Commit d3f761104b097738932afcc310fbbbbfb007ef92
1 parent
f735b5eeb9
Exists in
master
and in
4 other branches
bio: get rid of bio_vec clearing
We don't need to clear the memory used for adding bio_vec entries, since nobody should be looking at members unitialized. Any valid use should be below bio->bi_vcnt, and that members up until that count must be valid since they were added through bio_add_page(). Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Showing 1 changed file with 1 additions and 5 deletions Inline Diff
fs/bio.c
| 1 | /* | 1 | /* |
| 2 | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | 2 | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> |
| 3 | * | 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify | 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 as | 5 | * it under the terms of the GNU General Public License version 2 as |
| 6 | * published by the Free Software Foundation. | 6 | * published by the Free Software Foundation. |
| 7 | * | 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, | 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. | 11 | * GNU General Public License for more details. |
| 12 | * | 12 | * |
| 13 | * You should have received a copy of the GNU General Public Licens | 13 | * You should have received a copy of the GNU General Public Licens |
| 14 | * along with this program; if not, write to the Free Software | 14 | * along with this program; if not, write to the Free Software |
| 15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | 15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- |
| 16 | * | 16 | * |
| 17 | */ | 17 | */ |
| 18 | #include <linux/mm.h> | 18 | #include <linux/mm.h> |
| 19 | #include <linux/swap.h> | 19 | #include <linux/swap.h> |
| 20 | #include <linux/bio.h> | 20 | #include <linux/bio.h> |
| 21 | #include <linux/blkdev.h> | 21 | #include <linux/blkdev.h> |
| 22 | #include <linux/slab.h> | 22 | #include <linux/slab.h> |
| 23 | #include <linux/init.h> | 23 | #include <linux/init.h> |
| 24 | #include <linux/kernel.h> | 24 | #include <linux/kernel.h> |
| 25 | #include <linux/module.h> | 25 | #include <linux/module.h> |
| 26 | #include <linux/mempool.h> | 26 | #include <linux/mempool.h> |
| 27 | #include <linux/workqueue.h> | 27 | #include <linux/workqueue.h> |
| 28 | #include <linux/blktrace_api.h> | 28 | #include <linux/blktrace_api.h> |
| 29 | #include <trace/block.h> | 29 | #include <trace/block.h> |
| 30 | #include <scsi/sg.h> /* for struct sg_iovec */ | 30 | #include <scsi/sg.h> /* for struct sg_iovec */ |
| 31 | 31 | ||
| 32 | DEFINE_TRACE(block_split); | 32 | DEFINE_TRACE(block_split); |
| 33 | 33 | ||
| 34 | /* | 34 | /* |
| 35 | * Test patch to inline a certain number of bi_io_vec's inside the bio | 35 | * Test patch to inline a certain number of bi_io_vec's inside the bio |
| 36 | * itself, to shrink a bio data allocation from two mempool calls to one | 36 | * itself, to shrink a bio data allocation from two mempool calls to one |
| 37 | */ | 37 | */ |
| 38 | #define BIO_INLINE_VECS 4 | 38 | #define BIO_INLINE_VECS 4 |
| 39 | 39 | ||
| 40 | static mempool_t *bio_split_pool __read_mostly; | 40 | static mempool_t *bio_split_pool __read_mostly; |
| 41 | 41 | ||
| 42 | /* | 42 | /* |
| 43 | * if you change this list, also change bvec_alloc or things will | 43 | * if you change this list, also change bvec_alloc or things will |
| 44 | * break badly! cannot be bigger than what you can fit into an | 44 | * break badly! cannot be bigger than what you can fit into an |
| 45 | * unsigned short | 45 | * unsigned short |
| 46 | */ | 46 | */ |
| 47 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | 47 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } |
| 48 | struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { | 48 | struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { |
| 49 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | 49 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), |
| 50 | }; | 50 | }; |
| 51 | #undef BV | 51 | #undef BV |
| 52 | 52 | ||
| 53 | /* | 53 | /* |
| 54 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | 54 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by |
| 55 | * IO code that does not need private memory pools. | 55 | * IO code that does not need private memory pools. |
| 56 | */ | 56 | */ |
| 57 | struct bio_set *fs_bio_set; | 57 | struct bio_set *fs_bio_set; |
| 58 | 58 | ||
| 59 | /* | 59 | /* |
| 60 | * Our slab pool management | 60 | * Our slab pool management |
| 61 | */ | 61 | */ |
| 62 | struct bio_slab { | 62 | struct bio_slab { |
| 63 | struct kmem_cache *slab; | 63 | struct kmem_cache *slab; |
| 64 | unsigned int slab_ref; | 64 | unsigned int slab_ref; |
| 65 | unsigned int slab_size; | 65 | unsigned int slab_size; |
| 66 | char name[8]; | 66 | char name[8]; |
| 67 | }; | 67 | }; |
| 68 | static DEFINE_MUTEX(bio_slab_lock); | 68 | static DEFINE_MUTEX(bio_slab_lock); |
| 69 | static struct bio_slab *bio_slabs; | 69 | static struct bio_slab *bio_slabs; |
| 70 | static unsigned int bio_slab_nr, bio_slab_max; | 70 | static unsigned int bio_slab_nr, bio_slab_max; |
| 71 | 71 | ||
| 72 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | 72 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) |
| 73 | { | 73 | { |
| 74 | unsigned int sz = sizeof(struct bio) + extra_size; | 74 | unsigned int sz = sizeof(struct bio) + extra_size; |
| 75 | struct kmem_cache *slab = NULL; | 75 | struct kmem_cache *slab = NULL; |
| 76 | struct bio_slab *bslab; | 76 | struct bio_slab *bslab; |
| 77 | unsigned int i, entry = -1; | 77 | unsigned int i, entry = -1; |
| 78 | 78 | ||
| 79 | mutex_lock(&bio_slab_lock); | 79 | mutex_lock(&bio_slab_lock); |
| 80 | 80 | ||
| 81 | i = 0; | 81 | i = 0; |
| 82 | while (i < bio_slab_nr) { | 82 | while (i < bio_slab_nr) { |
| 83 | struct bio_slab *bslab = &bio_slabs[i]; | 83 | struct bio_slab *bslab = &bio_slabs[i]; |
| 84 | 84 | ||
| 85 | if (!bslab->slab && entry == -1) | 85 | if (!bslab->slab && entry == -1) |
| 86 | entry = i; | 86 | entry = i; |
| 87 | else if (bslab->slab_size == sz) { | 87 | else if (bslab->slab_size == sz) { |
| 88 | slab = bslab->slab; | 88 | slab = bslab->slab; |
| 89 | bslab->slab_ref++; | 89 | bslab->slab_ref++; |
| 90 | break; | 90 | break; |
| 91 | } | 91 | } |
| 92 | i++; | 92 | i++; |
| 93 | } | 93 | } |
| 94 | 94 | ||
| 95 | if (slab) | 95 | if (slab) |
| 96 | goto out_unlock; | 96 | goto out_unlock; |
| 97 | 97 | ||
| 98 | if (bio_slab_nr == bio_slab_max && entry == -1) { | 98 | if (bio_slab_nr == bio_slab_max && entry == -1) { |
| 99 | bio_slab_max <<= 1; | 99 | bio_slab_max <<= 1; |
| 100 | bio_slabs = krealloc(bio_slabs, | 100 | bio_slabs = krealloc(bio_slabs, |
| 101 | bio_slab_max * sizeof(struct bio_slab), | 101 | bio_slab_max * sizeof(struct bio_slab), |
| 102 | GFP_KERNEL); | 102 | GFP_KERNEL); |
| 103 | if (!bio_slabs) | 103 | if (!bio_slabs) |
| 104 | goto out_unlock; | 104 | goto out_unlock; |
| 105 | } | 105 | } |
| 106 | if (entry == -1) | 106 | if (entry == -1) |
| 107 | entry = bio_slab_nr++; | 107 | entry = bio_slab_nr++; |
| 108 | 108 | ||
| 109 | bslab = &bio_slabs[entry]; | 109 | bslab = &bio_slabs[entry]; |
| 110 | 110 | ||
| 111 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | 111 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); |
| 112 | slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); | 112 | slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL); |
| 113 | if (!slab) | 113 | if (!slab) |
| 114 | goto out_unlock; | 114 | goto out_unlock; |
| 115 | 115 | ||
| 116 | printk("bio: create slab <%s> at %d\n", bslab->name, entry); | 116 | printk("bio: create slab <%s> at %d\n", bslab->name, entry); |
| 117 | bslab->slab = slab; | 117 | bslab->slab = slab; |
| 118 | bslab->slab_ref = 1; | 118 | bslab->slab_ref = 1; |
| 119 | bslab->slab_size = sz; | 119 | bslab->slab_size = sz; |
| 120 | out_unlock: | 120 | out_unlock: |
| 121 | mutex_unlock(&bio_slab_lock); | 121 | mutex_unlock(&bio_slab_lock); |
| 122 | return slab; | 122 | return slab; |
| 123 | } | 123 | } |
| 124 | 124 | ||
| 125 | static void bio_put_slab(struct bio_set *bs) | 125 | static void bio_put_slab(struct bio_set *bs) |
| 126 | { | 126 | { |
| 127 | struct bio_slab *bslab = NULL; | 127 | struct bio_slab *bslab = NULL; |
| 128 | unsigned int i; | 128 | unsigned int i; |
| 129 | 129 | ||
| 130 | mutex_lock(&bio_slab_lock); | 130 | mutex_lock(&bio_slab_lock); |
| 131 | 131 | ||
| 132 | for (i = 0; i < bio_slab_nr; i++) { | 132 | for (i = 0; i < bio_slab_nr; i++) { |
| 133 | if (bs->bio_slab == bio_slabs[i].slab) { | 133 | if (bs->bio_slab == bio_slabs[i].slab) { |
| 134 | bslab = &bio_slabs[i]; | 134 | bslab = &bio_slabs[i]; |
| 135 | break; | 135 | break; |
| 136 | } | 136 | } |
| 137 | } | 137 | } |
| 138 | 138 | ||
| 139 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | 139 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) |
| 140 | goto out; | 140 | goto out; |
| 141 | 141 | ||
| 142 | WARN_ON(!bslab->slab_ref); | 142 | WARN_ON(!bslab->slab_ref); |
| 143 | 143 | ||
| 144 | if (--bslab->slab_ref) | 144 | if (--bslab->slab_ref) |
| 145 | goto out; | 145 | goto out; |
| 146 | 146 | ||
| 147 | kmem_cache_destroy(bslab->slab); | 147 | kmem_cache_destroy(bslab->slab); |
| 148 | bslab->slab = NULL; | 148 | bslab->slab = NULL; |
| 149 | 149 | ||
| 150 | out: | 150 | out: |
| 151 | mutex_unlock(&bio_slab_lock); | 151 | mutex_unlock(&bio_slab_lock); |
| 152 | } | 152 | } |
| 153 | 153 | ||
| 154 | unsigned int bvec_nr_vecs(unsigned short idx) | 154 | unsigned int bvec_nr_vecs(unsigned short idx) |
| 155 | { | 155 | { |
| 156 | return bvec_slabs[idx].nr_vecs; | 156 | return bvec_slabs[idx].nr_vecs; |
| 157 | } | 157 | } |
| 158 | 158 | ||
| 159 | void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) | 159 | void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx) |
| 160 | { | 160 | { |
| 161 | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); | 161 | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); |
| 162 | 162 | ||
| 163 | if (idx == BIOVEC_MAX_IDX) | 163 | if (idx == BIOVEC_MAX_IDX) |
| 164 | mempool_free(bv, bs->bvec_pool); | 164 | mempool_free(bv, bs->bvec_pool); |
| 165 | else { | 165 | else { |
| 166 | struct biovec_slab *bvs = bvec_slabs + idx; | 166 | struct biovec_slab *bvs = bvec_slabs + idx; |
| 167 | 167 | ||
| 168 | kmem_cache_free(bvs->slab, bv); | 168 | kmem_cache_free(bvs->slab, bv); |
| 169 | } | 169 | } |
| 170 | } | 170 | } |
| 171 | 171 | ||
| 172 | struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, | 172 | struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, |
| 173 | struct bio_set *bs) | 173 | struct bio_set *bs) |
| 174 | { | 174 | { |
| 175 | struct bio_vec *bvl; | 175 | struct bio_vec *bvl; |
| 176 | 176 | ||
| 177 | /* | 177 | /* |
| 178 | * If 'bs' is given, lookup the pool and do the mempool alloc. | 178 | * If 'bs' is given, lookup the pool and do the mempool alloc. |
| 179 | * If not, this is a bio_kmalloc() allocation and just do a | 179 | * If not, this is a bio_kmalloc() allocation and just do a |
| 180 | * kzalloc() for the exact number of vecs right away. | 180 | * kzalloc() for the exact number of vecs right away. |
| 181 | */ | 181 | */ |
| 182 | if (!bs) | 182 | if (!bs) |
| 183 | bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask); | 183 | bvl = kmalloc(nr * sizeof(struct bio_vec), gfp_mask); |
| 184 | 184 | ||
| 185 | /* | 185 | /* |
| 186 | * see comment near bvec_array define! | 186 | * see comment near bvec_array define! |
| 187 | */ | 187 | */ |
| 188 | switch (nr) { | 188 | switch (nr) { |
| 189 | case 1: | 189 | case 1: |
| 190 | *idx = 0; | 190 | *idx = 0; |
| 191 | break; | 191 | break; |
| 192 | case 2 ... 4: | 192 | case 2 ... 4: |
| 193 | *idx = 1; | 193 | *idx = 1; |
| 194 | break; | 194 | break; |
| 195 | case 5 ... 16: | 195 | case 5 ... 16: |
| 196 | *idx = 2; | 196 | *idx = 2; |
| 197 | break; | 197 | break; |
| 198 | case 17 ... 64: | 198 | case 17 ... 64: |
| 199 | *idx = 3; | 199 | *idx = 3; |
| 200 | break; | 200 | break; |
| 201 | case 65 ... 128: | 201 | case 65 ... 128: |
| 202 | *idx = 4; | 202 | *idx = 4; |
| 203 | break; | 203 | break; |
| 204 | case 129 ... BIO_MAX_PAGES: | 204 | case 129 ... BIO_MAX_PAGES: |
| 205 | *idx = 5; | 205 | *idx = 5; |
| 206 | break; | 206 | break; |
| 207 | default: | 207 | default: |
| 208 | return NULL; | 208 | return NULL; |
| 209 | } | 209 | } |
| 210 | 210 | ||
| 211 | /* | 211 | /* |
| 212 | * idx now points to the pool we want to allocate from. only the | 212 | * idx now points to the pool we want to allocate from. only the |
| 213 | * 1-vec entry pool is mempool backed. | 213 | * 1-vec entry pool is mempool backed. |
| 214 | */ | 214 | */ |
| 215 | if (*idx == BIOVEC_MAX_IDX) { | 215 | if (*idx == BIOVEC_MAX_IDX) { |
| 216 | fallback: | 216 | fallback: |
| 217 | bvl = mempool_alloc(bs->bvec_pool, gfp_mask); | 217 | bvl = mempool_alloc(bs->bvec_pool, gfp_mask); |
| 218 | } else { | 218 | } else { |
| 219 | struct biovec_slab *bvs = bvec_slabs + *idx; | 219 | struct biovec_slab *bvs = bvec_slabs + *idx; |
| 220 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); | 220 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); |
| 221 | 221 | ||
| 222 | /* | 222 | /* |
| 223 | * Make this allocation restricted and don't dump info on | 223 | * Make this allocation restricted and don't dump info on |
| 224 | * allocation failures, since we'll fallback to the mempool | 224 | * allocation failures, since we'll fallback to the mempool |
| 225 | * in case of failure. | 225 | * in case of failure. |
| 226 | */ | 226 | */ |
| 227 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | 227 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
| 228 | 228 | ||
| 229 | /* | 229 | /* |
| 230 | * Try a slab allocation. If this fails and __GFP_WAIT | 230 | * Try a slab allocation. If this fails and __GFP_WAIT |
| 231 | * is set, retry with the 1-entry mempool | 231 | * is set, retry with the 1-entry mempool |
| 232 | */ | 232 | */ |
| 233 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); | 233 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
| 234 | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { | 234 | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { |
| 235 | *idx = BIOVEC_MAX_IDX; | 235 | *idx = BIOVEC_MAX_IDX; |
| 236 | goto fallback; | 236 | goto fallback; |
| 237 | } | 237 | } |
| 238 | } | 238 | } |
| 239 | 239 | ||
| 240 | if (bvl) | ||
| 241 | memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec)); | ||
| 242 | |||
| 243 | return bvl; | 240 | return bvl; |
| 244 | } | 241 | } |
| 245 | 242 | ||
| 246 | void bio_free(struct bio *bio, struct bio_set *bs) | 243 | void bio_free(struct bio *bio, struct bio_set *bs) |
| 247 | { | 244 | { |
| 248 | void *p; | 245 | void *p; |
| 249 | 246 | ||
| 250 | if (bio_has_allocated_vec(bio)) | 247 | if (bio_has_allocated_vec(bio)) |
| 251 | bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); | 248 | bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio)); |
| 252 | 249 | ||
| 253 | if (bio_integrity(bio)) | 250 | if (bio_integrity(bio)) |
| 254 | bio_integrity_free(bio, bs); | 251 | bio_integrity_free(bio, bs); |
| 255 | 252 | ||
| 256 | /* | 253 | /* |
| 257 | * If we have front padding, adjust the bio pointer before freeing | 254 | * If we have front padding, adjust the bio pointer before freeing |
| 258 | */ | 255 | */ |
| 259 | p = bio; | 256 | p = bio; |
| 260 | if (bs->front_pad) | 257 | if (bs->front_pad) |
| 261 | p -= bs->front_pad; | 258 | p -= bs->front_pad; |
| 262 | 259 | ||
| 263 | mempool_free(p, bs->bio_pool); | 260 | mempool_free(p, bs->bio_pool); |
| 264 | } | 261 | } |
| 265 | 262 | ||
| 266 | /* | 263 | /* |
| 267 | * default destructor for a bio allocated with bio_alloc_bioset() | 264 | * default destructor for a bio allocated with bio_alloc_bioset() |
| 268 | */ | 265 | */ |
| 269 | static void bio_fs_destructor(struct bio *bio) | 266 | static void bio_fs_destructor(struct bio *bio) |
| 270 | { | 267 | { |
| 271 | bio_free(bio, fs_bio_set); | 268 | bio_free(bio, fs_bio_set); |
| 272 | } | 269 | } |
| 273 | 270 | ||
| 274 | static void bio_kmalloc_destructor(struct bio *bio) | 271 | static void bio_kmalloc_destructor(struct bio *bio) |
| 275 | { | 272 | { |
| 276 | if (bio_has_allocated_vec(bio)) | 273 | if (bio_has_allocated_vec(bio)) |
| 277 | kfree(bio->bi_io_vec); | 274 | kfree(bio->bi_io_vec); |
| 278 | kfree(bio); | 275 | kfree(bio); |
| 279 | } | 276 | } |
| 280 | 277 | ||
| 281 | void bio_init(struct bio *bio) | 278 | void bio_init(struct bio *bio) |
| 282 | { | 279 | { |
| 283 | memset(bio, 0, sizeof(*bio)); | 280 | memset(bio, 0, sizeof(*bio)); |
| 284 | bio->bi_flags = 1 << BIO_UPTODATE; | 281 | bio->bi_flags = 1 << BIO_UPTODATE; |
| 285 | bio->bi_comp_cpu = -1; | 282 | bio->bi_comp_cpu = -1; |
| 286 | atomic_set(&bio->bi_cnt, 1); | 283 | atomic_set(&bio->bi_cnt, 1); |
| 287 | } | 284 | } |
| 288 | 285 | ||
| 289 | /** | 286 | /** |
| 290 | * bio_alloc_bioset - allocate a bio for I/O | 287 | * bio_alloc_bioset - allocate a bio for I/O |
| 291 | * @gfp_mask: the GFP_ mask given to the slab allocator | 288 | * @gfp_mask: the GFP_ mask given to the slab allocator |
| 292 | * @nr_iovecs: number of iovecs to pre-allocate | 289 | * @nr_iovecs: number of iovecs to pre-allocate |
| 293 | * @bs: the bio_set to allocate from. If %NULL, just use kmalloc | 290 | * @bs: the bio_set to allocate from. If %NULL, just use kmalloc |
| 294 | * | 291 | * |
| 295 | * Description: | 292 | * Description: |
| 296 | * bio_alloc_bioset will first try its own mempool to satisfy the allocation. | 293 | * bio_alloc_bioset will first try its own mempool to satisfy the allocation. |
| 297 | * If %__GFP_WAIT is set then we will block on the internal pool waiting | 294 | * If %__GFP_WAIT is set then we will block on the internal pool waiting |
| 298 | * for a &struct bio to become free. If a %NULL @bs is passed in, we will | 295 | * for a &struct bio to become free. If a %NULL @bs is passed in, we will |
| 299 | * fall back to just using @kmalloc to allocate the required memory. | 296 | * fall back to just using @kmalloc to allocate the required memory. |
| 300 | * | 297 | * |
| 301 | * Note that the caller must set ->bi_destructor on succesful return | 298 | * Note that the caller must set ->bi_destructor on succesful return |
| 302 | * of a bio, to do the appropriate freeing of the bio once the reference | 299 | * of a bio, to do the appropriate freeing of the bio once the reference |
| 303 | * count drops to zero. | 300 | * count drops to zero. |
| 304 | **/ | 301 | **/ |
| 305 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) | 302 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) |
| 306 | { | 303 | { |
| 307 | struct bio *bio = NULL; | 304 | struct bio *bio = NULL; |
| 308 | 305 | ||
| 309 | if (bs) { | 306 | if (bs) { |
| 310 | void *p = mempool_alloc(bs->bio_pool, gfp_mask); | 307 | void *p = mempool_alloc(bs->bio_pool, gfp_mask); |
| 311 | 308 | ||
| 312 | if (p) | 309 | if (p) |
| 313 | bio = p + bs->front_pad; | 310 | bio = p + bs->front_pad; |
| 314 | } else | 311 | } else |
| 315 | bio = kmalloc(sizeof(*bio), gfp_mask); | 312 | bio = kmalloc(sizeof(*bio), gfp_mask); |
| 316 | 313 | ||
| 317 | if (likely(bio)) { | 314 | if (likely(bio)) { |
| 318 | struct bio_vec *bvl = NULL; | 315 | struct bio_vec *bvl = NULL; |
| 319 | 316 | ||
| 320 | bio_init(bio); | 317 | bio_init(bio); |
| 321 | if (likely(nr_iovecs)) { | 318 | if (likely(nr_iovecs)) { |
| 322 | unsigned long uninitialized_var(idx); | 319 | unsigned long uninitialized_var(idx); |
| 323 | 320 | ||
| 324 | if (nr_iovecs <= BIO_INLINE_VECS) { | 321 | if (nr_iovecs <= BIO_INLINE_VECS) { |
| 325 | idx = 0; | 322 | idx = 0; |
| 326 | bvl = bio->bi_inline_vecs; | 323 | bvl = bio->bi_inline_vecs; |
| 327 | nr_iovecs = BIO_INLINE_VECS; | 324 | nr_iovecs = BIO_INLINE_VECS; |
| 328 | memset(bvl, 0, BIO_INLINE_VECS * sizeof(*bvl)); | ||
| 329 | } else { | 325 | } else { |
| 330 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, | 326 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, |
| 331 | bs); | 327 | bs); |
| 332 | nr_iovecs = bvec_nr_vecs(idx); | 328 | nr_iovecs = bvec_nr_vecs(idx); |
| 333 | } | 329 | } |
| 334 | if (unlikely(!bvl)) { | 330 | if (unlikely(!bvl)) { |
| 335 | if (bs) | 331 | if (bs) |
| 336 | mempool_free(bio, bs->bio_pool); | 332 | mempool_free(bio, bs->bio_pool); |
| 337 | else | 333 | else |
| 338 | kfree(bio); | 334 | kfree(bio); |
| 339 | bio = NULL; | 335 | bio = NULL; |
| 340 | goto out; | 336 | goto out; |
| 341 | } | 337 | } |
| 342 | bio->bi_flags |= idx << BIO_POOL_OFFSET; | 338 | bio->bi_flags |= idx << BIO_POOL_OFFSET; |
| 343 | bio->bi_max_vecs = nr_iovecs; | 339 | bio->bi_max_vecs = nr_iovecs; |
| 344 | } | 340 | } |
| 345 | bio->bi_io_vec = bvl; | 341 | bio->bi_io_vec = bvl; |
| 346 | } | 342 | } |
| 347 | out: | 343 | out: |
| 348 | return bio; | 344 | return bio; |
| 349 | } | 345 | } |
| 350 | 346 | ||
| 351 | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) | 347 | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) |
| 352 | { | 348 | { |
| 353 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); | 349 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); |
| 354 | 350 | ||
| 355 | if (bio) | 351 | if (bio) |
| 356 | bio->bi_destructor = bio_fs_destructor; | 352 | bio->bi_destructor = bio_fs_destructor; |
| 357 | 353 | ||
| 358 | return bio; | 354 | return bio; |
| 359 | } | 355 | } |
| 360 | 356 | ||
| 361 | /* | 357 | /* |
| 362 | * Like bio_alloc(), but doesn't use a mempool backing. This means that | 358 | * Like bio_alloc(), but doesn't use a mempool backing. This means that |
| 363 | * it CAN fail, but while bio_alloc() can only be used for allocations | 359 | * it CAN fail, but while bio_alloc() can only be used for allocations |
| 364 | * that have a short (finite) life span, bio_kmalloc() should be used | 360 | * that have a short (finite) life span, bio_kmalloc() should be used |
| 365 | * for more permanent bio allocations (like allocating some bio's for | 361 | * for more permanent bio allocations (like allocating some bio's for |
| 366 | * initalization or setup purposes). | 362 | * initalization or setup purposes). |
| 367 | */ | 363 | */ |
| 368 | struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs) | 364 | struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs) |
| 369 | { | 365 | { |
| 370 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); | 366 | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL); |
| 371 | 367 | ||
| 372 | if (bio) | 368 | if (bio) |
| 373 | bio->bi_destructor = bio_kmalloc_destructor; | 369 | bio->bi_destructor = bio_kmalloc_destructor; |
| 374 | 370 | ||
| 375 | return bio; | 371 | return bio; |
| 376 | } | 372 | } |
| 377 | 373 | ||
| 378 | void zero_fill_bio(struct bio *bio) | 374 | void zero_fill_bio(struct bio *bio) |
| 379 | { | 375 | { |
| 380 | unsigned long flags; | 376 | unsigned long flags; |
| 381 | struct bio_vec *bv; | 377 | struct bio_vec *bv; |
| 382 | int i; | 378 | int i; |
| 383 | 379 | ||
| 384 | bio_for_each_segment(bv, bio, i) { | 380 | bio_for_each_segment(bv, bio, i) { |
| 385 | char *data = bvec_kmap_irq(bv, &flags); | 381 | char *data = bvec_kmap_irq(bv, &flags); |
| 386 | memset(data, 0, bv->bv_len); | 382 | memset(data, 0, bv->bv_len); |
| 387 | flush_dcache_page(bv->bv_page); | 383 | flush_dcache_page(bv->bv_page); |
| 388 | bvec_kunmap_irq(data, &flags); | 384 | bvec_kunmap_irq(data, &flags); |
| 389 | } | 385 | } |
| 390 | } | 386 | } |
| 391 | EXPORT_SYMBOL(zero_fill_bio); | 387 | EXPORT_SYMBOL(zero_fill_bio); |
| 392 | 388 | ||
| 393 | /** | 389 | /** |
| 394 | * bio_put - release a reference to a bio | 390 | * bio_put - release a reference to a bio |
| 395 | * @bio: bio to release reference to | 391 | * @bio: bio to release reference to |
| 396 | * | 392 | * |
| 397 | * Description: | 393 | * Description: |
| 398 | * Put a reference to a &struct bio, either one you have gotten with | 394 | * Put a reference to a &struct bio, either one you have gotten with |
| 399 | * bio_alloc or bio_get. The last put of a bio will free it. | 395 | * bio_alloc or bio_get. The last put of a bio will free it. |
| 400 | **/ | 396 | **/ |
| 401 | void bio_put(struct bio *bio) | 397 | void bio_put(struct bio *bio) |
| 402 | { | 398 | { |
| 403 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | 399 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); |
| 404 | 400 | ||
| 405 | /* | 401 | /* |
| 406 | * last put frees it | 402 | * last put frees it |
| 407 | */ | 403 | */ |
| 408 | if (atomic_dec_and_test(&bio->bi_cnt)) { | 404 | if (atomic_dec_and_test(&bio->bi_cnt)) { |
| 409 | bio->bi_next = NULL; | 405 | bio->bi_next = NULL; |
| 410 | bio->bi_destructor(bio); | 406 | bio->bi_destructor(bio); |
| 411 | } | 407 | } |
| 412 | } | 408 | } |
| 413 | 409 | ||
| 414 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) | 410 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) |
| 415 | { | 411 | { |
| 416 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | 412 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) |
| 417 | blk_recount_segments(q, bio); | 413 | blk_recount_segments(q, bio); |
| 418 | 414 | ||
| 419 | return bio->bi_phys_segments; | 415 | return bio->bi_phys_segments; |
| 420 | } | 416 | } |
| 421 | 417 | ||
| 422 | /** | 418 | /** |
| 423 | * __bio_clone - clone a bio | 419 | * __bio_clone - clone a bio |
| 424 | * @bio: destination bio | 420 | * @bio: destination bio |
| 425 | * @bio_src: bio to clone | 421 | * @bio_src: bio to clone |
| 426 | * | 422 | * |
| 427 | * Clone a &bio. Caller will own the returned bio, but not | 423 | * Clone a &bio. Caller will own the returned bio, but not |
| 428 | * the actual data it points to. Reference count of returned | 424 | * the actual data it points to. Reference count of returned |
| 429 | * bio will be one. | 425 | * bio will be one. |
| 430 | */ | 426 | */ |
| 431 | void __bio_clone(struct bio *bio, struct bio *bio_src) | 427 | void __bio_clone(struct bio *bio, struct bio *bio_src) |
| 432 | { | 428 | { |
| 433 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, | 429 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, |
| 434 | bio_src->bi_max_vecs * sizeof(struct bio_vec)); | 430 | bio_src->bi_max_vecs * sizeof(struct bio_vec)); |
| 435 | 431 | ||
| 436 | /* | 432 | /* |
| 437 | * most users will be overriding ->bi_bdev with a new target, | 433 | * most users will be overriding ->bi_bdev with a new target, |
| 438 | * so we don't set nor calculate new physical/hw segment counts here | 434 | * so we don't set nor calculate new physical/hw segment counts here |
| 439 | */ | 435 | */ |
| 440 | bio->bi_sector = bio_src->bi_sector; | 436 | bio->bi_sector = bio_src->bi_sector; |
| 441 | bio->bi_bdev = bio_src->bi_bdev; | 437 | bio->bi_bdev = bio_src->bi_bdev; |
| 442 | bio->bi_flags |= 1 << BIO_CLONED; | 438 | bio->bi_flags |= 1 << BIO_CLONED; |
| 443 | bio->bi_rw = bio_src->bi_rw; | 439 | bio->bi_rw = bio_src->bi_rw; |
| 444 | bio->bi_vcnt = bio_src->bi_vcnt; | 440 | bio->bi_vcnt = bio_src->bi_vcnt; |
| 445 | bio->bi_size = bio_src->bi_size; | 441 | bio->bi_size = bio_src->bi_size; |
| 446 | bio->bi_idx = bio_src->bi_idx; | 442 | bio->bi_idx = bio_src->bi_idx; |
| 447 | } | 443 | } |
| 448 | 444 | ||
| 449 | /** | 445 | /** |
| 450 | * bio_clone - clone a bio | 446 | * bio_clone - clone a bio |
| 451 | * @bio: bio to clone | 447 | * @bio: bio to clone |
| 452 | * @gfp_mask: allocation priority | 448 | * @gfp_mask: allocation priority |
| 453 | * | 449 | * |
| 454 | * Like __bio_clone, only also allocates the returned bio | 450 | * Like __bio_clone, only also allocates the returned bio |
| 455 | */ | 451 | */ |
| 456 | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) | 452 | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) |
| 457 | { | 453 | { |
| 458 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | 454 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); |
| 459 | 455 | ||
| 460 | if (!b) | 456 | if (!b) |
| 461 | return NULL; | 457 | return NULL; |
| 462 | 458 | ||
| 463 | b->bi_destructor = bio_fs_destructor; | 459 | b->bi_destructor = bio_fs_destructor; |
| 464 | __bio_clone(b, bio); | 460 | __bio_clone(b, bio); |
| 465 | 461 | ||
| 466 | if (bio_integrity(bio)) { | 462 | if (bio_integrity(bio)) { |
| 467 | int ret; | 463 | int ret; |
| 468 | 464 | ||
| 469 | ret = bio_integrity_clone(b, bio, fs_bio_set); | 465 | ret = bio_integrity_clone(b, bio, fs_bio_set); |
| 470 | 466 | ||
| 471 | if (ret < 0) | 467 | if (ret < 0) |
| 472 | return NULL; | 468 | return NULL; |
| 473 | } | 469 | } |
| 474 | 470 | ||
| 475 | return b; | 471 | return b; |
| 476 | } | 472 | } |
| 477 | 473 | ||
| 478 | /** | 474 | /** |
| 479 | * bio_get_nr_vecs - return approx number of vecs | 475 | * bio_get_nr_vecs - return approx number of vecs |
| 480 | * @bdev: I/O target | 476 | * @bdev: I/O target |
| 481 | * | 477 | * |
| 482 | * Return the approximate number of pages we can send to this target. | 478 | * Return the approximate number of pages we can send to this target. |
| 483 | * There's no guarantee that you will be able to fit this number of pages | 479 | * There's no guarantee that you will be able to fit this number of pages |
| 484 | * into a bio, it does not account for dynamic restrictions that vary | 480 | * into a bio, it does not account for dynamic restrictions that vary |
| 485 | * on offset. | 481 | * on offset. |
| 486 | */ | 482 | */ |
| 487 | int bio_get_nr_vecs(struct block_device *bdev) | 483 | int bio_get_nr_vecs(struct block_device *bdev) |
| 488 | { | 484 | { |
| 489 | struct request_queue *q = bdev_get_queue(bdev); | 485 | struct request_queue *q = bdev_get_queue(bdev); |
| 490 | int nr_pages; | 486 | int nr_pages; |
| 491 | 487 | ||
| 492 | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; | 488 | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 493 | if (nr_pages > q->max_phys_segments) | 489 | if (nr_pages > q->max_phys_segments) |
| 494 | nr_pages = q->max_phys_segments; | 490 | nr_pages = q->max_phys_segments; |
| 495 | if (nr_pages > q->max_hw_segments) | 491 | if (nr_pages > q->max_hw_segments) |
| 496 | nr_pages = q->max_hw_segments; | 492 | nr_pages = q->max_hw_segments; |
| 497 | 493 | ||
| 498 | return nr_pages; | 494 | return nr_pages; |
| 499 | } | 495 | } |
| 500 | 496 | ||
| 501 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page | 497 | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page |
| 502 | *page, unsigned int len, unsigned int offset, | 498 | *page, unsigned int len, unsigned int offset, |
| 503 | unsigned short max_sectors) | 499 | unsigned short max_sectors) |
| 504 | { | 500 | { |
| 505 | int retried_segments = 0; | 501 | int retried_segments = 0; |
| 506 | struct bio_vec *bvec; | 502 | struct bio_vec *bvec; |
| 507 | 503 | ||
| 508 | /* | 504 | /* |
| 509 | * cloned bio must not modify vec list | 505 | * cloned bio must not modify vec list |
| 510 | */ | 506 | */ |
| 511 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | 507 | if (unlikely(bio_flagged(bio, BIO_CLONED))) |
| 512 | return 0; | 508 | return 0; |
| 513 | 509 | ||
| 514 | if (((bio->bi_size + len) >> 9) > max_sectors) | 510 | if (((bio->bi_size + len) >> 9) > max_sectors) |
| 515 | return 0; | 511 | return 0; |
| 516 | 512 | ||
| 517 | /* | 513 | /* |
| 518 | * For filesystems with a blocksize smaller than the pagesize | 514 | * For filesystems with a blocksize smaller than the pagesize |
| 519 | * we will often be called with the same page as last time and | 515 | * we will often be called with the same page as last time and |
| 520 | * a consecutive offset. Optimize this special case. | 516 | * a consecutive offset. Optimize this special case. |
| 521 | */ | 517 | */ |
| 522 | if (bio->bi_vcnt > 0) { | 518 | if (bio->bi_vcnt > 0) { |
| 523 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 519 | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
| 524 | 520 | ||
| 525 | if (page == prev->bv_page && | 521 | if (page == prev->bv_page && |
| 526 | offset == prev->bv_offset + prev->bv_len) { | 522 | offset == prev->bv_offset + prev->bv_len) { |
| 527 | prev->bv_len += len; | 523 | prev->bv_len += len; |
| 528 | 524 | ||
| 529 | if (q->merge_bvec_fn) { | 525 | if (q->merge_bvec_fn) { |
| 530 | struct bvec_merge_data bvm = { | 526 | struct bvec_merge_data bvm = { |
| 531 | .bi_bdev = bio->bi_bdev, | 527 | .bi_bdev = bio->bi_bdev, |
| 532 | .bi_sector = bio->bi_sector, | 528 | .bi_sector = bio->bi_sector, |
| 533 | .bi_size = bio->bi_size, | 529 | .bi_size = bio->bi_size, |
| 534 | .bi_rw = bio->bi_rw, | 530 | .bi_rw = bio->bi_rw, |
| 535 | }; | 531 | }; |
| 536 | 532 | ||
| 537 | if (q->merge_bvec_fn(q, &bvm, prev) < len) { | 533 | if (q->merge_bvec_fn(q, &bvm, prev) < len) { |
| 538 | prev->bv_len -= len; | 534 | prev->bv_len -= len; |
| 539 | return 0; | 535 | return 0; |
| 540 | } | 536 | } |
| 541 | } | 537 | } |
| 542 | 538 | ||
| 543 | goto done; | 539 | goto done; |
| 544 | } | 540 | } |
| 545 | } | 541 | } |
| 546 | 542 | ||
| 547 | if (bio->bi_vcnt >= bio->bi_max_vecs) | 543 | if (bio->bi_vcnt >= bio->bi_max_vecs) |
| 548 | return 0; | 544 | return 0; |
| 549 | 545 | ||
| 550 | /* | 546 | /* |
| 551 | * we might lose a segment or two here, but rather that than | 547 | * we might lose a segment or two here, but rather that than |
| 552 | * make this too complex. | 548 | * make this too complex. |
| 553 | */ | 549 | */ |
| 554 | 550 | ||
| 555 | while (bio->bi_phys_segments >= q->max_phys_segments | 551 | while (bio->bi_phys_segments >= q->max_phys_segments |
| 556 | || bio->bi_phys_segments >= q->max_hw_segments) { | 552 | || bio->bi_phys_segments >= q->max_hw_segments) { |
| 557 | 553 | ||
| 558 | if (retried_segments) | 554 | if (retried_segments) |
| 559 | return 0; | 555 | return 0; |
| 560 | 556 | ||
| 561 | retried_segments = 1; | 557 | retried_segments = 1; |
| 562 | blk_recount_segments(q, bio); | 558 | blk_recount_segments(q, bio); |
| 563 | } | 559 | } |
| 564 | 560 | ||
| 565 | /* | 561 | /* |
| 566 | * setup the new entry, we might clear it again later if we | 562 | * setup the new entry, we might clear it again later if we |
| 567 | * cannot add the page | 563 | * cannot add the page |
| 568 | */ | 564 | */ |
| 569 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | 565 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
| 570 | bvec->bv_page = page; | 566 | bvec->bv_page = page; |
| 571 | bvec->bv_len = len; | 567 | bvec->bv_len = len; |
| 572 | bvec->bv_offset = offset; | 568 | bvec->bv_offset = offset; |
| 573 | 569 | ||
| 574 | /* | 570 | /* |
| 575 | * if queue has other restrictions (eg varying max sector size | 571 | * if queue has other restrictions (eg varying max sector size |
| 576 | * depending on offset), it can specify a merge_bvec_fn in the | 572 | * depending on offset), it can specify a merge_bvec_fn in the |
| 577 | * queue to get further control | 573 | * queue to get further control |
| 578 | */ | 574 | */ |
| 579 | if (q->merge_bvec_fn) { | 575 | if (q->merge_bvec_fn) { |
| 580 | struct bvec_merge_data bvm = { | 576 | struct bvec_merge_data bvm = { |
| 581 | .bi_bdev = bio->bi_bdev, | 577 | .bi_bdev = bio->bi_bdev, |
| 582 | .bi_sector = bio->bi_sector, | 578 | .bi_sector = bio->bi_sector, |
| 583 | .bi_size = bio->bi_size, | 579 | .bi_size = bio->bi_size, |
| 584 | .bi_rw = bio->bi_rw, | 580 | .bi_rw = bio->bi_rw, |
| 585 | }; | 581 | }; |
| 586 | 582 | ||
| 587 | /* | 583 | /* |
| 588 | * merge_bvec_fn() returns number of bytes it can accept | 584 | * merge_bvec_fn() returns number of bytes it can accept |
| 589 | * at this offset | 585 | * at this offset |
| 590 | */ | 586 | */ |
| 591 | if (q->merge_bvec_fn(q, &bvm, bvec) < len) { | 587 | if (q->merge_bvec_fn(q, &bvm, bvec) < len) { |
| 592 | bvec->bv_page = NULL; | 588 | bvec->bv_page = NULL; |
| 593 | bvec->bv_len = 0; | 589 | bvec->bv_len = 0; |
| 594 | bvec->bv_offset = 0; | 590 | bvec->bv_offset = 0; |
| 595 | return 0; | 591 | return 0; |
| 596 | } | 592 | } |
| 597 | } | 593 | } |
| 598 | 594 | ||
| 599 | /* If we may be able to merge these biovecs, force a recount */ | 595 | /* If we may be able to merge these biovecs, force a recount */ |
| 600 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) | 596 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) |
| 601 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | 597 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
| 602 | 598 | ||
| 603 | bio->bi_vcnt++; | 599 | bio->bi_vcnt++; |
| 604 | bio->bi_phys_segments++; | 600 | bio->bi_phys_segments++; |
| 605 | done: | 601 | done: |
| 606 | bio->bi_size += len; | 602 | bio->bi_size += len; |
| 607 | return len; | 603 | return len; |
| 608 | } | 604 | } |
| 609 | 605 | ||
| 610 | /** | 606 | /** |
| 611 | * bio_add_pc_page - attempt to add page to bio | 607 | * bio_add_pc_page - attempt to add page to bio |
| 612 | * @q: the target queue | 608 | * @q: the target queue |
| 613 | * @bio: destination bio | 609 | * @bio: destination bio |
| 614 | * @page: page to add | 610 | * @page: page to add |
| 615 | * @len: vec entry length | 611 | * @len: vec entry length |
| 616 | * @offset: vec entry offset | 612 | * @offset: vec entry offset |
| 617 | * | 613 | * |
| 618 | * Attempt to add a page to the bio_vec maplist. This can fail for a | 614 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
| 619 | * number of reasons, such as the bio being full or target block | 615 | * number of reasons, such as the bio being full or target block |
| 620 | * device limitations. The target block device must allow bio's | 616 | * device limitations. The target block device must allow bio's |
| 621 | * smaller than PAGE_SIZE, so it is always possible to add a single | 617 | * smaller than PAGE_SIZE, so it is always possible to add a single |
| 622 | * page to an empty bio. This should only be used by REQ_PC bios. | 618 | * page to an empty bio. This should only be used by REQ_PC bios. |
| 623 | */ | 619 | */ |
| 624 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, | 620 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, |
| 625 | unsigned int len, unsigned int offset) | 621 | unsigned int len, unsigned int offset) |
| 626 | { | 622 | { |
| 627 | return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); | 623 | return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); |
| 628 | } | 624 | } |
| 629 | 625 | ||
| 630 | /** | 626 | /** |
| 631 | * bio_add_page - attempt to add page to bio | 627 | * bio_add_page - attempt to add page to bio |
| 632 | * @bio: destination bio | 628 | * @bio: destination bio |
| 633 | * @page: page to add | 629 | * @page: page to add |
| 634 | * @len: vec entry length | 630 | * @len: vec entry length |
| 635 | * @offset: vec entry offset | 631 | * @offset: vec entry offset |
| 636 | * | 632 | * |
| 637 | * Attempt to add a page to the bio_vec maplist. This can fail for a | 633 | * Attempt to add a page to the bio_vec maplist. This can fail for a |
| 638 | * number of reasons, such as the bio being full or target block | 634 | * number of reasons, such as the bio being full or target block |
| 639 | * device limitations. The target block device must allow bio's | 635 | * device limitations. The target block device must allow bio's |
| 640 | * smaller than PAGE_SIZE, so it is always possible to add a single | 636 | * smaller than PAGE_SIZE, so it is always possible to add a single |
| 641 | * page to an empty bio. | 637 | * page to an empty bio. |
| 642 | */ | 638 | */ |
| 643 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | 639 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, |
| 644 | unsigned int offset) | 640 | unsigned int offset) |
| 645 | { | 641 | { |
| 646 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 642 | struct request_queue *q = bdev_get_queue(bio->bi_bdev); |
| 647 | return __bio_add_page(q, bio, page, len, offset, q->max_sectors); | 643 | return __bio_add_page(q, bio, page, len, offset, q->max_sectors); |
| 648 | } | 644 | } |
| 649 | 645 | ||
| 650 | struct bio_map_data { | 646 | struct bio_map_data { |
| 651 | struct bio_vec *iovecs; | 647 | struct bio_vec *iovecs; |
| 652 | struct sg_iovec *sgvecs; | 648 | struct sg_iovec *sgvecs; |
| 653 | int nr_sgvecs; | 649 | int nr_sgvecs; |
| 654 | int is_our_pages; | 650 | int is_our_pages; |
| 655 | }; | 651 | }; |
| 656 | 652 | ||
| 657 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, | 653 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, |
| 658 | struct sg_iovec *iov, int iov_count, | 654 | struct sg_iovec *iov, int iov_count, |
| 659 | int is_our_pages) | 655 | int is_our_pages) |
| 660 | { | 656 | { |
| 661 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | 657 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); |
| 662 | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); | 658 | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); |
| 663 | bmd->nr_sgvecs = iov_count; | 659 | bmd->nr_sgvecs = iov_count; |
| 664 | bmd->is_our_pages = is_our_pages; | 660 | bmd->is_our_pages = is_our_pages; |
| 665 | bio->bi_private = bmd; | 661 | bio->bi_private = bmd; |
| 666 | } | 662 | } |
| 667 | 663 | ||
| 668 | static void bio_free_map_data(struct bio_map_data *bmd) | 664 | static void bio_free_map_data(struct bio_map_data *bmd) |
| 669 | { | 665 | { |
| 670 | kfree(bmd->iovecs); | 666 | kfree(bmd->iovecs); |
| 671 | kfree(bmd->sgvecs); | 667 | kfree(bmd->sgvecs); |
| 672 | kfree(bmd); | 668 | kfree(bmd); |
| 673 | } | 669 | } |
| 674 | 670 | ||
| 675 | static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, | 671 | static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count, |
| 676 | gfp_t gfp_mask) | 672 | gfp_t gfp_mask) |
| 677 | { | 673 | { |
| 678 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask); | 674 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask); |
| 679 | 675 | ||
| 680 | if (!bmd) | 676 | if (!bmd) |
| 681 | return NULL; | 677 | return NULL; |
| 682 | 678 | ||
| 683 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); | 679 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask); |
| 684 | if (!bmd->iovecs) { | 680 | if (!bmd->iovecs) { |
| 685 | kfree(bmd); | 681 | kfree(bmd); |
| 686 | return NULL; | 682 | return NULL; |
| 687 | } | 683 | } |
| 688 | 684 | ||
| 689 | bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); | 685 | bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask); |
| 690 | if (bmd->sgvecs) | 686 | if (bmd->sgvecs) |
| 691 | return bmd; | 687 | return bmd; |
| 692 | 688 | ||
| 693 | kfree(bmd->iovecs); | 689 | kfree(bmd->iovecs); |
| 694 | kfree(bmd); | 690 | kfree(bmd); |
| 695 | return NULL; | 691 | return NULL; |
| 696 | } | 692 | } |
| 697 | 693 | ||
| 698 | static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, | 694 | static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs, |
| 699 | struct sg_iovec *iov, int iov_count, int uncopy, | 695 | struct sg_iovec *iov, int iov_count, int uncopy, |
| 700 | int do_free_page) | 696 | int do_free_page) |
| 701 | { | 697 | { |
| 702 | int ret = 0, i; | 698 | int ret = 0, i; |
| 703 | struct bio_vec *bvec; | 699 | struct bio_vec *bvec; |
| 704 | int iov_idx = 0; | 700 | int iov_idx = 0; |
| 705 | unsigned int iov_off = 0; | 701 | unsigned int iov_off = 0; |
| 706 | int read = bio_data_dir(bio) == READ; | 702 | int read = bio_data_dir(bio) == READ; |
| 707 | 703 | ||
| 708 | __bio_for_each_segment(bvec, bio, i, 0) { | 704 | __bio_for_each_segment(bvec, bio, i, 0) { |
| 709 | char *bv_addr = page_address(bvec->bv_page); | 705 | char *bv_addr = page_address(bvec->bv_page); |
| 710 | unsigned int bv_len = iovecs[i].bv_len; | 706 | unsigned int bv_len = iovecs[i].bv_len; |
| 711 | 707 | ||
| 712 | while (bv_len && iov_idx < iov_count) { | 708 | while (bv_len && iov_idx < iov_count) { |
| 713 | unsigned int bytes; | 709 | unsigned int bytes; |
| 714 | char *iov_addr; | 710 | char *iov_addr; |
| 715 | 711 | ||
| 716 | bytes = min_t(unsigned int, | 712 | bytes = min_t(unsigned int, |
| 717 | iov[iov_idx].iov_len - iov_off, bv_len); | 713 | iov[iov_idx].iov_len - iov_off, bv_len); |
| 718 | iov_addr = iov[iov_idx].iov_base + iov_off; | 714 | iov_addr = iov[iov_idx].iov_base + iov_off; |
| 719 | 715 | ||
| 720 | if (!ret) { | 716 | if (!ret) { |
| 721 | if (!read && !uncopy) | 717 | if (!read && !uncopy) |
| 722 | ret = copy_from_user(bv_addr, iov_addr, | 718 | ret = copy_from_user(bv_addr, iov_addr, |
| 723 | bytes); | 719 | bytes); |
| 724 | if (read && uncopy) | 720 | if (read && uncopy) |
| 725 | ret = copy_to_user(iov_addr, bv_addr, | 721 | ret = copy_to_user(iov_addr, bv_addr, |
| 726 | bytes); | 722 | bytes); |
| 727 | 723 | ||
| 728 | if (ret) | 724 | if (ret) |
| 729 | ret = -EFAULT; | 725 | ret = -EFAULT; |
| 730 | } | 726 | } |
| 731 | 727 | ||
| 732 | bv_len -= bytes; | 728 | bv_len -= bytes; |
| 733 | bv_addr += bytes; | 729 | bv_addr += bytes; |
| 734 | iov_addr += bytes; | 730 | iov_addr += bytes; |
| 735 | iov_off += bytes; | 731 | iov_off += bytes; |
| 736 | 732 | ||
| 737 | if (iov[iov_idx].iov_len == iov_off) { | 733 | if (iov[iov_idx].iov_len == iov_off) { |
| 738 | iov_idx++; | 734 | iov_idx++; |
| 739 | iov_off = 0; | 735 | iov_off = 0; |
| 740 | } | 736 | } |
| 741 | } | 737 | } |
| 742 | 738 | ||
| 743 | if (do_free_page) | 739 | if (do_free_page) |
| 744 | __free_page(bvec->bv_page); | 740 | __free_page(bvec->bv_page); |
| 745 | } | 741 | } |
| 746 | 742 | ||
| 747 | return ret; | 743 | return ret; |
| 748 | } | 744 | } |
| 749 | 745 | ||
| 750 | /** | 746 | /** |
| 751 | * bio_uncopy_user - finish previously mapped bio | 747 | * bio_uncopy_user - finish previously mapped bio |
| 752 | * @bio: bio being terminated | 748 | * @bio: bio being terminated |
| 753 | * | 749 | * |
| 754 | * Free pages allocated from bio_copy_user() and write back data | 750 | * Free pages allocated from bio_copy_user() and write back data |
| 755 | * to user space in case of a read. | 751 | * to user space in case of a read. |
| 756 | */ | 752 | */ |
| 757 | int bio_uncopy_user(struct bio *bio) | 753 | int bio_uncopy_user(struct bio *bio) |
| 758 | { | 754 | { |
| 759 | struct bio_map_data *bmd = bio->bi_private; | 755 | struct bio_map_data *bmd = bio->bi_private; |
| 760 | int ret = 0; | 756 | int ret = 0; |
| 761 | 757 | ||
| 762 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) | 758 | if (!bio_flagged(bio, BIO_NULL_MAPPED)) |
| 763 | ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, | 759 | ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, |
| 764 | bmd->nr_sgvecs, 1, bmd->is_our_pages); | 760 | bmd->nr_sgvecs, 1, bmd->is_our_pages); |
| 765 | bio_free_map_data(bmd); | 761 | bio_free_map_data(bmd); |
| 766 | bio_put(bio); | 762 | bio_put(bio); |
| 767 | return ret; | 763 | return ret; |
| 768 | } | 764 | } |
| 769 | 765 | ||
| 770 | /** | 766 | /** |
| 771 | * bio_copy_user_iov - copy user data to bio | 767 | * bio_copy_user_iov - copy user data to bio |
| 772 | * @q: destination block queue | 768 | * @q: destination block queue |
| 773 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | 769 | * @map_data: pointer to the rq_map_data holding pages (if necessary) |
| 774 | * @iov: the iovec. | 770 | * @iov: the iovec. |
| 775 | * @iov_count: number of elements in the iovec | 771 | * @iov_count: number of elements in the iovec |
| 776 | * @write_to_vm: bool indicating writing to pages or not | 772 | * @write_to_vm: bool indicating writing to pages or not |
| 777 | * @gfp_mask: memory allocation flags | 773 | * @gfp_mask: memory allocation flags |
| 778 | * | 774 | * |
| 779 | * Prepares and returns a bio for indirect user io, bouncing data | 775 | * Prepares and returns a bio for indirect user io, bouncing data |
| 780 | * to/from kernel pages as necessary. Must be paired with | 776 | * to/from kernel pages as necessary. Must be paired with |
| 781 | * call bio_uncopy_user() on io completion. | 777 | * call bio_uncopy_user() on io completion. |
| 782 | */ | 778 | */ |
| 783 | struct bio *bio_copy_user_iov(struct request_queue *q, | 779 | struct bio *bio_copy_user_iov(struct request_queue *q, |
| 784 | struct rq_map_data *map_data, | 780 | struct rq_map_data *map_data, |
| 785 | struct sg_iovec *iov, int iov_count, | 781 | struct sg_iovec *iov, int iov_count, |
| 786 | int write_to_vm, gfp_t gfp_mask) | 782 | int write_to_vm, gfp_t gfp_mask) |
| 787 | { | 783 | { |
| 788 | struct bio_map_data *bmd; | 784 | struct bio_map_data *bmd; |
| 789 | struct bio_vec *bvec; | 785 | struct bio_vec *bvec; |
| 790 | struct page *page; | 786 | struct page *page; |
| 791 | struct bio *bio; | 787 | struct bio *bio; |
| 792 | int i, ret; | 788 | int i, ret; |
| 793 | int nr_pages = 0; | 789 | int nr_pages = 0; |
| 794 | unsigned int len = 0; | 790 | unsigned int len = 0; |
| 795 | 791 | ||
| 796 | for (i = 0; i < iov_count; i++) { | 792 | for (i = 0; i < iov_count; i++) { |
| 797 | unsigned long uaddr; | 793 | unsigned long uaddr; |
| 798 | unsigned long end; | 794 | unsigned long end; |
| 799 | unsigned long start; | 795 | unsigned long start; |
| 800 | 796 | ||
| 801 | uaddr = (unsigned long)iov[i].iov_base; | 797 | uaddr = (unsigned long)iov[i].iov_base; |
| 802 | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 798 | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 803 | start = uaddr >> PAGE_SHIFT; | 799 | start = uaddr >> PAGE_SHIFT; |
| 804 | 800 | ||
| 805 | nr_pages += end - start; | 801 | nr_pages += end - start; |
| 806 | len += iov[i].iov_len; | 802 | len += iov[i].iov_len; |
| 807 | } | 803 | } |
| 808 | 804 | ||
| 809 | bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); | 805 | bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask); |
| 810 | if (!bmd) | 806 | if (!bmd) |
| 811 | return ERR_PTR(-ENOMEM); | 807 | return ERR_PTR(-ENOMEM); |
| 812 | 808 | ||
| 813 | ret = -ENOMEM; | 809 | ret = -ENOMEM; |
| 814 | bio = bio_alloc(gfp_mask, nr_pages); | 810 | bio = bio_alloc(gfp_mask, nr_pages); |
| 815 | if (!bio) | 811 | if (!bio) |
| 816 | goto out_bmd; | 812 | goto out_bmd; |
| 817 | 813 | ||
| 818 | bio->bi_rw |= (!write_to_vm << BIO_RW); | 814 | bio->bi_rw |= (!write_to_vm << BIO_RW); |
| 819 | 815 | ||
| 820 | ret = 0; | 816 | ret = 0; |
| 821 | i = 0; | 817 | i = 0; |
| 822 | while (len) { | 818 | while (len) { |
| 823 | unsigned int bytes; | 819 | unsigned int bytes; |
| 824 | 820 | ||
| 825 | if (map_data) | 821 | if (map_data) |
| 826 | bytes = 1U << (PAGE_SHIFT + map_data->page_order); | 822 | bytes = 1U << (PAGE_SHIFT + map_data->page_order); |
| 827 | else | 823 | else |
| 828 | bytes = PAGE_SIZE; | 824 | bytes = PAGE_SIZE; |
| 829 | 825 | ||
| 830 | if (bytes > len) | 826 | if (bytes > len) |
| 831 | bytes = len; | 827 | bytes = len; |
| 832 | 828 | ||
| 833 | if (map_data) { | 829 | if (map_data) { |
| 834 | if (i == map_data->nr_entries) { | 830 | if (i == map_data->nr_entries) { |
| 835 | ret = -ENOMEM; | 831 | ret = -ENOMEM; |
| 836 | break; | 832 | break; |
| 837 | } | 833 | } |
| 838 | page = map_data->pages[i++]; | 834 | page = map_data->pages[i++]; |
| 839 | } else | 835 | } else |
| 840 | page = alloc_page(q->bounce_gfp | gfp_mask); | 836 | page = alloc_page(q->bounce_gfp | gfp_mask); |
| 841 | if (!page) { | 837 | if (!page) { |
| 842 | ret = -ENOMEM; | 838 | ret = -ENOMEM; |
| 843 | break; | 839 | break; |
| 844 | } | 840 | } |
| 845 | 841 | ||
| 846 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | 842 | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) |
| 847 | break; | 843 | break; |
| 848 | 844 | ||
| 849 | len -= bytes; | 845 | len -= bytes; |
| 850 | } | 846 | } |
| 851 | 847 | ||
| 852 | if (ret) | 848 | if (ret) |
| 853 | goto cleanup; | 849 | goto cleanup; |
| 854 | 850 | ||
| 855 | /* | 851 | /* |
| 856 | * success | 852 | * success |
| 857 | */ | 853 | */ |
| 858 | if (!write_to_vm) { | 854 | if (!write_to_vm) { |
| 859 | ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0); | 855 | ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0); |
| 860 | if (ret) | 856 | if (ret) |
| 861 | goto cleanup; | 857 | goto cleanup; |
| 862 | } | 858 | } |
| 863 | 859 | ||
| 864 | bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); | 860 | bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); |
| 865 | return bio; | 861 | return bio; |
| 866 | cleanup: | 862 | cleanup: |
| 867 | if (!map_data) | 863 | if (!map_data) |
| 868 | bio_for_each_segment(bvec, bio, i) | 864 | bio_for_each_segment(bvec, bio, i) |
| 869 | __free_page(bvec->bv_page); | 865 | __free_page(bvec->bv_page); |
| 870 | 866 | ||
| 871 | bio_put(bio); | 867 | bio_put(bio); |
| 872 | out_bmd: | 868 | out_bmd: |
| 873 | bio_free_map_data(bmd); | 869 | bio_free_map_data(bmd); |
| 874 | return ERR_PTR(ret); | 870 | return ERR_PTR(ret); |
| 875 | } | 871 | } |
| 876 | 872 | ||
| 877 | /** | 873 | /** |
| 878 | * bio_copy_user - copy user data to bio | 874 | * bio_copy_user - copy user data to bio |
| 879 | * @q: destination block queue | 875 | * @q: destination block queue |
| 880 | * @map_data: pointer to the rq_map_data holding pages (if necessary) | 876 | * @map_data: pointer to the rq_map_data holding pages (if necessary) |
| 881 | * @uaddr: start of user address | 877 | * @uaddr: start of user address |
| 882 | * @len: length in bytes | 878 | * @len: length in bytes |
| 883 | * @write_to_vm: bool indicating writing to pages or not | 879 | * @write_to_vm: bool indicating writing to pages or not |
| 884 | * @gfp_mask: memory allocation flags | 880 | * @gfp_mask: memory allocation flags |
| 885 | * | 881 | * |
| 886 | * Prepares and returns a bio for indirect user io, bouncing data | 882 | * Prepares and returns a bio for indirect user io, bouncing data |
| 887 | * to/from kernel pages as necessary. Must be paired with | 883 | * to/from kernel pages as necessary. Must be paired with |
| 888 | * call bio_uncopy_user() on io completion. | 884 | * call bio_uncopy_user() on io completion. |
| 889 | */ | 885 | */ |
| 890 | struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, | 886 | struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, |
| 891 | unsigned long uaddr, unsigned int len, | 887 | unsigned long uaddr, unsigned int len, |
| 892 | int write_to_vm, gfp_t gfp_mask) | 888 | int write_to_vm, gfp_t gfp_mask) |
| 893 | { | 889 | { |
| 894 | struct sg_iovec iov; | 890 | struct sg_iovec iov; |
| 895 | 891 | ||
| 896 | iov.iov_base = (void __user *)uaddr; | 892 | iov.iov_base = (void __user *)uaddr; |
| 897 | iov.iov_len = len; | 893 | iov.iov_len = len; |
| 898 | 894 | ||
| 899 | return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); | 895 | return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); |
| 900 | } | 896 | } |
| 901 | 897 | ||
| 902 | static struct bio *__bio_map_user_iov(struct request_queue *q, | 898 | static struct bio *__bio_map_user_iov(struct request_queue *q, |
| 903 | struct block_device *bdev, | 899 | struct block_device *bdev, |
| 904 | struct sg_iovec *iov, int iov_count, | 900 | struct sg_iovec *iov, int iov_count, |
| 905 | int write_to_vm, gfp_t gfp_mask) | 901 | int write_to_vm, gfp_t gfp_mask) |
| 906 | { | 902 | { |
| 907 | int i, j; | 903 | int i, j; |
| 908 | int nr_pages = 0; | 904 | int nr_pages = 0; |
| 909 | struct page **pages; | 905 | struct page **pages; |
| 910 | struct bio *bio; | 906 | struct bio *bio; |
| 911 | int cur_page = 0; | 907 | int cur_page = 0; |
| 912 | int ret, offset; | 908 | int ret, offset; |
| 913 | 909 | ||
| 914 | for (i = 0; i < iov_count; i++) { | 910 | for (i = 0; i < iov_count; i++) { |
| 915 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 911 | unsigned long uaddr = (unsigned long)iov[i].iov_base; |
| 916 | unsigned long len = iov[i].iov_len; | 912 | unsigned long len = iov[i].iov_len; |
| 917 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 913 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 918 | unsigned long start = uaddr >> PAGE_SHIFT; | 914 | unsigned long start = uaddr >> PAGE_SHIFT; |
| 919 | 915 | ||
| 920 | nr_pages += end - start; | 916 | nr_pages += end - start; |
| 921 | /* | 917 | /* |
| 922 | * buffer must be aligned to at least hardsector size for now | 918 | * buffer must be aligned to at least hardsector size for now |
| 923 | */ | 919 | */ |
| 924 | if (uaddr & queue_dma_alignment(q)) | 920 | if (uaddr & queue_dma_alignment(q)) |
| 925 | return ERR_PTR(-EINVAL); | 921 | return ERR_PTR(-EINVAL); |
| 926 | } | 922 | } |
| 927 | 923 | ||
| 928 | if (!nr_pages) | 924 | if (!nr_pages) |
| 929 | return ERR_PTR(-EINVAL); | 925 | return ERR_PTR(-EINVAL); |
| 930 | 926 | ||
| 931 | bio = bio_alloc(gfp_mask, nr_pages); | 927 | bio = bio_alloc(gfp_mask, nr_pages); |
| 932 | if (!bio) | 928 | if (!bio) |
| 933 | return ERR_PTR(-ENOMEM); | 929 | return ERR_PTR(-ENOMEM); |
| 934 | 930 | ||
| 935 | ret = -ENOMEM; | 931 | ret = -ENOMEM; |
| 936 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); | 932 | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); |
| 937 | if (!pages) | 933 | if (!pages) |
| 938 | goto out; | 934 | goto out; |
| 939 | 935 | ||
| 940 | for (i = 0; i < iov_count; i++) { | 936 | for (i = 0; i < iov_count; i++) { |
| 941 | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 937 | unsigned long uaddr = (unsigned long)iov[i].iov_base; |
| 942 | unsigned long len = iov[i].iov_len; | 938 | unsigned long len = iov[i].iov_len; |
| 943 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 939 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 944 | unsigned long start = uaddr >> PAGE_SHIFT; | 940 | unsigned long start = uaddr >> PAGE_SHIFT; |
| 945 | const int local_nr_pages = end - start; | 941 | const int local_nr_pages = end - start; |
| 946 | const int page_limit = cur_page + local_nr_pages; | 942 | const int page_limit = cur_page + local_nr_pages; |
| 947 | 943 | ||
| 948 | ret = get_user_pages_fast(uaddr, local_nr_pages, | 944 | ret = get_user_pages_fast(uaddr, local_nr_pages, |
| 949 | write_to_vm, &pages[cur_page]); | 945 | write_to_vm, &pages[cur_page]); |
| 950 | if (ret < local_nr_pages) { | 946 | if (ret < local_nr_pages) { |
| 951 | ret = -EFAULT; | 947 | ret = -EFAULT; |
| 952 | goto out_unmap; | 948 | goto out_unmap; |
| 953 | } | 949 | } |
| 954 | 950 | ||
| 955 | offset = uaddr & ~PAGE_MASK; | 951 | offset = uaddr & ~PAGE_MASK; |
| 956 | for (j = cur_page; j < page_limit; j++) { | 952 | for (j = cur_page; j < page_limit; j++) { |
| 957 | unsigned int bytes = PAGE_SIZE - offset; | 953 | unsigned int bytes = PAGE_SIZE - offset; |
| 958 | 954 | ||
| 959 | if (len <= 0) | 955 | if (len <= 0) |
| 960 | break; | 956 | break; |
| 961 | 957 | ||
| 962 | if (bytes > len) | 958 | if (bytes > len) |
| 963 | bytes = len; | 959 | bytes = len; |
| 964 | 960 | ||
| 965 | /* | 961 | /* |
| 966 | * sorry... | 962 | * sorry... |
| 967 | */ | 963 | */ |
| 968 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < | 964 | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < |
| 969 | bytes) | 965 | bytes) |
| 970 | break; | 966 | break; |
| 971 | 967 | ||
| 972 | len -= bytes; | 968 | len -= bytes; |
| 973 | offset = 0; | 969 | offset = 0; |
| 974 | } | 970 | } |
| 975 | 971 | ||
| 976 | cur_page = j; | 972 | cur_page = j; |
| 977 | /* | 973 | /* |
| 978 | * release the pages we didn't map into the bio, if any | 974 | * release the pages we didn't map into the bio, if any |
| 979 | */ | 975 | */ |
| 980 | while (j < page_limit) | 976 | while (j < page_limit) |
| 981 | page_cache_release(pages[j++]); | 977 | page_cache_release(pages[j++]); |
| 982 | } | 978 | } |
| 983 | 979 | ||
| 984 | kfree(pages); | 980 | kfree(pages); |
| 985 | 981 | ||
| 986 | /* | 982 | /* |
| 987 | * set data direction, and check if mapped pages need bouncing | 983 | * set data direction, and check if mapped pages need bouncing |
| 988 | */ | 984 | */ |
| 989 | if (!write_to_vm) | 985 | if (!write_to_vm) |
| 990 | bio->bi_rw |= (1 << BIO_RW); | 986 | bio->bi_rw |= (1 << BIO_RW); |
| 991 | 987 | ||
| 992 | bio->bi_bdev = bdev; | 988 | bio->bi_bdev = bdev; |
| 993 | bio->bi_flags |= (1 << BIO_USER_MAPPED); | 989 | bio->bi_flags |= (1 << BIO_USER_MAPPED); |
| 994 | return bio; | 990 | return bio; |
| 995 | 991 | ||
| 996 | out_unmap: | 992 | out_unmap: |
| 997 | for (i = 0; i < nr_pages; i++) { | 993 | for (i = 0; i < nr_pages; i++) { |
| 998 | if(!pages[i]) | 994 | if(!pages[i]) |
| 999 | break; | 995 | break; |
| 1000 | page_cache_release(pages[i]); | 996 | page_cache_release(pages[i]); |
| 1001 | } | 997 | } |
| 1002 | out: | 998 | out: |
| 1003 | kfree(pages); | 999 | kfree(pages); |
| 1004 | bio_put(bio); | 1000 | bio_put(bio); |
| 1005 | return ERR_PTR(ret); | 1001 | return ERR_PTR(ret); |
| 1006 | } | 1002 | } |
| 1007 | 1003 | ||
| 1008 | /** | 1004 | /** |
| 1009 | * bio_map_user - map user address into bio | 1005 | * bio_map_user - map user address into bio |
| 1010 | * @q: the struct request_queue for the bio | 1006 | * @q: the struct request_queue for the bio |
| 1011 | * @bdev: destination block device | 1007 | * @bdev: destination block device |
| 1012 | * @uaddr: start of user address | 1008 | * @uaddr: start of user address |
| 1013 | * @len: length in bytes | 1009 | * @len: length in bytes |
| 1014 | * @write_to_vm: bool indicating writing to pages or not | 1010 | * @write_to_vm: bool indicating writing to pages or not |
| 1015 | * @gfp_mask: memory allocation flags | 1011 | * @gfp_mask: memory allocation flags |
| 1016 | * | 1012 | * |
| 1017 | * Map the user space address into a bio suitable for io to a block | 1013 | * Map the user space address into a bio suitable for io to a block |
| 1018 | * device. Returns an error pointer in case of error. | 1014 | * device. Returns an error pointer in case of error. |
| 1019 | */ | 1015 | */ |
| 1020 | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, | 1016 | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, |
| 1021 | unsigned long uaddr, unsigned int len, int write_to_vm, | 1017 | unsigned long uaddr, unsigned int len, int write_to_vm, |
| 1022 | gfp_t gfp_mask) | 1018 | gfp_t gfp_mask) |
| 1023 | { | 1019 | { |
| 1024 | struct sg_iovec iov; | 1020 | struct sg_iovec iov; |
| 1025 | 1021 | ||
| 1026 | iov.iov_base = (void __user *)uaddr; | 1022 | iov.iov_base = (void __user *)uaddr; |
| 1027 | iov.iov_len = len; | 1023 | iov.iov_len = len; |
| 1028 | 1024 | ||
| 1029 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); | 1025 | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); |
| 1030 | } | 1026 | } |
| 1031 | 1027 | ||
| 1032 | /** | 1028 | /** |
| 1033 | * bio_map_user_iov - map user sg_iovec table into bio | 1029 | * bio_map_user_iov - map user sg_iovec table into bio |
| 1034 | * @q: the struct request_queue for the bio | 1030 | * @q: the struct request_queue for the bio |
| 1035 | * @bdev: destination block device | 1031 | * @bdev: destination block device |
| 1036 | * @iov: the iovec. | 1032 | * @iov: the iovec. |
| 1037 | * @iov_count: number of elements in the iovec | 1033 | * @iov_count: number of elements in the iovec |
| 1038 | * @write_to_vm: bool indicating writing to pages or not | 1034 | * @write_to_vm: bool indicating writing to pages or not |
| 1039 | * @gfp_mask: memory allocation flags | 1035 | * @gfp_mask: memory allocation flags |
| 1040 | * | 1036 | * |
| 1041 | * Map the user space address into a bio suitable for io to a block | 1037 | * Map the user space address into a bio suitable for io to a block |
| 1042 | * device. Returns an error pointer in case of error. | 1038 | * device. Returns an error pointer in case of error. |
| 1043 | */ | 1039 | */ |
| 1044 | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, | 1040 | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, |
| 1045 | struct sg_iovec *iov, int iov_count, | 1041 | struct sg_iovec *iov, int iov_count, |
| 1046 | int write_to_vm, gfp_t gfp_mask) | 1042 | int write_to_vm, gfp_t gfp_mask) |
| 1047 | { | 1043 | { |
| 1048 | struct bio *bio; | 1044 | struct bio *bio; |
| 1049 | 1045 | ||
| 1050 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, | 1046 | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, |
| 1051 | gfp_mask); | 1047 | gfp_mask); |
| 1052 | if (IS_ERR(bio)) | 1048 | if (IS_ERR(bio)) |
| 1053 | return bio; | 1049 | return bio; |
| 1054 | 1050 | ||
| 1055 | /* | 1051 | /* |
| 1056 | * subtle -- if __bio_map_user() ended up bouncing a bio, | 1052 | * subtle -- if __bio_map_user() ended up bouncing a bio, |
| 1057 | * it would normally disappear when its bi_end_io is run. | 1053 | * it would normally disappear when its bi_end_io is run. |
| 1058 | * however, we need it for the unmap, so grab an extra | 1054 | * however, we need it for the unmap, so grab an extra |
| 1059 | * reference to it | 1055 | * reference to it |
| 1060 | */ | 1056 | */ |
| 1061 | bio_get(bio); | 1057 | bio_get(bio); |
| 1062 | 1058 | ||
| 1063 | return bio; | 1059 | return bio; |
| 1064 | } | 1060 | } |
| 1065 | 1061 | ||
| 1066 | static void __bio_unmap_user(struct bio *bio) | 1062 | static void __bio_unmap_user(struct bio *bio) |
| 1067 | { | 1063 | { |
| 1068 | struct bio_vec *bvec; | 1064 | struct bio_vec *bvec; |
| 1069 | int i; | 1065 | int i; |
| 1070 | 1066 | ||
| 1071 | /* | 1067 | /* |
| 1072 | * make sure we dirty pages we wrote to | 1068 | * make sure we dirty pages we wrote to |
| 1073 | */ | 1069 | */ |
| 1074 | __bio_for_each_segment(bvec, bio, i, 0) { | 1070 | __bio_for_each_segment(bvec, bio, i, 0) { |
| 1075 | if (bio_data_dir(bio) == READ) | 1071 | if (bio_data_dir(bio) == READ) |
| 1076 | set_page_dirty_lock(bvec->bv_page); | 1072 | set_page_dirty_lock(bvec->bv_page); |
| 1077 | 1073 | ||
| 1078 | page_cache_release(bvec->bv_page); | 1074 | page_cache_release(bvec->bv_page); |
| 1079 | } | 1075 | } |
| 1080 | 1076 | ||
| 1081 | bio_put(bio); | 1077 | bio_put(bio); |
| 1082 | } | 1078 | } |
| 1083 | 1079 | ||
| 1084 | /** | 1080 | /** |
| 1085 | * bio_unmap_user - unmap a bio | 1081 | * bio_unmap_user - unmap a bio |
| 1086 | * @bio: the bio being unmapped | 1082 | * @bio: the bio being unmapped |
| 1087 | * | 1083 | * |
| 1088 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | 1084 | * Unmap a bio previously mapped by bio_map_user(). Must be called with |
| 1089 | * a process context. | 1085 | * a process context. |
| 1090 | * | 1086 | * |
| 1091 | * bio_unmap_user() may sleep. | 1087 | * bio_unmap_user() may sleep. |
| 1092 | */ | 1088 | */ |
| 1093 | void bio_unmap_user(struct bio *bio) | 1089 | void bio_unmap_user(struct bio *bio) |
| 1094 | { | 1090 | { |
| 1095 | __bio_unmap_user(bio); | 1091 | __bio_unmap_user(bio); |
| 1096 | bio_put(bio); | 1092 | bio_put(bio); |
| 1097 | } | 1093 | } |
| 1098 | 1094 | ||
| 1099 | static void bio_map_kern_endio(struct bio *bio, int err) | 1095 | static void bio_map_kern_endio(struct bio *bio, int err) |
| 1100 | { | 1096 | { |
| 1101 | bio_put(bio); | 1097 | bio_put(bio); |
| 1102 | } | 1098 | } |
| 1103 | 1099 | ||
| 1104 | 1100 | ||
| 1105 | static struct bio *__bio_map_kern(struct request_queue *q, void *data, | 1101 | static struct bio *__bio_map_kern(struct request_queue *q, void *data, |
| 1106 | unsigned int len, gfp_t gfp_mask) | 1102 | unsigned int len, gfp_t gfp_mask) |
| 1107 | { | 1103 | { |
| 1108 | unsigned long kaddr = (unsigned long)data; | 1104 | unsigned long kaddr = (unsigned long)data; |
| 1109 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 1105 | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1110 | unsigned long start = kaddr >> PAGE_SHIFT; | 1106 | unsigned long start = kaddr >> PAGE_SHIFT; |
| 1111 | const int nr_pages = end - start; | 1107 | const int nr_pages = end - start; |
| 1112 | int offset, i; | 1108 | int offset, i; |
| 1113 | struct bio *bio; | 1109 | struct bio *bio; |
| 1114 | 1110 | ||
| 1115 | bio = bio_alloc(gfp_mask, nr_pages); | 1111 | bio = bio_alloc(gfp_mask, nr_pages); |
| 1116 | if (!bio) | 1112 | if (!bio) |
| 1117 | return ERR_PTR(-ENOMEM); | 1113 | return ERR_PTR(-ENOMEM); |
| 1118 | 1114 | ||
| 1119 | offset = offset_in_page(kaddr); | 1115 | offset = offset_in_page(kaddr); |
| 1120 | for (i = 0; i < nr_pages; i++) { | 1116 | for (i = 0; i < nr_pages; i++) { |
| 1121 | unsigned int bytes = PAGE_SIZE - offset; | 1117 | unsigned int bytes = PAGE_SIZE - offset; |
| 1122 | 1118 | ||
| 1123 | if (len <= 0) | 1119 | if (len <= 0) |
| 1124 | break; | 1120 | break; |
| 1125 | 1121 | ||
| 1126 | if (bytes > len) | 1122 | if (bytes > len) |
| 1127 | bytes = len; | 1123 | bytes = len; |
| 1128 | 1124 | ||
| 1129 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, | 1125 | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, |
| 1130 | offset) < bytes) | 1126 | offset) < bytes) |
| 1131 | break; | 1127 | break; |
| 1132 | 1128 | ||
| 1133 | data += bytes; | 1129 | data += bytes; |
| 1134 | len -= bytes; | 1130 | len -= bytes; |
| 1135 | offset = 0; | 1131 | offset = 0; |
| 1136 | } | 1132 | } |
| 1137 | 1133 | ||
| 1138 | bio->bi_end_io = bio_map_kern_endio; | 1134 | bio->bi_end_io = bio_map_kern_endio; |
| 1139 | return bio; | 1135 | return bio; |
| 1140 | } | 1136 | } |
| 1141 | 1137 | ||
| 1142 | /** | 1138 | /** |
| 1143 | * bio_map_kern - map kernel address into bio | 1139 | * bio_map_kern - map kernel address into bio |
| 1144 | * @q: the struct request_queue for the bio | 1140 | * @q: the struct request_queue for the bio |
| 1145 | * @data: pointer to buffer to map | 1141 | * @data: pointer to buffer to map |
| 1146 | * @len: length in bytes | 1142 | * @len: length in bytes |
| 1147 | * @gfp_mask: allocation flags for bio allocation | 1143 | * @gfp_mask: allocation flags for bio allocation |
| 1148 | * | 1144 | * |
| 1149 | * Map the kernel address into a bio suitable for io to a block | 1145 | * Map the kernel address into a bio suitable for io to a block |
| 1150 | * device. Returns an error pointer in case of error. | 1146 | * device. Returns an error pointer in case of error. |
| 1151 | */ | 1147 | */ |
| 1152 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | 1148 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, |
| 1153 | gfp_t gfp_mask) | 1149 | gfp_t gfp_mask) |
| 1154 | { | 1150 | { |
| 1155 | struct bio *bio; | 1151 | struct bio *bio; |
| 1156 | 1152 | ||
| 1157 | bio = __bio_map_kern(q, data, len, gfp_mask); | 1153 | bio = __bio_map_kern(q, data, len, gfp_mask); |
| 1158 | if (IS_ERR(bio)) | 1154 | if (IS_ERR(bio)) |
| 1159 | return bio; | 1155 | return bio; |
| 1160 | 1156 | ||
| 1161 | if (bio->bi_size == len) | 1157 | if (bio->bi_size == len) |
| 1162 | return bio; | 1158 | return bio; |
| 1163 | 1159 | ||
| 1164 | /* | 1160 | /* |
| 1165 | * Don't support partial mappings. | 1161 | * Don't support partial mappings. |
| 1166 | */ | 1162 | */ |
| 1167 | bio_put(bio); | 1163 | bio_put(bio); |
| 1168 | return ERR_PTR(-EINVAL); | 1164 | return ERR_PTR(-EINVAL); |
| 1169 | } | 1165 | } |
| 1170 | 1166 | ||
| 1171 | static void bio_copy_kern_endio(struct bio *bio, int err) | 1167 | static void bio_copy_kern_endio(struct bio *bio, int err) |
| 1172 | { | 1168 | { |
| 1173 | struct bio_vec *bvec; | 1169 | struct bio_vec *bvec; |
| 1174 | const int read = bio_data_dir(bio) == READ; | 1170 | const int read = bio_data_dir(bio) == READ; |
| 1175 | struct bio_map_data *bmd = bio->bi_private; | 1171 | struct bio_map_data *bmd = bio->bi_private; |
| 1176 | int i; | 1172 | int i; |
| 1177 | char *p = bmd->sgvecs[0].iov_base; | 1173 | char *p = bmd->sgvecs[0].iov_base; |
| 1178 | 1174 | ||
| 1179 | __bio_for_each_segment(bvec, bio, i, 0) { | 1175 | __bio_for_each_segment(bvec, bio, i, 0) { |
| 1180 | char *addr = page_address(bvec->bv_page); | 1176 | char *addr = page_address(bvec->bv_page); |
| 1181 | int len = bmd->iovecs[i].bv_len; | 1177 | int len = bmd->iovecs[i].bv_len; |
| 1182 | 1178 | ||
| 1183 | if (read && !err) | 1179 | if (read && !err) |
| 1184 | memcpy(p, addr, len); | 1180 | memcpy(p, addr, len); |
| 1185 | 1181 | ||
| 1186 | __free_page(bvec->bv_page); | 1182 | __free_page(bvec->bv_page); |
| 1187 | p += len; | 1183 | p += len; |
| 1188 | } | 1184 | } |
| 1189 | 1185 | ||
| 1190 | bio_free_map_data(bmd); | 1186 | bio_free_map_data(bmd); |
| 1191 | bio_put(bio); | 1187 | bio_put(bio); |
| 1192 | } | 1188 | } |
| 1193 | 1189 | ||
| 1194 | /** | 1190 | /** |
| 1195 | * bio_copy_kern - copy kernel address into bio | 1191 | * bio_copy_kern - copy kernel address into bio |
| 1196 | * @q: the struct request_queue for the bio | 1192 | * @q: the struct request_queue for the bio |
| 1197 | * @data: pointer to buffer to copy | 1193 | * @data: pointer to buffer to copy |
| 1198 | * @len: length in bytes | 1194 | * @len: length in bytes |
| 1199 | * @gfp_mask: allocation flags for bio and page allocation | 1195 | * @gfp_mask: allocation flags for bio and page allocation |
| 1200 | * @reading: data direction is READ | 1196 | * @reading: data direction is READ |
| 1201 | * | 1197 | * |
| 1202 | * copy the kernel address into a bio suitable for io to a block | 1198 | * copy the kernel address into a bio suitable for io to a block |
| 1203 | * device. Returns an error pointer in case of error. | 1199 | * device. Returns an error pointer in case of error. |
| 1204 | */ | 1200 | */ |
| 1205 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | 1201 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, |
| 1206 | gfp_t gfp_mask, int reading) | 1202 | gfp_t gfp_mask, int reading) |
| 1207 | { | 1203 | { |
| 1208 | struct bio *bio; | 1204 | struct bio *bio; |
| 1209 | struct bio_vec *bvec; | 1205 | struct bio_vec *bvec; |
| 1210 | int i; | 1206 | int i; |
| 1211 | 1207 | ||
| 1212 | bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); | 1208 | bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); |
| 1213 | if (IS_ERR(bio)) | 1209 | if (IS_ERR(bio)) |
| 1214 | return bio; | 1210 | return bio; |
| 1215 | 1211 | ||
| 1216 | if (!reading) { | 1212 | if (!reading) { |
| 1217 | void *p = data; | 1213 | void *p = data; |
| 1218 | 1214 | ||
| 1219 | bio_for_each_segment(bvec, bio, i) { | 1215 | bio_for_each_segment(bvec, bio, i) { |
| 1220 | char *addr = page_address(bvec->bv_page); | 1216 | char *addr = page_address(bvec->bv_page); |
| 1221 | 1217 | ||
| 1222 | memcpy(addr, p, bvec->bv_len); | 1218 | memcpy(addr, p, bvec->bv_len); |
| 1223 | p += bvec->bv_len; | 1219 | p += bvec->bv_len; |
| 1224 | } | 1220 | } |
| 1225 | } | 1221 | } |
| 1226 | 1222 | ||
| 1227 | bio->bi_end_io = bio_copy_kern_endio; | 1223 | bio->bi_end_io = bio_copy_kern_endio; |
| 1228 | 1224 | ||
| 1229 | return bio; | 1225 | return bio; |
| 1230 | } | 1226 | } |
| 1231 | 1227 | ||
| 1232 | /* | 1228 | /* |
| 1233 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | 1229 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions |
| 1234 | * for performing direct-IO in BIOs. | 1230 | * for performing direct-IO in BIOs. |
| 1235 | * | 1231 | * |
| 1236 | * The problem is that we cannot run set_page_dirty() from interrupt context | 1232 | * The problem is that we cannot run set_page_dirty() from interrupt context |
| 1237 | * because the required locks are not interrupt-safe. So what we can do is to | 1233 | * because the required locks are not interrupt-safe. So what we can do is to |
| 1238 | * mark the pages dirty _before_ performing IO. And in interrupt context, | 1234 | * mark the pages dirty _before_ performing IO. And in interrupt context, |
| 1239 | * check that the pages are still dirty. If so, fine. If not, redirty them | 1235 | * check that the pages are still dirty. If so, fine. If not, redirty them |
| 1240 | * in process context. | 1236 | * in process context. |
| 1241 | * | 1237 | * |
| 1242 | * We special-case compound pages here: normally this means reads into hugetlb | 1238 | * We special-case compound pages here: normally this means reads into hugetlb |
| 1243 | * pages. The logic in here doesn't really work right for compound pages | 1239 | * pages. The logic in here doesn't really work right for compound pages |
| 1244 | * because the VM does not uniformly chase down the head page in all cases. | 1240 | * because the VM does not uniformly chase down the head page in all cases. |
| 1245 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | 1241 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't |
| 1246 | * handle them at all. So we skip compound pages here at an early stage. | 1242 | * handle them at all. So we skip compound pages here at an early stage. |
| 1247 | * | 1243 | * |
| 1248 | * Note that this code is very hard to test under normal circumstances because | 1244 | * Note that this code is very hard to test under normal circumstances because |
| 1249 | * direct-io pins the pages with get_user_pages(). This makes | 1245 | * direct-io pins the pages with get_user_pages(). This makes |
| 1250 | * is_page_cache_freeable return false, and the VM will not clean the pages. | 1246 | * is_page_cache_freeable return false, and the VM will not clean the pages. |
| 1251 | * But other code (eg, pdflush) could clean the pages if they are mapped | 1247 | * But other code (eg, pdflush) could clean the pages if they are mapped |
| 1252 | * pagecache. | 1248 | * pagecache. |
| 1253 | * | 1249 | * |
| 1254 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | 1250 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the |
| 1255 | * deferred bio dirtying paths. | 1251 | * deferred bio dirtying paths. |
| 1256 | */ | 1252 | */ |
| 1257 | 1253 | ||
| 1258 | /* | 1254 | /* |
| 1259 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | 1255 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. |
| 1260 | */ | 1256 | */ |
| 1261 | void bio_set_pages_dirty(struct bio *bio) | 1257 | void bio_set_pages_dirty(struct bio *bio) |
| 1262 | { | 1258 | { |
| 1263 | struct bio_vec *bvec = bio->bi_io_vec; | 1259 | struct bio_vec *bvec = bio->bi_io_vec; |
| 1264 | int i; | 1260 | int i; |
| 1265 | 1261 | ||
| 1266 | for (i = 0; i < bio->bi_vcnt; i++) { | 1262 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1267 | struct page *page = bvec[i].bv_page; | 1263 | struct page *page = bvec[i].bv_page; |
| 1268 | 1264 | ||
| 1269 | if (page && !PageCompound(page)) | 1265 | if (page && !PageCompound(page)) |
| 1270 | set_page_dirty_lock(page); | 1266 | set_page_dirty_lock(page); |
| 1271 | } | 1267 | } |
| 1272 | } | 1268 | } |
| 1273 | 1269 | ||
| 1274 | static void bio_release_pages(struct bio *bio) | 1270 | static void bio_release_pages(struct bio *bio) |
| 1275 | { | 1271 | { |
| 1276 | struct bio_vec *bvec = bio->bi_io_vec; | 1272 | struct bio_vec *bvec = bio->bi_io_vec; |
| 1277 | int i; | 1273 | int i; |
| 1278 | 1274 | ||
| 1279 | for (i = 0; i < bio->bi_vcnt; i++) { | 1275 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1280 | struct page *page = bvec[i].bv_page; | 1276 | struct page *page = bvec[i].bv_page; |
| 1281 | 1277 | ||
| 1282 | if (page) | 1278 | if (page) |
| 1283 | put_page(page); | 1279 | put_page(page); |
| 1284 | } | 1280 | } |
| 1285 | } | 1281 | } |
| 1286 | 1282 | ||
| 1287 | /* | 1283 | /* |
| 1288 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | 1284 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. |
| 1289 | * If they are, then fine. If, however, some pages are clean then they must | 1285 | * If they are, then fine. If, however, some pages are clean then they must |
| 1290 | * have been written out during the direct-IO read. So we take another ref on | 1286 | * have been written out during the direct-IO read. So we take another ref on |
| 1291 | * the BIO and the offending pages and re-dirty the pages in process context. | 1287 | * the BIO and the offending pages and re-dirty the pages in process context. |
| 1292 | * | 1288 | * |
| 1293 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | 1289 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from |
| 1294 | * here on. It will run one page_cache_release() against each page and will | 1290 | * here on. It will run one page_cache_release() against each page and will |
| 1295 | * run one bio_put() against the BIO. | 1291 | * run one bio_put() against the BIO. |
| 1296 | */ | 1292 | */ |
| 1297 | 1293 | ||
| 1298 | static void bio_dirty_fn(struct work_struct *work); | 1294 | static void bio_dirty_fn(struct work_struct *work); |
| 1299 | 1295 | ||
| 1300 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | 1296 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
| 1301 | static DEFINE_SPINLOCK(bio_dirty_lock); | 1297 | static DEFINE_SPINLOCK(bio_dirty_lock); |
| 1302 | static struct bio *bio_dirty_list; | 1298 | static struct bio *bio_dirty_list; |
| 1303 | 1299 | ||
| 1304 | /* | 1300 | /* |
| 1305 | * This runs in process context | 1301 | * This runs in process context |
| 1306 | */ | 1302 | */ |
| 1307 | static void bio_dirty_fn(struct work_struct *work) | 1303 | static void bio_dirty_fn(struct work_struct *work) |
| 1308 | { | 1304 | { |
| 1309 | unsigned long flags; | 1305 | unsigned long flags; |
| 1310 | struct bio *bio; | 1306 | struct bio *bio; |
| 1311 | 1307 | ||
| 1312 | spin_lock_irqsave(&bio_dirty_lock, flags); | 1308 | spin_lock_irqsave(&bio_dirty_lock, flags); |
| 1313 | bio = bio_dirty_list; | 1309 | bio = bio_dirty_list; |
| 1314 | bio_dirty_list = NULL; | 1310 | bio_dirty_list = NULL; |
| 1315 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 1311 | spin_unlock_irqrestore(&bio_dirty_lock, flags); |
| 1316 | 1312 | ||
| 1317 | while (bio) { | 1313 | while (bio) { |
| 1318 | struct bio *next = bio->bi_private; | 1314 | struct bio *next = bio->bi_private; |
| 1319 | 1315 | ||
| 1320 | bio_set_pages_dirty(bio); | 1316 | bio_set_pages_dirty(bio); |
| 1321 | bio_release_pages(bio); | 1317 | bio_release_pages(bio); |
| 1322 | bio_put(bio); | 1318 | bio_put(bio); |
| 1323 | bio = next; | 1319 | bio = next; |
| 1324 | } | 1320 | } |
| 1325 | } | 1321 | } |
| 1326 | 1322 | ||
| 1327 | void bio_check_pages_dirty(struct bio *bio) | 1323 | void bio_check_pages_dirty(struct bio *bio) |
| 1328 | { | 1324 | { |
| 1329 | struct bio_vec *bvec = bio->bi_io_vec; | 1325 | struct bio_vec *bvec = bio->bi_io_vec; |
| 1330 | int nr_clean_pages = 0; | 1326 | int nr_clean_pages = 0; |
| 1331 | int i; | 1327 | int i; |
| 1332 | 1328 | ||
| 1333 | for (i = 0; i < bio->bi_vcnt; i++) { | 1329 | for (i = 0; i < bio->bi_vcnt; i++) { |
| 1334 | struct page *page = bvec[i].bv_page; | 1330 | struct page *page = bvec[i].bv_page; |
| 1335 | 1331 | ||
| 1336 | if (PageDirty(page) || PageCompound(page)) { | 1332 | if (PageDirty(page) || PageCompound(page)) { |
| 1337 | page_cache_release(page); | 1333 | page_cache_release(page); |
| 1338 | bvec[i].bv_page = NULL; | 1334 | bvec[i].bv_page = NULL; |
| 1339 | } else { | 1335 | } else { |
| 1340 | nr_clean_pages++; | 1336 | nr_clean_pages++; |
| 1341 | } | 1337 | } |
| 1342 | } | 1338 | } |
| 1343 | 1339 | ||
| 1344 | if (nr_clean_pages) { | 1340 | if (nr_clean_pages) { |
| 1345 | unsigned long flags; | 1341 | unsigned long flags; |
| 1346 | 1342 | ||
| 1347 | spin_lock_irqsave(&bio_dirty_lock, flags); | 1343 | spin_lock_irqsave(&bio_dirty_lock, flags); |
| 1348 | bio->bi_private = bio_dirty_list; | 1344 | bio->bi_private = bio_dirty_list; |
| 1349 | bio_dirty_list = bio; | 1345 | bio_dirty_list = bio; |
| 1350 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 1346 | spin_unlock_irqrestore(&bio_dirty_lock, flags); |
| 1351 | schedule_work(&bio_dirty_work); | 1347 | schedule_work(&bio_dirty_work); |
| 1352 | } else { | 1348 | } else { |
| 1353 | bio_put(bio); | 1349 | bio_put(bio); |
| 1354 | } | 1350 | } |
| 1355 | } | 1351 | } |
| 1356 | 1352 | ||
| 1357 | /** | 1353 | /** |
| 1358 | * bio_endio - end I/O on a bio | 1354 | * bio_endio - end I/O on a bio |
| 1359 | * @bio: bio | 1355 | * @bio: bio |
| 1360 | * @error: error, if any | 1356 | * @error: error, if any |
| 1361 | * | 1357 | * |
| 1362 | * Description: | 1358 | * Description: |
| 1363 | * bio_endio() will end I/O on the whole bio. bio_endio() is the | 1359 | * bio_endio() will end I/O on the whole bio. bio_endio() is the |
| 1364 | * preferred way to end I/O on a bio, it takes care of clearing | 1360 | * preferred way to end I/O on a bio, it takes care of clearing |
| 1365 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the | 1361 | * BIO_UPTODATE on error. @error is 0 on success, and and one of the |
| 1366 | * established -Exxxx (-EIO, for instance) error values in case | 1362 | * established -Exxxx (-EIO, for instance) error values in case |
| 1367 | * something went wrong. Noone should call bi_end_io() directly on a | 1363 | * something went wrong. Noone should call bi_end_io() directly on a |
| 1368 | * bio unless they own it and thus know that it has an end_io | 1364 | * bio unless they own it and thus know that it has an end_io |
| 1369 | * function. | 1365 | * function. |
| 1370 | **/ | 1366 | **/ |
| 1371 | void bio_endio(struct bio *bio, int error) | 1367 | void bio_endio(struct bio *bio, int error) |
| 1372 | { | 1368 | { |
| 1373 | if (error) | 1369 | if (error) |
| 1374 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | 1370 | clear_bit(BIO_UPTODATE, &bio->bi_flags); |
| 1375 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 1371 | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) |
| 1376 | error = -EIO; | 1372 | error = -EIO; |
| 1377 | 1373 | ||
| 1378 | if (bio->bi_end_io) | 1374 | if (bio->bi_end_io) |
| 1379 | bio->bi_end_io(bio, error); | 1375 | bio->bi_end_io(bio, error); |
| 1380 | } | 1376 | } |
| 1381 | 1377 | ||
| 1382 | void bio_pair_release(struct bio_pair *bp) | 1378 | void bio_pair_release(struct bio_pair *bp) |
| 1383 | { | 1379 | { |
| 1384 | if (atomic_dec_and_test(&bp->cnt)) { | 1380 | if (atomic_dec_and_test(&bp->cnt)) { |
| 1385 | struct bio *master = bp->bio1.bi_private; | 1381 | struct bio *master = bp->bio1.bi_private; |
| 1386 | 1382 | ||
| 1387 | bio_endio(master, bp->error); | 1383 | bio_endio(master, bp->error); |
| 1388 | mempool_free(bp, bp->bio2.bi_private); | 1384 | mempool_free(bp, bp->bio2.bi_private); |
| 1389 | } | 1385 | } |
| 1390 | } | 1386 | } |
| 1391 | 1387 | ||
| 1392 | static void bio_pair_end_1(struct bio *bi, int err) | 1388 | static void bio_pair_end_1(struct bio *bi, int err) |
| 1393 | { | 1389 | { |
| 1394 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | 1390 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); |
| 1395 | 1391 | ||
| 1396 | if (err) | 1392 | if (err) |
| 1397 | bp->error = err; | 1393 | bp->error = err; |
| 1398 | 1394 | ||
| 1399 | bio_pair_release(bp); | 1395 | bio_pair_release(bp); |
| 1400 | } | 1396 | } |
| 1401 | 1397 | ||
| 1402 | static void bio_pair_end_2(struct bio *bi, int err) | 1398 | static void bio_pair_end_2(struct bio *bi, int err) |
| 1403 | { | 1399 | { |
| 1404 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | 1400 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); |
| 1405 | 1401 | ||
| 1406 | if (err) | 1402 | if (err) |
| 1407 | bp->error = err; | 1403 | bp->error = err; |
| 1408 | 1404 | ||
| 1409 | bio_pair_release(bp); | 1405 | bio_pair_release(bp); |
| 1410 | } | 1406 | } |
| 1411 | 1407 | ||
| 1412 | /* | 1408 | /* |
| 1413 | * split a bio - only worry about a bio with a single page | 1409 | * split a bio - only worry about a bio with a single page |
| 1414 | * in it's iovec | 1410 | * in it's iovec |
| 1415 | */ | 1411 | */ |
| 1416 | struct bio_pair *bio_split(struct bio *bi, int first_sectors) | 1412 | struct bio_pair *bio_split(struct bio *bi, int first_sectors) |
| 1417 | { | 1413 | { |
| 1418 | struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); | 1414 | struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO); |
| 1419 | 1415 | ||
| 1420 | if (!bp) | 1416 | if (!bp) |
| 1421 | return bp; | 1417 | return bp; |
| 1422 | 1418 | ||
| 1423 | trace_block_split(bdev_get_queue(bi->bi_bdev), bi, | 1419 | trace_block_split(bdev_get_queue(bi->bi_bdev), bi, |
| 1424 | bi->bi_sector + first_sectors); | 1420 | bi->bi_sector + first_sectors); |
| 1425 | 1421 | ||
| 1426 | BUG_ON(bi->bi_vcnt != 1); | 1422 | BUG_ON(bi->bi_vcnt != 1); |
| 1427 | BUG_ON(bi->bi_idx != 0); | 1423 | BUG_ON(bi->bi_idx != 0); |
| 1428 | atomic_set(&bp->cnt, 3); | 1424 | atomic_set(&bp->cnt, 3); |
| 1429 | bp->error = 0; | 1425 | bp->error = 0; |
| 1430 | bp->bio1 = *bi; | 1426 | bp->bio1 = *bi; |
| 1431 | bp->bio2 = *bi; | 1427 | bp->bio2 = *bi; |
| 1432 | bp->bio2.bi_sector += first_sectors; | 1428 | bp->bio2.bi_sector += first_sectors; |
| 1433 | bp->bio2.bi_size -= first_sectors << 9; | 1429 | bp->bio2.bi_size -= first_sectors << 9; |
| 1434 | bp->bio1.bi_size = first_sectors << 9; | 1430 | bp->bio1.bi_size = first_sectors << 9; |
| 1435 | 1431 | ||
| 1436 | bp->bv1 = bi->bi_io_vec[0]; | 1432 | bp->bv1 = bi->bi_io_vec[0]; |
| 1437 | bp->bv2 = bi->bi_io_vec[0]; | 1433 | bp->bv2 = bi->bi_io_vec[0]; |
| 1438 | bp->bv2.bv_offset += first_sectors << 9; | 1434 | bp->bv2.bv_offset += first_sectors << 9; |
| 1439 | bp->bv2.bv_len -= first_sectors << 9; | 1435 | bp->bv2.bv_len -= first_sectors << 9; |
| 1440 | bp->bv1.bv_len = first_sectors << 9; | 1436 | bp->bv1.bv_len = first_sectors << 9; |
| 1441 | 1437 | ||
| 1442 | bp->bio1.bi_io_vec = &bp->bv1; | 1438 | bp->bio1.bi_io_vec = &bp->bv1; |
| 1443 | bp->bio2.bi_io_vec = &bp->bv2; | 1439 | bp->bio2.bi_io_vec = &bp->bv2; |
| 1444 | 1440 | ||
| 1445 | bp->bio1.bi_max_vecs = 1; | 1441 | bp->bio1.bi_max_vecs = 1; |
| 1446 | bp->bio2.bi_max_vecs = 1; | 1442 | bp->bio2.bi_max_vecs = 1; |
| 1447 | 1443 | ||
| 1448 | bp->bio1.bi_end_io = bio_pair_end_1; | 1444 | bp->bio1.bi_end_io = bio_pair_end_1; |
| 1449 | bp->bio2.bi_end_io = bio_pair_end_2; | 1445 | bp->bio2.bi_end_io = bio_pair_end_2; |
| 1450 | 1446 | ||
| 1451 | bp->bio1.bi_private = bi; | 1447 | bp->bio1.bi_private = bi; |
| 1452 | bp->bio2.bi_private = bio_split_pool; | 1448 | bp->bio2.bi_private = bio_split_pool; |
| 1453 | 1449 | ||
| 1454 | if (bio_integrity(bi)) | 1450 | if (bio_integrity(bi)) |
| 1455 | bio_integrity_split(bi, bp, first_sectors); | 1451 | bio_integrity_split(bi, bp, first_sectors); |
| 1456 | 1452 | ||
| 1457 | return bp; | 1453 | return bp; |
| 1458 | } | 1454 | } |
| 1459 | 1455 | ||
| 1460 | /** | 1456 | /** |
| 1461 | * bio_sector_offset - Find hardware sector offset in bio | 1457 | * bio_sector_offset - Find hardware sector offset in bio |
| 1462 | * @bio: bio to inspect | 1458 | * @bio: bio to inspect |
| 1463 | * @index: bio_vec index | 1459 | * @index: bio_vec index |
| 1464 | * @offset: offset in bv_page | 1460 | * @offset: offset in bv_page |
| 1465 | * | 1461 | * |
| 1466 | * Return the number of hardware sectors between beginning of bio | 1462 | * Return the number of hardware sectors between beginning of bio |
| 1467 | * and an end point indicated by a bio_vec index and an offset | 1463 | * and an end point indicated by a bio_vec index and an offset |
| 1468 | * within that vector's page. | 1464 | * within that vector's page. |
| 1469 | */ | 1465 | */ |
| 1470 | sector_t bio_sector_offset(struct bio *bio, unsigned short index, | 1466 | sector_t bio_sector_offset(struct bio *bio, unsigned short index, |
| 1471 | unsigned int offset) | 1467 | unsigned int offset) |
| 1472 | { | 1468 | { |
| 1473 | unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue); | 1469 | unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue); |
| 1474 | struct bio_vec *bv; | 1470 | struct bio_vec *bv; |
| 1475 | sector_t sectors; | 1471 | sector_t sectors; |
| 1476 | int i; | 1472 | int i; |
| 1477 | 1473 | ||
| 1478 | sectors = 0; | 1474 | sectors = 0; |
| 1479 | 1475 | ||
| 1480 | if (index >= bio->bi_idx) | 1476 | if (index >= bio->bi_idx) |
| 1481 | index = bio->bi_vcnt - 1; | 1477 | index = bio->bi_vcnt - 1; |
| 1482 | 1478 | ||
| 1483 | __bio_for_each_segment(bv, bio, i, 0) { | 1479 | __bio_for_each_segment(bv, bio, i, 0) { |
| 1484 | if (i == index) { | 1480 | if (i == index) { |
| 1485 | if (offset > bv->bv_offset) | 1481 | if (offset > bv->bv_offset) |
| 1486 | sectors += (offset - bv->bv_offset) / sector_sz; | 1482 | sectors += (offset - bv->bv_offset) / sector_sz; |
| 1487 | break; | 1483 | break; |
| 1488 | } | 1484 | } |
| 1489 | 1485 | ||
| 1490 | sectors += bv->bv_len / sector_sz; | 1486 | sectors += bv->bv_len / sector_sz; |
| 1491 | } | 1487 | } |
| 1492 | 1488 | ||
| 1493 | return sectors; | 1489 | return sectors; |
| 1494 | } | 1490 | } |
| 1495 | EXPORT_SYMBOL(bio_sector_offset); | 1491 | EXPORT_SYMBOL(bio_sector_offset); |
| 1496 | 1492 | ||
| 1497 | /* | 1493 | /* |
| 1498 | * create memory pools for biovec's in a bio_set. | 1494 | * create memory pools for biovec's in a bio_set. |
| 1499 | * use the global biovec slabs created for general use. | 1495 | * use the global biovec slabs created for general use. |
| 1500 | */ | 1496 | */ |
| 1501 | static int biovec_create_pools(struct bio_set *bs, int pool_entries) | 1497 | static int biovec_create_pools(struct bio_set *bs, int pool_entries) |
| 1502 | { | 1498 | { |
| 1503 | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; | 1499 | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; |
| 1504 | 1500 | ||
| 1505 | bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); | 1501 | bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab); |
| 1506 | if (!bs->bvec_pool) | 1502 | if (!bs->bvec_pool) |
| 1507 | return -ENOMEM; | 1503 | return -ENOMEM; |
| 1508 | 1504 | ||
| 1509 | return 0; | 1505 | return 0; |
| 1510 | } | 1506 | } |
| 1511 | 1507 | ||
| 1512 | static void biovec_free_pools(struct bio_set *bs) | 1508 | static void biovec_free_pools(struct bio_set *bs) |
| 1513 | { | 1509 | { |
| 1514 | mempool_destroy(bs->bvec_pool); | 1510 | mempool_destroy(bs->bvec_pool); |
| 1515 | } | 1511 | } |
| 1516 | 1512 | ||
| 1517 | void bioset_free(struct bio_set *bs) | 1513 | void bioset_free(struct bio_set *bs) |
| 1518 | { | 1514 | { |
| 1519 | if (bs->bio_pool) | 1515 | if (bs->bio_pool) |
| 1520 | mempool_destroy(bs->bio_pool); | 1516 | mempool_destroy(bs->bio_pool); |
| 1521 | 1517 | ||
| 1522 | bioset_integrity_free(bs); | 1518 | bioset_integrity_free(bs); |
| 1523 | biovec_free_pools(bs); | 1519 | biovec_free_pools(bs); |
| 1524 | bio_put_slab(bs); | 1520 | bio_put_slab(bs); |
| 1525 | 1521 | ||
| 1526 | kfree(bs); | 1522 | kfree(bs); |
| 1527 | } | 1523 | } |
| 1528 | 1524 | ||
| 1529 | /** | 1525 | /** |
| 1530 | * bioset_create - Create a bio_set | 1526 | * bioset_create - Create a bio_set |
| 1531 | * @pool_size: Number of bio and bio_vecs to cache in the mempool | 1527 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
| 1532 | * @front_pad: Number of bytes to allocate in front of the returned bio | 1528 | * @front_pad: Number of bytes to allocate in front of the returned bio |
| 1533 | * | 1529 | * |
| 1534 | * Description: | 1530 | * Description: |
| 1535 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | 1531 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller |
| 1536 | * to ask for a number of bytes to be allocated in front of the bio. | 1532 | * to ask for a number of bytes to be allocated in front of the bio. |
| 1537 | * Front pad allocation is useful for embedding the bio inside | 1533 | * Front pad allocation is useful for embedding the bio inside |
| 1538 | * another structure, to avoid allocating extra data to go with the bio. | 1534 | * another structure, to avoid allocating extra data to go with the bio. |
| 1539 | * Note that the bio must be embedded at the END of that structure always, | 1535 | * Note that the bio must be embedded at the END of that structure always, |
| 1540 | * or things will break badly. | 1536 | * or things will break badly. |
| 1541 | */ | 1537 | */ |
| 1542 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | 1538 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) |
| 1543 | { | 1539 | { |
| 1544 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | 1540 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); |
| 1545 | struct bio_set *bs; | 1541 | struct bio_set *bs; |
| 1546 | 1542 | ||
| 1547 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); | 1543 | bs = kzalloc(sizeof(*bs), GFP_KERNEL); |
| 1548 | if (!bs) | 1544 | if (!bs) |
| 1549 | return NULL; | 1545 | return NULL; |
| 1550 | 1546 | ||
| 1551 | bs->front_pad = front_pad; | 1547 | bs->front_pad = front_pad; |
| 1552 | 1548 | ||
| 1553 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | 1549 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); |
| 1554 | if (!bs->bio_slab) { | 1550 | if (!bs->bio_slab) { |
| 1555 | kfree(bs); | 1551 | kfree(bs); |
| 1556 | return NULL; | 1552 | return NULL; |
| 1557 | } | 1553 | } |
| 1558 | 1554 | ||
| 1559 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | 1555 | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); |
| 1560 | if (!bs->bio_pool) | 1556 | if (!bs->bio_pool) |
| 1561 | goto bad; | 1557 | goto bad; |
| 1562 | 1558 | ||
| 1563 | if (bioset_integrity_create(bs, pool_size)) | 1559 | if (bioset_integrity_create(bs, pool_size)) |
| 1564 | goto bad; | 1560 | goto bad; |
| 1565 | 1561 | ||
| 1566 | if (!biovec_create_pools(bs, pool_size)) | 1562 | if (!biovec_create_pools(bs, pool_size)) |
| 1567 | return bs; | 1563 | return bs; |
| 1568 | 1564 | ||
| 1569 | bad: | 1565 | bad: |
| 1570 | bioset_free(bs); | 1566 | bioset_free(bs); |
| 1571 | return NULL; | 1567 | return NULL; |
| 1572 | } | 1568 | } |
| 1573 | 1569 | ||
| 1574 | static void __init biovec_init_slabs(void) | 1570 | static void __init biovec_init_slabs(void) |
| 1575 | { | 1571 | { |
| 1576 | int i; | 1572 | int i; |
| 1577 | 1573 | ||
| 1578 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | 1574 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { |
| 1579 | int size; | 1575 | int size; |
| 1580 | struct biovec_slab *bvs = bvec_slabs + i; | 1576 | struct biovec_slab *bvs = bvec_slabs + i; |
| 1581 | 1577 | ||
| 1582 | size = bvs->nr_vecs * sizeof(struct bio_vec); | 1578 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
| 1583 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | 1579 | bvs->slab = kmem_cache_create(bvs->name, size, 0, |
| 1584 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 1580 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
| 1585 | } | 1581 | } |
| 1586 | } | 1582 | } |
| 1587 | 1583 | ||
| 1588 | static int __init init_bio(void) | 1584 | static int __init init_bio(void) |
| 1589 | { | 1585 | { |
| 1590 | bio_slab_max = 2; | 1586 | bio_slab_max = 2; |
| 1591 | bio_slab_nr = 0; | 1587 | bio_slab_nr = 0; |
| 1592 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | 1588 | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); |
| 1593 | if (!bio_slabs) | 1589 | if (!bio_slabs) |
| 1594 | panic("bio: can't allocate bios\n"); | 1590 | panic("bio: can't allocate bios\n"); |
| 1595 | 1591 | ||
| 1596 | bio_integrity_init_slab(); | 1592 | bio_integrity_init_slab(); |
| 1597 | biovec_init_slabs(); | 1593 | biovec_init_slabs(); |
| 1598 | 1594 | ||
| 1599 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); | 1595 | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); |
| 1600 | if (!fs_bio_set) | 1596 | if (!fs_bio_set) |
| 1601 | panic("bio: can't allocate bios\n"); | 1597 | panic("bio: can't allocate bios\n"); |
| 1602 | 1598 | ||
| 1603 | bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, | 1599 | bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, |
| 1604 | sizeof(struct bio_pair)); | 1600 | sizeof(struct bio_pair)); |
| 1605 | if (!bio_split_pool) | 1601 | if (!bio_split_pool) |
| 1606 | panic("bio: can't create split pool\n"); | 1602 | panic("bio: can't create split pool\n"); |
| 1607 | 1603 | ||
| 1608 | return 0; | 1604 | return 0; |
| 1609 | } | 1605 | } |
| 1610 | 1606 | ||
| 1611 | subsys_initcall(init_bio); | 1607 | subsys_initcall(init_bio); |
| 1612 | 1608 | ||
| 1613 | EXPORT_SYMBOL(bio_alloc); | 1609 | EXPORT_SYMBOL(bio_alloc); |
| 1614 | EXPORT_SYMBOL(bio_kmalloc); | 1610 | EXPORT_SYMBOL(bio_kmalloc); |
| 1615 | EXPORT_SYMBOL(bio_put); | 1611 | EXPORT_SYMBOL(bio_put); |
| 1616 | EXPORT_SYMBOL(bio_free); | 1612 | EXPORT_SYMBOL(bio_free); |
| 1617 | EXPORT_SYMBOL(bio_endio); | 1613 | EXPORT_SYMBOL(bio_endio); |
| 1618 | EXPORT_SYMBOL(bio_init); | 1614 | EXPORT_SYMBOL(bio_init); |
| 1619 | EXPORT_SYMBOL(__bio_clone); | 1615 | EXPORT_SYMBOL(__bio_clone); |
| 1620 | EXPORT_SYMBOL(bio_clone); | 1616 | EXPORT_SYMBOL(bio_clone); |
| 1621 | EXPORT_SYMBOL(bio_phys_segments); | 1617 | EXPORT_SYMBOL(bio_phys_segments); |
| 1622 | EXPORT_SYMBOL(bio_add_page); | 1618 | EXPORT_SYMBOL(bio_add_page); |
| 1623 | EXPORT_SYMBOL(bio_add_pc_page); | 1619 | EXPORT_SYMBOL(bio_add_pc_page); |
| 1624 | EXPORT_SYMBOL(bio_get_nr_vecs); | 1620 | EXPORT_SYMBOL(bio_get_nr_vecs); |
| 1625 | EXPORT_SYMBOL(bio_map_user); | 1621 | EXPORT_SYMBOL(bio_map_user); |
| 1626 | EXPORT_SYMBOL(bio_unmap_user); | 1622 | EXPORT_SYMBOL(bio_unmap_user); |
| 1627 | EXPORT_SYMBOL(bio_map_kern); | 1623 | EXPORT_SYMBOL(bio_map_kern); |
| 1628 | EXPORT_SYMBOL(bio_copy_kern); | 1624 | EXPORT_SYMBOL(bio_copy_kern); |
| 1629 | EXPORT_SYMBOL(bio_pair_release); | 1625 | EXPORT_SYMBOL(bio_pair_release); |
| 1630 | EXPORT_SYMBOL(bio_split); | 1626 | EXPORT_SYMBOL(bio_split); |
| 1631 | EXPORT_SYMBOL(bio_copy_user); | 1627 | EXPORT_SYMBOL(bio_copy_user); |
| 1632 | EXPORT_SYMBOL(bio_uncopy_user); | 1628 | EXPORT_SYMBOL(bio_uncopy_user); |
| 1633 | EXPORT_SYMBOL(bioset_create); | 1629 | EXPORT_SYMBOL(bioset_create); |
| 1634 | EXPORT_SYMBOL(bioset_free); | 1630 | EXPORT_SYMBOL(bioset_free); |
| 1635 | EXPORT_SYMBOL(bio_alloc_bioset); | 1631 | EXPORT_SYMBOL(bio_alloc_bioset); |
| 1636 | 1632 |