Commit 95e14ed7fc4b2db62eb597a70850a0fede48b78a

Authored by Linus Torvalds

Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb

* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb:
  kdb: add usage string of 'per_cpu' command
  kgdb,x86_64: fix compile warning found with sparse
  kdb: code cleanup to use macro instead of value
  kgdboc,kgdbts: strlen() doesn't count the terminator

Showing 4 changed files Inline Diff

arch/x86/kernel/kgdb.c
1 /* 1 /*
2 * This program is free software; you can redistribute it and/or modify it 2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the 3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any 4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version. 5 * later version.
6 * 6 *
7 * This program is distributed in the hope that it will be useful, but 7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of 8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details. 10 * General Public License for more details.
11 * 11 *
12 */ 12 */
13 13
14 /* 14 /*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com> 15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation. 16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs 17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd. 18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc. 19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc. 20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */ 21 */
22 /**************************************************************************** 22 /****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$ 23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $ 24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com> 25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org> 26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com> 27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support. 28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by 29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com> 30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com> 31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston 32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */ 33 */
34 #include <linux/spinlock.h> 34 #include <linux/spinlock.h>
35 #include <linux/kdebug.h> 35 #include <linux/kdebug.h>
36 #include <linux/string.h> 36 #include <linux/string.h>
37 #include <linux/kernel.h> 37 #include <linux/kernel.h>
38 #include <linux/ptrace.h> 38 #include <linux/ptrace.h>
39 #include <linux/sched.h> 39 #include <linux/sched.h>
40 #include <linux/delay.h> 40 #include <linux/delay.h>
41 #include <linux/kgdb.h> 41 #include <linux/kgdb.h>
42 #include <linux/init.h> 42 #include <linux/init.h>
43 #include <linux/smp.h> 43 #include <linux/smp.h>
44 #include <linux/nmi.h> 44 #include <linux/nmi.h>
45 #include <linux/hw_breakpoint.h> 45 #include <linux/hw_breakpoint.h>
46 46
47 #include <asm/debugreg.h> 47 #include <asm/debugreg.h>
48 #include <asm/apicdef.h> 48 #include <asm/apicdef.h>
49 #include <asm/system.h> 49 #include <asm/system.h>
50 #include <asm/apic.h> 50 #include <asm/apic.h>
51 #include <asm/nmi.h> 51 #include <asm/nmi.h>
52 52
53 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = 53 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54 { 54 {
55 #ifdef CONFIG_X86_32 55 #ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) }, 56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) }, 57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) }, 58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) }, 59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) }, 60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) }, 61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) }, 62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) }, 63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) }, 64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) }, 65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) }, 66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) }, 67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) }, 68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) }, 69 { "es", 4, offsetof(struct pt_regs, es) },
70 { "fs", 4, -1 }, 70 { "fs", 4, -1 },
71 { "gs", 4, -1 }, 71 { "gs", 4, -1 },
72 #else 72 #else
73 { "ax", 8, offsetof(struct pt_regs, ax) }, 73 { "ax", 8, offsetof(struct pt_regs, ax) },
74 { "bx", 8, offsetof(struct pt_regs, bx) }, 74 { "bx", 8, offsetof(struct pt_regs, bx) },
75 { "cx", 8, offsetof(struct pt_regs, cx) }, 75 { "cx", 8, offsetof(struct pt_regs, cx) },
76 { "dx", 8, offsetof(struct pt_regs, dx) }, 76 { "dx", 8, offsetof(struct pt_regs, dx) },
77 { "si", 8, offsetof(struct pt_regs, dx) }, 77 { "si", 8, offsetof(struct pt_regs, dx) },
78 { "di", 8, offsetof(struct pt_regs, di) }, 78 { "di", 8, offsetof(struct pt_regs, di) },
79 { "bp", 8, offsetof(struct pt_regs, bp) }, 79 { "bp", 8, offsetof(struct pt_regs, bp) },
80 { "sp", 8, offsetof(struct pt_regs, sp) }, 80 { "sp", 8, offsetof(struct pt_regs, sp) },
81 { "r8", 8, offsetof(struct pt_regs, r8) }, 81 { "r8", 8, offsetof(struct pt_regs, r8) },
82 { "r9", 8, offsetof(struct pt_regs, r9) }, 82 { "r9", 8, offsetof(struct pt_regs, r9) },
83 { "r10", 8, offsetof(struct pt_regs, r10) }, 83 { "r10", 8, offsetof(struct pt_regs, r10) },
84 { "r11", 8, offsetof(struct pt_regs, r11) }, 84 { "r11", 8, offsetof(struct pt_regs, r11) },
85 { "r12", 8, offsetof(struct pt_regs, r12) }, 85 { "r12", 8, offsetof(struct pt_regs, r12) },
86 { "r13", 8, offsetof(struct pt_regs, r13) }, 86 { "r13", 8, offsetof(struct pt_regs, r13) },
87 { "r14", 8, offsetof(struct pt_regs, r14) }, 87 { "r14", 8, offsetof(struct pt_regs, r14) },
88 { "r15", 8, offsetof(struct pt_regs, r15) }, 88 { "r15", 8, offsetof(struct pt_regs, r15) },
89 { "ip", 8, offsetof(struct pt_regs, ip) }, 89 { "ip", 8, offsetof(struct pt_regs, ip) },
90 { "flags", 4, offsetof(struct pt_regs, flags) }, 90 { "flags", 4, offsetof(struct pt_regs, flags) },
91 { "cs", 4, offsetof(struct pt_regs, cs) }, 91 { "cs", 4, offsetof(struct pt_regs, cs) },
92 { "ss", 4, offsetof(struct pt_regs, ss) }, 92 { "ss", 4, offsetof(struct pt_regs, ss) },
93 #endif 93 #endif
94 }; 94 };
95 95
96 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) 96 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
97 { 97 {
98 if ( 98 if (
99 #ifdef CONFIG_X86_32 99 #ifdef CONFIG_X86_32
100 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS || 100 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
101 #endif 101 #endif
102 regno == GDB_SP || regno == GDB_ORIG_AX) 102 regno == GDB_SP || regno == GDB_ORIG_AX)
103 return 0; 103 return 0;
104 104
105 if (dbg_reg_def[regno].offset != -1) 105 if (dbg_reg_def[regno].offset != -1)
106 memcpy((void *)regs + dbg_reg_def[regno].offset, mem, 106 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
107 dbg_reg_def[regno].size); 107 dbg_reg_def[regno].size);
108 return 0; 108 return 0;
109 } 109 }
110 110
111 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) 111 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
112 { 112 {
113 if (regno == GDB_ORIG_AX) { 113 if (regno == GDB_ORIG_AX) {
114 memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax)); 114 memcpy(mem, &regs->orig_ax, sizeof(regs->orig_ax));
115 return "orig_ax"; 115 return "orig_ax";
116 } 116 }
117 if (regno >= DBG_MAX_REG_NUM || regno < 0) 117 if (regno >= DBG_MAX_REG_NUM || regno < 0)
118 return NULL; 118 return NULL;
119 119
120 if (dbg_reg_def[regno].offset != -1) 120 if (dbg_reg_def[regno].offset != -1)
121 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, 121 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
122 dbg_reg_def[regno].size); 122 dbg_reg_def[regno].size);
123 123
124 switch (regno) {
125 #ifdef CONFIG_X86_32 124 #ifdef CONFIG_X86_32
125 switch (regno) {
126 case GDB_SS: 126 case GDB_SS:
127 if (!user_mode_vm(regs)) 127 if (!user_mode_vm(regs))
128 *(unsigned long *)mem = __KERNEL_DS; 128 *(unsigned long *)mem = __KERNEL_DS;
129 break; 129 break;
130 case GDB_SP: 130 case GDB_SP:
131 if (!user_mode_vm(regs)) 131 if (!user_mode_vm(regs))
132 *(unsigned long *)mem = kernel_stack_pointer(regs); 132 *(unsigned long *)mem = kernel_stack_pointer(regs);
133 break; 133 break;
134 case GDB_GS: 134 case GDB_GS:
135 case GDB_FS: 135 case GDB_FS:
136 *(unsigned long *)mem = 0xFFFF; 136 *(unsigned long *)mem = 0xFFFF;
137 break; 137 break;
138 #endif
139 } 138 }
139 #endif
140 return dbg_reg_def[regno].name; 140 return dbg_reg_def[regno].name;
141 } 141 }
142 142
143 /** 143 /**
144 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs 144 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
145 * @gdb_regs: A pointer to hold the registers in the order GDB wants. 145 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
146 * @p: The &struct task_struct of the desired process. 146 * @p: The &struct task_struct of the desired process.
147 * 147 *
148 * Convert the register values of the sleeping process in @p to 148 * Convert the register values of the sleeping process in @p to
149 * the format that GDB expects. 149 * the format that GDB expects.
150 * This function is called when kgdb does not have access to the 150 * This function is called when kgdb does not have access to the
151 * &struct pt_regs and therefore it should fill the gdb registers 151 * &struct pt_regs and therefore it should fill the gdb registers
152 * @gdb_regs with what has been saved in &struct thread_struct 152 * @gdb_regs with what has been saved in &struct thread_struct
153 * thread field during switch_to. 153 * thread field during switch_to.
154 */ 154 */
155 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) 155 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
156 { 156 {
157 #ifndef CONFIG_X86_32 157 #ifndef CONFIG_X86_32
158 u32 *gdb_regs32 = (u32 *)gdb_regs; 158 u32 *gdb_regs32 = (u32 *)gdb_regs;
159 #endif 159 #endif
160 gdb_regs[GDB_AX] = 0; 160 gdb_regs[GDB_AX] = 0;
161 gdb_regs[GDB_BX] = 0; 161 gdb_regs[GDB_BX] = 0;
162 gdb_regs[GDB_CX] = 0; 162 gdb_regs[GDB_CX] = 0;
163 gdb_regs[GDB_DX] = 0; 163 gdb_regs[GDB_DX] = 0;
164 gdb_regs[GDB_SI] = 0; 164 gdb_regs[GDB_SI] = 0;
165 gdb_regs[GDB_DI] = 0; 165 gdb_regs[GDB_DI] = 0;
166 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp; 166 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
167 #ifdef CONFIG_X86_32 167 #ifdef CONFIG_X86_32
168 gdb_regs[GDB_DS] = __KERNEL_DS; 168 gdb_regs[GDB_DS] = __KERNEL_DS;
169 gdb_regs[GDB_ES] = __KERNEL_DS; 169 gdb_regs[GDB_ES] = __KERNEL_DS;
170 gdb_regs[GDB_PS] = 0; 170 gdb_regs[GDB_PS] = 0;
171 gdb_regs[GDB_CS] = __KERNEL_CS; 171 gdb_regs[GDB_CS] = __KERNEL_CS;
172 gdb_regs[GDB_PC] = p->thread.ip; 172 gdb_regs[GDB_PC] = p->thread.ip;
173 gdb_regs[GDB_SS] = __KERNEL_DS; 173 gdb_regs[GDB_SS] = __KERNEL_DS;
174 gdb_regs[GDB_FS] = 0xFFFF; 174 gdb_regs[GDB_FS] = 0xFFFF;
175 gdb_regs[GDB_GS] = 0xFFFF; 175 gdb_regs[GDB_GS] = 0xFFFF;
176 #else 176 #else
177 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8); 177 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
178 gdb_regs32[GDB_CS] = __KERNEL_CS; 178 gdb_regs32[GDB_CS] = __KERNEL_CS;
179 gdb_regs32[GDB_SS] = __KERNEL_DS; 179 gdb_regs32[GDB_SS] = __KERNEL_DS;
180 gdb_regs[GDB_PC] = 0; 180 gdb_regs[GDB_PC] = 0;
181 gdb_regs[GDB_R8] = 0; 181 gdb_regs[GDB_R8] = 0;
182 gdb_regs[GDB_R9] = 0; 182 gdb_regs[GDB_R9] = 0;
183 gdb_regs[GDB_R10] = 0; 183 gdb_regs[GDB_R10] = 0;
184 gdb_regs[GDB_R11] = 0; 184 gdb_regs[GDB_R11] = 0;
185 gdb_regs[GDB_R12] = 0; 185 gdb_regs[GDB_R12] = 0;
186 gdb_regs[GDB_R13] = 0; 186 gdb_regs[GDB_R13] = 0;
187 gdb_regs[GDB_R14] = 0; 187 gdb_regs[GDB_R14] = 0;
188 gdb_regs[GDB_R15] = 0; 188 gdb_regs[GDB_R15] = 0;
189 #endif 189 #endif
190 gdb_regs[GDB_SP] = p->thread.sp; 190 gdb_regs[GDB_SP] = p->thread.sp;
191 } 191 }
192 192
193 static struct hw_breakpoint { 193 static struct hw_breakpoint {
194 unsigned enabled; 194 unsigned enabled;
195 unsigned long addr; 195 unsigned long addr;
196 int len; 196 int len;
197 int type; 197 int type;
198 struct perf_event * __percpu *pev; 198 struct perf_event * __percpu *pev;
199 } breakinfo[HBP_NUM]; 199 } breakinfo[HBP_NUM];
200 200
201 static unsigned long early_dr7; 201 static unsigned long early_dr7;
202 202
203 static void kgdb_correct_hw_break(void) 203 static void kgdb_correct_hw_break(void)
204 { 204 {
205 int breakno; 205 int breakno;
206 206
207 for (breakno = 0; breakno < HBP_NUM; breakno++) { 207 for (breakno = 0; breakno < HBP_NUM; breakno++) {
208 struct perf_event *bp; 208 struct perf_event *bp;
209 struct arch_hw_breakpoint *info; 209 struct arch_hw_breakpoint *info;
210 int val; 210 int val;
211 int cpu = raw_smp_processor_id(); 211 int cpu = raw_smp_processor_id();
212 if (!breakinfo[breakno].enabled) 212 if (!breakinfo[breakno].enabled)
213 continue; 213 continue;
214 if (dbg_is_early) { 214 if (dbg_is_early) {
215 set_debugreg(breakinfo[breakno].addr, breakno); 215 set_debugreg(breakinfo[breakno].addr, breakno);
216 early_dr7 |= encode_dr7(breakno, 216 early_dr7 |= encode_dr7(breakno,
217 breakinfo[breakno].len, 217 breakinfo[breakno].len,
218 breakinfo[breakno].type); 218 breakinfo[breakno].type);
219 set_debugreg(early_dr7, 7); 219 set_debugreg(early_dr7, 7);
220 continue; 220 continue;
221 } 221 }
222 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu); 222 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
223 info = counter_arch_bp(bp); 223 info = counter_arch_bp(bp);
224 if (bp->attr.disabled != 1) 224 if (bp->attr.disabled != 1)
225 continue; 225 continue;
226 bp->attr.bp_addr = breakinfo[breakno].addr; 226 bp->attr.bp_addr = breakinfo[breakno].addr;
227 bp->attr.bp_len = breakinfo[breakno].len; 227 bp->attr.bp_len = breakinfo[breakno].len;
228 bp->attr.bp_type = breakinfo[breakno].type; 228 bp->attr.bp_type = breakinfo[breakno].type;
229 info->address = breakinfo[breakno].addr; 229 info->address = breakinfo[breakno].addr;
230 info->len = breakinfo[breakno].len; 230 info->len = breakinfo[breakno].len;
231 info->type = breakinfo[breakno].type; 231 info->type = breakinfo[breakno].type;
232 val = arch_install_hw_breakpoint(bp); 232 val = arch_install_hw_breakpoint(bp);
233 if (!val) 233 if (!val)
234 bp->attr.disabled = 0; 234 bp->attr.disabled = 0;
235 } 235 }
236 if (!dbg_is_early) 236 if (!dbg_is_early)
237 hw_breakpoint_restore(); 237 hw_breakpoint_restore();
238 } 238 }
239 239
240 static int hw_break_reserve_slot(int breakno) 240 static int hw_break_reserve_slot(int breakno)
241 { 241 {
242 int cpu; 242 int cpu;
243 int cnt = 0; 243 int cnt = 0;
244 struct perf_event **pevent; 244 struct perf_event **pevent;
245 245
246 if (dbg_is_early) 246 if (dbg_is_early)
247 return 0; 247 return 0;
248 248
249 for_each_online_cpu(cpu) { 249 for_each_online_cpu(cpu) {
250 cnt++; 250 cnt++;
251 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); 251 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
252 if (dbg_reserve_bp_slot(*pevent)) 252 if (dbg_reserve_bp_slot(*pevent))
253 goto fail; 253 goto fail;
254 } 254 }
255 255
256 return 0; 256 return 0;
257 257
258 fail: 258 fail:
259 for_each_online_cpu(cpu) { 259 for_each_online_cpu(cpu) {
260 cnt--; 260 cnt--;
261 if (!cnt) 261 if (!cnt)
262 break; 262 break;
263 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); 263 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
264 dbg_release_bp_slot(*pevent); 264 dbg_release_bp_slot(*pevent);
265 } 265 }
266 return -1; 266 return -1;
267 } 267 }
268 268
269 static int hw_break_release_slot(int breakno) 269 static int hw_break_release_slot(int breakno)
270 { 270 {
271 struct perf_event **pevent; 271 struct perf_event **pevent;
272 int cpu; 272 int cpu;
273 273
274 if (dbg_is_early) 274 if (dbg_is_early)
275 return 0; 275 return 0;
276 276
277 for_each_online_cpu(cpu) { 277 for_each_online_cpu(cpu) {
278 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu); 278 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
279 if (dbg_release_bp_slot(*pevent)) 279 if (dbg_release_bp_slot(*pevent))
280 /* 280 /*
281 * The debugger is responsible for handing the retry on 281 * The debugger is responsible for handing the retry on
282 * remove failure. 282 * remove failure.
283 */ 283 */
284 return -1; 284 return -1;
285 } 285 }
286 return 0; 286 return 0;
287 } 287 }
288 288
289 static int 289 static int
290 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 290 kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
291 { 291 {
292 int i; 292 int i;
293 293
294 for (i = 0; i < HBP_NUM; i++) 294 for (i = 0; i < HBP_NUM; i++)
295 if (breakinfo[i].addr == addr && breakinfo[i].enabled) 295 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
296 break; 296 break;
297 if (i == HBP_NUM) 297 if (i == HBP_NUM)
298 return -1; 298 return -1;
299 299
300 if (hw_break_release_slot(i)) { 300 if (hw_break_release_slot(i)) {
301 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr); 301 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
302 return -1; 302 return -1;
303 } 303 }
304 breakinfo[i].enabled = 0; 304 breakinfo[i].enabled = 0;
305 305
306 return 0; 306 return 0;
307 } 307 }
308 308
309 static void kgdb_remove_all_hw_break(void) 309 static void kgdb_remove_all_hw_break(void)
310 { 310 {
311 int i; 311 int i;
312 int cpu = raw_smp_processor_id(); 312 int cpu = raw_smp_processor_id();
313 struct perf_event *bp; 313 struct perf_event *bp;
314 314
315 for (i = 0; i < HBP_NUM; i++) { 315 for (i = 0; i < HBP_NUM; i++) {
316 if (!breakinfo[i].enabled) 316 if (!breakinfo[i].enabled)
317 continue; 317 continue;
318 bp = *per_cpu_ptr(breakinfo[i].pev, cpu); 318 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
319 if (!bp->attr.disabled) { 319 if (!bp->attr.disabled) {
320 arch_uninstall_hw_breakpoint(bp); 320 arch_uninstall_hw_breakpoint(bp);
321 bp->attr.disabled = 1; 321 bp->attr.disabled = 1;
322 continue; 322 continue;
323 } 323 }
324 if (dbg_is_early) 324 if (dbg_is_early)
325 early_dr7 &= ~encode_dr7(i, breakinfo[i].len, 325 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
326 breakinfo[i].type); 326 breakinfo[i].type);
327 else if (hw_break_release_slot(i)) 327 else if (hw_break_release_slot(i))
328 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n", 328 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
329 breakinfo[i].addr); 329 breakinfo[i].addr);
330 breakinfo[i].enabled = 0; 330 breakinfo[i].enabled = 0;
331 } 331 }
332 } 332 }
333 333
334 static int 334 static int
335 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype) 335 kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
336 { 336 {
337 int i; 337 int i;
338 338
339 for (i = 0; i < HBP_NUM; i++) 339 for (i = 0; i < HBP_NUM; i++)
340 if (!breakinfo[i].enabled) 340 if (!breakinfo[i].enabled)
341 break; 341 break;
342 if (i == HBP_NUM) 342 if (i == HBP_NUM)
343 return -1; 343 return -1;
344 344
345 switch (bptype) { 345 switch (bptype) {
346 case BP_HARDWARE_BREAKPOINT: 346 case BP_HARDWARE_BREAKPOINT:
347 len = 1; 347 len = 1;
348 breakinfo[i].type = X86_BREAKPOINT_EXECUTE; 348 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
349 break; 349 break;
350 case BP_WRITE_WATCHPOINT: 350 case BP_WRITE_WATCHPOINT:
351 breakinfo[i].type = X86_BREAKPOINT_WRITE; 351 breakinfo[i].type = X86_BREAKPOINT_WRITE;
352 break; 352 break;
353 case BP_ACCESS_WATCHPOINT: 353 case BP_ACCESS_WATCHPOINT:
354 breakinfo[i].type = X86_BREAKPOINT_RW; 354 breakinfo[i].type = X86_BREAKPOINT_RW;
355 break; 355 break;
356 default: 356 default:
357 return -1; 357 return -1;
358 } 358 }
359 switch (len) { 359 switch (len) {
360 case 1: 360 case 1:
361 breakinfo[i].len = X86_BREAKPOINT_LEN_1; 361 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
362 break; 362 break;
363 case 2: 363 case 2:
364 breakinfo[i].len = X86_BREAKPOINT_LEN_2; 364 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
365 break; 365 break;
366 case 4: 366 case 4:
367 breakinfo[i].len = X86_BREAKPOINT_LEN_4; 367 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
368 break; 368 break;
369 #ifdef CONFIG_X86_64 369 #ifdef CONFIG_X86_64
370 case 8: 370 case 8:
371 breakinfo[i].len = X86_BREAKPOINT_LEN_8; 371 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
372 break; 372 break;
373 #endif 373 #endif
374 default: 374 default:
375 return -1; 375 return -1;
376 } 376 }
377 breakinfo[i].addr = addr; 377 breakinfo[i].addr = addr;
378 if (hw_break_reserve_slot(i)) { 378 if (hw_break_reserve_slot(i)) {
379 breakinfo[i].addr = 0; 379 breakinfo[i].addr = 0;
380 return -1; 380 return -1;
381 } 381 }
382 breakinfo[i].enabled = 1; 382 breakinfo[i].enabled = 1;
383 383
384 return 0; 384 return 0;
385 } 385 }
386 386
387 /** 387 /**
388 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb. 388 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
389 * @regs: Current &struct pt_regs. 389 * @regs: Current &struct pt_regs.
390 * 390 *
391 * This function will be called if the particular architecture must 391 * This function will be called if the particular architecture must
392 * disable hardware debugging while it is processing gdb packets or 392 * disable hardware debugging while it is processing gdb packets or
393 * handling exception. 393 * handling exception.
394 */ 394 */
395 static void kgdb_disable_hw_debug(struct pt_regs *regs) 395 static void kgdb_disable_hw_debug(struct pt_regs *regs)
396 { 396 {
397 int i; 397 int i;
398 int cpu = raw_smp_processor_id(); 398 int cpu = raw_smp_processor_id();
399 struct perf_event *bp; 399 struct perf_event *bp;
400 400
401 /* Disable hardware debugging while we are in kgdb: */ 401 /* Disable hardware debugging while we are in kgdb: */
402 set_debugreg(0UL, 7); 402 set_debugreg(0UL, 7);
403 for (i = 0; i < HBP_NUM; i++) { 403 for (i = 0; i < HBP_NUM; i++) {
404 if (!breakinfo[i].enabled) 404 if (!breakinfo[i].enabled)
405 continue; 405 continue;
406 if (dbg_is_early) { 406 if (dbg_is_early) {
407 early_dr7 &= ~encode_dr7(i, breakinfo[i].len, 407 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
408 breakinfo[i].type); 408 breakinfo[i].type);
409 continue; 409 continue;
410 } 410 }
411 bp = *per_cpu_ptr(breakinfo[i].pev, cpu); 411 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
412 if (bp->attr.disabled == 1) 412 if (bp->attr.disabled == 1)
413 continue; 413 continue;
414 arch_uninstall_hw_breakpoint(bp); 414 arch_uninstall_hw_breakpoint(bp);
415 bp->attr.disabled = 1; 415 bp->attr.disabled = 1;
416 } 416 }
417 } 417 }
418 418
419 #ifdef CONFIG_SMP 419 #ifdef CONFIG_SMP
420 /** 420 /**
421 * kgdb_roundup_cpus - Get other CPUs into a holding pattern 421 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
422 * @flags: Current IRQ state 422 * @flags: Current IRQ state
423 * 423 *
424 * On SMP systems, we need to get the attention of the other CPUs 424 * On SMP systems, we need to get the attention of the other CPUs
425 * and get them be in a known state. This should do what is needed 425 * and get them be in a known state. This should do what is needed
426 * to get the other CPUs to call kgdb_wait(). Note that on some arches, 426 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
427 * the NMI approach is not used for rounding up all the CPUs. For example, 427 * the NMI approach is not used for rounding up all the CPUs. For example,
428 * in case of MIPS, smp_call_function() is used to roundup CPUs. In 428 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
429 * this case, we have to make sure that interrupts are enabled before 429 * this case, we have to make sure that interrupts are enabled before
430 * calling smp_call_function(). The argument to this function is 430 * calling smp_call_function(). The argument to this function is
431 * the flags that will be used when restoring the interrupts. There is 431 * the flags that will be used when restoring the interrupts. There is
432 * local_irq_save() call before kgdb_roundup_cpus(). 432 * local_irq_save() call before kgdb_roundup_cpus().
433 * 433 *
434 * On non-SMP systems, this is not called. 434 * On non-SMP systems, this is not called.
435 */ 435 */
436 void kgdb_roundup_cpus(unsigned long flags) 436 void kgdb_roundup_cpus(unsigned long flags)
437 { 437 {
438 apic->send_IPI_allbutself(APIC_DM_NMI); 438 apic->send_IPI_allbutself(APIC_DM_NMI);
439 } 439 }
440 #endif 440 #endif
441 441
442 /** 442 /**
443 * kgdb_arch_handle_exception - Handle architecture specific GDB packets. 443 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
444 * @vector: The error vector of the exception that happened. 444 * @vector: The error vector of the exception that happened.
445 * @signo: The signal number of the exception that happened. 445 * @signo: The signal number of the exception that happened.
446 * @err_code: The error code of the exception that happened. 446 * @err_code: The error code of the exception that happened.
447 * @remcom_in_buffer: The buffer of the packet we have read. 447 * @remcom_in_buffer: The buffer of the packet we have read.
448 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into. 448 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
449 * @regs: The &struct pt_regs of the current process. 449 * @regs: The &struct pt_regs of the current process.
450 * 450 *
451 * This function MUST handle the 'c' and 's' command packets, 451 * This function MUST handle the 'c' and 's' command packets,
452 * as well packets to set / remove a hardware breakpoint, if used. 452 * as well packets to set / remove a hardware breakpoint, if used.
453 * If there are additional packets which the hardware needs to handle, 453 * If there are additional packets which the hardware needs to handle,
454 * they are handled here. The code should return -1 if it wants to 454 * they are handled here. The code should return -1 if it wants to
455 * process more packets, and a %0 or %1 if it wants to exit from the 455 * process more packets, and a %0 or %1 if it wants to exit from the
456 * kgdb callback. 456 * kgdb callback.
457 */ 457 */
458 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, 458 int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
459 char *remcomInBuffer, char *remcomOutBuffer, 459 char *remcomInBuffer, char *remcomOutBuffer,
460 struct pt_regs *linux_regs) 460 struct pt_regs *linux_regs)
461 { 461 {
462 unsigned long addr; 462 unsigned long addr;
463 char *ptr; 463 char *ptr;
464 464
465 switch (remcomInBuffer[0]) { 465 switch (remcomInBuffer[0]) {
466 case 'c': 466 case 'c':
467 case 's': 467 case 's':
468 /* try to read optional parameter, pc unchanged if no parm */ 468 /* try to read optional parameter, pc unchanged if no parm */
469 ptr = &remcomInBuffer[1]; 469 ptr = &remcomInBuffer[1];
470 if (kgdb_hex2long(&ptr, &addr)) 470 if (kgdb_hex2long(&ptr, &addr))
471 linux_regs->ip = addr; 471 linux_regs->ip = addr;
472 case 'D': 472 case 'D':
473 case 'k': 473 case 'k':
474 /* clear the trace bit */ 474 /* clear the trace bit */
475 linux_regs->flags &= ~X86_EFLAGS_TF; 475 linux_regs->flags &= ~X86_EFLAGS_TF;
476 atomic_set(&kgdb_cpu_doing_single_step, -1); 476 atomic_set(&kgdb_cpu_doing_single_step, -1);
477 477
478 /* set the trace bit if we're stepping */ 478 /* set the trace bit if we're stepping */
479 if (remcomInBuffer[0] == 's') { 479 if (remcomInBuffer[0] == 's') {
480 linux_regs->flags |= X86_EFLAGS_TF; 480 linux_regs->flags |= X86_EFLAGS_TF;
481 atomic_set(&kgdb_cpu_doing_single_step, 481 atomic_set(&kgdb_cpu_doing_single_step,
482 raw_smp_processor_id()); 482 raw_smp_processor_id());
483 } 483 }
484 484
485 return 0; 485 return 0;
486 } 486 }
487 487
488 /* this means that we do not want to exit from the handler: */ 488 /* this means that we do not want to exit from the handler: */
489 return -1; 489 return -1;
490 } 490 }
491 491
492 static inline int 492 static inline int
493 single_step_cont(struct pt_regs *regs, struct die_args *args) 493 single_step_cont(struct pt_regs *regs, struct die_args *args)
494 { 494 {
495 /* 495 /*
496 * Single step exception from kernel space to user space so 496 * Single step exception from kernel space to user space so
497 * eat the exception and continue the process: 497 * eat the exception and continue the process:
498 */ 498 */
499 printk(KERN_ERR "KGDB: trap/step from kernel to user space, " 499 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
500 "resuming...\n"); 500 "resuming...\n");
501 kgdb_arch_handle_exception(args->trapnr, args->signr, 501 kgdb_arch_handle_exception(args->trapnr, args->signr,
502 args->err, "c", "", regs); 502 args->err, "c", "", regs);
503 /* 503 /*
504 * Reset the BS bit in dr6 (pointed by args->err) to 504 * Reset the BS bit in dr6 (pointed by args->err) to
505 * denote completion of processing 505 * denote completion of processing
506 */ 506 */
507 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP; 507 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
508 508
509 return NOTIFY_STOP; 509 return NOTIFY_STOP;
510 } 510 }
511 511
512 static int was_in_debug_nmi[NR_CPUS]; 512 static int was_in_debug_nmi[NR_CPUS];
513 513
514 static int __kgdb_notify(struct die_args *args, unsigned long cmd) 514 static int __kgdb_notify(struct die_args *args, unsigned long cmd)
515 { 515 {
516 struct pt_regs *regs = args->regs; 516 struct pt_regs *regs = args->regs;
517 517
518 switch (cmd) { 518 switch (cmd) {
519 case DIE_NMI: 519 case DIE_NMI:
520 if (atomic_read(&kgdb_active) != -1) { 520 if (atomic_read(&kgdb_active) != -1) {
521 /* KGDB CPU roundup */ 521 /* KGDB CPU roundup */
522 kgdb_nmicallback(raw_smp_processor_id(), regs); 522 kgdb_nmicallback(raw_smp_processor_id(), regs);
523 was_in_debug_nmi[raw_smp_processor_id()] = 1; 523 was_in_debug_nmi[raw_smp_processor_id()] = 1;
524 touch_nmi_watchdog(); 524 touch_nmi_watchdog();
525 return NOTIFY_STOP; 525 return NOTIFY_STOP;
526 } 526 }
527 return NOTIFY_DONE; 527 return NOTIFY_DONE;
528 528
529 case DIE_NMIUNKNOWN: 529 case DIE_NMIUNKNOWN:
530 if (was_in_debug_nmi[raw_smp_processor_id()]) { 530 if (was_in_debug_nmi[raw_smp_processor_id()]) {
531 was_in_debug_nmi[raw_smp_processor_id()] = 0; 531 was_in_debug_nmi[raw_smp_processor_id()] = 0;
532 return NOTIFY_STOP; 532 return NOTIFY_STOP;
533 } 533 }
534 return NOTIFY_DONE; 534 return NOTIFY_DONE;
535 535
536 case DIE_DEBUG: 536 case DIE_DEBUG:
537 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 537 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
538 if (user_mode(regs)) 538 if (user_mode(regs))
539 return single_step_cont(regs, args); 539 return single_step_cont(regs, args);
540 break; 540 break;
541 } else if (test_thread_flag(TIF_SINGLESTEP)) 541 } else if (test_thread_flag(TIF_SINGLESTEP))
542 /* This means a user thread is single stepping 542 /* This means a user thread is single stepping
543 * a system call which should be ignored 543 * a system call which should be ignored
544 */ 544 */
545 return NOTIFY_DONE; 545 return NOTIFY_DONE;
546 /* fall through */ 546 /* fall through */
547 default: 547 default:
548 if (user_mode(regs)) 548 if (user_mode(regs))
549 return NOTIFY_DONE; 549 return NOTIFY_DONE;
550 } 550 }
551 551
552 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs)) 552 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
553 return NOTIFY_DONE; 553 return NOTIFY_DONE;
554 554
555 /* Must touch watchdog before return to normal operation */ 555 /* Must touch watchdog before return to normal operation */
556 touch_nmi_watchdog(); 556 touch_nmi_watchdog();
557 return NOTIFY_STOP; 557 return NOTIFY_STOP;
558 } 558 }
559 559
560 int kgdb_ll_trap(int cmd, const char *str, 560 int kgdb_ll_trap(int cmd, const char *str,
561 struct pt_regs *regs, long err, int trap, int sig) 561 struct pt_regs *regs, long err, int trap, int sig)
562 { 562 {
563 struct die_args args = { 563 struct die_args args = {
564 .regs = regs, 564 .regs = regs,
565 .str = str, 565 .str = str,
566 .err = err, 566 .err = err,
567 .trapnr = trap, 567 .trapnr = trap,
568 .signr = sig, 568 .signr = sig,
569 569
570 }; 570 };
571 571
572 if (!kgdb_io_module_registered) 572 if (!kgdb_io_module_registered)
573 return NOTIFY_DONE; 573 return NOTIFY_DONE;
574 574
575 return __kgdb_notify(&args, cmd); 575 return __kgdb_notify(&args, cmd);
576 } 576 }
577 577
578 static int 578 static int
579 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) 579 kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
580 { 580 {
581 unsigned long flags; 581 unsigned long flags;
582 int ret; 582 int ret;
583 583
584 local_irq_save(flags); 584 local_irq_save(flags);
585 ret = __kgdb_notify(ptr, cmd); 585 ret = __kgdb_notify(ptr, cmd);
586 local_irq_restore(flags); 586 local_irq_restore(flags);
587 587
588 return ret; 588 return ret;
589 } 589 }
590 590
591 static struct notifier_block kgdb_notifier = { 591 static struct notifier_block kgdb_notifier = {
592 .notifier_call = kgdb_notify, 592 .notifier_call = kgdb_notify,
593 593
594 /* 594 /*
595 * Lowest-prio notifier priority, we want to be notified last: 595 * Lowest-prio notifier priority, we want to be notified last:
596 */ 596 */
597 .priority = NMI_LOCAL_LOW_PRIOR, 597 .priority = NMI_LOCAL_LOW_PRIOR,
598 }; 598 };
599 599
600 /** 600 /**
601 * kgdb_arch_init - Perform any architecture specific initalization. 601 * kgdb_arch_init - Perform any architecture specific initalization.
602 * 602 *
603 * This function will handle the initalization of any architecture 603 * This function will handle the initalization of any architecture
604 * specific callbacks. 604 * specific callbacks.
605 */ 605 */
606 int kgdb_arch_init(void) 606 int kgdb_arch_init(void)
607 { 607 {
608 return register_die_notifier(&kgdb_notifier); 608 return register_die_notifier(&kgdb_notifier);
609 } 609 }
610 610
611 static void kgdb_hw_overflow_handler(struct perf_event *event, int nmi, 611 static void kgdb_hw_overflow_handler(struct perf_event *event, int nmi,
612 struct perf_sample_data *data, struct pt_regs *regs) 612 struct perf_sample_data *data, struct pt_regs *regs)
613 { 613 {
614 struct task_struct *tsk = current; 614 struct task_struct *tsk = current;
615 int i; 615 int i;
616 616
617 for (i = 0; i < 4; i++) 617 for (i = 0; i < 4; i++)
618 if (breakinfo[i].enabled) 618 if (breakinfo[i].enabled)
619 tsk->thread.debugreg6 |= (DR_TRAP0 << i); 619 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
620 } 620 }
621 621
622 void kgdb_arch_late(void) 622 void kgdb_arch_late(void)
623 { 623 {
624 int i, cpu; 624 int i, cpu;
625 struct perf_event_attr attr; 625 struct perf_event_attr attr;
626 struct perf_event **pevent; 626 struct perf_event **pevent;
627 627
628 /* 628 /*
629 * Pre-allocate the hw breakpoint structions in the non-atomic 629 * Pre-allocate the hw breakpoint structions in the non-atomic
630 * portion of kgdb because this operation requires mutexs to 630 * portion of kgdb because this operation requires mutexs to
631 * complete. 631 * complete.
632 */ 632 */
633 hw_breakpoint_init(&attr); 633 hw_breakpoint_init(&attr);
634 attr.bp_addr = (unsigned long)kgdb_arch_init; 634 attr.bp_addr = (unsigned long)kgdb_arch_init;
635 attr.bp_len = HW_BREAKPOINT_LEN_1; 635 attr.bp_len = HW_BREAKPOINT_LEN_1;
636 attr.bp_type = HW_BREAKPOINT_W; 636 attr.bp_type = HW_BREAKPOINT_W;
637 attr.disabled = 1; 637 attr.disabled = 1;
638 for (i = 0; i < HBP_NUM; i++) { 638 for (i = 0; i < HBP_NUM; i++) {
639 if (breakinfo[i].pev) 639 if (breakinfo[i].pev)
640 continue; 640 continue;
641 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL); 641 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL);
642 if (IS_ERR((void * __force)breakinfo[i].pev)) { 642 if (IS_ERR((void * __force)breakinfo[i].pev)) {
643 printk(KERN_ERR "kgdb: Could not allocate hw" 643 printk(KERN_ERR "kgdb: Could not allocate hw"
644 "breakpoints\nDisabling the kernel debugger\n"); 644 "breakpoints\nDisabling the kernel debugger\n");
645 breakinfo[i].pev = NULL; 645 breakinfo[i].pev = NULL;
646 kgdb_arch_exit(); 646 kgdb_arch_exit();
647 return; 647 return;
648 } 648 }
649 for_each_online_cpu(cpu) { 649 for_each_online_cpu(cpu) {
650 pevent = per_cpu_ptr(breakinfo[i].pev, cpu); 650 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
651 pevent[0]->hw.sample_period = 1; 651 pevent[0]->hw.sample_period = 1;
652 pevent[0]->overflow_handler = kgdb_hw_overflow_handler; 652 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
653 if (pevent[0]->destroy != NULL) { 653 if (pevent[0]->destroy != NULL) {
654 pevent[0]->destroy = NULL; 654 pevent[0]->destroy = NULL;
655 release_bp_slot(*pevent); 655 release_bp_slot(*pevent);
656 } 656 }
657 } 657 }
658 } 658 }
659 } 659 }
660 660
661 /** 661 /**
662 * kgdb_arch_exit - Perform any architecture specific uninitalization. 662 * kgdb_arch_exit - Perform any architecture specific uninitalization.
663 * 663 *
664 * This function will handle the uninitalization of any architecture 664 * This function will handle the uninitalization of any architecture
665 * specific callbacks, for dynamic registration and unregistration. 665 * specific callbacks, for dynamic registration and unregistration.
666 */ 666 */
667 void kgdb_arch_exit(void) 667 void kgdb_arch_exit(void)
668 { 668 {
669 int i; 669 int i;
670 for (i = 0; i < 4; i++) { 670 for (i = 0; i < 4; i++) {
671 if (breakinfo[i].pev) { 671 if (breakinfo[i].pev) {
672 unregister_wide_hw_breakpoint(breakinfo[i].pev); 672 unregister_wide_hw_breakpoint(breakinfo[i].pev);
673 breakinfo[i].pev = NULL; 673 breakinfo[i].pev = NULL;
674 } 674 }
675 } 675 }
676 unregister_die_notifier(&kgdb_notifier); 676 unregister_die_notifier(&kgdb_notifier);
677 } 677 }
678 678
679 /** 679 /**
680 * 680 *
681 * kgdb_skipexception - Bail out of KGDB when we've been triggered. 681 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
682 * @exception: Exception vector number 682 * @exception: Exception vector number
683 * @regs: Current &struct pt_regs. 683 * @regs: Current &struct pt_regs.
684 * 684 *
685 * On some architectures we need to skip a breakpoint exception when 685 * On some architectures we need to skip a breakpoint exception when
686 * it occurs after a breakpoint has been removed. 686 * it occurs after a breakpoint has been removed.
687 * 687 *
688 * Skip an int3 exception when it occurs after a breakpoint has been 688 * Skip an int3 exception when it occurs after a breakpoint has been
689 * removed. Backtrack eip by 1 since the int3 would have caused it to 689 * removed. Backtrack eip by 1 since the int3 would have caused it to
690 * increment by 1. 690 * increment by 1.
691 */ 691 */
692 int kgdb_skipexception(int exception, struct pt_regs *regs) 692 int kgdb_skipexception(int exception, struct pt_regs *regs)
693 { 693 {
694 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) { 694 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
695 regs->ip -= 1; 695 regs->ip -= 1;
696 return 1; 696 return 1;
697 } 697 }
698 return 0; 698 return 0;
699 } 699 }
700 700
701 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs) 701 unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
702 { 702 {
703 if (exception == 3) 703 if (exception == 3)
704 return instruction_pointer(regs) - 1; 704 return instruction_pointer(regs) - 1;
705 return instruction_pointer(regs); 705 return instruction_pointer(regs);
706 } 706 }
707 707
708 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip) 708 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
709 { 709 {
710 regs->ip = ip; 710 regs->ip = ip;
711 } 711 }
712 712
713 struct kgdb_arch arch_kgdb_ops = { 713 struct kgdb_arch arch_kgdb_ops = {
714 /* Breakpoint instruction: */ 714 /* Breakpoint instruction: */
715 .gdb_bpt_instr = { 0xcc }, 715 .gdb_bpt_instr = { 0xcc },
716 .flags = KGDB_HW_BREAKPOINT, 716 .flags = KGDB_HW_BREAKPOINT,
717 .set_hw_breakpoint = kgdb_set_hw_break, 717 .set_hw_breakpoint = kgdb_set_hw_break,
718 .remove_hw_breakpoint = kgdb_remove_hw_break, 718 .remove_hw_breakpoint = kgdb_remove_hw_break,
719 .disable_hw_break = kgdb_disable_hw_debug, 719 .disable_hw_break = kgdb_disable_hw_debug,
720 .remove_all_hw_break = kgdb_remove_all_hw_break, 720 .remove_all_hw_break = kgdb_remove_all_hw_break,
721 .correct_hw_break = kgdb_correct_hw_break, 721 .correct_hw_break = kgdb_correct_hw_break,
drivers/misc/kgdbts.c
1 /* 1 /*
2 * kgdbts is a test suite for kgdb for the sole purpose of validating 2 * kgdbts is a test suite for kgdb for the sole purpose of validating
3 * that key pieces of the kgdb internals are working properly such as 3 * that key pieces of the kgdb internals are working properly such as
4 * HW/SW breakpoints, single stepping, and NMI. 4 * HW/SW breakpoints, single stepping, and NMI.
5 * 5 *
6 * Created by: Jason Wessel <jason.wessel@windriver.com> 6 * Created by: Jason Wessel <jason.wessel@windriver.com>
7 * 7 *
8 * Copyright (c) 2008 Wind River Systems, Inc. 8 * Copyright (c) 2008 Wind River Systems, Inc.
9 * 9 *
10 * This program is free software; you can redistribute it and/or modify 10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as 11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation. 12 * published by the Free Software Foundation.
13 * 13 *
14 * This program is distributed in the hope that it will be useful, 14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
17 * See the GNU General Public License for more details. 17 * See the GNU General Public License for more details.
18 * 18 *
19 * You should have received a copy of the GNU General Public License 19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software 20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */ 22 */
23 /* Information about the kgdb test suite. 23 /* Information about the kgdb test suite.
24 * ------------------------------------- 24 * -------------------------------------
25 * 25 *
26 * The kgdb test suite is designed as a KGDB I/O module which 26 * The kgdb test suite is designed as a KGDB I/O module which
27 * simulates the communications that a debugger would have with kgdb. 27 * simulates the communications that a debugger would have with kgdb.
28 * The tests are broken up in to a line by line and referenced here as 28 * The tests are broken up in to a line by line and referenced here as
29 * a "get" which is kgdb requesting input and "put" which is kgdb 29 * a "get" which is kgdb requesting input and "put" which is kgdb
30 * sending a response. 30 * sending a response.
31 * 31 *
32 * The kgdb suite can be invoked from the kernel command line 32 * The kgdb suite can be invoked from the kernel command line
33 * arguments system or executed dynamically at run time. The test 33 * arguments system or executed dynamically at run time. The test
34 * suite uses the variable "kgdbts" to obtain the information about 34 * suite uses the variable "kgdbts" to obtain the information about
35 * which tests to run and to configure the verbosity level. The 35 * which tests to run and to configure the verbosity level. The
36 * following are the various characters you can use with the kgdbts= 36 * following are the various characters you can use with the kgdbts=
37 * line: 37 * line:
38 * 38 *
39 * When using the "kgdbts=" you only choose one of the following core 39 * When using the "kgdbts=" you only choose one of the following core
40 * test types: 40 * test types:
41 * A = Run all the core tests silently 41 * A = Run all the core tests silently
42 * V1 = Run all the core tests with minimal output 42 * V1 = Run all the core tests with minimal output
43 * V2 = Run all the core tests in debug mode 43 * V2 = Run all the core tests in debug mode
44 * 44 *
45 * You can also specify optional tests: 45 * You can also specify optional tests:
46 * N## = Go to sleep with interrupts of for ## seconds 46 * N## = Go to sleep with interrupts of for ## seconds
47 * to test the HW NMI watchdog 47 * to test the HW NMI watchdog
48 * F## = Break at do_fork for ## iterations 48 * F## = Break at do_fork for ## iterations
49 * S## = Break at sys_open for ## iterations 49 * S## = Break at sys_open for ## iterations
50 * I## = Run the single step test ## iterations 50 * I## = Run the single step test ## iterations
51 * 51 *
52 * NOTE: that the do_fork and sys_open tests are mutually exclusive. 52 * NOTE: that the do_fork and sys_open tests are mutually exclusive.
53 * 53 *
54 * To invoke the kgdb test suite from boot you use a kernel start 54 * To invoke the kgdb test suite from boot you use a kernel start
55 * argument as follows: 55 * argument as follows:
56 * kgdbts=V1 kgdbwait 56 * kgdbts=V1 kgdbwait
57 * Or if you wanted to perform the NMI test for 6 seconds and do_fork 57 * Or if you wanted to perform the NMI test for 6 seconds and do_fork
58 * test for 100 forks, you could use: 58 * test for 100 forks, you could use:
59 * kgdbts=V1N6F100 kgdbwait 59 * kgdbts=V1N6F100 kgdbwait
60 * 60 *
61 * The test suite can also be invoked at run time with: 61 * The test suite can also be invoked at run time with:
62 * echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts 62 * echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts
63 * Or as another example: 63 * Or as another example:
64 * echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts 64 * echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts
65 * 65 *
66 * When developing a new kgdb arch specific implementation or 66 * When developing a new kgdb arch specific implementation or
67 * using these tests for the purpose of regression testing, 67 * using these tests for the purpose of regression testing,
68 * several invocations are required. 68 * several invocations are required.
69 * 69 *
70 * 1) Boot with the test suite enabled by using the kernel arguments 70 * 1) Boot with the test suite enabled by using the kernel arguments
71 * "kgdbts=V1F100 kgdbwait" 71 * "kgdbts=V1F100 kgdbwait"
72 * ## If kgdb arch specific implementation has NMI use 72 * ## If kgdb arch specific implementation has NMI use
73 * "kgdbts=V1N6F100 73 * "kgdbts=V1N6F100
74 * 74 *
75 * 2) After the system boot run the basic test. 75 * 2) After the system boot run the basic test.
76 * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts 76 * echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts
77 * 77 *
78 * 3) Run the concurrency tests. It is best to use n+1 78 * 3) Run the concurrency tests. It is best to use n+1
79 * while loops where n is the number of cpus you have 79 * while loops where n is the number of cpus you have
80 * in your system. The example below uses only two 80 * in your system. The example below uses only two
81 * loops. 81 * loops.
82 * 82 *
83 * ## This tests break points on sys_open 83 * ## This tests break points on sys_open
84 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & 84 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
85 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done & 85 * while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
86 * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts 86 * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts
87 * fg # and hit control-c 87 * fg # and hit control-c
88 * fg # and hit control-c 88 * fg # and hit control-c
89 * ## This tests break points on do_fork 89 * ## This tests break points on do_fork
90 * while [ 1 ] ; do date > /dev/null ; done & 90 * while [ 1 ] ; do date > /dev/null ; done &
91 * while [ 1 ] ; do date > /dev/null ; done & 91 * while [ 1 ] ; do date > /dev/null ; done &
92 * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts 92 * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts
93 * fg # and hit control-c 93 * fg # and hit control-c
94 * 94 *
95 */ 95 */
96 96
97 #include <linux/kernel.h> 97 #include <linux/kernel.h>
98 #include <linux/kgdb.h> 98 #include <linux/kgdb.h>
99 #include <linux/ctype.h> 99 #include <linux/ctype.h>
100 #include <linux/uaccess.h> 100 #include <linux/uaccess.h>
101 #include <linux/syscalls.h> 101 #include <linux/syscalls.h>
102 #include <linux/nmi.h> 102 #include <linux/nmi.h>
103 #include <linux/delay.h> 103 #include <linux/delay.h>
104 #include <linux/kthread.h> 104 #include <linux/kthread.h>
105 105
106 #define v1printk(a...) do { \ 106 #define v1printk(a...) do { \
107 if (verbose) \ 107 if (verbose) \
108 printk(KERN_INFO a); \ 108 printk(KERN_INFO a); \
109 } while (0) 109 } while (0)
110 #define v2printk(a...) do { \ 110 #define v2printk(a...) do { \
111 if (verbose > 1) \ 111 if (verbose > 1) \
112 printk(KERN_INFO a); \ 112 printk(KERN_INFO a); \
113 touch_nmi_watchdog(); \ 113 touch_nmi_watchdog(); \
114 } while (0) 114 } while (0)
115 #define eprintk(a...) do { \ 115 #define eprintk(a...) do { \
116 printk(KERN_ERR a); \ 116 printk(KERN_ERR a); \
117 WARN_ON(1); \ 117 WARN_ON(1); \
118 } while (0) 118 } while (0)
119 #define MAX_CONFIG_LEN 40 119 #define MAX_CONFIG_LEN 40
120 120
121 static struct kgdb_io kgdbts_io_ops; 121 static struct kgdb_io kgdbts_io_ops;
122 static char get_buf[BUFMAX]; 122 static char get_buf[BUFMAX];
123 static int get_buf_cnt; 123 static int get_buf_cnt;
124 static char put_buf[BUFMAX]; 124 static char put_buf[BUFMAX];
125 static int put_buf_cnt; 125 static int put_buf_cnt;
126 static char scratch_buf[BUFMAX]; 126 static char scratch_buf[BUFMAX];
127 static int verbose; 127 static int verbose;
128 static int repeat_test; 128 static int repeat_test;
129 static int test_complete; 129 static int test_complete;
130 static int send_ack; 130 static int send_ack;
131 static int final_ack; 131 static int final_ack;
132 static int force_hwbrks; 132 static int force_hwbrks;
133 static int hwbreaks_ok; 133 static int hwbreaks_ok;
134 static int hw_break_val; 134 static int hw_break_val;
135 static int hw_break_val2; 135 static int hw_break_val2;
136 #if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC) 136 #if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC)
137 static int arch_needs_sstep_emulation = 1; 137 static int arch_needs_sstep_emulation = 1;
138 #else 138 #else
139 static int arch_needs_sstep_emulation; 139 static int arch_needs_sstep_emulation;
140 #endif 140 #endif
141 static unsigned long sstep_addr; 141 static unsigned long sstep_addr;
142 static int sstep_state; 142 static int sstep_state;
143 143
144 /* Storage for the registers, in GDB format. */ 144 /* Storage for the registers, in GDB format. */
145 static unsigned long kgdbts_gdb_regs[(NUMREGBYTES + 145 static unsigned long kgdbts_gdb_regs[(NUMREGBYTES +
146 sizeof(unsigned long) - 1) / 146 sizeof(unsigned long) - 1) /
147 sizeof(unsigned long)]; 147 sizeof(unsigned long)];
148 static struct pt_regs kgdbts_regs; 148 static struct pt_regs kgdbts_regs;
149 149
150 /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */ 150 /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */
151 static int configured = -1; 151 static int configured = -1;
152 152
153 #ifdef CONFIG_KGDB_TESTS_BOOT_STRING 153 #ifdef CONFIG_KGDB_TESTS_BOOT_STRING
154 static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING; 154 static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING;
155 #else 155 #else
156 static char config[MAX_CONFIG_LEN]; 156 static char config[MAX_CONFIG_LEN];
157 #endif 157 #endif
158 static struct kparam_string kps = { 158 static struct kparam_string kps = {
159 .string = config, 159 .string = config,
160 .maxlen = MAX_CONFIG_LEN, 160 .maxlen = MAX_CONFIG_LEN,
161 }; 161 };
162 162
163 static void fill_get_buf(char *buf); 163 static void fill_get_buf(char *buf);
164 164
165 struct test_struct { 165 struct test_struct {
166 char *get; 166 char *get;
167 char *put; 167 char *put;
168 void (*get_handler)(char *); 168 void (*get_handler)(char *);
169 int (*put_handler)(char *, char *); 169 int (*put_handler)(char *, char *);
170 }; 170 };
171 171
172 struct test_state { 172 struct test_state {
173 char *name; 173 char *name;
174 struct test_struct *tst; 174 struct test_struct *tst;
175 int idx; 175 int idx;
176 int (*run_test) (int, int); 176 int (*run_test) (int, int);
177 int (*validate_put) (char *); 177 int (*validate_put) (char *);
178 }; 178 };
179 179
180 static struct test_state ts; 180 static struct test_state ts;
181 181
182 static int kgdbts_unreg_thread(void *ptr) 182 static int kgdbts_unreg_thread(void *ptr)
183 { 183 {
184 /* Wait until the tests are complete and then ungresiter the I/O 184 /* Wait until the tests are complete and then ungresiter the I/O
185 * driver. 185 * driver.
186 */ 186 */
187 while (!final_ack) 187 while (!final_ack)
188 msleep_interruptible(1500); 188 msleep_interruptible(1500);
189 189
190 if (configured) 190 if (configured)
191 kgdb_unregister_io_module(&kgdbts_io_ops); 191 kgdb_unregister_io_module(&kgdbts_io_ops);
192 configured = 0; 192 configured = 0;
193 193
194 return 0; 194 return 0;
195 } 195 }
196 196
197 /* This is noinline such that it can be used for a single location to 197 /* This is noinline such that it can be used for a single location to
198 * place a breakpoint 198 * place a breakpoint
199 */ 199 */
200 static noinline void kgdbts_break_test(void) 200 static noinline void kgdbts_break_test(void)
201 { 201 {
202 v2printk("kgdbts: breakpoint complete\n"); 202 v2printk("kgdbts: breakpoint complete\n");
203 } 203 }
204 204
205 /* Lookup symbol info in the kernel */ 205 /* Lookup symbol info in the kernel */
206 static unsigned long lookup_addr(char *arg) 206 static unsigned long lookup_addr(char *arg)
207 { 207 {
208 unsigned long addr = 0; 208 unsigned long addr = 0;
209 209
210 if (!strcmp(arg, "kgdbts_break_test")) 210 if (!strcmp(arg, "kgdbts_break_test"))
211 addr = (unsigned long)kgdbts_break_test; 211 addr = (unsigned long)kgdbts_break_test;
212 else if (!strcmp(arg, "sys_open")) 212 else if (!strcmp(arg, "sys_open"))
213 addr = (unsigned long)sys_open; 213 addr = (unsigned long)sys_open;
214 else if (!strcmp(arg, "do_fork")) 214 else if (!strcmp(arg, "do_fork"))
215 addr = (unsigned long)do_fork; 215 addr = (unsigned long)do_fork;
216 else if (!strcmp(arg, "hw_break_val")) 216 else if (!strcmp(arg, "hw_break_val"))
217 addr = (unsigned long)&hw_break_val; 217 addr = (unsigned long)&hw_break_val;
218 return addr; 218 return addr;
219 } 219 }
220 220
221 static void break_helper(char *bp_type, char *arg, unsigned long vaddr) 221 static void break_helper(char *bp_type, char *arg, unsigned long vaddr)
222 { 222 {
223 unsigned long addr; 223 unsigned long addr;
224 224
225 if (arg) 225 if (arg)
226 addr = lookup_addr(arg); 226 addr = lookup_addr(arg);
227 else 227 else
228 addr = vaddr; 228 addr = vaddr;
229 229
230 sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr, 230 sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr,
231 BREAK_INSTR_SIZE); 231 BREAK_INSTR_SIZE);
232 fill_get_buf(scratch_buf); 232 fill_get_buf(scratch_buf);
233 } 233 }
234 234
235 static void sw_break(char *arg) 235 static void sw_break(char *arg)
236 { 236 {
237 break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0); 237 break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0);
238 } 238 }
239 239
240 static void sw_rem_break(char *arg) 240 static void sw_rem_break(char *arg)
241 { 241 {
242 break_helper(force_hwbrks ? "z1" : "z0", arg, 0); 242 break_helper(force_hwbrks ? "z1" : "z0", arg, 0);
243 } 243 }
244 244
245 static void hw_break(char *arg) 245 static void hw_break(char *arg)
246 { 246 {
247 break_helper("Z1", arg, 0); 247 break_helper("Z1", arg, 0);
248 } 248 }
249 249
250 static void hw_rem_break(char *arg) 250 static void hw_rem_break(char *arg)
251 { 251 {
252 break_helper("z1", arg, 0); 252 break_helper("z1", arg, 0);
253 } 253 }
254 254
255 static void hw_write_break(char *arg) 255 static void hw_write_break(char *arg)
256 { 256 {
257 break_helper("Z2", arg, 0); 257 break_helper("Z2", arg, 0);
258 } 258 }
259 259
260 static void hw_rem_write_break(char *arg) 260 static void hw_rem_write_break(char *arg)
261 { 261 {
262 break_helper("z2", arg, 0); 262 break_helper("z2", arg, 0);
263 } 263 }
264 264
265 static void hw_access_break(char *arg) 265 static void hw_access_break(char *arg)
266 { 266 {
267 break_helper("Z4", arg, 0); 267 break_helper("Z4", arg, 0);
268 } 268 }
269 269
270 static void hw_rem_access_break(char *arg) 270 static void hw_rem_access_break(char *arg)
271 { 271 {
272 break_helper("z4", arg, 0); 272 break_helper("z4", arg, 0);
273 } 273 }
274 274
275 static void hw_break_val_access(void) 275 static void hw_break_val_access(void)
276 { 276 {
277 hw_break_val2 = hw_break_val; 277 hw_break_val2 = hw_break_val;
278 } 278 }
279 279
280 static void hw_break_val_write(void) 280 static void hw_break_val_write(void)
281 { 281 {
282 hw_break_val++; 282 hw_break_val++;
283 } 283 }
284 284
285 static int check_and_rewind_pc(char *put_str, char *arg) 285 static int check_and_rewind_pc(char *put_str, char *arg)
286 { 286 {
287 unsigned long addr = lookup_addr(arg); 287 unsigned long addr = lookup_addr(arg);
288 int offset = 0; 288 int offset = 0;
289 289
290 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, 290 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
291 NUMREGBYTES); 291 NUMREGBYTES);
292 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); 292 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
293 v2printk("Stopped at IP: %lx\n", instruction_pointer(&kgdbts_regs)); 293 v2printk("Stopped at IP: %lx\n", instruction_pointer(&kgdbts_regs));
294 #ifdef CONFIG_X86 294 #ifdef CONFIG_X86
295 /* On x86 a breakpoint stop requires it to be decremented */ 295 /* On x86 a breakpoint stop requires it to be decremented */
296 if (addr + 1 == kgdbts_regs.ip) 296 if (addr + 1 == kgdbts_regs.ip)
297 offset = -1; 297 offset = -1;
298 #elif defined(CONFIG_SUPERH) 298 #elif defined(CONFIG_SUPERH)
299 /* On SUPERH a breakpoint stop requires it to be decremented */ 299 /* On SUPERH a breakpoint stop requires it to be decremented */
300 if (addr + 2 == kgdbts_regs.pc) 300 if (addr + 2 == kgdbts_regs.pc)
301 offset = -2; 301 offset = -2;
302 #endif 302 #endif
303 if (strcmp(arg, "silent") && 303 if (strcmp(arg, "silent") &&
304 instruction_pointer(&kgdbts_regs) + offset != addr) { 304 instruction_pointer(&kgdbts_regs) + offset != addr) {
305 eprintk("kgdbts: BP mismatch %lx expected %lx\n", 305 eprintk("kgdbts: BP mismatch %lx expected %lx\n",
306 instruction_pointer(&kgdbts_regs) + offset, addr); 306 instruction_pointer(&kgdbts_regs) + offset, addr);
307 return 1; 307 return 1;
308 } 308 }
309 #ifdef CONFIG_X86 309 #ifdef CONFIG_X86
310 /* On x86 adjust the instruction pointer if needed */ 310 /* On x86 adjust the instruction pointer if needed */
311 kgdbts_regs.ip += offset; 311 kgdbts_regs.ip += offset;
312 #elif defined(CONFIG_SUPERH) 312 #elif defined(CONFIG_SUPERH)
313 kgdbts_regs.pc += offset; 313 kgdbts_regs.pc += offset;
314 #endif 314 #endif
315 return 0; 315 return 0;
316 } 316 }
317 317
318 static int check_single_step(char *put_str, char *arg) 318 static int check_single_step(char *put_str, char *arg)
319 { 319 {
320 unsigned long addr = lookup_addr(arg); 320 unsigned long addr = lookup_addr(arg);
321 /* 321 /*
322 * From an arch indepent point of view the instruction pointer 322 * From an arch indepent point of view the instruction pointer
323 * should be on a different instruction 323 * should be on a different instruction
324 */ 324 */
325 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, 325 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
326 NUMREGBYTES); 326 NUMREGBYTES);
327 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); 327 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
328 v2printk("Singlestep stopped at IP: %lx\n", 328 v2printk("Singlestep stopped at IP: %lx\n",
329 instruction_pointer(&kgdbts_regs)); 329 instruction_pointer(&kgdbts_regs));
330 if (instruction_pointer(&kgdbts_regs) == addr) { 330 if (instruction_pointer(&kgdbts_regs) == addr) {
331 eprintk("kgdbts: SingleStep failed at %lx\n", 331 eprintk("kgdbts: SingleStep failed at %lx\n",
332 instruction_pointer(&kgdbts_regs)); 332 instruction_pointer(&kgdbts_regs));
333 return 1; 333 return 1;
334 } 334 }
335 335
336 return 0; 336 return 0;
337 } 337 }
338 338
339 static void write_regs(char *arg) 339 static void write_regs(char *arg)
340 { 340 {
341 memset(scratch_buf, 0, sizeof(scratch_buf)); 341 memset(scratch_buf, 0, sizeof(scratch_buf));
342 scratch_buf[0] = 'G'; 342 scratch_buf[0] = 'G';
343 pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs); 343 pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs);
344 kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES); 344 kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES);
345 fill_get_buf(scratch_buf); 345 fill_get_buf(scratch_buf);
346 } 346 }
347 347
348 static void skip_back_repeat_test(char *arg) 348 static void skip_back_repeat_test(char *arg)
349 { 349 {
350 int go_back = simple_strtol(arg, NULL, 10); 350 int go_back = simple_strtol(arg, NULL, 10);
351 351
352 repeat_test--; 352 repeat_test--;
353 if (repeat_test <= 0) 353 if (repeat_test <= 0)
354 ts.idx++; 354 ts.idx++;
355 else 355 else
356 ts.idx -= go_back; 356 ts.idx -= go_back;
357 fill_get_buf(ts.tst[ts.idx].get); 357 fill_get_buf(ts.tst[ts.idx].get);
358 } 358 }
359 359
360 static int got_break(char *put_str, char *arg) 360 static int got_break(char *put_str, char *arg)
361 { 361 {
362 test_complete = 1; 362 test_complete = 1;
363 if (!strncmp(put_str+1, arg, 2)) { 363 if (!strncmp(put_str+1, arg, 2)) {
364 if (!strncmp(arg, "T0", 2)) 364 if (!strncmp(arg, "T0", 2))
365 test_complete = 2; 365 test_complete = 2;
366 return 0; 366 return 0;
367 } 367 }
368 return 1; 368 return 1;
369 } 369 }
370 370
371 static void emul_sstep_get(char *arg) 371 static void emul_sstep_get(char *arg)
372 { 372 {
373 if (!arch_needs_sstep_emulation) { 373 if (!arch_needs_sstep_emulation) {
374 fill_get_buf(arg); 374 fill_get_buf(arg);
375 return; 375 return;
376 } 376 }
377 switch (sstep_state) { 377 switch (sstep_state) {
378 case 0: 378 case 0:
379 v2printk("Emulate single step\n"); 379 v2printk("Emulate single step\n");
380 /* Start by looking at the current PC */ 380 /* Start by looking at the current PC */
381 fill_get_buf("g"); 381 fill_get_buf("g");
382 break; 382 break;
383 case 1: 383 case 1:
384 /* set breakpoint */ 384 /* set breakpoint */
385 break_helper("Z0", NULL, sstep_addr); 385 break_helper("Z0", NULL, sstep_addr);
386 break; 386 break;
387 case 2: 387 case 2:
388 /* Continue */ 388 /* Continue */
389 fill_get_buf("c"); 389 fill_get_buf("c");
390 break; 390 break;
391 case 3: 391 case 3:
392 /* Clear breakpoint */ 392 /* Clear breakpoint */
393 break_helper("z0", NULL, sstep_addr); 393 break_helper("z0", NULL, sstep_addr);
394 break; 394 break;
395 default: 395 default:
396 eprintk("kgdbts: ERROR failed sstep get emulation\n"); 396 eprintk("kgdbts: ERROR failed sstep get emulation\n");
397 } 397 }
398 sstep_state++; 398 sstep_state++;
399 } 399 }
400 400
401 static int emul_sstep_put(char *put_str, char *arg) 401 static int emul_sstep_put(char *put_str, char *arg)
402 { 402 {
403 if (!arch_needs_sstep_emulation) { 403 if (!arch_needs_sstep_emulation) {
404 if (!strncmp(put_str+1, arg, 2)) 404 if (!strncmp(put_str+1, arg, 2))
405 return 0; 405 return 0;
406 return 1; 406 return 1;
407 } 407 }
408 switch (sstep_state) { 408 switch (sstep_state) {
409 case 1: 409 case 1:
410 /* validate the "g" packet to get the IP */ 410 /* validate the "g" packet to get the IP */
411 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs, 411 kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
412 NUMREGBYTES); 412 NUMREGBYTES);
413 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs); 413 gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
414 v2printk("Stopped at IP: %lx\n", 414 v2printk("Stopped at IP: %lx\n",
415 instruction_pointer(&kgdbts_regs)); 415 instruction_pointer(&kgdbts_regs));
416 /* Want to stop at IP + break instruction size by default */ 416 /* Want to stop at IP + break instruction size by default */
417 sstep_addr = instruction_pointer(&kgdbts_regs) + 417 sstep_addr = instruction_pointer(&kgdbts_regs) +
418 BREAK_INSTR_SIZE; 418 BREAK_INSTR_SIZE;
419 break; 419 break;
420 case 2: 420 case 2:
421 if (strncmp(put_str, "$OK", 3)) { 421 if (strncmp(put_str, "$OK", 3)) {
422 eprintk("kgdbts: failed sstep break set\n"); 422 eprintk("kgdbts: failed sstep break set\n");
423 return 1; 423 return 1;
424 } 424 }
425 break; 425 break;
426 case 3: 426 case 3:
427 if (strncmp(put_str, "$T0", 3)) { 427 if (strncmp(put_str, "$T0", 3)) {
428 eprintk("kgdbts: failed continue sstep\n"); 428 eprintk("kgdbts: failed continue sstep\n");
429 return 1; 429 return 1;
430 } 430 }
431 break; 431 break;
432 case 4: 432 case 4:
433 if (strncmp(put_str, "$OK", 3)) { 433 if (strncmp(put_str, "$OK", 3)) {
434 eprintk("kgdbts: failed sstep break unset\n"); 434 eprintk("kgdbts: failed sstep break unset\n");
435 return 1; 435 return 1;
436 } 436 }
437 /* Single step is complete so continue on! */ 437 /* Single step is complete so continue on! */
438 sstep_state = 0; 438 sstep_state = 0;
439 return 0; 439 return 0;
440 default: 440 default:
441 eprintk("kgdbts: ERROR failed sstep put emulation\n"); 441 eprintk("kgdbts: ERROR failed sstep put emulation\n");
442 } 442 }
443 443
444 /* Continue on the same test line until emulation is complete */ 444 /* Continue on the same test line until emulation is complete */
445 ts.idx--; 445 ts.idx--;
446 return 0; 446 return 0;
447 } 447 }
448 448
449 static int final_ack_set(char *put_str, char *arg) 449 static int final_ack_set(char *put_str, char *arg)
450 { 450 {
451 if (strncmp(put_str+1, arg, 2)) 451 if (strncmp(put_str+1, arg, 2))
452 return 1; 452 return 1;
453 final_ack = 1; 453 final_ack = 1;
454 return 0; 454 return 0;
455 } 455 }
456 /* 456 /*
457 * Test to plant a breakpoint and detach, which should clear out the 457 * Test to plant a breakpoint and detach, which should clear out the
458 * breakpoint and restore the original instruction. 458 * breakpoint and restore the original instruction.
459 */ 459 */
460 static struct test_struct plant_and_detach_test[] = { 460 static struct test_struct plant_and_detach_test[] = {
461 { "?", "S0*" }, /* Clear break points */ 461 { "?", "S0*" }, /* Clear break points */
462 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ 462 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
463 { "D", "OK" }, /* Detach */ 463 { "D", "OK" }, /* Detach */
464 { "", "" }, 464 { "", "" },
465 }; 465 };
466 466
467 /* 467 /*
468 * Simple test to write in a software breakpoint, check for the 468 * Simple test to write in a software breakpoint, check for the
469 * correct stop location and detach. 469 * correct stop location and detach.
470 */ 470 */
471 static struct test_struct sw_breakpoint_test[] = { 471 static struct test_struct sw_breakpoint_test[] = {
472 { "?", "S0*" }, /* Clear break points */ 472 { "?", "S0*" }, /* Clear break points */
473 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ 473 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
474 { "c", "T0*", }, /* Continue */ 474 { "c", "T0*", }, /* Continue */
475 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, 475 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
476 { "write", "OK", write_regs }, 476 { "write", "OK", write_regs },
477 { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ 477 { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
478 { "D", "OK" }, /* Detach */ 478 { "D", "OK" }, /* Detach */
479 { "D", "OK", NULL, got_break }, /* On success we made it here */ 479 { "D", "OK", NULL, got_break }, /* On success we made it here */
480 { "", "" }, 480 { "", "" },
481 }; 481 };
482 482
483 /* 483 /*
484 * Test a known bad memory read location to test the fault handler and 484 * Test a known bad memory read location to test the fault handler and
485 * read bytes 1-8 at the bad address 485 * read bytes 1-8 at the bad address
486 */ 486 */
487 static struct test_struct bad_read_test[] = { 487 static struct test_struct bad_read_test[] = {
488 { "?", "S0*" }, /* Clear break points */ 488 { "?", "S0*" }, /* Clear break points */
489 { "m0,1", "E*" }, /* read 1 byte at address 1 */ 489 { "m0,1", "E*" }, /* read 1 byte at address 1 */
490 { "m0,2", "E*" }, /* read 1 byte at address 2 */ 490 { "m0,2", "E*" }, /* read 1 byte at address 2 */
491 { "m0,3", "E*" }, /* read 1 byte at address 3 */ 491 { "m0,3", "E*" }, /* read 1 byte at address 3 */
492 { "m0,4", "E*" }, /* read 1 byte at address 4 */ 492 { "m0,4", "E*" }, /* read 1 byte at address 4 */
493 { "m0,5", "E*" }, /* read 1 byte at address 5 */ 493 { "m0,5", "E*" }, /* read 1 byte at address 5 */
494 { "m0,6", "E*" }, /* read 1 byte at address 6 */ 494 { "m0,6", "E*" }, /* read 1 byte at address 6 */
495 { "m0,7", "E*" }, /* read 1 byte at address 7 */ 495 { "m0,7", "E*" }, /* read 1 byte at address 7 */
496 { "m0,8", "E*" }, /* read 1 byte at address 8 */ 496 { "m0,8", "E*" }, /* read 1 byte at address 8 */
497 { "D", "OK" }, /* Detach which removes all breakpoints and continues */ 497 { "D", "OK" }, /* Detach which removes all breakpoints and continues */
498 { "", "" }, 498 { "", "" },
499 }; 499 };
500 500
501 /* 501 /*
502 * Test for hitting a breakpoint, remove it, single step, plant it 502 * Test for hitting a breakpoint, remove it, single step, plant it
503 * again and detach. 503 * again and detach.
504 */ 504 */
505 static struct test_struct singlestep_break_test[] = { 505 static struct test_struct singlestep_break_test[] = {
506 { "?", "S0*" }, /* Clear break points */ 506 { "?", "S0*" }, /* Clear break points */
507 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ 507 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
508 { "c", "T0*", }, /* Continue */ 508 { "c", "T0*", }, /* Continue */
509 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, 509 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
510 { "write", "OK", write_regs }, /* Write registers */ 510 { "write", "OK", write_regs }, /* Write registers */
511 { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */ 511 { "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
512 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ 512 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
513 { "g", "kgdbts_break_test", NULL, check_single_step }, 513 { "g", "kgdbts_break_test", NULL, check_single_step },
514 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */ 514 { "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
515 { "c", "T0*", }, /* Continue */ 515 { "c", "T0*", }, /* Continue */
516 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, 516 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
517 { "write", "OK", write_regs }, /* Write registers */ 517 { "write", "OK", write_regs }, /* Write registers */
518 { "D", "OK" }, /* Remove all breakpoints and continues */ 518 { "D", "OK" }, /* Remove all breakpoints and continues */
519 { "", "" }, 519 { "", "" },
520 }; 520 };
521 521
522 /* 522 /*
523 * Test for hitting a breakpoint at do_fork for what ever the number 523 * Test for hitting a breakpoint at do_fork for what ever the number
524 * of iterations required by the variable repeat_test. 524 * of iterations required by the variable repeat_test.
525 */ 525 */
526 static struct test_struct do_fork_test[] = { 526 static struct test_struct do_fork_test[] = {
527 { "?", "S0*" }, /* Clear break points */ 527 { "?", "S0*" }, /* Clear break points */
528 { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ 528 { "do_fork", "OK", sw_break, }, /* set sw breakpoint */
529 { "c", "T0*", }, /* Continue */ 529 { "c", "T0*", }, /* Continue */
530 { "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */ 530 { "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */
531 { "write", "OK", write_regs }, /* Write registers */ 531 { "write", "OK", write_regs }, /* Write registers */
532 { "do_fork", "OK", sw_rem_break }, /*remove breakpoint */ 532 { "do_fork", "OK", sw_rem_break }, /*remove breakpoint */
533 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ 533 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
534 { "g", "do_fork", NULL, check_single_step }, 534 { "g", "do_fork", NULL, check_single_step },
535 { "do_fork", "OK", sw_break, }, /* set sw breakpoint */ 535 { "do_fork", "OK", sw_break, }, /* set sw breakpoint */
536 { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ 536 { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
537 { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ 537 { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
538 { "", "" }, 538 { "", "" },
539 }; 539 };
540 540
541 /* Test for hitting a breakpoint at sys_open for what ever the number 541 /* Test for hitting a breakpoint at sys_open for what ever the number
542 * of iterations required by the variable repeat_test. 542 * of iterations required by the variable repeat_test.
543 */ 543 */
544 static struct test_struct sys_open_test[] = { 544 static struct test_struct sys_open_test[] = {
545 { "?", "S0*" }, /* Clear break points */ 545 { "?", "S0*" }, /* Clear break points */
546 { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ 546 { "sys_open", "OK", sw_break, }, /* set sw breakpoint */
547 { "c", "T0*", }, /* Continue */ 547 { "c", "T0*", }, /* Continue */
548 { "g", "sys_open", NULL, check_and_rewind_pc }, /* check location */ 548 { "g", "sys_open", NULL, check_and_rewind_pc }, /* check location */
549 { "write", "OK", write_regs }, /* Write registers */ 549 { "write", "OK", write_regs }, /* Write registers */
550 { "sys_open", "OK", sw_rem_break }, /*remove breakpoint */ 550 { "sys_open", "OK", sw_rem_break }, /*remove breakpoint */
551 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ 551 { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
552 { "g", "sys_open", NULL, check_single_step }, 552 { "g", "sys_open", NULL, check_single_step },
553 { "sys_open", "OK", sw_break, }, /* set sw breakpoint */ 553 { "sys_open", "OK", sw_break, }, /* set sw breakpoint */
554 { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ 554 { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
555 { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ 555 { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
556 { "", "" }, 556 { "", "" },
557 }; 557 };
558 558
559 /* 559 /*
560 * Test for hitting a simple hw breakpoint 560 * Test for hitting a simple hw breakpoint
561 */ 561 */
562 static struct test_struct hw_breakpoint_test[] = { 562 static struct test_struct hw_breakpoint_test[] = {
563 { "?", "S0*" }, /* Clear break points */ 563 { "?", "S0*" }, /* Clear break points */
564 { "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */ 564 { "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */
565 { "c", "T0*", }, /* Continue */ 565 { "c", "T0*", }, /* Continue */
566 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc }, 566 { "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
567 { "write", "OK", write_regs }, 567 { "write", "OK", write_regs },
568 { "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */ 568 { "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */
569 { "D", "OK" }, /* Detach */ 569 { "D", "OK" }, /* Detach */
570 { "D", "OK", NULL, got_break }, /* On success we made it here */ 570 { "D", "OK", NULL, got_break }, /* On success we made it here */
571 { "", "" }, 571 { "", "" },
572 }; 572 };
573 573
574 /* 574 /*
575 * Test for hitting a hw write breakpoint 575 * Test for hitting a hw write breakpoint
576 */ 576 */
577 static struct test_struct hw_write_break_test[] = { 577 static struct test_struct hw_write_break_test[] = {
578 { "?", "S0*" }, /* Clear break points */ 578 { "?", "S0*" }, /* Clear break points */
579 { "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */ 579 { "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */
580 { "c", "T0*", NULL, got_break }, /* Continue */ 580 { "c", "T0*", NULL, got_break }, /* Continue */
581 { "g", "silent", NULL, check_and_rewind_pc }, 581 { "g", "silent", NULL, check_and_rewind_pc },
582 { "write", "OK", write_regs }, 582 { "write", "OK", write_regs },
583 { "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */ 583 { "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */
584 { "D", "OK" }, /* Detach */ 584 { "D", "OK" }, /* Detach */
585 { "D", "OK", NULL, got_break }, /* On success we made it here */ 585 { "D", "OK", NULL, got_break }, /* On success we made it here */
586 { "", "" }, 586 { "", "" },
587 }; 587 };
588 588
589 /* 589 /*
590 * Test for hitting a hw access breakpoint 590 * Test for hitting a hw access breakpoint
591 */ 591 */
592 static struct test_struct hw_access_break_test[] = { 592 static struct test_struct hw_access_break_test[] = {
593 { "?", "S0*" }, /* Clear break points */ 593 { "?", "S0*" }, /* Clear break points */
594 { "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */ 594 { "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */
595 { "c", "T0*", NULL, got_break }, /* Continue */ 595 { "c", "T0*", NULL, got_break }, /* Continue */
596 { "g", "silent", NULL, check_and_rewind_pc }, 596 { "g", "silent", NULL, check_and_rewind_pc },
597 { "write", "OK", write_regs }, 597 { "write", "OK", write_regs },
598 { "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */ 598 { "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */
599 { "D", "OK" }, /* Detach */ 599 { "D", "OK" }, /* Detach */
600 { "D", "OK", NULL, got_break }, /* On success we made it here */ 600 { "D", "OK", NULL, got_break }, /* On success we made it here */
601 { "", "" }, 601 { "", "" },
602 }; 602 };
603 603
604 /* 604 /*
605 * Test for hitting a hw access breakpoint 605 * Test for hitting a hw access breakpoint
606 */ 606 */
607 static struct test_struct nmi_sleep_test[] = { 607 static struct test_struct nmi_sleep_test[] = {
608 { "?", "S0*" }, /* Clear break points */ 608 { "?", "S0*" }, /* Clear break points */
609 { "c", "T0*", NULL, got_break }, /* Continue */ 609 { "c", "T0*", NULL, got_break }, /* Continue */
610 { "D", "OK" }, /* Detach */ 610 { "D", "OK" }, /* Detach */
611 { "D", "OK", NULL, got_break }, /* On success we made it here */ 611 { "D", "OK", NULL, got_break }, /* On success we made it here */
612 { "", "" }, 612 { "", "" },
613 }; 613 };
614 614
615 static void fill_get_buf(char *buf) 615 static void fill_get_buf(char *buf)
616 { 616 {
617 unsigned char checksum = 0; 617 unsigned char checksum = 0;
618 int count = 0; 618 int count = 0;
619 char ch; 619 char ch;
620 620
621 strcpy(get_buf, "$"); 621 strcpy(get_buf, "$");
622 strcat(get_buf, buf); 622 strcat(get_buf, buf);
623 while ((ch = buf[count])) { 623 while ((ch = buf[count])) {
624 checksum += ch; 624 checksum += ch;
625 count++; 625 count++;
626 } 626 }
627 strcat(get_buf, "#"); 627 strcat(get_buf, "#");
628 get_buf[count + 2] = hex_asc_hi(checksum); 628 get_buf[count + 2] = hex_asc_hi(checksum);
629 get_buf[count + 3] = hex_asc_lo(checksum); 629 get_buf[count + 3] = hex_asc_lo(checksum);
630 get_buf[count + 4] = '\0'; 630 get_buf[count + 4] = '\0';
631 v2printk("get%i: %s\n", ts.idx, get_buf); 631 v2printk("get%i: %s\n", ts.idx, get_buf);
632 } 632 }
633 633
634 static int validate_simple_test(char *put_str) 634 static int validate_simple_test(char *put_str)
635 { 635 {
636 char *chk_str; 636 char *chk_str;
637 637
638 if (ts.tst[ts.idx].put_handler) 638 if (ts.tst[ts.idx].put_handler)
639 return ts.tst[ts.idx].put_handler(put_str, 639 return ts.tst[ts.idx].put_handler(put_str,
640 ts.tst[ts.idx].put); 640 ts.tst[ts.idx].put);
641 641
642 chk_str = ts.tst[ts.idx].put; 642 chk_str = ts.tst[ts.idx].put;
643 if (*put_str == '$') 643 if (*put_str == '$')
644 put_str++; 644 put_str++;
645 645
646 while (*chk_str != '\0' && *put_str != '\0') { 646 while (*chk_str != '\0' && *put_str != '\0') {
647 /* If someone does a * to match the rest of the string, allow 647 /* If someone does a * to match the rest of the string, allow
648 * it, or stop if the recieved string is complete. 648 * it, or stop if the recieved string is complete.
649 */ 649 */
650 if (*put_str == '#' || *chk_str == '*') 650 if (*put_str == '#' || *chk_str == '*')
651 return 0; 651 return 0;
652 if (*put_str != *chk_str) 652 if (*put_str != *chk_str)
653 return 1; 653 return 1;
654 654
655 chk_str++; 655 chk_str++;
656 put_str++; 656 put_str++;
657 } 657 }
658 if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#')) 658 if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#'))
659 return 0; 659 return 0;
660 660
661 return 1; 661 return 1;
662 } 662 }
663 663
664 static int run_simple_test(int is_get_char, int chr) 664 static int run_simple_test(int is_get_char, int chr)
665 { 665 {
666 int ret = 0; 666 int ret = 0;
667 if (is_get_char) { 667 if (is_get_char) {
668 /* Send an ACK on the get if a prior put completed and set the 668 /* Send an ACK on the get if a prior put completed and set the
669 * send ack variable 669 * send ack variable
670 */ 670 */
671 if (send_ack) { 671 if (send_ack) {
672 send_ack = 0; 672 send_ack = 0;
673 return '+'; 673 return '+';
674 } 674 }
675 /* On the first get char, fill the transmit buffer and then 675 /* On the first get char, fill the transmit buffer and then
676 * take from the get_string. 676 * take from the get_string.
677 */ 677 */
678 if (get_buf_cnt == 0) { 678 if (get_buf_cnt == 0) {
679 if (ts.tst[ts.idx].get_handler) 679 if (ts.tst[ts.idx].get_handler)
680 ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get); 680 ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get);
681 else 681 else
682 fill_get_buf(ts.tst[ts.idx].get); 682 fill_get_buf(ts.tst[ts.idx].get);
683 } 683 }
684 684
685 if (get_buf[get_buf_cnt] == '\0') { 685 if (get_buf[get_buf_cnt] == '\0') {
686 eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n", 686 eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n",
687 ts.name, ts.idx); 687 ts.name, ts.idx);
688 get_buf_cnt = 0; 688 get_buf_cnt = 0;
689 fill_get_buf("D"); 689 fill_get_buf("D");
690 } 690 }
691 ret = get_buf[get_buf_cnt]; 691 ret = get_buf[get_buf_cnt];
692 get_buf_cnt++; 692 get_buf_cnt++;
693 return ret; 693 return ret;
694 } 694 }
695 695
696 /* This callback is a put char which is when kgdb sends data to 696 /* This callback is a put char which is when kgdb sends data to
697 * this I/O module. 697 * this I/O module.
698 */ 698 */
699 if (ts.tst[ts.idx].get[0] == '\0' && 699 if (ts.tst[ts.idx].get[0] == '\0' &&
700 ts.tst[ts.idx].put[0] == '\0') { 700 ts.tst[ts.idx].put[0] == '\0') {
701 eprintk("kgdbts: ERROR: beyond end of test on" 701 eprintk("kgdbts: ERROR: beyond end of test on"
702 " '%s' line %i\n", ts.name, ts.idx); 702 " '%s' line %i\n", ts.name, ts.idx);
703 return 0; 703 return 0;
704 } 704 }
705 705
706 if (put_buf_cnt >= BUFMAX) { 706 if (put_buf_cnt >= BUFMAX) {
707 eprintk("kgdbts: ERROR: put buffer overflow on" 707 eprintk("kgdbts: ERROR: put buffer overflow on"
708 " '%s' line %i\n", ts.name, ts.idx); 708 " '%s' line %i\n", ts.name, ts.idx);
709 put_buf_cnt = 0; 709 put_buf_cnt = 0;
710 return 0; 710 return 0;
711 } 711 }
712 /* Ignore everything until the first valid packet start '$' */ 712 /* Ignore everything until the first valid packet start '$' */
713 if (put_buf_cnt == 0 && chr != '$') 713 if (put_buf_cnt == 0 && chr != '$')
714 return 0; 714 return 0;
715 715
716 put_buf[put_buf_cnt] = chr; 716 put_buf[put_buf_cnt] = chr;
717 put_buf_cnt++; 717 put_buf_cnt++;
718 718
719 /* End of packet == #XX so look for the '#' */ 719 /* End of packet == #XX so look for the '#' */
720 if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') { 720 if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') {
721 if (put_buf_cnt >= BUFMAX) { 721 if (put_buf_cnt >= BUFMAX) {
722 eprintk("kgdbts: ERROR: put buffer overflow on" 722 eprintk("kgdbts: ERROR: put buffer overflow on"
723 " '%s' line %i\n", ts.name, ts.idx); 723 " '%s' line %i\n", ts.name, ts.idx);
724 put_buf_cnt = 0; 724 put_buf_cnt = 0;
725 return 0; 725 return 0;
726 } 726 }
727 put_buf[put_buf_cnt] = '\0'; 727 put_buf[put_buf_cnt] = '\0';
728 v2printk("put%i: %s\n", ts.idx, put_buf); 728 v2printk("put%i: %s\n", ts.idx, put_buf);
729 /* Trigger check here */ 729 /* Trigger check here */
730 if (ts.validate_put && ts.validate_put(put_buf)) { 730 if (ts.validate_put && ts.validate_put(put_buf)) {
731 eprintk("kgdbts: ERROR PUT: end of test " 731 eprintk("kgdbts: ERROR PUT: end of test "
732 "buffer on '%s' line %i expected %s got %s\n", 732 "buffer on '%s' line %i expected %s got %s\n",
733 ts.name, ts.idx, ts.tst[ts.idx].put, put_buf); 733 ts.name, ts.idx, ts.tst[ts.idx].put, put_buf);
734 } 734 }
735 ts.idx++; 735 ts.idx++;
736 put_buf_cnt = 0; 736 put_buf_cnt = 0;
737 get_buf_cnt = 0; 737 get_buf_cnt = 0;
738 send_ack = 1; 738 send_ack = 1;
739 } 739 }
740 return 0; 740 return 0;
741 } 741 }
742 742
743 static void init_simple_test(void) 743 static void init_simple_test(void)
744 { 744 {
745 memset(&ts, 0, sizeof(ts)); 745 memset(&ts, 0, sizeof(ts));
746 ts.run_test = run_simple_test; 746 ts.run_test = run_simple_test;
747 ts.validate_put = validate_simple_test; 747 ts.validate_put = validate_simple_test;
748 } 748 }
749 749
750 static void run_plant_and_detach_test(int is_early) 750 static void run_plant_and_detach_test(int is_early)
751 { 751 {
752 char before[BREAK_INSTR_SIZE]; 752 char before[BREAK_INSTR_SIZE];
753 char after[BREAK_INSTR_SIZE]; 753 char after[BREAK_INSTR_SIZE];
754 754
755 probe_kernel_read(before, (char *)kgdbts_break_test, 755 probe_kernel_read(before, (char *)kgdbts_break_test,
756 BREAK_INSTR_SIZE); 756 BREAK_INSTR_SIZE);
757 init_simple_test(); 757 init_simple_test();
758 ts.tst = plant_and_detach_test; 758 ts.tst = plant_and_detach_test;
759 ts.name = "plant_and_detach_test"; 759 ts.name = "plant_and_detach_test";
760 /* Activate test with initial breakpoint */ 760 /* Activate test with initial breakpoint */
761 if (!is_early) 761 if (!is_early)
762 kgdb_breakpoint(); 762 kgdb_breakpoint();
763 probe_kernel_read(after, (char *)kgdbts_break_test, 763 probe_kernel_read(after, (char *)kgdbts_break_test,
764 BREAK_INSTR_SIZE); 764 BREAK_INSTR_SIZE);
765 if (memcmp(before, after, BREAK_INSTR_SIZE)) { 765 if (memcmp(before, after, BREAK_INSTR_SIZE)) {
766 printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n"); 766 printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n");
767 panic("kgdb memory corruption"); 767 panic("kgdb memory corruption");
768 } 768 }
769 769
770 /* complete the detach test */ 770 /* complete the detach test */
771 if (!is_early) 771 if (!is_early)
772 kgdbts_break_test(); 772 kgdbts_break_test();
773 } 773 }
774 774
775 static void run_breakpoint_test(int is_hw_breakpoint) 775 static void run_breakpoint_test(int is_hw_breakpoint)
776 { 776 {
777 test_complete = 0; 777 test_complete = 0;
778 init_simple_test(); 778 init_simple_test();
779 if (is_hw_breakpoint) { 779 if (is_hw_breakpoint) {
780 ts.tst = hw_breakpoint_test; 780 ts.tst = hw_breakpoint_test;
781 ts.name = "hw_breakpoint_test"; 781 ts.name = "hw_breakpoint_test";
782 } else { 782 } else {
783 ts.tst = sw_breakpoint_test; 783 ts.tst = sw_breakpoint_test;
784 ts.name = "sw_breakpoint_test"; 784 ts.name = "sw_breakpoint_test";
785 } 785 }
786 /* Activate test with initial breakpoint */ 786 /* Activate test with initial breakpoint */
787 kgdb_breakpoint(); 787 kgdb_breakpoint();
788 /* run code with the break point in it */ 788 /* run code with the break point in it */
789 kgdbts_break_test(); 789 kgdbts_break_test();
790 kgdb_breakpoint(); 790 kgdb_breakpoint();
791 791
792 if (test_complete) 792 if (test_complete)
793 return; 793 return;
794 794
795 eprintk("kgdbts: ERROR %s test failed\n", ts.name); 795 eprintk("kgdbts: ERROR %s test failed\n", ts.name);
796 if (is_hw_breakpoint) 796 if (is_hw_breakpoint)
797 hwbreaks_ok = 0; 797 hwbreaks_ok = 0;
798 } 798 }
799 799
800 static void run_hw_break_test(int is_write_test) 800 static void run_hw_break_test(int is_write_test)
801 { 801 {
802 test_complete = 0; 802 test_complete = 0;
803 init_simple_test(); 803 init_simple_test();
804 if (is_write_test) { 804 if (is_write_test) {
805 ts.tst = hw_write_break_test; 805 ts.tst = hw_write_break_test;
806 ts.name = "hw_write_break_test"; 806 ts.name = "hw_write_break_test";
807 } else { 807 } else {
808 ts.tst = hw_access_break_test; 808 ts.tst = hw_access_break_test;
809 ts.name = "hw_access_break_test"; 809 ts.name = "hw_access_break_test";
810 } 810 }
811 /* Activate test with initial breakpoint */ 811 /* Activate test with initial breakpoint */
812 kgdb_breakpoint(); 812 kgdb_breakpoint();
813 hw_break_val_access(); 813 hw_break_val_access();
814 if (is_write_test) { 814 if (is_write_test) {
815 if (test_complete == 2) { 815 if (test_complete == 2) {
816 eprintk("kgdbts: ERROR %s broke on access\n", 816 eprintk("kgdbts: ERROR %s broke on access\n",
817 ts.name); 817 ts.name);
818 hwbreaks_ok = 0; 818 hwbreaks_ok = 0;
819 } 819 }
820 hw_break_val_write(); 820 hw_break_val_write();
821 } 821 }
822 kgdb_breakpoint(); 822 kgdb_breakpoint();
823 823
824 if (test_complete == 1) 824 if (test_complete == 1)
825 return; 825 return;
826 826
827 eprintk("kgdbts: ERROR %s test failed\n", ts.name); 827 eprintk("kgdbts: ERROR %s test failed\n", ts.name);
828 hwbreaks_ok = 0; 828 hwbreaks_ok = 0;
829 } 829 }
830 830
831 static void run_nmi_sleep_test(int nmi_sleep) 831 static void run_nmi_sleep_test(int nmi_sleep)
832 { 832 {
833 unsigned long flags; 833 unsigned long flags;
834 834
835 init_simple_test(); 835 init_simple_test();
836 ts.tst = nmi_sleep_test; 836 ts.tst = nmi_sleep_test;
837 ts.name = "nmi_sleep_test"; 837 ts.name = "nmi_sleep_test";
838 /* Activate test with initial breakpoint */ 838 /* Activate test with initial breakpoint */
839 kgdb_breakpoint(); 839 kgdb_breakpoint();
840 local_irq_save(flags); 840 local_irq_save(flags);
841 mdelay(nmi_sleep*1000); 841 mdelay(nmi_sleep*1000);
842 touch_nmi_watchdog(); 842 touch_nmi_watchdog();
843 local_irq_restore(flags); 843 local_irq_restore(flags);
844 if (test_complete != 2) 844 if (test_complete != 2)
845 eprintk("kgdbts: ERROR nmi_test did not hit nmi\n"); 845 eprintk("kgdbts: ERROR nmi_test did not hit nmi\n");
846 kgdb_breakpoint(); 846 kgdb_breakpoint();
847 if (test_complete == 1) 847 if (test_complete == 1)
848 return; 848 return;
849 849
850 eprintk("kgdbts: ERROR %s test failed\n", ts.name); 850 eprintk("kgdbts: ERROR %s test failed\n", ts.name);
851 } 851 }
852 852
853 static void run_bad_read_test(void) 853 static void run_bad_read_test(void)
854 { 854 {
855 init_simple_test(); 855 init_simple_test();
856 ts.tst = bad_read_test; 856 ts.tst = bad_read_test;
857 ts.name = "bad_read_test"; 857 ts.name = "bad_read_test";
858 /* Activate test with initial breakpoint */ 858 /* Activate test with initial breakpoint */
859 kgdb_breakpoint(); 859 kgdb_breakpoint();
860 } 860 }
861 861
862 static void run_do_fork_test(void) 862 static void run_do_fork_test(void)
863 { 863 {
864 init_simple_test(); 864 init_simple_test();
865 ts.tst = do_fork_test; 865 ts.tst = do_fork_test;
866 ts.name = "do_fork_test"; 866 ts.name = "do_fork_test";
867 /* Activate test with initial breakpoint */ 867 /* Activate test with initial breakpoint */
868 kgdb_breakpoint(); 868 kgdb_breakpoint();
869 } 869 }
870 870
871 static void run_sys_open_test(void) 871 static void run_sys_open_test(void)
872 { 872 {
873 init_simple_test(); 873 init_simple_test();
874 ts.tst = sys_open_test; 874 ts.tst = sys_open_test;
875 ts.name = "sys_open_test"; 875 ts.name = "sys_open_test";
876 /* Activate test with initial breakpoint */ 876 /* Activate test with initial breakpoint */
877 kgdb_breakpoint(); 877 kgdb_breakpoint();
878 } 878 }
879 879
880 static void run_singlestep_break_test(void) 880 static void run_singlestep_break_test(void)
881 { 881 {
882 init_simple_test(); 882 init_simple_test();
883 ts.tst = singlestep_break_test; 883 ts.tst = singlestep_break_test;
884 ts.name = "singlestep_breakpoint_test"; 884 ts.name = "singlestep_breakpoint_test";
885 /* Activate test with initial breakpoint */ 885 /* Activate test with initial breakpoint */
886 kgdb_breakpoint(); 886 kgdb_breakpoint();
887 kgdbts_break_test(); 887 kgdbts_break_test();
888 kgdbts_break_test(); 888 kgdbts_break_test();
889 } 889 }
890 890
891 static void kgdbts_run_tests(void) 891 static void kgdbts_run_tests(void)
892 { 892 {
893 char *ptr; 893 char *ptr;
894 int fork_test = 0; 894 int fork_test = 0;
895 int do_sys_open_test = 0; 895 int do_sys_open_test = 0;
896 int sstep_test = 1000; 896 int sstep_test = 1000;
897 int nmi_sleep = 0; 897 int nmi_sleep = 0;
898 int i; 898 int i;
899 899
900 ptr = strchr(config, 'F'); 900 ptr = strchr(config, 'F');
901 if (ptr) 901 if (ptr)
902 fork_test = simple_strtol(ptr + 1, NULL, 10); 902 fork_test = simple_strtol(ptr + 1, NULL, 10);
903 ptr = strchr(config, 'S'); 903 ptr = strchr(config, 'S');
904 if (ptr) 904 if (ptr)
905 do_sys_open_test = simple_strtol(ptr + 1, NULL, 10); 905 do_sys_open_test = simple_strtol(ptr + 1, NULL, 10);
906 ptr = strchr(config, 'N'); 906 ptr = strchr(config, 'N');
907 if (ptr) 907 if (ptr)
908 nmi_sleep = simple_strtol(ptr+1, NULL, 10); 908 nmi_sleep = simple_strtol(ptr+1, NULL, 10);
909 ptr = strchr(config, 'I'); 909 ptr = strchr(config, 'I');
910 if (ptr) 910 if (ptr)
911 sstep_test = simple_strtol(ptr+1, NULL, 10); 911 sstep_test = simple_strtol(ptr+1, NULL, 10);
912 912
913 /* required internal KGDB tests */ 913 /* required internal KGDB tests */
914 v1printk("kgdbts:RUN plant and detach test\n"); 914 v1printk("kgdbts:RUN plant and detach test\n");
915 run_plant_and_detach_test(0); 915 run_plant_and_detach_test(0);
916 v1printk("kgdbts:RUN sw breakpoint test\n"); 916 v1printk("kgdbts:RUN sw breakpoint test\n");
917 run_breakpoint_test(0); 917 run_breakpoint_test(0);
918 v1printk("kgdbts:RUN bad memory access test\n"); 918 v1printk("kgdbts:RUN bad memory access test\n");
919 run_bad_read_test(); 919 run_bad_read_test();
920 v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test); 920 v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test);
921 for (i = 0; i < sstep_test; i++) { 921 for (i = 0; i < sstep_test; i++) {
922 run_singlestep_break_test(); 922 run_singlestep_break_test();
923 if (i % 100 == 0) 923 if (i % 100 == 0)
924 v1printk("kgdbts:RUN singlestep [%i/%i]\n", 924 v1printk("kgdbts:RUN singlestep [%i/%i]\n",
925 i, sstep_test); 925 i, sstep_test);
926 } 926 }
927 927
928 /* ===Optional tests=== */ 928 /* ===Optional tests=== */
929 929
930 /* All HW break point tests */ 930 /* All HW break point tests */
931 if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) { 931 if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) {
932 hwbreaks_ok = 1; 932 hwbreaks_ok = 1;
933 v1printk("kgdbts:RUN hw breakpoint test\n"); 933 v1printk("kgdbts:RUN hw breakpoint test\n");
934 run_breakpoint_test(1); 934 run_breakpoint_test(1);
935 v1printk("kgdbts:RUN hw write breakpoint test\n"); 935 v1printk("kgdbts:RUN hw write breakpoint test\n");
936 run_hw_break_test(1); 936 run_hw_break_test(1);
937 v1printk("kgdbts:RUN access write breakpoint test\n"); 937 v1printk("kgdbts:RUN access write breakpoint test\n");
938 run_hw_break_test(0); 938 run_hw_break_test(0);
939 } 939 }
940 940
941 if (nmi_sleep) { 941 if (nmi_sleep) {
942 v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep); 942 v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep);
943 run_nmi_sleep_test(nmi_sleep); 943 run_nmi_sleep_test(nmi_sleep);
944 } 944 }
945 945
946 #ifdef CONFIG_DEBUG_RODATA 946 #ifdef CONFIG_DEBUG_RODATA
947 /* Until there is an api to write to read-only text segments, use 947 /* Until there is an api to write to read-only text segments, use
948 * HW breakpoints for the remainder of any tests, else print a 948 * HW breakpoints for the remainder of any tests, else print a
949 * failure message if hw breakpoints do not work. 949 * failure message if hw breakpoints do not work.
950 */ 950 */
951 if (!(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT && hwbreaks_ok)) { 951 if (!(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT && hwbreaks_ok)) {
952 eprintk("kgdbts: HW breakpoints do not work," 952 eprintk("kgdbts: HW breakpoints do not work,"
953 "skipping remaining tests\n"); 953 "skipping remaining tests\n");
954 return; 954 return;
955 } 955 }
956 force_hwbrks = 1; 956 force_hwbrks = 1;
957 #endif /* CONFIG_DEBUG_RODATA */ 957 #endif /* CONFIG_DEBUG_RODATA */
958 958
959 /* If the do_fork test is run it will be the last test that is 959 /* If the do_fork test is run it will be the last test that is
960 * executed because a kernel thread will be spawned at the very 960 * executed because a kernel thread will be spawned at the very
961 * end to unregister the debug hooks. 961 * end to unregister the debug hooks.
962 */ 962 */
963 if (fork_test) { 963 if (fork_test) {
964 repeat_test = fork_test; 964 repeat_test = fork_test;
965 printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n", 965 printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n",
966 repeat_test); 966 repeat_test);
967 kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); 967 kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
968 run_do_fork_test(); 968 run_do_fork_test();
969 return; 969 return;
970 } 970 }
971 971
972 /* If the sys_open test is run it will be the last test that is 972 /* If the sys_open test is run it will be the last test that is
973 * executed because a kernel thread will be spawned at the very 973 * executed because a kernel thread will be spawned at the very
974 * end to unregister the debug hooks. 974 * end to unregister the debug hooks.
975 */ 975 */
976 if (do_sys_open_test) { 976 if (do_sys_open_test) {
977 repeat_test = do_sys_open_test; 977 repeat_test = do_sys_open_test;
978 printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n", 978 printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n",
979 repeat_test); 979 repeat_test);
980 kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); 980 kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
981 run_sys_open_test(); 981 run_sys_open_test();
982 return; 982 return;
983 } 983 }
984 /* Shutdown and unregister */ 984 /* Shutdown and unregister */
985 kgdb_unregister_io_module(&kgdbts_io_ops); 985 kgdb_unregister_io_module(&kgdbts_io_ops);
986 configured = 0; 986 configured = 0;
987 } 987 }
988 988
989 static int kgdbts_option_setup(char *opt) 989 static int kgdbts_option_setup(char *opt)
990 { 990 {
991 if (strlen(opt) > MAX_CONFIG_LEN) { 991 if (strlen(opt) >= MAX_CONFIG_LEN) {
992 printk(KERN_ERR "kgdbts: config string too long\n"); 992 printk(KERN_ERR "kgdbts: config string too long\n");
993 return -ENOSPC; 993 return -ENOSPC;
994 } 994 }
995 strcpy(config, opt); 995 strcpy(config, opt);
996 996
997 verbose = 0; 997 verbose = 0;
998 if (strstr(config, "V1")) 998 if (strstr(config, "V1"))
999 verbose = 1; 999 verbose = 1;
1000 if (strstr(config, "V2")) 1000 if (strstr(config, "V2"))
1001 verbose = 2; 1001 verbose = 2;
1002 1002
1003 return 0; 1003 return 0;
1004 } 1004 }
1005 1005
1006 __setup("kgdbts=", kgdbts_option_setup); 1006 __setup("kgdbts=", kgdbts_option_setup);
1007 1007
1008 static int configure_kgdbts(void) 1008 static int configure_kgdbts(void)
1009 { 1009 {
1010 int err = 0; 1010 int err = 0;
1011 1011
1012 if (!strlen(config) || isspace(config[0])) 1012 if (!strlen(config) || isspace(config[0]))
1013 goto noconfig; 1013 goto noconfig;
1014 err = kgdbts_option_setup(config); 1014 err = kgdbts_option_setup(config);
1015 if (err) 1015 if (err)
1016 goto noconfig; 1016 goto noconfig;
1017 1017
1018 final_ack = 0; 1018 final_ack = 0;
1019 run_plant_and_detach_test(1); 1019 run_plant_and_detach_test(1);
1020 1020
1021 err = kgdb_register_io_module(&kgdbts_io_ops); 1021 err = kgdb_register_io_module(&kgdbts_io_ops);
1022 if (err) { 1022 if (err) {
1023 configured = 0; 1023 configured = 0;
1024 return err; 1024 return err;
1025 } 1025 }
1026 configured = 1; 1026 configured = 1;
1027 kgdbts_run_tests(); 1027 kgdbts_run_tests();
1028 1028
1029 return err; 1029 return err;
1030 1030
1031 noconfig: 1031 noconfig:
1032 config[0] = 0; 1032 config[0] = 0;
1033 configured = 0; 1033 configured = 0;
1034 1034
1035 return err; 1035 return err;
1036 } 1036 }
1037 1037
1038 static int __init init_kgdbts(void) 1038 static int __init init_kgdbts(void)
1039 { 1039 {
1040 /* Already configured? */ 1040 /* Already configured? */
1041 if (configured == 1) 1041 if (configured == 1)
1042 return 0; 1042 return 0;
1043 1043
1044 return configure_kgdbts(); 1044 return configure_kgdbts();
1045 } 1045 }
1046 1046
1047 static int kgdbts_get_char(void) 1047 static int kgdbts_get_char(void)
1048 { 1048 {
1049 int val = 0; 1049 int val = 0;
1050 1050
1051 if (ts.run_test) 1051 if (ts.run_test)
1052 val = ts.run_test(1, 0); 1052 val = ts.run_test(1, 0);
1053 1053
1054 return val; 1054 return val;
1055 } 1055 }
1056 1056
1057 static void kgdbts_put_char(u8 chr) 1057 static void kgdbts_put_char(u8 chr)
1058 { 1058 {
1059 if (ts.run_test) 1059 if (ts.run_test)
1060 ts.run_test(0, chr); 1060 ts.run_test(0, chr);
1061 } 1061 }
1062 1062
1063 static int param_set_kgdbts_var(const char *kmessage, struct kernel_param *kp) 1063 static int param_set_kgdbts_var(const char *kmessage, struct kernel_param *kp)
1064 { 1064 {
1065 int len = strlen(kmessage); 1065 int len = strlen(kmessage);
1066 1066
1067 if (len >= MAX_CONFIG_LEN) { 1067 if (len >= MAX_CONFIG_LEN) {
1068 printk(KERN_ERR "kgdbts: config string too long\n"); 1068 printk(KERN_ERR "kgdbts: config string too long\n");
1069 return -ENOSPC; 1069 return -ENOSPC;
1070 } 1070 }
1071 1071
1072 /* Only copy in the string if the init function has not run yet */ 1072 /* Only copy in the string if the init function has not run yet */
1073 if (configured < 0) { 1073 if (configured < 0) {
1074 strcpy(config, kmessage); 1074 strcpy(config, kmessage);
1075 return 0; 1075 return 0;
1076 } 1076 }
1077 1077
1078 if (configured == 1) { 1078 if (configured == 1) {
1079 printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n"); 1079 printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n");
1080 return -EBUSY; 1080 return -EBUSY;
1081 } 1081 }
1082 1082
1083 strcpy(config, kmessage); 1083 strcpy(config, kmessage);
1084 /* Chop out \n char as a result of echo */ 1084 /* Chop out \n char as a result of echo */
1085 if (config[len - 1] == '\n') 1085 if (config[len - 1] == '\n')
1086 config[len - 1] = '\0'; 1086 config[len - 1] = '\0';
1087 1087
1088 /* Go and configure with the new params. */ 1088 /* Go and configure with the new params. */
1089 return configure_kgdbts(); 1089 return configure_kgdbts();
1090 } 1090 }
1091 1091
1092 static void kgdbts_pre_exp_handler(void) 1092 static void kgdbts_pre_exp_handler(void)
1093 { 1093 {
1094 /* Increment the module count when the debugger is active */ 1094 /* Increment the module count when the debugger is active */
1095 if (!kgdb_connected) 1095 if (!kgdb_connected)
1096 try_module_get(THIS_MODULE); 1096 try_module_get(THIS_MODULE);
1097 } 1097 }
1098 1098
1099 static void kgdbts_post_exp_handler(void) 1099 static void kgdbts_post_exp_handler(void)
1100 { 1100 {
1101 /* decrement the module count when the debugger detaches */ 1101 /* decrement the module count when the debugger detaches */
1102 if (!kgdb_connected) 1102 if (!kgdb_connected)
1103 module_put(THIS_MODULE); 1103 module_put(THIS_MODULE);
1104 } 1104 }
1105 1105
1106 static struct kgdb_io kgdbts_io_ops = { 1106 static struct kgdb_io kgdbts_io_ops = {
1107 .name = "kgdbts", 1107 .name = "kgdbts",
1108 .read_char = kgdbts_get_char, 1108 .read_char = kgdbts_get_char,
1109 .write_char = kgdbts_put_char, 1109 .write_char = kgdbts_put_char,
1110 .pre_exception = kgdbts_pre_exp_handler, 1110 .pre_exception = kgdbts_pre_exp_handler,
1111 .post_exception = kgdbts_post_exp_handler, 1111 .post_exception = kgdbts_post_exp_handler,
1112 }; 1112 };
1113 1113
1114 module_init(init_kgdbts); 1114 module_init(init_kgdbts);
1115 module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644); 1115 module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644);
1116 MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]"); 1116 MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]");
1117 MODULE_DESCRIPTION("KGDB Test Suite"); 1117 MODULE_DESCRIPTION("KGDB Test Suite");
1118 MODULE_LICENSE("GPL"); 1118 MODULE_LICENSE("GPL");
1119 MODULE_AUTHOR("Wind River Systems, Inc."); 1119 MODULE_AUTHOR("Wind River Systems, Inc.");
1120 1120
1121 1121
drivers/tty/serial/kgdboc.c
1 /* 1 /*
2 * Based on the same principle as kgdboe using the NETPOLL api, this 2 * Based on the same principle as kgdboe using the NETPOLL api, this
3 * driver uses a console polling api to implement a gdb serial inteface 3 * driver uses a console polling api to implement a gdb serial inteface
4 * which is multiplexed on a console port. 4 * which is multiplexed on a console port.
5 * 5 *
6 * Maintainer: Jason Wessel <jason.wessel@windriver.com> 6 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
7 * 7 *
8 * 2007-2008 (c) Jason Wessel - Wind River Systems, Inc. 8 * 2007-2008 (c) Jason Wessel - Wind River Systems, Inc.
9 * 9 *
10 * This file is licensed under the terms of the GNU General Public 10 * This file is licensed under the terms of the GNU General Public
11 * License version 2. This program is licensed "as is" without any 11 * License version 2. This program is licensed "as is" without any
12 * warranty of any kind, whether express or implied. 12 * warranty of any kind, whether express or implied.
13 */ 13 */
14 #include <linux/kernel.h> 14 #include <linux/kernel.h>
15 #include <linux/ctype.h> 15 #include <linux/ctype.h>
16 #include <linux/kgdb.h> 16 #include <linux/kgdb.h>
17 #include <linux/kdb.h> 17 #include <linux/kdb.h>
18 #include <linux/tty.h> 18 #include <linux/tty.h>
19 #include <linux/console.h> 19 #include <linux/console.h>
20 #include <linux/vt_kern.h> 20 #include <linux/vt_kern.h>
21 #include <linux/input.h> 21 #include <linux/input.h>
22 22
23 #define MAX_CONFIG_LEN 40 23 #define MAX_CONFIG_LEN 40
24 24
25 static struct kgdb_io kgdboc_io_ops; 25 static struct kgdb_io kgdboc_io_ops;
26 26
27 /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */ 27 /* -1 = init not run yet, 0 = unconfigured, 1 = configured. */
28 static int configured = -1; 28 static int configured = -1;
29 29
30 static char config[MAX_CONFIG_LEN]; 30 static char config[MAX_CONFIG_LEN];
31 static struct kparam_string kps = { 31 static struct kparam_string kps = {
32 .string = config, 32 .string = config,
33 .maxlen = MAX_CONFIG_LEN, 33 .maxlen = MAX_CONFIG_LEN,
34 }; 34 };
35 35
36 static int kgdboc_use_kms; /* 1 if we use kernel mode switching */ 36 static int kgdboc_use_kms; /* 1 if we use kernel mode switching */
37 static struct tty_driver *kgdb_tty_driver; 37 static struct tty_driver *kgdb_tty_driver;
38 static int kgdb_tty_line; 38 static int kgdb_tty_line;
39 39
40 #ifdef CONFIG_KDB_KEYBOARD 40 #ifdef CONFIG_KDB_KEYBOARD
41 static int kgdboc_reset_connect(struct input_handler *handler, 41 static int kgdboc_reset_connect(struct input_handler *handler,
42 struct input_dev *dev, 42 struct input_dev *dev,
43 const struct input_device_id *id) 43 const struct input_device_id *id)
44 { 44 {
45 input_reset_device(dev); 45 input_reset_device(dev);
46 46
47 /* Retrun an error - we do not want to bind, just to reset */ 47 /* Retrun an error - we do not want to bind, just to reset */
48 return -ENODEV; 48 return -ENODEV;
49 } 49 }
50 50
51 static void kgdboc_reset_disconnect(struct input_handle *handle) 51 static void kgdboc_reset_disconnect(struct input_handle *handle)
52 { 52 {
53 /* We do not expect anyone to actually bind to us */ 53 /* We do not expect anyone to actually bind to us */
54 BUG(); 54 BUG();
55 } 55 }
56 56
57 static const struct input_device_id kgdboc_reset_ids[] = { 57 static const struct input_device_id kgdboc_reset_ids[] = {
58 { 58 {
59 .flags = INPUT_DEVICE_ID_MATCH_EVBIT, 59 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
60 .evbit = { BIT_MASK(EV_KEY) }, 60 .evbit = { BIT_MASK(EV_KEY) },
61 }, 61 },
62 { } 62 { }
63 }; 63 };
64 64
65 static struct input_handler kgdboc_reset_handler = { 65 static struct input_handler kgdboc_reset_handler = {
66 .connect = kgdboc_reset_connect, 66 .connect = kgdboc_reset_connect,
67 .disconnect = kgdboc_reset_disconnect, 67 .disconnect = kgdboc_reset_disconnect,
68 .name = "kgdboc_reset", 68 .name = "kgdboc_reset",
69 .id_table = kgdboc_reset_ids, 69 .id_table = kgdboc_reset_ids,
70 }; 70 };
71 71
72 static DEFINE_MUTEX(kgdboc_reset_mutex); 72 static DEFINE_MUTEX(kgdboc_reset_mutex);
73 73
74 static void kgdboc_restore_input_helper(struct work_struct *dummy) 74 static void kgdboc_restore_input_helper(struct work_struct *dummy)
75 { 75 {
76 /* 76 /*
77 * We need to take a mutex to prevent several instances of 77 * We need to take a mutex to prevent several instances of
78 * this work running on different CPUs so they don't try 78 * this work running on different CPUs so they don't try
79 * to register again already registered handler. 79 * to register again already registered handler.
80 */ 80 */
81 mutex_lock(&kgdboc_reset_mutex); 81 mutex_lock(&kgdboc_reset_mutex);
82 82
83 if (input_register_handler(&kgdboc_reset_handler) == 0) 83 if (input_register_handler(&kgdboc_reset_handler) == 0)
84 input_unregister_handler(&kgdboc_reset_handler); 84 input_unregister_handler(&kgdboc_reset_handler);
85 85
86 mutex_unlock(&kgdboc_reset_mutex); 86 mutex_unlock(&kgdboc_reset_mutex);
87 } 87 }
88 88
89 static DECLARE_WORK(kgdboc_restore_input_work, kgdboc_restore_input_helper); 89 static DECLARE_WORK(kgdboc_restore_input_work, kgdboc_restore_input_helper);
90 90
91 static void kgdboc_restore_input(void) 91 static void kgdboc_restore_input(void)
92 { 92 {
93 if (likely(system_state == SYSTEM_RUNNING)) 93 if (likely(system_state == SYSTEM_RUNNING))
94 schedule_work(&kgdboc_restore_input_work); 94 schedule_work(&kgdboc_restore_input_work);
95 } 95 }
96 96
97 static int kgdboc_register_kbd(char **cptr) 97 static int kgdboc_register_kbd(char **cptr)
98 { 98 {
99 if (strncmp(*cptr, "kbd", 3) == 0) { 99 if (strncmp(*cptr, "kbd", 3) == 0) {
100 if (kdb_poll_idx < KDB_POLL_FUNC_MAX) { 100 if (kdb_poll_idx < KDB_POLL_FUNC_MAX) {
101 kdb_poll_funcs[kdb_poll_idx] = kdb_get_kbd_char; 101 kdb_poll_funcs[kdb_poll_idx] = kdb_get_kbd_char;
102 kdb_poll_idx++; 102 kdb_poll_idx++;
103 if (cptr[0][3] == ',') 103 if (cptr[0][3] == ',')
104 *cptr += 4; 104 *cptr += 4;
105 else 105 else
106 return 1; 106 return 1;
107 } 107 }
108 } 108 }
109 return 0; 109 return 0;
110 } 110 }
111 111
112 static void kgdboc_unregister_kbd(void) 112 static void kgdboc_unregister_kbd(void)
113 { 113 {
114 int i; 114 int i;
115 115
116 for (i = 0; i < kdb_poll_idx; i++) { 116 for (i = 0; i < kdb_poll_idx; i++) {
117 if (kdb_poll_funcs[i] == kdb_get_kbd_char) { 117 if (kdb_poll_funcs[i] == kdb_get_kbd_char) {
118 kdb_poll_idx--; 118 kdb_poll_idx--;
119 kdb_poll_funcs[i] = kdb_poll_funcs[kdb_poll_idx]; 119 kdb_poll_funcs[i] = kdb_poll_funcs[kdb_poll_idx];
120 kdb_poll_funcs[kdb_poll_idx] = NULL; 120 kdb_poll_funcs[kdb_poll_idx] = NULL;
121 i--; 121 i--;
122 } 122 }
123 } 123 }
124 flush_work_sync(&kgdboc_restore_input_work); 124 flush_work_sync(&kgdboc_restore_input_work);
125 } 125 }
126 #else /* ! CONFIG_KDB_KEYBOARD */ 126 #else /* ! CONFIG_KDB_KEYBOARD */
127 #define kgdboc_register_kbd(x) 0 127 #define kgdboc_register_kbd(x) 0
128 #define kgdboc_unregister_kbd() 128 #define kgdboc_unregister_kbd()
129 #define kgdboc_restore_input() 129 #define kgdboc_restore_input()
130 #endif /* ! CONFIG_KDB_KEYBOARD */ 130 #endif /* ! CONFIG_KDB_KEYBOARD */
131 131
132 static int kgdboc_option_setup(char *opt) 132 static int kgdboc_option_setup(char *opt)
133 { 133 {
134 if (strlen(opt) > MAX_CONFIG_LEN) { 134 if (strlen(opt) >= MAX_CONFIG_LEN) {
135 printk(KERN_ERR "kgdboc: config string too long\n"); 135 printk(KERN_ERR "kgdboc: config string too long\n");
136 return -ENOSPC; 136 return -ENOSPC;
137 } 137 }
138 strcpy(config, opt); 138 strcpy(config, opt);
139 139
140 return 0; 140 return 0;
141 } 141 }
142 142
143 __setup("kgdboc=", kgdboc_option_setup); 143 __setup("kgdboc=", kgdboc_option_setup);
144 144
145 static void cleanup_kgdboc(void) 145 static void cleanup_kgdboc(void)
146 { 146 {
147 kgdboc_unregister_kbd(); 147 kgdboc_unregister_kbd();
148 if (configured == 1) 148 if (configured == 1)
149 kgdb_unregister_io_module(&kgdboc_io_ops); 149 kgdb_unregister_io_module(&kgdboc_io_ops);
150 } 150 }
151 151
152 static int configure_kgdboc(void) 152 static int configure_kgdboc(void)
153 { 153 {
154 struct tty_driver *p; 154 struct tty_driver *p;
155 int tty_line = 0; 155 int tty_line = 0;
156 int err; 156 int err;
157 char *cptr = config; 157 char *cptr = config;
158 struct console *cons; 158 struct console *cons;
159 159
160 err = kgdboc_option_setup(config); 160 err = kgdboc_option_setup(config);
161 if (err || !strlen(config) || isspace(config[0])) 161 if (err || !strlen(config) || isspace(config[0]))
162 goto noconfig; 162 goto noconfig;
163 163
164 err = -ENODEV; 164 err = -ENODEV;
165 kgdboc_io_ops.is_console = 0; 165 kgdboc_io_ops.is_console = 0;
166 kgdb_tty_driver = NULL; 166 kgdb_tty_driver = NULL;
167 167
168 kgdboc_use_kms = 0; 168 kgdboc_use_kms = 0;
169 if (strncmp(cptr, "kms,", 4) == 0) { 169 if (strncmp(cptr, "kms,", 4) == 0) {
170 cptr += 4; 170 cptr += 4;
171 kgdboc_use_kms = 1; 171 kgdboc_use_kms = 1;
172 } 172 }
173 173
174 if (kgdboc_register_kbd(&cptr)) 174 if (kgdboc_register_kbd(&cptr))
175 goto do_register; 175 goto do_register;
176 176
177 p = tty_find_polling_driver(cptr, &tty_line); 177 p = tty_find_polling_driver(cptr, &tty_line);
178 if (!p) 178 if (!p)
179 goto noconfig; 179 goto noconfig;
180 180
181 cons = console_drivers; 181 cons = console_drivers;
182 while (cons) { 182 while (cons) {
183 int idx; 183 int idx;
184 if (cons->device && cons->device(cons, &idx) == p && 184 if (cons->device && cons->device(cons, &idx) == p &&
185 idx == tty_line) { 185 idx == tty_line) {
186 kgdboc_io_ops.is_console = 1; 186 kgdboc_io_ops.is_console = 1;
187 break; 187 break;
188 } 188 }
189 cons = cons->next; 189 cons = cons->next;
190 } 190 }
191 191
192 kgdb_tty_driver = p; 192 kgdb_tty_driver = p;
193 kgdb_tty_line = tty_line; 193 kgdb_tty_line = tty_line;
194 194
195 do_register: 195 do_register:
196 err = kgdb_register_io_module(&kgdboc_io_ops); 196 err = kgdb_register_io_module(&kgdboc_io_ops);
197 if (err) 197 if (err)
198 goto noconfig; 198 goto noconfig;
199 199
200 configured = 1; 200 configured = 1;
201 201
202 return 0; 202 return 0;
203 203
204 noconfig: 204 noconfig:
205 config[0] = 0; 205 config[0] = 0;
206 configured = 0; 206 configured = 0;
207 cleanup_kgdboc(); 207 cleanup_kgdboc();
208 208
209 return err; 209 return err;
210 } 210 }
211 211
212 static int __init init_kgdboc(void) 212 static int __init init_kgdboc(void)
213 { 213 {
214 /* Already configured? */ 214 /* Already configured? */
215 if (configured == 1) 215 if (configured == 1)
216 return 0; 216 return 0;
217 217
218 return configure_kgdboc(); 218 return configure_kgdboc();
219 } 219 }
220 220
221 static int kgdboc_get_char(void) 221 static int kgdboc_get_char(void)
222 { 222 {
223 if (!kgdb_tty_driver) 223 if (!kgdb_tty_driver)
224 return -1; 224 return -1;
225 return kgdb_tty_driver->ops->poll_get_char(kgdb_tty_driver, 225 return kgdb_tty_driver->ops->poll_get_char(kgdb_tty_driver,
226 kgdb_tty_line); 226 kgdb_tty_line);
227 } 227 }
228 228
229 static void kgdboc_put_char(u8 chr) 229 static void kgdboc_put_char(u8 chr)
230 { 230 {
231 if (!kgdb_tty_driver) 231 if (!kgdb_tty_driver)
232 return; 232 return;
233 kgdb_tty_driver->ops->poll_put_char(kgdb_tty_driver, 233 kgdb_tty_driver->ops->poll_put_char(kgdb_tty_driver,
234 kgdb_tty_line, chr); 234 kgdb_tty_line, chr);
235 } 235 }
236 236
237 static int param_set_kgdboc_var(const char *kmessage, struct kernel_param *kp) 237 static int param_set_kgdboc_var(const char *kmessage, struct kernel_param *kp)
238 { 238 {
239 int len = strlen(kmessage); 239 int len = strlen(kmessage);
240 240
241 if (len >= MAX_CONFIG_LEN) { 241 if (len >= MAX_CONFIG_LEN) {
242 printk(KERN_ERR "kgdboc: config string too long\n"); 242 printk(KERN_ERR "kgdboc: config string too long\n");
243 return -ENOSPC; 243 return -ENOSPC;
244 } 244 }
245 245
246 /* Only copy in the string if the init function has not run yet */ 246 /* Only copy in the string if the init function has not run yet */
247 if (configured < 0) { 247 if (configured < 0) {
248 strcpy(config, kmessage); 248 strcpy(config, kmessage);
249 return 0; 249 return 0;
250 } 250 }
251 251
252 if (kgdb_connected) { 252 if (kgdb_connected) {
253 printk(KERN_ERR 253 printk(KERN_ERR
254 "kgdboc: Cannot reconfigure while KGDB is connected.\n"); 254 "kgdboc: Cannot reconfigure while KGDB is connected.\n");
255 255
256 return -EBUSY; 256 return -EBUSY;
257 } 257 }
258 258
259 strcpy(config, kmessage); 259 strcpy(config, kmessage);
260 /* Chop out \n char as a result of echo */ 260 /* Chop out \n char as a result of echo */
261 if (config[len - 1] == '\n') 261 if (config[len - 1] == '\n')
262 config[len - 1] = '\0'; 262 config[len - 1] = '\0';
263 263
264 if (configured == 1) 264 if (configured == 1)
265 cleanup_kgdboc(); 265 cleanup_kgdboc();
266 266
267 /* Go and configure with the new params. */ 267 /* Go and configure with the new params. */
268 return configure_kgdboc(); 268 return configure_kgdboc();
269 } 269 }
270 270
271 static int dbg_restore_graphics; 271 static int dbg_restore_graphics;
272 272
273 static void kgdboc_pre_exp_handler(void) 273 static void kgdboc_pre_exp_handler(void)
274 { 274 {
275 if (!dbg_restore_graphics && kgdboc_use_kms) { 275 if (!dbg_restore_graphics && kgdboc_use_kms) {
276 dbg_restore_graphics = 1; 276 dbg_restore_graphics = 1;
277 con_debug_enter(vc_cons[fg_console].d); 277 con_debug_enter(vc_cons[fg_console].d);
278 } 278 }
279 /* Increment the module count when the debugger is active */ 279 /* Increment the module count when the debugger is active */
280 if (!kgdb_connected) 280 if (!kgdb_connected)
281 try_module_get(THIS_MODULE); 281 try_module_get(THIS_MODULE);
282 } 282 }
283 283
284 static void kgdboc_post_exp_handler(void) 284 static void kgdboc_post_exp_handler(void)
285 { 285 {
286 /* decrement the module count when the debugger detaches */ 286 /* decrement the module count when the debugger detaches */
287 if (!kgdb_connected) 287 if (!kgdb_connected)
288 module_put(THIS_MODULE); 288 module_put(THIS_MODULE);
289 if (kgdboc_use_kms && dbg_restore_graphics) { 289 if (kgdboc_use_kms && dbg_restore_graphics) {
290 dbg_restore_graphics = 0; 290 dbg_restore_graphics = 0;
291 con_debug_leave(); 291 con_debug_leave();
292 } 292 }
293 kgdboc_restore_input(); 293 kgdboc_restore_input();
294 } 294 }
295 295
296 static struct kgdb_io kgdboc_io_ops = { 296 static struct kgdb_io kgdboc_io_ops = {
297 .name = "kgdboc", 297 .name = "kgdboc",
298 .read_char = kgdboc_get_char, 298 .read_char = kgdboc_get_char,
299 .write_char = kgdboc_put_char, 299 .write_char = kgdboc_put_char,
300 .pre_exception = kgdboc_pre_exp_handler, 300 .pre_exception = kgdboc_pre_exp_handler,
301 .post_exception = kgdboc_post_exp_handler, 301 .post_exception = kgdboc_post_exp_handler,
302 }; 302 };
303 303
304 #ifdef CONFIG_KGDB_SERIAL_CONSOLE 304 #ifdef CONFIG_KGDB_SERIAL_CONSOLE
305 /* This is only available if kgdboc is a built in for early debugging */ 305 /* This is only available if kgdboc is a built in for early debugging */
306 static int __init kgdboc_early_init(char *opt) 306 static int __init kgdboc_early_init(char *opt)
307 { 307 {
308 /* save the first character of the config string because the 308 /* save the first character of the config string because the
309 * init routine can destroy it. 309 * init routine can destroy it.
310 */ 310 */
311 char save_ch; 311 char save_ch;
312 312
313 kgdboc_option_setup(opt); 313 kgdboc_option_setup(opt);
314 save_ch = config[0]; 314 save_ch = config[0];
315 init_kgdboc(); 315 init_kgdboc();
316 config[0] = save_ch; 316 config[0] = save_ch;
317 return 0; 317 return 0;
318 } 318 }
319 319
320 early_param("ekgdboc", kgdboc_early_init); 320 early_param("ekgdboc", kgdboc_early_init);
321 #endif /* CONFIG_KGDB_SERIAL_CONSOLE */ 321 #endif /* CONFIG_KGDB_SERIAL_CONSOLE */
322 322
323 module_init(init_kgdboc); 323 module_init(init_kgdboc);
324 module_exit(cleanup_kgdboc); 324 module_exit(cleanup_kgdboc);
325 module_param_call(kgdboc, param_set_kgdboc_var, param_get_string, &kps, 0644); 325 module_param_call(kgdboc, param_set_kgdboc_var, param_get_string, &kps, 0644);
326 MODULE_PARM_DESC(kgdboc, "<serial_device>[,baud]"); 326 MODULE_PARM_DESC(kgdboc, "<serial_device>[,baud]");
327 MODULE_DESCRIPTION("KGDB Console TTY Driver"); 327 MODULE_DESCRIPTION("KGDB Console TTY Driver");
328 MODULE_LICENSE("GPL"); 328 MODULE_LICENSE("GPL");
329 329
kernel/debug/kdb/kdb_main.c
1 /* 1 /*
2 * Kernel Debugger Architecture Independent Main Code 2 * Kernel Debugger Architecture Independent Main Code
3 * 3 *
4 * This file is subject to the terms and conditions of the GNU General Public 4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive 5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details. 6 * for more details.
7 * 7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */ 12 */
13 13
14 #include <linux/ctype.h> 14 #include <linux/ctype.h>
15 #include <linux/string.h> 15 #include <linux/string.h>
16 #include <linux/kernel.h> 16 #include <linux/kernel.h>
17 #include <linux/reboot.h> 17 #include <linux/reboot.h>
18 #include <linux/sched.h> 18 #include <linux/sched.h>
19 #include <linux/sysrq.h> 19 #include <linux/sysrq.h>
20 #include <linux/smp.h> 20 #include <linux/smp.h>
21 #include <linux/utsname.h> 21 #include <linux/utsname.h>
22 #include <linux/vmalloc.h> 22 #include <linux/vmalloc.h>
23 #include <linux/module.h> 23 #include <linux/module.h>
24 #include <linux/mm.h> 24 #include <linux/mm.h>
25 #include <linux/init.h> 25 #include <linux/init.h>
26 #include <linux/kallsyms.h> 26 #include <linux/kallsyms.h>
27 #include <linux/kgdb.h> 27 #include <linux/kgdb.h>
28 #include <linux/kdb.h> 28 #include <linux/kdb.h>
29 #include <linux/notifier.h> 29 #include <linux/notifier.h>
30 #include <linux/interrupt.h> 30 #include <linux/interrupt.h>
31 #include <linux/delay.h> 31 #include <linux/delay.h>
32 #include <linux/nmi.h> 32 #include <linux/nmi.h>
33 #include <linux/time.h> 33 #include <linux/time.h>
34 #include <linux/ptrace.h> 34 #include <linux/ptrace.h>
35 #include <linux/sysctl.h> 35 #include <linux/sysctl.h>
36 #include <linux/cpu.h> 36 #include <linux/cpu.h>
37 #include <linux/kdebug.h> 37 #include <linux/kdebug.h>
38 #include <linux/proc_fs.h> 38 #include <linux/proc_fs.h>
39 #include <linux/uaccess.h> 39 #include <linux/uaccess.h>
40 #include <linux/slab.h> 40 #include <linux/slab.h>
41 #include "kdb_private.h" 41 #include "kdb_private.h"
42 42
43 #define GREP_LEN 256 43 #define GREP_LEN 256
44 char kdb_grep_string[GREP_LEN]; 44 char kdb_grep_string[GREP_LEN];
45 int kdb_grepping_flag; 45 int kdb_grepping_flag;
46 EXPORT_SYMBOL(kdb_grepping_flag); 46 EXPORT_SYMBOL(kdb_grepping_flag);
47 int kdb_grep_leading; 47 int kdb_grep_leading;
48 int kdb_grep_trailing; 48 int kdb_grep_trailing;
49 49
50 /* 50 /*
51 * Kernel debugger state flags 51 * Kernel debugger state flags
52 */ 52 */
53 int kdb_flags; 53 int kdb_flags;
54 atomic_t kdb_event; 54 atomic_t kdb_event;
55 55
56 /* 56 /*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to 57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger. 58 * single thread processors through the kernel debugger.
59 */ 59 */
60 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 60 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61 int kdb_nextline = 1; 61 int kdb_nextline = 1;
62 int kdb_state; /* General KDB state */ 62 int kdb_state; /* General KDB state */
63 63
64 struct task_struct *kdb_current_task; 64 struct task_struct *kdb_current_task;
65 EXPORT_SYMBOL(kdb_current_task); 65 EXPORT_SYMBOL(kdb_current_task);
66 struct pt_regs *kdb_current_regs; 66 struct pt_regs *kdb_current_regs;
67 67
68 const char *kdb_diemsg; 68 const char *kdb_diemsg;
69 static int kdb_go_count; 69 static int kdb_go_count;
70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71 static unsigned int kdb_continue_catastrophic = 71 static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC; 72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73 #else 73 #else
74 static unsigned int kdb_continue_catastrophic; 74 static unsigned int kdb_continue_catastrophic;
75 #endif 75 #endif
76 76
77 /* kdb_commands describes the available commands. */ 77 /* kdb_commands describes the available commands. */
78 static kdbtab_t *kdb_commands; 78 static kdbtab_t *kdb_commands;
79 #define KDB_BASE_CMD_MAX 50 79 #define KDB_BASE_CMD_MAX 50
80 static int kdb_max_commands = KDB_BASE_CMD_MAX; 80 static int kdb_max_commands = KDB_BASE_CMD_MAX;
81 static kdbtab_t kdb_base_commands[50]; 81 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82 #define for_each_kdbcmd(cmd, num) \ 82 #define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \ 83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \ 84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86 86
87 typedef struct _kdbmsg { 87 typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */ 88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */ 89 char *km_msg; /* Corresponding message text */
90 } kdbmsg_t; 90 } kdbmsg_t;
91 91
92 #define KDBMSG(msgnum, text) \ 92 #define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text } 93 { KDB_##msgnum, text }
94 94
95 static kdbmsg_t kdbmsgs[] = { 95 static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"), 96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"), 99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"), 101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"), 102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"), 103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"), 104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"), 105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107 #ifdef CONFIG_CPU_XSCALE 107 #ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109 #else 109 #else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111 #endif 111 #endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"), 114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"), 115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"), 117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"), 118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"), 119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"), 120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"), 121 KDBMSG(BADADDR, "Invalid address"),
122 }; 122 };
123 #undef KDBMSG 123 #undef KDBMSG
124 124
125 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); 125 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126 126
127 127
128 /* 128 /*
129 * Initial environment. This is all kept static and local to 129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation 130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only 131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire 132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more 133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to 134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required). 135 * KDB_ENVBUFSIZE if required).
136 */ 136 */
137 137
138 static char *__env[] = { 138 static char *__env[] = {
139 #if defined(CONFIG_SMP) 139 #if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ", 140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ", 141 "MOREPROMPT=[%d]more> ",
142 #else 142 #else
143 "PROMPT=kdb> ", 143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ", 144 "MOREPROMPT=more> ",
145 #endif 145 #endif
146 "RADIX=16", 146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */ 147 "MDCOUNT=8", /* lines of md output */
148 "BTARGS=9", /* 9 possible args in bt */ 148 "BTARGS=9", /* 9 possible args in bt */
149 KDB_PLATFORM_ENV, 149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30", 150 "DTABCOUNT=30",
151 "NOSECT=1", 151 "NOSECT=1",
152 (char *)0, 152 (char *)0,
153 (char *)0, 153 (char *)0,
154 (char *)0, 154 (char *)0,
155 (char *)0, 155 (char *)0,
156 (char *)0, 156 (char *)0,
157 (char *)0, 157 (char *)0,
158 (char *)0, 158 (char *)0,
159 (char *)0, 159 (char *)0,
160 (char *)0, 160 (char *)0,
161 (char *)0, 161 (char *)0,
162 (char *)0, 162 (char *)0,
163 (char *)0, 163 (char *)0,
164 (char *)0, 164 (char *)0,
165 (char *)0, 165 (char *)0,
166 (char *)0, 166 (char *)0,
167 (char *)0, 167 (char *)0,
168 (char *)0, 168 (char *)0,
169 (char *)0, 169 (char *)0,
170 (char *)0, 170 (char *)0,
171 (char *)0, 171 (char *)0,
172 (char *)0, 172 (char *)0,
173 (char *)0, 173 (char *)0,
174 (char *)0, 174 (char *)0,
175 }; 175 };
176 176
177 static const int __nenv = (sizeof(__env) / sizeof(char *)); 177 static const int __nenv = (sizeof(__env) / sizeof(char *));
178 178
179 struct task_struct *kdb_curr_task(int cpu) 179 struct task_struct *kdb_curr_task(int cpu)
180 { 180 {
181 struct task_struct *p = curr_task(cpu); 181 struct task_struct *p = curr_task(cpu);
182 #ifdef _TIF_MCA_INIT 182 #ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p; 184 p = krp->p;
185 #endif 185 #endif
186 return p; 186 return p;
187 } 187 }
188 188
189 /* 189 /*
190 * kdbgetenv - This function will return the character string value of 190 * kdbgetenv - This function will return the character string value of
191 * an environment variable. 191 * an environment variable.
192 * Parameters: 192 * Parameters:
193 * match A character string representing an environment variable. 193 * match A character string representing an environment variable.
194 * Returns: 194 * Returns:
195 * NULL No environment variable matches 'match' 195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable. 196 * char* Pointer to string value of environment variable.
197 */ 197 */
198 char *kdbgetenv(const char *match) 198 char *kdbgetenv(const char *match)
199 { 199 {
200 char **ep = __env; 200 char **ep = __env;
201 int matchlen = strlen(match); 201 int matchlen = strlen(match);
202 int i; 202 int i;
203 203
204 for (i = 0; i < __nenv; i++) { 204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++; 205 char *e = *ep++;
206 206
207 if (!e) 207 if (!e)
208 continue; 208 continue;
209 209
210 if ((strncmp(match, e, matchlen) == 0) 210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0') 211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) { 212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '='); 213 char *cp = strchr(e, '=');
214 return cp ? ++cp : ""; 214 return cp ? ++cp : "";
215 } 215 }
216 } 216 }
217 return NULL; 217 return NULL;
218 } 218 }
219 219
220 /* 220 /*
221 * kdballocenv - This function is used to allocate bytes for 221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries. 222 * environment entries.
223 * Parameters: 223 * Parameters:
224 * match A character string representing a numeric value 224 * match A character string representing a numeric value
225 * Outputs: 225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match' 226 * *value the unsigned long representation of the env variable 'match'
227 * Returns: 227 * Returns:
228 * Zero on success, a kdb diagnostic on failure. 228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks: 229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values 230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer 231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space 232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed 233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently. 234 * frequently.
235 */ 235 */
236 static char *kdballocenv(size_t bytes) 236 static char *kdballocenv(size_t bytes)
237 { 237 {
238 #define KDB_ENVBUFSIZE 512 238 #define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE]; 239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize; 240 static int envbufsize;
241 char *ep = NULL; 241 char *ep = NULL;
242 242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize]; 244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes; 245 envbufsize += bytes;
246 } 246 }
247 return ep; 247 return ep;
248 } 248 }
249 249
250 /* 250 /*
251 * kdbgetulenv - This function will return the value of an unsigned 251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable. 252 * long-valued environment variable.
253 * Parameters: 253 * Parameters:
254 * match A character string representing a numeric value 254 * match A character string representing a numeric value
255 * Outputs: 255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match' 256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns: 257 * Returns:
258 * Zero on success, a kdb diagnostic on failure. 258 * Zero on success, a kdb diagnostic on failure.
259 */ 259 */
260 static int kdbgetulenv(const char *match, unsigned long *value) 260 static int kdbgetulenv(const char *match, unsigned long *value)
261 { 261 {
262 char *ep; 262 char *ep;
263 263
264 ep = kdbgetenv(match); 264 ep = kdbgetenv(match);
265 if (!ep) 265 if (!ep)
266 return KDB_NOTENV; 266 return KDB_NOTENV;
267 if (strlen(ep) == 0) 267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE; 268 return KDB_NOENVVALUE;
269 269
270 *value = simple_strtoul(ep, NULL, 0); 270 *value = simple_strtoul(ep, NULL, 0);
271 271
272 return 0; 272 return 0;
273 } 273 }
274 274
275 /* 275 /*
276 * kdbgetintenv - This function will return the value of an 276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable. 277 * integer-valued environment variable.
278 * Parameters: 278 * Parameters:
279 * match A character string representing an integer-valued env variable 279 * match A character string representing an integer-valued env variable
280 * Outputs: 280 * Outputs:
281 * *value the integer representation of the environment variable 'match' 281 * *value the integer representation of the environment variable 'match'
282 * Returns: 282 * Returns:
283 * Zero on success, a kdb diagnostic on failure. 283 * Zero on success, a kdb diagnostic on failure.
284 */ 284 */
285 int kdbgetintenv(const char *match, int *value) 285 int kdbgetintenv(const char *match, int *value)
286 { 286 {
287 unsigned long val; 287 unsigned long val;
288 int diag; 288 int diag;
289 289
290 diag = kdbgetulenv(match, &val); 290 diag = kdbgetulenv(match, &val);
291 if (!diag) 291 if (!diag)
292 *value = (int) val; 292 *value = (int) val;
293 return diag; 293 return diag;
294 } 294 }
295 295
296 /* 296 /*
297 * kdbgetularg - This function will convert a numeric string into an 297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value. 298 * unsigned long value.
299 * Parameters: 299 * Parameters:
300 * arg A character string representing a numeric value 300 * arg A character string representing a numeric value
301 * Outputs: 301 * Outputs:
302 * *value the unsigned long represntation of arg. 302 * *value the unsigned long represntation of arg.
303 * Returns: 303 * Returns:
304 * Zero on success, a kdb diagnostic on failure. 304 * Zero on success, a kdb diagnostic on failure.
305 */ 305 */
306 int kdbgetularg(const char *arg, unsigned long *value) 306 int kdbgetularg(const char *arg, unsigned long *value)
307 { 307 {
308 char *endp; 308 char *endp;
309 unsigned long val; 309 unsigned long val;
310 310
311 val = simple_strtoul(arg, &endp, 0); 311 val = simple_strtoul(arg, &endp, 0);
312 312
313 if (endp == arg) { 313 if (endp == arg) {
314 /* 314 /*
315 * Also try base 16, for us folks too lazy to type the 315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x... 316 * leading 0x...
317 */ 317 */
318 val = simple_strtoul(arg, &endp, 16); 318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg) 319 if (endp == arg)
320 return KDB_BADINT; 320 return KDB_BADINT;
321 } 321 }
322 322
323 *value = val; 323 *value = val;
324 324
325 return 0; 325 return 0;
326 } 326 }
327 327
328 int kdbgetu64arg(const char *arg, u64 *value) 328 int kdbgetu64arg(const char *arg, u64 *value)
329 { 329 {
330 char *endp; 330 char *endp;
331 u64 val; 331 u64 val;
332 332
333 val = simple_strtoull(arg, &endp, 0); 333 val = simple_strtoull(arg, &endp, 0);
334 334
335 if (endp == arg) { 335 if (endp == arg) {
336 336
337 val = simple_strtoull(arg, &endp, 16); 337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg) 338 if (endp == arg)
339 return KDB_BADINT; 339 return KDB_BADINT;
340 } 340 }
341 341
342 *value = val; 342 *value = val;
343 343
344 return 0; 344 return 0;
345 } 345 }
346 346
347 /* 347 /*
348 * kdb_set - This function implements the 'set' command. Alter an 348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one. 349 * existing environment variable or create a new one.
350 */ 350 */
351 int kdb_set(int argc, const char **argv) 351 int kdb_set(int argc, const char **argv)
352 { 352 {
353 int i; 353 int i;
354 char *ep; 354 char *ep;
355 size_t varlen, vallen; 355 size_t varlen, vallen;
356 356
357 /* 357 /*
358 * we can be invoked two ways: 358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value" 359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down. 361 * - if the latter, shift 'em down.
362 */ 362 */
363 if (argc == 3) { 363 if (argc == 3) {
364 argv[2] = argv[3]; 364 argv[2] = argv[3];
365 argc--; 365 argc--;
366 } 366 }
367 367
368 if (argc != 2) 368 if (argc != 2)
369 return KDB_ARGCOUNT; 369 return KDB_ARGCOUNT;
370 370
371 /* 371 /*
372 * Check for internal variables 372 * Check for internal variables
373 */ 373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) { 374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags; 375 unsigned int debugflags;
376 char *cp; 376 char *cp;
377 377
378 debugflags = simple_strtoul(argv[2], &cp, 0); 378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n", 380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]); 381 argv[2]);
382 return 0; 382 return 0;
383 } 383 }
384 kdb_flags = (kdb_flags & 384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387 387
388 return 0; 388 return 0;
389 } 389 }
390 390
391 /* 391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable 392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value. 393 * name, argv[2] = value.
394 */ 394 */
395 varlen = strlen(argv[1]); 395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]); 396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2); 397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0) 398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL; 399 return KDB_ENVBUFFULL;
400 400
401 sprintf(ep, "%s=%s", argv[1], argv[2]); 401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402 402
403 ep[varlen+vallen+1] = '\0'; 403 ep[varlen+vallen+1] = '\0';
404 404
405 for (i = 0; i < __nenv; i++) { 405 for (i = 0; i < __nenv; i++) {
406 if (__env[i] 406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0) 407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0') 408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) { 409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep; 410 __env[i] = ep;
411 return 0; 411 return 0;
412 } 412 }
413 } 413 }
414 414
415 /* 415 /*
416 * Wasn't existing variable. Fit into slot. 416 * Wasn't existing variable. Fit into slot.
417 */ 417 */
418 for (i = 0; i < __nenv-1; i++) { 418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) { 419 if (__env[i] == (char *)0) {
420 __env[i] = ep; 420 __env[i] = ep;
421 return 0; 421 return 0;
422 } 422 }
423 } 423 }
424 424
425 return KDB_ENVFULL; 425 return KDB_ENVFULL;
426 } 426 }
427 427
428 static int kdb_check_regs(void) 428 static int kdb_check_regs(void)
429 { 429 {
430 if (!kdb_current_regs) { 430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers." 431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n"); 432 " You may need to select another task\n");
433 return KDB_BADREG; 433 return KDB_BADREG;
434 } 434 }
435 return 0; 435 return 0;
436 } 436 }
437 437
438 /* 438 /*
439 * kdbgetaddrarg - This function is responsible for parsing an 439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression, 440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller. 441 * symbol name, and offset to the caller.
442 * 442 *
443 * The argument may consist of a numeric value (decimal or 443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceeded by the 444 * hexidecimal), a symbol name, a register name (preceeded by the
445 * percent sign), an environment variable with a numeric value 445 * percent sign), an environment variable with a numeric value
446 * (preceeded by a dollar sign) or a simple arithmetic expression 446 * (preceeded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value 447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset). 448 * (offset).
449 * Parameters: 449 * Parameters:
450 * argc - count of arguments in argv 450 * argc - count of arguments in argv
451 * argv - argument vector 451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[] 452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry 453 * regs - Register state at time of KDB entry
454 * Outputs: 454 * Outputs:
455 * *value - receives the value of the address-expression 455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any 456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any 457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[] 458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns: 459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is 460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error. 461 * returned on error.
462 */ 462 */
463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset, 464 unsigned long *value, long *offset,
465 char **name) 465 char **name)
466 { 466 {
467 unsigned long addr; 467 unsigned long addr;
468 unsigned long off = 0; 468 unsigned long off = 0;
469 int positive; 469 int positive;
470 int diag; 470 int diag;
471 int found = 0; 471 int found = 0;
472 char *symname; 472 char *symname;
473 char symbol = '\0'; 473 char symbol = '\0';
474 char *cp; 474 char *cp;
475 kdb_symtab_t symtab; 475 kdb_symtab_t symtab;
476 476
477 /* 477 /*
478 * Process arguments which follow the following syntax: 478 * Process arguments which follow the following syntax:
479 * 479 *
480 * symbol | numeric-address [+/- numeric-offset] 480 * symbol | numeric-address [+/- numeric-offset]
481 * %register 481 * %register
482 * $environment-variable 482 * $environment-variable
483 */ 483 */
484 484
485 if (*nextarg > argc) 485 if (*nextarg > argc)
486 return KDB_ARGCOUNT; 486 return KDB_ARGCOUNT;
487 487
488 symname = (char *)argv[*nextarg]; 488 symname = (char *)argv[*nextarg];
489 489
490 /* 490 /*
491 * If there is no whitespace between the symbol 491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we 492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a 493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed 494 * null so the symbol/value can be properly parsed
495 */ 495 */
496 cp = strpbrk(symname, "+-"); 496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) { 497 if (cp != NULL) {
498 symbol = *cp; 498 symbol = *cp;
499 *cp++ = '\0'; 499 *cp++ = '\0';
500 } 500 }
501 501
502 if (symname[0] == '$') { 502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr); 503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag) 504 if (diag)
505 return diag; 505 return diag;
506 } else if (symname[0] == '%') { 506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs(); 507 diag = kdb_check_regs();
508 if (diag) 508 if (diag)
509 return diag; 509 return diag;
510 /* Implement register values with % at a later time as it is 510 /* Implement register values with % at a later time as it is
511 * arch optional. 511 * arch optional.
512 */ 512 */
513 return KDB_NOTIMP; 513 return KDB_NOTIMP;
514 } else { 514 } else {
515 found = kdbgetsymval(symname, &symtab); 515 found = kdbgetsymval(symname, &symtab);
516 if (found) { 516 if (found) {
517 addr = symtab.sym_start; 517 addr = symtab.sym_start;
518 } else { 518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr); 519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag) 520 if (diag)
521 return diag; 521 return diag;
522 } 522 }
523 } 523 }
524 524
525 if (!found) 525 if (!found)
526 found = kdbnearsym(addr, &symtab); 526 found = kdbnearsym(addr, &symtab);
527 527
528 (*nextarg)++; 528 (*nextarg)++;
529 529
530 if (name) 530 if (name)
531 *name = symname; 531 *name = symname;
532 if (value) 532 if (value)
533 *value = addr; 533 *value = addr;
534 if (offset && name && *name) 534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start; 535 *offset = addr - symtab.sym_start;
536 536
537 if ((*nextarg > argc) 537 if ((*nextarg > argc)
538 && (symbol == '\0')) 538 && (symbol == '\0'))
539 return 0; 539 return 0;
540 540
541 /* 541 /*
542 * check for +/- and offset 542 * check for +/- and offset
543 */ 543 */
544 544
545 if (symbol == '\0') { 545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+') 546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) { 547 && (argv[*nextarg][0] != '-')) {
548 /* 548 /*
549 * Not our argument. Return. 549 * Not our argument. Return.
550 */ 550 */
551 return 0; 551 return 0;
552 } else { 552 } else {
553 positive = (argv[*nextarg][0] == '+'); 553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++; 554 (*nextarg)++;
555 } 555 }
556 } else 556 } else
557 positive = (symbol == '+'); 557 positive = (symbol == '+');
558 558
559 /* 559 /*
560 * Now there must be an offset! 560 * Now there must be an offset!
561 */ 561 */
562 if ((*nextarg > argc) 562 if ((*nextarg > argc)
563 && (symbol == '\0')) { 563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT; 564 return KDB_INVADDRFMT;
565 } 565 }
566 566
567 if (!symbol) { 567 if (!symbol) {
568 cp = (char *)argv[*nextarg]; 568 cp = (char *)argv[*nextarg];
569 (*nextarg)++; 569 (*nextarg)++;
570 } 570 }
571 571
572 diag = kdbgetularg(cp, &off); 572 diag = kdbgetularg(cp, &off);
573 if (diag) 573 if (diag)
574 return diag; 574 return diag;
575 575
576 if (!positive) 576 if (!positive)
577 off = -off; 577 off = -off;
578 578
579 if (offset) 579 if (offset)
580 *offset += off; 580 *offset += off;
581 581
582 if (value) 582 if (value)
583 *value += off; 583 *value += off;
584 584
585 return 0; 585 return 0;
586 } 586 }
587 587
588 static void kdb_cmderror(int diag) 588 static void kdb_cmderror(int diag)
589 { 589 {
590 int i; 590 int i;
591 591
592 if (diag >= 0) { 592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag); 593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return; 594 return;
595 } 595 }
596 596
597 for (i = 0; i < __nkdb_err; i++) { 597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) { 598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return; 600 return;
601 } 601 }
602 } 602 }
603 603
604 kdb_printf("Unknown diag %d\n", -diag); 604 kdb_printf("Unknown diag %d\n", -diag);
605 } 605 }
606 606
607 /* 607 /*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands, 609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial 610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'. 612 * the following commands until 'endefcmd'.
613 * Inputs: 613 * Inputs:
614 * argc argument count 614 * argc argument count
615 * argv argument vector 615 * argv argument vector
616 * Returns: 616 * Returns:
617 * zero for success, a kdb diagnostic if error 617 * zero for success, a kdb diagnostic if error
618 */ 618 */
619 struct defcmd_set { 619 struct defcmd_set {
620 int count; 620 int count;
621 int usable; 621 int usable;
622 char *name; 622 char *name;
623 char *usage; 623 char *usage;
624 char *help; 624 char *help;
625 char **command; 625 char **command;
626 }; 626 };
627 static struct defcmd_set *defcmd_set; 627 static struct defcmd_set *defcmd_set;
628 static int defcmd_set_count; 628 static int defcmd_set_count;
629 static int defcmd_in_progress; 629 static int defcmd_in_progress;
630 630
631 /* Forward references */ 631 /* Forward references */
632 static int kdb_exec_defcmd(int argc, const char **argv); 632 static int kdb_exec_defcmd(int argc, const char **argv);
633 633
634 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 634 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635 { 635 {
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command; 637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) { 638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0; 639 defcmd_in_progress = 0;
640 if (!s->count) 640 if (!s->count)
641 s->usable = 0; 641 s->usable = 0;
642 if (s->usable) 642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd, 643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0); 644 s->usage, s->help, 0);
645 return 0; 645 return 0;
646 } 646 }
647 if (!s->usable) 647 if (!s->usable)
648 return KDB_NOTIMP; 648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) { 650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr); 652 cmdstr);
653 s->usable = 0; 653 s->usable = 0;
654 return KDB_NOTIMP; 654 return KDB_NOTIMP;
655 } 655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command); 658 kfree(save_command);
659 return 0; 659 return 0;
660 } 660 }
661 661
662 static int kdb_defcmd(int argc, const char **argv) 662 static int kdb_defcmd(int argc, const char **argv)
663 { 663 {
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) { 665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing " 666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n"); 667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd"); 668 kdb_defcmd2("endefcmd", "endefcmd");
669 } 669 }
670 if (argc == 0) { 670 if (argc == 0) {
671 int i; 671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help); 674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i) 675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]); 676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n"); 677 kdb_printf("endefcmd\n");
678 } 678 }
679 return 0; 679 return 0;
680 } 680 }
681 if (argc != 3) 681 if (argc != 3)
682 return KDB_ARGCOUNT; 682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB); 684 GFP_KDB);
685 if (!defcmd_set) { 685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n", 686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]); 687 argv[1]);
688 defcmd_set = save_defcmd_set; 688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP; 689 return KDB_NOTIMP;
690 } 690 }
691 memcpy(defcmd_set, save_defcmd_set, 691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set)); 692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set); 693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count; 694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s)); 695 memset(s, 0, sizeof(*s));
696 s->usable = 1; 696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB); 697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB); 698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB); 699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') { 700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1); 701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0'; 702 s->usage[strlen(s->usage)-1] = '\0';
703 } 703 }
704 if (s->help[0] == '"') { 704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1); 705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0'; 706 s->help[strlen(s->help)-1] = '\0';
707 } 707 }
708 ++defcmd_set_count; 708 ++defcmd_set_count;
709 defcmd_in_progress = 1; 709 defcmd_in_progress = 1;
710 return 0; 710 return 0;
711 } 711 }
712 712
713 /* 713 /*
714 * kdb_exec_defcmd - Execute the set of commands associated with this 714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name. 715 * defcmd name.
716 * Inputs: 716 * Inputs:
717 * argc argument count 717 * argc argument count
718 * argv argument vector 718 * argv argument vector
719 * Returns: 719 * Returns:
720 * zero for success, a kdb diagnostic if error 720 * zero for success, a kdb diagnostic if error
721 */ 721 */
722 static int kdb_exec_defcmd(int argc, const char **argv) 722 static int kdb_exec_defcmd(int argc, const char **argv)
723 { 723 {
724 int i, ret; 724 int i, ret;
725 struct defcmd_set *s; 725 struct defcmd_set *s;
726 if (argc != 0) 726 if (argc != 0)
727 return KDB_ARGCOUNT; 727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0) 729 if (strcmp(s->name, argv[0]) == 0)
730 break; 730 break;
731 } 731 }
732 if (i == defcmd_set_count) { 732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]); 734 argv[0]);
735 return KDB_NOTIMP; 735 return KDB_NOTIMP;
736 } 736 }
737 for (i = 0; i < s->count; ++i) { 737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after 738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */ 739 * this point */
740 argv = NULL; 740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]); 742 ret = kdb_parse(s->command[i]);
743 if (ret) 743 if (ret)
744 return ret; 744 return ret;
745 } 745 }
746 return 0; 746 return 0;
747 } 747 }
748 748
749 /* Command history */ 749 /* Command history */
750 #define KDB_CMD_HISTORY_COUNT 32 750 #define KDB_CMD_HISTORY_COUNT 32
751 #define CMD_BUFLEN 200 /* kdb_printf: max printline 751 #define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */ 752 * size == 256 */
753 static unsigned int cmd_head, cmd_tail; 753 static unsigned int cmd_head, cmd_tail;
754 static unsigned int cmdptr; 754 static unsigned int cmdptr;
755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756 static char cmd_cur[CMD_BUFLEN]; 756 static char cmd_cur[CMD_BUFLEN];
757 757
758 /* 758 /*
759 * The "str" argument may point to something like | grep xyz 759 * The "str" argument may point to something like | grep xyz
760 */ 760 */
761 static void parse_grep(const char *str) 761 static void parse_grep(const char *str)
762 { 762 {
763 int len; 763 int len;
764 char *cp = (char *)str, *cp2; 764 char *cp = (char *)str, *cp2;
765 765
766 /* sanity check: we should have been called with the \ first */ 766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|') 767 if (*cp != '|')
768 return; 768 return;
769 cp++; 769 cp++;
770 while (isspace(*cp)) 770 while (isspace(*cp))
771 cp++; 771 cp++;
772 if (strncmp(cp, "grep ", 5)) { 772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n"); 773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return; 774 return;
775 } 775 }
776 cp += 5; 776 cp += 5;
777 while (isspace(*cp)) 777 while (isspace(*cp))
778 cp++; 778 cp++;
779 cp2 = strchr(cp, '\n'); 779 cp2 = strchr(cp, '\n');
780 if (cp2) 780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */ 781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp); 782 len = strlen(cp);
783 if (len == 0) { 783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n"); 784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return; 785 return;
786 } 786 }
787 /* now cp points to a nonzero length search string */ 787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') { 788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must 789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */ 790 be two of them */
791 cp++; 791 cp++;
792 cp2 = strchr(cp, '"'); 792 cp2 = strchr(cp, '"');
793 if (!cp2) { 793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n"); 794 kdb_printf("invalid quoted string, see grephelp\n");
795 return; 795 return;
796 } 796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */ 797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 } 798 }
799 kdb_grep_leading = 0; 799 kdb_grep_leading = 0;
800 if (*cp == '^') { 800 if (*cp == '^') {
801 kdb_grep_leading = 1; 801 kdb_grep_leading = 1;
802 cp++; 802 cp++;
803 } 803 }
804 len = strlen(cp); 804 len = strlen(cp);
805 kdb_grep_trailing = 0; 805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') { 806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1; 807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0'; 808 *(cp+len-1) = '\0';
809 } 809 }
810 len = strlen(cp); 810 len = strlen(cp);
811 if (!len) 811 if (!len)
812 return; 812 return;
813 if (len >= GREP_LEN) { 813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n"); 814 kdb_printf("search string too long\n");
815 return; 815 return;
816 } 816 }
817 strcpy(kdb_grep_string, cp); 817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++; 818 kdb_grepping_flag++;
819 return; 819 return;
820 } 820 }
821 821
822 /* 822 /*
823 * kdb_parse - Parse the command line, search the command table for a 823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This 824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call 825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's 826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call 827 * responsibility to save their argv if they recursively call
828 * kdb_parse(). 828 * kdb_parse().
829 * Parameters: 829 * Parameters:
830 * cmdstr The input command line to be parsed. 830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered. 831 * regs The registers at the time kdb was entered.
832 * Returns: 832 * Returns:
833 * Zero for success, a kdb diagnostic if failure. 833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks: 834 * Remarks:
835 * Limited to 20 tokens. 835 * Limited to 20 tokens.
836 * 836 *
837 * Real rudimentary tokenization. Basically only whitespace 837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration 838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command). 839 * is taken of the '=' sign as used by the 'set' command).
840 * 840 *
841 * The algorithm used to tokenize the input string relies on 841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless) 842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following 843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the 844 * the token is altered in-place to a null-byte to terminate the
845 * token string. 845 * token string.
846 */ 846 */
847 847
848 #define MAXARGC 20 848 #define MAXARGC 20
849 849
850 int kdb_parse(const char *cmdstr) 850 int kdb_parse(const char *cmdstr)
851 { 851 {
852 static char *argv[MAXARGC]; 852 static char *argv[MAXARGC];
853 static int argc; 853 static int argc;
854 static char cbuf[CMD_BUFLEN+2]; 854 static char cbuf[CMD_BUFLEN+2];
855 char *cp; 855 char *cp;
856 char *cpp, quoted; 856 char *cpp, quoted;
857 kdbtab_t *tp; 857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep; 858 int i, escaped, ignore_errors = 0, check_grep;
859 859
860 /* 860 /*
861 * First tokenize the command string. 861 * First tokenize the command string.
862 */ 862 */
863 cp = (char *)cmdstr; 863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0; 864 kdb_grepping_flag = check_grep = 0;
865 865
866 if (KDB_FLAG(CMD_INTERRUPT)) { 866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not 867 /* Previous command was interrupted, newline must not
868 * repeat the command */ 868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT); 869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER); 870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */ 871 argc = 0; /* no repeat */
872 } 872 }
873 873
874 if (*cp != '\n' && *cp != '\0') { 874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0; 875 argc = 0;
876 cpp = cbuf; 876 cpp = cbuf;
877 while (*cp) { 877 while (*cp) {
878 /* skip whitespace */ 878 /* skip whitespace */
879 while (isspace(*cp)) 879 while (isspace(*cp))
880 cp++; 880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') || 881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress)) 882 (*cp == '#' && !defcmd_in_progress))
883 break; 883 break;
884 /* special case: check for | grep pattern */ 884 /* special case: check for | grep pattern */
885 if (*cp == '|') { 885 if (*cp == '|') {
886 check_grep++; 886 check_grep++;
887 break; 887 break;
888 } 888 }
889 if (cpp >= cbuf + CMD_BUFLEN) { 889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer " 890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n", 891 "overflow, command ignored\n%s\n",
892 cmdstr); 892 cmdstr);
893 return KDB_NOTFOUND; 893 return KDB_NOTFOUND;
894 } 894 }
895 if (argc >= MAXARGC - 1) { 895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, " 896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr); 897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND; 898 return KDB_NOTFOUND;
899 } 899 }
900 argv[argc++] = cpp; 900 argv[argc++] = cpp;
901 escaped = 0; 901 escaped = 0;
902 quoted = '\0'; 902 quoted = '\0';
903 /* Copy to next unquoted and unescaped 903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */ 904 * whitespace or '=' */
905 while (*cp && *cp != '\n' && 905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) { 906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN) 907 if (cpp >= cbuf + CMD_BUFLEN)
908 break; 908 break;
909 if (escaped) { 909 if (escaped) {
910 escaped = 0; 910 escaped = 0;
911 *cpp++ = *cp++; 911 *cpp++ = *cp++;
912 continue; 912 continue;
913 } 913 }
914 if (*cp == '\\') { 914 if (*cp == '\\') {
915 escaped = 1; 915 escaped = 1;
916 ++cp; 916 ++cp;
917 continue; 917 continue;
918 } 918 }
919 if (*cp == quoted) 919 if (*cp == quoted)
920 quoted = '\0'; 920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"') 921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp; 922 quoted = *cp;
923 *cpp = *cp++; 923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted) 924 if (*cpp == '=' && !quoted)
925 break; 925 break;
926 ++cpp; 926 ++cpp;
927 } 927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */ 928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 } 929 }
930 } 930 }
931 if (!argc) 931 if (!argc)
932 return 0; 932 return 0;
933 if (check_grep) 933 if (check_grep)
934 parse_grep(cp); 934 parse_grep(cp);
935 if (defcmd_in_progress) { 935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]); 936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) { 937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */ 938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0'; 939 *(argv[0]) = '\0';
940 } 940 }
941 return result; 941 return result;
942 } 942 }
943 if (argv[0][0] == '-' && argv[0][1] && 943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) { 944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1; 945 ignore_errors = 1;
946 ++argv[0]; 946 ++argv[0];
947 } 947 }
948 948
949 for_each_kdbcmd(tp, i) { 949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) { 950 if (tp->cmd_name) {
951 /* 951 /*
952 * If this command is allowed to be abbreviated, 952 * If this command is allowed to be abbreviated,
953 * check to see if this is it. 953 * check to see if this is it.
954 */ 954 */
955 955
956 if (tp->cmd_minlen 956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) { 957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0], 958 if (strncmp(argv[0],
959 tp->cmd_name, 959 tp->cmd_name,
960 tp->cmd_minlen) == 0) { 960 tp->cmd_minlen) == 0) {
961 break; 961 break;
962 } 962 }
963 } 963 }
964 964
965 if (strcmp(argv[0], tp->cmd_name) == 0) 965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break; 966 break;
967 } 967 }
968 } 968 }
969 969
970 /* 970 /*
971 * If we don't find a command by this name, see if the first 971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands. 972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md. 973 * e.g., md1c20 should match md.
974 */ 974 */
975 if (i == kdb_max_commands) { 975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) { 976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) { 977 if (tp->cmd_name) {
978 if (strncmp(argv[0], 978 if (strncmp(argv[0],
979 tp->cmd_name, 979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) { 980 strlen(tp->cmd_name)) == 0) {
981 break; 981 break;
982 } 982 }
983 } 983 }
984 } 984 }
985 } 985 }
986 986
987 if (i < kdb_max_commands) { 987 if (i < kdb_max_commands) {
988 int result; 988 int result;
989 KDB_STATE_SET(CMD); 989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv); 990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO) 991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0; 992 result = 0;
993 KDB_STATE_CLEAR(CMD); 993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) { 994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE: 995 case KDB_REPEAT_NONE:
996 argc = 0; 996 argc = 0;
997 if (argv[0]) 997 if (argv[0])
998 *(argv[0]) = '\0'; 998 *(argv[0]) = '\0';
999 break; 999 break;
1000 case KDB_REPEAT_NO_ARGS: 1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1; 1001 argc = 1;
1002 if (argv[1]) 1002 if (argv[1])
1003 *(argv[1]) = '\0'; 1003 *(argv[1]) = '\0';
1004 break; 1004 break;
1005 case KDB_REPEAT_WITH_ARGS: 1005 case KDB_REPEAT_WITH_ARGS:
1006 break; 1006 break;
1007 } 1007 }
1008 return result; 1008 return result;
1009 } 1009 }
1010 1010
1011 /* 1011 /*
1012 * If the input with which we were presented does not 1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an 1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for 1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol 1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register. 1016 * to an address contained in a register.
1017 */ 1017 */
1018 { 1018 {
1019 unsigned long value; 1019 unsigned long value;
1020 char *name = NULL; 1020 char *name = NULL;
1021 long offset; 1021 long offset;
1022 int nextarg = 0; 1022 int nextarg = 0;
1023 1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) { 1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND; 1026 return KDB_NOTFOUND;
1027 } 1027 }
1028 1028
1029 kdb_printf("%s = ", argv[0]); 1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n"); 1031 kdb_printf("\n");
1032 return 0; 1032 return 0;
1033 } 1033 }
1034 } 1034 }
1035 1035
1036 1036
1037 static int handle_ctrl_cmd(char *cmd) 1037 static int handle_ctrl_cmd(char *cmd)
1038 { 1038 {
1039 #define CTRL_P 16 1039 #define CTRL_P 16
1040 #define CTRL_N 14 1040 #define CTRL_N 14
1041 1041
1042 /* initial situation */ 1042 /* initial situation */
1043 if (cmd_head == cmd_tail) 1043 if (cmd_head == cmd_tail)
1044 return 0; 1044 return 0;
1045 switch (*cmd) { 1045 switch (*cmd) {
1046 case CTRL_P: 1046 case CTRL_P:
1047 if (cmdptr != cmd_tail) 1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1; 1050 return 1;
1051 case CTRL_N: 1051 case CTRL_N:
1052 if (cmdptr != cmd_head) 1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1; 1055 return 1;
1056 } 1056 }
1057 return 0; 1057 return 0;
1058 } 1058 }
1059 1059
1060 /* 1060 /*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot 1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure. 1062 * the system immediately, or loop for ever on failure.
1063 */ 1063 */
1064 static int kdb_reboot(int argc, const char **argv) 1064 static int kdb_reboot(int argc, const char **argv)
1065 { 1065 {
1066 emergency_restart(); 1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1) 1068 while (1)
1069 cpu_relax(); 1069 cpu_relax();
1070 /* NOTREACHED */ 1070 /* NOTREACHED */
1071 return 0; 1071 return 0;
1072 } 1072 }
1073 1073
1074 static void kdb_dumpregs(struct pt_regs *regs) 1074 static void kdb_dumpregs(struct pt_regs *regs)
1075 { 1075 {
1076 int old_lvl = console_loglevel; 1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15; 1077 console_loglevel = 15;
1078 kdb_trap_printk++; 1078 kdb_trap_printk++;
1079 show_regs(regs); 1079 show_regs(regs);
1080 kdb_trap_printk--; 1080 kdb_trap_printk--;
1081 kdb_printf("\n"); 1081 kdb_printf("\n");
1082 console_loglevel = old_lvl; 1082 console_loglevel = old_lvl;
1083 } 1083 }
1084 1084
1085 void kdb_set_current_task(struct task_struct *p) 1085 void kdb_set_current_task(struct task_struct *p)
1086 { 1086 {
1087 kdb_current_task = p; 1087 kdb_current_task = p;
1088 1088
1089 if (kdb_task_has_cpu(p)) { 1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return; 1091 return;
1092 } 1092 }
1093 kdb_current_regs = NULL; 1093 kdb_current_regs = NULL;
1094 } 1094 }
1095 1095
1096 /* 1096 /*
1097 * kdb_local - The main code for kdb. This routine is invoked on a 1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine 1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine. 1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first 1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason 1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu. 1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs: 1103 * Inputs:
1104 * reason The reason KDB was invoked 1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code 1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint. 1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point. 1107 * db_result Result code from the break or debug point.
1108 * Returns: 1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible 1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked. 1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'. 1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu. 1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step. 1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch. 1114 * KDB_CMD_SSB Single step until branch.
1115 */ 1115 */
1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result) 1117 kdb_dbtrap_t db_result)
1118 { 1118 {
1119 char *cmdbuf; 1119 char *cmdbuf;
1120 int diag; 1120 int diag;
1121 struct task_struct *kdb_current = 1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id()); 1122 kdb_curr_task(raw_smp_processor_id());
1123 1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason); 1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0; 1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) { 1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */ 1127 /* special case below */
1128 } else { 1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0); 1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131 #if defined(CONFIG_SMP) 1131 #if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id()); 1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133 #endif 1133 #endif
1134 } 1134 }
1135 1135
1136 switch (reason) { 1136 switch (reason) {
1137 case KDB_REASON_DEBUG: 1137 case KDB_REASON_DEBUG:
1138 { 1138 {
1139 /* 1139 /*
1140 * If re-entering kdb after a single step 1140 * If re-entering kdb after a single step
1141 * command, don't print the message. 1141 * command, don't print the message.
1142 */ 1142 */
1143 switch (db_result) { 1143 switch (db_result) {
1144 case KDB_DB_BPT: 1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid); 1146 kdb_current, kdb_current->pid);
1147 #if defined(CONFIG_SMP) 1147 #if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id()); 1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149 #endif 1149 #endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs)); 1151 instruction_pointer(regs));
1152 break; 1152 break;
1153 case KDB_DB_SSB: 1153 case KDB_DB_SSB:
1154 /* 1154 /*
1155 * In the midst of ssb command. Just return. 1155 * In the midst of ssb command. Just return.
1156 */ 1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason); 1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */ 1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159 1159
1160 break; 1160 break;
1161 case KDB_DB_SS: 1161 case KDB_DB_SS:
1162 break; 1162 break;
1163 case KDB_DB_SSBPT: 1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason); 1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */ 1165 return 1; /* kdba_db_trap did the work */
1166 default: 1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result); 1168 db_result);
1169 break; 1169 break;
1170 } 1170 }
1171 1171
1172 } 1172 }
1173 break; 1173 break;
1174 case KDB_REASON_ENTER: 1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD)) 1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n"); 1176 kdb_printf("due to Keyboard Entry\n");
1177 else 1177 else
1178 kdb_printf("due to KDB_ENTER()\n"); 1178 kdb_printf("due to KDB_ENTER()\n");
1179 break; 1179 break;
1180 case KDB_REASON_KEYBOARD: 1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD); 1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n"); 1182 kdb_printf("due to Keyboard Entry\n");
1183 break; 1183 break;
1184 case KDB_REASON_ENTER_SLAVE: 1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */ 1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH: 1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n"); 1187 kdb_printf("due to cpu switch\n");
1188 break; 1188 break;
1189 case KDB_REASON_OOPS: 1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg); 1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs)); 1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs); 1193 kdb_dumpregs(regs);
1194 break; 1194 break;
1195 case KDB_REASON_NMI: 1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ " 1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n", 1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs)); 1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs); 1199 kdb_dumpregs(regs);
1200 break; 1200 break;
1201 case KDB_REASON_SSTEP: 1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK: 1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ? 1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /* 1206 /*
1207 * Determine if this breakpoint is one that we 1207 * Determine if this breakpoint is one that we
1208 * are interested in. 1208 * are interested in.
1209 */ 1209 */
1210 if (db_result != KDB_DB_BPT) { 1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result); 1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason); 1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */ 1214 return 0; /* Not for us, dismiss it */
1215 } 1215 }
1216 break; 1216 break;
1217 case KDB_REASON_RECURSE: 1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs)); 1219 instruction_pointer(regs));
1220 break; 1220 break;
1221 default: 1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason); 1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */ 1224 return 0; /* Not for us, dismiss it */
1225 } 1225 }
1226 1226
1227 while (1) { 1227 while (1) {
1228 /* 1228 /*
1229 * Initialize pager context. 1229 * Initialize pager context.
1230 */ 1230 */
1231 kdb_nextline = 1; 1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS); 1232 KDB_STATE_CLEAR(SUPPRESS);
1233 1233
1234 cmdbuf = cmd_cur; 1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0'; 1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0'; 1236 *(cmd_hist[cmd_head]) = '\0';
1237 1237
1238 if (KDB_FLAG(ONLY_DO_DUMP)) { 1238 if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 /* kdb is off but a catastrophic error requires a dump. 1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot. 1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log 1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump. 1242 * buffer in the dump.
1243 */ 1243 */
1244 const char *setargs[] = { "set", "LOGGING", "1" }; 1244 const char *setargs[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs); 1245 kdb_set(2, setargs);
1246 kdb_reboot(0, NULL); 1246 kdb_reboot(0, NULL);
1247 /*NOTREACHED*/ 1247 /*NOTREACHED*/
1248 } 1248 }
1249 1249
1250 do_full_getstr: 1250 do_full_getstr:
1251 #if defined(CONFIG_SMP) 1251 #if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id()); 1253 raw_smp_processor_id());
1254 #else 1254 #else
1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256 #endif 1256 #endif
1257 if (defcmd_in_progress) 1257 if (defcmd_in_progress)
1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259 1259
1260 /* 1260 /*
1261 * Fetch command from keyboard 1261 * Fetch command from keyboard
1262 */ 1262 */
1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 if (*cmdbuf != '\n') { 1264 if (*cmdbuf != '\n') {
1265 if (*cmdbuf < 32) { 1265 if (*cmdbuf < 32) {
1266 if (cmdptr == cmd_head) { 1266 if (cmdptr == cmd_head) {
1267 strncpy(cmd_hist[cmd_head], cmd_cur, 1267 strncpy(cmd_hist[cmd_head], cmd_cur,
1268 CMD_BUFLEN); 1268 CMD_BUFLEN);
1269 *(cmd_hist[cmd_head] + 1269 *(cmd_hist[cmd_head] +
1270 strlen(cmd_hist[cmd_head])-1) = '\0'; 1270 strlen(cmd_hist[cmd_head])-1) = '\0';
1271 } 1271 }
1272 if (!handle_ctrl_cmd(cmdbuf)) 1272 if (!handle_ctrl_cmd(cmdbuf))
1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 cmdbuf = cmd_cur; 1274 cmdbuf = cmd_cur;
1275 goto do_full_getstr; 1275 goto do_full_getstr;
1276 } else { 1276 } else {
1277 strncpy(cmd_hist[cmd_head], cmd_cur, 1277 strncpy(cmd_hist[cmd_head], cmd_cur,
1278 CMD_BUFLEN); 1278 CMD_BUFLEN);
1279 } 1279 }
1280 1280
1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 if (cmd_head == cmd_tail) 1282 if (cmd_head == cmd_tail)
1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 } 1284 }
1285 1285
1286 cmdptr = cmd_head; 1286 cmdptr = cmd_head;
1287 diag = kdb_parse(cmdbuf); 1287 diag = kdb_parse(cmdbuf);
1288 if (diag == KDB_NOTFOUND) { 1288 if (diag == KDB_NOTFOUND) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 diag = 0; 1290 diag = 0;
1291 } 1291 }
1292 if (diag == KDB_CMD_GO 1292 if (diag == KDB_CMD_GO
1293 || diag == KDB_CMD_CPU 1293 || diag == KDB_CMD_CPU
1294 || diag == KDB_CMD_SS 1294 || diag == KDB_CMD_SS
1295 || diag == KDB_CMD_SSB 1295 || diag == KDB_CMD_SSB
1296 || diag == KDB_CMD_KGDB) 1296 || diag == KDB_CMD_KGDB)
1297 break; 1297 break;
1298 1298
1299 if (diag) 1299 if (diag)
1300 kdb_cmderror(diag); 1300 kdb_cmderror(diag);
1301 } 1301 }
1302 KDB_DEBUG_STATE("kdb_local 9", diag); 1302 KDB_DEBUG_STATE("kdb_local 9", diag);
1303 return diag; 1303 return diag;
1304 } 1304 }
1305 1305
1306 1306
1307 /* 1307 /*
1308 * kdb_print_state - Print the state data for the current processor 1308 * kdb_print_state - Print the state data for the current processor
1309 * for debugging. 1309 * for debugging.
1310 * Inputs: 1310 * Inputs:
1311 * text Identifies the debug point 1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code. 1312 * value Any integer value to be printed, e.g. reason code.
1313 */ 1313 */
1314 void kdb_print_state(const char *text, int value) 1314 void kdb_print_state(const char *text, int value)
1315 { 1315 {
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1317 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 kdb_state); 1318 kdb_state);
1319 } 1319 }
1320 1320
1321 /* 1321 /*
1322 * kdb_main_loop - After initial setup and assignment of the 1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in 1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin 1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch. 1325 * until 'go' or cpu switch.
1326 * 1326 *
1327 * To get a consistent view of the kernel stacks for all 1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via 1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is 1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all 1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked 1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned. 1332 * process and a running process as far as kdb is concerned.
1333 * Inputs: 1333 * Inputs:
1334 * reason The reason KDB was invoked 1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code 1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code. 1336 * reason2 kdb's current reason code.
1337 * Initially error but can change 1337 * Initially error but can change
1338 * acording to kdb state. 1338 * acording to kdb state.
1339 * db_result Result code from break or debug point. 1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint. 1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid. 1341 * should always be valid.
1342 * Returns: 1342 * Returns:
1343 * 0 KDB was invoked for an event which it wasn't responsible 1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked. 1344 * 1 KDB handled the event for which it was invoked.
1345 */ 1345 */
1346 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1346 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 kdb_dbtrap_t db_result, struct pt_regs *regs) 1347 kdb_dbtrap_t db_result, struct pt_regs *regs)
1348 { 1348 {
1349 int result = 1; 1349 int result = 1;
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 while (1) { 1351 while (1) {
1352 /* 1352 /*
1353 * All processors except the one that is in control 1353 * All processors except the one that is in control
1354 * will spin here. 1354 * will spin here.
1355 */ 1355 */
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 while (KDB_STATE(HOLD_CPU)) { 1357 while (KDB_STATE(HOLD_CPU)) {
1358 /* state KDB is turned off by kdb_cpu to see if the 1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop 1359 * other cpus are still live, each cpu in this loop
1360 * turns it back on. 1360 * turns it back on.
1361 */ 1361 */
1362 if (!KDB_STATE(KDB)) 1362 if (!KDB_STATE(KDB))
1363 KDB_STATE_SET(KDB); 1363 KDB_STATE_SET(KDB);
1364 } 1364 }
1365 1365
1366 KDB_STATE_CLEAR(SUPPRESS); 1366 KDB_STATE_CLEAR(SUPPRESS);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 if (KDB_STATE(LEAVING)) 1368 if (KDB_STATE(LEAVING))
1369 break; /* Another cpu said 'go' */ 1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */ 1370 /* Still using kdb, this processor is in control */
1371 result = kdb_local(reason2, error, regs, db_result); 1371 result = kdb_local(reason2, error, regs, db_result);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1372 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373 1373
1374 if (result == KDB_CMD_CPU) 1374 if (result == KDB_CMD_CPU)
1375 break; 1375 break;
1376 1376
1377 if (result == KDB_CMD_SS) { 1377 if (result == KDB_CMD_SS) {
1378 KDB_STATE_SET(DOING_SS); 1378 KDB_STATE_SET(DOING_SS);
1379 break; 1379 break;
1380 } 1380 }
1381 1381
1382 if (result == KDB_CMD_SSB) { 1382 if (result == KDB_CMD_SSB) {
1383 KDB_STATE_SET(DOING_SS); 1383 KDB_STATE_SET(DOING_SS);
1384 KDB_STATE_SET(DOING_SSB); 1384 KDB_STATE_SET(DOING_SSB);
1385 break; 1385 break;
1386 } 1386 }
1387 1387
1388 if (result == KDB_CMD_KGDB) { 1388 if (result == KDB_CMD_KGDB) {
1389 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2))) 1389 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1390 kdb_printf("Entering please attach debugger " 1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n"); 1391 "or use $D#44+ or $3#33\n");
1392 break; 1392 break;
1393 } 1393 }
1394 if (result && result != 1 && result != KDB_CMD_GO) 1394 if (result && result != 1 && result != KDB_CMD_GO)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n", 1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 result); 1396 result);
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 break; 1398 break;
1399 } 1399 }
1400 if (KDB_STATE(DOING_SS)) 1400 if (KDB_STATE(DOING_SS))
1401 KDB_STATE_CLEAR(SSBPT); 1401 KDB_STATE_CLEAR(SSBPT);
1402 1402
1403 return result; 1403 return result;
1404 } 1404 }
1405 1405
1406 /* 1406 /*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory 1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command. 1408 * read command.
1409 * mdr <addr arg>,<byte count> 1409 * mdr <addr arg>,<byte count>
1410 * Inputs: 1410 * Inputs:
1411 * addr Start address 1411 * addr Start address
1412 * count Number of bytes 1412 * count Number of bytes
1413 * Returns: 1413 * Returns:
1414 * Always 0. Any errors are detected and printed by kdb_getarea. 1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1415 */ 1415 */
1416 static int kdb_mdr(unsigned long addr, unsigned int count) 1416 static int kdb_mdr(unsigned long addr, unsigned int count)
1417 { 1417 {
1418 unsigned char c; 1418 unsigned char c;
1419 while (count--) { 1419 while (count--) {
1420 if (kdb_getarea(c, addr)) 1420 if (kdb_getarea(c, addr))
1421 return 0; 1421 return 0;
1422 kdb_printf("%02x", c); 1422 kdb_printf("%02x", c);
1423 addr++; 1423 addr++;
1424 } 1424 }
1425 kdb_printf("\n"); 1425 kdb_printf("\n");
1426 return 0; 1426 return 0;
1427 } 1427 }
1428 1428
1429 /* 1429 /*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands. 1431 * 'md8' 'mdr' and 'mds' commands.
1432 * 1432 *
1433 * md|mds [<addr arg> [<line count> [<radix>]]] 1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]] 1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count. 1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time. 1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count> 1437 * mdr <addr arg>,<byte count>
1438 */ 1438 */
1439 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1439 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 int symbolic, int nosect, int bytesperword, 1440 int symbolic, int nosect, int bytesperword,
1441 int num, int repeat, int phys) 1441 int num, int repeat, int phys)
1442 { 1442 {
1443 /* print just one line of data */ 1443 /* print just one line of data */
1444 kdb_symtab_t symtab; 1444 kdb_symtab_t symtab;
1445 char cbuf[32]; 1445 char cbuf[32];
1446 char *c = cbuf; 1446 char *c = cbuf;
1447 int i; 1447 int i;
1448 unsigned long word; 1448 unsigned long word;
1449 1449
1450 memset(cbuf, '\0', sizeof(cbuf)); 1450 memset(cbuf, '\0', sizeof(cbuf));
1451 if (phys) 1451 if (phys)
1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 else 1453 else
1454 kdb_printf(kdb_machreg_fmt0 " ", addr); 1454 kdb_printf(kdb_machreg_fmt0 " ", addr);
1455 1455
1456 for (i = 0; i < num && repeat--; i++) { 1456 for (i = 0; i < num && repeat--; i++) {
1457 if (phys) { 1457 if (phys) {
1458 if (kdb_getphysword(&word, addr, bytesperword)) 1458 if (kdb_getphysword(&word, addr, bytesperword))
1459 break; 1459 break;
1460 } else if (kdb_getword(&word, addr, bytesperword)) 1460 } else if (kdb_getword(&word, addr, bytesperword))
1461 break; 1461 break;
1462 kdb_printf(fmtstr, word); 1462 kdb_printf(fmtstr, word);
1463 if (symbolic) 1463 if (symbolic)
1464 kdbnearsym(word, &symtab); 1464 kdbnearsym(word, &symtab);
1465 else 1465 else
1466 memset(&symtab, 0, sizeof(symtab)); 1466 memset(&symtab, 0, sizeof(symtab));
1467 if (symtab.sym_name) { 1467 if (symtab.sym_name) {
1468 kdb_symbol_print(word, &symtab, 0); 1468 kdb_symbol_print(word, &symtab, 0);
1469 if (!nosect) { 1469 if (!nosect) {
1470 kdb_printf("\n"); 1470 kdb_printf("\n");
1471 kdb_printf(" %s %s " 1471 kdb_printf(" %s %s "
1472 kdb_machreg_fmt " " 1472 kdb_machreg_fmt " "
1473 kdb_machreg_fmt " " 1473 kdb_machreg_fmt " "
1474 kdb_machreg_fmt, symtab.mod_name, 1474 kdb_machreg_fmt, symtab.mod_name,
1475 symtab.sec_name, symtab.sec_start, 1475 symtab.sec_name, symtab.sec_start,
1476 symtab.sym_start, symtab.sym_end); 1476 symtab.sym_start, symtab.sym_end);
1477 } 1477 }
1478 addr += bytesperword; 1478 addr += bytesperword;
1479 } else { 1479 } else {
1480 union { 1480 union {
1481 u64 word; 1481 u64 word;
1482 unsigned char c[8]; 1482 unsigned char c[8];
1483 } wc; 1483 } wc;
1484 unsigned char *cp; 1484 unsigned char *cp;
1485 #ifdef __BIG_ENDIAN 1485 #ifdef __BIG_ENDIAN
1486 cp = wc.c + 8 - bytesperword; 1486 cp = wc.c + 8 - bytesperword;
1487 #else 1487 #else
1488 cp = wc.c; 1488 cp = wc.c;
1489 #endif 1489 #endif
1490 wc.word = word; 1490 wc.word = word;
1491 #define printable_char(c) \ 1491 #define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword) { 1493 switch (bytesperword) {
1494 case 8: 1494 case 8:
1495 *c++ = printable_char(*cp++); 1495 *c++ = printable_char(*cp++);
1496 *c++ = printable_char(*cp++); 1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++); 1497 *c++ = printable_char(*cp++);
1498 *c++ = printable_char(*cp++); 1498 *c++ = printable_char(*cp++);
1499 addr += 4; 1499 addr += 4;
1500 case 4: 1500 case 4:
1501 *c++ = printable_char(*cp++); 1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++); 1502 *c++ = printable_char(*cp++);
1503 addr += 2; 1503 addr += 2;
1504 case 2: 1504 case 2:
1505 *c++ = printable_char(*cp++); 1505 *c++ = printable_char(*cp++);
1506 addr++; 1506 addr++;
1507 case 1: 1507 case 1:
1508 *c++ = printable_char(*cp++); 1508 *c++ = printable_char(*cp++);
1509 addr++; 1509 addr++;
1510 break; 1510 break;
1511 } 1511 }
1512 #undef printable_char 1512 #undef printable_char
1513 } 1513 }
1514 } 1514 }
1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 " ", cbuf); 1516 " ", cbuf);
1517 } 1517 }
1518 1518
1519 static int kdb_md(int argc, const char **argv) 1519 static int kdb_md(int argc, const char **argv)
1520 { 1520 {
1521 static unsigned long last_addr; 1521 static unsigned long last_addr;
1522 static int last_radix, last_bytesperword, last_repeat; 1522 static int last_radix, last_bytesperword, last_repeat;
1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 int nosect = 0; 1524 int nosect = 0;
1525 char fmtchar, fmtstr[64]; 1525 char fmtchar, fmtstr[64];
1526 unsigned long addr; 1526 unsigned long addr;
1527 unsigned long word; 1527 unsigned long word;
1528 long offset = 0; 1528 long offset = 0;
1529 int symbolic = 0; 1529 int symbolic = 0;
1530 int valid = 0; 1530 int valid = 0;
1531 int phys = 0; 1531 int phys = 0;
1532 1532
1533 kdbgetintenv("MDCOUNT", &mdcount); 1533 kdbgetintenv("MDCOUNT", &mdcount);
1534 kdbgetintenv("RADIX", &radix); 1534 kdbgetintenv("RADIX", &radix);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword); 1535 kdbgetintenv("BYTESPERWORD", &bytesperword);
1536 1536
1537 /* Assume 'md <addr>' and start with environment values */ 1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat = mdcount * 16 / bytesperword; 1538 repeat = mdcount * 16 / bytesperword;
1539 1539
1540 if (strcmp(argv[0], "mdr") == 0) { 1540 if (strcmp(argv[0], "mdr") == 0) {
1541 if (argc != 2) 1541 if (argc != 2)
1542 return KDB_ARGCOUNT; 1542 return KDB_ARGCOUNT;
1543 valid = 1; 1543 valid = 1;
1544 } else if (isdigit(argv[0][2])) { 1544 } else if (isdigit(argv[0][2])) {
1545 bytesperword = (int)(argv[0][2] - '0'); 1545 bytesperword = (int)(argv[0][2] - '0');
1546 if (bytesperword == 0) { 1546 if (bytesperword == 0) {
1547 bytesperword = last_bytesperword; 1547 bytesperword = last_bytesperword;
1548 if (bytesperword == 0) 1548 if (bytesperword == 0)
1549 bytesperword = 4; 1549 bytesperword = 4;
1550 } 1550 }
1551 last_bytesperword = bytesperword; 1551 last_bytesperword = bytesperword;
1552 repeat = mdcount * 16 / bytesperword; 1552 repeat = mdcount * 16 / bytesperword;
1553 if (!argv[0][3]) 1553 if (!argv[0][3])
1554 valid = 1; 1554 valid = 1;
1555 else if (argv[0][3] == 'c' && argv[0][4]) { 1555 else if (argv[0][3] == 'c' && argv[0][4]) {
1556 char *p; 1556 char *p;
1557 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1557 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 mdcount = ((repeat * bytesperword) + 15) / 16; 1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 valid = !*p; 1559 valid = !*p;
1560 } 1560 }
1561 last_repeat = repeat; 1561 last_repeat = repeat;
1562 } else if (strcmp(argv[0], "md") == 0) 1562 } else if (strcmp(argv[0], "md") == 0)
1563 valid = 1; 1563 valid = 1;
1564 else if (strcmp(argv[0], "mds") == 0) 1564 else if (strcmp(argv[0], "mds") == 0)
1565 valid = 1; 1565 valid = 1;
1566 else if (strcmp(argv[0], "mdp") == 0) { 1566 else if (strcmp(argv[0], "mdp") == 0) {
1567 phys = valid = 1; 1567 phys = valid = 1;
1568 } 1568 }
1569 if (!valid) 1569 if (!valid)
1570 return KDB_NOTFOUND; 1570 return KDB_NOTFOUND;
1571 1571
1572 if (argc == 0) { 1572 if (argc == 0) {
1573 if (last_addr == 0) 1573 if (last_addr == 0)
1574 return KDB_ARGCOUNT; 1574 return KDB_ARGCOUNT;
1575 addr = last_addr; 1575 addr = last_addr;
1576 radix = last_radix; 1576 radix = last_radix;
1577 bytesperword = last_bytesperword; 1577 bytesperword = last_bytesperword;
1578 repeat = last_repeat; 1578 repeat = last_repeat;
1579 mdcount = ((repeat * bytesperword) + 15) / 16; 1579 mdcount = ((repeat * bytesperword) + 15) / 16;
1580 } 1580 }
1581 1581
1582 if (argc) { 1582 if (argc) {
1583 unsigned long val; 1583 unsigned long val;
1584 int diag, nextarg = 1; 1584 int diag, nextarg = 1;
1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 &offset, NULL); 1586 &offset, NULL);
1587 if (diag) 1587 if (diag)
1588 return diag; 1588 return diag;
1589 if (argc > nextarg+2) 1589 if (argc > nextarg+2)
1590 return KDB_ARGCOUNT; 1590 return KDB_ARGCOUNT;
1591 1591
1592 if (argc >= nextarg) { 1592 if (argc >= nextarg) {
1593 diag = kdbgetularg(argv[nextarg], &val); 1593 diag = kdbgetularg(argv[nextarg], &val);
1594 if (!diag) { 1594 if (!diag) {
1595 mdcount = (int) val; 1595 mdcount = (int) val;
1596 repeat = mdcount * 16 / bytesperword; 1596 repeat = mdcount * 16 / bytesperword;
1597 } 1597 }
1598 } 1598 }
1599 if (argc >= nextarg+1) { 1599 if (argc >= nextarg+1) {
1600 diag = kdbgetularg(argv[nextarg+1], &val); 1600 diag = kdbgetularg(argv[nextarg+1], &val);
1601 if (!diag) 1601 if (!diag)
1602 radix = (int) val; 1602 radix = (int) val;
1603 } 1603 }
1604 } 1604 }
1605 1605
1606 if (strcmp(argv[0], "mdr") == 0) 1606 if (strcmp(argv[0], "mdr") == 0)
1607 return kdb_mdr(addr, mdcount); 1607 return kdb_mdr(addr, mdcount);
1608 1608
1609 switch (radix) { 1609 switch (radix) {
1610 case 10: 1610 case 10:
1611 fmtchar = 'd'; 1611 fmtchar = 'd';
1612 break; 1612 break;
1613 case 16: 1613 case 16:
1614 fmtchar = 'x'; 1614 fmtchar = 'x';
1615 break; 1615 break;
1616 case 8: 1616 case 8:
1617 fmtchar = 'o'; 1617 fmtchar = 'o';
1618 break; 1618 break;
1619 default: 1619 default:
1620 return KDB_BADRADIX; 1620 return KDB_BADRADIX;
1621 } 1621 }
1622 1622
1623 last_radix = radix; 1623 last_radix = radix;
1624 1624
1625 if (bytesperword > KDB_WORD_SIZE) 1625 if (bytesperword > KDB_WORD_SIZE)
1626 return KDB_BADWIDTH; 1626 return KDB_BADWIDTH;
1627 1627
1628 switch (bytesperword) { 1628 switch (bytesperword) {
1629 case 8: 1629 case 8:
1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 break; 1631 break;
1632 case 4: 1632 case 4:
1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 break; 1634 break;
1635 case 2: 1635 case 2:
1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 break; 1637 break;
1638 case 1: 1638 case 1:
1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 break; 1640 break;
1641 default: 1641 default:
1642 return KDB_BADWIDTH; 1642 return KDB_BADWIDTH;
1643 } 1643 }
1644 1644
1645 last_repeat = repeat; 1645 last_repeat = repeat;
1646 last_bytesperword = bytesperword; 1646 last_bytesperword = bytesperword;
1647 1647
1648 if (strcmp(argv[0], "mds") == 0) { 1648 if (strcmp(argv[0], "mds") == 0) {
1649 symbolic = 1; 1649 symbolic = 1;
1650 /* Do not save these changes as last_*, they are temporary mds 1650 /* Do not save these changes as last_*, they are temporary mds
1651 * overrides. 1651 * overrides.
1652 */ 1652 */
1653 bytesperword = KDB_WORD_SIZE; 1653 bytesperword = KDB_WORD_SIZE;
1654 repeat = mdcount; 1654 repeat = mdcount;
1655 kdbgetintenv("NOSECT", &nosect); 1655 kdbgetintenv("NOSECT", &nosect);
1656 } 1656 }
1657 1657
1658 /* Round address down modulo BYTESPERWORD */ 1658 /* Round address down modulo BYTESPERWORD */
1659 1659
1660 addr &= ~(bytesperword-1); 1660 addr &= ~(bytesperword-1);
1661 1661
1662 while (repeat > 0) { 1662 while (repeat > 0) {
1663 unsigned long a; 1663 unsigned long a;
1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665 1665
1666 if (KDB_FLAG(CMD_INTERRUPT)) 1666 if (KDB_FLAG(CMD_INTERRUPT))
1667 return 0; 1667 return 0;
1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 if (phys) { 1669 if (phys) {
1670 if (kdb_getphysword(&word, a, bytesperword) 1670 if (kdb_getphysword(&word, a, bytesperword)
1671 || word) 1671 || word)
1672 break; 1672 break;
1673 } else if (kdb_getword(&word, a, bytesperword) || word) 1673 } else if (kdb_getword(&word, a, bytesperword) || word)
1674 break; 1674 break;
1675 } 1675 }
1676 n = min(num, repeat); 1676 n = min(num, repeat);
1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 num, repeat, phys); 1678 num, repeat, phys);
1679 addr += bytesperword * n; 1679 addr += bytesperword * n;
1680 repeat -= n; 1680 repeat -= n;
1681 z = (z + num - 1) / num; 1681 z = (z + num - 1) / num;
1682 if (z > 2) { 1682 if (z > 2) {
1683 int s = num * (z-2); 1683 int s = num * (z-2);
1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 " zero suppressed\n", 1685 " zero suppressed\n",
1686 addr, addr + bytesperword * s - 1); 1686 addr, addr + bytesperword * s - 1);
1687 addr += bytesperword * s; 1687 addr += bytesperword * s;
1688 repeat -= s; 1688 repeat -= s;
1689 } 1689 }
1690 } 1690 }
1691 last_addr = addr; 1691 last_addr = addr;
1692 1692
1693 return 0; 1693 return 0;
1694 } 1694 }
1695 1695
1696 /* 1696 /*
1697 * kdb_mm - This function implements the 'mm' command. 1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value 1698 * mm address-expression new-value
1699 * Remarks: 1699 * Remarks:
1700 * mm works on machine words, mmW works on bytes. 1700 * mm works on machine words, mmW works on bytes.
1701 */ 1701 */
1702 static int kdb_mm(int argc, const char **argv) 1702 static int kdb_mm(int argc, const char **argv)
1703 { 1703 {
1704 int diag; 1704 int diag;
1705 unsigned long addr; 1705 unsigned long addr;
1706 long offset = 0; 1706 long offset = 0;
1707 unsigned long contents; 1707 unsigned long contents;
1708 int nextarg; 1708 int nextarg;
1709 int width; 1709 int width;
1710 1710
1711 if (argv[0][2] && !isdigit(argv[0][2])) 1711 if (argv[0][2] && !isdigit(argv[0][2]))
1712 return KDB_NOTFOUND; 1712 return KDB_NOTFOUND;
1713 1713
1714 if (argc < 2) 1714 if (argc < 2)
1715 return KDB_ARGCOUNT; 1715 return KDB_ARGCOUNT;
1716 1716
1717 nextarg = 1; 1717 nextarg = 1;
1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 if (diag) 1719 if (diag)
1720 return diag; 1720 return diag;
1721 1721
1722 if (nextarg > argc) 1722 if (nextarg > argc)
1723 return KDB_ARGCOUNT; 1723 return KDB_ARGCOUNT;
1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 if (diag) 1725 if (diag)
1726 return diag; 1726 return diag;
1727 1727
1728 if (nextarg != argc + 1) 1728 if (nextarg != argc + 1)
1729 return KDB_ARGCOUNT; 1729 return KDB_ARGCOUNT;
1730 1730
1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 diag = kdb_putword(addr, contents, width); 1732 diag = kdb_putword(addr, contents, width);
1733 if (diag) 1733 if (diag)
1734 return diag; 1734 return diag;
1735 1735
1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737 1737
1738 return 0; 1738 return 0;
1739 } 1739 }
1740 1740
1741 /* 1741 /*
1742 * kdb_go - This function implements the 'go' command. 1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression] 1743 * go [address-expression]
1744 */ 1744 */
1745 static int kdb_go(int argc, const char **argv) 1745 static int kdb_go(int argc, const char **argv)
1746 { 1746 {
1747 unsigned long addr; 1747 unsigned long addr;
1748 int diag; 1748 int diag;
1749 int nextarg; 1749 int nextarg;
1750 long offset; 1750 long offset;
1751 1751
1752 if (raw_smp_processor_id() != kdb_initial_cpu) { 1752 if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 kdb_printf("go must execute on the entry cpu, " 1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n", 1754 "please use \"cpu %d\" and then execute go\n",
1755 kdb_initial_cpu); 1755 kdb_initial_cpu);
1756 return KDB_BADCPUNUM; 1756 return KDB_BADCPUNUM;
1757 } 1757 }
1758 if (argc == 1) { 1758 if (argc == 1) {
1759 nextarg = 1; 1759 nextarg = 1;
1760 diag = kdbgetaddrarg(argc, argv, &nextarg, 1760 diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 &addr, &offset, NULL); 1761 &addr, &offset, NULL);
1762 if (diag) 1762 if (diag)
1763 return diag; 1763 return diag;
1764 } else if (argc) { 1764 } else if (argc) {
1765 return KDB_ARGCOUNT; 1765 return KDB_ARGCOUNT;
1766 } 1766 }
1767 1767
1768 diag = KDB_CMD_GO; 1768 diag = KDB_CMD_GO;
1769 if (KDB_FLAG(CATASTROPHIC)) { 1769 if (KDB_FLAG(CATASTROPHIC)) {
1770 kdb_printf("Catastrophic error detected\n"); 1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ", 1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic); 1772 kdb_continue_catastrophic);
1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 kdb_printf("type go a second time if you really want " 1774 kdb_printf("type go a second time if you really want "
1775 "to continue\n"); 1775 "to continue\n");
1776 return 0; 1776 return 0;
1777 } 1777 }
1778 if (kdb_continue_catastrophic == 2) { 1778 if (kdb_continue_catastrophic == 2) {
1779 kdb_printf("forcing reboot\n"); 1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL); 1780 kdb_reboot(0, NULL);
1781 } 1781 }
1782 kdb_printf("attempting to continue\n"); 1782 kdb_printf("attempting to continue\n");
1783 } 1783 }
1784 return diag; 1784 return diag;
1785 } 1785 }
1786 1786
1787 /* 1787 /*
1788 * kdb_rd - This function implements the 'rd' command. 1788 * kdb_rd - This function implements the 'rd' command.
1789 */ 1789 */
1790 static int kdb_rd(int argc, const char **argv) 1790 static int kdb_rd(int argc, const char **argv)
1791 { 1791 {
1792 int len = kdb_check_regs(); 1792 int len = kdb_check_regs();
1793 #if DBG_MAX_REG_NUM > 0 1793 #if DBG_MAX_REG_NUM > 0
1794 int i; 1794 int i;
1795 char *rname; 1795 char *rname;
1796 int rsize; 1796 int rsize;
1797 u64 reg64; 1797 u64 reg64;
1798 u32 reg32; 1798 u32 reg32;
1799 u16 reg16; 1799 u16 reg16;
1800 u8 reg8; 1800 u8 reg8;
1801 1801
1802 if (len) 1802 if (len)
1803 return len; 1803 return len;
1804 1804
1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 rsize = dbg_reg_def[i].size * 2; 1806 rsize = dbg_reg_def[i].size * 2;
1807 if (rsize > 16) 1807 if (rsize > 16)
1808 rsize = 2; 1808 rsize = 2;
1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 len = 0; 1810 len = 0;
1811 kdb_printf("\n"); 1811 kdb_printf("\n");
1812 } 1812 }
1813 if (len) 1813 if (len)
1814 len += kdb_printf(" "); 1814 len += kdb_printf(" ");
1815 switch(dbg_reg_def[i].size * 8) { 1815 switch(dbg_reg_def[i].size * 8) {
1816 case 8: 1816 case 8:
1817 rname = dbg_get_reg(i, &reg8, kdb_current_regs); 1817 rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818 if (!rname) 1818 if (!rname)
1819 break; 1819 break;
1820 len += kdb_printf("%s: %02x", rname, reg8); 1820 len += kdb_printf("%s: %02x", rname, reg8);
1821 break; 1821 break;
1822 case 16: 1822 case 16:
1823 rname = dbg_get_reg(i, &reg16, kdb_current_regs); 1823 rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824 if (!rname) 1824 if (!rname)
1825 break; 1825 break;
1826 len += kdb_printf("%s: %04x", rname, reg16); 1826 len += kdb_printf("%s: %04x", rname, reg16);
1827 break; 1827 break;
1828 case 32: 1828 case 32:
1829 rname = dbg_get_reg(i, &reg32, kdb_current_regs); 1829 rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830 if (!rname) 1830 if (!rname)
1831 break; 1831 break;
1832 len += kdb_printf("%s: %08x", rname, reg32); 1832 len += kdb_printf("%s: %08x", rname, reg32);
1833 break; 1833 break;
1834 case 64: 1834 case 64:
1835 rname = dbg_get_reg(i, &reg64, kdb_current_regs); 1835 rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836 if (!rname) 1836 if (!rname)
1837 break; 1837 break;
1838 len += kdb_printf("%s: %016llx", rname, reg64); 1838 len += kdb_printf("%s: %016llx", rname, reg64);
1839 break; 1839 break;
1840 default: 1840 default:
1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 } 1842 }
1843 } 1843 }
1844 kdb_printf("\n"); 1844 kdb_printf("\n");
1845 #else 1845 #else
1846 if (len) 1846 if (len)
1847 return len; 1847 return len;
1848 1848
1849 kdb_dumpregs(kdb_current_regs); 1849 kdb_dumpregs(kdb_current_regs);
1850 #endif 1850 #endif
1851 return 0; 1851 return 0;
1852 } 1852 }
1853 1853
1854 /* 1854 /*
1855 * kdb_rm - This function implements the 'rm' (register modify) command. 1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents 1856 * rm register-name new-contents
1857 * Remarks: 1857 * Remarks:
1858 * Allows register modification with the same restrictions as gdb 1858 * Allows register modification with the same restrictions as gdb
1859 */ 1859 */
1860 static int kdb_rm(int argc, const char **argv) 1860 static int kdb_rm(int argc, const char **argv)
1861 { 1861 {
1862 #if DBG_MAX_REG_NUM > 0 1862 #if DBG_MAX_REG_NUM > 0
1863 int diag; 1863 int diag;
1864 const char *rname; 1864 const char *rname;
1865 int i; 1865 int i;
1866 u64 reg64; 1866 u64 reg64;
1867 u32 reg32; 1867 u32 reg32;
1868 u16 reg16; 1868 u16 reg16;
1869 u8 reg8; 1869 u8 reg8;
1870 1870
1871 if (argc != 2) 1871 if (argc != 2)
1872 return KDB_ARGCOUNT; 1872 return KDB_ARGCOUNT;
1873 /* 1873 /*
1874 * Allow presence or absence of leading '%' symbol. 1874 * Allow presence or absence of leading '%' symbol.
1875 */ 1875 */
1876 rname = argv[1]; 1876 rname = argv[1];
1877 if (*rname == '%') 1877 if (*rname == '%')
1878 rname++; 1878 rname++;
1879 1879
1880 diag = kdbgetu64arg(argv[2], &reg64); 1880 diag = kdbgetu64arg(argv[2], &reg64);
1881 if (diag) 1881 if (diag)
1882 return diag; 1882 return diag;
1883 1883
1884 diag = kdb_check_regs(); 1884 diag = kdb_check_regs();
1885 if (diag) 1885 if (diag)
1886 return diag; 1886 return diag;
1887 1887
1888 diag = KDB_BADREG; 1888 diag = KDB_BADREG;
1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 diag = 0; 1891 diag = 0;
1892 break; 1892 break;
1893 } 1893 }
1894 } 1894 }
1895 if (!diag) { 1895 if (!diag) {
1896 switch(dbg_reg_def[i].size * 8) { 1896 switch(dbg_reg_def[i].size * 8) {
1897 case 8: 1897 case 8:
1898 reg8 = reg64; 1898 reg8 = reg64;
1899 dbg_set_reg(i, &reg8, kdb_current_regs); 1899 dbg_set_reg(i, &reg8, kdb_current_regs);
1900 break; 1900 break;
1901 case 16: 1901 case 16:
1902 reg16 = reg64; 1902 reg16 = reg64;
1903 dbg_set_reg(i, &reg16, kdb_current_regs); 1903 dbg_set_reg(i, &reg16, kdb_current_regs);
1904 break; 1904 break;
1905 case 32: 1905 case 32:
1906 reg32 = reg64; 1906 reg32 = reg64;
1907 dbg_set_reg(i, &reg32, kdb_current_regs); 1907 dbg_set_reg(i, &reg32, kdb_current_regs);
1908 break; 1908 break;
1909 case 64: 1909 case 64:
1910 dbg_set_reg(i, &reg64, kdb_current_regs); 1910 dbg_set_reg(i, &reg64, kdb_current_regs);
1911 break; 1911 break;
1912 } 1912 }
1913 } 1913 }
1914 return diag; 1914 return diag;
1915 #else 1915 #else
1916 kdb_printf("ERROR: Register set currently not implemented\n"); 1916 kdb_printf("ERROR: Register set currently not implemented\n");
1917 return 0; 1917 return 0;
1918 #endif 1918 #endif
1919 } 1919 }
1920 1920
1921 #if defined(CONFIG_MAGIC_SYSRQ) 1921 #if defined(CONFIG_MAGIC_SYSRQ)
1922 /* 1922 /*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code> 1925 * sr <magic-sysrq-code>
1926 */ 1926 */
1927 static int kdb_sr(int argc, const char **argv) 1927 static int kdb_sr(int argc, const char **argv)
1928 { 1928 {
1929 if (argc != 1) 1929 if (argc != 1)
1930 return KDB_ARGCOUNT; 1930 return KDB_ARGCOUNT;
1931 kdb_trap_printk++; 1931 kdb_trap_printk++;
1932 __handle_sysrq(*argv[1], false); 1932 __handle_sysrq(*argv[1], false);
1933 kdb_trap_printk--; 1933 kdb_trap_printk--;
1934 1934
1935 return 0; 1935 return 0;
1936 } 1936 }
1937 #endif /* CONFIG_MAGIC_SYSRQ */ 1937 #endif /* CONFIG_MAGIC_SYSRQ */
1938 1938
1939 /* 1939 /*
1940 * kdb_ef - This function implements the 'regs' (display exception 1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to 1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints 1942 * find an exception frame at that address, formats and prints
1943 * it. 1943 * it.
1944 * regs address-expression 1944 * regs address-expression
1945 * Remarks: 1945 * Remarks:
1946 * Not done yet. 1946 * Not done yet.
1947 */ 1947 */
1948 static int kdb_ef(int argc, const char **argv) 1948 static int kdb_ef(int argc, const char **argv)
1949 { 1949 {
1950 int diag; 1950 int diag;
1951 unsigned long addr; 1951 unsigned long addr;
1952 long offset; 1952 long offset;
1953 int nextarg; 1953 int nextarg;
1954 1954
1955 if (argc != 1) 1955 if (argc != 1)
1956 return KDB_ARGCOUNT; 1956 return KDB_ARGCOUNT;
1957 1957
1958 nextarg = 1; 1958 nextarg = 1;
1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 if (diag) 1960 if (diag)
1961 return diag; 1961 return diag;
1962 show_regs((struct pt_regs *)addr); 1962 show_regs((struct pt_regs *)addr);
1963 return 0; 1963 return 0;
1964 } 1964 }
1965 1965
1966 #if defined(CONFIG_MODULES) 1966 #if defined(CONFIG_MODULES)
1967 /* 1967 /*
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists 1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules. 1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod. 1970 * Mostly taken from userland lsmod.
1971 */ 1971 */
1972 static int kdb_lsmod(int argc, const char **argv) 1972 static int kdb_lsmod(int argc, const char **argv)
1973 { 1973 {
1974 struct module *mod; 1974 struct module *mod;
1975 1975
1976 if (argc != 0) 1976 if (argc != 0)
1977 return KDB_ARGCOUNT; 1977 return KDB_ARGCOUNT;
1978 1978
1979 kdb_printf("Module Size modstruct Used by\n"); 1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod, kdb_modules, list) { 1980 list_for_each_entry(mod, kdb_modules, list) {
1981 1981
1982 kdb_printf("%-20s%8u 0x%p ", mod->name, 1982 kdb_printf("%-20s%8u 0x%p ", mod->name,
1983 mod->core_size, (void *)mod); 1983 mod->core_size, (void *)mod);
1984 #ifdef CONFIG_MODULE_UNLOAD 1984 #ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod)); 1985 kdb_printf("%4d ", module_refcount(mod));
1986 #endif 1986 #endif
1987 if (mod->state == MODULE_STATE_GOING) 1987 if (mod->state == MODULE_STATE_GOING)
1988 kdb_printf(" (Unloading)"); 1988 kdb_printf(" (Unloading)");
1989 else if (mod->state == MODULE_STATE_COMING) 1989 else if (mod->state == MODULE_STATE_COMING)
1990 kdb_printf(" (Loading)"); 1990 kdb_printf(" (Loading)");
1991 else 1991 else
1992 kdb_printf(" (Live)"); 1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod->module_core); 1993 kdb_printf(" 0x%p", mod->module_core);
1994 1994
1995 #ifdef CONFIG_MODULE_UNLOAD 1995 #ifdef CONFIG_MODULE_UNLOAD
1996 { 1996 {
1997 struct module_use *use; 1997 struct module_use *use;
1998 kdb_printf(" [ "); 1998 kdb_printf(" [ ");
1999 list_for_each_entry(use, &mod->source_list, 1999 list_for_each_entry(use, &mod->source_list,
2000 source_list) 2000 source_list)
2001 kdb_printf("%s ", use->target->name); 2001 kdb_printf("%s ", use->target->name);
2002 kdb_printf("]\n"); 2002 kdb_printf("]\n");
2003 } 2003 }
2004 #endif 2004 #endif
2005 } 2005 }
2006 2006
2007 return 0; 2007 return 0;
2008 } 2008 }
2009 2009
2010 #endif /* CONFIG_MODULES */ 2010 #endif /* CONFIG_MODULES */
2011 2011
2012 /* 2012 /*
2013 * kdb_env - This function implements the 'env' command. Display the 2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables. 2014 * current environment variables.
2015 */ 2015 */
2016 2016
2017 static int kdb_env(int argc, const char **argv) 2017 static int kdb_env(int argc, const char **argv)
2018 { 2018 {
2019 int i; 2019 int i;
2020 2020
2021 for (i = 0; i < __nenv; i++) { 2021 for (i = 0; i < __nenv; i++) {
2022 if (__env[i]) 2022 if (__env[i])
2023 kdb_printf("%s\n", __env[i]); 2023 kdb_printf("%s\n", __env[i]);
2024 } 2024 }
2025 2025
2026 if (KDB_DEBUG(MASK)) 2026 if (KDB_DEBUG(MASK))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028 2028
2029 return 0; 2029 return 0;
2030 } 2030 }
2031 2031
2032 #ifdef CONFIG_PRINTK 2032 #ifdef CONFIG_PRINTK
2033 /* 2033 /*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display 2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer. 2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust] 2036 * dmesg [lines] [adjust]
2037 */ 2037 */
2038 static int kdb_dmesg(int argc, const char **argv) 2038 static int kdb_dmesg(int argc, const char **argv)
2039 { 2039 {
2040 char *syslog_data[4], *start, *end, c = '\0', *p; 2040 char *syslog_data[4], *start, *end, c = '\0', *p;
2041 int diag, logging, logsize, lines = 0, adjust = 0, n; 2041 int diag, logging, logsize, lines = 0, adjust = 0, n;
2042 2042
2043 if (argc > 2) 2043 if (argc > 2)
2044 return KDB_ARGCOUNT; 2044 return KDB_ARGCOUNT;
2045 if (argc) { 2045 if (argc) {
2046 char *cp; 2046 char *cp;
2047 lines = simple_strtol(argv[1], &cp, 0); 2047 lines = simple_strtol(argv[1], &cp, 0);
2048 if (*cp) 2048 if (*cp)
2049 lines = 0; 2049 lines = 0;
2050 if (argc > 1) { 2050 if (argc > 1) {
2051 adjust = simple_strtoul(argv[2], &cp, 0); 2051 adjust = simple_strtoul(argv[2], &cp, 0);
2052 if (*cp || adjust < 0) 2052 if (*cp || adjust < 0)
2053 adjust = 0; 2053 adjust = 0;
2054 } 2054 }
2055 } 2055 }
2056 2056
2057 /* disable LOGGING if set */ 2057 /* disable LOGGING if set */
2058 diag = kdbgetintenv("LOGGING", &logging); 2058 diag = kdbgetintenv("LOGGING", &logging);
2059 if (!diag && logging) { 2059 if (!diag && logging) {
2060 const char *setargs[] = { "set", "LOGGING", "0" }; 2060 const char *setargs[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs); 2061 kdb_set(2, setargs);
2062 } 2062 }
2063 2063
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3] 2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */ 2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data); 2066 kdb_syslog_data(syslog_data);
2067 if (syslog_data[2] == syslog_data[3]) 2067 if (syslog_data[2] == syslog_data[3])
2068 return 0; 2068 return 0;
2069 logsize = syslog_data[1] - syslog_data[0]; 2069 logsize = syslog_data[1] - syslog_data[0];
2070 start = syslog_data[2]; 2070 start = syslog_data[2];
2071 end = syslog_data[3]; 2071 end = syslog_data[3];
2072 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0]) 2072 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n = 0, p = start; p < end; ++p) { 2073 for (n = 0, p = start; p < end; ++p) {
2074 c = *KDB_WRAP(p); 2074 c = *KDB_WRAP(p);
2075 if (c == '\n') 2075 if (c == '\n')
2076 ++n; 2076 ++n;
2077 } 2077 }
2078 if (c != '\n') 2078 if (c != '\n')
2079 ++n; 2079 ++n;
2080 if (lines < 0) { 2080 if (lines < 0) {
2081 if (adjust >= n) 2081 if (adjust >= n)
2082 kdb_printf("buffer only contains %d lines, nothing " 2082 kdb_printf("buffer only contains %d lines, nothing "
2083 "printed\n", n); 2083 "printed\n", n);
2084 else if (adjust - lines >= n) 2084 else if (adjust - lines >= n)
2085 kdb_printf("buffer only contains %d lines, last %d " 2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n, n - adjust); 2086 "lines printed\n", n, n - adjust);
2087 if (adjust) { 2087 if (adjust) {
2088 for (; start < end && adjust; ++start) { 2088 for (; start < end && adjust; ++start) {
2089 if (*KDB_WRAP(start) == '\n') 2089 if (*KDB_WRAP(start) == '\n')
2090 --adjust; 2090 --adjust;
2091 } 2091 }
2092 if (start < end) 2092 if (start < end)
2093 ++start; 2093 ++start;
2094 } 2094 }
2095 for (p = start; p < end && lines; ++p) { 2095 for (p = start; p < end && lines; ++p) {
2096 if (*KDB_WRAP(p) == '\n') 2096 if (*KDB_WRAP(p) == '\n')
2097 ++lines; 2097 ++lines;
2098 } 2098 }
2099 end = p; 2099 end = p;
2100 } else if (lines > 0) { 2100 } else if (lines > 0) {
2101 int skip = n - (adjust + lines); 2101 int skip = n - (adjust + lines);
2102 if (adjust >= n) { 2102 if (adjust >= n) {
2103 kdb_printf("buffer only contains %d lines, " 2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n); 2104 "nothing printed\n", n);
2105 skip = n; 2105 skip = n;
2106 } else if (skip < 0) { 2106 } else if (skip < 0) {
2107 lines += skip; 2107 lines += skip;
2108 skip = 0; 2108 skip = 0;
2109 kdb_printf("buffer only contains %d lines, first " 2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n, lines); 2110 "%d lines printed\n", n, lines);
2111 } 2111 }
2112 for (; start < end && skip; ++start) { 2112 for (; start < end && skip; ++start) {
2113 if (*KDB_WRAP(start) == '\n') 2113 if (*KDB_WRAP(start) == '\n')
2114 --skip; 2114 --skip;
2115 } 2115 }
2116 for (p = start; p < end && lines; ++p) { 2116 for (p = start; p < end && lines; ++p) {
2117 if (*KDB_WRAP(p) == '\n') 2117 if (*KDB_WRAP(p) == '\n')
2118 --lines; 2118 --lines;
2119 } 2119 }
2120 end = p; 2120 end = p;
2121 } 2121 }
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */ 2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 c = '\n'; 2123 c = '\n';
2124 while (start != end) { 2124 while (start != end) {
2125 char buf[201]; 2125 char buf[201];
2126 p = buf; 2126 p = buf;
2127 if (KDB_FLAG(CMD_INTERRUPT)) 2127 if (KDB_FLAG(CMD_INTERRUPT))
2128 return 0; 2128 return 0;
2129 while (start < end && (c = *KDB_WRAP(start)) && 2129 while (start < end && (c = *KDB_WRAP(start)) &&
2130 (p - buf) < sizeof(buf)-1) { 2130 (p - buf) < sizeof(buf)-1) {
2131 ++start; 2131 ++start;
2132 *p++ = c; 2132 *p++ = c;
2133 if (c == '\n') 2133 if (c == '\n')
2134 break; 2134 break;
2135 } 2135 }
2136 *p = '\0'; 2136 *p = '\0';
2137 kdb_printf("%s", buf); 2137 kdb_printf("%s", buf);
2138 } 2138 }
2139 if (c != '\n') 2139 if (c != '\n')
2140 kdb_printf("\n"); 2140 kdb_printf("\n");
2141 2141
2142 return 0; 2142 return 0;
2143 } 2143 }
2144 #endif /* CONFIG_PRINTK */ 2144 #endif /* CONFIG_PRINTK */
2145 /* 2145 /*
2146 * kdb_cpu - This function implements the 'cpu' command. 2146 * kdb_cpu - This function implements the 'cpu' command.
2147 * cpu [<cpunum>] 2147 * cpu [<cpunum>]
2148 * Returns: 2148 * Returns:
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error 2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */ 2150 */
2151 static void kdb_cpu_status(void) 2151 static void kdb_cpu_status(void)
2152 { 2152 {
2153 int i, start_cpu, first_print = 1; 2153 int i, start_cpu, first_print = 1;
2154 char state, prev_state = '?'; 2154 char state, prev_state = '?';
2155 2155
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: "); 2157 kdb_printf("Available cpus: ");
2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 if (!cpu_online(i)) { 2159 if (!cpu_online(i)) {
2160 state = 'F'; /* cpu is offline */ 2160 state = 'F'; /* cpu is offline */
2161 } else { 2161 } else {
2162 state = ' '; /* cpu is responding to kdb */ 2162 state = ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 state = 'I'; /* idle task */ 2164 state = 'I'; /* idle task */
2165 } 2165 }
2166 if (state != prev_state) { 2166 if (state != prev_state) {
2167 if (prev_state != '?') { 2167 if (prev_state != '?') {
2168 if (!first_print) 2168 if (!first_print)
2169 kdb_printf(", "); 2169 kdb_printf(", ");
2170 first_print = 0; 2170 first_print = 0;
2171 kdb_printf("%d", start_cpu); 2171 kdb_printf("%d", start_cpu);
2172 if (start_cpu < i-1) 2172 if (start_cpu < i-1)
2173 kdb_printf("-%d", i-1); 2173 kdb_printf("-%d", i-1);
2174 if (prev_state != ' ') 2174 if (prev_state != ' ')
2175 kdb_printf("(%c)", prev_state); 2175 kdb_printf("(%c)", prev_state);
2176 } 2176 }
2177 prev_state = state; 2177 prev_state = state;
2178 start_cpu = i; 2178 start_cpu = i;
2179 } 2179 }
2180 } 2180 }
2181 /* print the trailing cpus, ignoring them if they are all offline */ 2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state != 'F') { 2182 if (prev_state != 'F') {
2183 if (!first_print) 2183 if (!first_print)
2184 kdb_printf(", "); 2184 kdb_printf(", ");
2185 kdb_printf("%d", start_cpu); 2185 kdb_printf("%d", start_cpu);
2186 if (start_cpu < i-1) 2186 if (start_cpu < i-1)
2187 kdb_printf("-%d", i-1); 2187 kdb_printf("-%d", i-1);
2188 if (prev_state != ' ') 2188 if (prev_state != ' ')
2189 kdb_printf("(%c)", prev_state); 2189 kdb_printf("(%c)", prev_state);
2190 } 2190 }
2191 kdb_printf("\n"); 2191 kdb_printf("\n");
2192 } 2192 }
2193 2193
2194 static int kdb_cpu(int argc, const char **argv) 2194 static int kdb_cpu(int argc, const char **argv)
2195 { 2195 {
2196 unsigned long cpunum; 2196 unsigned long cpunum;
2197 int diag; 2197 int diag;
2198 2198
2199 if (argc == 0) { 2199 if (argc == 0) {
2200 kdb_cpu_status(); 2200 kdb_cpu_status();
2201 return 0; 2201 return 0;
2202 } 2202 }
2203 2203
2204 if (argc != 1) 2204 if (argc != 1)
2205 return KDB_ARGCOUNT; 2205 return KDB_ARGCOUNT;
2206 2206
2207 diag = kdbgetularg(argv[1], &cpunum); 2207 diag = kdbgetularg(argv[1], &cpunum);
2208 if (diag) 2208 if (diag)
2209 return diag; 2209 return diag;
2210 2210
2211 /* 2211 /*
2212 * Validate cpunum 2212 * Validate cpunum
2213 */ 2213 */
2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) 2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 return KDB_BADCPUNUM; 2215 return KDB_BADCPUNUM;
2216 2216
2217 dbg_switch_cpu = cpunum; 2217 dbg_switch_cpu = cpunum;
2218 2218
2219 /* 2219 /*
2220 * Switch to other cpu 2220 * Switch to other cpu
2221 */ 2221 */
2222 return KDB_CMD_CPU; 2222 return KDB_CMD_CPU;
2223 } 2223 }
2224 2224
2225 /* The user may not realize that ps/bta with no parameters does not print idle 2225 /* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed. 2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */ 2227 */
2228 void kdb_ps_suppressed(void) 2228 void kdb_ps_suppressed(void)
2229 { 2229 {
2230 int idle = 0, daemon = 0; 2230 int idle = 0, daemon = 0;
2231 unsigned long mask_I = kdb_task_state_string("I"), 2231 unsigned long mask_I = kdb_task_state_string("I"),
2232 mask_M = kdb_task_state_string("M"); 2232 mask_M = kdb_task_state_string("M");
2233 unsigned long cpu; 2233 unsigned long cpu;
2234 const struct task_struct *p, *g; 2234 const struct task_struct *p, *g;
2235 for_each_online_cpu(cpu) { 2235 for_each_online_cpu(cpu) {
2236 p = kdb_curr_task(cpu); 2236 p = kdb_curr_task(cpu);
2237 if (kdb_task_state(p, mask_I)) 2237 if (kdb_task_state(p, mask_I))
2238 ++idle; 2238 ++idle;
2239 } 2239 }
2240 kdb_do_each_thread(g, p) { 2240 kdb_do_each_thread(g, p) {
2241 if (kdb_task_state(p, mask_M)) 2241 if (kdb_task_state(p, mask_M))
2242 ++daemon; 2242 ++daemon;
2243 } kdb_while_each_thread(g, p); 2243 } kdb_while_each_thread(g, p);
2244 if (idle || daemon) { 2244 if (idle || daemon) {
2245 if (idle) 2245 if (idle)
2246 kdb_printf("%d idle process%s (state I)%s\n", 2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle, idle == 1 ? "" : "es", 2247 idle, idle == 1 ? "" : "es",
2248 daemon ? " and " : ""); 2248 daemon ? " and " : "");
2249 if (daemon) 2249 if (daemon)
2250 kdb_printf("%d sleeping system daemon (state M) " 2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon, 2251 "process%s", daemon,
2252 daemon == 1 ? "" : "es"); 2252 daemon == 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 } 2254 }
2255 } 2255 }
2256 2256
2257 /* 2257 /*
2258 * kdb_ps - This function implements the 'ps' command which shows a 2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes. 2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2261 */ 2261 */
2262 void kdb_ps1(const struct task_struct *p) 2262 void kdb_ps1(const struct task_struct *p)
2263 { 2263 {
2264 int cpu; 2264 int cpu;
2265 unsigned long tmp; 2265 unsigned long tmp;
2266 2266
2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 return; 2268 return;
2269 2269
2270 cpu = kdb_process_cpu(p); 2270 cpu = kdb_process_cpu(p);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p, p->pid, p->parent->pid, 2272 (void *)p, p->pid, p->parent->pid,
2273 kdb_task_has_cpu(p), kdb_process_cpu(p), 2273 kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 kdb_task_state_char(p), 2274 kdb_task_state_char(p),
2275 (void *)(&p->thread), 2275 (void *)(&p->thread),
2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 p->comm); 2277 p->comm);
2278 if (kdb_task_has_cpu(p)) { 2278 if (kdb_task_has_cpu(p)) {
2279 if (!KDB_TSK(cpu)) { 2279 if (!KDB_TSK(cpu)) {
2280 kdb_printf(" Error: no saved data for this cpu\n"); 2280 kdb_printf(" Error: no saved data for this cpu\n");
2281 } else { 2281 } else {
2282 if (KDB_TSK(cpu) != p) 2282 if (KDB_TSK(cpu) != p)
2283 kdb_printf(" Error: does not match running " 2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu)); 2284 "process table (0x%p)\n", KDB_TSK(cpu));
2285 } 2285 }
2286 } 2286 }
2287 } 2287 }
2288 2288
2289 static int kdb_ps(int argc, const char **argv) 2289 static int kdb_ps(int argc, const char **argv)
2290 { 2290 {
2291 struct task_struct *g, *p; 2291 struct task_struct *g, *p;
2292 unsigned long mask, cpu; 2292 unsigned long mask, cpu;
2293 2293
2294 if (argc == 0) 2294 if (argc == 0)
2295 kdb_ps_suppressed(); 2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr", 2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread"); 2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2299 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 /* Run the active tasks first */ 2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu) { 2301 for_each_online_cpu(cpu) {
2302 if (KDB_FLAG(CMD_INTERRUPT)) 2302 if (KDB_FLAG(CMD_INTERRUPT))
2303 return 0; 2303 return 0;
2304 p = kdb_curr_task(cpu); 2304 p = kdb_curr_task(cpu);
2305 if (kdb_task_state(p, mask)) 2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p); 2306 kdb_ps1(p);
2307 } 2307 }
2308 kdb_printf("\n"); 2308 kdb_printf("\n");
2309 /* Now the real tasks */ 2309 /* Now the real tasks */
2310 kdb_do_each_thread(g, p) { 2310 kdb_do_each_thread(g, p) {
2311 if (KDB_FLAG(CMD_INTERRUPT)) 2311 if (KDB_FLAG(CMD_INTERRUPT))
2312 return 0; 2312 return 0;
2313 if (kdb_task_state(p, mask)) 2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p); 2314 kdb_ps1(p);
2315 } kdb_while_each_thread(g, p); 2315 } kdb_while_each_thread(g, p);
2316 2316
2317 return 0; 2317 return 0;
2318 } 2318 }
2319 2319
2320 /* 2320 /*
2321 * kdb_pid - This function implements the 'pid' command which switches 2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process. 2322 * the currently active process.
2323 * pid [<pid> | R] 2323 * pid [<pid> | R]
2324 */ 2324 */
2325 static int kdb_pid(int argc, const char **argv) 2325 static int kdb_pid(int argc, const char **argv)
2326 { 2326 {
2327 struct task_struct *p; 2327 struct task_struct *p;
2328 unsigned long val; 2328 unsigned long val;
2329 int diag; 2329 int diag;
2330 2330
2331 if (argc > 1) 2331 if (argc > 1)
2332 return KDB_ARGCOUNT; 2332 return KDB_ARGCOUNT;
2333 2333
2334 if (argc) { 2334 if (argc) {
2335 if (strcmp(argv[1], "R") == 0) { 2335 if (strcmp(argv[1], "R") == 0) {
2336 p = KDB_TSK(kdb_initial_cpu); 2336 p = KDB_TSK(kdb_initial_cpu);
2337 } else { 2337 } else {
2338 diag = kdbgetularg(argv[1], &val); 2338 diag = kdbgetularg(argv[1], &val);
2339 if (diag) 2339 if (diag)
2340 return KDB_BADINT; 2340 return KDB_BADINT;
2341 2341
2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2343 if (!p) { 2343 if (!p) {
2344 kdb_printf("No task with pid=%d\n", (pid_t)val); 2344 kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 return 0; 2345 return 0;
2346 } 2346 }
2347 } 2347 }
2348 kdb_set_current_task(p); 2348 kdb_set_current_task(p);
2349 } 2349 }
2350 kdb_printf("KDB current process is %s(pid=%d)\n", 2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task->comm, 2351 kdb_current_task->comm,
2352 kdb_current_task->pid); 2352 kdb_current_task->pid);
2353 2353
2354 return 0; 2354 return 0;
2355 } 2355 }
2356 2356
2357 /* 2357 /*
2358 * kdb_ll - This function implements the 'll' command which follows a 2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each 2359 * linked list and executes an arbitrary command for each
2360 * element. 2360 * element.
2361 */ 2361 */
2362 static int kdb_ll(int argc, const char **argv) 2362 static int kdb_ll(int argc, const char **argv)
2363 { 2363 {
2364 int diag = 0; 2364 int diag = 0;
2365 unsigned long addr; 2365 unsigned long addr;
2366 long offset = 0; 2366 long offset = 0;
2367 unsigned long va; 2367 unsigned long va;
2368 unsigned long linkoffset; 2368 unsigned long linkoffset;
2369 int nextarg; 2369 int nextarg;
2370 const char *command; 2370 const char *command;
2371 2371
2372 if (argc != 3) 2372 if (argc != 3)
2373 return KDB_ARGCOUNT; 2373 return KDB_ARGCOUNT;
2374 2374
2375 nextarg = 1; 2375 nextarg = 1;
2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 if (diag) 2377 if (diag)
2378 return diag; 2378 return diag;
2379 2379
2380 diag = kdbgetularg(argv[2], &linkoffset); 2380 diag = kdbgetularg(argv[2], &linkoffset);
2381 if (diag) 2381 if (diag)
2382 return diag; 2382 return diag;
2383 2383
2384 /* 2384 /*
2385 * Using the starting address as 2385 * Using the starting address as
2386 * the first element in the list, and assuming that 2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer. 2387 * the list ends with a null pointer.
2388 */ 2388 */
2389 2389
2390 va = addr; 2390 va = addr;
2391 command = kdb_strdup(argv[3], GFP_KDB); 2391 command = kdb_strdup(argv[3], GFP_KDB);
2392 if (!command) { 2392 if (!command) {
2393 kdb_printf("%s: cannot duplicate command\n", __func__); 2393 kdb_printf("%s: cannot duplicate command\n", __func__);
2394 return 0; 2394 return 0;
2395 } 2395 }
2396 /* Recursive use of kdb_parse, do not use argv after this point */ 2396 /* Recursive use of kdb_parse, do not use argv after this point */
2397 argv = NULL; 2397 argv = NULL;
2398 2398
2399 while (va) { 2399 while (va) {
2400 char buf[80]; 2400 char buf[80];
2401 2401
2402 if (KDB_FLAG(CMD_INTERRUPT)) 2402 if (KDB_FLAG(CMD_INTERRUPT))
2403 goto out; 2403 goto out;
2404 2404
2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); 2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 diag = kdb_parse(buf); 2406 diag = kdb_parse(buf);
2407 if (diag) 2407 if (diag)
2408 goto out; 2408 goto out;
2409 2409
2410 addr = va + linkoffset; 2410 addr = va + linkoffset;
2411 if (kdb_getword(&va, addr, sizeof(va))) 2411 if (kdb_getword(&va, addr, sizeof(va)))
2412 goto out; 2412 goto out;
2413 } 2413 }
2414 2414
2415 out: 2415 out:
2416 kfree(command); 2416 kfree(command);
2417 return diag; 2417 return diag;
2418 } 2418 }
2419 2419
2420 static int kdb_kgdb(int argc, const char **argv) 2420 static int kdb_kgdb(int argc, const char **argv)
2421 { 2421 {
2422 return KDB_CMD_KGDB; 2422 return KDB_CMD_KGDB;
2423 } 2423 }
2424 2424
2425 /* 2425 /*
2426 * kdb_help - This function implements the 'help' and '?' commands. 2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */ 2427 */
2428 static int kdb_help(int argc, const char **argv) 2428 static int kdb_help(int argc, const char **argv)
2429 { 2429 {
2430 kdbtab_t *kt; 2430 kdbtab_t *kt;
2431 int i; 2431 int i;
2432 2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------" 2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n"); 2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) { 2436 for_each_kdbcmd(kt, i) {
2437 if (kt->cmd_name) 2437 if (kt->cmd_name)
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, 2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439 kt->cmd_usage, kt->cmd_help); 2439 kt->cmd_usage, kt->cmd_help);
2440 if (KDB_FLAG(CMD_INTERRUPT)) 2440 if (KDB_FLAG(CMD_INTERRUPT))
2441 return 0; 2441 return 0;
2442 } 2442 }
2443 return 0; 2443 return 0;
2444 } 2444 }
2445 2445
2446 /* 2446 /*
2447 * kdb_kill - This function implements the 'kill' commands. 2447 * kdb_kill - This function implements the 'kill' commands.
2448 */ 2448 */
2449 static int kdb_kill(int argc, const char **argv) 2449 static int kdb_kill(int argc, const char **argv)
2450 { 2450 {
2451 long sig, pid; 2451 long sig, pid;
2452 char *endp; 2452 char *endp;
2453 struct task_struct *p; 2453 struct task_struct *p;
2454 struct siginfo info; 2454 struct siginfo info;
2455 2455
2456 if (argc != 2) 2456 if (argc != 2)
2457 return KDB_ARGCOUNT; 2457 return KDB_ARGCOUNT;
2458 2458
2459 sig = simple_strtol(argv[1], &endp, 0); 2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp) 2460 if (*endp)
2461 return KDB_BADINT; 2461 return KDB_BADINT;
2462 if (sig >= 0) { 2462 if (sig >= 0) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n"); 2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0; 2464 return 0;
2465 } 2465 }
2466 sig = -sig; 2466 sig = -sig;
2467 2467
2468 pid = simple_strtol(argv[2], &endp, 0); 2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp) 2469 if (*endp)
2470 return KDB_BADINT; 2470 return KDB_BADINT;
2471 if (pid <= 0) { 2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n"); 2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0; 2473 return 0;
2474 } 2474 }
2475 2475
2476 /* Find the process. */ 2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns); 2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) { 2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n"); 2479 kdb_printf("The specified process isn't found.\n");
2480 return 0; 2480 return 0;
2481 } 2481 }
2482 p = p->group_leader; 2482 p = p->group_leader;
2483 info.si_signo = sig; 2483 info.si_signo = sig;
2484 info.si_errno = 0; 2484 info.si_errno = 0;
2485 info.si_code = SI_USER; 2485 info.si_code = SI_USER;
2486 info.si_pid = pid; /* same capabilities as process being signalled */ 2486 info.si_pid = pid; /* same capabilities as process being signalled */
2487 info.si_uid = 0; /* kdb has root authority */ 2487 info.si_uid = 0; /* kdb has root authority */
2488 kdb_send_sig_info(p, &info); 2488 kdb_send_sig_info(p, &info);
2489 return 0; 2489 return 0;
2490 } 2490 }
2491 2491
2492 struct kdb_tm { 2492 struct kdb_tm {
2493 int tm_sec; /* seconds */ 2493 int tm_sec; /* seconds */
2494 int tm_min; /* minutes */ 2494 int tm_min; /* minutes */
2495 int tm_hour; /* hours */ 2495 int tm_hour; /* hours */
2496 int tm_mday; /* day of the month */ 2496 int tm_mday; /* day of the month */
2497 int tm_mon; /* month */ 2497 int tm_mon; /* month */
2498 int tm_year; /* year */ 2498 int tm_year; /* year */
2499 }; 2499 };
2500 2500
2501 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2501 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502 { 2502 {
2503 /* This will work from 1970-2099, 2100 is not a leap year */ 2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 }; 2505 31, 30, 31, 30, 31 };
2506 memset(tm, 0, sizeof(*tm)); 2506 memset(tm, 0, sizeof(*tm));
2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm->tm_min = tm->tm_sec / 60 % 60; 2510 tm->tm_min = tm->tm_sec / 60 % 60;
2511 tm->tm_hour = tm->tm_sec / 60 / 60; 2511 tm->tm_hour = tm->tm_sec / 60 / 60;
2512 tm->tm_sec = tm->tm_sec % 60; 2512 tm->tm_sec = tm->tm_sec % 60;
2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514 tm->tm_mday %= (4*365+1); 2514 tm->tm_mday %= (4*365+1);
2515 mon_day[1] = 29; 2515 mon_day[1] = 29;
2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517 tm->tm_mday -= mon_day[tm->tm_mon]; 2517 tm->tm_mday -= mon_day[tm->tm_mon];
2518 if (++tm->tm_mon == 12) { 2518 if (++tm->tm_mon == 12) {
2519 tm->tm_mon = 0; 2519 tm->tm_mon = 0;
2520 ++tm->tm_year; 2520 ++tm->tm_year;
2521 mon_day[1] = 28; 2521 mon_day[1] = 28;
2522 } 2522 }
2523 } 2523 }
2524 ++tm->tm_mday; 2524 ++tm->tm_mday;
2525 } 2525 }
2526 2526
2527 /* 2527 /*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional 2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger. 2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */ 2531 */
2532 static void kdb_sysinfo(struct sysinfo *val) 2532 static void kdb_sysinfo(struct sysinfo *val)
2533 { 2533 {
2534 struct timespec uptime; 2534 struct timespec uptime;
2535 do_posix_clock_monotonic_gettime(&uptime); 2535 do_posix_clock_monotonic_gettime(&uptime);
2536 memset(val, 0, sizeof(*val)); 2536 memset(val, 0, sizeof(*val));
2537 val->uptime = uptime.tv_sec; 2537 val->uptime = uptime.tv_sec;
2538 val->loads[0] = avenrun[0]; 2538 val->loads[0] = avenrun[0];
2539 val->loads[1] = avenrun[1]; 2539 val->loads[1] = avenrun[1];
2540 val->loads[2] = avenrun[2]; 2540 val->loads[2] = avenrun[2];
2541 val->procs = nr_threads-1; 2541 val->procs = nr_threads-1;
2542 si_meminfo(val); 2542 si_meminfo(val);
2543 2543
2544 return; 2544 return;
2545 } 2545 }
2546 2546
2547 /* 2547 /*
2548 * kdb_summary - This function implements the 'summary' command. 2548 * kdb_summary - This function implements the 'summary' command.
2549 */ 2549 */
2550 static int kdb_summary(int argc, const char **argv) 2550 static int kdb_summary(int argc, const char **argv)
2551 { 2551 {
2552 struct timespec now; 2552 struct timespec now;
2553 struct kdb_tm tm; 2553 struct kdb_tm tm;
2554 struct sysinfo val; 2554 struct sysinfo val;
2555 2555
2556 if (argc) 2556 if (argc)
2557 return KDB_ARGCOUNT; 2557 return KDB_ARGCOUNT;
2558 2558
2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2560 kdb_printf("release %s\n", init_uts_ns.name.release); 2560 kdb_printf("release %s\n", init_uts_ns.name.release);
2561 kdb_printf("version %s\n", init_uts_ns.name.version); 2561 kdb_printf("version %s\n", init_uts_ns.name.version);
2562 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2562 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2566 2566
2567 now = __current_kernel_time(); 2567 now = __current_kernel_time();
2568 kdb_gmtime(&now, &tm); 2568 kdb_gmtime(&now, &tm);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n", 2570 "tz_minuteswest %d\n",
2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572 tm.tm_hour, tm.tm_min, tm.tm_sec, 2572 tm.tm_hour, tm.tm_min, tm.tm_sec,
2573 sys_tz.tz_minuteswest); 2573 sys_tz.tz_minuteswest);
2574 2574
2575 kdb_sysinfo(&val); 2575 kdb_sysinfo(&val);
2576 kdb_printf("uptime "); 2576 kdb_printf("uptime ");
2577 if (val.uptime > (24*60*60)) { 2577 if (val.uptime > (24*60*60)) {
2578 int days = val.uptime / (24*60*60); 2578 int days = val.uptime / (24*60*60);
2579 val.uptime %= (24*60*60); 2579 val.uptime %= (24*60*60);
2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581 } 2581 }
2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583 2583
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585 2585
2586 #define LOAD_INT(x) ((x) >> FSHIFT) 2586 #define LOAD_INT(x) ((x) >> FSHIFT)
2587 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2587 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592 #undef LOAD_INT 2592 #undef LOAD_INT
2593 #undef LOAD_FRAC 2593 #undef LOAD_FRAC
2594 /* Display in kilobytes */ 2594 /* Display in kilobytes */
2595 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2595 #define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n", 2597 "Buffers: %8lu kB\n",
2598 val.totalram, val.freeram, val.bufferram); 2598 val.totalram, val.freeram, val.bufferram);
2599 return 0; 2599 return 0;
2600 } 2600 }
2601 2601
2602 /* 2602 /*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command. 2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */ 2604 */
2605 static int kdb_per_cpu(int argc, const char **argv) 2605 static int kdb_per_cpu(int argc, const char **argv)
2606 { 2606 {
2607 char fmtstr[64]; 2607 char fmtstr[64];
2608 int cpu, diag, nextarg = 1; 2608 int cpu, diag, nextarg = 1;
2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610 2610
2611 if (argc < 1 || argc > 3) 2611 if (argc < 1 || argc > 3)
2612 return KDB_ARGCOUNT; 2612 return KDB_ARGCOUNT;
2613 2613
2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615 if (diag) 2615 if (diag)
2616 return diag; 2616 return diag;
2617 2617
2618 if (argc >= 2) { 2618 if (argc >= 2) {
2619 diag = kdbgetularg(argv[2], &bytesperword); 2619 diag = kdbgetularg(argv[2], &bytesperword);
2620 if (diag) 2620 if (diag)
2621 return diag; 2621 return diag;
2622 } 2622 }
2623 if (!bytesperword) 2623 if (!bytesperword)
2624 bytesperword = KDB_WORD_SIZE; 2624 bytesperword = KDB_WORD_SIZE;
2625 else if (bytesperword > KDB_WORD_SIZE) 2625 else if (bytesperword > KDB_WORD_SIZE)
2626 return KDB_BADWIDTH; 2626 return KDB_BADWIDTH;
2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628 if (argc >= 3) { 2628 if (argc >= 3) {
2629 diag = kdbgetularg(argv[3], &whichcpu); 2629 diag = kdbgetularg(argv[3], &whichcpu);
2630 if (diag) 2630 if (diag)
2631 return diag; 2631 return diag;
2632 if (!cpu_online(whichcpu)) { 2632 if (!cpu_online(whichcpu)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu); 2633 kdb_printf("cpu %ld is not online\n", whichcpu);
2634 return KDB_BADCPUNUM; 2634 return KDB_BADCPUNUM;
2635 } 2635 }
2636 } 2636 }
2637 2637
2638 /* Most architectures use __per_cpu_offset[cpu], some use 2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640 */ 2640 */
2641 #ifdef __per_cpu_offset 2641 #ifdef __per_cpu_offset
2642 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2642 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643 #else 2643 #else
2644 #ifdef CONFIG_SMP 2644 #ifdef CONFIG_SMP
2645 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2645 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646 #else 2646 #else
2647 #define KDB_PCU(cpu) 0 2647 #define KDB_PCU(cpu) 0
2648 #endif 2648 #endif
2649 #endif 2649 #endif
2650 for_each_online_cpu(cpu) { 2650 for_each_online_cpu(cpu) {
2651 if (KDB_FLAG(CMD_INTERRUPT)) 2651 if (KDB_FLAG(CMD_INTERRUPT))
2652 return 0; 2652 return 0;
2653 2653
2654 if (whichcpu != ~0UL && whichcpu != cpu) 2654 if (whichcpu != ~0UL && whichcpu != cpu)
2655 continue; 2655 continue;
2656 addr = symaddr + KDB_PCU(cpu); 2656 addr = symaddr + KDB_PCU(cpu);
2657 diag = kdb_getword(&val, addr, bytesperword); 2657 diag = kdb_getword(&val, addr, bytesperword);
2658 if (diag) { 2658 if (diag) {
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 "read, diag=%d\n", cpu, addr, diag); 2660 "read, diag=%d\n", cpu, addr, diag);
2661 continue; 2661 continue;
2662 } 2662 }
2663 kdb_printf("%5d ", cpu); 2663 kdb_printf("%5d ", cpu);
2664 kdb_md_line(fmtstr, addr, 2664 kdb_md_line(fmtstr, addr,
2665 bytesperword == KDB_WORD_SIZE, 2665 bytesperword == KDB_WORD_SIZE,
2666 1, bytesperword, 1, 1, 0); 2666 1, bytesperword, 1, 1, 0);
2667 } 2667 }
2668 #undef KDB_PCU 2668 #undef KDB_PCU
2669 return 0; 2669 return 0;
2670 } 2670 }
2671 2671
2672 /* 2672 /*
2673 * display help for the use of cmd | grep pattern 2673 * display help for the use of cmd | grep pattern
2674 */ 2674 */
2675 static int kdb_grep_help(int argc, const char **argv) 2675 static int kdb_grep_help(int argc, const char **argv)
2676 { 2676 {
2677 kdb_printf("Usage of cmd args | grep pattern:\n"); 2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an "); 2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n"); 2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n"); 2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of " 2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n"); 2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may " 2684 kdb_printf(" And if there are spaces in the pattern, you may "
2685 "quote it:\n"); 2685 "quote it:\n");
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n"); 2687 " or \"^pat tern$\"\n");
2688 return 0; 2688 return 0;
2689 } 2689 }
2690 2690
2691 /* 2691 /*
2692 * kdb_register_repeat - This function is used to register a kernel 2692 * kdb_register_repeat - This function is used to register a kernel
2693 * debugger command. 2693 * debugger command.
2694 * Inputs: 2694 * Inputs:
2695 * cmd Command name 2695 * cmd Command name
2696 * func Function to execute the command 2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments 2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command 2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter? 2699 * repeat Does the command auto repeat on enter?
2700 * Returns: 2700 * Returns:
2701 * zero for success, one if a duplicate command. 2701 * zero for success, one if a duplicate command.
2702 */ 2702 */
2703 #define kdb_command_extend 50 /* arbitrary */ 2703 #define kdb_command_extend 50 /* arbitrary */
2704 int kdb_register_repeat(char *cmd, 2704 int kdb_register_repeat(char *cmd,
2705 kdb_func_t func, 2705 kdb_func_t func,
2706 char *usage, 2706 char *usage,
2707 char *help, 2707 char *help,
2708 short minlen, 2708 short minlen,
2709 kdb_repeat_t repeat) 2709 kdb_repeat_t repeat)
2710 { 2710 {
2711 int i; 2711 int i;
2712 kdbtab_t *kp; 2712 kdbtab_t *kp;
2713 2713
2714 /* 2714 /*
2715 * Brute force method to determine duplicates 2715 * Brute force method to determine duplicates
2716 */ 2716 */
2717 for_each_kdbcmd(kp, i) { 2717 for_each_kdbcmd(kp, i) {
2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: " 2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd, func, help); 2720 "%s, func %p help %s\n", cmd, func, help);
2721 return 1; 2721 return 1;
2722 } 2722 }
2723 } 2723 }
2724 2724
2725 /* 2725 /*
2726 * Insert command into first available location in table 2726 * Insert command into first available location in table
2727 */ 2727 */
2728 for_each_kdbcmd(kp, i) { 2728 for_each_kdbcmd(kp, i) {
2729 if (kp->cmd_name == NULL) 2729 if (kp->cmd_name == NULL)
2730 break; 2730 break;
2731 } 2731 }
2732 2732
2733 if (i >= kdb_max_commands) { 2733 if (i >= kdb_max_commands) {
2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735 kdb_command_extend) * sizeof(*new), GFP_KDB); 2735 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736 if (!new) { 2736 if (!new) {
2737 kdb_printf("Could not allocate new kdb_command " 2737 kdb_printf("Could not allocate new kdb_command "
2738 "table\n"); 2738 "table\n");
2739 return 1; 2739 return 1;
2740 } 2740 }
2741 if (kdb_commands) { 2741 if (kdb_commands) {
2742 memcpy(new, kdb_commands, 2742 memcpy(new, kdb_commands,
2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744 kfree(kdb_commands); 2744 kfree(kdb_commands);
2745 } 2745 }
2746 memset(new + kdb_max_commands, 0, 2746 memset(new + kdb_max_commands, 0,
2747 kdb_command_extend * sizeof(*new)); 2747 kdb_command_extend * sizeof(*new));
2748 kdb_commands = new; 2748 kdb_commands = new;
2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750 kdb_max_commands += kdb_command_extend; 2750 kdb_max_commands += kdb_command_extend;
2751 } 2751 }
2752 2752
2753 kp->cmd_name = cmd; 2753 kp->cmd_name = cmd;
2754 kp->cmd_func = func; 2754 kp->cmd_func = func;
2755 kp->cmd_usage = usage; 2755 kp->cmd_usage = usage;
2756 kp->cmd_help = help; 2756 kp->cmd_help = help;
2757 kp->cmd_flags = 0; 2757 kp->cmd_flags = 0;
2758 kp->cmd_minlen = minlen; 2758 kp->cmd_minlen = minlen;
2759 kp->cmd_repeat = repeat; 2759 kp->cmd_repeat = repeat;
2760 2760
2761 return 0; 2761 return 0;
2762 } 2762 }
2763 EXPORT_SYMBOL_GPL(kdb_register_repeat); 2763 EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764 2764
2765 2765
2766 /* 2766 /*
2767 * kdb_register - Compatibility register function for commands that do 2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to 2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE. 2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs: 2770 * Inputs:
2771 * cmd Command name 2771 * cmd Command name
2772 * func Function to execute the command 2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments 2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command 2774 * help A simple help string describing command
2775 * Returns: 2775 * Returns:
2776 * zero for success, one if a duplicate command. 2776 * zero for success, one if a duplicate command.
2777 */ 2777 */
2778 int kdb_register(char *cmd, 2778 int kdb_register(char *cmd,
2779 kdb_func_t func, 2779 kdb_func_t func,
2780 char *usage, 2780 char *usage,
2781 char *help, 2781 char *help,
2782 short minlen) 2782 short minlen)
2783 { 2783 {
2784 return kdb_register_repeat(cmd, func, usage, help, minlen, 2784 return kdb_register_repeat(cmd, func, usage, help, minlen,
2785 KDB_REPEAT_NONE); 2785 KDB_REPEAT_NONE);
2786 } 2786 }
2787 EXPORT_SYMBOL_GPL(kdb_register); 2787 EXPORT_SYMBOL_GPL(kdb_register);
2788 2788
2789 /* 2789 /*
2790 * kdb_unregister - This function is used to unregister a kernel 2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which 2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded. 2792 * implements kdb commands is unloaded.
2793 * Inputs: 2793 * Inputs:
2794 * cmd Command name 2794 * cmd Command name
2795 * Returns: 2795 * Returns:
2796 * zero for success, one command not registered. 2796 * zero for success, one command not registered.
2797 */ 2797 */
2798 int kdb_unregister(char *cmd) 2798 int kdb_unregister(char *cmd)
2799 { 2799 {
2800 int i; 2800 int i;
2801 kdbtab_t *kp; 2801 kdbtab_t *kp;
2802 2802
2803 /* 2803 /*
2804 * find the command. 2804 * find the command.
2805 */ 2805 */
2806 for_each_kdbcmd(kp, i) { 2806 for_each_kdbcmd(kp, i) {
2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808 kp->cmd_name = NULL; 2808 kp->cmd_name = NULL;
2809 return 0; 2809 return 0;
2810 } 2810 }
2811 } 2811 }
2812 2812
2813 /* Couldn't find it. */ 2813 /* Couldn't find it. */
2814 return 1; 2814 return 1;
2815 } 2815 }
2816 EXPORT_SYMBOL_GPL(kdb_unregister); 2816 EXPORT_SYMBOL_GPL(kdb_unregister);
2817 2817
2818 /* Initialize the kdb command table. */ 2818 /* Initialize the kdb command table. */
2819 static void __init kdb_inittab(void) 2819 static void __init kdb_inittab(void)
2820 { 2820 {
2821 int i; 2821 int i;
2822 kdbtab_t *kp; 2822 kdbtab_t *kp;
2823 2823
2824 for_each_kdbcmd(kp, i) 2824 for_each_kdbcmd(kp, i)
2825 kp->cmd_name = NULL; 2825 kp->cmd_name = NULL;
2826 2826
2827 kdb_register_repeat("md", kdb_md, "<vaddr>", 2827 kdb_register_repeat("md", kdb_md, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS); 2829 KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); 2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", 2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); 2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834 kdb_register_repeat("mds", kdb_md, "<vaddr>", 2834 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); 2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", 2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); 2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]", 2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE); 2839 "Continue Execution", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("rd", kdb_rd, "", 2840 kdb_register_repeat("rd", kdb_rd, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE); 2841 "Display Registers", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", 2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE); 2843 "Modify Registers", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>", 2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE); 2845 "Display exception frame", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", 2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE); 2847 "Stack traceback", 1, KDB_REPEAT_NONE);
2848 kdb_register_repeat("btp", kdb_bt, "<pid>", 2848 kdb_register_repeat("btp", kdb_bt, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE); 2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", 2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE); 2851 "Display stack all processes", 0, KDB_REPEAT_NONE);
2852 kdb_register_repeat("btc", kdb_bt, "", 2852 kdb_register_repeat("btc", kdb_bt, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); 2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>", 2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0, 2855 "Backtrace process given its struct task address", 0,
2856 KDB_REPEAT_NONE); 2856 KDB_REPEAT_NONE);
2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", 2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); 2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("env", kdb_env, "", 2859 kdb_register_repeat("env", kdb_env, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE); 2860 "Show environment variables", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("set", kdb_set, "", 2861 kdb_register_repeat("set", kdb_set, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE); 2862 "Set environment variables", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("help", kdb_help, "", 2863 kdb_register_repeat("help", kdb_help, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE); 2864 "Display Help Message", 1, KDB_REPEAT_NONE);
2865 kdb_register_repeat("?", kdb_help, "", 2865 kdb_register_repeat("?", kdb_help, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE); 2866 "Display Help Message", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", 2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE); 2868 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kgdb", kdb_kgdb, "", 2869 kdb_register_repeat("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE); 2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", 2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE); 2872 "Display active task list", 0, KDB_REPEAT_NONE);
2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>", 2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE); 2874 "Switch to another task", 0, KDB_REPEAT_NONE);
2875 kdb_register_repeat("reboot", kdb_reboot, "", 2875 kdb_register_repeat("reboot", kdb_reboot, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE); 2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877 #if defined(CONFIG_MODULES) 2877 #if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod, "", 2878 kdb_register_repeat("lsmod", kdb_lsmod, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE); 2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880 #endif 2880 #endif
2881 #if defined(CONFIG_MAGIC_SYSRQ) 2881 #if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr, "<key>", 2882 kdb_register_repeat("sr", kdb_sr, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE); 2883 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884 #endif 2884 #endif
2885 #if defined(CONFIG_PRINTK) 2885 #if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", 2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE); 2887 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888 #endif 2888 #endif
2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); 2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", 2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE); 2892 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893 kdb_register_repeat("summary", kdb_summary, "", 2893 kdb_register_repeat("summary", kdb_summary, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE); 2894 "Summarize the system", 4, KDB_REPEAT_NONE);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "", 2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE); 2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897 kdb_register_repeat("grephelp", kdb_grep_help, "", 2897 kdb_register_repeat("grephelp", kdb_grep_help, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE); 2898 "Display help on | grep", 0, KDB_REPEAT_NONE);
2899 } 2899 }
2900 2900
2901 /* Execute any commands defined in kdb_cmds. */ 2901 /* Execute any commands defined in kdb_cmds. */
2902 static void __init kdb_cmd_init(void) 2902 static void __init kdb_cmd_init(void)
2903 { 2903 {
2904 int i, diag; 2904 int i, diag;
2905 for (i = 0; kdb_cmds[i]; ++i) { 2905 for (i = 0; kdb_cmds[i]; ++i) {
2906 diag = kdb_parse(kdb_cmds[i]); 2906 diag = kdb_parse(kdb_cmds[i]);
2907 if (diag) 2907 if (diag)
2908 kdb_printf("kdb command %s failed, kdb diag %d\n", 2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2909 kdb_cmds[i], diag); 2909 kdb_cmds[i], diag);
2910 } 2910 }
2911 if (defcmd_in_progress) { 2911 if (defcmd_in_progress) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd"); 2913 kdb_parse("endefcmd");
2914 } 2914 }
2915 } 2915 }
2916 2916
2917 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2917 /* Initialize kdb_printf, breakpoint tables and kdb state */
2918 void __init kdb_init(int lvl) 2918 void __init kdb_init(int lvl)
2919 { 2919 {
2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921 int i; 2921 int i;
2922 2922
2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924 return; 2924 return;
2925 for (i = kdb_init_lvl; i < lvl; i++) { 2925 for (i = kdb_init_lvl; i < lvl; i++) {
2926 switch (i) { 2926 switch (i) {
2927 case KDB_NOT_INITIALIZED: 2927 case KDB_NOT_INITIALIZED:
2928 kdb_inittab(); /* Initialize Command Table */ 2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */ 2929 kdb_initbptab(); /* Initialize Breakpoints */
2930 break; 2930 break;
2931 case KDB_INIT_EARLY: 2931 case KDB_INIT_EARLY:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */ 2932 kdb_cmd_init(); /* Build kdb_cmds tables */
2933 break; 2933 break;
2934 } 2934 }
2935 } 2935 }
2936 kdb_init_lvl = lvl; 2936 kdb_init_lvl = lvl;
2937 } 2937 }
2938 2938