Commit a1bc5a4eee990a1f290735c8694d0aebdad095fa
Committed by
Linus Torvalds
1 parent
7f81b1ae18
Exists in
master
and in
4 other branches
cpusets: replace zone allowed functions with node allowed
The cpuset_zone_allowed() variants are actually only a function of the zone's node. Cc: Paul Menage <menage@google.com> Acked-by: Christoph Lameter <cl@linux-foundation.org> Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Showing 2 changed files with 52 additions and 40 deletions Inline Diff
include/linux/cpuset.h
| 1 | #ifndef _LINUX_CPUSET_H | 1 | #ifndef _LINUX_CPUSET_H |
| 2 | #define _LINUX_CPUSET_H | 2 | #define _LINUX_CPUSET_H |
| 3 | /* | 3 | /* |
| 4 | * cpuset interface | 4 | * cpuset interface |
| 5 | * | 5 | * |
| 6 | * Copyright (C) 2003 BULL SA | 6 | * Copyright (C) 2003 BULL SA |
| 7 | * Copyright (C) 2004-2006 Silicon Graphics, Inc. | 7 | * Copyright (C) 2004-2006 Silicon Graphics, Inc. |
| 8 | * | 8 | * |
| 9 | */ | 9 | */ |
| 10 | 10 | ||
| 11 | #include <linux/sched.h> | 11 | #include <linux/sched.h> |
| 12 | #include <linux/cpumask.h> | 12 | #include <linux/cpumask.h> |
| 13 | #include <linux/nodemask.h> | 13 | #include <linux/nodemask.h> |
| 14 | #include <linux/cgroup.h> | 14 | #include <linux/cgroup.h> |
| 15 | #include <linux/mm.h> | ||
| 15 | 16 | ||
| 16 | #ifdef CONFIG_CPUSETS | 17 | #ifdef CONFIG_CPUSETS |
| 17 | 18 | ||
| 18 | extern int number_of_cpusets; /* How many cpusets are defined in system? */ | 19 | extern int number_of_cpusets; /* How many cpusets are defined in system? */ |
| 19 | 20 | ||
| 20 | extern int cpuset_init_early(void); | 21 | extern int cpuset_init_early(void); |
| 21 | extern int cpuset_init(void); | 22 | extern int cpuset_init(void); |
| 22 | extern void cpuset_init_smp(void); | 23 | extern void cpuset_init_smp(void); |
| 23 | extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); | 24 | extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask); |
| 24 | extern void cpuset_cpus_allowed_locked(struct task_struct *p, | 25 | extern void cpuset_cpus_allowed_locked(struct task_struct *p, |
| 25 | struct cpumask *mask); | 26 | struct cpumask *mask); |
| 26 | extern nodemask_t cpuset_mems_allowed(struct task_struct *p); | 27 | extern nodemask_t cpuset_mems_allowed(struct task_struct *p); |
| 27 | #define cpuset_current_mems_allowed (current->mems_allowed) | 28 | #define cpuset_current_mems_allowed (current->mems_allowed) |
| 28 | void cpuset_init_current_mems_allowed(void); | 29 | void cpuset_init_current_mems_allowed(void); |
| 29 | void cpuset_update_task_memory_state(void); | 30 | void cpuset_update_task_memory_state(void); |
| 30 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); | 31 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask); |
| 31 | 32 | ||
| 32 | extern int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask); | 33 | extern int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask); |
| 33 | extern int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask); | 34 | extern int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask); |
| 34 | 35 | ||
| 35 | static int inline cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | 36 | static inline int cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) |
| 36 | { | 37 | { |
| 37 | return number_of_cpusets <= 1 || | 38 | return number_of_cpusets <= 1 || |
| 38 | __cpuset_zone_allowed_softwall(z, gfp_mask); | 39 | __cpuset_node_allowed_softwall(node, gfp_mask); |
| 39 | } | 40 | } |
| 40 | 41 | ||
| 41 | static int inline cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | 42 | static inline int cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) |
| 42 | { | 43 | { |
| 43 | return number_of_cpusets <= 1 || | 44 | return number_of_cpusets <= 1 || |
| 44 | __cpuset_zone_allowed_hardwall(z, gfp_mask); | 45 | __cpuset_node_allowed_hardwall(node, gfp_mask); |
| 45 | } | 46 | } |
| 46 | 47 | ||
| 48 | static inline int cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | ||
| 49 | { | ||
| 50 | return cpuset_node_allowed_softwall(zone_to_nid(z), gfp_mask); | ||
| 51 | } | ||
| 52 | |||
| 53 | static inline int cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | ||
| 54 | { | ||
| 55 | return cpuset_node_allowed_hardwall(zone_to_nid(z), gfp_mask); | ||
| 56 | } | ||
| 57 | |||
| 47 | extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 58 | extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
| 48 | const struct task_struct *tsk2); | 59 | const struct task_struct *tsk2); |
| 49 | 60 | ||
| 50 | #define cpuset_memory_pressure_bump() \ | 61 | #define cpuset_memory_pressure_bump() \ |
| 51 | do { \ | 62 | do { \ |
| 52 | if (cpuset_memory_pressure_enabled) \ | 63 | if (cpuset_memory_pressure_enabled) \ |
| 53 | __cpuset_memory_pressure_bump(); \ | 64 | __cpuset_memory_pressure_bump(); \ |
| 54 | } while (0) | 65 | } while (0) |
| 55 | extern int cpuset_memory_pressure_enabled; | 66 | extern int cpuset_memory_pressure_enabled; |
| 56 | extern void __cpuset_memory_pressure_bump(void); | 67 | extern void __cpuset_memory_pressure_bump(void); |
| 57 | 68 | ||
| 58 | extern const struct file_operations proc_cpuset_operations; | 69 | extern const struct file_operations proc_cpuset_operations; |
| 59 | struct seq_file; | 70 | struct seq_file; |
| 60 | extern void cpuset_task_status_allowed(struct seq_file *m, | 71 | extern void cpuset_task_status_allowed(struct seq_file *m, |
| 61 | struct task_struct *task); | 72 | struct task_struct *task); |
| 62 | 73 | ||
| 63 | extern void cpuset_lock(void); | 74 | extern void cpuset_lock(void); |
| 64 | extern void cpuset_unlock(void); | 75 | extern void cpuset_unlock(void); |
| 65 | 76 | ||
| 66 | extern int cpuset_mem_spread_node(void); | 77 | extern int cpuset_mem_spread_node(void); |
| 67 | 78 | ||
| 68 | static inline int cpuset_do_page_mem_spread(void) | 79 | static inline int cpuset_do_page_mem_spread(void) |
| 69 | { | 80 | { |
| 70 | return current->flags & PF_SPREAD_PAGE; | 81 | return current->flags & PF_SPREAD_PAGE; |
| 71 | } | 82 | } |
| 72 | 83 | ||
| 73 | static inline int cpuset_do_slab_mem_spread(void) | 84 | static inline int cpuset_do_slab_mem_spread(void) |
| 74 | { | 85 | { |
| 75 | return current->flags & PF_SPREAD_SLAB; | 86 | return current->flags & PF_SPREAD_SLAB; |
| 76 | } | 87 | } |
| 77 | 88 | ||
| 78 | extern int current_cpuset_is_being_rebound(void); | 89 | extern int current_cpuset_is_being_rebound(void); |
| 79 | 90 | ||
| 80 | extern void rebuild_sched_domains(void); | 91 | extern void rebuild_sched_domains(void); |
| 81 | 92 | ||
| 82 | extern void cpuset_print_task_mems_allowed(struct task_struct *p); | 93 | extern void cpuset_print_task_mems_allowed(struct task_struct *p); |
| 83 | 94 | ||
| 84 | #else /* !CONFIG_CPUSETS */ | 95 | #else /* !CONFIG_CPUSETS */ |
| 85 | 96 | ||
| 86 | static inline int cpuset_init_early(void) { return 0; } | 97 | static inline int cpuset_init_early(void) { return 0; } |
| 87 | static inline int cpuset_init(void) { return 0; } | 98 | static inline int cpuset_init(void) { return 0; } |
| 88 | static inline void cpuset_init_smp(void) {} | 99 | static inline void cpuset_init_smp(void) {} |
| 89 | 100 | ||
| 90 | static inline void cpuset_cpus_allowed(struct task_struct *p, | 101 | static inline void cpuset_cpus_allowed(struct task_struct *p, |
| 91 | struct cpumask *mask) | 102 | struct cpumask *mask) |
| 92 | { | 103 | { |
| 93 | cpumask_copy(mask, cpu_possible_mask); | 104 | cpumask_copy(mask, cpu_possible_mask); |
| 94 | } | 105 | } |
| 95 | static inline void cpuset_cpus_allowed_locked(struct task_struct *p, | 106 | static inline void cpuset_cpus_allowed_locked(struct task_struct *p, |
| 96 | struct cpumask *mask) | 107 | struct cpumask *mask) |
| 97 | { | 108 | { |
| 98 | cpumask_copy(mask, cpu_possible_mask); | 109 | cpumask_copy(mask, cpu_possible_mask); |
| 99 | } | 110 | } |
| 100 | 111 | ||
| 101 | static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) | 112 | static inline nodemask_t cpuset_mems_allowed(struct task_struct *p) |
| 102 | { | 113 | { |
| 103 | return node_possible_map; | 114 | return node_possible_map; |
| 104 | } | 115 | } |
| 105 | 116 | ||
| 106 | #define cpuset_current_mems_allowed (node_states[N_HIGH_MEMORY]) | 117 | #define cpuset_current_mems_allowed (node_states[N_HIGH_MEMORY]) |
| 107 | static inline void cpuset_init_current_mems_allowed(void) {} | 118 | static inline void cpuset_init_current_mems_allowed(void) {} |
| 108 | static inline void cpuset_update_task_memory_state(void) {} | 119 | static inline void cpuset_update_task_memory_state(void) {} |
| 109 | 120 | ||
| 110 | static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 121 | static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
| 122 | { | ||
| 123 | return 1; | ||
| 124 | } | ||
| 125 | |||
| 126 | static inline int cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) | ||
| 127 | { | ||
| 128 | return 1; | ||
| 129 | } | ||
| 130 | |||
| 131 | static inline int cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | ||
| 111 | { | 132 | { |
| 112 | return 1; | 133 | return 1; |
| 113 | } | 134 | } |
| 114 | 135 | ||
| 115 | static inline int cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | 136 | static inline int cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) |
| 116 | { | 137 | { |
| 117 | return 1; | 138 | return 1; |
| 118 | } | 139 | } |
| 119 | 140 | ||
| 120 | static inline int cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | 141 | static inline int cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) |
| 121 | { | 142 | { |
| 122 | return 1; | 143 | return 1; |
| 123 | } | 144 | } |
| 124 | 145 | ||
| 125 | static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 146 | static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
| 126 | const struct task_struct *tsk2) | 147 | const struct task_struct *tsk2) |
| 127 | { | 148 | { |
| 128 | return 1; | 149 | return 1; |
| 129 | } | 150 | } |
| 130 | 151 | ||
| 131 | static inline void cpuset_memory_pressure_bump(void) {} | 152 | static inline void cpuset_memory_pressure_bump(void) {} |
| 132 | 153 | ||
| 133 | static inline void cpuset_task_status_allowed(struct seq_file *m, | 154 | static inline void cpuset_task_status_allowed(struct seq_file *m, |
| 134 | struct task_struct *task) | 155 | struct task_struct *task) |
| 135 | { | 156 | { |
| 136 | } | 157 | } |
| 137 | 158 | ||
| 138 | static inline void cpuset_lock(void) {} | 159 | static inline void cpuset_lock(void) {} |
| 139 | static inline void cpuset_unlock(void) {} | 160 | static inline void cpuset_unlock(void) {} |
| 140 | 161 | ||
| 141 | static inline int cpuset_mem_spread_node(void) | 162 | static inline int cpuset_mem_spread_node(void) |
| 142 | { | 163 | { |
| 143 | return 0; | 164 | return 0; |
| 144 | } | 165 | } |
| 145 | 166 | ||
| 146 | static inline int cpuset_do_page_mem_spread(void) | 167 | static inline int cpuset_do_page_mem_spread(void) |
| 147 | { | 168 | { |
| 148 | return 0; | 169 | return 0; |
| 149 | } | 170 | } |
| 150 | 171 | ||
| 151 | static inline int cpuset_do_slab_mem_spread(void) | 172 | static inline int cpuset_do_slab_mem_spread(void) |
| 152 | { | 173 | { |
| 153 | return 0; | 174 | return 0; |
| 154 | } | 175 | } |
| 155 | 176 | ||
| 156 | static inline int current_cpuset_is_being_rebound(void) | 177 | static inline int current_cpuset_is_being_rebound(void) |
| 157 | { | 178 | { |
| 158 | return 0; | 179 | return 0; |
| 159 | } | 180 | } |
| 160 | 181 | ||
| 161 | static inline void rebuild_sched_domains(void) | 182 | static inline void rebuild_sched_domains(void) |
| 162 | { | 183 | { |
| 163 | partition_sched_domains(1, NULL, NULL); | 184 | partition_sched_domains(1, NULL, NULL); |
| 164 | } | 185 | } |
| 165 | 186 | ||
| 166 | static inline void cpuset_print_task_mems_allowed(struct task_struct *p) | 187 | static inline void cpuset_print_task_mems_allowed(struct task_struct *p) |
| 167 | { | 188 | { |
| 168 | } | 189 | } |
| 169 | 190 | ||
| 170 | #endif /* !CONFIG_CPUSETS */ | 191 | #endif /* !CONFIG_CPUSETS */ |
| 171 | 192 | ||
| 172 | #endif /* _LINUX_CPUSET_H */ | 193 | #endif /* _LINUX_CPUSET_H */ |
| 173 | 194 |
kernel/cpuset.c
| 1 | /* | 1 | /* |
| 2 | * kernel/cpuset.c | 2 | * kernel/cpuset.c |
| 3 | * | 3 | * |
| 4 | * Processor and Memory placement constraints for sets of tasks. | 4 | * Processor and Memory placement constraints for sets of tasks. |
| 5 | * | 5 | * |
| 6 | * Copyright (C) 2003 BULL SA. | 6 | * Copyright (C) 2003 BULL SA. |
| 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. | 7 | * Copyright (C) 2004-2007 Silicon Graphics, Inc. |
| 8 | * Copyright (C) 2006 Google, Inc | 8 | * Copyright (C) 2006 Google, Inc |
| 9 | * | 9 | * |
| 10 | * Portions derived from Patrick Mochel's sysfs code. | 10 | * Portions derived from Patrick Mochel's sysfs code. |
| 11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel | 11 | * sysfs is Copyright (c) 2001-3 Patrick Mochel |
| 12 | * | 12 | * |
| 13 | * 2003-10-10 Written by Simon Derr. | 13 | * 2003-10-10 Written by Simon Derr. |
| 14 | * 2003-10-22 Updates by Stephen Hemminger. | 14 | * 2003-10-22 Updates by Stephen Hemminger. |
| 15 | * 2004 May-July Rework by Paul Jackson. | 15 | * 2004 May-July Rework by Paul Jackson. |
| 16 | * 2006 Rework by Paul Menage to use generic cgroups | 16 | * 2006 Rework by Paul Menage to use generic cgroups |
| 17 | * 2008 Rework of the scheduler domains and CPU hotplug handling | 17 | * 2008 Rework of the scheduler domains and CPU hotplug handling |
| 18 | * by Max Krasnyansky | 18 | * by Max Krasnyansky |
| 19 | * | 19 | * |
| 20 | * This file is subject to the terms and conditions of the GNU General Public | 20 | * This file is subject to the terms and conditions of the GNU General Public |
| 21 | * License. See the file COPYING in the main directory of the Linux | 21 | * License. See the file COPYING in the main directory of the Linux |
| 22 | * distribution for more details. | 22 | * distribution for more details. |
| 23 | */ | 23 | */ |
| 24 | 24 | ||
| 25 | #include <linux/cpu.h> | 25 | #include <linux/cpu.h> |
| 26 | #include <linux/cpumask.h> | 26 | #include <linux/cpumask.h> |
| 27 | #include <linux/cpuset.h> | 27 | #include <linux/cpuset.h> |
| 28 | #include <linux/err.h> | 28 | #include <linux/err.h> |
| 29 | #include <linux/errno.h> | 29 | #include <linux/errno.h> |
| 30 | #include <linux/file.h> | 30 | #include <linux/file.h> |
| 31 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
| 32 | #include <linux/init.h> | 32 | #include <linux/init.h> |
| 33 | #include <linux/interrupt.h> | 33 | #include <linux/interrupt.h> |
| 34 | #include <linux/kernel.h> | 34 | #include <linux/kernel.h> |
| 35 | #include <linux/kmod.h> | 35 | #include <linux/kmod.h> |
| 36 | #include <linux/list.h> | 36 | #include <linux/list.h> |
| 37 | #include <linux/mempolicy.h> | 37 | #include <linux/mempolicy.h> |
| 38 | #include <linux/mm.h> | 38 | #include <linux/mm.h> |
| 39 | #include <linux/memory.h> | 39 | #include <linux/memory.h> |
| 40 | #include <linux/module.h> | 40 | #include <linux/module.h> |
| 41 | #include <linux/mount.h> | 41 | #include <linux/mount.h> |
| 42 | #include <linux/namei.h> | 42 | #include <linux/namei.h> |
| 43 | #include <linux/pagemap.h> | 43 | #include <linux/pagemap.h> |
| 44 | #include <linux/proc_fs.h> | 44 | #include <linux/proc_fs.h> |
| 45 | #include <linux/rcupdate.h> | 45 | #include <linux/rcupdate.h> |
| 46 | #include <linux/sched.h> | 46 | #include <linux/sched.h> |
| 47 | #include <linux/seq_file.h> | 47 | #include <linux/seq_file.h> |
| 48 | #include <linux/security.h> | 48 | #include <linux/security.h> |
| 49 | #include <linux/slab.h> | 49 | #include <linux/slab.h> |
| 50 | #include <linux/spinlock.h> | 50 | #include <linux/spinlock.h> |
| 51 | #include <linux/stat.h> | 51 | #include <linux/stat.h> |
| 52 | #include <linux/string.h> | 52 | #include <linux/string.h> |
| 53 | #include <linux/time.h> | 53 | #include <linux/time.h> |
| 54 | #include <linux/backing-dev.h> | 54 | #include <linux/backing-dev.h> |
| 55 | #include <linux/sort.h> | 55 | #include <linux/sort.h> |
| 56 | 56 | ||
| 57 | #include <asm/uaccess.h> | 57 | #include <asm/uaccess.h> |
| 58 | #include <asm/atomic.h> | 58 | #include <asm/atomic.h> |
| 59 | #include <linux/mutex.h> | 59 | #include <linux/mutex.h> |
| 60 | #include <linux/workqueue.h> | 60 | #include <linux/workqueue.h> |
| 61 | #include <linux/cgroup.h> | 61 | #include <linux/cgroup.h> |
| 62 | 62 | ||
| 63 | /* | 63 | /* |
| 64 | * Workqueue for cpuset related tasks. | 64 | * Workqueue for cpuset related tasks. |
| 65 | * | 65 | * |
| 66 | * Using kevent workqueue may cause deadlock when memory_migrate | 66 | * Using kevent workqueue may cause deadlock when memory_migrate |
| 67 | * is set. So we create a separate workqueue thread for cpuset. | 67 | * is set. So we create a separate workqueue thread for cpuset. |
| 68 | */ | 68 | */ |
| 69 | static struct workqueue_struct *cpuset_wq; | 69 | static struct workqueue_struct *cpuset_wq; |
| 70 | 70 | ||
| 71 | /* | 71 | /* |
| 72 | * Tracks how many cpusets are currently defined in system. | 72 | * Tracks how many cpusets are currently defined in system. |
| 73 | * When there is only one cpuset (the root cpuset) we can | 73 | * When there is only one cpuset (the root cpuset) we can |
| 74 | * short circuit some hooks. | 74 | * short circuit some hooks. |
| 75 | */ | 75 | */ |
| 76 | int number_of_cpusets __read_mostly; | 76 | int number_of_cpusets __read_mostly; |
| 77 | 77 | ||
| 78 | /* Forward declare cgroup structures */ | 78 | /* Forward declare cgroup structures */ |
| 79 | struct cgroup_subsys cpuset_subsys; | 79 | struct cgroup_subsys cpuset_subsys; |
| 80 | struct cpuset; | 80 | struct cpuset; |
| 81 | 81 | ||
| 82 | /* See "Frequency meter" comments, below. */ | 82 | /* See "Frequency meter" comments, below. */ |
| 83 | 83 | ||
| 84 | struct fmeter { | 84 | struct fmeter { |
| 85 | int cnt; /* unprocessed events count */ | 85 | int cnt; /* unprocessed events count */ |
| 86 | int val; /* most recent output value */ | 86 | int val; /* most recent output value */ |
| 87 | time_t time; /* clock (secs) when val computed */ | 87 | time_t time; /* clock (secs) when val computed */ |
| 88 | spinlock_t lock; /* guards read or write of above */ | 88 | spinlock_t lock; /* guards read or write of above */ |
| 89 | }; | 89 | }; |
| 90 | 90 | ||
| 91 | struct cpuset { | 91 | struct cpuset { |
| 92 | struct cgroup_subsys_state css; | 92 | struct cgroup_subsys_state css; |
| 93 | 93 | ||
| 94 | unsigned long flags; /* "unsigned long" so bitops work */ | 94 | unsigned long flags; /* "unsigned long" so bitops work */ |
| 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ | 95 | cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */ |
| 96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ | 96 | nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */ |
| 97 | 97 | ||
| 98 | struct cpuset *parent; /* my parent */ | 98 | struct cpuset *parent; /* my parent */ |
| 99 | 99 | ||
| 100 | /* | 100 | /* |
| 101 | * Copy of global cpuset_mems_generation as of the most | 101 | * Copy of global cpuset_mems_generation as of the most |
| 102 | * recent time this cpuset changed its mems_allowed. | 102 | * recent time this cpuset changed its mems_allowed. |
| 103 | */ | 103 | */ |
| 104 | int mems_generation; | 104 | int mems_generation; |
| 105 | 105 | ||
| 106 | struct fmeter fmeter; /* memory_pressure filter */ | 106 | struct fmeter fmeter; /* memory_pressure filter */ |
| 107 | 107 | ||
| 108 | /* partition number for rebuild_sched_domains() */ | 108 | /* partition number for rebuild_sched_domains() */ |
| 109 | int pn; | 109 | int pn; |
| 110 | 110 | ||
| 111 | /* for custom sched domain */ | 111 | /* for custom sched domain */ |
| 112 | int relax_domain_level; | 112 | int relax_domain_level; |
| 113 | 113 | ||
| 114 | /* used for walking a cpuset heirarchy */ | 114 | /* used for walking a cpuset heirarchy */ |
| 115 | struct list_head stack_list; | 115 | struct list_head stack_list; |
| 116 | }; | 116 | }; |
| 117 | 117 | ||
| 118 | /* Retrieve the cpuset for a cgroup */ | 118 | /* Retrieve the cpuset for a cgroup */ |
| 119 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | 119 | static inline struct cpuset *cgroup_cs(struct cgroup *cont) |
| 120 | { | 120 | { |
| 121 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | 121 | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), |
| 122 | struct cpuset, css); | 122 | struct cpuset, css); |
| 123 | } | 123 | } |
| 124 | 124 | ||
| 125 | /* Retrieve the cpuset for a task */ | 125 | /* Retrieve the cpuset for a task */ |
| 126 | static inline struct cpuset *task_cs(struct task_struct *task) | 126 | static inline struct cpuset *task_cs(struct task_struct *task) |
| 127 | { | 127 | { |
| 128 | return container_of(task_subsys_state(task, cpuset_subsys_id), | 128 | return container_of(task_subsys_state(task, cpuset_subsys_id), |
| 129 | struct cpuset, css); | 129 | struct cpuset, css); |
| 130 | } | 130 | } |
| 131 | 131 | ||
| 132 | /* bits in struct cpuset flags field */ | 132 | /* bits in struct cpuset flags field */ |
| 133 | typedef enum { | 133 | typedef enum { |
| 134 | CS_CPU_EXCLUSIVE, | 134 | CS_CPU_EXCLUSIVE, |
| 135 | CS_MEM_EXCLUSIVE, | 135 | CS_MEM_EXCLUSIVE, |
| 136 | CS_MEM_HARDWALL, | 136 | CS_MEM_HARDWALL, |
| 137 | CS_MEMORY_MIGRATE, | 137 | CS_MEMORY_MIGRATE, |
| 138 | CS_SCHED_LOAD_BALANCE, | 138 | CS_SCHED_LOAD_BALANCE, |
| 139 | CS_SPREAD_PAGE, | 139 | CS_SPREAD_PAGE, |
| 140 | CS_SPREAD_SLAB, | 140 | CS_SPREAD_SLAB, |
| 141 | } cpuset_flagbits_t; | 141 | } cpuset_flagbits_t; |
| 142 | 142 | ||
| 143 | /* convenient tests for these bits */ | 143 | /* convenient tests for these bits */ |
| 144 | static inline int is_cpu_exclusive(const struct cpuset *cs) | 144 | static inline int is_cpu_exclusive(const struct cpuset *cs) |
| 145 | { | 145 | { |
| 146 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 146 | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); |
| 147 | } | 147 | } |
| 148 | 148 | ||
| 149 | static inline int is_mem_exclusive(const struct cpuset *cs) | 149 | static inline int is_mem_exclusive(const struct cpuset *cs) |
| 150 | { | 150 | { |
| 151 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 151 | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); |
| 152 | } | 152 | } |
| 153 | 153 | ||
| 154 | static inline int is_mem_hardwall(const struct cpuset *cs) | 154 | static inline int is_mem_hardwall(const struct cpuset *cs) |
| 155 | { | 155 | { |
| 156 | return test_bit(CS_MEM_HARDWALL, &cs->flags); | 156 | return test_bit(CS_MEM_HARDWALL, &cs->flags); |
| 157 | } | 157 | } |
| 158 | 158 | ||
| 159 | static inline int is_sched_load_balance(const struct cpuset *cs) | 159 | static inline int is_sched_load_balance(const struct cpuset *cs) |
| 160 | { | 160 | { |
| 161 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 161 | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| 162 | } | 162 | } |
| 163 | 163 | ||
| 164 | static inline int is_memory_migrate(const struct cpuset *cs) | 164 | static inline int is_memory_migrate(const struct cpuset *cs) |
| 165 | { | 165 | { |
| 166 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 166 | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); |
| 167 | } | 167 | } |
| 168 | 168 | ||
| 169 | static inline int is_spread_page(const struct cpuset *cs) | 169 | static inline int is_spread_page(const struct cpuset *cs) |
| 170 | { | 170 | { |
| 171 | return test_bit(CS_SPREAD_PAGE, &cs->flags); | 171 | return test_bit(CS_SPREAD_PAGE, &cs->flags); |
| 172 | } | 172 | } |
| 173 | 173 | ||
| 174 | static inline int is_spread_slab(const struct cpuset *cs) | 174 | static inline int is_spread_slab(const struct cpuset *cs) |
| 175 | { | 175 | { |
| 176 | return test_bit(CS_SPREAD_SLAB, &cs->flags); | 176 | return test_bit(CS_SPREAD_SLAB, &cs->flags); |
| 177 | } | 177 | } |
| 178 | 178 | ||
| 179 | /* | 179 | /* |
| 180 | * Increment this integer everytime any cpuset changes its | 180 | * Increment this integer everytime any cpuset changes its |
| 181 | * mems_allowed value. Users of cpusets can track this generation | 181 | * mems_allowed value. Users of cpusets can track this generation |
| 182 | * number, and avoid having to lock and reload mems_allowed unless | 182 | * number, and avoid having to lock and reload mems_allowed unless |
| 183 | * the cpuset they're using changes generation. | 183 | * the cpuset they're using changes generation. |
| 184 | * | 184 | * |
| 185 | * A single, global generation is needed because cpuset_attach_task() could | 185 | * A single, global generation is needed because cpuset_attach_task() could |
| 186 | * reattach a task to a different cpuset, which must not have its | 186 | * reattach a task to a different cpuset, which must not have its |
| 187 | * generation numbers aliased with those of that tasks previous cpuset. | 187 | * generation numbers aliased with those of that tasks previous cpuset. |
| 188 | * | 188 | * |
| 189 | * Generations are needed for mems_allowed because one task cannot | 189 | * Generations are needed for mems_allowed because one task cannot |
| 190 | * modify another's memory placement. So we must enable every task, | 190 | * modify another's memory placement. So we must enable every task, |
| 191 | * on every visit to __alloc_pages(), to efficiently check whether | 191 | * on every visit to __alloc_pages(), to efficiently check whether |
| 192 | * its current->cpuset->mems_allowed has changed, requiring an update | 192 | * its current->cpuset->mems_allowed has changed, requiring an update |
| 193 | * of its current->mems_allowed. | 193 | * of its current->mems_allowed. |
| 194 | * | 194 | * |
| 195 | * Since writes to cpuset_mems_generation are guarded by the cgroup lock | 195 | * Since writes to cpuset_mems_generation are guarded by the cgroup lock |
| 196 | * there is no need to mark it atomic. | 196 | * there is no need to mark it atomic. |
| 197 | */ | 197 | */ |
| 198 | static int cpuset_mems_generation; | 198 | static int cpuset_mems_generation; |
| 199 | 199 | ||
| 200 | static struct cpuset top_cpuset = { | 200 | static struct cpuset top_cpuset = { |
| 201 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 201 | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), |
| 202 | }; | 202 | }; |
| 203 | 203 | ||
| 204 | /* | 204 | /* |
| 205 | * There are two global mutexes guarding cpuset structures. The first | 205 | * There are two global mutexes guarding cpuset structures. The first |
| 206 | * is the main control groups cgroup_mutex, accessed via | 206 | * is the main control groups cgroup_mutex, accessed via |
| 207 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific | 207 | * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific |
| 208 | * callback_mutex, below. They can nest. It is ok to first take | 208 | * callback_mutex, below. They can nest. It is ok to first take |
| 209 | * cgroup_mutex, then nest callback_mutex. We also require taking | 209 | * cgroup_mutex, then nest callback_mutex. We also require taking |
| 210 | * task_lock() when dereferencing a task's cpuset pointer. See "The | 210 | * task_lock() when dereferencing a task's cpuset pointer. See "The |
| 211 | * task_lock() exception", at the end of this comment. | 211 | * task_lock() exception", at the end of this comment. |
| 212 | * | 212 | * |
| 213 | * A task must hold both mutexes to modify cpusets. If a task | 213 | * A task must hold both mutexes to modify cpusets. If a task |
| 214 | * holds cgroup_mutex, then it blocks others wanting that mutex, | 214 | * holds cgroup_mutex, then it blocks others wanting that mutex, |
| 215 | * ensuring that it is the only task able to also acquire callback_mutex | 215 | * ensuring that it is the only task able to also acquire callback_mutex |
| 216 | * and be able to modify cpusets. It can perform various checks on | 216 | * and be able to modify cpusets. It can perform various checks on |
| 217 | * the cpuset structure first, knowing nothing will change. It can | 217 | * the cpuset structure first, knowing nothing will change. It can |
| 218 | * also allocate memory while just holding cgroup_mutex. While it is | 218 | * also allocate memory while just holding cgroup_mutex. While it is |
| 219 | * performing these checks, various callback routines can briefly | 219 | * performing these checks, various callback routines can briefly |
| 220 | * acquire callback_mutex to query cpusets. Once it is ready to make | 220 | * acquire callback_mutex to query cpusets. Once it is ready to make |
| 221 | * the changes, it takes callback_mutex, blocking everyone else. | 221 | * the changes, it takes callback_mutex, blocking everyone else. |
| 222 | * | 222 | * |
| 223 | * Calls to the kernel memory allocator can not be made while holding | 223 | * Calls to the kernel memory allocator can not be made while holding |
| 224 | * callback_mutex, as that would risk double tripping on callback_mutex | 224 | * callback_mutex, as that would risk double tripping on callback_mutex |
| 225 | * from one of the callbacks into the cpuset code from within | 225 | * from one of the callbacks into the cpuset code from within |
| 226 | * __alloc_pages(). | 226 | * __alloc_pages(). |
| 227 | * | 227 | * |
| 228 | * If a task is only holding callback_mutex, then it has read-only | 228 | * If a task is only holding callback_mutex, then it has read-only |
| 229 | * access to cpusets. | 229 | * access to cpusets. |
| 230 | * | 230 | * |
| 231 | * The task_struct fields mems_allowed and mems_generation may only | 231 | * The task_struct fields mems_allowed and mems_generation may only |
| 232 | * be accessed in the context of that task, so require no locks. | 232 | * be accessed in the context of that task, so require no locks. |
| 233 | * | 233 | * |
| 234 | * The cpuset_common_file_read() handlers only hold callback_mutex across | 234 | * The cpuset_common_file_read() handlers only hold callback_mutex across |
| 235 | * small pieces of code, such as when reading out possibly multi-word | 235 | * small pieces of code, such as when reading out possibly multi-word |
| 236 | * cpumasks and nodemasks. | 236 | * cpumasks and nodemasks. |
| 237 | * | 237 | * |
| 238 | * Accessing a task's cpuset should be done in accordance with the | 238 | * Accessing a task's cpuset should be done in accordance with the |
| 239 | * guidelines for accessing subsystem state in kernel/cgroup.c | 239 | * guidelines for accessing subsystem state in kernel/cgroup.c |
| 240 | */ | 240 | */ |
| 241 | 241 | ||
| 242 | static DEFINE_MUTEX(callback_mutex); | 242 | static DEFINE_MUTEX(callback_mutex); |
| 243 | 243 | ||
| 244 | /* | 244 | /* |
| 245 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | 245 | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist |
| 246 | * buffers. They are statically allocated to prevent using excess stack | 246 | * buffers. They are statically allocated to prevent using excess stack |
| 247 | * when calling cpuset_print_task_mems_allowed(). | 247 | * when calling cpuset_print_task_mems_allowed(). |
| 248 | */ | 248 | */ |
| 249 | #define CPUSET_NAME_LEN (128) | 249 | #define CPUSET_NAME_LEN (128) |
| 250 | #define CPUSET_NODELIST_LEN (256) | 250 | #define CPUSET_NODELIST_LEN (256) |
| 251 | static char cpuset_name[CPUSET_NAME_LEN]; | 251 | static char cpuset_name[CPUSET_NAME_LEN]; |
| 252 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | 252 | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; |
| 253 | static DEFINE_SPINLOCK(cpuset_buffer_lock); | 253 | static DEFINE_SPINLOCK(cpuset_buffer_lock); |
| 254 | 254 | ||
| 255 | /* | 255 | /* |
| 256 | * This is ugly, but preserves the userspace API for existing cpuset | 256 | * This is ugly, but preserves the userspace API for existing cpuset |
| 257 | * users. If someone tries to mount the "cpuset" filesystem, we | 257 | * users. If someone tries to mount the "cpuset" filesystem, we |
| 258 | * silently switch it to mount "cgroup" instead | 258 | * silently switch it to mount "cgroup" instead |
| 259 | */ | 259 | */ |
| 260 | static int cpuset_get_sb(struct file_system_type *fs_type, | 260 | static int cpuset_get_sb(struct file_system_type *fs_type, |
| 261 | int flags, const char *unused_dev_name, | 261 | int flags, const char *unused_dev_name, |
| 262 | void *data, struct vfsmount *mnt) | 262 | void *data, struct vfsmount *mnt) |
| 263 | { | 263 | { |
| 264 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); | 264 | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); |
| 265 | int ret = -ENODEV; | 265 | int ret = -ENODEV; |
| 266 | if (cgroup_fs) { | 266 | if (cgroup_fs) { |
| 267 | char mountopts[] = | 267 | char mountopts[] = |
| 268 | "cpuset,noprefix," | 268 | "cpuset,noprefix," |
| 269 | "release_agent=/sbin/cpuset_release_agent"; | 269 | "release_agent=/sbin/cpuset_release_agent"; |
| 270 | ret = cgroup_fs->get_sb(cgroup_fs, flags, | 270 | ret = cgroup_fs->get_sb(cgroup_fs, flags, |
| 271 | unused_dev_name, mountopts, mnt); | 271 | unused_dev_name, mountopts, mnt); |
| 272 | put_filesystem(cgroup_fs); | 272 | put_filesystem(cgroup_fs); |
| 273 | } | 273 | } |
| 274 | return ret; | 274 | return ret; |
| 275 | } | 275 | } |
| 276 | 276 | ||
| 277 | static struct file_system_type cpuset_fs_type = { | 277 | static struct file_system_type cpuset_fs_type = { |
| 278 | .name = "cpuset", | 278 | .name = "cpuset", |
| 279 | .get_sb = cpuset_get_sb, | 279 | .get_sb = cpuset_get_sb, |
| 280 | }; | 280 | }; |
| 281 | 281 | ||
| 282 | /* | 282 | /* |
| 283 | * Return in pmask the portion of a cpusets's cpus_allowed that | 283 | * Return in pmask the portion of a cpusets's cpus_allowed that |
| 284 | * are online. If none are online, walk up the cpuset hierarchy | 284 | * are online. If none are online, walk up the cpuset hierarchy |
| 285 | * until we find one that does have some online cpus. If we get | 285 | * until we find one that does have some online cpus. If we get |
| 286 | * all the way to the top and still haven't found any online cpus, | 286 | * all the way to the top and still haven't found any online cpus, |
| 287 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing | 287 | * return cpu_online_map. Or if passed a NULL cs from an exit'ing |
| 288 | * task, return cpu_online_map. | 288 | * task, return cpu_online_map. |
| 289 | * | 289 | * |
| 290 | * One way or another, we guarantee to return some non-empty subset | 290 | * One way or another, we guarantee to return some non-empty subset |
| 291 | * of cpu_online_map. | 291 | * of cpu_online_map. |
| 292 | * | 292 | * |
| 293 | * Call with callback_mutex held. | 293 | * Call with callback_mutex held. |
| 294 | */ | 294 | */ |
| 295 | 295 | ||
| 296 | static void guarantee_online_cpus(const struct cpuset *cs, | 296 | static void guarantee_online_cpus(const struct cpuset *cs, |
| 297 | struct cpumask *pmask) | 297 | struct cpumask *pmask) |
| 298 | { | 298 | { |
| 299 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) | 299 | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) |
| 300 | cs = cs->parent; | 300 | cs = cs->parent; |
| 301 | if (cs) | 301 | if (cs) |
| 302 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); | 302 | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); |
| 303 | else | 303 | else |
| 304 | cpumask_copy(pmask, cpu_online_mask); | 304 | cpumask_copy(pmask, cpu_online_mask); |
| 305 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | 305 | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); |
| 306 | } | 306 | } |
| 307 | 307 | ||
| 308 | /* | 308 | /* |
| 309 | * Return in *pmask the portion of a cpusets's mems_allowed that | 309 | * Return in *pmask the portion of a cpusets's mems_allowed that |
| 310 | * are online, with memory. If none are online with memory, walk | 310 | * are online, with memory. If none are online with memory, walk |
| 311 | * up the cpuset hierarchy until we find one that does have some | 311 | * up the cpuset hierarchy until we find one that does have some |
| 312 | * online mems. If we get all the way to the top and still haven't | 312 | * online mems. If we get all the way to the top and still haven't |
| 313 | * found any online mems, return node_states[N_HIGH_MEMORY]. | 313 | * found any online mems, return node_states[N_HIGH_MEMORY]. |
| 314 | * | 314 | * |
| 315 | * One way or another, we guarantee to return some non-empty subset | 315 | * One way or another, we guarantee to return some non-empty subset |
| 316 | * of node_states[N_HIGH_MEMORY]. | 316 | * of node_states[N_HIGH_MEMORY]. |
| 317 | * | 317 | * |
| 318 | * Call with callback_mutex held. | 318 | * Call with callback_mutex held. |
| 319 | */ | 319 | */ |
| 320 | 320 | ||
| 321 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 321 | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) |
| 322 | { | 322 | { |
| 323 | while (cs && !nodes_intersects(cs->mems_allowed, | 323 | while (cs && !nodes_intersects(cs->mems_allowed, |
| 324 | node_states[N_HIGH_MEMORY])) | 324 | node_states[N_HIGH_MEMORY])) |
| 325 | cs = cs->parent; | 325 | cs = cs->parent; |
| 326 | if (cs) | 326 | if (cs) |
| 327 | nodes_and(*pmask, cs->mems_allowed, | 327 | nodes_and(*pmask, cs->mems_allowed, |
| 328 | node_states[N_HIGH_MEMORY]); | 328 | node_states[N_HIGH_MEMORY]); |
| 329 | else | 329 | else |
| 330 | *pmask = node_states[N_HIGH_MEMORY]; | 330 | *pmask = node_states[N_HIGH_MEMORY]; |
| 331 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | 331 | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); |
| 332 | } | 332 | } |
| 333 | 333 | ||
| 334 | /** | 334 | /** |
| 335 | * cpuset_update_task_memory_state - update task memory placement | 335 | * cpuset_update_task_memory_state - update task memory placement |
| 336 | * | 336 | * |
| 337 | * If the current tasks cpusets mems_allowed changed behind our | 337 | * If the current tasks cpusets mems_allowed changed behind our |
| 338 | * backs, update current->mems_allowed, mems_generation and task NUMA | 338 | * backs, update current->mems_allowed, mems_generation and task NUMA |
| 339 | * mempolicy to the new value. | 339 | * mempolicy to the new value. |
| 340 | * | 340 | * |
| 341 | * Task mempolicy is updated by rebinding it relative to the | 341 | * Task mempolicy is updated by rebinding it relative to the |
| 342 | * current->cpuset if a task has its memory placement changed. | 342 | * current->cpuset if a task has its memory placement changed. |
| 343 | * Do not call this routine if in_interrupt(). | 343 | * Do not call this routine if in_interrupt(). |
| 344 | * | 344 | * |
| 345 | * Call without callback_mutex or task_lock() held. May be | 345 | * Call without callback_mutex or task_lock() held. May be |
| 346 | * called with or without cgroup_mutex held. Thanks in part to | 346 | * called with or without cgroup_mutex held. Thanks in part to |
| 347 | * 'the_top_cpuset_hack', the task's cpuset pointer will never | 347 | * 'the_top_cpuset_hack', the task's cpuset pointer will never |
| 348 | * be NULL. This routine also might acquire callback_mutex during | 348 | * be NULL. This routine also might acquire callback_mutex during |
| 349 | * call. | 349 | * call. |
| 350 | * | 350 | * |
| 351 | * Reading current->cpuset->mems_generation doesn't need task_lock | 351 | * Reading current->cpuset->mems_generation doesn't need task_lock |
| 352 | * to guard the current->cpuset derefence, because it is guarded | 352 | * to guard the current->cpuset derefence, because it is guarded |
| 353 | * from concurrent freeing of current->cpuset using RCU. | 353 | * from concurrent freeing of current->cpuset using RCU. |
| 354 | * | 354 | * |
| 355 | * The rcu_dereference() is technically probably not needed, | 355 | * The rcu_dereference() is technically probably not needed, |
| 356 | * as I don't actually mind if I see a new cpuset pointer but | 356 | * as I don't actually mind if I see a new cpuset pointer but |
| 357 | * an old value of mems_generation. However this really only | 357 | * an old value of mems_generation. However this really only |
| 358 | * matters on alpha systems using cpusets heavily. If I dropped | 358 | * matters on alpha systems using cpusets heavily. If I dropped |
| 359 | * that rcu_dereference(), it would save them a memory barrier. | 359 | * that rcu_dereference(), it would save them a memory barrier. |
| 360 | * For all other arch's, rcu_dereference is a no-op anyway, and for | 360 | * For all other arch's, rcu_dereference is a no-op anyway, and for |
| 361 | * alpha systems not using cpusets, another planned optimization, | 361 | * alpha systems not using cpusets, another planned optimization, |
| 362 | * avoiding the rcu critical section for tasks in the root cpuset | 362 | * avoiding the rcu critical section for tasks in the root cpuset |
| 363 | * which is statically allocated, so can't vanish, will make this | 363 | * which is statically allocated, so can't vanish, will make this |
| 364 | * irrelevant. Better to use RCU as intended, than to engage in | 364 | * irrelevant. Better to use RCU as intended, than to engage in |
| 365 | * some cute trick to save a memory barrier that is impossible to | 365 | * some cute trick to save a memory barrier that is impossible to |
| 366 | * test, for alpha systems using cpusets heavily, which might not | 366 | * test, for alpha systems using cpusets heavily, which might not |
| 367 | * even exist. | 367 | * even exist. |
| 368 | * | 368 | * |
| 369 | * This routine is needed to update the per-task mems_allowed data, | 369 | * This routine is needed to update the per-task mems_allowed data, |
| 370 | * within the tasks context, when it is trying to allocate memory | 370 | * within the tasks context, when it is trying to allocate memory |
| 371 | * (in various mm/mempolicy.c routines) and notices that some other | 371 | * (in various mm/mempolicy.c routines) and notices that some other |
| 372 | * task has been modifying its cpuset. | 372 | * task has been modifying its cpuset. |
| 373 | */ | 373 | */ |
| 374 | 374 | ||
| 375 | void cpuset_update_task_memory_state(void) | 375 | void cpuset_update_task_memory_state(void) |
| 376 | { | 376 | { |
| 377 | int my_cpusets_mem_gen; | 377 | int my_cpusets_mem_gen; |
| 378 | struct task_struct *tsk = current; | 378 | struct task_struct *tsk = current; |
| 379 | struct cpuset *cs; | 379 | struct cpuset *cs; |
| 380 | 380 | ||
| 381 | rcu_read_lock(); | 381 | rcu_read_lock(); |
| 382 | my_cpusets_mem_gen = task_cs(tsk)->mems_generation; | 382 | my_cpusets_mem_gen = task_cs(tsk)->mems_generation; |
| 383 | rcu_read_unlock(); | 383 | rcu_read_unlock(); |
| 384 | 384 | ||
| 385 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { | 385 | if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) { |
| 386 | mutex_lock(&callback_mutex); | 386 | mutex_lock(&callback_mutex); |
| 387 | task_lock(tsk); | 387 | task_lock(tsk); |
| 388 | cs = task_cs(tsk); /* Maybe changed when task not locked */ | 388 | cs = task_cs(tsk); /* Maybe changed when task not locked */ |
| 389 | guarantee_online_mems(cs, &tsk->mems_allowed); | 389 | guarantee_online_mems(cs, &tsk->mems_allowed); |
| 390 | tsk->cpuset_mems_generation = cs->mems_generation; | 390 | tsk->cpuset_mems_generation = cs->mems_generation; |
| 391 | if (is_spread_page(cs)) | 391 | if (is_spread_page(cs)) |
| 392 | tsk->flags |= PF_SPREAD_PAGE; | 392 | tsk->flags |= PF_SPREAD_PAGE; |
| 393 | else | 393 | else |
| 394 | tsk->flags &= ~PF_SPREAD_PAGE; | 394 | tsk->flags &= ~PF_SPREAD_PAGE; |
| 395 | if (is_spread_slab(cs)) | 395 | if (is_spread_slab(cs)) |
| 396 | tsk->flags |= PF_SPREAD_SLAB; | 396 | tsk->flags |= PF_SPREAD_SLAB; |
| 397 | else | 397 | else |
| 398 | tsk->flags &= ~PF_SPREAD_SLAB; | 398 | tsk->flags &= ~PF_SPREAD_SLAB; |
| 399 | task_unlock(tsk); | 399 | task_unlock(tsk); |
| 400 | mutex_unlock(&callback_mutex); | 400 | mutex_unlock(&callback_mutex); |
| 401 | mpol_rebind_task(tsk, &tsk->mems_allowed); | 401 | mpol_rebind_task(tsk, &tsk->mems_allowed); |
| 402 | } | 402 | } |
| 403 | } | 403 | } |
| 404 | 404 | ||
| 405 | /* | 405 | /* |
| 406 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 406 | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? |
| 407 | * | 407 | * |
| 408 | * One cpuset is a subset of another if all its allowed CPUs and | 408 | * One cpuset is a subset of another if all its allowed CPUs and |
| 409 | * Memory Nodes are a subset of the other, and its exclusive flags | 409 | * Memory Nodes are a subset of the other, and its exclusive flags |
| 410 | * are only set if the other's are set. Call holding cgroup_mutex. | 410 | * are only set if the other's are set. Call holding cgroup_mutex. |
| 411 | */ | 411 | */ |
| 412 | 412 | ||
| 413 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 413 | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) |
| 414 | { | 414 | { |
| 415 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && | 415 | return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && |
| 416 | nodes_subset(p->mems_allowed, q->mems_allowed) && | 416 | nodes_subset(p->mems_allowed, q->mems_allowed) && |
| 417 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 417 | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && |
| 418 | is_mem_exclusive(p) <= is_mem_exclusive(q); | 418 | is_mem_exclusive(p) <= is_mem_exclusive(q); |
| 419 | } | 419 | } |
| 420 | 420 | ||
| 421 | /** | 421 | /** |
| 422 | * alloc_trial_cpuset - allocate a trial cpuset | 422 | * alloc_trial_cpuset - allocate a trial cpuset |
| 423 | * @cs: the cpuset that the trial cpuset duplicates | 423 | * @cs: the cpuset that the trial cpuset duplicates |
| 424 | */ | 424 | */ |
| 425 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | 425 | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) |
| 426 | { | 426 | { |
| 427 | struct cpuset *trial; | 427 | struct cpuset *trial; |
| 428 | 428 | ||
| 429 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 429 | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); |
| 430 | if (!trial) | 430 | if (!trial) |
| 431 | return NULL; | 431 | return NULL; |
| 432 | 432 | ||
| 433 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | 433 | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { |
| 434 | kfree(trial); | 434 | kfree(trial); |
| 435 | return NULL; | 435 | return NULL; |
| 436 | } | 436 | } |
| 437 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 437 | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); |
| 438 | 438 | ||
| 439 | return trial; | 439 | return trial; |
| 440 | } | 440 | } |
| 441 | 441 | ||
| 442 | /** | 442 | /** |
| 443 | * free_trial_cpuset - free the trial cpuset | 443 | * free_trial_cpuset - free the trial cpuset |
| 444 | * @trial: the trial cpuset to be freed | 444 | * @trial: the trial cpuset to be freed |
| 445 | */ | 445 | */ |
| 446 | static void free_trial_cpuset(struct cpuset *trial) | 446 | static void free_trial_cpuset(struct cpuset *trial) |
| 447 | { | 447 | { |
| 448 | free_cpumask_var(trial->cpus_allowed); | 448 | free_cpumask_var(trial->cpus_allowed); |
| 449 | kfree(trial); | 449 | kfree(trial); |
| 450 | } | 450 | } |
| 451 | 451 | ||
| 452 | /* | 452 | /* |
| 453 | * validate_change() - Used to validate that any proposed cpuset change | 453 | * validate_change() - Used to validate that any proposed cpuset change |
| 454 | * follows the structural rules for cpusets. | 454 | * follows the structural rules for cpusets. |
| 455 | * | 455 | * |
| 456 | * If we replaced the flag and mask values of the current cpuset | 456 | * If we replaced the flag and mask values of the current cpuset |
| 457 | * (cur) with those values in the trial cpuset (trial), would | 457 | * (cur) with those values in the trial cpuset (trial), would |
| 458 | * our various subset and exclusive rules still be valid? Presumes | 458 | * our various subset and exclusive rules still be valid? Presumes |
| 459 | * cgroup_mutex held. | 459 | * cgroup_mutex held. |
| 460 | * | 460 | * |
| 461 | * 'cur' is the address of an actual, in-use cpuset. Operations | 461 | * 'cur' is the address of an actual, in-use cpuset. Operations |
| 462 | * such as list traversal that depend on the actual address of the | 462 | * such as list traversal that depend on the actual address of the |
| 463 | * cpuset in the list must use cur below, not trial. | 463 | * cpuset in the list must use cur below, not trial. |
| 464 | * | 464 | * |
| 465 | * 'trial' is the address of bulk structure copy of cur, with | 465 | * 'trial' is the address of bulk structure copy of cur, with |
| 466 | * perhaps one or more of the fields cpus_allowed, mems_allowed, | 466 | * perhaps one or more of the fields cpus_allowed, mems_allowed, |
| 467 | * or flags changed to new, trial values. | 467 | * or flags changed to new, trial values. |
| 468 | * | 468 | * |
| 469 | * Return 0 if valid, -errno if not. | 469 | * Return 0 if valid, -errno if not. |
| 470 | */ | 470 | */ |
| 471 | 471 | ||
| 472 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 472 | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) |
| 473 | { | 473 | { |
| 474 | struct cgroup *cont; | 474 | struct cgroup *cont; |
| 475 | struct cpuset *c, *par; | 475 | struct cpuset *c, *par; |
| 476 | 476 | ||
| 477 | /* Each of our child cpusets must be a subset of us */ | 477 | /* Each of our child cpusets must be a subset of us */ |
| 478 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { | 478 | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { |
| 479 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | 479 | if (!is_cpuset_subset(cgroup_cs(cont), trial)) |
| 480 | return -EBUSY; | 480 | return -EBUSY; |
| 481 | } | 481 | } |
| 482 | 482 | ||
| 483 | /* Remaining checks don't apply to root cpuset */ | 483 | /* Remaining checks don't apply to root cpuset */ |
| 484 | if (cur == &top_cpuset) | 484 | if (cur == &top_cpuset) |
| 485 | return 0; | 485 | return 0; |
| 486 | 486 | ||
| 487 | par = cur->parent; | 487 | par = cur->parent; |
| 488 | 488 | ||
| 489 | /* We must be a subset of our parent cpuset */ | 489 | /* We must be a subset of our parent cpuset */ |
| 490 | if (!is_cpuset_subset(trial, par)) | 490 | if (!is_cpuset_subset(trial, par)) |
| 491 | return -EACCES; | 491 | return -EACCES; |
| 492 | 492 | ||
| 493 | /* | 493 | /* |
| 494 | * If either I or some sibling (!= me) is exclusive, we can't | 494 | * If either I or some sibling (!= me) is exclusive, we can't |
| 495 | * overlap | 495 | * overlap |
| 496 | */ | 496 | */ |
| 497 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { | 497 | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { |
| 498 | c = cgroup_cs(cont); | 498 | c = cgroup_cs(cont); |
| 499 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 499 | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && |
| 500 | c != cur && | 500 | c != cur && |
| 501 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) | 501 | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) |
| 502 | return -EINVAL; | 502 | return -EINVAL; |
| 503 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 503 | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && |
| 504 | c != cur && | 504 | c != cur && |
| 505 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 505 | nodes_intersects(trial->mems_allowed, c->mems_allowed)) |
| 506 | return -EINVAL; | 506 | return -EINVAL; |
| 507 | } | 507 | } |
| 508 | 508 | ||
| 509 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ | 509 | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ |
| 510 | if (cgroup_task_count(cur->css.cgroup)) { | 510 | if (cgroup_task_count(cur->css.cgroup)) { |
| 511 | if (cpumask_empty(trial->cpus_allowed) || | 511 | if (cpumask_empty(trial->cpus_allowed) || |
| 512 | nodes_empty(trial->mems_allowed)) { | 512 | nodes_empty(trial->mems_allowed)) { |
| 513 | return -ENOSPC; | 513 | return -ENOSPC; |
| 514 | } | 514 | } |
| 515 | } | 515 | } |
| 516 | 516 | ||
| 517 | return 0; | 517 | return 0; |
| 518 | } | 518 | } |
| 519 | 519 | ||
| 520 | /* | 520 | /* |
| 521 | * Helper routine for generate_sched_domains(). | 521 | * Helper routine for generate_sched_domains(). |
| 522 | * Do cpusets a, b have overlapping cpus_allowed masks? | 522 | * Do cpusets a, b have overlapping cpus_allowed masks? |
| 523 | */ | 523 | */ |
| 524 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 524 | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) |
| 525 | { | 525 | { |
| 526 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); | 526 | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); |
| 527 | } | 527 | } |
| 528 | 528 | ||
| 529 | static void | 529 | static void |
| 530 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 530 | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) |
| 531 | { | 531 | { |
| 532 | if (dattr->relax_domain_level < c->relax_domain_level) | 532 | if (dattr->relax_domain_level < c->relax_domain_level) |
| 533 | dattr->relax_domain_level = c->relax_domain_level; | 533 | dattr->relax_domain_level = c->relax_domain_level; |
| 534 | return; | 534 | return; |
| 535 | } | 535 | } |
| 536 | 536 | ||
| 537 | static void | 537 | static void |
| 538 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | 538 | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) |
| 539 | { | 539 | { |
| 540 | LIST_HEAD(q); | 540 | LIST_HEAD(q); |
| 541 | 541 | ||
| 542 | list_add(&c->stack_list, &q); | 542 | list_add(&c->stack_list, &q); |
| 543 | while (!list_empty(&q)) { | 543 | while (!list_empty(&q)) { |
| 544 | struct cpuset *cp; | 544 | struct cpuset *cp; |
| 545 | struct cgroup *cont; | 545 | struct cgroup *cont; |
| 546 | struct cpuset *child; | 546 | struct cpuset *child; |
| 547 | 547 | ||
| 548 | cp = list_first_entry(&q, struct cpuset, stack_list); | 548 | cp = list_first_entry(&q, struct cpuset, stack_list); |
| 549 | list_del(q.next); | 549 | list_del(q.next); |
| 550 | 550 | ||
| 551 | if (cpumask_empty(cp->cpus_allowed)) | 551 | if (cpumask_empty(cp->cpus_allowed)) |
| 552 | continue; | 552 | continue; |
| 553 | 553 | ||
| 554 | if (is_sched_load_balance(cp)) | 554 | if (is_sched_load_balance(cp)) |
| 555 | update_domain_attr(dattr, cp); | 555 | update_domain_attr(dattr, cp); |
| 556 | 556 | ||
| 557 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 557 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
| 558 | child = cgroup_cs(cont); | 558 | child = cgroup_cs(cont); |
| 559 | list_add_tail(&child->stack_list, &q); | 559 | list_add_tail(&child->stack_list, &q); |
| 560 | } | 560 | } |
| 561 | } | 561 | } |
| 562 | } | 562 | } |
| 563 | 563 | ||
| 564 | /* | 564 | /* |
| 565 | * generate_sched_domains() | 565 | * generate_sched_domains() |
| 566 | * | 566 | * |
| 567 | * This function builds a partial partition of the systems CPUs | 567 | * This function builds a partial partition of the systems CPUs |
| 568 | * A 'partial partition' is a set of non-overlapping subsets whose | 568 | * A 'partial partition' is a set of non-overlapping subsets whose |
| 569 | * union is a subset of that set. | 569 | * union is a subset of that set. |
| 570 | * The output of this function needs to be passed to kernel/sched.c | 570 | * The output of this function needs to be passed to kernel/sched.c |
| 571 | * partition_sched_domains() routine, which will rebuild the scheduler's | 571 | * partition_sched_domains() routine, which will rebuild the scheduler's |
| 572 | * load balancing domains (sched domains) as specified by that partial | 572 | * load balancing domains (sched domains) as specified by that partial |
| 573 | * partition. | 573 | * partition. |
| 574 | * | 574 | * |
| 575 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt | 575 | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt |
| 576 | * for a background explanation of this. | 576 | * for a background explanation of this. |
| 577 | * | 577 | * |
| 578 | * Does not return errors, on the theory that the callers of this | 578 | * Does not return errors, on the theory that the callers of this |
| 579 | * routine would rather not worry about failures to rebuild sched | 579 | * routine would rather not worry about failures to rebuild sched |
| 580 | * domains when operating in the severe memory shortage situations | 580 | * domains when operating in the severe memory shortage situations |
| 581 | * that could cause allocation failures below. | 581 | * that could cause allocation failures below. |
| 582 | * | 582 | * |
| 583 | * Must be called with cgroup_lock held. | 583 | * Must be called with cgroup_lock held. |
| 584 | * | 584 | * |
| 585 | * The three key local variables below are: | 585 | * The three key local variables below are: |
| 586 | * q - a linked-list queue of cpuset pointers, used to implement a | 586 | * q - a linked-list queue of cpuset pointers, used to implement a |
| 587 | * top-down scan of all cpusets. This scan loads a pointer | 587 | * top-down scan of all cpusets. This scan loads a pointer |
| 588 | * to each cpuset marked is_sched_load_balance into the | 588 | * to each cpuset marked is_sched_load_balance into the |
| 589 | * array 'csa'. For our purposes, rebuilding the schedulers | 589 | * array 'csa'. For our purposes, rebuilding the schedulers |
| 590 | * sched domains, we can ignore !is_sched_load_balance cpusets. | 590 | * sched domains, we can ignore !is_sched_load_balance cpusets. |
| 591 | * csa - (for CpuSet Array) Array of pointers to all the cpusets | 591 | * csa - (for CpuSet Array) Array of pointers to all the cpusets |
| 592 | * that need to be load balanced, for convenient iterative | 592 | * that need to be load balanced, for convenient iterative |
| 593 | * access by the subsequent code that finds the best partition, | 593 | * access by the subsequent code that finds the best partition, |
| 594 | * i.e the set of domains (subsets) of CPUs such that the | 594 | * i.e the set of domains (subsets) of CPUs such that the |
| 595 | * cpus_allowed of every cpuset marked is_sched_load_balance | 595 | * cpus_allowed of every cpuset marked is_sched_load_balance |
| 596 | * is a subset of one of these domains, while there are as | 596 | * is a subset of one of these domains, while there are as |
| 597 | * many such domains as possible, each as small as possible. | 597 | * many such domains as possible, each as small as possible. |
| 598 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to | 598 | * doms - Conversion of 'csa' to an array of cpumasks, for passing to |
| 599 | * the kernel/sched.c routine partition_sched_domains() in a | 599 | * the kernel/sched.c routine partition_sched_domains() in a |
| 600 | * convenient format, that can be easily compared to the prior | 600 | * convenient format, that can be easily compared to the prior |
| 601 | * value to determine what partition elements (sched domains) | 601 | * value to determine what partition elements (sched domains) |
| 602 | * were changed (added or removed.) | 602 | * were changed (added or removed.) |
| 603 | * | 603 | * |
| 604 | * Finding the best partition (set of domains): | 604 | * Finding the best partition (set of domains): |
| 605 | * The triple nested loops below over i, j, k scan over the | 605 | * The triple nested loops below over i, j, k scan over the |
| 606 | * load balanced cpusets (using the array of cpuset pointers in | 606 | * load balanced cpusets (using the array of cpuset pointers in |
| 607 | * csa[]) looking for pairs of cpusets that have overlapping | 607 | * csa[]) looking for pairs of cpusets that have overlapping |
| 608 | * cpus_allowed, but which don't have the same 'pn' partition | 608 | * cpus_allowed, but which don't have the same 'pn' partition |
| 609 | * number and gives them in the same partition number. It keeps | 609 | * number and gives them in the same partition number. It keeps |
| 610 | * looping on the 'restart' label until it can no longer find | 610 | * looping on the 'restart' label until it can no longer find |
| 611 | * any such pairs. | 611 | * any such pairs. |
| 612 | * | 612 | * |
| 613 | * The union of the cpus_allowed masks from the set of | 613 | * The union of the cpus_allowed masks from the set of |
| 614 | * all cpusets having the same 'pn' value then form the one | 614 | * all cpusets having the same 'pn' value then form the one |
| 615 | * element of the partition (one sched domain) to be passed to | 615 | * element of the partition (one sched domain) to be passed to |
| 616 | * partition_sched_domains(). | 616 | * partition_sched_domains(). |
| 617 | */ | 617 | */ |
| 618 | /* FIXME: see the FIXME in partition_sched_domains() */ | 618 | /* FIXME: see the FIXME in partition_sched_domains() */ |
| 619 | static int generate_sched_domains(struct cpumask **domains, | 619 | static int generate_sched_domains(struct cpumask **domains, |
| 620 | struct sched_domain_attr **attributes) | 620 | struct sched_domain_attr **attributes) |
| 621 | { | 621 | { |
| 622 | LIST_HEAD(q); /* queue of cpusets to be scanned */ | 622 | LIST_HEAD(q); /* queue of cpusets to be scanned */ |
| 623 | struct cpuset *cp; /* scans q */ | 623 | struct cpuset *cp; /* scans q */ |
| 624 | struct cpuset **csa; /* array of all cpuset ptrs */ | 624 | struct cpuset **csa; /* array of all cpuset ptrs */ |
| 625 | int csn; /* how many cpuset ptrs in csa so far */ | 625 | int csn; /* how many cpuset ptrs in csa so far */ |
| 626 | int i, j, k; /* indices for partition finding loops */ | 626 | int i, j, k; /* indices for partition finding loops */ |
| 627 | struct cpumask *doms; /* resulting partition; i.e. sched domains */ | 627 | struct cpumask *doms; /* resulting partition; i.e. sched domains */ |
| 628 | struct sched_domain_attr *dattr; /* attributes for custom domains */ | 628 | struct sched_domain_attr *dattr; /* attributes for custom domains */ |
| 629 | int ndoms = 0; /* number of sched domains in result */ | 629 | int ndoms = 0; /* number of sched domains in result */ |
| 630 | int nslot; /* next empty doms[] struct cpumask slot */ | 630 | int nslot; /* next empty doms[] struct cpumask slot */ |
| 631 | 631 | ||
| 632 | doms = NULL; | 632 | doms = NULL; |
| 633 | dattr = NULL; | 633 | dattr = NULL; |
| 634 | csa = NULL; | 634 | csa = NULL; |
| 635 | 635 | ||
| 636 | /* Special case for the 99% of systems with one, full, sched domain */ | 636 | /* Special case for the 99% of systems with one, full, sched domain */ |
| 637 | if (is_sched_load_balance(&top_cpuset)) { | 637 | if (is_sched_load_balance(&top_cpuset)) { |
| 638 | doms = kmalloc(cpumask_size(), GFP_KERNEL); | 638 | doms = kmalloc(cpumask_size(), GFP_KERNEL); |
| 639 | if (!doms) | 639 | if (!doms) |
| 640 | goto done; | 640 | goto done; |
| 641 | 641 | ||
| 642 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 642 | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); |
| 643 | if (dattr) { | 643 | if (dattr) { |
| 644 | *dattr = SD_ATTR_INIT; | 644 | *dattr = SD_ATTR_INIT; |
| 645 | update_domain_attr_tree(dattr, &top_cpuset); | 645 | update_domain_attr_tree(dattr, &top_cpuset); |
| 646 | } | 646 | } |
| 647 | cpumask_copy(doms, top_cpuset.cpus_allowed); | 647 | cpumask_copy(doms, top_cpuset.cpus_allowed); |
| 648 | 648 | ||
| 649 | ndoms = 1; | 649 | ndoms = 1; |
| 650 | goto done; | 650 | goto done; |
| 651 | } | 651 | } |
| 652 | 652 | ||
| 653 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); | 653 | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); |
| 654 | if (!csa) | 654 | if (!csa) |
| 655 | goto done; | 655 | goto done; |
| 656 | csn = 0; | 656 | csn = 0; |
| 657 | 657 | ||
| 658 | list_add(&top_cpuset.stack_list, &q); | 658 | list_add(&top_cpuset.stack_list, &q); |
| 659 | while (!list_empty(&q)) { | 659 | while (!list_empty(&q)) { |
| 660 | struct cgroup *cont; | 660 | struct cgroup *cont; |
| 661 | struct cpuset *child; /* scans child cpusets of cp */ | 661 | struct cpuset *child; /* scans child cpusets of cp */ |
| 662 | 662 | ||
| 663 | cp = list_first_entry(&q, struct cpuset, stack_list); | 663 | cp = list_first_entry(&q, struct cpuset, stack_list); |
| 664 | list_del(q.next); | 664 | list_del(q.next); |
| 665 | 665 | ||
| 666 | if (cpumask_empty(cp->cpus_allowed)) | 666 | if (cpumask_empty(cp->cpus_allowed)) |
| 667 | continue; | 667 | continue; |
| 668 | 668 | ||
| 669 | /* | 669 | /* |
| 670 | * All child cpusets contain a subset of the parent's cpus, so | 670 | * All child cpusets contain a subset of the parent's cpus, so |
| 671 | * just skip them, and then we call update_domain_attr_tree() | 671 | * just skip them, and then we call update_domain_attr_tree() |
| 672 | * to calc relax_domain_level of the corresponding sched | 672 | * to calc relax_domain_level of the corresponding sched |
| 673 | * domain. | 673 | * domain. |
| 674 | */ | 674 | */ |
| 675 | if (is_sched_load_balance(cp)) { | 675 | if (is_sched_load_balance(cp)) { |
| 676 | csa[csn++] = cp; | 676 | csa[csn++] = cp; |
| 677 | continue; | 677 | continue; |
| 678 | } | 678 | } |
| 679 | 679 | ||
| 680 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 680 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
| 681 | child = cgroup_cs(cont); | 681 | child = cgroup_cs(cont); |
| 682 | list_add_tail(&child->stack_list, &q); | 682 | list_add_tail(&child->stack_list, &q); |
| 683 | } | 683 | } |
| 684 | } | 684 | } |
| 685 | 685 | ||
| 686 | for (i = 0; i < csn; i++) | 686 | for (i = 0; i < csn; i++) |
| 687 | csa[i]->pn = i; | 687 | csa[i]->pn = i; |
| 688 | ndoms = csn; | 688 | ndoms = csn; |
| 689 | 689 | ||
| 690 | restart: | 690 | restart: |
| 691 | /* Find the best partition (set of sched domains) */ | 691 | /* Find the best partition (set of sched domains) */ |
| 692 | for (i = 0; i < csn; i++) { | 692 | for (i = 0; i < csn; i++) { |
| 693 | struct cpuset *a = csa[i]; | 693 | struct cpuset *a = csa[i]; |
| 694 | int apn = a->pn; | 694 | int apn = a->pn; |
| 695 | 695 | ||
| 696 | for (j = 0; j < csn; j++) { | 696 | for (j = 0; j < csn; j++) { |
| 697 | struct cpuset *b = csa[j]; | 697 | struct cpuset *b = csa[j]; |
| 698 | int bpn = b->pn; | 698 | int bpn = b->pn; |
| 699 | 699 | ||
| 700 | if (apn != bpn && cpusets_overlap(a, b)) { | 700 | if (apn != bpn && cpusets_overlap(a, b)) { |
| 701 | for (k = 0; k < csn; k++) { | 701 | for (k = 0; k < csn; k++) { |
| 702 | struct cpuset *c = csa[k]; | 702 | struct cpuset *c = csa[k]; |
| 703 | 703 | ||
| 704 | if (c->pn == bpn) | 704 | if (c->pn == bpn) |
| 705 | c->pn = apn; | 705 | c->pn = apn; |
| 706 | } | 706 | } |
| 707 | ndoms--; /* one less element */ | 707 | ndoms--; /* one less element */ |
| 708 | goto restart; | 708 | goto restart; |
| 709 | } | 709 | } |
| 710 | } | 710 | } |
| 711 | } | 711 | } |
| 712 | 712 | ||
| 713 | /* | 713 | /* |
| 714 | * Now we know how many domains to create. | 714 | * Now we know how many domains to create. |
| 715 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 715 | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. |
| 716 | */ | 716 | */ |
| 717 | doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL); | 717 | doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL); |
| 718 | if (!doms) | 718 | if (!doms) |
| 719 | goto done; | 719 | goto done; |
| 720 | 720 | ||
| 721 | /* | 721 | /* |
| 722 | * The rest of the code, including the scheduler, can deal with | 722 | * The rest of the code, including the scheduler, can deal with |
| 723 | * dattr==NULL case. No need to abort if alloc fails. | 723 | * dattr==NULL case. No need to abort if alloc fails. |
| 724 | */ | 724 | */ |
| 725 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); | 725 | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); |
| 726 | 726 | ||
| 727 | for (nslot = 0, i = 0; i < csn; i++) { | 727 | for (nslot = 0, i = 0; i < csn; i++) { |
| 728 | struct cpuset *a = csa[i]; | 728 | struct cpuset *a = csa[i]; |
| 729 | struct cpumask *dp; | 729 | struct cpumask *dp; |
| 730 | int apn = a->pn; | 730 | int apn = a->pn; |
| 731 | 731 | ||
| 732 | if (apn < 0) { | 732 | if (apn < 0) { |
| 733 | /* Skip completed partitions */ | 733 | /* Skip completed partitions */ |
| 734 | continue; | 734 | continue; |
| 735 | } | 735 | } |
| 736 | 736 | ||
| 737 | dp = doms + nslot; | 737 | dp = doms + nslot; |
| 738 | 738 | ||
| 739 | if (nslot == ndoms) { | 739 | if (nslot == ndoms) { |
| 740 | static int warnings = 10; | 740 | static int warnings = 10; |
| 741 | if (warnings) { | 741 | if (warnings) { |
| 742 | printk(KERN_WARNING | 742 | printk(KERN_WARNING |
| 743 | "rebuild_sched_domains confused:" | 743 | "rebuild_sched_domains confused:" |
| 744 | " nslot %d, ndoms %d, csn %d, i %d," | 744 | " nslot %d, ndoms %d, csn %d, i %d," |
| 745 | " apn %d\n", | 745 | " apn %d\n", |
| 746 | nslot, ndoms, csn, i, apn); | 746 | nslot, ndoms, csn, i, apn); |
| 747 | warnings--; | 747 | warnings--; |
| 748 | } | 748 | } |
| 749 | continue; | 749 | continue; |
| 750 | } | 750 | } |
| 751 | 751 | ||
| 752 | cpumask_clear(dp); | 752 | cpumask_clear(dp); |
| 753 | if (dattr) | 753 | if (dattr) |
| 754 | *(dattr + nslot) = SD_ATTR_INIT; | 754 | *(dattr + nslot) = SD_ATTR_INIT; |
| 755 | for (j = i; j < csn; j++) { | 755 | for (j = i; j < csn; j++) { |
| 756 | struct cpuset *b = csa[j]; | 756 | struct cpuset *b = csa[j]; |
| 757 | 757 | ||
| 758 | if (apn == b->pn) { | 758 | if (apn == b->pn) { |
| 759 | cpumask_or(dp, dp, b->cpus_allowed); | 759 | cpumask_or(dp, dp, b->cpus_allowed); |
| 760 | if (dattr) | 760 | if (dattr) |
| 761 | update_domain_attr_tree(dattr + nslot, b); | 761 | update_domain_attr_tree(dattr + nslot, b); |
| 762 | 762 | ||
| 763 | /* Done with this partition */ | 763 | /* Done with this partition */ |
| 764 | b->pn = -1; | 764 | b->pn = -1; |
| 765 | } | 765 | } |
| 766 | } | 766 | } |
| 767 | nslot++; | 767 | nslot++; |
| 768 | } | 768 | } |
| 769 | BUG_ON(nslot != ndoms); | 769 | BUG_ON(nslot != ndoms); |
| 770 | 770 | ||
| 771 | done: | 771 | done: |
| 772 | kfree(csa); | 772 | kfree(csa); |
| 773 | 773 | ||
| 774 | /* | 774 | /* |
| 775 | * Fallback to the default domain if kmalloc() failed. | 775 | * Fallback to the default domain if kmalloc() failed. |
| 776 | * See comments in partition_sched_domains(). | 776 | * See comments in partition_sched_domains(). |
| 777 | */ | 777 | */ |
| 778 | if (doms == NULL) | 778 | if (doms == NULL) |
| 779 | ndoms = 1; | 779 | ndoms = 1; |
| 780 | 780 | ||
| 781 | *domains = doms; | 781 | *domains = doms; |
| 782 | *attributes = dattr; | 782 | *attributes = dattr; |
| 783 | return ndoms; | 783 | return ndoms; |
| 784 | } | 784 | } |
| 785 | 785 | ||
| 786 | /* | 786 | /* |
| 787 | * Rebuild scheduler domains. | 787 | * Rebuild scheduler domains. |
| 788 | * | 788 | * |
| 789 | * Call with neither cgroup_mutex held nor within get_online_cpus(). | 789 | * Call with neither cgroup_mutex held nor within get_online_cpus(). |
| 790 | * Takes both cgroup_mutex and get_online_cpus(). | 790 | * Takes both cgroup_mutex and get_online_cpus(). |
| 791 | * | 791 | * |
| 792 | * Cannot be directly called from cpuset code handling changes | 792 | * Cannot be directly called from cpuset code handling changes |
| 793 | * to the cpuset pseudo-filesystem, because it cannot be called | 793 | * to the cpuset pseudo-filesystem, because it cannot be called |
| 794 | * from code that already holds cgroup_mutex. | 794 | * from code that already holds cgroup_mutex. |
| 795 | */ | 795 | */ |
| 796 | static void do_rebuild_sched_domains(struct work_struct *unused) | 796 | static void do_rebuild_sched_domains(struct work_struct *unused) |
| 797 | { | 797 | { |
| 798 | struct sched_domain_attr *attr; | 798 | struct sched_domain_attr *attr; |
| 799 | struct cpumask *doms; | 799 | struct cpumask *doms; |
| 800 | int ndoms; | 800 | int ndoms; |
| 801 | 801 | ||
| 802 | get_online_cpus(); | 802 | get_online_cpus(); |
| 803 | 803 | ||
| 804 | /* Generate domain masks and attrs */ | 804 | /* Generate domain masks and attrs */ |
| 805 | cgroup_lock(); | 805 | cgroup_lock(); |
| 806 | ndoms = generate_sched_domains(&doms, &attr); | 806 | ndoms = generate_sched_domains(&doms, &attr); |
| 807 | cgroup_unlock(); | 807 | cgroup_unlock(); |
| 808 | 808 | ||
| 809 | /* Have scheduler rebuild the domains */ | 809 | /* Have scheduler rebuild the domains */ |
| 810 | partition_sched_domains(ndoms, doms, attr); | 810 | partition_sched_domains(ndoms, doms, attr); |
| 811 | 811 | ||
| 812 | put_online_cpus(); | 812 | put_online_cpus(); |
| 813 | } | 813 | } |
| 814 | 814 | ||
| 815 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); | 815 | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); |
| 816 | 816 | ||
| 817 | /* | 817 | /* |
| 818 | * Rebuild scheduler domains, asynchronously via workqueue. | 818 | * Rebuild scheduler domains, asynchronously via workqueue. |
| 819 | * | 819 | * |
| 820 | * If the flag 'sched_load_balance' of any cpuset with non-empty | 820 | * If the flag 'sched_load_balance' of any cpuset with non-empty |
| 821 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 821 | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset |
| 822 | * which has that flag enabled, or if any cpuset with a non-empty | 822 | * which has that flag enabled, or if any cpuset with a non-empty |
| 823 | * 'cpus' is removed, then call this routine to rebuild the | 823 | * 'cpus' is removed, then call this routine to rebuild the |
| 824 | * scheduler's dynamic sched domains. | 824 | * scheduler's dynamic sched domains. |
| 825 | * | 825 | * |
| 826 | * The rebuild_sched_domains() and partition_sched_domains() | 826 | * The rebuild_sched_domains() and partition_sched_domains() |
| 827 | * routines must nest cgroup_lock() inside get_online_cpus(), | 827 | * routines must nest cgroup_lock() inside get_online_cpus(), |
| 828 | * but such cpuset changes as these must nest that locking the | 828 | * but such cpuset changes as these must nest that locking the |
| 829 | * other way, holding cgroup_lock() for much of the code. | 829 | * other way, holding cgroup_lock() for much of the code. |
| 830 | * | 830 | * |
| 831 | * So in order to avoid an ABBA deadlock, the cpuset code handling | 831 | * So in order to avoid an ABBA deadlock, the cpuset code handling |
| 832 | * these user changes delegates the actual sched domain rebuilding | 832 | * these user changes delegates the actual sched domain rebuilding |
| 833 | * to a separate workqueue thread, which ends up processing the | 833 | * to a separate workqueue thread, which ends up processing the |
| 834 | * above do_rebuild_sched_domains() function. | 834 | * above do_rebuild_sched_domains() function. |
| 835 | */ | 835 | */ |
| 836 | static void async_rebuild_sched_domains(void) | 836 | static void async_rebuild_sched_domains(void) |
| 837 | { | 837 | { |
| 838 | queue_work(cpuset_wq, &rebuild_sched_domains_work); | 838 | queue_work(cpuset_wq, &rebuild_sched_domains_work); |
| 839 | } | 839 | } |
| 840 | 840 | ||
| 841 | /* | 841 | /* |
| 842 | * Accomplishes the same scheduler domain rebuild as the above | 842 | * Accomplishes the same scheduler domain rebuild as the above |
| 843 | * async_rebuild_sched_domains(), however it directly calls the | 843 | * async_rebuild_sched_domains(), however it directly calls the |
| 844 | * rebuild routine synchronously rather than calling it via an | 844 | * rebuild routine synchronously rather than calling it via an |
| 845 | * asynchronous work thread. | 845 | * asynchronous work thread. |
| 846 | * | 846 | * |
| 847 | * This can only be called from code that is not holding | 847 | * This can only be called from code that is not holding |
| 848 | * cgroup_mutex (not nested in a cgroup_lock() call.) | 848 | * cgroup_mutex (not nested in a cgroup_lock() call.) |
| 849 | */ | 849 | */ |
| 850 | void rebuild_sched_domains(void) | 850 | void rebuild_sched_domains(void) |
| 851 | { | 851 | { |
| 852 | do_rebuild_sched_domains(NULL); | 852 | do_rebuild_sched_domains(NULL); |
| 853 | } | 853 | } |
| 854 | 854 | ||
| 855 | /** | 855 | /** |
| 856 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | 856 | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's |
| 857 | * @tsk: task to test | 857 | * @tsk: task to test |
| 858 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 858 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner |
| 859 | * | 859 | * |
| 860 | * Call with cgroup_mutex held. May take callback_mutex during call. | 860 | * Call with cgroup_mutex held. May take callback_mutex during call. |
| 861 | * Called for each task in a cgroup by cgroup_scan_tasks(). | 861 | * Called for each task in a cgroup by cgroup_scan_tasks(). |
| 862 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | 862 | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other |
| 863 | * words, if its mask is not equal to its cpuset's mask). | 863 | * words, if its mask is not equal to its cpuset's mask). |
| 864 | */ | 864 | */ |
| 865 | static int cpuset_test_cpumask(struct task_struct *tsk, | 865 | static int cpuset_test_cpumask(struct task_struct *tsk, |
| 866 | struct cgroup_scanner *scan) | 866 | struct cgroup_scanner *scan) |
| 867 | { | 867 | { |
| 868 | return !cpumask_equal(&tsk->cpus_allowed, | 868 | return !cpumask_equal(&tsk->cpus_allowed, |
| 869 | (cgroup_cs(scan->cg))->cpus_allowed); | 869 | (cgroup_cs(scan->cg))->cpus_allowed); |
| 870 | } | 870 | } |
| 871 | 871 | ||
| 872 | /** | 872 | /** |
| 873 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | 873 | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's |
| 874 | * @tsk: task to test | 874 | * @tsk: task to test |
| 875 | * @scan: struct cgroup_scanner containing the cgroup of the task | 875 | * @scan: struct cgroup_scanner containing the cgroup of the task |
| 876 | * | 876 | * |
| 877 | * Called by cgroup_scan_tasks() for each task in a cgroup whose | 877 | * Called by cgroup_scan_tasks() for each task in a cgroup whose |
| 878 | * cpus_allowed mask needs to be changed. | 878 | * cpus_allowed mask needs to be changed. |
| 879 | * | 879 | * |
| 880 | * We don't need to re-check for the cgroup/cpuset membership, since we're | 880 | * We don't need to re-check for the cgroup/cpuset membership, since we're |
| 881 | * holding cgroup_lock() at this point. | 881 | * holding cgroup_lock() at this point. |
| 882 | */ | 882 | */ |
| 883 | static void cpuset_change_cpumask(struct task_struct *tsk, | 883 | static void cpuset_change_cpumask(struct task_struct *tsk, |
| 884 | struct cgroup_scanner *scan) | 884 | struct cgroup_scanner *scan) |
| 885 | { | 885 | { |
| 886 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); | 886 | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); |
| 887 | } | 887 | } |
| 888 | 888 | ||
| 889 | /** | 889 | /** |
| 890 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 890 | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. |
| 891 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 891 | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed |
| 892 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 892 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
| 893 | * | 893 | * |
| 894 | * Called with cgroup_mutex held | 894 | * Called with cgroup_mutex held |
| 895 | * | 895 | * |
| 896 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 896 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, |
| 897 | * calling callback functions for each. | 897 | * calling callback functions for each. |
| 898 | * | 898 | * |
| 899 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 899 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
| 900 | * if @heap != NULL. | 900 | * if @heap != NULL. |
| 901 | */ | 901 | */ |
| 902 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) | 902 | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) |
| 903 | { | 903 | { |
| 904 | struct cgroup_scanner scan; | 904 | struct cgroup_scanner scan; |
| 905 | 905 | ||
| 906 | scan.cg = cs->css.cgroup; | 906 | scan.cg = cs->css.cgroup; |
| 907 | scan.test_task = cpuset_test_cpumask; | 907 | scan.test_task = cpuset_test_cpumask; |
| 908 | scan.process_task = cpuset_change_cpumask; | 908 | scan.process_task = cpuset_change_cpumask; |
| 909 | scan.heap = heap; | 909 | scan.heap = heap; |
| 910 | cgroup_scan_tasks(&scan); | 910 | cgroup_scan_tasks(&scan); |
| 911 | } | 911 | } |
| 912 | 912 | ||
| 913 | /** | 913 | /** |
| 914 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 914 | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it |
| 915 | * @cs: the cpuset to consider | 915 | * @cs: the cpuset to consider |
| 916 | * @buf: buffer of cpu numbers written to this cpuset | 916 | * @buf: buffer of cpu numbers written to this cpuset |
| 917 | */ | 917 | */ |
| 918 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 918 | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, |
| 919 | const char *buf) | 919 | const char *buf) |
| 920 | { | 920 | { |
| 921 | struct ptr_heap heap; | 921 | struct ptr_heap heap; |
| 922 | int retval; | 922 | int retval; |
| 923 | int is_load_balanced; | 923 | int is_load_balanced; |
| 924 | 924 | ||
| 925 | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ | 925 | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ |
| 926 | if (cs == &top_cpuset) | 926 | if (cs == &top_cpuset) |
| 927 | return -EACCES; | 927 | return -EACCES; |
| 928 | 928 | ||
| 929 | /* | 929 | /* |
| 930 | * An empty cpus_allowed is ok only if the cpuset has no tasks. | 930 | * An empty cpus_allowed is ok only if the cpuset has no tasks. |
| 931 | * Since cpulist_parse() fails on an empty mask, we special case | 931 | * Since cpulist_parse() fails on an empty mask, we special case |
| 932 | * that parsing. The validate_change() call ensures that cpusets | 932 | * that parsing. The validate_change() call ensures that cpusets |
| 933 | * with tasks have cpus. | 933 | * with tasks have cpus. |
| 934 | */ | 934 | */ |
| 935 | if (!*buf) { | 935 | if (!*buf) { |
| 936 | cpumask_clear(trialcs->cpus_allowed); | 936 | cpumask_clear(trialcs->cpus_allowed); |
| 937 | } else { | 937 | } else { |
| 938 | retval = cpulist_parse(buf, trialcs->cpus_allowed); | 938 | retval = cpulist_parse(buf, trialcs->cpus_allowed); |
| 939 | if (retval < 0) | 939 | if (retval < 0) |
| 940 | return retval; | 940 | return retval; |
| 941 | 941 | ||
| 942 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask)) | 942 | if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask)) |
| 943 | return -EINVAL; | 943 | return -EINVAL; |
| 944 | } | 944 | } |
| 945 | retval = validate_change(cs, trialcs); | 945 | retval = validate_change(cs, trialcs); |
| 946 | if (retval < 0) | 946 | if (retval < 0) |
| 947 | return retval; | 947 | return retval; |
| 948 | 948 | ||
| 949 | /* Nothing to do if the cpus didn't change */ | 949 | /* Nothing to do if the cpus didn't change */ |
| 950 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) | 950 | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) |
| 951 | return 0; | 951 | return 0; |
| 952 | 952 | ||
| 953 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 953 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
| 954 | if (retval) | 954 | if (retval) |
| 955 | return retval; | 955 | return retval; |
| 956 | 956 | ||
| 957 | is_load_balanced = is_sched_load_balance(trialcs); | 957 | is_load_balanced = is_sched_load_balance(trialcs); |
| 958 | 958 | ||
| 959 | mutex_lock(&callback_mutex); | 959 | mutex_lock(&callback_mutex); |
| 960 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 960 | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); |
| 961 | mutex_unlock(&callback_mutex); | 961 | mutex_unlock(&callback_mutex); |
| 962 | 962 | ||
| 963 | /* | 963 | /* |
| 964 | * Scan tasks in the cpuset, and update the cpumasks of any | 964 | * Scan tasks in the cpuset, and update the cpumasks of any |
| 965 | * that need an update. | 965 | * that need an update. |
| 966 | */ | 966 | */ |
| 967 | update_tasks_cpumask(cs, &heap); | 967 | update_tasks_cpumask(cs, &heap); |
| 968 | 968 | ||
| 969 | heap_free(&heap); | 969 | heap_free(&heap); |
| 970 | 970 | ||
| 971 | if (is_load_balanced) | 971 | if (is_load_balanced) |
| 972 | async_rebuild_sched_domains(); | 972 | async_rebuild_sched_domains(); |
| 973 | return 0; | 973 | return 0; |
| 974 | } | 974 | } |
| 975 | 975 | ||
| 976 | /* | 976 | /* |
| 977 | * cpuset_migrate_mm | 977 | * cpuset_migrate_mm |
| 978 | * | 978 | * |
| 979 | * Migrate memory region from one set of nodes to another. | 979 | * Migrate memory region from one set of nodes to another. |
| 980 | * | 980 | * |
| 981 | * Temporarilly set tasks mems_allowed to target nodes of migration, | 981 | * Temporarilly set tasks mems_allowed to target nodes of migration, |
| 982 | * so that the migration code can allocate pages on these nodes. | 982 | * so that the migration code can allocate pages on these nodes. |
| 983 | * | 983 | * |
| 984 | * Call holding cgroup_mutex, so current's cpuset won't change | 984 | * Call holding cgroup_mutex, so current's cpuset won't change |
| 985 | * during this call, as manage_mutex holds off any cpuset_attach() | 985 | * during this call, as manage_mutex holds off any cpuset_attach() |
| 986 | * calls. Therefore we don't need to take task_lock around the | 986 | * calls. Therefore we don't need to take task_lock around the |
| 987 | * call to guarantee_online_mems(), as we know no one is changing | 987 | * call to guarantee_online_mems(), as we know no one is changing |
| 988 | * our task's cpuset. | 988 | * our task's cpuset. |
| 989 | * | 989 | * |
| 990 | * Hold callback_mutex around the two modifications of our tasks | 990 | * Hold callback_mutex around the two modifications of our tasks |
| 991 | * mems_allowed to synchronize with cpuset_mems_allowed(). | 991 | * mems_allowed to synchronize with cpuset_mems_allowed(). |
| 992 | * | 992 | * |
| 993 | * While the mm_struct we are migrating is typically from some | 993 | * While the mm_struct we are migrating is typically from some |
| 994 | * other task, the task_struct mems_allowed that we are hacking | 994 | * other task, the task_struct mems_allowed that we are hacking |
| 995 | * is for our current task, which must allocate new pages for that | 995 | * is for our current task, which must allocate new pages for that |
| 996 | * migrating memory region. | 996 | * migrating memory region. |
| 997 | * | 997 | * |
| 998 | * We call cpuset_update_task_memory_state() before hacking | 998 | * We call cpuset_update_task_memory_state() before hacking |
| 999 | * our tasks mems_allowed, so that we are assured of being in | 999 | * our tasks mems_allowed, so that we are assured of being in |
| 1000 | * sync with our tasks cpuset, and in particular, callbacks to | 1000 | * sync with our tasks cpuset, and in particular, callbacks to |
| 1001 | * cpuset_update_task_memory_state() from nested page allocations | 1001 | * cpuset_update_task_memory_state() from nested page allocations |
| 1002 | * won't see any mismatch of our cpuset and task mems_generation | 1002 | * won't see any mismatch of our cpuset and task mems_generation |
| 1003 | * values, so won't overwrite our hacked tasks mems_allowed | 1003 | * values, so won't overwrite our hacked tasks mems_allowed |
| 1004 | * nodemask. | 1004 | * nodemask. |
| 1005 | */ | 1005 | */ |
| 1006 | 1006 | ||
| 1007 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 1007 | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, |
| 1008 | const nodemask_t *to) | 1008 | const nodemask_t *to) |
| 1009 | { | 1009 | { |
| 1010 | struct task_struct *tsk = current; | 1010 | struct task_struct *tsk = current; |
| 1011 | 1011 | ||
| 1012 | cpuset_update_task_memory_state(); | 1012 | cpuset_update_task_memory_state(); |
| 1013 | 1013 | ||
| 1014 | mutex_lock(&callback_mutex); | 1014 | mutex_lock(&callback_mutex); |
| 1015 | tsk->mems_allowed = *to; | 1015 | tsk->mems_allowed = *to; |
| 1016 | mutex_unlock(&callback_mutex); | 1016 | mutex_unlock(&callback_mutex); |
| 1017 | 1017 | ||
| 1018 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | 1018 | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); |
| 1019 | 1019 | ||
| 1020 | mutex_lock(&callback_mutex); | 1020 | mutex_lock(&callback_mutex); |
| 1021 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); | 1021 | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); |
| 1022 | mutex_unlock(&callback_mutex); | 1022 | mutex_unlock(&callback_mutex); |
| 1023 | } | 1023 | } |
| 1024 | 1024 | ||
| 1025 | /* | 1025 | /* |
| 1026 | * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new | 1026 | * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new |
| 1027 | * nodes if memory_migrate flag is set. Called with cgroup_mutex held. | 1027 | * nodes if memory_migrate flag is set. Called with cgroup_mutex held. |
| 1028 | */ | 1028 | */ |
| 1029 | static void cpuset_change_nodemask(struct task_struct *p, | 1029 | static void cpuset_change_nodemask(struct task_struct *p, |
| 1030 | struct cgroup_scanner *scan) | 1030 | struct cgroup_scanner *scan) |
| 1031 | { | 1031 | { |
| 1032 | struct mm_struct *mm; | 1032 | struct mm_struct *mm; |
| 1033 | struct cpuset *cs; | 1033 | struct cpuset *cs; |
| 1034 | int migrate; | 1034 | int migrate; |
| 1035 | const nodemask_t *oldmem = scan->data; | 1035 | const nodemask_t *oldmem = scan->data; |
| 1036 | 1036 | ||
| 1037 | mm = get_task_mm(p); | 1037 | mm = get_task_mm(p); |
| 1038 | if (!mm) | 1038 | if (!mm) |
| 1039 | return; | 1039 | return; |
| 1040 | 1040 | ||
| 1041 | cs = cgroup_cs(scan->cg); | 1041 | cs = cgroup_cs(scan->cg); |
| 1042 | migrate = is_memory_migrate(cs); | 1042 | migrate = is_memory_migrate(cs); |
| 1043 | 1043 | ||
| 1044 | mpol_rebind_mm(mm, &cs->mems_allowed); | 1044 | mpol_rebind_mm(mm, &cs->mems_allowed); |
| 1045 | if (migrate) | 1045 | if (migrate) |
| 1046 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | 1046 | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); |
| 1047 | mmput(mm); | 1047 | mmput(mm); |
| 1048 | } | 1048 | } |
| 1049 | 1049 | ||
| 1050 | static void *cpuset_being_rebound; | 1050 | static void *cpuset_being_rebound; |
| 1051 | 1051 | ||
| 1052 | /** | 1052 | /** |
| 1053 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 1053 | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. |
| 1054 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 1054 | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed |
| 1055 | * @oldmem: old mems_allowed of cpuset cs | 1055 | * @oldmem: old mems_allowed of cpuset cs |
| 1056 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 1056 | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() |
| 1057 | * | 1057 | * |
| 1058 | * Called with cgroup_mutex held | 1058 | * Called with cgroup_mutex held |
| 1059 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 1059 | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 |
| 1060 | * if @heap != NULL. | 1060 | * if @heap != NULL. |
| 1061 | */ | 1061 | */ |
| 1062 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, | 1062 | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, |
| 1063 | struct ptr_heap *heap) | 1063 | struct ptr_heap *heap) |
| 1064 | { | 1064 | { |
| 1065 | struct cgroup_scanner scan; | 1065 | struct cgroup_scanner scan; |
| 1066 | 1066 | ||
| 1067 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ | 1067 | cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ |
| 1068 | 1068 | ||
| 1069 | scan.cg = cs->css.cgroup; | 1069 | scan.cg = cs->css.cgroup; |
| 1070 | scan.test_task = NULL; | 1070 | scan.test_task = NULL; |
| 1071 | scan.process_task = cpuset_change_nodemask; | 1071 | scan.process_task = cpuset_change_nodemask; |
| 1072 | scan.heap = heap; | 1072 | scan.heap = heap; |
| 1073 | scan.data = (nodemask_t *)oldmem; | 1073 | scan.data = (nodemask_t *)oldmem; |
| 1074 | 1074 | ||
| 1075 | /* | 1075 | /* |
| 1076 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't | 1076 | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't |
| 1077 | * take while holding tasklist_lock. Forks can happen - the | 1077 | * take while holding tasklist_lock. Forks can happen - the |
| 1078 | * mpol_dup() cpuset_being_rebound check will catch such forks, | 1078 | * mpol_dup() cpuset_being_rebound check will catch such forks, |
| 1079 | * and rebind their vma mempolicies too. Because we still hold | 1079 | * and rebind their vma mempolicies too. Because we still hold |
| 1080 | * the global cgroup_mutex, we know that no other rebind effort | 1080 | * the global cgroup_mutex, we know that no other rebind effort |
| 1081 | * will be contending for the global variable cpuset_being_rebound. | 1081 | * will be contending for the global variable cpuset_being_rebound. |
| 1082 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 1082 | * It's ok if we rebind the same mm twice; mpol_rebind_mm() |
| 1083 | * is idempotent. Also migrate pages in each mm to new nodes. | 1083 | * is idempotent. Also migrate pages in each mm to new nodes. |
| 1084 | */ | 1084 | */ |
| 1085 | cgroup_scan_tasks(&scan); | 1085 | cgroup_scan_tasks(&scan); |
| 1086 | 1086 | ||
| 1087 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 1087 | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ |
| 1088 | cpuset_being_rebound = NULL; | 1088 | cpuset_being_rebound = NULL; |
| 1089 | } | 1089 | } |
| 1090 | 1090 | ||
| 1091 | /* | 1091 | /* |
| 1092 | * Handle user request to change the 'mems' memory placement | 1092 | * Handle user request to change the 'mems' memory placement |
| 1093 | * of a cpuset. Needs to validate the request, update the | 1093 | * of a cpuset. Needs to validate the request, update the |
| 1094 | * cpusets mems_allowed and mems_generation, and for each | 1094 | * cpusets mems_allowed and mems_generation, and for each |
| 1095 | * task in the cpuset, rebind any vma mempolicies and if | 1095 | * task in the cpuset, rebind any vma mempolicies and if |
| 1096 | * the cpuset is marked 'memory_migrate', migrate the tasks | 1096 | * the cpuset is marked 'memory_migrate', migrate the tasks |
| 1097 | * pages to the new memory. | 1097 | * pages to the new memory. |
| 1098 | * | 1098 | * |
| 1099 | * Call with cgroup_mutex held. May take callback_mutex during call. | 1099 | * Call with cgroup_mutex held. May take callback_mutex during call. |
| 1100 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 1100 | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, |
| 1101 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 1101 | * lock each such tasks mm->mmap_sem, scan its vma's and rebind |
| 1102 | * their mempolicies to the cpusets new mems_allowed. | 1102 | * their mempolicies to the cpusets new mems_allowed. |
| 1103 | */ | 1103 | */ |
| 1104 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 1104 | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, |
| 1105 | const char *buf) | 1105 | const char *buf) |
| 1106 | { | 1106 | { |
| 1107 | nodemask_t oldmem; | 1107 | nodemask_t oldmem; |
| 1108 | int retval; | 1108 | int retval; |
| 1109 | struct ptr_heap heap; | 1109 | struct ptr_heap heap; |
| 1110 | 1110 | ||
| 1111 | /* | 1111 | /* |
| 1112 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | 1112 | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; |
| 1113 | * it's read-only | 1113 | * it's read-only |
| 1114 | */ | 1114 | */ |
| 1115 | if (cs == &top_cpuset) | 1115 | if (cs == &top_cpuset) |
| 1116 | return -EACCES; | 1116 | return -EACCES; |
| 1117 | 1117 | ||
| 1118 | /* | 1118 | /* |
| 1119 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 1119 | * An empty mems_allowed is ok iff there are no tasks in the cpuset. |
| 1120 | * Since nodelist_parse() fails on an empty mask, we special case | 1120 | * Since nodelist_parse() fails on an empty mask, we special case |
| 1121 | * that parsing. The validate_change() call ensures that cpusets | 1121 | * that parsing. The validate_change() call ensures that cpusets |
| 1122 | * with tasks have memory. | 1122 | * with tasks have memory. |
| 1123 | */ | 1123 | */ |
| 1124 | if (!*buf) { | 1124 | if (!*buf) { |
| 1125 | nodes_clear(trialcs->mems_allowed); | 1125 | nodes_clear(trialcs->mems_allowed); |
| 1126 | } else { | 1126 | } else { |
| 1127 | retval = nodelist_parse(buf, trialcs->mems_allowed); | 1127 | retval = nodelist_parse(buf, trialcs->mems_allowed); |
| 1128 | if (retval < 0) | 1128 | if (retval < 0) |
| 1129 | goto done; | 1129 | goto done; |
| 1130 | 1130 | ||
| 1131 | if (!nodes_subset(trialcs->mems_allowed, | 1131 | if (!nodes_subset(trialcs->mems_allowed, |
| 1132 | node_states[N_HIGH_MEMORY])) | 1132 | node_states[N_HIGH_MEMORY])) |
| 1133 | return -EINVAL; | 1133 | return -EINVAL; |
| 1134 | } | 1134 | } |
| 1135 | oldmem = cs->mems_allowed; | 1135 | oldmem = cs->mems_allowed; |
| 1136 | if (nodes_equal(oldmem, trialcs->mems_allowed)) { | 1136 | if (nodes_equal(oldmem, trialcs->mems_allowed)) { |
| 1137 | retval = 0; /* Too easy - nothing to do */ | 1137 | retval = 0; /* Too easy - nothing to do */ |
| 1138 | goto done; | 1138 | goto done; |
| 1139 | } | 1139 | } |
| 1140 | retval = validate_change(cs, trialcs); | 1140 | retval = validate_change(cs, trialcs); |
| 1141 | if (retval < 0) | 1141 | if (retval < 0) |
| 1142 | goto done; | 1142 | goto done; |
| 1143 | 1143 | ||
| 1144 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 1144 | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); |
| 1145 | if (retval < 0) | 1145 | if (retval < 0) |
| 1146 | goto done; | 1146 | goto done; |
| 1147 | 1147 | ||
| 1148 | mutex_lock(&callback_mutex); | 1148 | mutex_lock(&callback_mutex); |
| 1149 | cs->mems_allowed = trialcs->mems_allowed; | 1149 | cs->mems_allowed = trialcs->mems_allowed; |
| 1150 | cs->mems_generation = cpuset_mems_generation++; | 1150 | cs->mems_generation = cpuset_mems_generation++; |
| 1151 | mutex_unlock(&callback_mutex); | 1151 | mutex_unlock(&callback_mutex); |
| 1152 | 1152 | ||
| 1153 | update_tasks_nodemask(cs, &oldmem, &heap); | 1153 | update_tasks_nodemask(cs, &oldmem, &heap); |
| 1154 | 1154 | ||
| 1155 | heap_free(&heap); | 1155 | heap_free(&heap); |
| 1156 | done: | 1156 | done: |
| 1157 | return retval; | 1157 | return retval; |
| 1158 | } | 1158 | } |
| 1159 | 1159 | ||
| 1160 | int current_cpuset_is_being_rebound(void) | 1160 | int current_cpuset_is_being_rebound(void) |
| 1161 | { | 1161 | { |
| 1162 | return task_cs(current) == cpuset_being_rebound; | 1162 | return task_cs(current) == cpuset_being_rebound; |
| 1163 | } | 1163 | } |
| 1164 | 1164 | ||
| 1165 | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 1165 | static int update_relax_domain_level(struct cpuset *cs, s64 val) |
| 1166 | { | 1166 | { |
| 1167 | if (val < -1 || val >= SD_LV_MAX) | 1167 | if (val < -1 || val >= SD_LV_MAX) |
| 1168 | return -EINVAL; | 1168 | return -EINVAL; |
| 1169 | 1169 | ||
| 1170 | if (val != cs->relax_domain_level) { | 1170 | if (val != cs->relax_domain_level) { |
| 1171 | cs->relax_domain_level = val; | 1171 | cs->relax_domain_level = val; |
| 1172 | if (!cpumask_empty(cs->cpus_allowed) && | 1172 | if (!cpumask_empty(cs->cpus_allowed) && |
| 1173 | is_sched_load_balance(cs)) | 1173 | is_sched_load_balance(cs)) |
| 1174 | async_rebuild_sched_domains(); | 1174 | async_rebuild_sched_domains(); |
| 1175 | } | 1175 | } |
| 1176 | 1176 | ||
| 1177 | return 0; | 1177 | return 0; |
| 1178 | } | 1178 | } |
| 1179 | 1179 | ||
| 1180 | /* | 1180 | /* |
| 1181 | * update_flag - read a 0 or a 1 in a file and update associated flag | 1181 | * update_flag - read a 0 or a 1 in a file and update associated flag |
| 1182 | * bit: the bit to update (see cpuset_flagbits_t) | 1182 | * bit: the bit to update (see cpuset_flagbits_t) |
| 1183 | * cs: the cpuset to update | 1183 | * cs: the cpuset to update |
| 1184 | * turning_on: whether the flag is being set or cleared | 1184 | * turning_on: whether the flag is being set or cleared |
| 1185 | * | 1185 | * |
| 1186 | * Call with cgroup_mutex held. | 1186 | * Call with cgroup_mutex held. |
| 1187 | */ | 1187 | */ |
| 1188 | 1188 | ||
| 1189 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 1189 | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, |
| 1190 | int turning_on) | 1190 | int turning_on) |
| 1191 | { | 1191 | { |
| 1192 | struct cpuset *trialcs; | 1192 | struct cpuset *trialcs; |
| 1193 | int err; | 1193 | int err; |
| 1194 | int balance_flag_changed; | 1194 | int balance_flag_changed; |
| 1195 | 1195 | ||
| 1196 | trialcs = alloc_trial_cpuset(cs); | 1196 | trialcs = alloc_trial_cpuset(cs); |
| 1197 | if (!trialcs) | 1197 | if (!trialcs) |
| 1198 | return -ENOMEM; | 1198 | return -ENOMEM; |
| 1199 | 1199 | ||
| 1200 | if (turning_on) | 1200 | if (turning_on) |
| 1201 | set_bit(bit, &trialcs->flags); | 1201 | set_bit(bit, &trialcs->flags); |
| 1202 | else | 1202 | else |
| 1203 | clear_bit(bit, &trialcs->flags); | 1203 | clear_bit(bit, &trialcs->flags); |
| 1204 | 1204 | ||
| 1205 | err = validate_change(cs, trialcs); | 1205 | err = validate_change(cs, trialcs); |
| 1206 | if (err < 0) | 1206 | if (err < 0) |
| 1207 | goto out; | 1207 | goto out; |
| 1208 | 1208 | ||
| 1209 | balance_flag_changed = (is_sched_load_balance(cs) != | 1209 | balance_flag_changed = (is_sched_load_balance(cs) != |
| 1210 | is_sched_load_balance(trialcs)); | 1210 | is_sched_load_balance(trialcs)); |
| 1211 | 1211 | ||
| 1212 | mutex_lock(&callback_mutex); | 1212 | mutex_lock(&callback_mutex); |
| 1213 | cs->flags = trialcs->flags; | 1213 | cs->flags = trialcs->flags; |
| 1214 | mutex_unlock(&callback_mutex); | 1214 | mutex_unlock(&callback_mutex); |
| 1215 | 1215 | ||
| 1216 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 1216 | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) |
| 1217 | async_rebuild_sched_domains(); | 1217 | async_rebuild_sched_domains(); |
| 1218 | 1218 | ||
| 1219 | out: | 1219 | out: |
| 1220 | free_trial_cpuset(trialcs); | 1220 | free_trial_cpuset(trialcs); |
| 1221 | return err; | 1221 | return err; |
| 1222 | } | 1222 | } |
| 1223 | 1223 | ||
| 1224 | /* | 1224 | /* |
| 1225 | * Frequency meter - How fast is some event occurring? | 1225 | * Frequency meter - How fast is some event occurring? |
| 1226 | * | 1226 | * |
| 1227 | * These routines manage a digitally filtered, constant time based, | 1227 | * These routines manage a digitally filtered, constant time based, |
| 1228 | * event frequency meter. There are four routines: | 1228 | * event frequency meter. There are four routines: |
| 1229 | * fmeter_init() - initialize a frequency meter. | 1229 | * fmeter_init() - initialize a frequency meter. |
| 1230 | * fmeter_markevent() - called each time the event happens. | 1230 | * fmeter_markevent() - called each time the event happens. |
| 1231 | * fmeter_getrate() - returns the recent rate of such events. | 1231 | * fmeter_getrate() - returns the recent rate of such events. |
| 1232 | * fmeter_update() - internal routine used to update fmeter. | 1232 | * fmeter_update() - internal routine used to update fmeter. |
| 1233 | * | 1233 | * |
| 1234 | * A common data structure is passed to each of these routines, | 1234 | * A common data structure is passed to each of these routines, |
| 1235 | * which is used to keep track of the state required to manage the | 1235 | * which is used to keep track of the state required to manage the |
| 1236 | * frequency meter and its digital filter. | 1236 | * frequency meter and its digital filter. |
| 1237 | * | 1237 | * |
| 1238 | * The filter works on the number of events marked per unit time. | 1238 | * The filter works on the number of events marked per unit time. |
| 1239 | * The filter is single-pole low-pass recursive (IIR). The time unit | 1239 | * The filter is single-pole low-pass recursive (IIR). The time unit |
| 1240 | * is 1 second. Arithmetic is done using 32-bit integers scaled to | 1240 | * is 1 second. Arithmetic is done using 32-bit integers scaled to |
| 1241 | * simulate 3 decimal digits of precision (multiplied by 1000). | 1241 | * simulate 3 decimal digits of precision (multiplied by 1000). |
| 1242 | * | 1242 | * |
| 1243 | * With an FM_COEF of 933, and a time base of 1 second, the filter | 1243 | * With an FM_COEF of 933, and a time base of 1 second, the filter |
| 1244 | * has a half-life of 10 seconds, meaning that if the events quit | 1244 | * has a half-life of 10 seconds, meaning that if the events quit |
| 1245 | * happening, then the rate returned from the fmeter_getrate() | 1245 | * happening, then the rate returned from the fmeter_getrate() |
| 1246 | * will be cut in half each 10 seconds, until it converges to zero. | 1246 | * will be cut in half each 10 seconds, until it converges to zero. |
| 1247 | * | 1247 | * |
| 1248 | * It is not worth doing a real infinitely recursive filter. If more | 1248 | * It is not worth doing a real infinitely recursive filter. If more |
| 1249 | * than FM_MAXTICKS ticks have elapsed since the last filter event, | 1249 | * than FM_MAXTICKS ticks have elapsed since the last filter event, |
| 1250 | * just compute FM_MAXTICKS ticks worth, by which point the level | 1250 | * just compute FM_MAXTICKS ticks worth, by which point the level |
| 1251 | * will be stable. | 1251 | * will be stable. |
| 1252 | * | 1252 | * |
| 1253 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 1253 | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid |
| 1254 | * arithmetic overflow in the fmeter_update() routine. | 1254 | * arithmetic overflow in the fmeter_update() routine. |
| 1255 | * | 1255 | * |
| 1256 | * Given the simple 32 bit integer arithmetic used, this meter works | 1256 | * Given the simple 32 bit integer arithmetic used, this meter works |
| 1257 | * best for reporting rates between one per millisecond (msec) and | 1257 | * best for reporting rates between one per millisecond (msec) and |
| 1258 | * one per 32 (approx) seconds. At constant rates faster than one | 1258 | * one per 32 (approx) seconds. At constant rates faster than one |
| 1259 | * per msec it maxes out at values just under 1,000,000. At constant | 1259 | * per msec it maxes out at values just under 1,000,000. At constant |
| 1260 | * rates between one per msec, and one per second it will stabilize | 1260 | * rates between one per msec, and one per second it will stabilize |
| 1261 | * to a value N*1000, where N is the rate of events per second. | 1261 | * to a value N*1000, where N is the rate of events per second. |
| 1262 | * At constant rates between one per second and one per 32 seconds, | 1262 | * At constant rates between one per second and one per 32 seconds, |
| 1263 | * it will be choppy, moving up on the seconds that have an event, | 1263 | * it will be choppy, moving up on the seconds that have an event, |
| 1264 | * and then decaying until the next event. At rates slower than | 1264 | * and then decaying until the next event. At rates slower than |
| 1265 | * about one in 32 seconds, it decays all the way back to zero between | 1265 | * about one in 32 seconds, it decays all the way back to zero between |
| 1266 | * each event. | 1266 | * each event. |
| 1267 | */ | 1267 | */ |
| 1268 | 1268 | ||
| 1269 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ | 1269 | #define FM_COEF 933 /* coefficient for half-life of 10 secs */ |
| 1270 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | 1270 | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ |
| 1271 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ | 1271 | #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ |
| 1272 | #define FM_SCALE 1000 /* faux fixed point scale */ | 1272 | #define FM_SCALE 1000 /* faux fixed point scale */ |
| 1273 | 1273 | ||
| 1274 | /* Initialize a frequency meter */ | 1274 | /* Initialize a frequency meter */ |
| 1275 | static void fmeter_init(struct fmeter *fmp) | 1275 | static void fmeter_init(struct fmeter *fmp) |
| 1276 | { | 1276 | { |
| 1277 | fmp->cnt = 0; | 1277 | fmp->cnt = 0; |
| 1278 | fmp->val = 0; | 1278 | fmp->val = 0; |
| 1279 | fmp->time = 0; | 1279 | fmp->time = 0; |
| 1280 | spin_lock_init(&fmp->lock); | 1280 | spin_lock_init(&fmp->lock); |
| 1281 | } | 1281 | } |
| 1282 | 1282 | ||
| 1283 | /* Internal meter update - process cnt events and update value */ | 1283 | /* Internal meter update - process cnt events and update value */ |
| 1284 | static void fmeter_update(struct fmeter *fmp) | 1284 | static void fmeter_update(struct fmeter *fmp) |
| 1285 | { | 1285 | { |
| 1286 | time_t now = get_seconds(); | 1286 | time_t now = get_seconds(); |
| 1287 | time_t ticks = now - fmp->time; | 1287 | time_t ticks = now - fmp->time; |
| 1288 | 1288 | ||
| 1289 | if (ticks == 0) | 1289 | if (ticks == 0) |
| 1290 | return; | 1290 | return; |
| 1291 | 1291 | ||
| 1292 | ticks = min(FM_MAXTICKS, ticks); | 1292 | ticks = min(FM_MAXTICKS, ticks); |
| 1293 | while (ticks-- > 0) | 1293 | while (ticks-- > 0) |
| 1294 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 1294 | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; |
| 1295 | fmp->time = now; | 1295 | fmp->time = now; |
| 1296 | 1296 | ||
| 1297 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 1297 | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; |
| 1298 | fmp->cnt = 0; | 1298 | fmp->cnt = 0; |
| 1299 | } | 1299 | } |
| 1300 | 1300 | ||
| 1301 | /* Process any previous ticks, then bump cnt by one (times scale). */ | 1301 | /* Process any previous ticks, then bump cnt by one (times scale). */ |
| 1302 | static void fmeter_markevent(struct fmeter *fmp) | 1302 | static void fmeter_markevent(struct fmeter *fmp) |
| 1303 | { | 1303 | { |
| 1304 | spin_lock(&fmp->lock); | 1304 | spin_lock(&fmp->lock); |
| 1305 | fmeter_update(fmp); | 1305 | fmeter_update(fmp); |
| 1306 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 1306 | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); |
| 1307 | spin_unlock(&fmp->lock); | 1307 | spin_unlock(&fmp->lock); |
| 1308 | } | 1308 | } |
| 1309 | 1309 | ||
| 1310 | /* Process any previous ticks, then return current value. */ | 1310 | /* Process any previous ticks, then return current value. */ |
| 1311 | static int fmeter_getrate(struct fmeter *fmp) | 1311 | static int fmeter_getrate(struct fmeter *fmp) |
| 1312 | { | 1312 | { |
| 1313 | int val; | 1313 | int val; |
| 1314 | 1314 | ||
| 1315 | spin_lock(&fmp->lock); | 1315 | spin_lock(&fmp->lock); |
| 1316 | fmeter_update(fmp); | 1316 | fmeter_update(fmp); |
| 1317 | val = fmp->val; | 1317 | val = fmp->val; |
| 1318 | spin_unlock(&fmp->lock); | 1318 | spin_unlock(&fmp->lock); |
| 1319 | return val; | 1319 | return val; |
| 1320 | } | 1320 | } |
| 1321 | 1321 | ||
| 1322 | /* Protected by cgroup_lock */ | 1322 | /* Protected by cgroup_lock */ |
| 1323 | static cpumask_var_t cpus_attach; | 1323 | static cpumask_var_t cpus_attach; |
| 1324 | 1324 | ||
| 1325 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1325 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
| 1326 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1326 | static int cpuset_can_attach(struct cgroup_subsys *ss, |
| 1327 | struct cgroup *cont, struct task_struct *tsk) | 1327 | struct cgroup *cont, struct task_struct *tsk) |
| 1328 | { | 1328 | { |
| 1329 | struct cpuset *cs = cgroup_cs(cont); | 1329 | struct cpuset *cs = cgroup_cs(cont); |
| 1330 | int ret = 0; | 1330 | int ret = 0; |
| 1331 | 1331 | ||
| 1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
| 1333 | return -ENOSPC; | 1333 | return -ENOSPC; |
| 1334 | 1334 | ||
| 1335 | if (tsk->flags & PF_THREAD_BOUND) { | 1335 | if (tsk->flags & PF_THREAD_BOUND) { |
| 1336 | mutex_lock(&callback_mutex); | 1336 | mutex_lock(&callback_mutex); |
| 1337 | if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed)) | 1337 | if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed)) |
| 1338 | ret = -EINVAL; | 1338 | ret = -EINVAL; |
| 1339 | mutex_unlock(&callback_mutex); | 1339 | mutex_unlock(&callback_mutex); |
| 1340 | } | 1340 | } |
| 1341 | 1341 | ||
| 1342 | return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL); | 1342 | return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL); |
| 1343 | } | 1343 | } |
| 1344 | 1344 | ||
| 1345 | static void cpuset_attach(struct cgroup_subsys *ss, | 1345 | static void cpuset_attach(struct cgroup_subsys *ss, |
| 1346 | struct cgroup *cont, struct cgroup *oldcont, | 1346 | struct cgroup *cont, struct cgroup *oldcont, |
| 1347 | struct task_struct *tsk) | 1347 | struct task_struct *tsk) |
| 1348 | { | 1348 | { |
| 1349 | nodemask_t from, to; | 1349 | nodemask_t from, to; |
| 1350 | struct mm_struct *mm; | 1350 | struct mm_struct *mm; |
| 1351 | struct cpuset *cs = cgroup_cs(cont); | 1351 | struct cpuset *cs = cgroup_cs(cont); |
| 1352 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1352 | struct cpuset *oldcs = cgroup_cs(oldcont); |
| 1353 | int err; | 1353 | int err; |
| 1354 | 1354 | ||
| 1355 | if (cs == &top_cpuset) { | 1355 | if (cs == &top_cpuset) { |
| 1356 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1356 | cpumask_copy(cpus_attach, cpu_possible_mask); |
| 1357 | } else { | 1357 | } else { |
| 1358 | mutex_lock(&callback_mutex); | 1358 | mutex_lock(&callback_mutex); |
| 1359 | guarantee_online_cpus(cs, cpus_attach); | 1359 | guarantee_online_cpus(cs, cpus_attach); |
| 1360 | mutex_unlock(&callback_mutex); | 1360 | mutex_unlock(&callback_mutex); |
| 1361 | } | 1361 | } |
| 1362 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | 1362 | err = set_cpus_allowed_ptr(tsk, cpus_attach); |
| 1363 | if (err) | 1363 | if (err) |
| 1364 | return; | 1364 | return; |
| 1365 | 1365 | ||
| 1366 | from = oldcs->mems_allowed; | 1366 | from = oldcs->mems_allowed; |
| 1367 | to = cs->mems_allowed; | 1367 | to = cs->mems_allowed; |
| 1368 | mm = get_task_mm(tsk); | 1368 | mm = get_task_mm(tsk); |
| 1369 | if (mm) { | 1369 | if (mm) { |
| 1370 | mpol_rebind_mm(mm, &to); | 1370 | mpol_rebind_mm(mm, &to); |
| 1371 | if (is_memory_migrate(cs)) | 1371 | if (is_memory_migrate(cs)) |
| 1372 | cpuset_migrate_mm(mm, &from, &to); | 1372 | cpuset_migrate_mm(mm, &from, &to); |
| 1373 | mmput(mm); | 1373 | mmput(mm); |
| 1374 | } | 1374 | } |
| 1375 | } | 1375 | } |
| 1376 | 1376 | ||
| 1377 | /* The various types of files and directories in a cpuset file system */ | 1377 | /* The various types of files and directories in a cpuset file system */ |
| 1378 | 1378 | ||
| 1379 | typedef enum { | 1379 | typedef enum { |
| 1380 | FILE_MEMORY_MIGRATE, | 1380 | FILE_MEMORY_MIGRATE, |
| 1381 | FILE_CPULIST, | 1381 | FILE_CPULIST, |
| 1382 | FILE_MEMLIST, | 1382 | FILE_MEMLIST, |
| 1383 | FILE_CPU_EXCLUSIVE, | 1383 | FILE_CPU_EXCLUSIVE, |
| 1384 | FILE_MEM_EXCLUSIVE, | 1384 | FILE_MEM_EXCLUSIVE, |
| 1385 | FILE_MEM_HARDWALL, | 1385 | FILE_MEM_HARDWALL, |
| 1386 | FILE_SCHED_LOAD_BALANCE, | 1386 | FILE_SCHED_LOAD_BALANCE, |
| 1387 | FILE_SCHED_RELAX_DOMAIN_LEVEL, | 1387 | FILE_SCHED_RELAX_DOMAIN_LEVEL, |
| 1388 | FILE_MEMORY_PRESSURE_ENABLED, | 1388 | FILE_MEMORY_PRESSURE_ENABLED, |
| 1389 | FILE_MEMORY_PRESSURE, | 1389 | FILE_MEMORY_PRESSURE, |
| 1390 | FILE_SPREAD_PAGE, | 1390 | FILE_SPREAD_PAGE, |
| 1391 | FILE_SPREAD_SLAB, | 1391 | FILE_SPREAD_SLAB, |
| 1392 | } cpuset_filetype_t; | 1392 | } cpuset_filetype_t; |
| 1393 | 1393 | ||
| 1394 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) | 1394 | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) |
| 1395 | { | 1395 | { |
| 1396 | int retval = 0; | 1396 | int retval = 0; |
| 1397 | struct cpuset *cs = cgroup_cs(cgrp); | 1397 | struct cpuset *cs = cgroup_cs(cgrp); |
| 1398 | cpuset_filetype_t type = cft->private; | 1398 | cpuset_filetype_t type = cft->private; |
| 1399 | 1399 | ||
| 1400 | if (!cgroup_lock_live_group(cgrp)) | 1400 | if (!cgroup_lock_live_group(cgrp)) |
| 1401 | return -ENODEV; | 1401 | return -ENODEV; |
| 1402 | 1402 | ||
| 1403 | switch (type) { | 1403 | switch (type) { |
| 1404 | case FILE_CPU_EXCLUSIVE: | 1404 | case FILE_CPU_EXCLUSIVE: |
| 1405 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 1405 | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); |
| 1406 | break; | 1406 | break; |
| 1407 | case FILE_MEM_EXCLUSIVE: | 1407 | case FILE_MEM_EXCLUSIVE: |
| 1408 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 1408 | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); |
| 1409 | break; | 1409 | break; |
| 1410 | case FILE_MEM_HARDWALL: | 1410 | case FILE_MEM_HARDWALL: |
| 1411 | retval = update_flag(CS_MEM_HARDWALL, cs, val); | 1411 | retval = update_flag(CS_MEM_HARDWALL, cs, val); |
| 1412 | break; | 1412 | break; |
| 1413 | case FILE_SCHED_LOAD_BALANCE: | 1413 | case FILE_SCHED_LOAD_BALANCE: |
| 1414 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 1414 | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); |
| 1415 | break; | 1415 | break; |
| 1416 | case FILE_MEMORY_MIGRATE: | 1416 | case FILE_MEMORY_MIGRATE: |
| 1417 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 1417 | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); |
| 1418 | break; | 1418 | break; |
| 1419 | case FILE_MEMORY_PRESSURE_ENABLED: | 1419 | case FILE_MEMORY_PRESSURE_ENABLED: |
| 1420 | cpuset_memory_pressure_enabled = !!val; | 1420 | cpuset_memory_pressure_enabled = !!val; |
| 1421 | break; | 1421 | break; |
| 1422 | case FILE_MEMORY_PRESSURE: | 1422 | case FILE_MEMORY_PRESSURE: |
| 1423 | retval = -EACCES; | 1423 | retval = -EACCES; |
| 1424 | break; | 1424 | break; |
| 1425 | case FILE_SPREAD_PAGE: | 1425 | case FILE_SPREAD_PAGE: |
| 1426 | retval = update_flag(CS_SPREAD_PAGE, cs, val); | 1426 | retval = update_flag(CS_SPREAD_PAGE, cs, val); |
| 1427 | cs->mems_generation = cpuset_mems_generation++; | 1427 | cs->mems_generation = cpuset_mems_generation++; |
| 1428 | break; | 1428 | break; |
| 1429 | case FILE_SPREAD_SLAB: | 1429 | case FILE_SPREAD_SLAB: |
| 1430 | retval = update_flag(CS_SPREAD_SLAB, cs, val); | 1430 | retval = update_flag(CS_SPREAD_SLAB, cs, val); |
| 1431 | cs->mems_generation = cpuset_mems_generation++; | 1431 | cs->mems_generation = cpuset_mems_generation++; |
| 1432 | break; | 1432 | break; |
| 1433 | default: | 1433 | default: |
| 1434 | retval = -EINVAL; | 1434 | retval = -EINVAL; |
| 1435 | break; | 1435 | break; |
| 1436 | } | 1436 | } |
| 1437 | cgroup_unlock(); | 1437 | cgroup_unlock(); |
| 1438 | return retval; | 1438 | return retval; |
| 1439 | } | 1439 | } |
| 1440 | 1440 | ||
| 1441 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) | 1441 | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) |
| 1442 | { | 1442 | { |
| 1443 | int retval = 0; | 1443 | int retval = 0; |
| 1444 | struct cpuset *cs = cgroup_cs(cgrp); | 1444 | struct cpuset *cs = cgroup_cs(cgrp); |
| 1445 | cpuset_filetype_t type = cft->private; | 1445 | cpuset_filetype_t type = cft->private; |
| 1446 | 1446 | ||
| 1447 | if (!cgroup_lock_live_group(cgrp)) | 1447 | if (!cgroup_lock_live_group(cgrp)) |
| 1448 | return -ENODEV; | 1448 | return -ENODEV; |
| 1449 | 1449 | ||
| 1450 | switch (type) { | 1450 | switch (type) { |
| 1451 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 1451 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: |
| 1452 | retval = update_relax_domain_level(cs, val); | 1452 | retval = update_relax_domain_level(cs, val); |
| 1453 | break; | 1453 | break; |
| 1454 | default: | 1454 | default: |
| 1455 | retval = -EINVAL; | 1455 | retval = -EINVAL; |
| 1456 | break; | 1456 | break; |
| 1457 | } | 1457 | } |
| 1458 | cgroup_unlock(); | 1458 | cgroup_unlock(); |
| 1459 | return retval; | 1459 | return retval; |
| 1460 | } | 1460 | } |
| 1461 | 1461 | ||
| 1462 | /* | 1462 | /* |
| 1463 | * Common handling for a write to a "cpus" or "mems" file. | 1463 | * Common handling for a write to a "cpus" or "mems" file. |
| 1464 | */ | 1464 | */ |
| 1465 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | 1465 | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, |
| 1466 | const char *buf) | 1466 | const char *buf) |
| 1467 | { | 1467 | { |
| 1468 | int retval = 0; | 1468 | int retval = 0; |
| 1469 | struct cpuset *cs = cgroup_cs(cgrp); | 1469 | struct cpuset *cs = cgroup_cs(cgrp); |
| 1470 | struct cpuset *trialcs; | 1470 | struct cpuset *trialcs; |
| 1471 | 1471 | ||
| 1472 | if (!cgroup_lock_live_group(cgrp)) | 1472 | if (!cgroup_lock_live_group(cgrp)) |
| 1473 | return -ENODEV; | 1473 | return -ENODEV; |
| 1474 | 1474 | ||
| 1475 | trialcs = alloc_trial_cpuset(cs); | 1475 | trialcs = alloc_trial_cpuset(cs); |
| 1476 | if (!trialcs) | 1476 | if (!trialcs) |
| 1477 | return -ENOMEM; | 1477 | return -ENOMEM; |
| 1478 | 1478 | ||
| 1479 | switch (cft->private) { | 1479 | switch (cft->private) { |
| 1480 | case FILE_CPULIST: | 1480 | case FILE_CPULIST: |
| 1481 | retval = update_cpumask(cs, trialcs, buf); | 1481 | retval = update_cpumask(cs, trialcs, buf); |
| 1482 | break; | 1482 | break; |
| 1483 | case FILE_MEMLIST: | 1483 | case FILE_MEMLIST: |
| 1484 | retval = update_nodemask(cs, trialcs, buf); | 1484 | retval = update_nodemask(cs, trialcs, buf); |
| 1485 | break; | 1485 | break; |
| 1486 | default: | 1486 | default: |
| 1487 | retval = -EINVAL; | 1487 | retval = -EINVAL; |
| 1488 | break; | 1488 | break; |
| 1489 | } | 1489 | } |
| 1490 | 1490 | ||
| 1491 | free_trial_cpuset(trialcs); | 1491 | free_trial_cpuset(trialcs); |
| 1492 | cgroup_unlock(); | 1492 | cgroup_unlock(); |
| 1493 | return retval; | 1493 | return retval; |
| 1494 | } | 1494 | } |
| 1495 | 1495 | ||
| 1496 | /* | 1496 | /* |
| 1497 | * These ascii lists should be read in a single call, by using a user | 1497 | * These ascii lists should be read in a single call, by using a user |
| 1498 | * buffer large enough to hold the entire map. If read in smaller | 1498 | * buffer large enough to hold the entire map. If read in smaller |
| 1499 | * chunks, there is no guarantee of atomicity. Since the display format | 1499 | * chunks, there is no guarantee of atomicity. Since the display format |
| 1500 | * used, list of ranges of sequential numbers, is variable length, | 1500 | * used, list of ranges of sequential numbers, is variable length, |
| 1501 | * and since these maps can change value dynamically, one could read | 1501 | * and since these maps can change value dynamically, one could read |
| 1502 | * gibberish by doing partial reads while a list was changing. | 1502 | * gibberish by doing partial reads while a list was changing. |
| 1503 | * A single large read to a buffer that crosses a page boundary is | 1503 | * A single large read to a buffer that crosses a page boundary is |
| 1504 | * ok, because the result being copied to user land is not recomputed | 1504 | * ok, because the result being copied to user land is not recomputed |
| 1505 | * across a page fault. | 1505 | * across a page fault. |
| 1506 | */ | 1506 | */ |
| 1507 | 1507 | ||
| 1508 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 1508 | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) |
| 1509 | { | 1509 | { |
| 1510 | int ret; | 1510 | int ret; |
| 1511 | 1511 | ||
| 1512 | mutex_lock(&callback_mutex); | 1512 | mutex_lock(&callback_mutex); |
| 1513 | ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); | 1513 | ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); |
| 1514 | mutex_unlock(&callback_mutex); | 1514 | mutex_unlock(&callback_mutex); |
| 1515 | 1515 | ||
| 1516 | return ret; | 1516 | return ret; |
| 1517 | } | 1517 | } |
| 1518 | 1518 | ||
| 1519 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 1519 | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) |
| 1520 | { | 1520 | { |
| 1521 | nodemask_t mask; | 1521 | nodemask_t mask; |
| 1522 | 1522 | ||
| 1523 | mutex_lock(&callback_mutex); | 1523 | mutex_lock(&callback_mutex); |
| 1524 | mask = cs->mems_allowed; | 1524 | mask = cs->mems_allowed; |
| 1525 | mutex_unlock(&callback_mutex); | 1525 | mutex_unlock(&callback_mutex); |
| 1526 | 1526 | ||
| 1527 | return nodelist_scnprintf(page, PAGE_SIZE, mask); | 1527 | return nodelist_scnprintf(page, PAGE_SIZE, mask); |
| 1528 | } | 1528 | } |
| 1529 | 1529 | ||
| 1530 | static ssize_t cpuset_common_file_read(struct cgroup *cont, | 1530 | static ssize_t cpuset_common_file_read(struct cgroup *cont, |
| 1531 | struct cftype *cft, | 1531 | struct cftype *cft, |
| 1532 | struct file *file, | 1532 | struct file *file, |
| 1533 | char __user *buf, | 1533 | char __user *buf, |
| 1534 | size_t nbytes, loff_t *ppos) | 1534 | size_t nbytes, loff_t *ppos) |
| 1535 | { | 1535 | { |
| 1536 | struct cpuset *cs = cgroup_cs(cont); | 1536 | struct cpuset *cs = cgroup_cs(cont); |
| 1537 | cpuset_filetype_t type = cft->private; | 1537 | cpuset_filetype_t type = cft->private; |
| 1538 | char *page; | 1538 | char *page; |
| 1539 | ssize_t retval = 0; | 1539 | ssize_t retval = 0; |
| 1540 | char *s; | 1540 | char *s; |
| 1541 | 1541 | ||
| 1542 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) | 1542 | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) |
| 1543 | return -ENOMEM; | 1543 | return -ENOMEM; |
| 1544 | 1544 | ||
| 1545 | s = page; | 1545 | s = page; |
| 1546 | 1546 | ||
| 1547 | switch (type) { | 1547 | switch (type) { |
| 1548 | case FILE_CPULIST: | 1548 | case FILE_CPULIST: |
| 1549 | s += cpuset_sprintf_cpulist(s, cs); | 1549 | s += cpuset_sprintf_cpulist(s, cs); |
| 1550 | break; | 1550 | break; |
| 1551 | case FILE_MEMLIST: | 1551 | case FILE_MEMLIST: |
| 1552 | s += cpuset_sprintf_memlist(s, cs); | 1552 | s += cpuset_sprintf_memlist(s, cs); |
| 1553 | break; | 1553 | break; |
| 1554 | default: | 1554 | default: |
| 1555 | retval = -EINVAL; | 1555 | retval = -EINVAL; |
| 1556 | goto out; | 1556 | goto out; |
| 1557 | } | 1557 | } |
| 1558 | *s++ = '\n'; | 1558 | *s++ = '\n'; |
| 1559 | 1559 | ||
| 1560 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); | 1560 | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); |
| 1561 | out: | 1561 | out: |
| 1562 | free_page((unsigned long)page); | 1562 | free_page((unsigned long)page); |
| 1563 | return retval; | 1563 | return retval; |
| 1564 | } | 1564 | } |
| 1565 | 1565 | ||
| 1566 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) | 1566 | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) |
| 1567 | { | 1567 | { |
| 1568 | struct cpuset *cs = cgroup_cs(cont); | 1568 | struct cpuset *cs = cgroup_cs(cont); |
| 1569 | cpuset_filetype_t type = cft->private; | 1569 | cpuset_filetype_t type = cft->private; |
| 1570 | switch (type) { | 1570 | switch (type) { |
| 1571 | case FILE_CPU_EXCLUSIVE: | 1571 | case FILE_CPU_EXCLUSIVE: |
| 1572 | return is_cpu_exclusive(cs); | 1572 | return is_cpu_exclusive(cs); |
| 1573 | case FILE_MEM_EXCLUSIVE: | 1573 | case FILE_MEM_EXCLUSIVE: |
| 1574 | return is_mem_exclusive(cs); | 1574 | return is_mem_exclusive(cs); |
| 1575 | case FILE_MEM_HARDWALL: | 1575 | case FILE_MEM_HARDWALL: |
| 1576 | return is_mem_hardwall(cs); | 1576 | return is_mem_hardwall(cs); |
| 1577 | case FILE_SCHED_LOAD_BALANCE: | 1577 | case FILE_SCHED_LOAD_BALANCE: |
| 1578 | return is_sched_load_balance(cs); | 1578 | return is_sched_load_balance(cs); |
| 1579 | case FILE_MEMORY_MIGRATE: | 1579 | case FILE_MEMORY_MIGRATE: |
| 1580 | return is_memory_migrate(cs); | 1580 | return is_memory_migrate(cs); |
| 1581 | case FILE_MEMORY_PRESSURE_ENABLED: | 1581 | case FILE_MEMORY_PRESSURE_ENABLED: |
| 1582 | return cpuset_memory_pressure_enabled; | 1582 | return cpuset_memory_pressure_enabled; |
| 1583 | case FILE_MEMORY_PRESSURE: | 1583 | case FILE_MEMORY_PRESSURE: |
| 1584 | return fmeter_getrate(&cs->fmeter); | 1584 | return fmeter_getrate(&cs->fmeter); |
| 1585 | case FILE_SPREAD_PAGE: | 1585 | case FILE_SPREAD_PAGE: |
| 1586 | return is_spread_page(cs); | 1586 | return is_spread_page(cs); |
| 1587 | case FILE_SPREAD_SLAB: | 1587 | case FILE_SPREAD_SLAB: |
| 1588 | return is_spread_slab(cs); | 1588 | return is_spread_slab(cs); |
| 1589 | default: | 1589 | default: |
| 1590 | BUG(); | 1590 | BUG(); |
| 1591 | } | 1591 | } |
| 1592 | 1592 | ||
| 1593 | /* Unreachable but makes gcc happy */ | 1593 | /* Unreachable but makes gcc happy */ |
| 1594 | return 0; | 1594 | return 0; |
| 1595 | } | 1595 | } |
| 1596 | 1596 | ||
| 1597 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) | 1597 | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) |
| 1598 | { | 1598 | { |
| 1599 | struct cpuset *cs = cgroup_cs(cont); | 1599 | struct cpuset *cs = cgroup_cs(cont); |
| 1600 | cpuset_filetype_t type = cft->private; | 1600 | cpuset_filetype_t type = cft->private; |
| 1601 | switch (type) { | 1601 | switch (type) { |
| 1602 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 1602 | case FILE_SCHED_RELAX_DOMAIN_LEVEL: |
| 1603 | return cs->relax_domain_level; | 1603 | return cs->relax_domain_level; |
| 1604 | default: | 1604 | default: |
| 1605 | BUG(); | 1605 | BUG(); |
| 1606 | } | 1606 | } |
| 1607 | 1607 | ||
| 1608 | /* Unrechable but makes gcc happy */ | 1608 | /* Unrechable but makes gcc happy */ |
| 1609 | return 0; | 1609 | return 0; |
| 1610 | } | 1610 | } |
| 1611 | 1611 | ||
| 1612 | 1612 | ||
| 1613 | /* | 1613 | /* |
| 1614 | * for the common functions, 'private' gives the type of file | 1614 | * for the common functions, 'private' gives the type of file |
| 1615 | */ | 1615 | */ |
| 1616 | 1616 | ||
| 1617 | static struct cftype files[] = { | 1617 | static struct cftype files[] = { |
| 1618 | { | 1618 | { |
| 1619 | .name = "cpus", | 1619 | .name = "cpus", |
| 1620 | .read = cpuset_common_file_read, | 1620 | .read = cpuset_common_file_read, |
| 1621 | .write_string = cpuset_write_resmask, | 1621 | .write_string = cpuset_write_resmask, |
| 1622 | .max_write_len = (100U + 6 * NR_CPUS), | 1622 | .max_write_len = (100U + 6 * NR_CPUS), |
| 1623 | .private = FILE_CPULIST, | 1623 | .private = FILE_CPULIST, |
| 1624 | }, | 1624 | }, |
| 1625 | 1625 | ||
| 1626 | { | 1626 | { |
| 1627 | .name = "mems", | 1627 | .name = "mems", |
| 1628 | .read = cpuset_common_file_read, | 1628 | .read = cpuset_common_file_read, |
| 1629 | .write_string = cpuset_write_resmask, | 1629 | .write_string = cpuset_write_resmask, |
| 1630 | .max_write_len = (100U + 6 * MAX_NUMNODES), | 1630 | .max_write_len = (100U + 6 * MAX_NUMNODES), |
| 1631 | .private = FILE_MEMLIST, | 1631 | .private = FILE_MEMLIST, |
| 1632 | }, | 1632 | }, |
| 1633 | 1633 | ||
| 1634 | { | 1634 | { |
| 1635 | .name = "cpu_exclusive", | 1635 | .name = "cpu_exclusive", |
| 1636 | .read_u64 = cpuset_read_u64, | 1636 | .read_u64 = cpuset_read_u64, |
| 1637 | .write_u64 = cpuset_write_u64, | 1637 | .write_u64 = cpuset_write_u64, |
| 1638 | .private = FILE_CPU_EXCLUSIVE, | 1638 | .private = FILE_CPU_EXCLUSIVE, |
| 1639 | }, | 1639 | }, |
| 1640 | 1640 | ||
| 1641 | { | 1641 | { |
| 1642 | .name = "mem_exclusive", | 1642 | .name = "mem_exclusive", |
| 1643 | .read_u64 = cpuset_read_u64, | 1643 | .read_u64 = cpuset_read_u64, |
| 1644 | .write_u64 = cpuset_write_u64, | 1644 | .write_u64 = cpuset_write_u64, |
| 1645 | .private = FILE_MEM_EXCLUSIVE, | 1645 | .private = FILE_MEM_EXCLUSIVE, |
| 1646 | }, | 1646 | }, |
| 1647 | 1647 | ||
| 1648 | { | 1648 | { |
| 1649 | .name = "mem_hardwall", | 1649 | .name = "mem_hardwall", |
| 1650 | .read_u64 = cpuset_read_u64, | 1650 | .read_u64 = cpuset_read_u64, |
| 1651 | .write_u64 = cpuset_write_u64, | 1651 | .write_u64 = cpuset_write_u64, |
| 1652 | .private = FILE_MEM_HARDWALL, | 1652 | .private = FILE_MEM_HARDWALL, |
| 1653 | }, | 1653 | }, |
| 1654 | 1654 | ||
| 1655 | { | 1655 | { |
| 1656 | .name = "sched_load_balance", | 1656 | .name = "sched_load_balance", |
| 1657 | .read_u64 = cpuset_read_u64, | 1657 | .read_u64 = cpuset_read_u64, |
| 1658 | .write_u64 = cpuset_write_u64, | 1658 | .write_u64 = cpuset_write_u64, |
| 1659 | .private = FILE_SCHED_LOAD_BALANCE, | 1659 | .private = FILE_SCHED_LOAD_BALANCE, |
| 1660 | }, | 1660 | }, |
| 1661 | 1661 | ||
| 1662 | { | 1662 | { |
| 1663 | .name = "sched_relax_domain_level", | 1663 | .name = "sched_relax_domain_level", |
| 1664 | .read_s64 = cpuset_read_s64, | 1664 | .read_s64 = cpuset_read_s64, |
| 1665 | .write_s64 = cpuset_write_s64, | 1665 | .write_s64 = cpuset_write_s64, |
| 1666 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 1666 | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, |
| 1667 | }, | 1667 | }, |
| 1668 | 1668 | ||
| 1669 | { | 1669 | { |
| 1670 | .name = "memory_migrate", | 1670 | .name = "memory_migrate", |
| 1671 | .read_u64 = cpuset_read_u64, | 1671 | .read_u64 = cpuset_read_u64, |
| 1672 | .write_u64 = cpuset_write_u64, | 1672 | .write_u64 = cpuset_write_u64, |
| 1673 | .private = FILE_MEMORY_MIGRATE, | 1673 | .private = FILE_MEMORY_MIGRATE, |
| 1674 | }, | 1674 | }, |
| 1675 | 1675 | ||
| 1676 | { | 1676 | { |
| 1677 | .name = "memory_pressure", | 1677 | .name = "memory_pressure", |
| 1678 | .read_u64 = cpuset_read_u64, | 1678 | .read_u64 = cpuset_read_u64, |
| 1679 | .write_u64 = cpuset_write_u64, | 1679 | .write_u64 = cpuset_write_u64, |
| 1680 | .private = FILE_MEMORY_PRESSURE, | 1680 | .private = FILE_MEMORY_PRESSURE, |
| 1681 | .mode = S_IRUGO, | 1681 | .mode = S_IRUGO, |
| 1682 | }, | 1682 | }, |
| 1683 | 1683 | ||
| 1684 | { | 1684 | { |
| 1685 | .name = "memory_spread_page", | 1685 | .name = "memory_spread_page", |
| 1686 | .read_u64 = cpuset_read_u64, | 1686 | .read_u64 = cpuset_read_u64, |
| 1687 | .write_u64 = cpuset_write_u64, | 1687 | .write_u64 = cpuset_write_u64, |
| 1688 | .private = FILE_SPREAD_PAGE, | 1688 | .private = FILE_SPREAD_PAGE, |
| 1689 | }, | 1689 | }, |
| 1690 | 1690 | ||
| 1691 | { | 1691 | { |
| 1692 | .name = "memory_spread_slab", | 1692 | .name = "memory_spread_slab", |
| 1693 | .read_u64 = cpuset_read_u64, | 1693 | .read_u64 = cpuset_read_u64, |
| 1694 | .write_u64 = cpuset_write_u64, | 1694 | .write_u64 = cpuset_write_u64, |
| 1695 | .private = FILE_SPREAD_SLAB, | 1695 | .private = FILE_SPREAD_SLAB, |
| 1696 | }, | 1696 | }, |
| 1697 | }; | 1697 | }; |
| 1698 | 1698 | ||
| 1699 | static struct cftype cft_memory_pressure_enabled = { | 1699 | static struct cftype cft_memory_pressure_enabled = { |
| 1700 | .name = "memory_pressure_enabled", | 1700 | .name = "memory_pressure_enabled", |
| 1701 | .read_u64 = cpuset_read_u64, | 1701 | .read_u64 = cpuset_read_u64, |
| 1702 | .write_u64 = cpuset_write_u64, | 1702 | .write_u64 = cpuset_write_u64, |
| 1703 | .private = FILE_MEMORY_PRESSURE_ENABLED, | 1703 | .private = FILE_MEMORY_PRESSURE_ENABLED, |
| 1704 | }; | 1704 | }; |
| 1705 | 1705 | ||
| 1706 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 1706 | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) |
| 1707 | { | 1707 | { |
| 1708 | int err; | 1708 | int err; |
| 1709 | 1709 | ||
| 1710 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | 1710 | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); |
| 1711 | if (err) | 1711 | if (err) |
| 1712 | return err; | 1712 | return err; |
| 1713 | /* memory_pressure_enabled is in root cpuset only */ | 1713 | /* memory_pressure_enabled is in root cpuset only */ |
| 1714 | if (!cont->parent) | 1714 | if (!cont->parent) |
| 1715 | err = cgroup_add_file(cont, ss, | 1715 | err = cgroup_add_file(cont, ss, |
| 1716 | &cft_memory_pressure_enabled); | 1716 | &cft_memory_pressure_enabled); |
| 1717 | return err; | 1717 | return err; |
| 1718 | } | 1718 | } |
| 1719 | 1719 | ||
| 1720 | /* | 1720 | /* |
| 1721 | * post_clone() is called at the end of cgroup_clone(). | 1721 | * post_clone() is called at the end of cgroup_clone(). |
| 1722 | * 'cgroup' was just created automatically as a result of | 1722 | * 'cgroup' was just created automatically as a result of |
| 1723 | * a cgroup_clone(), and the current task is about to | 1723 | * a cgroup_clone(), and the current task is about to |
| 1724 | * be moved into 'cgroup'. | 1724 | * be moved into 'cgroup'. |
| 1725 | * | 1725 | * |
| 1726 | * Currently we refuse to set up the cgroup - thereby | 1726 | * Currently we refuse to set up the cgroup - thereby |
| 1727 | * refusing the task to be entered, and as a result refusing | 1727 | * refusing the task to be entered, and as a result refusing |
| 1728 | * the sys_unshare() or clone() which initiated it - if any | 1728 | * the sys_unshare() or clone() which initiated it - if any |
| 1729 | * sibling cpusets have exclusive cpus or mem. | 1729 | * sibling cpusets have exclusive cpus or mem. |
| 1730 | * | 1730 | * |
| 1731 | * If this becomes a problem for some users who wish to | 1731 | * If this becomes a problem for some users who wish to |
| 1732 | * allow that scenario, then cpuset_post_clone() could be | 1732 | * allow that scenario, then cpuset_post_clone() could be |
| 1733 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 1733 | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive |
| 1734 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex | 1734 | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex |
| 1735 | * held. | 1735 | * held. |
| 1736 | */ | 1736 | */ |
| 1737 | static void cpuset_post_clone(struct cgroup_subsys *ss, | 1737 | static void cpuset_post_clone(struct cgroup_subsys *ss, |
| 1738 | struct cgroup *cgroup) | 1738 | struct cgroup *cgroup) |
| 1739 | { | 1739 | { |
| 1740 | struct cgroup *parent, *child; | 1740 | struct cgroup *parent, *child; |
| 1741 | struct cpuset *cs, *parent_cs; | 1741 | struct cpuset *cs, *parent_cs; |
| 1742 | 1742 | ||
| 1743 | parent = cgroup->parent; | 1743 | parent = cgroup->parent; |
| 1744 | list_for_each_entry(child, &parent->children, sibling) { | 1744 | list_for_each_entry(child, &parent->children, sibling) { |
| 1745 | cs = cgroup_cs(child); | 1745 | cs = cgroup_cs(child); |
| 1746 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | 1746 | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) |
| 1747 | return; | 1747 | return; |
| 1748 | } | 1748 | } |
| 1749 | cs = cgroup_cs(cgroup); | 1749 | cs = cgroup_cs(cgroup); |
| 1750 | parent_cs = cgroup_cs(parent); | 1750 | parent_cs = cgroup_cs(parent); |
| 1751 | 1751 | ||
| 1752 | cs->mems_allowed = parent_cs->mems_allowed; | 1752 | cs->mems_allowed = parent_cs->mems_allowed; |
| 1753 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); | 1753 | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); |
| 1754 | return; | 1754 | return; |
| 1755 | } | 1755 | } |
| 1756 | 1756 | ||
| 1757 | /* | 1757 | /* |
| 1758 | * cpuset_create - create a cpuset | 1758 | * cpuset_create - create a cpuset |
| 1759 | * ss: cpuset cgroup subsystem | 1759 | * ss: cpuset cgroup subsystem |
| 1760 | * cont: control group that the new cpuset will be part of | 1760 | * cont: control group that the new cpuset will be part of |
| 1761 | */ | 1761 | */ |
| 1762 | 1762 | ||
| 1763 | static struct cgroup_subsys_state *cpuset_create( | 1763 | static struct cgroup_subsys_state *cpuset_create( |
| 1764 | struct cgroup_subsys *ss, | 1764 | struct cgroup_subsys *ss, |
| 1765 | struct cgroup *cont) | 1765 | struct cgroup *cont) |
| 1766 | { | 1766 | { |
| 1767 | struct cpuset *cs; | 1767 | struct cpuset *cs; |
| 1768 | struct cpuset *parent; | 1768 | struct cpuset *parent; |
| 1769 | 1769 | ||
| 1770 | if (!cont->parent) { | 1770 | if (!cont->parent) { |
| 1771 | /* This is early initialization for the top cgroup */ | 1771 | /* This is early initialization for the top cgroup */ |
| 1772 | top_cpuset.mems_generation = cpuset_mems_generation++; | 1772 | top_cpuset.mems_generation = cpuset_mems_generation++; |
| 1773 | return &top_cpuset.css; | 1773 | return &top_cpuset.css; |
| 1774 | } | 1774 | } |
| 1775 | parent = cgroup_cs(cont->parent); | 1775 | parent = cgroup_cs(cont->parent); |
| 1776 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 1776 | cs = kmalloc(sizeof(*cs), GFP_KERNEL); |
| 1777 | if (!cs) | 1777 | if (!cs) |
| 1778 | return ERR_PTR(-ENOMEM); | 1778 | return ERR_PTR(-ENOMEM); |
| 1779 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { | 1779 | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { |
| 1780 | kfree(cs); | 1780 | kfree(cs); |
| 1781 | return ERR_PTR(-ENOMEM); | 1781 | return ERR_PTR(-ENOMEM); |
| 1782 | } | 1782 | } |
| 1783 | 1783 | ||
| 1784 | cpuset_update_task_memory_state(); | 1784 | cpuset_update_task_memory_state(); |
| 1785 | cs->flags = 0; | 1785 | cs->flags = 0; |
| 1786 | if (is_spread_page(parent)) | 1786 | if (is_spread_page(parent)) |
| 1787 | set_bit(CS_SPREAD_PAGE, &cs->flags); | 1787 | set_bit(CS_SPREAD_PAGE, &cs->flags); |
| 1788 | if (is_spread_slab(parent)) | 1788 | if (is_spread_slab(parent)) |
| 1789 | set_bit(CS_SPREAD_SLAB, &cs->flags); | 1789 | set_bit(CS_SPREAD_SLAB, &cs->flags); |
| 1790 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 1790 | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); |
| 1791 | cpumask_clear(cs->cpus_allowed); | 1791 | cpumask_clear(cs->cpus_allowed); |
| 1792 | nodes_clear(cs->mems_allowed); | 1792 | nodes_clear(cs->mems_allowed); |
| 1793 | cs->mems_generation = cpuset_mems_generation++; | 1793 | cs->mems_generation = cpuset_mems_generation++; |
| 1794 | fmeter_init(&cs->fmeter); | 1794 | fmeter_init(&cs->fmeter); |
| 1795 | cs->relax_domain_level = -1; | 1795 | cs->relax_domain_level = -1; |
| 1796 | 1796 | ||
| 1797 | cs->parent = parent; | 1797 | cs->parent = parent; |
| 1798 | number_of_cpusets++; | 1798 | number_of_cpusets++; |
| 1799 | return &cs->css ; | 1799 | return &cs->css ; |
| 1800 | } | 1800 | } |
| 1801 | 1801 | ||
| 1802 | /* | 1802 | /* |
| 1803 | * If the cpuset being removed has its flag 'sched_load_balance' | 1803 | * If the cpuset being removed has its flag 'sched_load_balance' |
| 1804 | * enabled, then simulate turning sched_load_balance off, which | 1804 | * enabled, then simulate turning sched_load_balance off, which |
| 1805 | * will call async_rebuild_sched_domains(). | 1805 | * will call async_rebuild_sched_domains(). |
| 1806 | */ | 1806 | */ |
| 1807 | 1807 | ||
| 1808 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | 1808 | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) |
| 1809 | { | 1809 | { |
| 1810 | struct cpuset *cs = cgroup_cs(cont); | 1810 | struct cpuset *cs = cgroup_cs(cont); |
| 1811 | 1811 | ||
| 1812 | cpuset_update_task_memory_state(); | 1812 | cpuset_update_task_memory_state(); |
| 1813 | 1813 | ||
| 1814 | if (is_sched_load_balance(cs)) | 1814 | if (is_sched_load_balance(cs)) |
| 1815 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 1815 | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); |
| 1816 | 1816 | ||
| 1817 | number_of_cpusets--; | 1817 | number_of_cpusets--; |
| 1818 | free_cpumask_var(cs->cpus_allowed); | 1818 | free_cpumask_var(cs->cpus_allowed); |
| 1819 | kfree(cs); | 1819 | kfree(cs); |
| 1820 | } | 1820 | } |
| 1821 | 1821 | ||
| 1822 | struct cgroup_subsys cpuset_subsys = { | 1822 | struct cgroup_subsys cpuset_subsys = { |
| 1823 | .name = "cpuset", | 1823 | .name = "cpuset", |
| 1824 | .create = cpuset_create, | 1824 | .create = cpuset_create, |
| 1825 | .destroy = cpuset_destroy, | 1825 | .destroy = cpuset_destroy, |
| 1826 | .can_attach = cpuset_can_attach, | 1826 | .can_attach = cpuset_can_attach, |
| 1827 | .attach = cpuset_attach, | 1827 | .attach = cpuset_attach, |
| 1828 | .populate = cpuset_populate, | 1828 | .populate = cpuset_populate, |
| 1829 | .post_clone = cpuset_post_clone, | 1829 | .post_clone = cpuset_post_clone, |
| 1830 | .subsys_id = cpuset_subsys_id, | 1830 | .subsys_id = cpuset_subsys_id, |
| 1831 | .early_init = 1, | 1831 | .early_init = 1, |
| 1832 | }; | 1832 | }; |
| 1833 | 1833 | ||
| 1834 | /* | 1834 | /* |
| 1835 | * cpuset_init_early - just enough so that the calls to | 1835 | * cpuset_init_early - just enough so that the calls to |
| 1836 | * cpuset_update_task_memory_state() in early init code | 1836 | * cpuset_update_task_memory_state() in early init code |
| 1837 | * are harmless. | 1837 | * are harmless. |
| 1838 | */ | 1838 | */ |
| 1839 | 1839 | ||
| 1840 | int __init cpuset_init_early(void) | 1840 | int __init cpuset_init_early(void) |
| 1841 | { | 1841 | { |
| 1842 | alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed); | 1842 | alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed); |
| 1843 | 1843 | ||
| 1844 | top_cpuset.mems_generation = cpuset_mems_generation++; | 1844 | top_cpuset.mems_generation = cpuset_mems_generation++; |
| 1845 | return 0; | 1845 | return 0; |
| 1846 | } | 1846 | } |
| 1847 | 1847 | ||
| 1848 | 1848 | ||
| 1849 | /** | 1849 | /** |
| 1850 | * cpuset_init - initialize cpusets at system boot | 1850 | * cpuset_init - initialize cpusets at system boot |
| 1851 | * | 1851 | * |
| 1852 | * Description: Initialize top_cpuset and the cpuset internal file system, | 1852 | * Description: Initialize top_cpuset and the cpuset internal file system, |
| 1853 | **/ | 1853 | **/ |
| 1854 | 1854 | ||
| 1855 | int __init cpuset_init(void) | 1855 | int __init cpuset_init(void) |
| 1856 | { | 1856 | { |
| 1857 | int err = 0; | 1857 | int err = 0; |
| 1858 | 1858 | ||
| 1859 | cpumask_setall(top_cpuset.cpus_allowed); | 1859 | cpumask_setall(top_cpuset.cpus_allowed); |
| 1860 | nodes_setall(top_cpuset.mems_allowed); | 1860 | nodes_setall(top_cpuset.mems_allowed); |
| 1861 | 1861 | ||
| 1862 | fmeter_init(&top_cpuset.fmeter); | 1862 | fmeter_init(&top_cpuset.fmeter); |
| 1863 | top_cpuset.mems_generation = cpuset_mems_generation++; | 1863 | top_cpuset.mems_generation = cpuset_mems_generation++; |
| 1864 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 1864 | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); |
| 1865 | top_cpuset.relax_domain_level = -1; | 1865 | top_cpuset.relax_domain_level = -1; |
| 1866 | 1866 | ||
| 1867 | err = register_filesystem(&cpuset_fs_type); | 1867 | err = register_filesystem(&cpuset_fs_type); |
| 1868 | if (err < 0) | 1868 | if (err < 0) |
| 1869 | return err; | 1869 | return err; |
| 1870 | 1870 | ||
| 1871 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) | 1871 | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) |
| 1872 | BUG(); | 1872 | BUG(); |
| 1873 | 1873 | ||
| 1874 | number_of_cpusets = 1; | 1874 | number_of_cpusets = 1; |
| 1875 | return 0; | 1875 | return 0; |
| 1876 | } | 1876 | } |
| 1877 | 1877 | ||
| 1878 | /** | 1878 | /** |
| 1879 | * cpuset_do_move_task - move a given task to another cpuset | 1879 | * cpuset_do_move_task - move a given task to another cpuset |
| 1880 | * @tsk: pointer to task_struct the task to move | 1880 | * @tsk: pointer to task_struct the task to move |
| 1881 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 1881 | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner |
| 1882 | * | 1882 | * |
| 1883 | * Called by cgroup_scan_tasks() for each task in a cgroup. | 1883 | * Called by cgroup_scan_tasks() for each task in a cgroup. |
| 1884 | * Return nonzero to stop the walk through the tasks. | 1884 | * Return nonzero to stop the walk through the tasks. |
| 1885 | */ | 1885 | */ |
| 1886 | static void cpuset_do_move_task(struct task_struct *tsk, | 1886 | static void cpuset_do_move_task(struct task_struct *tsk, |
| 1887 | struct cgroup_scanner *scan) | 1887 | struct cgroup_scanner *scan) |
| 1888 | { | 1888 | { |
| 1889 | struct cgroup *new_cgroup = scan->data; | 1889 | struct cgroup *new_cgroup = scan->data; |
| 1890 | 1890 | ||
| 1891 | cgroup_attach_task(new_cgroup, tsk); | 1891 | cgroup_attach_task(new_cgroup, tsk); |
| 1892 | } | 1892 | } |
| 1893 | 1893 | ||
| 1894 | /** | 1894 | /** |
| 1895 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | 1895 | * move_member_tasks_to_cpuset - move tasks from one cpuset to another |
| 1896 | * @from: cpuset in which the tasks currently reside | 1896 | * @from: cpuset in which the tasks currently reside |
| 1897 | * @to: cpuset to which the tasks will be moved | 1897 | * @to: cpuset to which the tasks will be moved |
| 1898 | * | 1898 | * |
| 1899 | * Called with cgroup_mutex held | 1899 | * Called with cgroup_mutex held |
| 1900 | * callback_mutex must not be held, as cpuset_attach() will take it. | 1900 | * callback_mutex must not be held, as cpuset_attach() will take it. |
| 1901 | * | 1901 | * |
| 1902 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 1902 | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, |
| 1903 | * calling callback functions for each. | 1903 | * calling callback functions for each. |
| 1904 | */ | 1904 | */ |
| 1905 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | 1905 | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) |
| 1906 | { | 1906 | { |
| 1907 | struct cgroup_scanner scan; | 1907 | struct cgroup_scanner scan; |
| 1908 | 1908 | ||
| 1909 | scan.cg = from->css.cgroup; | 1909 | scan.cg = from->css.cgroup; |
| 1910 | scan.test_task = NULL; /* select all tasks in cgroup */ | 1910 | scan.test_task = NULL; /* select all tasks in cgroup */ |
| 1911 | scan.process_task = cpuset_do_move_task; | 1911 | scan.process_task = cpuset_do_move_task; |
| 1912 | scan.heap = NULL; | 1912 | scan.heap = NULL; |
| 1913 | scan.data = to->css.cgroup; | 1913 | scan.data = to->css.cgroup; |
| 1914 | 1914 | ||
| 1915 | if (cgroup_scan_tasks(&scan)) | 1915 | if (cgroup_scan_tasks(&scan)) |
| 1916 | printk(KERN_ERR "move_member_tasks_to_cpuset: " | 1916 | printk(KERN_ERR "move_member_tasks_to_cpuset: " |
| 1917 | "cgroup_scan_tasks failed\n"); | 1917 | "cgroup_scan_tasks failed\n"); |
| 1918 | } | 1918 | } |
| 1919 | 1919 | ||
| 1920 | /* | 1920 | /* |
| 1921 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 1921 | * If CPU and/or memory hotplug handlers, below, unplug any CPUs |
| 1922 | * or memory nodes, we need to walk over the cpuset hierarchy, | 1922 | * or memory nodes, we need to walk over the cpuset hierarchy, |
| 1923 | * removing that CPU or node from all cpusets. If this removes the | 1923 | * removing that CPU or node from all cpusets. If this removes the |
| 1924 | * last CPU or node from a cpuset, then move the tasks in the empty | 1924 | * last CPU or node from a cpuset, then move the tasks in the empty |
| 1925 | * cpuset to its next-highest non-empty parent. | 1925 | * cpuset to its next-highest non-empty parent. |
| 1926 | * | 1926 | * |
| 1927 | * Called with cgroup_mutex held | 1927 | * Called with cgroup_mutex held |
| 1928 | * callback_mutex must not be held, as cpuset_attach() will take it. | 1928 | * callback_mutex must not be held, as cpuset_attach() will take it. |
| 1929 | */ | 1929 | */ |
| 1930 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 1930 | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) |
| 1931 | { | 1931 | { |
| 1932 | struct cpuset *parent; | 1932 | struct cpuset *parent; |
| 1933 | 1933 | ||
| 1934 | /* | 1934 | /* |
| 1935 | * The cgroup's css_sets list is in use if there are tasks | 1935 | * The cgroup's css_sets list is in use if there are tasks |
| 1936 | * in the cpuset; the list is empty if there are none; | 1936 | * in the cpuset; the list is empty if there are none; |
| 1937 | * the cs->css.refcnt seems always 0. | 1937 | * the cs->css.refcnt seems always 0. |
| 1938 | */ | 1938 | */ |
| 1939 | if (list_empty(&cs->css.cgroup->css_sets)) | 1939 | if (list_empty(&cs->css.cgroup->css_sets)) |
| 1940 | return; | 1940 | return; |
| 1941 | 1941 | ||
| 1942 | /* | 1942 | /* |
| 1943 | * Find its next-highest non-empty parent, (top cpuset | 1943 | * Find its next-highest non-empty parent, (top cpuset |
| 1944 | * has online cpus, so can't be empty). | 1944 | * has online cpus, so can't be empty). |
| 1945 | */ | 1945 | */ |
| 1946 | parent = cs->parent; | 1946 | parent = cs->parent; |
| 1947 | while (cpumask_empty(parent->cpus_allowed) || | 1947 | while (cpumask_empty(parent->cpus_allowed) || |
| 1948 | nodes_empty(parent->mems_allowed)) | 1948 | nodes_empty(parent->mems_allowed)) |
| 1949 | parent = parent->parent; | 1949 | parent = parent->parent; |
| 1950 | 1950 | ||
| 1951 | move_member_tasks_to_cpuset(cs, parent); | 1951 | move_member_tasks_to_cpuset(cs, parent); |
| 1952 | } | 1952 | } |
| 1953 | 1953 | ||
| 1954 | /* | 1954 | /* |
| 1955 | * Walk the specified cpuset subtree and look for empty cpusets. | 1955 | * Walk the specified cpuset subtree and look for empty cpusets. |
| 1956 | * The tasks of such cpuset must be moved to a parent cpuset. | 1956 | * The tasks of such cpuset must be moved to a parent cpuset. |
| 1957 | * | 1957 | * |
| 1958 | * Called with cgroup_mutex held. We take callback_mutex to modify | 1958 | * Called with cgroup_mutex held. We take callback_mutex to modify |
| 1959 | * cpus_allowed and mems_allowed. | 1959 | * cpus_allowed and mems_allowed. |
| 1960 | * | 1960 | * |
| 1961 | * This walk processes the tree from top to bottom, completing one layer | 1961 | * This walk processes the tree from top to bottom, completing one layer |
| 1962 | * before dropping down to the next. It always processes a node before | 1962 | * before dropping down to the next. It always processes a node before |
| 1963 | * any of its children. | 1963 | * any of its children. |
| 1964 | * | 1964 | * |
| 1965 | * For now, since we lack memory hot unplug, we'll never see a cpuset | 1965 | * For now, since we lack memory hot unplug, we'll never see a cpuset |
| 1966 | * that has tasks along with an empty 'mems'. But if we did see such | 1966 | * that has tasks along with an empty 'mems'. But if we did see such |
| 1967 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | 1967 | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. |
| 1968 | */ | 1968 | */ |
| 1969 | static void scan_for_empty_cpusets(struct cpuset *root) | 1969 | static void scan_for_empty_cpusets(struct cpuset *root) |
| 1970 | { | 1970 | { |
| 1971 | LIST_HEAD(queue); | 1971 | LIST_HEAD(queue); |
| 1972 | struct cpuset *cp; /* scans cpusets being updated */ | 1972 | struct cpuset *cp; /* scans cpusets being updated */ |
| 1973 | struct cpuset *child; /* scans child cpusets of cp */ | 1973 | struct cpuset *child; /* scans child cpusets of cp */ |
| 1974 | struct cgroup *cont; | 1974 | struct cgroup *cont; |
| 1975 | nodemask_t oldmems; | 1975 | nodemask_t oldmems; |
| 1976 | 1976 | ||
| 1977 | list_add_tail((struct list_head *)&root->stack_list, &queue); | 1977 | list_add_tail((struct list_head *)&root->stack_list, &queue); |
| 1978 | 1978 | ||
| 1979 | while (!list_empty(&queue)) { | 1979 | while (!list_empty(&queue)) { |
| 1980 | cp = list_first_entry(&queue, struct cpuset, stack_list); | 1980 | cp = list_first_entry(&queue, struct cpuset, stack_list); |
| 1981 | list_del(queue.next); | 1981 | list_del(queue.next); |
| 1982 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 1982 | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { |
| 1983 | child = cgroup_cs(cont); | 1983 | child = cgroup_cs(cont); |
| 1984 | list_add_tail(&child->stack_list, &queue); | 1984 | list_add_tail(&child->stack_list, &queue); |
| 1985 | } | 1985 | } |
| 1986 | 1986 | ||
| 1987 | /* Continue past cpusets with all cpus, mems online */ | 1987 | /* Continue past cpusets with all cpus, mems online */ |
| 1988 | if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) && | 1988 | if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) && |
| 1989 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) | 1989 | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) |
| 1990 | continue; | 1990 | continue; |
| 1991 | 1991 | ||
| 1992 | oldmems = cp->mems_allowed; | 1992 | oldmems = cp->mems_allowed; |
| 1993 | 1993 | ||
| 1994 | /* Remove offline cpus and mems from this cpuset. */ | 1994 | /* Remove offline cpus and mems from this cpuset. */ |
| 1995 | mutex_lock(&callback_mutex); | 1995 | mutex_lock(&callback_mutex); |
| 1996 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, | 1996 | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, |
| 1997 | cpu_online_mask); | 1997 | cpu_online_mask); |
| 1998 | nodes_and(cp->mems_allowed, cp->mems_allowed, | 1998 | nodes_and(cp->mems_allowed, cp->mems_allowed, |
| 1999 | node_states[N_HIGH_MEMORY]); | 1999 | node_states[N_HIGH_MEMORY]); |
| 2000 | mutex_unlock(&callback_mutex); | 2000 | mutex_unlock(&callback_mutex); |
| 2001 | 2001 | ||
| 2002 | /* Move tasks from the empty cpuset to a parent */ | 2002 | /* Move tasks from the empty cpuset to a parent */ |
| 2003 | if (cpumask_empty(cp->cpus_allowed) || | 2003 | if (cpumask_empty(cp->cpus_allowed) || |
| 2004 | nodes_empty(cp->mems_allowed)) | 2004 | nodes_empty(cp->mems_allowed)) |
| 2005 | remove_tasks_in_empty_cpuset(cp); | 2005 | remove_tasks_in_empty_cpuset(cp); |
| 2006 | else { | 2006 | else { |
| 2007 | update_tasks_cpumask(cp, NULL); | 2007 | update_tasks_cpumask(cp, NULL); |
| 2008 | update_tasks_nodemask(cp, &oldmems, NULL); | 2008 | update_tasks_nodemask(cp, &oldmems, NULL); |
| 2009 | } | 2009 | } |
| 2010 | } | 2010 | } |
| 2011 | } | 2011 | } |
| 2012 | 2012 | ||
| 2013 | /* | 2013 | /* |
| 2014 | * The top_cpuset tracks what CPUs and Memory Nodes are online, | 2014 | * The top_cpuset tracks what CPUs and Memory Nodes are online, |
| 2015 | * period. This is necessary in order to make cpusets transparent | 2015 | * period. This is necessary in order to make cpusets transparent |
| 2016 | * (of no affect) on systems that are actively using CPU hotplug | 2016 | * (of no affect) on systems that are actively using CPU hotplug |
| 2017 | * but making no active use of cpusets. | 2017 | * but making no active use of cpusets. |
| 2018 | * | 2018 | * |
| 2019 | * This routine ensures that top_cpuset.cpus_allowed tracks | 2019 | * This routine ensures that top_cpuset.cpus_allowed tracks |
| 2020 | * cpu_online_map on each CPU hotplug (cpuhp) event. | 2020 | * cpu_online_map on each CPU hotplug (cpuhp) event. |
| 2021 | * | 2021 | * |
| 2022 | * Called within get_online_cpus(). Needs to call cgroup_lock() | 2022 | * Called within get_online_cpus(). Needs to call cgroup_lock() |
| 2023 | * before calling generate_sched_domains(). | 2023 | * before calling generate_sched_domains(). |
| 2024 | */ | 2024 | */ |
| 2025 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, | 2025 | static int cpuset_track_online_cpus(struct notifier_block *unused_nb, |
| 2026 | unsigned long phase, void *unused_cpu) | 2026 | unsigned long phase, void *unused_cpu) |
| 2027 | { | 2027 | { |
| 2028 | struct sched_domain_attr *attr; | 2028 | struct sched_domain_attr *attr; |
| 2029 | struct cpumask *doms; | 2029 | struct cpumask *doms; |
| 2030 | int ndoms; | 2030 | int ndoms; |
| 2031 | 2031 | ||
| 2032 | switch (phase) { | 2032 | switch (phase) { |
| 2033 | case CPU_ONLINE: | 2033 | case CPU_ONLINE: |
| 2034 | case CPU_ONLINE_FROZEN: | 2034 | case CPU_ONLINE_FROZEN: |
| 2035 | case CPU_DEAD: | 2035 | case CPU_DEAD: |
| 2036 | case CPU_DEAD_FROZEN: | 2036 | case CPU_DEAD_FROZEN: |
| 2037 | break; | 2037 | break; |
| 2038 | 2038 | ||
| 2039 | default: | 2039 | default: |
| 2040 | return NOTIFY_DONE; | 2040 | return NOTIFY_DONE; |
| 2041 | } | 2041 | } |
| 2042 | 2042 | ||
| 2043 | cgroup_lock(); | 2043 | cgroup_lock(); |
| 2044 | mutex_lock(&callback_mutex); | 2044 | mutex_lock(&callback_mutex); |
| 2045 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); | 2045 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); |
| 2046 | mutex_unlock(&callback_mutex); | 2046 | mutex_unlock(&callback_mutex); |
| 2047 | scan_for_empty_cpusets(&top_cpuset); | 2047 | scan_for_empty_cpusets(&top_cpuset); |
| 2048 | ndoms = generate_sched_domains(&doms, &attr); | 2048 | ndoms = generate_sched_domains(&doms, &attr); |
| 2049 | cgroup_unlock(); | 2049 | cgroup_unlock(); |
| 2050 | 2050 | ||
| 2051 | /* Have scheduler rebuild the domains */ | 2051 | /* Have scheduler rebuild the domains */ |
| 2052 | partition_sched_domains(ndoms, doms, attr); | 2052 | partition_sched_domains(ndoms, doms, attr); |
| 2053 | 2053 | ||
| 2054 | return NOTIFY_OK; | 2054 | return NOTIFY_OK; |
| 2055 | } | 2055 | } |
| 2056 | 2056 | ||
| 2057 | #ifdef CONFIG_MEMORY_HOTPLUG | 2057 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 2058 | /* | 2058 | /* |
| 2059 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. | 2059 | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. |
| 2060 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. | 2060 | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. |
| 2061 | * See also the previous routine cpuset_track_online_cpus(). | 2061 | * See also the previous routine cpuset_track_online_cpus(). |
| 2062 | */ | 2062 | */ |
| 2063 | static int cpuset_track_online_nodes(struct notifier_block *self, | 2063 | static int cpuset_track_online_nodes(struct notifier_block *self, |
| 2064 | unsigned long action, void *arg) | 2064 | unsigned long action, void *arg) |
| 2065 | { | 2065 | { |
| 2066 | cgroup_lock(); | 2066 | cgroup_lock(); |
| 2067 | switch (action) { | 2067 | switch (action) { |
| 2068 | case MEM_ONLINE: | 2068 | case MEM_ONLINE: |
| 2069 | case MEM_OFFLINE: | 2069 | case MEM_OFFLINE: |
| 2070 | mutex_lock(&callback_mutex); | 2070 | mutex_lock(&callback_mutex); |
| 2071 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 2071 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
| 2072 | mutex_unlock(&callback_mutex); | 2072 | mutex_unlock(&callback_mutex); |
| 2073 | if (action == MEM_OFFLINE) | 2073 | if (action == MEM_OFFLINE) |
| 2074 | scan_for_empty_cpusets(&top_cpuset); | 2074 | scan_for_empty_cpusets(&top_cpuset); |
| 2075 | break; | 2075 | break; |
| 2076 | default: | 2076 | default: |
| 2077 | break; | 2077 | break; |
| 2078 | } | 2078 | } |
| 2079 | cgroup_unlock(); | 2079 | cgroup_unlock(); |
| 2080 | return NOTIFY_OK; | 2080 | return NOTIFY_OK; |
| 2081 | } | 2081 | } |
| 2082 | #endif | 2082 | #endif |
| 2083 | 2083 | ||
| 2084 | /** | 2084 | /** |
| 2085 | * cpuset_init_smp - initialize cpus_allowed | 2085 | * cpuset_init_smp - initialize cpus_allowed |
| 2086 | * | 2086 | * |
| 2087 | * Description: Finish top cpuset after cpu, node maps are initialized | 2087 | * Description: Finish top cpuset after cpu, node maps are initialized |
| 2088 | **/ | 2088 | **/ |
| 2089 | 2089 | ||
| 2090 | void __init cpuset_init_smp(void) | 2090 | void __init cpuset_init_smp(void) |
| 2091 | { | 2091 | { |
| 2092 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); | 2092 | cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask); |
| 2093 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 2093 | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; |
| 2094 | 2094 | ||
| 2095 | hotcpu_notifier(cpuset_track_online_cpus, 0); | 2095 | hotcpu_notifier(cpuset_track_online_cpus, 0); |
| 2096 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); | 2096 | hotplug_memory_notifier(cpuset_track_online_nodes, 10); |
| 2097 | 2097 | ||
| 2098 | cpuset_wq = create_singlethread_workqueue("cpuset"); | 2098 | cpuset_wq = create_singlethread_workqueue("cpuset"); |
| 2099 | BUG_ON(!cpuset_wq); | 2099 | BUG_ON(!cpuset_wq); |
| 2100 | } | 2100 | } |
| 2101 | 2101 | ||
| 2102 | /** | 2102 | /** |
| 2103 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 2103 | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. |
| 2104 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 2104 | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. |
| 2105 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 2105 | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. |
| 2106 | * | 2106 | * |
| 2107 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 2107 | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset |
| 2108 | * attached to the specified @tsk. Guaranteed to return some non-empty | 2108 | * attached to the specified @tsk. Guaranteed to return some non-empty |
| 2109 | * subset of cpu_online_map, even if this means going outside the | 2109 | * subset of cpu_online_map, even if this means going outside the |
| 2110 | * tasks cpuset. | 2110 | * tasks cpuset. |
| 2111 | **/ | 2111 | **/ |
| 2112 | 2112 | ||
| 2113 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 2113 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
| 2114 | { | 2114 | { |
| 2115 | mutex_lock(&callback_mutex); | 2115 | mutex_lock(&callback_mutex); |
| 2116 | cpuset_cpus_allowed_locked(tsk, pmask); | 2116 | cpuset_cpus_allowed_locked(tsk, pmask); |
| 2117 | mutex_unlock(&callback_mutex); | 2117 | mutex_unlock(&callback_mutex); |
| 2118 | } | 2118 | } |
| 2119 | 2119 | ||
| 2120 | /** | 2120 | /** |
| 2121 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | 2121 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. |
| 2122 | * Must be called with callback_mutex held. | 2122 | * Must be called with callback_mutex held. |
| 2123 | **/ | 2123 | **/ |
| 2124 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) | 2124 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) |
| 2125 | { | 2125 | { |
| 2126 | task_lock(tsk); | 2126 | task_lock(tsk); |
| 2127 | guarantee_online_cpus(task_cs(tsk), pmask); | 2127 | guarantee_online_cpus(task_cs(tsk), pmask); |
| 2128 | task_unlock(tsk); | 2128 | task_unlock(tsk); |
| 2129 | } | 2129 | } |
| 2130 | 2130 | ||
| 2131 | void cpuset_init_current_mems_allowed(void) | 2131 | void cpuset_init_current_mems_allowed(void) |
| 2132 | { | 2132 | { |
| 2133 | nodes_setall(current->mems_allowed); | 2133 | nodes_setall(current->mems_allowed); |
| 2134 | } | 2134 | } |
| 2135 | 2135 | ||
| 2136 | /** | 2136 | /** |
| 2137 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 2137 | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. |
| 2138 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 2138 | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. |
| 2139 | * | 2139 | * |
| 2140 | * Description: Returns the nodemask_t mems_allowed of the cpuset | 2140 | * Description: Returns the nodemask_t mems_allowed of the cpuset |
| 2141 | * attached to the specified @tsk. Guaranteed to return some non-empty | 2141 | * attached to the specified @tsk. Guaranteed to return some non-empty |
| 2142 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the | 2142 | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the |
| 2143 | * tasks cpuset. | 2143 | * tasks cpuset. |
| 2144 | **/ | 2144 | **/ |
| 2145 | 2145 | ||
| 2146 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 2146 | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) |
| 2147 | { | 2147 | { |
| 2148 | nodemask_t mask; | 2148 | nodemask_t mask; |
| 2149 | 2149 | ||
| 2150 | mutex_lock(&callback_mutex); | 2150 | mutex_lock(&callback_mutex); |
| 2151 | task_lock(tsk); | 2151 | task_lock(tsk); |
| 2152 | guarantee_online_mems(task_cs(tsk), &mask); | 2152 | guarantee_online_mems(task_cs(tsk), &mask); |
| 2153 | task_unlock(tsk); | 2153 | task_unlock(tsk); |
| 2154 | mutex_unlock(&callback_mutex); | 2154 | mutex_unlock(&callback_mutex); |
| 2155 | 2155 | ||
| 2156 | return mask; | 2156 | return mask; |
| 2157 | } | 2157 | } |
| 2158 | 2158 | ||
| 2159 | /** | 2159 | /** |
| 2160 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 2160 | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed |
| 2161 | * @nodemask: the nodemask to be checked | 2161 | * @nodemask: the nodemask to be checked |
| 2162 | * | 2162 | * |
| 2163 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 2163 | * Are any of the nodes in the nodemask allowed in current->mems_allowed? |
| 2164 | */ | 2164 | */ |
| 2165 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 2165 | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) |
| 2166 | { | 2166 | { |
| 2167 | return nodes_intersects(*nodemask, current->mems_allowed); | 2167 | return nodes_intersects(*nodemask, current->mems_allowed); |
| 2168 | } | 2168 | } |
| 2169 | 2169 | ||
| 2170 | /* | 2170 | /* |
| 2171 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 2171 | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or |
| 2172 | * mem_hardwall ancestor to the specified cpuset. Call holding | 2172 | * mem_hardwall ancestor to the specified cpuset. Call holding |
| 2173 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall | 2173 | * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall |
| 2174 | * (an unusual configuration), then returns the root cpuset. | 2174 | * (an unusual configuration), then returns the root cpuset. |
| 2175 | */ | 2175 | */ |
| 2176 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | 2176 | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) |
| 2177 | { | 2177 | { |
| 2178 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) | 2178 | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) |
| 2179 | cs = cs->parent; | 2179 | cs = cs->parent; |
| 2180 | return cs; | 2180 | return cs; |
| 2181 | } | 2181 | } |
| 2182 | 2182 | ||
| 2183 | /** | 2183 | /** |
| 2184 | * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node? | 2184 | * cpuset_node_allowed_softwall - Can we allocate on a memory node? |
| 2185 | * @z: is this zone on an allowed node? | 2185 | * @node: is this an allowed node? |
| 2186 | * @gfp_mask: memory allocation flags | 2186 | * @gfp_mask: memory allocation flags |
| 2187 | * | 2187 | * |
| 2188 | * If we're in interrupt, yes, we can always allocate. If | 2188 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
| 2189 | * __GFP_THISNODE is set, yes, we can always allocate. If zone | 2189 | * set, yes, we can always allocate. If node is in our task's mems_allowed, |
| 2190 | * z's node is in our tasks mems_allowed, yes. If it's not a | 2190 | * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest |
| 2191 | * __GFP_HARDWALL request and this zone's nodes is in the nearest | 2191 | * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been |
| 2192 | * hardwalled cpuset ancestor to this tasks cpuset, yes. | 2192 | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE |
| 2193 | * If the task has been OOM killed and has access to memory reserves | 2193 | * flag, yes. |
| 2194 | * as specified by the TIF_MEMDIE flag, yes. | ||
| 2195 | * Otherwise, no. | 2194 | * Otherwise, no. |
| 2196 | * | 2195 | * |
| 2197 | * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall() | 2196 | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to |
| 2198 | * reduces to cpuset_zone_allowed_hardwall(). Otherwise, | 2197 | * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall() |
| 2199 | * cpuset_zone_allowed_softwall() might sleep, and might allow a zone | 2198 | * might sleep, and might allow a node from an enclosing cpuset. |
| 2200 | * from an enclosing cpuset. | ||
| 2201 | * | 2199 | * |
| 2202 | * cpuset_zone_allowed_hardwall() only handles the simpler case of | 2200 | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall |
| 2203 | * hardwall cpusets, and never sleeps. | 2201 | * cpusets, and never sleeps. |
| 2204 | * | 2202 | * |
| 2205 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 2203 | * The __GFP_THISNODE placement logic is really handled elsewhere, |
| 2206 | * by forcibly using a zonelist starting at a specified node, and by | 2204 | * by forcibly using a zonelist starting at a specified node, and by |
| 2207 | * (in get_page_from_freelist()) refusing to consider the zones for | 2205 | * (in get_page_from_freelist()) refusing to consider the zones for |
| 2208 | * any node on the zonelist except the first. By the time any such | 2206 | * any node on the zonelist except the first. By the time any such |
| 2209 | * calls get to this routine, we should just shut up and say 'yes'. | 2207 | * calls get to this routine, we should just shut up and say 'yes'. |
| 2210 | * | 2208 | * |
| 2211 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 2209 | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, |
| 2212 | * and do not allow allocations outside the current tasks cpuset | 2210 | * and do not allow allocations outside the current tasks cpuset |
| 2213 | * unless the task has been OOM killed as is marked TIF_MEMDIE. | 2211 | * unless the task has been OOM killed as is marked TIF_MEMDIE. |
| 2214 | * GFP_KERNEL allocations are not so marked, so can escape to the | 2212 | * GFP_KERNEL allocations are not so marked, so can escape to the |
| 2215 | * nearest enclosing hardwalled ancestor cpuset. | 2213 | * nearest enclosing hardwalled ancestor cpuset. |
| 2216 | * | 2214 | * |
| 2217 | * Scanning up parent cpusets requires callback_mutex. The | 2215 | * Scanning up parent cpusets requires callback_mutex. The |
| 2218 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 2216 | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit |
| 2219 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 2217 | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the |
| 2220 | * current tasks mems_allowed came up empty on the first pass over | 2218 | * current tasks mems_allowed came up empty on the first pass over |
| 2221 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the | 2219 | * the zonelist. So only GFP_KERNEL allocations, if all nodes in the |
| 2222 | * cpuset are short of memory, might require taking the callback_mutex | 2220 | * cpuset are short of memory, might require taking the callback_mutex |
| 2223 | * mutex. | 2221 | * mutex. |
| 2224 | * | 2222 | * |
| 2225 | * The first call here from mm/page_alloc:get_page_from_freelist() | 2223 | * The first call here from mm/page_alloc:get_page_from_freelist() |
| 2226 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 2224 | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, |
| 2227 | * so no allocation on a node outside the cpuset is allowed (unless | 2225 | * so no allocation on a node outside the cpuset is allowed (unless |
| 2228 | * in interrupt, of course). | 2226 | * in interrupt, of course). |
| 2229 | * | 2227 | * |
| 2230 | * The second pass through get_page_from_freelist() doesn't even call | 2228 | * The second pass through get_page_from_freelist() doesn't even call |
| 2231 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() | 2229 | * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() |
| 2232 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 2230 | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set |
| 2233 | * in alloc_flags. That logic and the checks below have the combined | 2231 | * in alloc_flags. That logic and the checks below have the combined |
| 2234 | * affect that: | 2232 | * affect that: |
| 2235 | * in_interrupt - any node ok (current task context irrelevant) | 2233 | * in_interrupt - any node ok (current task context irrelevant) |
| 2236 | * GFP_ATOMIC - any node ok | 2234 | * GFP_ATOMIC - any node ok |
| 2237 | * TIF_MEMDIE - any node ok | 2235 | * TIF_MEMDIE - any node ok |
| 2238 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok | 2236 | * GFP_KERNEL - any node in enclosing hardwalled cpuset ok |
| 2239 | * GFP_USER - only nodes in current tasks mems allowed ok. | 2237 | * GFP_USER - only nodes in current tasks mems allowed ok. |
| 2240 | * | 2238 | * |
| 2241 | * Rule: | 2239 | * Rule: |
| 2242 | * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you | 2240 | * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you |
| 2243 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables | 2241 | * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables |
| 2244 | * the code that might scan up ancestor cpusets and sleep. | 2242 | * the code that might scan up ancestor cpusets and sleep. |
| 2245 | */ | 2243 | */ |
| 2246 | 2244 | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) | |
| 2247 | int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask) | ||
| 2248 | { | 2245 | { |
| 2249 | int node; /* node that zone z is on */ | ||
| 2250 | const struct cpuset *cs; /* current cpuset ancestors */ | 2246 | const struct cpuset *cs; /* current cpuset ancestors */ |
| 2251 | int allowed; /* is allocation in zone z allowed? */ | 2247 | int allowed; /* is allocation in zone z allowed? */ |
| 2252 | 2248 | ||
| 2253 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 2249 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
| 2254 | return 1; | 2250 | return 1; |
| 2255 | node = zone_to_nid(z); | ||
| 2256 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); | 2251 | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); |
| 2257 | if (node_isset(node, current->mems_allowed)) | 2252 | if (node_isset(node, current->mems_allowed)) |
| 2258 | return 1; | 2253 | return 1; |
| 2259 | /* | 2254 | /* |
| 2260 | * Allow tasks that have access to memory reserves because they have | 2255 | * Allow tasks that have access to memory reserves because they have |
| 2261 | * been OOM killed to get memory anywhere. | 2256 | * been OOM killed to get memory anywhere. |
| 2262 | */ | 2257 | */ |
| 2263 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 2258 | if (unlikely(test_thread_flag(TIF_MEMDIE))) |
| 2264 | return 1; | 2259 | return 1; |
| 2265 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ | 2260 | if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ |
| 2266 | return 0; | 2261 | return 0; |
| 2267 | 2262 | ||
| 2268 | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 2263 | if (current->flags & PF_EXITING) /* Let dying task have memory */ |
| 2269 | return 1; | 2264 | return 1; |
| 2270 | 2265 | ||
| 2271 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ | 2266 | /* Not hardwall and node outside mems_allowed: scan up cpusets */ |
| 2272 | mutex_lock(&callback_mutex); | 2267 | mutex_lock(&callback_mutex); |
| 2273 | 2268 | ||
| 2274 | task_lock(current); | 2269 | task_lock(current); |
| 2275 | cs = nearest_hardwall_ancestor(task_cs(current)); | 2270 | cs = nearest_hardwall_ancestor(task_cs(current)); |
| 2276 | task_unlock(current); | 2271 | task_unlock(current); |
| 2277 | 2272 | ||
| 2278 | allowed = node_isset(node, cs->mems_allowed); | 2273 | allowed = node_isset(node, cs->mems_allowed); |
| 2279 | mutex_unlock(&callback_mutex); | 2274 | mutex_unlock(&callback_mutex); |
| 2280 | return allowed; | 2275 | return allowed; |
| 2281 | } | 2276 | } |
| 2282 | 2277 | ||
| 2283 | /* | 2278 | /* |
| 2284 | * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node? | 2279 | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? |
| 2285 | * @z: is this zone on an allowed node? | 2280 | * @node: is this an allowed node? |
| 2286 | * @gfp_mask: memory allocation flags | 2281 | * @gfp_mask: memory allocation flags |
| 2287 | * | 2282 | * |
| 2288 | * If we're in interrupt, yes, we can always allocate. | 2283 | * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is |
| 2289 | * If __GFP_THISNODE is set, yes, we can always allocate. If zone | 2284 | * set, yes, we can always allocate. If node is in our task's mems_allowed, |
| 2290 | * z's node is in our tasks mems_allowed, yes. If the task has been | 2285 | * yes. If the task has been OOM killed and has access to memory reserves as |
| 2291 | * OOM killed and has access to memory reserves as specified by the | 2286 | * specified by the TIF_MEMDIE flag, yes. |
| 2292 | * TIF_MEMDIE flag, yes. Otherwise, no. | 2287 | * Otherwise, no. |
| 2293 | * | 2288 | * |
| 2294 | * The __GFP_THISNODE placement logic is really handled elsewhere, | 2289 | * The __GFP_THISNODE placement logic is really handled elsewhere, |
| 2295 | * by forcibly using a zonelist starting at a specified node, and by | 2290 | * by forcibly using a zonelist starting at a specified node, and by |
| 2296 | * (in get_page_from_freelist()) refusing to consider the zones for | 2291 | * (in get_page_from_freelist()) refusing to consider the zones for |
| 2297 | * any node on the zonelist except the first. By the time any such | 2292 | * any node on the zonelist except the first. By the time any such |
| 2298 | * calls get to this routine, we should just shut up and say 'yes'. | 2293 | * calls get to this routine, we should just shut up and say 'yes'. |
| 2299 | * | 2294 | * |
| 2300 | * Unlike the cpuset_zone_allowed_softwall() variant, above, | 2295 | * Unlike the cpuset_node_allowed_softwall() variant, above, |
| 2301 | * this variant requires that the zone be in the current tasks | 2296 | * this variant requires that the node be in the current task's |
| 2302 | * mems_allowed or that we're in interrupt. It does not scan up the | 2297 | * mems_allowed or that we're in interrupt. It does not scan up the |
| 2303 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | 2298 | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. |
| 2304 | * It never sleeps. | 2299 | * It never sleeps. |
| 2305 | */ | 2300 | */ |
| 2306 | 2301 | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | |
| 2307 | int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask) | ||
| 2308 | { | 2302 | { |
| 2309 | int node; /* node that zone z is on */ | ||
| 2310 | |||
| 2311 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 2303 | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) |
| 2312 | return 1; | 2304 | return 1; |
| 2313 | node = zone_to_nid(z); | ||
| 2314 | if (node_isset(node, current->mems_allowed)) | 2305 | if (node_isset(node, current->mems_allowed)) |
| 2315 | return 1; | 2306 | return 1; |
| 2316 | /* | 2307 | /* |
| 2317 | * Allow tasks that have access to memory reserves because they have | 2308 | * Allow tasks that have access to memory reserves because they have |
| 2318 | * been OOM killed to get memory anywhere. | 2309 | * been OOM killed to get memory anywhere. |
| 2319 | */ | 2310 | */ |
| 2320 | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 2311 | if (unlikely(test_thread_flag(TIF_MEMDIE))) |
| 2321 | return 1; | 2312 | return 1; |
| 2322 | return 0; | 2313 | return 0; |
| 2323 | } | 2314 | } |
| 2324 | 2315 | ||
| 2325 | /** | 2316 | /** |
| 2326 | * cpuset_lock - lock out any changes to cpuset structures | 2317 | * cpuset_lock - lock out any changes to cpuset structures |
| 2327 | * | 2318 | * |
| 2328 | * The out of memory (oom) code needs to mutex_lock cpusets | 2319 | * The out of memory (oom) code needs to mutex_lock cpusets |
| 2329 | * from being changed while it scans the tasklist looking for a | 2320 | * from being changed while it scans the tasklist looking for a |
| 2330 | * task in an overlapping cpuset. Expose callback_mutex via this | 2321 | * task in an overlapping cpuset. Expose callback_mutex via this |
| 2331 | * cpuset_lock() routine, so the oom code can lock it, before | 2322 | * cpuset_lock() routine, so the oom code can lock it, before |
| 2332 | * locking the task list. The tasklist_lock is a spinlock, so | 2323 | * locking the task list. The tasklist_lock is a spinlock, so |
| 2333 | * must be taken inside callback_mutex. | 2324 | * must be taken inside callback_mutex. |
| 2334 | */ | 2325 | */ |
| 2335 | 2326 | ||
| 2336 | void cpuset_lock(void) | 2327 | void cpuset_lock(void) |
| 2337 | { | 2328 | { |
| 2338 | mutex_lock(&callback_mutex); | 2329 | mutex_lock(&callback_mutex); |
| 2339 | } | 2330 | } |
| 2340 | 2331 | ||
| 2341 | /** | 2332 | /** |
| 2342 | * cpuset_unlock - release lock on cpuset changes | 2333 | * cpuset_unlock - release lock on cpuset changes |
| 2343 | * | 2334 | * |
| 2344 | * Undo the lock taken in a previous cpuset_lock() call. | 2335 | * Undo the lock taken in a previous cpuset_lock() call. |
| 2345 | */ | 2336 | */ |
| 2346 | 2337 | ||
| 2347 | void cpuset_unlock(void) | 2338 | void cpuset_unlock(void) |
| 2348 | { | 2339 | { |
| 2349 | mutex_unlock(&callback_mutex); | 2340 | mutex_unlock(&callback_mutex); |
| 2350 | } | 2341 | } |
| 2351 | 2342 | ||
| 2352 | /** | 2343 | /** |
| 2353 | * cpuset_mem_spread_node() - On which node to begin search for a page | 2344 | * cpuset_mem_spread_node() - On which node to begin search for a page |
| 2354 | * | 2345 | * |
| 2355 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 2346 | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for |
| 2356 | * tasks in a cpuset with is_spread_page or is_spread_slab set), | 2347 | * tasks in a cpuset with is_spread_page or is_spread_slab set), |
| 2357 | * and if the memory allocation used cpuset_mem_spread_node() | 2348 | * and if the memory allocation used cpuset_mem_spread_node() |
| 2358 | * to determine on which node to start looking, as it will for | 2349 | * to determine on which node to start looking, as it will for |
| 2359 | * certain page cache or slab cache pages such as used for file | 2350 | * certain page cache or slab cache pages such as used for file |
| 2360 | * system buffers and inode caches, then instead of starting on the | 2351 | * system buffers and inode caches, then instead of starting on the |
| 2361 | * local node to look for a free page, rather spread the starting | 2352 | * local node to look for a free page, rather spread the starting |
| 2362 | * node around the tasks mems_allowed nodes. | 2353 | * node around the tasks mems_allowed nodes. |
| 2363 | * | 2354 | * |
| 2364 | * We don't have to worry about the returned node being offline | 2355 | * We don't have to worry about the returned node being offline |
| 2365 | * because "it can't happen", and even if it did, it would be ok. | 2356 | * because "it can't happen", and even if it did, it would be ok. |
| 2366 | * | 2357 | * |
| 2367 | * The routines calling guarantee_online_mems() are careful to | 2358 | * The routines calling guarantee_online_mems() are careful to |
| 2368 | * only set nodes in task->mems_allowed that are online. So it | 2359 | * only set nodes in task->mems_allowed that are online. So it |
| 2369 | * should not be possible for the following code to return an | 2360 | * should not be possible for the following code to return an |
| 2370 | * offline node. But if it did, that would be ok, as this routine | 2361 | * offline node. But if it did, that would be ok, as this routine |
| 2371 | * is not returning the node where the allocation must be, only | 2362 | * is not returning the node where the allocation must be, only |
| 2372 | * the node where the search should start. The zonelist passed to | 2363 | * the node where the search should start. The zonelist passed to |
| 2373 | * __alloc_pages() will include all nodes. If the slab allocator | 2364 | * __alloc_pages() will include all nodes. If the slab allocator |
| 2374 | * is passed an offline node, it will fall back to the local node. | 2365 | * is passed an offline node, it will fall back to the local node. |
| 2375 | * See kmem_cache_alloc_node(). | 2366 | * See kmem_cache_alloc_node(). |
| 2376 | */ | 2367 | */ |
| 2377 | 2368 | ||
| 2378 | int cpuset_mem_spread_node(void) | 2369 | int cpuset_mem_spread_node(void) |
| 2379 | { | 2370 | { |
| 2380 | int node; | 2371 | int node; |
| 2381 | 2372 | ||
| 2382 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); | 2373 | node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed); |
| 2383 | if (node == MAX_NUMNODES) | 2374 | if (node == MAX_NUMNODES) |
| 2384 | node = first_node(current->mems_allowed); | 2375 | node = first_node(current->mems_allowed); |
| 2385 | current->cpuset_mem_spread_rotor = node; | 2376 | current->cpuset_mem_spread_rotor = node; |
| 2386 | return node; | 2377 | return node; |
| 2387 | } | 2378 | } |
| 2388 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 2379 | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); |
| 2389 | 2380 | ||
| 2390 | /** | 2381 | /** |
| 2391 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 2382 | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? |
| 2392 | * @tsk1: pointer to task_struct of some task. | 2383 | * @tsk1: pointer to task_struct of some task. |
| 2393 | * @tsk2: pointer to task_struct of some other task. | 2384 | * @tsk2: pointer to task_struct of some other task. |
| 2394 | * | 2385 | * |
| 2395 | * Description: Return true if @tsk1's mems_allowed intersects the | 2386 | * Description: Return true if @tsk1's mems_allowed intersects the |
| 2396 | * mems_allowed of @tsk2. Used by the OOM killer to determine if | 2387 | * mems_allowed of @tsk2. Used by the OOM killer to determine if |
| 2397 | * one of the task's memory usage might impact the memory available | 2388 | * one of the task's memory usage might impact the memory available |
| 2398 | * to the other. | 2389 | * to the other. |
| 2399 | **/ | 2390 | **/ |
| 2400 | 2391 | ||
| 2401 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 2392 | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, |
| 2402 | const struct task_struct *tsk2) | 2393 | const struct task_struct *tsk2) |
| 2403 | { | 2394 | { |
| 2404 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 2395 | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); |
| 2405 | } | 2396 | } |
| 2406 | 2397 | ||
| 2407 | /** | 2398 | /** |
| 2408 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | 2399 | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed |
| 2409 | * @task: pointer to task_struct of some task. | 2400 | * @task: pointer to task_struct of some task. |
| 2410 | * | 2401 | * |
| 2411 | * Description: Prints @task's name, cpuset name, and cached copy of its | 2402 | * Description: Prints @task's name, cpuset name, and cached copy of its |
| 2412 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow | 2403 | * mems_allowed to the kernel log. Must hold task_lock(task) to allow |
| 2413 | * dereferencing task_cs(task). | 2404 | * dereferencing task_cs(task). |
| 2414 | */ | 2405 | */ |
| 2415 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | 2406 | void cpuset_print_task_mems_allowed(struct task_struct *tsk) |
| 2416 | { | 2407 | { |
| 2417 | struct dentry *dentry; | 2408 | struct dentry *dentry; |
| 2418 | 2409 | ||
| 2419 | dentry = task_cs(tsk)->css.cgroup->dentry; | 2410 | dentry = task_cs(tsk)->css.cgroup->dentry; |
| 2420 | spin_lock(&cpuset_buffer_lock); | 2411 | spin_lock(&cpuset_buffer_lock); |
| 2421 | snprintf(cpuset_name, CPUSET_NAME_LEN, | 2412 | snprintf(cpuset_name, CPUSET_NAME_LEN, |
| 2422 | dentry ? (const char *)dentry->d_name.name : "/"); | 2413 | dentry ? (const char *)dentry->d_name.name : "/"); |
| 2423 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | 2414 | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, |
| 2424 | tsk->mems_allowed); | 2415 | tsk->mems_allowed); |
| 2425 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | 2416 | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", |
| 2426 | tsk->comm, cpuset_name, cpuset_nodelist); | 2417 | tsk->comm, cpuset_name, cpuset_nodelist); |
| 2427 | spin_unlock(&cpuset_buffer_lock); | 2418 | spin_unlock(&cpuset_buffer_lock); |
| 2428 | } | 2419 | } |
| 2429 | 2420 | ||
| 2430 | /* | 2421 | /* |
| 2431 | * Collection of memory_pressure is suppressed unless | 2422 | * Collection of memory_pressure is suppressed unless |
| 2432 | * this flag is enabled by writing "1" to the special | 2423 | * this flag is enabled by writing "1" to the special |
| 2433 | * cpuset file 'memory_pressure_enabled' in the root cpuset. | 2424 | * cpuset file 'memory_pressure_enabled' in the root cpuset. |
| 2434 | */ | 2425 | */ |
| 2435 | 2426 | ||
| 2436 | int cpuset_memory_pressure_enabled __read_mostly; | 2427 | int cpuset_memory_pressure_enabled __read_mostly; |
| 2437 | 2428 | ||
| 2438 | /** | 2429 | /** |
| 2439 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 2430 | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. |
| 2440 | * | 2431 | * |
| 2441 | * Keep a running average of the rate of synchronous (direct) | 2432 | * Keep a running average of the rate of synchronous (direct) |
| 2442 | * page reclaim efforts initiated by tasks in each cpuset. | 2433 | * page reclaim efforts initiated by tasks in each cpuset. |
| 2443 | * | 2434 | * |
| 2444 | * This represents the rate at which some task in the cpuset | 2435 | * This represents the rate at which some task in the cpuset |
| 2445 | * ran low on memory on all nodes it was allowed to use, and | 2436 | * ran low on memory on all nodes it was allowed to use, and |
| 2446 | * had to enter the kernels page reclaim code in an effort to | 2437 | * had to enter the kernels page reclaim code in an effort to |
| 2447 | * create more free memory by tossing clean pages or swapping | 2438 | * create more free memory by tossing clean pages or swapping |
| 2448 | * or writing dirty pages. | 2439 | * or writing dirty pages. |
| 2449 | * | 2440 | * |
| 2450 | * Display to user space in the per-cpuset read-only file | 2441 | * Display to user space in the per-cpuset read-only file |
| 2451 | * "memory_pressure". Value displayed is an integer | 2442 | * "memory_pressure". Value displayed is an integer |
| 2452 | * representing the recent rate of entry into the synchronous | 2443 | * representing the recent rate of entry into the synchronous |
| 2453 | * (direct) page reclaim by any task attached to the cpuset. | 2444 | * (direct) page reclaim by any task attached to the cpuset. |
| 2454 | **/ | 2445 | **/ |
| 2455 | 2446 | ||
| 2456 | void __cpuset_memory_pressure_bump(void) | 2447 | void __cpuset_memory_pressure_bump(void) |
| 2457 | { | 2448 | { |
| 2458 | task_lock(current); | 2449 | task_lock(current); |
| 2459 | fmeter_markevent(&task_cs(current)->fmeter); | 2450 | fmeter_markevent(&task_cs(current)->fmeter); |
| 2460 | task_unlock(current); | 2451 | task_unlock(current); |
| 2461 | } | 2452 | } |
| 2462 | 2453 | ||
| 2463 | #ifdef CONFIG_PROC_PID_CPUSET | 2454 | #ifdef CONFIG_PROC_PID_CPUSET |
| 2464 | /* | 2455 | /* |
| 2465 | * proc_cpuset_show() | 2456 | * proc_cpuset_show() |
| 2466 | * - Print tasks cpuset path into seq_file. | 2457 | * - Print tasks cpuset path into seq_file. |
| 2467 | * - Used for /proc/<pid>/cpuset. | 2458 | * - Used for /proc/<pid>/cpuset. |
| 2468 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 2459 | * - No need to task_lock(tsk) on this tsk->cpuset reference, as it |
| 2469 | * doesn't really matter if tsk->cpuset changes after we read it, | 2460 | * doesn't really matter if tsk->cpuset changes after we read it, |
| 2470 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it | 2461 | * and we take cgroup_mutex, keeping cpuset_attach() from changing it |
| 2471 | * anyway. | 2462 | * anyway. |
| 2472 | */ | 2463 | */ |
| 2473 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) | 2464 | static int proc_cpuset_show(struct seq_file *m, void *unused_v) |
| 2474 | { | 2465 | { |
| 2475 | struct pid *pid; | 2466 | struct pid *pid; |
| 2476 | struct task_struct *tsk; | 2467 | struct task_struct *tsk; |
| 2477 | char *buf; | 2468 | char *buf; |
| 2478 | struct cgroup_subsys_state *css; | 2469 | struct cgroup_subsys_state *css; |
| 2479 | int retval; | 2470 | int retval; |
| 2480 | 2471 | ||
| 2481 | retval = -ENOMEM; | 2472 | retval = -ENOMEM; |
| 2482 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 2473 | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 2483 | if (!buf) | 2474 | if (!buf) |
| 2484 | goto out; | 2475 | goto out; |
| 2485 | 2476 | ||
| 2486 | retval = -ESRCH; | 2477 | retval = -ESRCH; |
| 2487 | pid = m->private; | 2478 | pid = m->private; |
| 2488 | tsk = get_pid_task(pid, PIDTYPE_PID); | 2479 | tsk = get_pid_task(pid, PIDTYPE_PID); |
| 2489 | if (!tsk) | 2480 | if (!tsk) |
| 2490 | goto out_free; | 2481 | goto out_free; |
| 2491 | 2482 | ||
| 2492 | retval = -EINVAL; | 2483 | retval = -EINVAL; |
| 2493 | cgroup_lock(); | 2484 | cgroup_lock(); |
| 2494 | css = task_subsys_state(tsk, cpuset_subsys_id); | 2485 | css = task_subsys_state(tsk, cpuset_subsys_id); |
| 2495 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | 2486 | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); |
| 2496 | if (retval < 0) | 2487 | if (retval < 0) |
| 2497 | goto out_unlock; | 2488 | goto out_unlock; |
| 2498 | seq_puts(m, buf); | 2489 | seq_puts(m, buf); |
| 2499 | seq_putc(m, '\n'); | 2490 | seq_putc(m, '\n'); |
| 2500 | out_unlock: | 2491 | out_unlock: |
| 2501 | cgroup_unlock(); | 2492 | cgroup_unlock(); |
| 2502 | put_task_struct(tsk); | 2493 | put_task_struct(tsk); |
| 2503 | out_free: | 2494 | out_free: |
| 2504 | kfree(buf); | 2495 | kfree(buf); |
| 2505 | out: | 2496 | out: |
| 2506 | return retval; | 2497 | return retval; |
| 2507 | } | 2498 | } |
| 2508 | 2499 | ||
| 2509 | static int cpuset_open(struct inode *inode, struct file *file) | 2500 | static int cpuset_open(struct inode *inode, struct file *file) |
| 2510 | { | 2501 | { |
| 2511 | struct pid *pid = PROC_I(inode)->pid; | 2502 | struct pid *pid = PROC_I(inode)->pid; |
| 2512 | return single_open(file, proc_cpuset_show, pid); | 2503 | return single_open(file, proc_cpuset_show, pid); |
| 2513 | } | 2504 | } |
| 2514 | 2505 | ||
| 2515 | const struct file_operations proc_cpuset_operations = { | 2506 | const struct file_operations proc_cpuset_operations = { |
| 2516 | .open = cpuset_open, | 2507 | .open = cpuset_open, |
| 2517 | .read = seq_read, | 2508 | .read = seq_read, |
| 2518 | .llseek = seq_lseek, | 2509 | .llseek = seq_lseek, |
| 2519 | .release = single_release, | 2510 | .release = single_release, |
| 2520 | }; | 2511 | }; |
| 2521 | #endif /* CONFIG_PROC_PID_CPUSET */ | 2512 | #endif /* CONFIG_PROC_PID_CPUSET */ |
| 2522 | 2513 | ||
| 2523 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | 2514 | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ |
| 2524 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 2515 | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) |
| 2525 | { | 2516 | { |
| 2526 | seq_printf(m, "Cpus_allowed:\t"); | 2517 | seq_printf(m, "Cpus_allowed:\t"); |
| 2527 | seq_cpumask(m, &task->cpus_allowed); | 2518 | seq_cpumask(m, &task->cpus_allowed); |
| 2528 | seq_printf(m, "\n"); | 2519 | seq_printf(m, "\n"); |
| 2529 | seq_printf(m, "Cpus_allowed_list:\t"); | 2520 | seq_printf(m, "Cpus_allowed_list:\t"); |
| 2530 | seq_cpumask_list(m, &task->cpus_allowed); | 2521 | seq_cpumask_list(m, &task->cpus_allowed); |
| 2531 | seq_printf(m, "\n"); | 2522 | seq_printf(m, "\n"); |
| 2532 | seq_printf(m, "Mems_allowed:\t"); | 2523 | seq_printf(m, "Mems_allowed:\t"); |
| 2533 | seq_nodemask(m, &task->mems_allowed); | 2524 | seq_nodemask(m, &task->mems_allowed); |
| 2534 | seq_printf(m, "\n"); | 2525 | seq_printf(m, "\n"); |
| 2535 | seq_printf(m, "Mems_allowed_list:\t"); | 2526 | seq_printf(m, "Mems_allowed_list:\t"); |
| 2536 | seq_nodemask_list(m, &task->mems_allowed); | 2527 | seq_nodemask_list(m, &task->mems_allowed); |
| 2537 | seq_printf(m, "\n"); | 2528 | seq_printf(m, "\n"); |
| 2538 | } | 2529 | } |
| 2539 | 2530 |