1616 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1617 } else { 1617 } else {
1618 /* forced speed/duplex settings */ 1618 /* forced speed/duplex settings */
1619 ct1000 = PHY_M_1000C_MSE; 1619 ct1000 = PHY_M_1000C_MSE;
1620 1620
1621 if (skge->duplex == DUPLEX_FULL) 1621 if (skge->duplex == DUPLEX_FULL)
1622 ctrl |= PHY_CT_DUP_MD; 1622 ctrl |= PHY_CT_DUP_MD;
1623 1623
1624 switch (skge->speed) { 1624 switch (skge->speed) {
1625 case SPEED_1000: 1625 case SPEED_1000:
1626 ctrl |= PHY_CT_SP1000; 1626 ctrl |= PHY_CT_SP1000;
1627 break; 1627 break;
1628 case SPEED_100: 1628 case SPEED_100:
1629 ctrl |= PHY_CT_SP100; 1629 ctrl |= PHY_CT_SP100;
1630 break; 1630 break;
1631 } 1631 }
1632 1632
1633 ctrl |= PHY_CT_RESET; 1633 ctrl |= PHY_CT_RESET;
1634 } 1634 }
1635 1635
1636 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 1636 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1637 1637
1638 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 1638 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1639 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1639 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1640 1640
1641 /* Enable phy interrupt on autonegotiation complete (or link up) */ 1641 /* Enable phy interrupt on autonegotiation complete (or link up) */
1642 if (skge->autoneg == AUTONEG_ENABLE) 1642 if (skge->autoneg == AUTONEG_ENABLE)
1643 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 1643 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
1644 else 1644 else
1645 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 1645 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1646 } 1646 }
1647 1647
1648 static void yukon_reset(struct skge_hw *hw, int port) 1648 static void yukon_reset(struct skge_hw *hw, int port)
1649 { 1649 {
1650 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 1650 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1651 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 1651 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1652 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 1652 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1653 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 1653 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1654 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 1654 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1655 1655
1656 gma_write16(hw, port, GM_RX_CTRL, 1656 gma_write16(hw, port, GM_RX_CTRL,
1657 gma_read16(hw, port, GM_RX_CTRL) 1657 gma_read16(hw, port, GM_RX_CTRL)
1658 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 1658 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1659 } 1659 }
1660 1660
1661 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 1661 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1662 static int is_yukon_lite_a0(struct skge_hw *hw) 1662 static int is_yukon_lite_a0(struct skge_hw *hw)
1663 { 1663 {
1664 u32 reg; 1664 u32 reg;
1665 int ret; 1665 int ret;
1666 1666
1667 if (hw->chip_id != CHIP_ID_YUKON) 1667 if (hw->chip_id != CHIP_ID_YUKON)
1668 return 0; 1668 return 0;
1669 1669
1670 reg = skge_read32(hw, B2_FAR); 1670 reg = skge_read32(hw, B2_FAR);
1671 skge_write8(hw, B2_FAR + 3, 0xff); 1671 skge_write8(hw, B2_FAR + 3, 0xff);
1672 ret = (skge_read8(hw, B2_FAR + 3) != 0); 1672 ret = (skge_read8(hw, B2_FAR + 3) != 0);
1673 skge_write32(hw, B2_FAR, reg); 1673 skge_write32(hw, B2_FAR, reg);
1674 return ret; 1674 return ret;
1675 } 1675 }
1676 1676
1677 static void yukon_mac_init(struct skge_hw *hw, int port) 1677 static void yukon_mac_init(struct skge_hw *hw, int port)
1678 { 1678 {
1679 struct skge_port *skge = netdev_priv(hw->dev[port]); 1679 struct skge_port *skge = netdev_priv(hw->dev[port]);
1680 int i; 1680 int i;
1681 u32 reg; 1681 u32 reg;
1682 const u8 *addr = hw->dev[port]->dev_addr; 1682 const u8 *addr = hw->dev[port]->dev_addr;
1683 1683
1684 /* WA code for COMA mode -- set PHY reset */ 1684 /* WA code for COMA mode -- set PHY reset */
1685 if (hw->chip_id == CHIP_ID_YUKON_LITE && 1685 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1686 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 1686 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1687 reg = skge_read32(hw, B2_GP_IO); 1687 reg = skge_read32(hw, B2_GP_IO);
1688 reg |= GP_DIR_9 | GP_IO_9; 1688 reg |= GP_DIR_9 | GP_IO_9;
1689 skge_write32(hw, B2_GP_IO, reg); 1689 skge_write32(hw, B2_GP_IO, reg);
1690 } 1690 }
1691 1691
1692 /* hard reset */ 1692 /* hard reset */
1693 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 1693 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1694 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 1694 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1695 1695
1696 /* WA code for COMA mode -- clear PHY reset */ 1696 /* WA code for COMA mode -- clear PHY reset */
1697 if (hw->chip_id == CHIP_ID_YUKON_LITE && 1697 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1698 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 1698 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
1699 reg = skge_read32(hw, B2_GP_IO); 1699 reg = skge_read32(hw, B2_GP_IO);
1700 reg |= GP_DIR_9; 1700 reg |= GP_DIR_9;
1701 reg &= ~GP_IO_9; 1701 reg &= ~GP_IO_9;
1702 skge_write32(hw, B2_GP_IO, reg); 1702 skge_write32(hw, B2_GP_IO, reg);
1703 } 1703 }
1704 1704
1705 /* Set hardware config mode */ 1705 /* Set hardware config mode */
1706 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 1706 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1707 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 1707 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1708 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 1708 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1709 1709
1710 /* Clear GMC reset */ 1710 /* Clear GMC reset */
1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 1711 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1712 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 1712 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1713 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 1713 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1714 1714
1715 if (skge->autoneg == AUTONEG_DISABLE) { 1715 if (skge->autoneg == AUTONEG_DISABLE) {
1716 reg = GM_GPCR_AU_ALL_DIS; 1716 reg = GM_GPCR_AU_ALL_DIS;
1717 gma_write16(hw, port, GM_GP_CTRL, 1717 gma_write16(hw, port, GM_GP_CTRL,
1718 gma_read16(hw, port, GM_GP_CTRL) | reg); 1718 gma_read16(hw, port, GM_GP_CTRL) | reg);
1719 1719
1720 switch (skge->speed) { 1720 switch (skge->speed) {
1721 case SPEED_1000: 1721 case SPEED_1000:
1722 reg &= ~GM_GPCR_SPEED_100; 1722 reg &= ~GM_GPCR_SPEED_100;
1723 reg |= GM_GPCR_SPEED_1000; 1723 reg |= GM_GPCR_SPEED_1000;
1724 break; 1724 break;
1725 case SPEED_100: 1725 case SPEED_100:
1726 reg &= ~GM_GPCR_SPEED_1000; 1726 reg &= ~GM_GPCR_SPEED_1000;
1727 reg |= GM_GPCR_SPEED_100; 1727 reg |= GM_GPCR_SPEED_100;
1728 break; 1728 break;
1729 case SPEED_10: 1729 case SPEED_10:
1730 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 1730 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
1731 break; 1731 break;
1732 } 1732 }
1733 1733
1734 if (skge->duplex == DUPLEX_FULL) 1734 if (skge->duplex == DUPLEX_FULL)
1735 reg |= GM_GPCR_DUP_FULL; 1735 reg |= GM_GPCR_DUP_FULL;
1736 } else 1736 } else
1737 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 1737 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1738 1738
1739 switch (skge->flow_control) { 1739 switch (skge->flow_control) {
1740 case FLOW_MODE_NONE: 1740 case FLOW_MODE_NONE:
1741 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 1741 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1742 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 1742 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1743 break; 1743 break;
1744 case FLOW_MODE_LOC_SEND: 1744 case FLOW_MODE_LOC_SEND:
1745 /* disable Rx flow-control */ 1745 /* disable Rx flow-control */
1746 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 1746 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1747 } 1747 }
1748 1748
1749 gma_write16(hw, port, GM_GP_CTRL, reg); 1749 gma_write16(hw, port, GM_GP_CTRL, reg);
1750 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 1750 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
1751 1751
1752 yukon_init(hw, port); 1752 yukon_init(hw, port);
1753 1753
1754 /* MIB clear */ 1754 /* MIB clear */
1755 reg = gma_read16(hw, port, GM_PHY_ADDR); 1755 reg = gma_read16(hw, port, GM_PHY_ADDR);
1756 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 1756 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1757 1757
1758 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 1758 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1759 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 1759 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1760 gma_write16(hw, port, GM_PHY_ADDR, reg); 1760 gma_write16(hw, port, GM_PHY_ADDR, reg);
1761 1761
1762 /* transmit control */ 1762 /* transmit control */
1763 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 1763 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1764 1764
1765 /* receive control reg: unicast + multicast + no FCS */ 1765 /* receive control reg: unicast + multicast + no FCS */
1766 gma_write16(hw, port, GM_RX_CTRL, 1766 gma_write16(hw, port, GM_RX_CTRL,
1767 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 1767 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1768 1768
1769 /* transmit flow control */ 1769 /* transmit flow control */
1770 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 1770 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1771 1771
1772 /* transmit parameter */ 1772 /* transmit parameter */
1773 gma_write16(hw, port, GM_TX_PARAM, 1773 gma_write16(hw, port, GM_TX_PARAM,
1774 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 1774 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1775 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 1775 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1776 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 1776 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1777 1777
1778 /* serial mode register */ 1778 /* serial mode register */
1779 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); 1779 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1780 if (hw->dev[port]->mtu > 1500) 1780 if (hw->dev[port]->mtu > 1500)
1781 reg |= GM_SMOD_JUMBO_ENA; 1781 reg |= GM_SMOD_JUMBO_ENA;
1782 1782
1783 gma_write16(hw, port, GM_SERIAL_MODE, reg); 1783 gma_write16(hw, port, GM_SERIAL_MODE, reg);
1784 1784
1785 /* physical address: used for pause frames */ 1785 /* physical address: used for pause frames */
1786 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 1786 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1787 /* virtual address for data */ 1787 /* virtual address for data */
1788 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 1788 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1789 1789
1790 /* enable interrupt mask for counter overflows */ 1790 /* enable interrupt mask for counter overflows */
1791 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 1791 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1792 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 1792 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1793 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 1793 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1794 1794
1795 /* Initialize Mac Fifo */ 1795 /* Initialize Mac Fifo */
1796 1796
1797 /* Configure Rx MAC FIFO */ 1797 /* Configure Rx MAC FIFO */
1798 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 1798 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1799 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 1799 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1800 1800
1801 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 1801 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
1802 if (is_yukon_lite_a0(hw)) 1802 if (is_yukon_lite_a0(hw))
1803 reg &= ~GMF_RX_F_FL_ON; 1803 reg &= ~GMF_RX_F_FL_ON;
1804 1804
1805 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 1805 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1806 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 1806 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
1807 /* 1807 /*
1808 * because Pause Packet Truncation in GMAC is not working 1808 * because Pause Packet Truncation in GMAC is not working
1809 * we have to increase the Flush Threshold to 64 bytes 1809 * we have to increase the Flush Threshold to 64 bytes
1810 * in order to flush pause packets in Rx FIFO on Yukon-1 1810 * in order to flush pause packets in Rx FIFO on Yukon-1
1811 */ 1811 */
1812 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 1812 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
1813 1813
1814 /* Configure Tx MAC FIFO */ 1814 /* Configure Tx MAC FIFO */
1815 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 1815 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1816 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 1816 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1817 } 1817 }
1818 1818
1819 /* Go into power down mode */ 1819 /* Go into power down mode */
1820 static void yukon_suspend(struct skge_hw *hw, int port) 1820 static void yukon_suspend(struct skge_hw *hw, int port)
1821 { 1821 {
1822 u16 ctrl; 1822 u16 ctrl;
1823 1823
1824 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 1824 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
1825 ctrl |= PHY_M_PC_POL_R_DIS; 1825 ctrl |= PHY_M_PC_POL_R_DIS;
1826 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 1826 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
1827 1827
1828 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1828 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1829 ctrl |= PHY_CT_RESET; 1829 ctrl |= PHY_CT_RESET;
1830 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1830 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1831 1831
1832 /* switch IEEE compatible power down mode on */ 1832 /* switch IEEE compatible power down mode on */
1833 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1833 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1834 ctrl |= PHY_CT_PDOWN; 1834 ctrl |= PHY_CT_PDOWN;
1835 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1835 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1836 } 1836 }
1837 1837
1838 static void yukon_stop(struct skge_port *skge) 1838 static void yukon_stop(struct skge_port *skge)
1839 { 1839 {
1840 struct skge_hw *hw = skge->hw; 1840 struct skge_hw *hw = skge->hw;
1841 int port = skge->port; 1841 int port = skge->port;
1842 1842
1843 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1843 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1844 yukon_reset(hw, port); 1844 yukon_reset(hw, port);
1845 1845
1846 gma_write16(hw, port, GM_GP_CTRL, 1846 gma_write16(hw, port, GM_GP_CTRL,
1847 gma_read16(hw, port, GM_GP_CTRL) 1847 gma_read16(hw, port, GM_GP_CTRL)
1848 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 1848 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
1849 gma_read16(hw, port, GM_GP_CTRL); 1849 gma_read16(hw, port, GM_GP_CTRL);
1850 1850
1851 yukon_suspend(hw, port); 1851 yukon_suspend(hw, port);
1852 1852
1853 /* set GPHY Control reset */ 1853 /* set GPHY Control reset */
1854 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 1854 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
1855 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 1855 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
1856 } 1856 }
1857 1857
1858 static void yukon_get_stats(struct skge_port *skge, u64 *data) 1858 static void yukon_get_stats(struct skge_port *skge, u64 *data)
1859 { 1859 {
1860 struct skge_hw *hw = skge->hw; 1860 struct skge_hw *hw = skge->hw;
1861 int port = skge->port; 1861 int port = skge->port;
1862 int i; 1862 int i;
1863 1863
1864 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 1864 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
1865 | gma_read32(hw, port, GM_TXO_OK_LO); 1865 | gma_read32(hw, port, GM_TXO_OK_LO);
1866 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 1866 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
1867 | gma_read32(hw, port, GM_RXO_OK_LO); 1867 | gma_read32(hw, port, GM_RXO_OK_LO);
1868 1868
1869 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1869 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1870 data[i] = gma_read32(hw, port, 1870 data[i] = gma_read32(hw, port,
1871 skge_stats[i].gma_offset); 1871 skge_stats[i].gma_offset);
1872 } 1872 }
1873 1873
1874 static void yukon_mac_intr(struct skge_hw *hw, int port) 1874 static void yukon_mac_intr(struct skge_hw *hw, int port)
1875 { 1875 {
1876 struct net_device *dev = hw->dev[port]; 1876 struct net_device *dev = hw->dev[port];
1877 struct skge_port *skge = netdev_priv(dev); 1877 struct skge_port *skge = netdev_priv(dev);
1878 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 1878 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
1879 1879
1880 if (netif_msg_intr(skge)) 1880 if (netif_msg_intr(skge))
1881 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n", 1881 printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
1882 dev->name, status); 1882 dev->name, status);
1883 1883
1884 if (status & GM_IS_RX_FF_OR) { 1884 if (status & GM_IS_RX_FF_OR) {
1885 ++skge->net_stats.rx_fifo_errors; 1885 ++skge->net_stats.rx_fifo_errors;
1886 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 1886 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
1887 } 1887 }
1888 1888
1889 if (status & GM_IS_TX_FF_UR) { 1889 if (status & GM_IS_TX_FF_UR) {
1890 ++skge->net_stats.tx_fifo_errors; 1890 ++skge->net_stats.tx_fifo_errors;
1891 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 1891 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
1892 } 1892 }
1893 1893
1894 } 1894 }
1895 1895
1896 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 1896 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1897 { 1897 {
1898 switch (aux & PHY_M_PS_SPEED_MSK) { 1898 switch (aux & PHY_M_PS_SPEED_MSK) {
1899 case PHY_M_PS_SPEED_1000: 1899 case PHY_M_PS_SPEED_1000:
1900 return SPEED_1000; 1900 return SPEED_1000;
1901 case PHY_M_PS_SPEED_100: 1901 case PHY_M_PS_SPEED_100:
1902 return SPEED_100; 1902 return SPEED_100;
1903 default: 1903 default:
1904 return SPEED_10; 1904 return SPEED_10;
1905 } 1905 }
1906 } 1906 }
1907 1907
1908 static void yukon_link_up(struct skge_port *skge) 1908 static void yukon_link_up(struct skge_port *skge)
1909 { 1909 {
1910 struct skge_hw *hw = skge->hw; 1910 struct skge_hw *hw = skge->hw;
1911 int port = skge->port; 1911 int port = skge->port;
1912 u16 reg; 1912 u16 reg;
1913 1913
1914 /* Enable Transmit FIFO Underrun */ 1914 /* Enable Transmit FIFO Underrun */
1915 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 1915 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
1916 1916
1917 reg = gma_read16(hw, port, GM_GP_CTRL); 1917 reg = gma_read16(hw, port, GM_GP_CTRL);
1918 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 1918 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1919 reg |= GM_GPCR_DUP_FULL; 1919 reg |= GM_GPCR_DUP_FULL;
1920 1920
1921 /* enable Rx/Tx */ 1921 /* enable Rx/Tx */
1922 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 1922 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1923 gma_write16(hw, port, GM_GP_CTRL, reg); 1923 gma_write16(hw, port, GM_GP_CTRL, reg);
1924 1924
1925 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 1925 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
1926 skge_link_up(skge); 1926 skge_link_up(skge);
1927 } 1927 }
1928 1928
1929 static void yukon_link_down(struct skge_port *skge) 1929 static void yukon_link_down(struct skge_port *skge)
1930 { 1930 {
1931 struct skge_hw *hw = skge->hw; 1931 struct skge_hw *hw = skge->hw;
1932 int port = skge->port; 1932 int port = skge->port;
1933 u16 ctrl; 1933 u16 ctrl;
1934 1934
1935 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); 1935 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
1936 1936
1937 ctrl = gma_read16(hw, port, GM_GP_CTRL); 1937 ctrl = gma_read16(hw, port, GM_GP_CTRL);
1938 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 1938 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
1939 gma_write16(hw, port, GM_GP_CTRL, ctrl); 1939 gma_write16(hw, port, GM_GP_CTRL, ctrl);
1940 1940
1941 if (skge->flow_control == FLOW_MODE_REM_SEND) { 1941 if (skge->flow_control == FLOW_MODE_REM_SEND) {
1942 /* restore Asymmetric Pause bit */ 1942 /* restore Asymmetric Pause bit */
1943 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 1943 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
1944 gm_phy_read(hw, port, 1944 gm_phy_read(hw, port,
1945 PHY_MARV_AUNE_ADV) 1945 PHY_MARV_AUNE_ADV)
1946 | PHY_M_AN_ASP); 1946 | PHY_M_AN_ASP);
1947 1947
1948 } 1948 }
1949 1949
1950 yukon_reset(hw, port); 1950 yukon_reset(hw, port);
1951 skge_link_down(skge); 1951 skge_link_down(skge);
1952 1952
1953 yukon_init(hw, port); 1953 yukon_init(hw, port);
1954 } 1954 }
1955 1955
1956 static void yukon_phy_intr(struct skge_port *skge) 1956 static void yukon_phy_intr(struct skge_port *skge)
1957 { 1957 {
1958 struct skge_hw *hw = skge->hw; 1958 struct skge_hw *hw = skge->hw;
1959 int port = skge->port; 1959 int port = skge->port;
1960 const char *reason = NULL; 1960 const char *reason = NULL;
1961 u16 istatus, phystat; 1961 u16 istatus, phystat;
1962 1962
1963 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 1963 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
1964 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 1964 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
1965 1965
1966 if (netif_msg_intr(skge)) 1966 if (netif_msg_intr(skge))
1967 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n", 1967 printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
1968 skge->netdev->name, istatus, phystat); 1968 skge->netdev->name, istatus, phystat);
1969 1969
1970 if (istatus & PHY_M_IS_AN_COMPL) { 1970 if (istatus & PHY_M_IS_AN_COMPL) {
1971 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 1971 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
1972 & PHY_M_AN_RF) { 1972 & PHY_M_AN_RF) {
1973 reason = "remote fault"; 1973 reason = "remote fault";
1974 goto failed; 1974 goto failed;
1975 } 1975 }
1976 1976
1977 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 1977 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
1978 reason = "master/slave fault"; 1978 reason = "master/slave fault";
1979 goto failed; 1979 goto failed;
1980 } 1980 }
1981 1981
1982 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 1982 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
1983 reason = "speed/duplex"; 1983 reason = "speed/duplex";
1984 goto failed; 1984 goto failed;
1985 } 1985 }
1986 1986
1987 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 1987 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
1988 ? DUPLEX_FULL : DUPLEX_HALF; 1988 ? DUPLEX_FULL : DUPLEX_HALF;
1989 skge->speed = yukon_speed(hw, phystat); 1989 skge->speed = yukon_speed(hw, phystat);
1990 1990
1991 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1991 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1992 switch (phystat & PHY_M_PS_PAUSE_MSK) { 1992 switch (phystat & PHY_M_PS_PAUSE_MSK) {
1993 case PHY_M_PS_PAUSE_MSK: 1993 case PHY_M_PS_PAUSE_MSK:
1994 skge->flow_control = FLOW_MODE_SYMMETRIC; 1994 skge->flow_control = FLOW_MODE_SYMMETRIC;
1995 break; 1995 break;
1996 case PHY_M_PS_RX_P_EN: 1996 case PHY_M_PS_RX_P_EN:
1997 skge->flow_control = FLOW_MODE_REM_SEND; 1997 skge->flow_control = FLOW_MODE_REM_SEND;
1998 break; 1998 break;
1999 case PHY_M_PS_TX_P_EN: 1999 case PHY_M_PS_TX_P_EN:
2000 skge->flow_control = FLOW_MODE_LOC_SEND; 2000 skge->flow_control = FLOW_MODE_LOC_SEND;
2001 break; 2001 break;
2002 default: 2002 default:
2003 skge->flow_control = FLOW_MODE_NONE; 2003 skge->flow_control = FLOW_MODE_NONE;
2004 } 2004 }
2005 2005
2006 if (skge->flow_control == FLOW_MODE_NONE || 2006 if (skge->flow_control == FLOW_MODE_NONE ||
2007 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2007 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2008 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2008 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2009 else 2009 else
2010 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2010 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2011 yukon_link_up(skge); 2011 yukon_link_up(skge);
2012 return; 2012 return;
2013 } 2013 }
2014 2014
2015 if (istatus & PHY_M_IS_LSP_CHANGE) 2015 if (istatus & PHY_M_IS_LSP_CHANGE)
2016 skge->speed = yukon_speed(hw, phystat); 2016 skge->speed = yukon_speed(hw, phystat);
2017 2017
2018 if (istatus & PHY_M_IS_DUP_CHANGE) 2018 if (istatus & PHY_M_IS_DUP_CHANGE)
2019 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2019 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2020 if (istatus & PHY_M_IS_LST_CHANGE) { 2020 if (istatus & PHY_M_IS_LST_CHANGE) {
2021 if (phystat & PHY_M_PS_LINK_UP) 2021 if (phystat & PHY_M_PS_LINK_UP)
2022 yukon_link_up(skge); 2022 yukon_link_up(skge);
2023 else 2023 else
2024 yukon_link_down(skge); 2024 yukon_link_down(skge);
2025 } 2025 }
2026 return; 2026 return;
2027 failed: 2027 failed:
2028 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n", 2028 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2029 skge->netdev->name, reason); 2029 skge->netdev->name, reason);
2030 2030
2031 /* XXX restart autonegotiation? */ 2031 /* XXX restart autonegotiation? */
2032 } 2032 }
2033 2033
2034 static void skge_phy_reset(struct skge_port *skge) 2034 static void skge_phy_reset(struct skge_port *skge)
2035 { 2035 {
2036 struct skge_hw *hw = skge->hw; 2036 struct skge_hw *hw = skge->hw;
2037 int port = skge->port; 2037 int port = skge->port;
2038 2038
2039 netif_stop_queue(skge->netdev); 2039 netif_stop_queue(skge->netdev);
2040 netif_carrier_off(skge->netdev); 2040 netif_carrier_off(skge->netdev);
2041 2041
2042 spin_lock_bh(&hw->phy_lock); 2042 spin_lock_bh(&hw->phy_lock);
2043 if (hw->chip_id == CHIP_ID_GENESIS) { 2043 if (hw->chip_id == CHIP_ID_GENESIS) {
2044 genesis_reset(hw, port); 2044 genesis_reset(hw, port);
2045 genesis_mac_init(hw, port); 2045 genesis_mac_init(hw, port);
2046 } else { 2046 } else {
2047 yukon_reset(hw, port); 2047 yukon_reset(hw, port);
2048 yukon_init(hw, port); 2048 yukon_init(hw, port);
2049 } 2049 }
2050 spin_unlock_bh(&hw->phy_lock); 2050 spin_unlock_bh(&hw->phy_lock);
2051 } 2051 }
2052 2052
2053 /* Basic MII support */ 2053 /* Basic MII support */
2054 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2054 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2055 { 2055 {
2056 struct mii_ioctl_data *data = if_mii(ifr); 2056 struct mii_ioctl_data *data = if_mii(ifr);
2057 struct skge_port *skge = netdev_priv(dev); 2057 struct skge_port *skge = netdev_priv(dev);
2058 struct skge_hw *hw = skge->hw; 2058 struct skge_hw *hw = skge->hw;
2059 int err = -EOPNOTSUPP; 2059 int err = -EOPNOTSUPP;
2060 2060
2061 if (!netif_running(dev)) 2061 if (!netif_running(dev))
2062 return -ENODEV; /* Phy still in reset */ 2062 return -ENODEV; /* Phy still in reset */
2063 2063
2064 switch(cmd) { 2064 switch(cmd) {
2065 case SIOCGMIIPHY: 2065 case SIOCGMIIPHY:
2066 data->phy_id = hw->phy_addr; 2066 data->phy_id = hw->phy_addr;
2067 2067
2068 /* fallthru */ 2068 /* fallthru */
2069 case SIOCGMIIREG: { 2069 case SIOCGMIIREG: {
2070 u16 val = 0; 2070 u16 val = 0;
2071 spin_lock_bh(&hw->phy_lock); 2071 spin_lock_bh(&hw->phy_lock);
2072 if (hw->chip_id == CHIP_ID_GENESIS) 2072 if (hw->chip_id == CHIP_ID_GENESIS)
2073 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2073 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2074 else 2074 else
2075 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2075 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2076 spin_unlock_bh(&hw->phy_lock); 2076 spin_unlock_bh(&hw->phy_lock);
2077 data->val_out = val; 2077 data->val_out = val;
2078 break; 2078 break;
2079 } 2079 }
2080 2080
2081 case SIOCSMIIREG: 2081 case SIOCSMIIREG:
2082 if (!capable(CAP_NET_ADMIN)) 2082 if (!capable(CAP_NET_ADMIN))
2083 return -EPERM; 2083 return -EPERM;
2084 2084
2085 spin_lock_bh(&hw->phy_lock); 2085 spin_lock_bh(&hw->phy_lock);
2086 if (hw->chip_id == CHIP_ID_GENESIS) 2086 if (hw->chip_id == CHIP_ID_GENESIS)
2087 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2087 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2088 data->val_in); 2088 data->val_in);
2089 else 2089 else
2090 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2090 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2091 data->val_in); 2091 data->val_in);
2092 spin_unlock_bh(&hw->phy_lock); 2092 spin_unlock_bh(&hw->phy_lock);
2093 break; 2093 break;
2094 } 2094 }
2095 return err; 2095 return err;
2096 } 2096 }
2097 2097
2098 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2098 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2099 { 2099 {
2100 u32 end; 2100 u32 end;
2101 2101
2102 start /= 8; 2102 start /= 8;
2103 len /= 8; 2103 len /= 8;
2104 end = start + len - 1; 2104 end = start + len - 1;
2105 2105
2106 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2106 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2107 skge_write32(hw, RB_ADDR(q, RB_START), start); 2107 skge_write32(hw, RB_ADDR(q, RB_START), start);
2108 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2108 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2109 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2109 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2110 skge_write32(hw, RB_ADDR(q, RB_END), end); 2110 skge_write32(hw, RB_ADDR(q, RB_END), end);
2111 2111
2112 if (q == Q_R1 || q == Q_R2) { 2112 if (q == Q_R1 || q == Q_R2) {
2113 /* Set thresholds on receive queue's */ 2113 /* Set thresholds on receive queue's */
2114 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2114 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2115 start + (2*len)/3); 2115 start + (2*len)/3);
2116 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2116 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2117 start + (len/3)); 2117 start + (len/3));
2118 } else { 2118 } else {
2119 /* Enable store & forward on Tx queue's because 2119 /* Enable store & forward on Tx queue's because
2120 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2120 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2121 */ 2121 */
2122 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2122 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2123 } 2123 }
2124 2124
2125 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2125 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2126 } 2126 }
2127 2127
2128 /* Setup Bus Memory Interface */ 2128 /* Setup Bus Memory Interface */
2129 static void skge_qset(struct skge_port *skge, u16 q, 2129 static void skge_qset(struct skge_port *skge, u16 q,
2130 const struct skge_element *e) 2130 const struct skge_element *e)
2131 { 2131 {
2132 struct skge_hw *hw = skge->hw; 2132 struct skge_hw *hw = skge->hw;
2133 u32 watermark = 0x600; 2133 u32 watermark = 0x600;
2134 u64 base = skge->dma + (e->desc - skge->mem); 2134 u64 base = skge->dma + (e->desc - skge->mem);
2135 2135
2136 /* optimization to reduce window on 32bit/33mhz */ 2136 /* optimization to reduce window on 32bit/33mhz */
2137 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2137 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2138 watermark /= 2; 2138 watermark /= 2;
2139 2139
2140 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2140 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2141 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2141 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2142 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2142 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2143 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2143 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2144 } 2144 }
2145 2145
2146 static int skge_up(struct net_device *dev) 2146 static int skge_up(struct net_device *dev)
2147 { 2147 {
2148 struct skge_port *skge = netdev_priv(dev); 2148 struct skge_port *skge = netdev_priv(dev);
2149 struct skge_hw *hw = skge->hw; 2149 struct skge_hw *hw = skge->hw;
2150 int port = skge->port; 2150 int port = skge->port;
2151 u32 chunk, ram_addr; 2151 u32 chunk, ram_addr;
2152 size_t rx_size, tx_size; 2152 size_t rx_size, tx_size;
2153 int err; 2153 int err;
2154 2154
2155 if (netif_msg_ifup(skge)) 2155 if (netif_msg_ifup(skge))
2156 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); 2156 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2157 2157
2158 if (dev->mtu > RX_BUF_SIZE) 2158 if (dev->mtu > RX_BUF_SIZE)
2159 skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN; 2159 skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
2160 else 2160 else
2161 skge->rx_buf_size = RX_BUF_SIZE; 2161 skge->rx_buf_size = RX_BUF_SIZE;
2162 2162
2163 2163
2164 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2164 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2165 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2165 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2166 skge->mem_size = tx_size + rx_size; 2166 skge->mem_size = tx_size + rx_size;
2167 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2167 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2168 if (!skge->mem) 2168 if (!skge->mem)
2169 return -ENOMEM; 2169 return -ENOMEM;
2170 2170
2171 BUG_ON(skge->dma & 7); 2171 BUG_ON(skge->dma & 7);
2172 2172
2173 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { 2173 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2174 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n"); 2174 printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
2175 err = -EINVAL; 2175 err = -EINVAL;
2176 goto free_pci_mem; 2176 goto free_pci_mem;
2177 } 2177 }
2178 2178
2179 memset(skge->mem, 0, skge->mem_size); 2179 memset(skge->mem, 0, skge->mem_size);
2180 2180
2181 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma))) 2181 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
2182 goto free_pci_mem; 2182 goto free_pci_mem;
2183 2183
2184 err = skge_rx_fill(skge); 2184 err = skge_rx_fill(skge);
2185 if (err) 2185 if (err)
2186 goto free_rx_ring; 2186 goto free_rx_ring;
2187 2187
2188 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2188 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2189 skge->dma + rx_size))) 2189 skge->dma + rx_size)))
2190 goto free_rx_ring; 2190 goto free_rx_ring;
2191 2191
2192 skge->tx_avail = skge->tx_ring.count - 1; 2192 skge->tx_avail = skge->tx_ring.count - 1;
2193 2193
2194 /* Initialize MAC */ 2194 /* Initialize MAC */
2195 spin_lock_bh(&hw->phy_lock); 2195 spin_lock_bh(&hw->phy_lock);
2196 if (hw->chip_id == CHIP_ID_GENESIS) 2196 if (hw->chip_id == CHIP_ID_GENESIS)
2197 genesis_mac_init(hw, port); 2197 genesis_mac_init(hw, port);
2198 else 2198 else
2199 yukon_mac_init(hw, port); 2199 yukon_mac_init(hw, port);
2200 spin_unlock_bh(&hw->phy_lock); 2200 spin_unlock_bh(&hw->phy_lock);
2201 2201
2202 /* Configure RAMbuffers */ 2202 /* Configure RAMbuffers */
2203 chunk = hw->ram_size / ((hw->ports + 1)*2); 2203 chunk = hw->ram_size / ((hw->ports + 1)*2);
2204 ram_addr = hw->ram_offset + 2 * chunk * port; 2204 ram_addr = hw->ram_offset + 2 * chunk * port;
2205 2205
2206 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2206 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2207 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2207 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2208 2208
2209 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2209 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2210 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2210 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2211 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2211 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2212 2212
2213 /* Start receiver BMU */ 2213 /* Start receiver BMU */
2214 wmb(); 2214 wmb();
2215 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2215 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2216 skge_led(skge, LED_MODE_ON); 2216 skge_led(skge, LED_MODE_ON);
2217 2217
2218 return 0; 2218 return 0;
2219 2219
2220 free_rx_ring: 2220 free_rx_ring:
2221 skge_rx_clean(skge); 2221 skge_rx_clean(skge);
2222 kfree(skge->rx_ring.start); 2222 kfree(skge->rx_ring.start);
2223 free_pci_mem: 2223 free_pci_mem:
2224 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2224 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2225 skge->mem = NULL; 2225 skge->mem = NULL;
2226 2226
2227 return err; 2227 return err;
2228 } 2228 }
2229 2229
2230 static int skge_down(struct net_device *dev) 2230 static int skge_down(struct net_device *dev)
2231 { 2231 {
2232 struct skge_port *skge = netdev_priv(dev); 2232 struct skge_port *skge = netdev_priv(dev);
2233 struct skge_hw *hw = skge->hw; 2233 struct skge_hw *hw = skge->hw;
2234 int port = skge->port; 2234 int port = skge->port;
2235 2235
2236 if (skge->mem == NULL) 2236 if (skge->mem == NULL)
2237 return 0; 2237 return 0;
2238 2238
2239 if (netif_msg_ifdown(skge)) 2239 if (netif_msg_ifdown(skge))
2240 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); 2240 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2241 2241
2242 netif_stop_queue(dev); 2242 netif_stop_queue(dev);
2243 2243
2244 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 2244 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2245 if (hw->chip_id == CHIP_ID_GENESIS) 2245 if (hw->chip_id == CHIP_ID_GENESIS)
2246 genesis_stop(skge); 2246 genesis_stop(skge);
2247 else 2247 else
2248 yukon_stop(skge); 2248 yukon_stop(skge);
2249 2249
2250 /* Stop transmitter */ 2250 /* Stop transmitter */
2251 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2251 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2252 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2252 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2253 RB_RST_SET|RB_DIS_OP_MD); 2253 RB_RST_SET|RB_DIS_OP_MD);
2254 2254
2255 2255
2256 /* Disable Force Sync bit and Enable Alloc bit */ 2256 /* Disable Force Sync bit and Enable Alloc bit */
2257 skge_write8(hw, SK_REG(port, TXA_CTRL), 2257 skge_write8(hw, SK_REG(port, TXA_CTRL),
2258 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2258 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2259 2259
2260 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2260 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2261 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2261 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2262 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2262 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2263 2263
2264 /* Reset PCI FIFO */ 2264 /* Reset PCI FIFO */
2265 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2265 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2266 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2266 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2267 2267
2268 /* Reset the RAM Buffer async Tx queue */ 2268 /* Reset the RAM Buffer async Tx queue */
2269 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2269 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2270 /* stop receiver */ 2270 /* stop receiver */
2271 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2271 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2272 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2272 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2273 RB_RST_SET|RB_DIS_OP_MD); 2273 RB_RST_SET|RB_DIS_OP_MD);
2274 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2274 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2275 2275
2276 if (hw->chip_id == CHIP_ID_GENESIS) { 2276 if (hw->chip_id == CHIP_ID_GENESIS) {
2277 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2277 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2278 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2278 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2279 } else { 2279 } else {
2280 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2280 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2281 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2281 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2282 } 2282 }
2283 2283
2284 skge_led(skge, LED_MODE_OFF); 2284 skge_led(skge, LED_MODE_OFF);
2285 2285
2286 skge_tx_clean(skge); 2286 skge_tx_clean(skge);
2287 skge_rx_clean(skge); 2287 skge_rx_clean(skge);
2288 2288
2289 kfree(skge->rx_ring.start); 2289 kfree(skge->rx_ring.start);
2290 kfree(skge->tx_ring.start); 2290 kfree(skge->tx_ring.start);
2291 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2291 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2292 skge->mem = NULL; 2292 skge->mem = NULL;
2293 return 0; 2293 return 0;
2294 } 2294 }
2295 2295
2296 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev) 2296 static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2297 { 2297 {
2298 struct skge_port *skge = netdev_priv(dev); 2298 struct skge_port *skge = netdev_priv(dev);
2299 struct skge_hw *hw = skge->hw; 2299 struct skge_hw *hw = skge->hw;
2300 struct skge_ring *ring = &skge->tx_ring; 2300 struct skge_ring *ring = &skge->tx_ring;
2301 struct skge_element *e; 2301 struct skge_element *e;
2302 struct skge_tx_desc *td; 2302 struct skge_tx_desc *td;
2303 int i; 2303 int i;
2304 u32 control, len; 2304 u32 control, len;
2305 u64 map; 2305 u64 map;
2306 2306
2307 skb = skb_padto(skb, ETH_ZLEN); 2307 skb = skb_padto(skb, ETH_ZLEN);
2308 if (!skb) 2308 if (!skb)
2309 return NETDEV_TX_OK; 2309 return NETDEV_TX_OK;
2310 2310
2311 if (!spin_trylock(&skge->tx_lock)) { 2311 if (!spin_trylock(&skge->tx_lock)) {
2312 /* Collision - tell upper layer to requeue */ 2312 /* Collision - tell upper layer to requeue */
2313 return NETDEV_TX_LOCKED; 2313 return NETDEV_TX_LOCKED;
2314 } 2314 }
2315 2315
2316 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) { 2316 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
2317 if (!netif_queue_stopped(dev)) { 2317 if (!netif_queue_stopped(dev)) {
2318 netif_stop_queue(dev); 2318 netif_stop_queue(dev);
2319 2319
2320 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n", 2320 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2321 dev->name); 2321 dev->name);
2322 } 2322 }
2323 spin_unlock(&skge->tx_lock); 2323 spin_unlock(&skge->tx_lock);
2324 return NETDEV_TX_BUSY; 2324 return NETDEV_TX_BUSY;
2325 } 2325 }
2326 2326
2327 e = ring->to_use; 2327 e = ring->to_use;
2328 td = e->desc; 2328 td = e->desc;
2329 e->skb = skb; 2329 e->skb = skb;
2330 len = skb_headlen(skb); 2330 len = skb_headlen(skb);
2331 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2331 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2332 pci_unmap_addr_set(e, mapaddr, map); 2332 pci_unmap_addr_set(e, mapaddr, map);
2333 pci_unmap_len_set(e, maplen, len); 2333 pci_unmap_len_set(e, maplen, len);
2334 2334
2335 td->dma_lo = map; 2335 td->dma_lo = map;
2336 td->dma_hi = map >> 32; 2336 td->dma_hi = map >> 32;
2337 2337
2338 if (skb->ip_summed == CHECKSUM_HW) { 2338 if (skb->ip_summed == CHECKSUM_HW) {
2339 int offset = skb->h.raw - skb->data; 2339 int offset = skb->h.raw - skb->data;
2340 2340
2341 /* This seems backwards, but it is what the sk98lin 2341 /* This seems backwards, but it is what the sk98lin
2342 * does. Looks like hardware is wrong? 2342 * does. Looks like hardware is wrong?
2343 */ 2343 */
2344 if (skb->h.ipiph->protocol == IPPROTO_UDP 2344 if (skb->h.ipiph->protocol == IPPROTO_UDP
2345 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2345 && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2346 control = BMU_TCP_CHECK; 2346 control = BMU_TCP_CHECK;
2347 else 2347 else
2348 control = BMU_UDP_CHECK; 2348 control = BMU_UDP_CHECK;
2349 2349
2350 td->csum_offs = 0; 2350 td->csum_offs = 0;
2351 td->csum_start = offset; 2351 td->csum_start = offset;
2352 td->csum_write = offset + skb->csum; 2352 td->csum_write = offset + skb->csum;
2353 } else 2353 } else
2354 control = BMU_CHECK; 2354 control = BMU_CHECK;
2355 2355
2356 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2356 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2357 control |= BMU_EOF| BMU_IRQ_EOF; 2357 control |= BMU_EOF| BMU_IRQ_EOF;
2358 else { 2358 else {
2359 struct skge_tx_desc *tf = td; 2359 struct skge_tx_desc *tf = td;
2360 2360
2361 control |= BMU_STFWD; 2361 control |= BMU_STFWD;
2362 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2362 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2363 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2363 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2364 2364
2365 map = pci_map_page(hw->pdev, frag->page, frag->page_offset, 2365 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2366 frag->size, PCI_DMA_TODEVICE); 2366 frag->size, PCI_DMA_TODEVICE);
2367 2367
2368 e = e->next; 2368 e = e->next;
2369 e->skb = NULL; 2369 e->skb = NULL;
2370 tf = e->desc; 2370 tf = e->desc;
2371 tf->dma_lo = map; 2371 tf->dma_lo = map;
2372 tf->dma_hi = (u64) map >> 32; 2372 tf->dma_hi = (u64) map >> 32;
2373 pci_unmap_addr_set(e, mapaddr, map); 2373 pci_unmap_addr_set(e, mapaddr, map);
2374 pci_unmap_len_set(e, maplen, frag->size); 2374 pci_unmap_len_set(e, maplen, frag->size);
2375 2375
2376 tf->control = BMU_OWN | BMU_SW | control | frag->size; 2376 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2377 } 2377 }
2378 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2378 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2379 } 2379 }
2380 /* Make sure all the descriptors written */ 2380 /* Make sure all the descriptors written */
2381 wmb(); 2381 wmb();
2382 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2382 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2383 wmb(); 2383 wmb();
2384 2384
2385 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2385 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2386 2386
2387 if (netif_msg_tx_queued(skge)) 2387 if (netif_msg_tx_queued(skge))
2388 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n", 2388 printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
2389 dev->name, e - ring->start, skb->len); 2389 dev->name, e - ring->start, skb->len);
2390 2390
2391 ring->to_use = e->next; 2391 ring->to_use = e->next;
2392 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1; 2392 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
2393 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) { 2393 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
2394 pr_debug("%s: transmit queue full\n", dev->name); 2394 pr_debug("%s: transmit queue full\n", dev->name);
2395 netif_stop_queue(dev); 2395 netif_stop_queue(dev);
2396 } 2396 }
2397 2397
2398 dev->trans_start = jiffies; 2398 dev->trans_start = jiffies;
2399 spin_unlock(&skge->tx_lock); 2399 spin_unlock(&skge->tx_lock);
2400 2400
2401 return NETDEV_TX_OK; 2401 return NETDEV_TX_OK;
2402 } 2402 }
2403 2403
2404 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e) 2404 static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
2405 { 2405 {
2406 /* This ring element can be skb or fragment */ 2406 /* This ring element can be skb or fragment */
2407 if (e->skb) { 2407 if (e->skb) {
2408 pci_unmap_single(hw->pdev, 2408 pci_unmap_single(hw->pdev,
2409 pci_unmap_addr(e, mapaddr), 2409 pci_unmap_addr(e, mapaddr),
2410 pci_unmap_len(e, maplen), 2410 pci_unmap_len(e, maplen),
2411 PCI_DMA_TODEVICE); 2411 PCI_DMA_TODEVICE);
2412 dev_kfree_skb(e->skb); 2412 dev_kfree_skb(e->skb);
2413 e->skb = NULL; 2413 e->skb = NULL;
2414 } else { 2414 } else {
2415 pci_unmap_page(hw->pdev, 2415 pci_unmap_page(hw->pdev,
2416 pci_unmap_addr(e, mapaddr), 2416 pci_unmap_addr(e, mapaddr),
2417 pci_unmap_len(e, maplen), 2417 pci_unmap_len(e, maplen),
2418 PCI_DMA_TODEVICE); 2418 PCI_DMA_TODEVICE);
2419 } 2419 }
2420 } 2420 }
2421 2421
2422 static void skge_tx_clean(struct skge_port *skge) 2422 static void skge_tx_clean(struct skge_port *skge)
2423 { 2423 {
2424 struct skge_ring *ring = &skge->tx_ring; 2424 struct skge_ring *ring = &skge->tx_ring;
2425 struct skge_element *e; 2425 struct skge_element *e;
2426 2426
2427 spin_lock_bh(&skge->tx_lock); 2427 spin_lock_bh(&skge->tx_lock);
2428 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 2428 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2429 ++skge->tx_avail; 2429 ++skge->tx_avail;
2430 skge_tx_free(skge->hw, e); 2430 skge_tx_free(skge->hw, e);
2431 } 2431 }
2432 ring->to_clean = e; 2432 ring->to_clean = e;
2433 spin_unlock_bh(&skge->tx_lock); 2433 spin_unlock_bh(&skge->tx_lock);
2434 } 2434 }
2435 2435
2436 static void skge_tx_timeout(struct net_device *dev) 2436 static void skge_tx_timeout(struct net_device *dev)
2437 { 2437 {
2438 struct skge_port *skge = netdev_priv(dev); 2438 struct skge_port *skge = netdev_priv(dev);
2439 2439
2440 if (netif_msg_timer(skge)) 2440 if (netif_msg_timer(skge))
2441 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name); 2441 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2442 2442
2443 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2443 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2444 skge_tx_clean(skge); 2444 skge_tx_clean(skge);
2445 } 2445 }
2446 2446
2447 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2447 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2448 { 2448 {
2449 int err; 2449 int err;
2450 2450
2451 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) 2451 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2452 return -EINVAL; 2452 return -EINVAL;
2453 2453
2454 if (!netif_running(dev)) { 2454 if (!netif_running(dev)) {
2455 dev->mtu = new_mtu; 2455 dev->mtu = new_mtu;
2456 return 0; 2456 return 0;
2457 } 2457 }
2458 2458
2459 skge_down(dev); 2459 skge_down(dev);
2460 2460
2461 dev->mtu = new_mtu; 2461 dev->mtu = new_mtu;
2462 2462
2463 err = skge_up(dev); 2463 err = skge_up(dev);
2464 if (err) 2464 if (err)
2465 dev_close(dev); 2465 dev_close(dev);
2466 2466
2467 return err; 2467 return err;
2468 } 2468 }
2469 2469
2470 static void genesis_set_multicast(struct net_device *dev) 2470 static void genesis_set_multicast(struct net_device *dev)
2471 { 2471 {
2472 struct skge_port *skge = netdev_priv(dev); 2472 struct skge_port *skge = netdev_priv(dev);
2473 struct skge_hw *hw = skge->hw; 2473 struct skge_hw *hw = skge->hw;
2474 int port = skge->port; 2474 int port = skge->port;
2475 int i, count = dev->mc_count; 2475 int i, count = dev->mc_count;
2476 struct dev_mc_list *list = dev->mc_list; 2476 struct dev_mc_list *list = dev->mc_list;
2477 u32 mode; 2477 u32 mode;
2478 u8 filter[8]; 2478 u8 filter[8];
2479 2479
2480 mode = xm_read32(hw, port, XM_MODE); 2480 mode = xm_read32(hw, port, XM_MODE);
2481 mode |= XM_MD_ENA_HASH; 2481 mode |= XM_MD_ENA_HASH;
2482 if (dev->flags & IFF_PROMISC) 2482 if (dev->flags & IFF_PROMISC)
2483 mode |= XM_MD_ENA_PROM; 2483 mode |= XM_MD_ENA_PROM;
2484 else 2484 else
2485 mode &= ~XM_MD_ENA_PROM; 2485 mode &= ~XM_MD_ENA_PROM;
2486 2486
2487 if (dev->flags & IFF_ALLMULTI) 2487 if (dev->flags & IFF_ALLMULTI)
2488 memset(filter, 0xff, sizeof(filter)); 2488 memset(filter, 0xff, sizeof(filter));
2489 else { 2489 else {
2490 memset(filter, 0, sizeof(filter)); 2490 memset(filter, 0, sizeof(filter));
2491 for (i = 0; list && i < count; i++, list = list->next) { 2491 for (i = 0; list && i < count; i++, list = list->next) {
2492 u32 crc, bit; 2492 u32 crc, bit;
2493 crc = ether_crc_le(ETH_ALEN, list->dmi_addr); 2493 crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
2494 bit = ~crc & 0x3f; 2494 bit = ~crc & 0x3f;
2495 filter[bit/8] |= 1 << (bit%8); 2495 filter[bit/8] |= 1 << (bit%8);
2496 } 2496 }
2497 } 2497 }
2498 2498
2499 xm_write32(hw, port, XM_MODE, mode); 2499 xm_write32(hw, port, XM_MODE, mode);
2500 xm_outhash(hw, port, XM_HSM, filter); 2500 xm_outhash(hw, port, XM_HSM, filter);
2501 } 2501 }
2502 2502
2503 static void yukon_set_multicast(struct net_device *dev) 2503 static void yukon_set_multicast(struct net_device *dev)
2504 { 2504 {
2505 struct skge_port *skge = netdev_priv(dev); 2505 struct skge_port *skge = netdev_priv(dev);
2506 struct skge_hw *hw = skge->hw; 2506 struct skge_hw *hw = skge->hw;
2507 int port = skge->port; 2507 int port = skge->port;
2508 struct dev_mc_list *list = dev->mc_list; 2508 struct dev_mc_list *list = dev->mc_list;
2509 u16 reg; 2509 u16 reg;
2510 u8 filter[8]; 2510 u8 filter[8];
2511 2511
2512 memset(filter, 0, sizeof(filter)); 2512 memset(filter, 0, sizeof(filter));
2513 2513
2514 reg = gma_read16(hw, port, GM_RX_CTRL); 2514 reg = gma_read16(hw, port, GM_RX_CTRL);
2515 reg |= GM_RXCR_UCF_ENA; 2515 reg |= GM_RXCR_UCF_ENA;
2516 2516
2517 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2517 if (dev->flags & IFF_PROMISC) /* promiscuous */
2518 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2518 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2519 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2519 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2520 memset(filter, 0xff, sizeof(filter)); 2520 memset(filter, 0xff, sizeof(filter));
2521 else if (dev->mc_count == 0) /* no multicast */ 2521 else if (dev->mc_count == 0) /* no multicast */
2522 reg &= ~GM_RXCR_MCF_ENA; 2522 reg &= ~GM_RXCR_MCF_ENA;
2523 else { 2523 else {
2524 int i; 2524 int i;
2525 reg |= GM_RXCR_MCF_ENA; 2525 reg |= GM_RXCR_MCF_ENA;
2526 2526
2527 for (i = 0; list && i < dev->mc_count; i++, list = list->next) { 2527 for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
2528 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f; 2528 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2529 filter[bit/8] |= 1 << (bit%8); 2529 filter[bit/8] |= 1 << (bit%8);
2530 } 2530 }
2531 } 2531 }
2532 2532
2533 2533
2534 gma_write16(hw, port, GM_MC_ADDR_H1, 2534 gma_write16(hw, port, GM_MC_ADDR_H1,
2535 (u16)filter[0] | ((u16)filter[1] << 8)); 2535 (u16)filter[0] | ((u16)filter[1] << 8));
2536 gma_write16(hw, port, GM_MC_ADDR_H2, 2536 gma_write16(hw, port, GM_MC_ADDR_H2,
2537 (u16)filter[2] | ((u16)filter[3] << 8)); 2537 (u16)filter[2] | ((u16)filter[3] << 8));
2538 gma_write16(hw, port, GM_MC_ADDR_H3, 2538 gma_write16(hw, port, GM_MC_ADDR_H3,
2539 (u16)filter[4] | ((u16)filter[5] << 8)); 2539 (u16)filter[4] | ((u16)filter[5] << 8));
2540 gma_write16(hw, port, GM_MC_ADDR_H4, 2540 gma_write16(hw, port, GM_MC_ADDR_H4,
2541 (u16)filter[6] | ((u16)filter[7] << 8)); 2541 (u16)filter[6] | ((u16)filter[7] << 8));
2542 2542
2543 gma_write16(hw, port, GM_RX_CTRL, reg); 2543 gma_write16(hw, port, GM_RX_CTRL, reg);
2544 } 2544 }
2545 2545
2546 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 2546 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2547 { 2547 {
2548 if (hw->chip_id == CHIP_ID_GENESIS) 2548 if (hw->chip_id == CHIP_ID_GENESIS)
2549 return status >> XMR_FS_LEN_SHIFT; 2549 return status >> XMR_FS_LEN_SHIFT;
2550 else 2550 else
2551 return status >> GMR_FS_LEN_SHIFT; 2551 return status >> GMR_FS_LEN_SHIFT;
2552 } 2552 }
2553 2553
2554 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 2554 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2555 { 2555 {
2556 if (hw->chip_id == CHIP_ID_GENESIS) 2556 if (hw->chip_id == CHIP_ID_GENESIS)
2557 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 2557 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2558 else 2558 else
2559 return (status & GMR_FS_ANY_ERR) || 2559 return (status & GMR_FS_ANY_ERR) ||
2560 (status & GMR_FS_RX_OK) == 0; 2560 (status & GMR_FS_RX_OK) == 0;
2561 } 2561 }
2562 2562
2563 2563
2564 /* Get receive buffer from descriptor. 2564 /* Get receive buffer from descriptor.
2565 * Handles copy of small buffers and reallocation failures 2565 * Handles copy of small buffers and reallocation failures
2566 */ 2566 */
2567 static inline struct sk_buff *skge_rx_get(struct skge_port *skge, 2567 static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
2568 struct skge_element *e, 2568 struct skge_element *e,
2569 u32 control, u32 status, u16 csum) 2569 u32 control, u32 status, u16 csum)
2570 { 2570 {
2571 struct sk_buff *skb; 2571 struct sk_buff *skb;
2572 u16 len = control & BMU_BBC; 2572 u16 len = control & BMU_BBC;
2573 2573
2574 if (unlikely(netif_msg_rx_status(skge))) 2574 if (unlikely(netif_msg_rx_status(skge)))
2575 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n", 2575 printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
2576 skge->netdev->name, e - skge->rx_ring.start, 2576 skge->netdev->name, e - skge->rx_ring.start,
2577 status, len); 2577 status, len);
2578 2578
2579 if (len > skge->rx_buf_size) 2579 if (len > skge->rx_buf_size)
2580 goto error; 2580 goto error;
2581 2581
2582 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 2582 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
2583 goto error; 2583 goto error;
2584 2584
2585 if (bad_phy_status(skge->hw, status)) 2585 if (bad_phy_status(skge->hw, status))
2586 goto error; 2586 goto error;
2587 2587
2588 if (phy_length(skge->hw, status) != len) 2588 if (phy_length(skge->hw, status) != len)
2589 goto error; 2589 goto error;
2590 2590
2591 if (len < RX_COPY_THRESHOLD) { 2591 if (len < RX_COPY_THRESHOLD) {
2592 skb = dev_alloc_skb(len + 2); 2592 skb = dev_alloc_skb(len + 2);
2593 if (!skb) 2593 if (!skb)
2594 goto resubmit; 2594 goto resubmit;
2595 2595
2596 skb_reserve(skb, 2); 2596 skb_reserve(skb, 2);
2597 pci_dma_sync_single_for_cpu(skge->hw->pdev, 2597 pci_dma_sync_single_for_cpu(skge->hw->pdev,
2598 pci_unmap_addr(e, mapaddr), 2598 pci_unmap_addr(e, mapaddr),
2599 len, PCI_DMA_FROMDEVICE); 2599 len, PCI_DMA_FROMDEVICE);
2600 memcpy(skb->data, e->skb->data, len); 2600 memcpy(skb->data, e->skb->data, len);
2601 pci_dma_sync_single_for_device(skge->hw->pdev, 2601 pci_dma_sync_single_for_device(skge->hw->pdev,
2602 pci_unmap_addr(e, mapaddr), 2602 pci_unmap_addr(e, mapaddr),
2603 len, PCI_DMA_FROMDEVICE); 2603 len, PCI_DMA_FROMDEVICE);
2604 skge_rx_reuse(e, skge->rx_buf_size); 2604 skge_rx_reuse(e, skge->rx_buf_size);
2605 } else { 2605 } else {
2606 struct sk_buff *nskb; 2606 struct sk_buff *nskb;
2607 nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN); 2607 nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
2608 if (!nskb) 2608 if (!nskb)
2609 goto resubmit; 2609 goto resubmit;
2610 2610
2611 pci_unmap_single(skge->hw->pdev, 2611 pci_unmap_single(skge->hw->pdev,
2612 pci_unmap_addr(e, mapaddr), 2612 pci_unmap_addr(e, mapaddr),
2613 pci_unmap_len(e, maplen), 2613 pci_unmap_len(e, maplen),
2614 PCI_DMA_FROMDEVICE); 2614 PCI_DMA_FROMDEVICE);
2615 skb = e->skb; 2615 skb = e->skb;
2616 prefetch(skb->data); 2616 prefetch(skb->data);
2617 skge_rx_setup(skge, e, nskb, skge->rx_buf_size); 2617 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
2618 } 2618 }
2619 2619
2620 skb_put(skb, len); 2620 skb_put(skb, len);
2621 skb->dev = skge->netdev; 2621 skb->dev = skge->netdev;
2622 if (skge->rx_csum) { 2622 if (skge->rx_csum) {
2623 skb->csum = csum; 2623 skb->csum = csum;
2624 skb->ip_summed = CHECKSUM_HW; 2624 skb->ip_summed = CHECKSUM_HW;
2625 } 2625 }
2626 2626
2627 skb->protocol = eth_type_trans(skb, skge->netdev); 2627 skb->protocol = eth_type_trans(skb, skge->netdev);
2628 2628
2629 return skb; 2629 return skb;
2630 error: 2630 error:
2631 2631
2632 if (netif_msg_rx_err(skge)) 2632 if (netif_msg_rx_err(skge))
2633 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n", 2633 printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
2634 skge->netdev->name, e - skge->rx_ring.start, 2634 skge->netdev->name, e - skge->rx_ring.start,
2635 control, status); 2635 control, status);
2636 2636
2637 if (skge->hw->chip_id == CHIP_ID_GENESIS) { 2637 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2638 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 2638 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2639 skge->net_stats.rx_length_errors++; 2639 skge->net_stats.rx_length_errors++;
2640 if (status & XMR_FS_FRA_ERR) 2640 if (status & XMR_FS_FRA_ERR)
2641 skge->net_stats.rx_frame_errors++; 2641 skge->net_stats.rx_frame_errors++;
2642 if (status & XMR_FS_FCS_ERR) 2642 if (status & XMR_FS_FCS_ERR)
2643 skge->net_stats.rx_crc_errors++; 2643 skge->net_stats.rx_crc_errors++;
2644 } else { 2644 } else {
2645 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 2645 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2646 skge->net_stats.rx_length_errors++; 2646 skge->net_stats.rx_length_errors++;
2647 if (status & GMR_FS_FRAGMENT) 2647 if (status & GMR_FS_FRAGMENT)
2648 skge->net_stats.rx_frame_errors++; 2648 skge->net_stats.rx_frame_errors++;
2649 if (status & GMR_FS_CRC_ERR) 2649 if (status & GMR_FS_CRC_ERR)
2650 skge->net_stats.rx_crc_errors++; 2650 skge->net_stats.rx_crc_errors++;
2651 } 2651 }
2652 2652
2653 resubmit: 2653 resubmit:
2654 skge_rx_reuse(e, skge->rx_buf_size); 2654 skge_rx_reuse(e, skge->rx_buf_size);
2655 return NULL; 2655 return NULL;
2656 } 2656 }
2657 2657
2658 static void skge_tx_done(struct skge_port *skge) 2658 static void skge_tx_done(struct skge_port *skge)
2659 { 2659 {
2660 struct skge_ring *ring = &skge->tx_ring; 2660 struct skge_ring *ring = &skge->tx_ring;
2661 struct skge_element *e; 2661 struct skge_element *e;
2662 2662
2663 spin_lock(&skge->tx_lock); 2663 spin_lock(&skge->tx_lock);
2664 for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) { 2664 for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) {
2665 struct skge_tx_desc *td = e->desc; 2665 struct skge_tx_desc *td = e->desc;
2666 u32 control; 2666 u32 control;
2667 2667
2668 rmb(); 2668 rmb();
2669 control = td->control; 2669 control = td->control;
2670 if (control & BMU_OWN) 2670 if (control & BMU_OWN)
2671 break; 2671 break;
2672 2672
2673 if (unlikely(netif_msg_tx_done(skge))) 2673 if (unlikely(netif_msg_tx_done(skge)))
2674 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n", 2674 printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
2675 skge->netdev->name, e - ring->start, td->status); 2675 skge->netdev->name, e - ring->start, td->status);
2676 2676
2677 skge_tx_free(skge->hw, e); 2677 skge_tx_free(skge->hw, e);
2678 e->skb = NULL; 2678 e->skb = NULL;
2679 ++skge->tx_avail; 2679 ++skge->tx_avail;
2680 } 2680 }
2681 ring->to_clean = e; 2681 ring->to_clean = e;
2682 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 2682 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2683 2683
2684 if (skge->tx_avail > MAX_SKB_FRAGS + 1) 2684 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
2685 netif_wake_queue(skge->netdev); 2685 netif_wake_queue(skge->netdev);
2686 2686
2687 spin_unlock(&skge->tx_lock); 2687 spin_unlock(&skge->tx_lock);
2688 } 2688 }
2689 2689
2690 static int skge_poll(struct net_device *dev, int *budget) 2690 static int skge_poll(struct net_device *dev, int *budget)
2691 { 2691 {
2692 struct skge_port *skge = netdev_priv(dev); 2692 struct skge_port *skge = netdev_priv(dev);
2693 struct skge_hw *hw = skge->hw; 2693 struct skge_hw *hw = skge->hw;
2694 struct skge_ring *ring = &skge->rx_ring; 2694 struct skge_ring *ring = &skge->rx_ring;
2695 struct skge_element *e; 2695 struct skge_element *e;
2696 int to_do = min(dev->quota, *budget); 2696 int to_do = min(dev->quota, *budget);
2697 int work_done = 0; 2697 int work_done = 0;
2698 2698
2699 skge_tx_done(skge); 2699 skge_tx_done(skge);
2700 2700
2701 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { 2701 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
2702 struct skge_rx_desc *rd = e->desc; 2702 struct skge_rx_desc *rd = e->desc;
2703 struct sk_buff *skb; 2703 struct sk_buff *skb;
2704 u32 control; 2704 u32 control;
2705 2705
2706 rmb(); 2706 rmb();
2707 control = rd->control; 2707 control = rd->control;
2708 if (control & BMU_OWN) 2708 if (control & BMU_OWN)
2709 break; 2709 break;
2710 2710
2711 skb = skge_rx_get(skge, e, control, rd->status, 2711 skb = skge_rx_get(skge, e, control, rd->status,
2712 le16_to_cpu(rd->csum2)); 2712 le16_to_cpu(rd->csum2));
2713 if (likely(skb)) { 2713 if (likely(skb)) {
2714 dev->last_rx = jiffies; 2714 dev->last_rx = jiffies;
2715 netif_receive_skb(skb); 2715 netif_receive_skb(skb);
2716 2716
2717 ++work_done; 2717 ++work_done;
2718 } else 2718 } else
2719 skge_rx_reuse(e, skge->rx_buf_size); 2719 skge_rx_reuse(e, skge->rx_buf_size);
2720 } 2720 }
2721 ring->to_clean = e; 2721 ring->to_clean = e;
2722 2722
2723 /* restart receiver */ 2723 /* restart receiver */
2724 wmb(); 2724 wmb();
2725 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 2725 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
2726 2726
2727 *budget -= work_done; 2727 *budget -= work_done;
2728 dev->quota -= work_done; 2728 dev->quota -= work_done;
2729 2729
2730 if (work_done >= to_do) 2730 if (work_done >= to_do)
2731 return 1; /* not done */ 2731 return 1; /* not done */
2732 2732
2733 netif_rx_complete(dev); 2733 netif_rx_complete(dev);
2734 hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F); 2734 hw->intr_mask |= skge->port == 0 ? (IS_R1_F|IS_XA1_F) : (IS_R2_F|IS_XA2_F);
2735 skge_write32(hw, B0_IMSK, hw->intr_mask); 2735 skge_write32(hw, B0_IMSK, hw->intr_mask);
2736 2736
2737 return 0; 2737 return 0;
2738 } 2738 }
2739 2739
2740 /* Parity errors seem to happen when Genesis is connected to a switch 2740 /* Parity errors seem to happen when Genesis is connected to a switch
2741 * with no other ports present. Heartbeat error?? 2741 * with no other ports present. Heartbeat error??
2742 */ 2742 */
2743 static void skge_mac_parity(struct skge_hw *hw, int port) 2743 static void skge_mac_parity(struct skge_hw *hw, int port)
2744 { 2744 {
2745 struct net_device *dev = hw->dev[port]; 2745 struct net_device *dev = hw->dev[port];
2746 2746
2747 if (dev) { 2747 if (dev) {
2748 struct skge_port *skge = netdev_priv(dev); 2748 struct skge_port *skge = netdev_priv(dev);
2749 ++skge->net_stats.tx_heartbeat_errors; 2749 ++skge->net_stats.tx_heartbeat_errors;
2750 } 2750 }
2751 2751
2752 if (hw->chip_id == CHIP_ID_GENESIS) 2752 if (hw->chip_id == CHIP_ID_GENESIS)
2753 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 2753 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
2754 MFF_CLR_PERR); 2754 MFF_CLR_PERR);
2755 else 2755 else
2756 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 2756 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2757 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 2757 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
2758 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 2758 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
2759 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 2759 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2760 } 2760 }
2761 2761
2762 static void skge_pci_clear(struct skge_hw *hw) 2762 static void skge_pci_clear(struct skge_hw *hw)
2763 { 2763 {
2764 u16 status; 2764 u16 status;
2765 2765
2766 pci_read_config_word(hw->pdev, PCI_STATUS, &status); 2766 pci_read_config_word(hw->pdev, PCI_STATUS, &status);
2767 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 2767 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2768 pci_write_config_word(hw->pdev, PCI_STATUS, 2768 pci_write_config_word(hw->pdev, PCI_STATUS,
2769 status | PCI_STATUS_ERROR_BITS); 2769 status | PCI_STATUS_ERROR_BITS);
2770 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 2770 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2771 } 2771 }
2772 2772
2773 static void skge_mac_intr(struct skge_hw *hw, int port) 2773 static void skge_mac_intr(struct skge_hw *hw, int port)
2774 { 2774 {
2775 if (hw->chip_id == CHIP_ID_GENESIS) 2775 if (hw->chip_id == CHIP_ID_GENESIS)
2776 genesis_mac_intr(hw, port); 2776 genesis_mac_intr(hw, port);
2777 else 2777 else
2778 yukon_mac_intr(hw, port); 2778 yukon_mac_intr(hw, port);
2779 } 2779 }
2780 2780
2781 /* Handle device specific framing and timeout interrupts */ 2781 /* Handle device specific framing and timeout interrupts */
2782 static void skge_error_irq(struct skge_hw *hw) 2782 static void skge_error_irq(struct skge_hw *hw)
2783 { 2783 {
2784 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 2784 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2785 2785
2786 if (hw->chip_id == CHIP_ID_GENESIS) { 2786 if (hw->chip_id == CHIP_ID_GENESIS) {
2787 /* clear xmac errors */ 2787 /* clear xmac errors */
2788 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 2788 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2789 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 2789 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
2790 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 2790 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2791 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 2791 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
2792 } else { 2792 } else {
2793 /* Timestamp (unused) overflow */ 2793 /* Timestamp (unused) overflow */
2794 if (hwstatus & IS_IRQ_TIST_OV) 2794 if (hwstatus & IS_IRQ_TIST_OV)
2795 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 2795 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2796 } 2796 }
2797 2797
2798 if (hwstatus & IS_RAM_RD_PAR) { 2798 if (hwstatus & IS_RAM_RD_PAR) {
2799 printk(KERN_ERR PFX "Ram read data parity error\n"); 2799 printk(KERN_ERR PFX "Ram read data parity error\n");
2800 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 2800 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2801 } 2801 }
2802 2802
2803 if (hwstatus & IS_RAM_WR_PAR) { 2803 if (hwstatus & IS_RAM_WR_PAR) {
2804 printk(KERN_ERR PFX "Ram write data parity error\n"); 2804 printk(KERN_ERR PFX "Ram write data parity error\n");
2805 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 2805 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2806 } 2806 }
2807 2807
2808 if (hwstatus & IS_M1_PAR_ERR) 2808 if (hwstatus & IS_M1_PAR_ERR)
2809 skge_mac_parity(hw, 0); 2809 skge_mac_parity(hw, 0);
2810 2810
2811 if (hwstatus & IS_M2_PAR_ERR) 2811 if (hwstatus & IS_M2_PAR_ERR)
2812 skge_mac_parity(hw, 1); 2812 skge_mac_parity(hw, 1);
2813 2813
2814 if (hwstatus & IS_R1_PAR_ERR) 2814 if (hwstatus & IS_R1_PAR_ERR)
2815 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 2815 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2816 2816
2817 if (hwstatus & IS_R2_PAR_ERR) 2817 if (hwstatus & IS_R2_PAR_ERR)
2818 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 2818 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2819 2819
2820 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 2820 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2821 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n", 2821 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
2822 hwstatus); 2822 hwstatus);
2823 2823
2824 skge_pci_clear(hw); 2824 skge_pci_clear(hw);
2825 2825
2826 /* if error still set then just ignore it */ 2826 /* if error still set then just ignore it */
2827 hwstatus = skge_read32(hw, B0_HWE_ISRC); 2827 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2828 if (hwstatus & IS_IRQ_STAT) { 2828 if (hwstatus & IS_IRQ_STAT) {
2829 pr_debug("IRQ status %x: still set ignoring hardware errors\n", 2829 pr_debug("IRQ status %x: still set ignoring hardware errors\n",
2830 hwstatus); 2830 hwstatus);
2831 hw->intr_mask &= ~IS_HW_ERR; 2831 hw->intr_mask &= ~IS_HW_ERR;
2832 } 2832 }
2833 } 2833 }
2834 } 2834 }
2835 2835
2836 /* 2836 /*
2837 * Interrupt from PHY are handled in tasklet (soft irq) 2837 * Interrupt from PHY are handled in tasklet (soft irq)
2838 * because accessing phy registers requires spin wait which might 2838 * because accessing phy registers requires spin wait which might
2839 * cause excess interrupt latency. 2839 * cause excess interrupt latency.
2840 */ 2840 */
2841 static void skge_extirq(unsigned long data) 2841 static void skge_extirq(unsigned long data)
2842 { 2842 {
2843 struct skge_hw *hw = (struct skge_hw *) data; 2843 struct skge_hw *hw = (struct skge_hw *) data;
2844 int port; 2844 int port;
2845 2845
2846 spin_lock(&hw->phy_lock); 2846 spin_lock(&hw->phy_lock);
2847 for (port = 0; port < hw->ports; port++) { 2847 for (port = 0; port < hw->ports; port++) {
2848 struct net_device *dev = hw->dev[port]; 2848 struct net_device *dev = hw->dev[port];
2849 struct skge_port *skge = netdev_priv(dev); 2849 struct skge_port *skge = netdev_priv(dev);
2850 2850
2851 if (netif_running(dev)) { 2851 if (netif_running(dev)) {
2852 if (hw->chip_id != CHIP_ID_GENESIS) 2852 if (hw->chip_id != CHIP_ID_GENESIS)
2853 yukon_phy_intr(skge); 2853 yukon_phy_intr(skge);
2854 else 2854 else
2855 bcom_phy_intr(skge); 2855 bcom_phy_intr(skge);
2856 } 2856 }
2857 } 2857 }
2858 spin_unlock(&hw->phy_lock); 2858 spin_unlock(&hw->phy_lock);
2859 2859
2860 hw->intr_mask |= IS_EXT_REG; 2860 hw->intr_mask |= IS_EXT_REG;
2861 skge_write32(hw, B0_IMSK, hw->intr_mask); 2861 skge_write32(hw, B0_IMSK, hw->intr_mask);
2862 } 2862 }
2863 2863
2864 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs) 2864 static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2865 { 2865 {
2866 struct skge_hw *hw = dev_id; 2866 struct skge_hw *hw = dev_id;
2867 u32 status; 2867 u32 status;
2868 2868
2869 /* Reading this register masks IRQ */ 2869 /* Reading this register masks IRQ */
2870 status = skge_read32(hw, B0_SP_ISRC); 2870 status = skge_read32(hw, B0_SP_ISRC);
2871 if (status == 0) 2871 if (status == 0)
2872 return IRQ_NONE; 2872 return IRQ_NONE;
2873 2873
2874 if (status & IS_EXT_REG) { 2874 if (status & IS_EXT_REG) {
2875 hw->intr_mask &= ~IS_EXT_REG; 2875 hw->intr_mask &= ~IS_EXT_REG;
2876 tasklet_schedule(&hw->ext_tasklet); 2876 tasklet_schedule(&hw->ext_tasklet);
2877 } 2877 }
2878 2878
2879 if (status & (IS_R1_F|IS_XA1_F)) { 2879 if (status & (IS_R1_F|IS_XA1_F)) {
2880 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F); 2880 skge_write8(hw, Q_ADDR(Q_R1, Q_CSR), CSR_IRQ_CL_F);
2881 hw->intr_mask &= ~(IS_R1_F|IS_XA1_F); 2881 hw->intr_mask &= ~(IS_R1_F|IS_XA1_F);
2882 netif_rx_schedule(hw->dev[0]); 2882 netif_rx_schedule(hw->dev[0]);
2883 } 2883 }
2884 2884
2885 if (status & (IS_R2_F|IS_XA2_F)) { 2885 if (status & (IS_R2_F|IS_XA2_F)) {
2886 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F); 2886 skge_write8(hw, Q_ADDR(Q_R2, Q_CSR), CSR_IRQ_CL_F);
2887 hw->intr_mask &= ~(IS_R2_F|IS_XA2_F); 2887 hw->intr_mask &= ~(IS_R2_F|IS_XA2_F);
2888 netif_rx_schedule(hw->dev[1]); 2888 netif_rx_schedule(hw->dev[1]);
2889 } 2889 }
2890 2890
2891 if (likely((status & hw->intr_mask) == 0)) 2891 if (likely((status & hw->intr_mask) == 0))
2892 return IRQ_HANDLED; 2892 return IRQ_HANDLED;
2893 2893
2894 if (status & IS_PA_TO_RX1) { 2894 if (status & IS_PA_TO_RX1) {
2895 struct skge_port *skge = netdev_priv(hw->dev[0]); 2895 struct skge_port *skge = netdev_priv(hw->dev[0]);
2896 ++skge->net_stats.rx_over_errors; 2896 ++skge->net_stats.rx_over_errors;
2897 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 2897 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
2898 } 2898 }
2899 2899
2900 if (status & IS_PA_TO_RX2) { 2900 if (status & IS_PA_TO_RX2) {
2901 struct skge_port *skge = netdev_priv(hw->dev[1]); 2901 struct skge_port *skge = netdev_priv(hw->dev[1]);
2902 ++skge->net_stats.rx_over_errors; 2902 ++skge->net_stats.rx_over_errors;
2903 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 2903 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
2904 } 2904 }
2905 2905
2906 if (status & IS_PA_TO_TX1) 2906 if (status & IS_PA_TO_TX1)
2907 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 2907 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
2908 2908
2909 if (status & IS_PA_TO_TX2) 2909 if (status & IS_PA_TO_TX2)
2910 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 2910 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
2911 2911
2912 if (status & IS_MAC1) 2912 if (status & IS_MAC1)
2913 skge_mac_intr(hw, 0); 2913 skge_mac_intr(hw, 0);
2914 2914
2915 if (status & IS_MAC2) 2915 if (status & IS_MAC2)
2916 skge_mac_intr(hw, 1); 2916 skge_mac_intr(hw, 1);
2917 2917
2918 if (status & IS_HW_ERR) 2918 if (status & IS_HW_ERR)
2919 skge_error_irq(hw); 2919 skge_error_irq(hw);
2920 2920
2921 skge_write32(hw, B0_IMSK, hw->intr_mask); 2921 skge_write32(hw, B0_IMSK, hw->intr_mask);
2922 2922
2923 return IRQ_HANDLED; 2923 return IRQ_HANDLED;
2924 } 2924 }
2925 2925
2926 #ifdef CONFIG_NET_POLL_CONTROLLER 2926 #ifdef CONFIG_NET_POLL_CONTROLLER
2927 static void skge_netpoll(struct net_device *dev) 2927 static void skge_netpoll(struct net_device *dev)
2928 { 2928 {
2929 struct skge_port *skge = netdev_priv(dev); 2929 struct skge_port *skge = netdev_priv(dev);
2930 2930
2931 disable_irq(dev->irq); 2931 disable_irq(dev->irq);
2932 skge_intr(dev->irq, skge->hw, NULL); 2932 skge_intr(dev->irq, skge->hw, NULL);
2933 enable_irq(dev->irq); 2933 enable_irq(dev->irq);
2934 } 2934 }
2935 #endif 2935 #endif
2936 2936
2937 static int skge_set_mac_address(struct net_device *dev, void *p) 2937 static int skge_set_mac_address(struct net_device *dev, void *p)
2938 { 2938 {
2939 struct skge_port *skge = netdev_priv(dev); 2939 struct skge_port *skge = netdev_priv(dev);
2940 struct skge_hw *hw = skge->hw; 2940 struct skge_hw *hw = skge->hw;
2941 unsigned port = skge->port; 2941 unsigned port = skge->port;
2942 const struct sockaddr *addr = p; 2942 const struct sockaddr *addr = p;
2943 2943
2944 if (!is_valid_ether_addr(addr->sa_data)) 2944 if (!is_valid_ether_addr(addr->sa_data))
2945 return -EADDRNOTAVAIL; 2945 return -EADDRNOTAVAIL;
2946 2946
2947 spin_lock_bh(&hw->phy_lock); 2947 spin_lock_bh(&hw->phy_lock);
2948 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 2948 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2949 memcpy_toio(hw->regs + B2_MAC_1 + port*8, 2949 memcpy_toio(hw->regs + B2_MAC_1 + port*8,
2950 dev->dev_addr, ETH_ALEN); 2950 dev->dev_addr, ETH_ALEN);
2951 memcpy_toio(hw->regs + B2_MAC_2 + port*8, 2951 memcpy_toio(hw->regs + B2_MAC_2 + port*8,
2952 dev->dev_addr, ETH_ALEN); 2952 dev->dev_addr, ETH_ALEN);
2953 2953
2954 if (hw->chip_id == CHIP_ID_GENESIS) 2954 if (hw->chip_id == CHIP_ID_GENESIS)
2955 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 2955 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
2956 else { 2956 else {
2957 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 2957 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
2958 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 2958 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
2959 } 2959 }
2960 spin_unlock_bh(&hw->phy_lock); 2960 spin_unlock_bh(&hw->phy_lock);
2961 2961
2962 return 0; 2962 return 0;
2963 } 2963 }
2964 2964
2965 static const struct { 2965 static const struct {
2966 u8 id; 2966 u8 id;
2967 const char *name; 2967 const char *name;
2968 } skge_chips[] = { 2968 } skge_chips[] = {
2969 { CHIP_ID_GENESIS, "Genesis" }, 2969 { CHIP_ID_GENESIS, "Genesis" },
2970 { CHIP_ID_YUKON, "Yukon" }, 2970 { CHIP_ID_YUKON, "Yukon" },
2971 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 2971 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2972 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 2972 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2973 }; 2973 };
2974 2974
2975 static const char *skge_board_name(const struct skge_hw *hw) 2975 static const char *skge_board_name(const struct skge_hw *hw)
2976 { 2976 {
2977 int i; 2977 int i;
2978 static char buf[16]; 2978 static char buf[16];
2979 2979
2980 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 2980 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2981 if (skge_chips[i].id == hw->chip_id) 2981 if (skge_chips[i].id == hw->chip_id)
2982 return skge_chips[i].name; 2982 return skge_chips[i].name;
2983 2983
2984 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); 2984 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2985 return buf; 2985 return buf;
2986 } 2986 }
2987 2987
2988 2988
2989 /* 2989 /*
2990 * Setup the board data structure, but don't bring up 2990 * Setup the board data structure, but don't bring up
2991 * the port(s) 2991 * the port(s)
2992 */ 2992 */
2993 static int skge_reset(struct skge_hw *hw) 2993 static int skge_reset(struct skge_hw *hw)
2994 { 2994 {
2995 u32 reg; 2995 u32 reg;
2996 u16 ctst; 2996 u16 ctst;
2997 u8 t8, mac_cfg, pmd_type, phy_type; 2997 u8 t8, mac_cfg, pmd_type, phy_type;
2998 int i; 2998 int i;
2999 2999
3000 ctst = skge_read16(hw, B0_CTST); 3000 ctst = skge_read16(hw, B0_CTST);
3001 3001
3002 /* do a SW reset */ 3002 /* do a SW reset */
3003 skge_write8(hw, B0_CTST, CS_RST_SET); 3003 skge_write8(hw, B0_CTST, CS_RST_SET);
3004 skge_write8(hw, B0_CTST, CS_RST_CLR); 3004 skge_write8(hw, B0_CTST, CS_RST_CLR);
3005 3005
3006 /* clear PCI errors, if any */ 3006 /* clear PCI errors, if any */
3007 skge_pci_clear(hw); 3007 skge_pci_clear(hw);
3008 3008
3009 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3009 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3010 3010
3011 /* restore CLK_RUN bits (for Yukon-Lite) */ 3011 /* restore CLK_RUN bits (for Yukon-Lite) */
3012 skge_write16(hw, B0_CTST, 3012 skge_write16(hw, B0_CTST,
3013 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3013 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3014 3014
3015 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3015 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3016 phy_type = skge_read8(hw, B2_E_1) & 0xf; 3016 phy_type = skge_read8(hw, B2_E_1) & 0xf;
3017 pmd_type = skge_read8(hw, B2_PMD_TYP); 3017 pmd_type = skge_read8(hw, B2_PMD_TYP);
3018 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3018 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3019 3019
3020 switch (hw->chip_id) { 3020 switch (hw->chip_id) {
3021 case CHIP_ID_GENESIS: 3021 case CHIP_ID_GENESIS:
3022 switch (phy_type) { 3022 switch (phy_type) {
3023 case SK_PHY_BCOM: 3023 case SK_PHY_BCOM:
3024 hw->phy_addr = PHY_ADDR_BCOM; 3024 hw->phy_addr = PHY_ADDR_BCOM;
3025 break; 3025 break;
3026 default: 3026 default:
3027 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n", 3027 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
3028 pci_name(hw->pdev), phy_type); 3028 pci_name(hw->pdev), phy_type);
3029 return -EOPNOTSUPP; 3029 return -EOPNOTSUPP;
3030 } 3030 }
3031 break; 3031 break;
3032 3032
3033 case CHIP_ID_YUKON: 3033 case CHIP_ID_YUKON:
3034 case CHIP_ID_YUKON_LITE: 3034 case CHIP_ID_YUKON_LITE:
3035 case CHIP_ID_YUKON_LP: 3035 case CHIP_ID_YUKON_LP:
3036 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3036 if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3037 hw->copper = 1; 3037 hw->copper = 1;
3038 3038
3039 hw->phy_addr = PHY_ADDR_MARV; 3039 hw->phy_addr = PHY_ADDR_MARV;
3040 break; 3040 break;
3041 3041
3042 default: 3042 default:
3043 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n", 3043 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
3044 pci_name(hw->pdev), hw->chip_id); 3044 pci_name(hw->pdev), hw->chip_id);
3045 return -EOPNOTSUPP; 3045 return -EOPNOTSUPP;
3046 } 3046 }
3047 3047
3048 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3048 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3049 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3049 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3050 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3050 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3051 3051
3052 /* read the adapters RAM size */ 3052 /* read the adapters RAM size */
3053 t8 = skge_read8(hw, B2_E_0); 3053 t8 = skge_read8(hw, B2_E_0);
3054 if (hw->chip_id == CHIP_ID_GENESIS) { 3054 if (hw->chip_id == CHIP_ID_GENESIS) {
3055 if (t8 == 3) { 3055 if (t8 == 3) {
3056 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3056 /* special case: 4 x 64k x 36, offset = 0x80000 */
3057 hw->ram_size = 0x100000; 3057 hw->ram_size = 0x100000;
3058 hw->ram_offset = 0x80000; 3058 hw->ram_offset = 0x80000;
3059 } else 3059 } else
3060 hw->ram_size = t8 * 512; 3060 hw->ram_size = t8 * 512;
3061 } 3061 }
3062 else if (t8 == 0) 3062 else if (t8 == 0)
3063 hw->ram_size = 0x20000; 3063 hw->ram_size = 0x20000;
3064 else 3064 else
3065 hw->ram_size = t8 * 4096; 3065 hw->ram_size = t8 * 4096;
3066 3066
3067 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1; 3067 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3068 if (hw->ports > 1) 3068 if (hw->ports > 1)
3069 hw->intr_mask |= IS_PORT_2; 3069 hw->intr_mask |= IS_PORT_2;
3070 3070
3071 if (hw->chip_id == CHIP_ID_GENESIS) 3071 if (hw->chip_id == CHIP_ID_GENESIS)
3072 genesis_init(hw); 3072 genesis_init(hw);
3073 else { 3073 else {
3074 /* switch power to VCC (WA for VAUX problem) */ 3074 /* switch power to VCC (WA for VAUX problem) */
3075 skge_write8(hw, B0_POWER_CTRL, 3075 skge_write8(hw, B0_POWER_CTRL,
3076 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3076 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3077 3077
3078 /* avoid boards with stuck Hardware error bits */ 3078 /* avoid boards with stuck Hardware error bits */
3079 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3079 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3080 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3080 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3081 printk(KERN_WARNING PFX "stuck hardware sensor bit\n"); 3081 printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
3082 hw->intr_mask &= ~IS_HW_ERR; 3082 hw->intr_mask &= ~IS_HW_ERR;
3083 } 3083 }
3084 3084
3085 /* Clear PHY COMA */ 3085 /* Clear PHY COMA */
3086 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3086 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3087 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg); 3087 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3088 reg &= ~PCI_PHY_COMA; 3088 reg &= ~PCI_PHY_COMA;
3089 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3089 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3090 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3090 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3091 3091
3092 3092
3093 for (i = 0; i < hw->ports; i++) { 3093 for (i = 0; i < hw->ports; i++) {
3094 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3094 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3095 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3095 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3096 } 3096 }
3097 } 3097 }
3098 3098
3099 /* turn off hardware timer (unused) */ 3099 /* turn off hardware timer (unused) */
3100 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3100 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3101 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3101 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3102 skge_write8(hw, B0_LED, LED_STAT_ON); 3102 skge_write8(hw, B0_LED, LED_STAT_ON);
3103 3103
3104 /* enable the Tx Arbiters */ 3104 /* enable the Tx Arbiters */
3105 for (i = 0; i < hw->ports; i++) 3105 for (i = 0; i < hw->ports; i++)
3106 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3106 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3107 3107
3108 /* Initialize ram interface */ 3108 /* Initialize ram interface */
3109 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3109 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3110 3110
3111 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3111 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3112 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3112 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3113 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3113 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3114 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3114 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3115 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3115 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3116 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3116 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3117 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3117 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3118 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3118 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3119 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3119 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3120 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3120 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3121 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3121 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3122 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3122 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3123 3123
3124 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3124 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3125 3125
3126 /* Set interrupt moderation for Transmit only 3126 /* Set interrupt moderation for Transmit only
3127 * Receive interrupts avoided by NAPI 3127 * Receive interrupts avoided by NAPI
3128 */ 3128 */
3129 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3129 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3130 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3130 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3131 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3131 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3132 3132
3133 skge_write32(hw, B0_IMSK, hw->intr_mask); 3133 skge_write32(hw, B0_IMSK, hw->intr_mask);
3134 3134
3135 spin_lock_bh(&hw->phy_lock); 3135 spin_lock_bh(&hw->phy_lock);
3136 for (i = 0; i < hw->ports; i++) { 3136 for (i = 0; i < hw->ports; i++) {
3137 if (hw->chip_id == CHIP_ID_GENESIS) 3137 if (hw->chip_id == CHIP_ID_GENESIS)
3138 genesis_reset(hw, i); 3138 genesis_reset(hw, i);
3139 else 3139 else
3140 yukon_reset(hw, i); 3140 yukon_reset(hw, i);
3141 } 3141 }
3142 spin_unlock_bh(&hw->phy_lock); 3142 spin_unlock_bh(&hw->phy_lock);
3143 3143
3144 return 0; 3144 return 0;
3145 } 3145 }
3146 3146
3147 /* Initialize network device */ 3147 /* Initialize network device */
3148 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3148 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3149 int highmem) 3149 int highmem)
3150 { 3150 {
3151 struct skge_port *skge; 3151 struct skge_port *skge;
3152 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3152 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3153 3153
3154 if (!dev) { 3154 if (!dev) {
3155 printk(KERN_ERR "skge etherdev alloc failed"); 3155 printk(KERN_ERR "skge etherdev alloc failed");
3156 return NULL; 3156 return NULL;
3157 } 3157 }
3158 3158
3159 SET_MODULE_OWNER(dev); 3159 SET_MODULE_OWNER(dev);
3160 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3160 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3161 dev->open = skge_up; 3161 dev->open = skge_up;
3162 dev->stop = skge_down; 3162 dev->stop = skge_down;
3163 dev->do_ioctl = skge_ioctl; 3163 dev->do_ioctl = skge_ioctl;
3164 dev->hard_start_xmit = skge_xmit_frame; 3164 dev->hard_start_xmit = skge_xmit_frame;
3165 dev->get_stats = skge_get_stats; 3165 dev->get_stats = skge_get_stats;
3166 if (hw->chip_id == CHIP_ID_GENESIS) 3166 if (hw->chip_id == CHIP_ID_GENESIS)
3167 dev->set_multicast_list = genesis_set_multicast; 3167 dev->set_multicast_list = genesis_set_multicast;
3168 else 3168 else
3169 dev->set_multicast_list = yukon_set_multicast; 3169 dev->set_multicast_list = yukon_set_multicast;
3170 3170
3171 dev->set_mac_address = skge_set_mac_address; 3171 dev->set_mac_address = skge_set_mac_address;
3172 dev->change_mtu = skge_change_mtu; 3172 dev->change_mtu = skge_change_mtu;
3173 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops); 3173 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3174 dev->tx_timeout = skge_tx_timeout; 3174 dev->tx_timeout = skge_tx_timeout;
3175 dev->watchdog_timeo = TX_WATCHDOG; 3175 dev->watchdog_timeo = TX_WATCHDOG;
3176 dev->poll = skge_poll; 3176 dev->poll = skge_poll;
3177 dev->weight = NAPI_WEIGHT; 3177 dev->weight = NAPI_WEIGHT;
3178 #ifdef CONFIG_NET_POLL_CONTROLLER 3178 #ifdef CONFIG_NET_POLL_CONTROLLER
3179 dev->poll_controller = skge_netpoll; 3179 dev->poll_controller = skge_netpoll;
3180 #endif 3180 #endif
3181 dev->irq = hw->pdev->irq; 3181 dev->irq = hw->pdev->irq;
3182 dev->features = NETIF_F_LLTX; 3182 dev->features = NETIF_F_LLTX;
3183 if (highmem) 3183 if (highmem)
3184 dev->features |= NETIF_F_HIGHDMA; 3184 dev->features |= NETIF_F_HIGHDMA;
3185 3185
3186 skge = netdev_priv(dev); 3186 skge = netdev_priv(dev);
3187 skge->netdev = dev; 3187 skge->netdev = dev;
3188 skge->hw = hw; 3188 skge->hw = hw;
3189 skge->msg_enable = netif_msg_init(debug, default_msg); 3189 skge->msg_enable = netif_msg_init(debug, default_msg);
3190 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3190 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3191 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3191 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3192 3192
3193 /* Auto speed and flow control */ 3193 /* Auto speed and flow control */
3194 skge->autoneg = AUTONEG_ENABLE; 3194 skge->autoneg = AUTONEG_ENABLE;
3195 skge->flow_control = FLOW_MODE_SYMMETRIC; 3195 skge->flow_control = FLOW_MODE_SYMMETRIC;
3196 skge->duplex = -1; 3196 skge->duplex = -1;
3197 skge->speed = -1; 3197 skge->speed = -1;
3198 skge->advertising = skge_supported_modes(hw); 3198 skge->advertising = skge_supported_modes(hw);
3199 3199
3200 hw->dev[port] = dev; 3200 hw->dev[port] = dev;
3201 3201
3202 skge->port = port; 3202 skge->port = port;
3203 3203
3204 spin_lock_init(&skge->tx_lock); 3204 spin_lock_init(&skge->tx_lock);
3205 3205
3206 if (hw->chip_id != CHIP_ID_GENESIS) { 3206 if (hw->chip_id != CHIP_ID_GENESIS) {
3207 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 3207 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3208 skge->rx_csum = 1; 3208 skge->rx_csum = 1;
3209 } 3209 }
3210 3210
3211 /* read the mac address */ 3211 /* read the mac address */
3212 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3212 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3213 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 3213 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3214 3214
3215 /* device is off until link detection */ 3215 /* device is off until link detection */
3216 netif_carrier_off(dev); 3216 netif_carrier_off(dev);
3217 netif_stop_queue(dev); 3217 netif_stop_queue(dev);
3218 3218
3219 return dev; 3219 return dev;
3220 } 3220 }
3221 3221
3222 static void __devinit skge_show_addr(struct net_device *dev) 3222 static void __devinit skge_show_addr(struct net_device *dev)
3223 { 3223 {
3224 const struct skge_port *skge = netdev_priv(dev); 3224 const struct skge_port *skge = netdev_priv(dev);
3225 3225
3226 if (netif_msg_probe(skge)) 3226 if (netif_msg_probe(skge))
3227 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n", 3227 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3228 dev->name, 3228 dev->name,
3229 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 3229 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3230 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 3230 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3231 } 3231 }
3232 3232
3233 static int __devinit skge_probe(struct pci_dev *pdev, 3233 static int __devinit skge_probe(struct pci_dev *pdev,
3234 const struct pci_device_id *ent) 3234 const struct pci_device_id *ent)
3235 { 3235 {
3236 struct net_device *dev, *dev1; 3236 struct net_device *dev, *dev1;
3237 struct skge_hw *hw; 3237 struct skge_hw *hw;
3238 int err, using_dac = 0; 3238 int err, using_dac = 0;
3239 3239
3240 if ((err = pci_enable_device(pdev))) { 3240 if ((err = pci_enable_device(pdev))) {
3241 printk(KERN_ERR PFX "%s cannot enable PCI device\n", 3241 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3242 pci_name(pdev)); 3242 pci_name(pdev));
3243 goto err_out; 3243 goto err_out;
3244 } 3244 }
3245 3245
3246 if ((err = pci_request_regions(pdev, DRV_NAME))) { 3246 if ((err = pci_request_regions(pdev, DRV_NAME))) {
3247 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n", 3247 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3248 pci_name(pdev)); 3248 pci_name(pdev));
3249 goto err_out_disable_pdev; 3249 goto err_out_disable_pdev;
3250 } 3250 }
3251 3251
3252 pci_set_master(pdev); 3252 pci_set_master(pdev);
3253 3253
3254 if (sizeof(dma_addr_t) > sizeof(u32) && 3254 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3255 !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
3256 using_dac = 1; 3255 using_dac = 1;
3257 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); 3256 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3258 if (err < 0) { 3257 } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3259 printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA " 3258 using_dac = 0;
3260 "for consistent allocations\n", pci_name(pdev)); 3259 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3261 goto err_out_free_regions; 3260 }
3262 } 3261
3263 } else { 3262 if (err) {
3264 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 3263 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3265 if (err) { 3264 pci_name(pdev));
3266 printk(KERN_ERR PFX "%s no usable DMA configuration\n", 3265 goto err_out_free_regions;
3267 pci_name(pdev));
3268 goto err_out_free_regions;
3269 }
3270 } 3266 }
3271 3267
3272 #ifdef __BIG_ENDIAN 3268 #ifdef __BIG_ENDIAN
3273 /* byte swap descriptors in hardware */ 3269 /* byte swap descriptors in hardware */
3274 { 3270 {
3275 u32 reg; 3271 u32 reg;
3276 3272
3277 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg); 3273 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3278 reg |= PCI_REV_DESC; 3274 reg |= PCI_REV_DESC;
3279 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3275 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3280 } 3276 }
3281 #endif 3277 #endif
3282 3278
3283 err = -ENOMEM; 3279 err = -ENOMEM;
3284 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 3280 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3285 if (!hw) { 3281 if (!hw) {
3286 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n", 3282 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3287 pci_name(pdev)); 3283 pci_name(pdev));
3288 goto err_out_free_regions; 3284 goto err_out_free_regions;
3289 } 3285 }
3290 3286
3291 hw->pdev = pdev; 3287 hw->pdev = pdev;
3292 spin_lock_init(&hw->phy_lock); 3288 spin_lock_init(&hw->phy_lock);
3293 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw); 3289 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3294 3290
3295 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3291 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3296 if (!hw->regs) { 3292 if (!hw->regs) {
3297 printk(KERN_ERR PFX "%s: cannot map device registers\n", 3293 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3298 pci_name(pdev)); 3294 pci_name(pdev));
3299 goto err_out_free_hw; 3295 goto err_out_free_hw;
3300 } 3296 }
3301 3297
3302 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) { 3298 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
3303 printk(KERN_ERR PFX "%s: cannot assign irq %d\n", 3299 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3304 pci_name(pdev), pdev->irq); 3300 pci_name(pdev), pdev->irq);
3305 goto err_out_iounmap; 3301 goto err_out_iounmap;
3306 } 3302 }
3307 pci_set_drvdata(pdev, hw); 3303 pci_set_drvdata(pdev, hw);
3308 3304
3309 err = skge_reset(hw); 3305 err = skge_reset(hw);
3310 if (err) 3306 if (err)
3311 goto err_out_free_irq; 3307 goto err_out_free_irq;
3312 3308
3313 printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n", 3309 printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
3314 pci_resource_start(pdev, 0), pdev->irq, 3310 pci_resource_start(pdev, 0), pdev->irq,
3315 skge_board_name(hw), hw->chip_rev); 3311 skge_board_name(hw), hw->chip_rev);
3316 3312
3317 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL) 3313 if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
3318 goto err_out_led_off; 3314 goto err_out_led_off;
3319 3315
3320 if ((err = register_netdev(dev))) { 3316 if ((err = register_netdev(dev))) {
3321 printk(KERN_ERR PFX "%s: cannot register net device\n", 3317 printk(KERN_ERR PFX "%s: cannot register net device\n",
3322 pci_name(pdev)); 3318 pci_name(pdev));
3323 goto err_out_free_netdev; 3319 goto err_out_free_netdev;
3324 } 3320 }
3325 3321
3326 skge_show_addr(dev); 3322 skge_show_addr(dev);
3327 3323
3328 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) { 3324 if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
3329 if (register_netdev(dev1) == 0) 3325 if (register_netdev(dev1) == 0)
3330 skge_show_addr(dev1); 3326 skge_show_addr(dev1);
3331 else { 3327 else {
3332 /* Failure to register second port need not be fatal */ 3328 /* Failure to register second port need not be fatal */
3333 printk(KERN_WARNING PFX "register of second port failed\n"); 3329 printk(KERN_WARNING PFX "register of second port failed\n");
3334 hw->dev[1] = NULL; 3330 hw->dev[1] = NULL;
3335 free_netdev(dev1); 3331 free_netdev(dev1);
3336 } 3332 }
3337 } 3333 }
3338 3334
3339 return 0; 3335 return 0;
3340 3336
3341 err_out_free_netdev: 3337 err_out_free_netdev:
3342 free_netdev(dev); 3338 free_netdev(dev);
3343 err_out_led_off: 3339 err_out_led_off:
3344 skge_write16(hw, B0_LED, LED_STAT_OFF); 3340 skge_write16(hw, B0_LED, LED_STAT_OFF);
3345 err_out_free_irq: 3341 err_out_free_irq:
3346 free_irq(pdev->irq, hw); 3342 free_irq(pdev->irq, hw);
3347 err_out_iounmap: 3343 err_out_iounmap:
3348 iounmap(hw->regs); 3344 iounmap(hw->regs);
3349 err_out_free_hw: 3345 err_out_free_hw:
3350 kfree(hw); 3346 kfree(hw);
3351 err_out_free_regions: 3347 err_out_free_regions:
3352 pci_release_regions(pdev); 3348 pci_release_regions(pdev);
3353 err_out_disable_pdev: 3349 err_out_disable_pdev:
3354 pci_disable_device(pdev); 3350 pci_disable_device(pdev);
3355 pci_set_drvdata(pdev, NULL); 3351 pci_set_drvdata(pdev, NULL);
3356 err_out: 3352 err_out:
3357 return err; 3353 return err;
3358 } 3354 }
3359 3355
3360 static void __devexit skge_remove(struct pci_dev *pdev) 3356 static void __devexit skge_remove(struct pci_dev *pdev)
3361 { 3357 {
3362 struct skge_hw *hw = pci_get_drvdata(pdev); 3358 struct skge_hw *hw = pci_get_drvdata(pdev);
3363 struct net_device *dev0, *dev1; 3359 struct net_device *dev0, *dev1;
3364 3360
3365 if (!hw) 3361 if (!hw)
3366 return; 3362 return;
3367 3363
3368 if ((dev1 = hw->dev[1])) 3364 if ((dev1 = hw->dev[1]))
3369 unregister_netdev(dev1); 3365 unregister_netdev(dev1);
3370 dev0 = hw->dev[0]; 3366 dev0 = hw->dev[0];
3371 unregister_netdev(dev0); 3367 unregister_netdev(dev0);
3372 3368
3373 skge_write32(hw, B0_IMSK, 0); 3369 skge_write32(hw, B0_IMSK, 0);
3374 skge_write16(hw, B0_LED, LED_STAT_OFF); 3370 skge_write16(hw, B0_LED, LED_STAT_OFF);
3375 skge_pci_clear(hw); 3371 skge_pci_clear(hw);
3376 skge_write8(hw, B0_CTST, CS_RST_SET); 3372 skge_write8(hw, B0_CTST, CS_RST_SET);
3377 3373
3378 tasklet_kill(&hw->ext_tasklet); 3374 tasklet_kill(&hw->ext_tasklet);
3379 3375
3380 free_irq(pdev->irq, hw); 3376 free_irq(pdev->irq, hw);
3381 pci_release_regions(pdev); 3377 pci_release_regions(pdev);
3382 pci_disable_device(pdev); 3378 pci_disable_device(pdev);
3383 if (dev1) 3379 if (dev1)
3384 free_netdev(dev1); 3380 free_netdev(dev1);
3385 free_netdev(dev0); 3381 free_netdev(dev0);
3386 3382
3387 iounmap(hw->regs); 3383 iounmap(hw->regs);
3388 kfree(hw); 3384 kfree(hw);
3389 pci_set_drvdata(pdev, NULL); 3385 pci_set_drvdata(pdev, NULL);
3390 } 3386 }
3391 3387
3392 #ifdef CONFIG_PM 3388 #ifdef CONFIG_PM
3393 static int skge_suspend(struct pci_dev *pdev, pm_message_t state) 3389 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
3394 { 3390 {
3395 struct skge_hw *hw = pci_get_drvdata(pdev); 3391 struct skge_hw *hw = pci_get_drvdata(pdev);
3396 int i, wol = 0; 3392 int i, wol = 0;
3397 3393
3398 for (i = 0; i < 2; i++) { 3394 for (i = 0; i < 2; i++) {
3399 struct net_device *dev = hw->dev[i]; 3395 struct net_device *dev = hw->dev[i];
3400 3396
3401 if (dev) { 3397 if (dev) {
3402 struct skge_port *skge = netdev_priv(dev); 3398 struct skge_port *skge = netdev_priv(dev);
3403 if (netif_running(dev)) { 3399 if (netif_running(dev)) {
3404 netif_carrier_off(dev); 3400 netif_carrier_off(dev);
3405 if (skge->wol) 3401 if (skge->wol)
3406 netif_stop_queue(dev); 3402 netif_stop_queue(dev);
3407 else 3403 else
3408 skge_down(dev); 3404 skge_down(dev);
3409 } 3405 }
3410 netif_device_detach(dev); 3406 netif_device_detach(dev);
3411 wol |= skge->wol; 3407 wol |= skge->wol;
3412 } 3408 }
3413 } 3409 }
3414 3410
3415 pci_save_state(pdev); 3411 pci_save_state(pdev);
3416 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); 3412 pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
3417 pci_disable_device(pdev); 3413 pci_disable_device(pdev);
3418 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 3414 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3419 3415
3420 return 0; 3416 return 0;
3421 } 3417 }
3422 3418
3423 static int skge_resume(struct pci_dev *pdev) 3419 static int skge_resume(struct pci_dev *pdev)
3424 { 3420 {
3425 struct skge_hw *hw = pci_get_drvdata(pdev); 3421 struct skge_hw *hw = pci_get_drvdata(pdev);
3426 int i; 3422 int i;
3427 3423
3428 pci_set_power_state(pdev, PCI_D0); 3424 pci_set_power_state(pdev, PCI_D0);
3429 pci_restore_state(pdev); 3425 pci_restore_state(pdev);
3430 pci_enable_wake(pdev, PCI_D0, 0); 3426 pci_enable_wake(pdev, PCI_D0, 0);
3431 3427
3432 skge_reset(hw); 3428 skge_reset(hw);
3433 3429
3434 for (i = 0; i < 2; i++) { 3430 for (i = 0; i < 2; i++) {
3435 struct net_device *dev = hw->dev[i]; 3431 struct net_device *dev = hw->dev[i];
3436 if (dev) { 3432 if (dev) {
3437 netif_device_attach(dev); 3433 netif_device_attach(dev);
3438 if (netif_running(dev) && skge_up(dev)) 3434 if (netif_running(dev) && skge_up(dev))
3439 dev_close(dev); 3435 dev_close(dev);
3440 } 3436 }
3441 } 3437 }
3442 return 0; 3438 return 0;
3443 } 3439 }
3444 #endif 3440 #endif
3445 3441
3446 static struct pci_driver skge_driver = { 3442 static struct pci_driver skge_driver = {
3447 .name = DRV_NAME, 3443 .name = DRV_NAME,
3448 .id_table = skge_id_table, 3444 .id_table = skge_id_table,
3449 .probe = skge_probe, 3445 .probe = skge_probe,
3450 .remove = __devexit_p(skge_remove), 3446 .remove = __devexit_p(skge_remove),
3451 #ifdef CONFIG_PM 3447 #ifdef CONFIG_PM
3452 .suspend = skge_suspend, 3448 .suspend = skge_suspend,
3453 .resume = skge_resume, 3449 .resume = skge_resume,
3454 #endif 3450 #endif
3455 }; 3451 };
3456 3452
3457 static int __init skge_init_module(void) 3453 static int __init skge_init_module(void)
3458 { 3454 {
3459 return pci_module_init(&skge_driver); 3455 return pci_module_init(&skge_driver);
3460 } 3456 }
3461 3457
3462 static void __exit skge_cleanup_module(void) 3458 static void __exit skge_cleanup_module(void)
3463 { 3459 {
3464 pci_unregister_driver(&skge_driver); 3460 pci_unregister_driver(&skge_driver);
3465 } 3461 }
3466 3462
3467 module_init(skge_init_module); 3463 module_init(skge_init_module);
3468 module_exit(skge_cleanup_module); 3464 module_exit(skge_cleanup_module);
3469 3465