Commit d55140ce3a7b36241171bd78c75a5ee85de20439

Authored by Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ecryptfs/ecryptfs-2.6

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ecryptfs/ecryptfs-2.6:
  Ecryptfs: Add mount option to check uid of device being mounted = expect uid
  eCryptfs: Fix payload_len unitialized variable warning
  eCryptfs: fix compile error
  eCryptfs: Return error when lower file pointer is NULL

Showing 4 changed files Inline Diff

1 config ECRYPT_FS 1 config ECRYPT_FS
2 tristate "eCrypt filesystem layer support (EXPERIMENTAL)" 2 tristate "eCrypt filesystem layer support (EXPERIMENTAL)"
3 depends on EXPERIMENTAL && KEYS && CRYPTO 3 depends on EXPERIMENTAL && KEYS && CRYPTO && (ENCRYPTED_KEYS || ENCRYPTED_KEYS=n)
4 select CRYPTO_ECB 4 select CRYPTO_ECB
5 select CRYPTO_CBC 5 select CRYPTO_CBC
6 select CRYPTO_MD5 6 select CRYPTO_MD5
7 help 7 help
8 Encrypted filesystem that operates on the VFS layer. See 8 Encrypted filesystem that operates on the VFS layer. See
9 <file:Documentation/filesystems/ecryptfs.txt> to learn more about 9 <file:Documentation/filesystems/ecryptfs.txt> to learn more about
10 eCryptfs. Userspace components are required and can be 10 eCryptfs. Userspace components are required and can be
11 obtained from <http://ecryptfs.sf.net>. 11 obtained from <http://ecryptfs.sf.net>.
12 12
13 To compile this file system support as a module, choose M here: the 13 To compile this file system support as a module, choose M here: the
14 module will be called ecryptfs. 14 module will be called ecryptfs.
15 15
fs/ecryptfs/keystore.c
1 /** 1 /**
2 * eCryptfs: Linux filesystem encryption layer 2 * eCryptfs: Linux filesystem encryption layer
3 * In-kernel key management code. Includes functions to parse and 3 * In-kernel key management code. Includes functions to parse and
4 * write authentication token-related packets with the underlying 4 * write authentication token-related packets with the underlying
5 * file. 5 * file.
6 * 6 *
7 * Copyright (C) 2004-2006 International Business Machines Corp. 7 * Copyright (C) 2004-2006 International Business Machines Corp.
8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 8 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * Trevor S. Highland <trevor.highland@gmail.com> 10 * Trevor S. Highland <trevor.highland@gmail.com>
11 * 11 *
12 * This program is free software; you can redistribute it and/or 12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as 13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the 14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version. 15 * License, or (at your option) any later version.
16 * 16 *
17 * This program is distributed in the hope that it will be useful, but 17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details. 20 * General Public License for more details.
21 * 21 *
22 * You should have received a copy of the GNU General Public License 22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software 23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 24 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25 * 02111-1307, USA. 25 * 02111-1307, USA.
26 */ 26 */
27 27
28 #include <linux/string.h> 28 #include <linux/string.h>
29 #include <linux/syscalls.h> 29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h> 30 #include <linux/pagemap.h>
31 #include <linux/key.h> 31 #include <linux/key.h>
32 #include <linux/random.h> 32 #include <linux/random.h>
33 #include <linux/crypto.h> 33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h> 34 #include <linux/scatterlist.h>
35 #include <linux/slab.h> 35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h" 36 #include "ecryptfs_kernel.h"
37 37
38 /** 38 /**
39 * request_key returned an error instead of a valid key address; 39 * request_key returned an error instead of a valid key address;
40 * determine the type of error, make appropriate log entries, and 40 * determine the type of error, make appropriate log entries, and
41 * return an error code. 41 * return an error code.
42 */ 42 */
43 static int process_request_key_err(long err_code) 43 static int process_request_key_err(long err_code)
44 { 44 {
45 int rc = 0; 45 int rc = 0;
46 46
47 switch (err_code) { 47 switch (err_code) {
48 case -ENOKEY: 48 case -ENOKEY:
49 ecryptfs_printk(KERN_WARNING, "No key\n"); 49 ecryptfs_printk(KERN_WARNING, "No key\n");
50 rc = -ENOENT; 50 rc = -ENOENT;
51 break; 51 break;
52 case -EKEYEXPIRED: 52 case -EKEYEXPIRED:
53 ecryptfs_printk(KERN_WARNING, "Key expired\n"); 53 ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 rc = -ETIME; 54 rc = -ETIME;
55 break; 55 break;
56 case -EKEYREVOKED: 56 case -EKEYREVOKED:
57 ecryptfs_printk(KERN_WARNING, "Key revoked\n"); 57 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 rc = -EINVAL; 58 rc = -EINVAL;
59 break; 59 break;
60 default: 60 default:
61 ecryptfs_printk(KERN_WARNING, "Unknown error code: " 61 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 "[0x%.16lx]\n", err_code); 62 "[0x%.16lx]\n", err_code);
63 rc = -EINVAL; 63 rc = -EINVAL;
64 } 64 }
65 return rc; 65 return rc;
66 } 66 }
67 67
68 static int process_find_global_auth_tok_for_sig_err(int err_code) 68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 { 69 {
70 int rc = err_code; 70 int rc = err_code;
71 71
72 switch (err_code) { 72 switch (err_code) {
73 case -ENOENT: 73 case -ENOENT:
74 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n"); 74 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 break; 75 break;
76 case -EINVAL: 76 case -EINVAL:
77 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n"); 77 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 break; 78 break;
79 default: 79 default:
80 rc = process_request_key_err(err_code); 80 rc = process_request_key_err(err_code);
81 break; 81 break;
82 } 82 }
83 return rc; 83 return rc;
84 } 84 }
85 85
86 /** 86 /**
87 * ecryptfs_parse_packet_length 87 * ecryptfs_parse_packet_length
88 * @data: Pointer to memory containing length at offset 88 * @data: Pointer to memory containing length at offset
89 * @size: This function writes the decoded size to this memory 89 * @size: This function writes the decoded size to this memory
90 * address; zero on error 90 * address; zero on error
91 * @length_size: The number of bytes occupied by the encoded length 91 * @length_size: The number of bytes occupied by the encoded length
92 * 92 *
93 * Returns zero on success; non-zero on error 93 * Returns zero on success; non-zero on error
94 */ 94 */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size, 95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 size_t *length_size) 96 size_t *length_size)
97 { 97 {
98 int rc = 0; 98 int rc = 0;
99 99
100 (*length_size) = 0; 100 (*length_size) = 0;
101 (*size) = 0; 101 (*size) = 0;
102 if (data[0] < 192) { 102 if (data[0] < 192) {
103 /* One-byte length */ 103 /* One-byte length */
104 (*size) = (unsigned char)data[0]; 104 (*size) = (unsigned char)data[0];
105 (*length_size) = 1; 105 (*length_size) = 1;
106 } else if (data[0] < 224) { 106 } else if (data[0] < 224) {
107 /* Two-byte length */ 107 /* Two-byte length */
108 (*size) = (((unsigned char)(data[0]) - 192) * 256); 108 (*size) = (((unsigned char)(data[0]) - 192) * 256);
109 (*size) += ((unsigned char)(data[1]) + 192); 109 (*size) += ((unsigned char)(data[1]) + 192);
110 (*length_size) = 2; 110 (*length_size) = 2;
111 } else if (data[0] == 255) { 111 } else if (data[0] == 255) {
112 /* Five-byte length; we're not supposed to see this */ 112 /* Five-byte length; we're not supposed to see this */
113 ecryptfs_printk(KERN_ERR, "Five-byte packet length not " 113 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 "supported\n"); 114 "supported\n");
115 rc = -EINVAL; 115 rc = -EINVAL;
116 goto out; 116 goto out;
117 } else { 117 } else {
118 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n"); 118 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 rc = -EINVAL; 119 rc = -EINVAL;
120 goto out; 120 goto out;
121 } 121 }
122 out: 122 out:
123 return rc; 123 return rc;
124 } 124 }
125 125
126 /** 126 /**
127 * ecryptfs_write_packet_length 127 * ecryptfs_write_packet_length
128 * @dest: The byte array target into which to write the length. Must 128 * @dest: The byte array target into which to write the length. Must
129 * have at least 5 bytes allocated. 129 * have at least 5 bytes allocated.
130 * @size: The length to write. 130 * @size: The length to write.
131 * @packet_size_length: The number of bytes used to encode the packet 131 * @packet_size_length: The number of bytes used to encode the packet
132 * length is written to this address. 132 * length is written to this address.
133 * 133 *
134 * Returns zero on success; non-zero on error. 134 * Returns zero on success; non-zero on error.
135 */ 135 */
136 int ecryptfs_write_packet_length(char *dest, size_t size, 136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 size_t *packet_size_length) 137 size_t *packet_size_length)
138 { 138 {
139 int rc = 0; 139 int rc = 0;
140 140
141 if (size < 192) { 141 if (size < 192) {
142 dest[0] = size; 142 dest[0] = size;
143 (*packet_size_length) = 1; 143 (*packet_size_length) = 1;
144 } else if (size < 65536) { 144 } else if (size < 65536) {
145 dest[0] = (((size - 192) / 256) + 192); 145 dest[0] = (((size - 192) / 256) + 192);
146 dest[1] = ((size - 192) % 256); 146 dest[1] = ((size - 192) % 256);
147 (*packet_size_length) = 2; 147 (*packet_size_length) = 2;
148 } else { 148 } else {
149 rc = -EINVAL; 149 rc = -EINVAL;
150 ecryptfs_printk(KERN_WARNING, 150 ecryptfs_printk(KERN_WARNING,
151 "Unsupported packet size: [%zd]\n", size); 151 "Unsupported packet size: [%zd]\n", size);
152 } 152 }
153 return rc; 153 return rc;
154 } 154 }
155 155
156 static int 156 static int
157 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key, 157 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
158 char **packet, size_t *packet_len) 158 char **packet, size_t *packet_len)
159 { 159 {
160 size_t i = 0; 160 size_t i = 0;
161 size_t data_len; 161 size_t data_len;
162 size_t packet_size_len; 162 size_t packet_size_len;
163 char *message; 163 char *message;
164 int rc; 164 int rc;
165 165
166 /* 166 /*
167 * ***** TAG 64 Packet Format ***** 167 * ***** TAG 64 Packet Format *****
168 * | Content Type | 1 byte | 168 * | Content Type | 1 byte |
169 * | Key Identifier Size | 1 or 2 bytes | 169 * | Key Identifier Size | 1 or 2 bytes |
170 * | Key Identifier | arbitrary | 170 * | Key Identifier | arbitrary |
171 * | Encrypted File Encryption Key Size | 1 or 2 bytes | 171 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
172 * | Encrypted File Encryption Key | arbitrary | 172 * | Encrypted File Encryption Key | arbitrary |
173 */ 173 */
174 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX 174 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
175 + session_key->encrypted_key_size); 175 + session_key->encrypted_key_size);
176 *packet = kmalloc(data_len, GFP_KERNEL); 176 *packet = kmalloc(data_len, GFP_KERNEL);
177 message = *packet; 177 message = *packet;
178 if (!message) { 178 if (!message) {
179 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); 179 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
180 rc = -ENOMEM; 180 rc = -ENOMEM;
181 goto out; 181 goto out;
182 } 182 }
183 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE; 183 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
184 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, 184 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
185 &packet_size_len); 185 &packet_size_len);
186 if (rc) { 186 if (rc) {
187 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " 187 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
188 "header; cannot generate packet length\n"); 188 "header; cannot generate packet length\n");
189 goto out; 189 goto out;
190 } 190 }
191 i += packet_size_len; 191 i += packet_size_len;
192 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); 192 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
193 i += ECRYPTFS_SIG_SIZE_HEX; 193 i += ECRYPTFS_SIG_SIZE_HEX;
194 rc = ecryptfs_write_packet_length(&message[i], 194 rc = ecryptfs_write_packet_length(&message[i],
195 session_key->encrypted_key_size, 195 session_key->encrypted_key_size,
196 &packet_size_len); 196 &packet_size_len);
197 if (rc) { 197 if (rc) {
198 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " 198 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
199 "header; cannot generate packet length\n"); 199 "header; cannot generate packet length\n");
200 goto out; 200 goto out;
201 } 201 }
202 i += packet_size_len; 202 i += packet_size_len;
203 memcpy(&message[i], session_key->encrypted_key, 203 memcpy(&message[i], session_key->encrypted_key,
204 session_key->encrypted_key_size); 204 session_key->encrypted_key_size);
205 i += session_key->encrypted_key_size; 205 i += session_key->encrypted_key_size;
206 *packet_len = i; 206 *packet_len = i;
207 out: 207 out:
208 return rc; 208 return rc;
209 } 209 }
210 210
211 static int 211 static int
212 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code, 212 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
213 struct ecryptfs_message *msg) 213 struct ecryptfs_message *msg)
214 { 214 {
215 size_t i = 0; 215 size_t i = 0;
216 char *data; 216 char *data;
217 size_t data_len; 217 size_t data_len;
218 size_t m_size; 218 size_t m_size;
219 size_t message_len; 219 size_t message_len;
220 u16 checksum = 0; 220 u16 checksum = 0;
221 u16 expected_checksum = 0; 221 u16 expected_checksum = 0;
222 int rc; 222 int rc;
223 223
224 /* 224 /*
225 * ***** TAG 65 Packet Format ***** 225 * ***** TAG 65 Packet Format *****
226 * | Content Type | 1 byte | 226 * | Content Type | 1 byte |
227 * | Status Indicator | 1 byte | 227 * | Status Indicator | 1 byte |
228 * | File Encryption Key Size | 1 or 2 bytes | 228 * | File Encryption Key Size | 1 or 2 bytes |
229 * | File Encryption Key | arbitrary | 229 * | File Encryption Key | arbitrary |
230 */ 230 */
231 message_len = msg->data_len; 231 message_len = msg->data_len;
232 data = msg->data; 232 data = msg->data;
233 if (message_len < 4) { 233 if (message_len < 4) {
234 rc = -EIO; 234 rc = -EIO;
235 goto out; 235 goto out;
236 } 236 }
237 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) { 237 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
238 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n"); 238 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
239 rc = -EIO; 239 rc = -EIO;
240 goto out; 240 goto out;
241 } 241 }
242 if (data[i++]) { 242 if (data[i++]) {
243 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value " 243 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
244 "[%d]\n", data[i-1]); 244 "[%d]\n", data[i-1]);
245 rc = -EIO; 245 rc = -EIO;
246 goto out; 246 goto out;
247 } 247 }
248 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len); 248 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
249 if (rc) { 249 if (rc) {
250 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " 250 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
251 "rc = [%d]\n", rc); 251 "rc = [%d]\n", rc);
252 goto out; 252 goto out;
253 } 253 }
254 i += data_len; 254 i += data_len;
255 if (message_len < (i + m_size)) { 255 if (message_len < (i + m_size)) {
256 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd " 256 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
257 "is shorter than expected\n"); 257 "is shorter than expected\n");
258 rc = -EIO; 258 rc = -EIO;
259 goto out; 259 goto out;
260 } 260 }
261 if (m_size < 3) { 261 if (m_size < 3) {
262 ecryptfs_printk(KERN_ERR, 262 ecryptfs_printk(KERN_ERR,
263 "The decrypted key is not long enough to " 263 "The decrypted key is not long enough to "
264 "include a cipher code and checksum\n"); 264 "include a cipher code and checksum\n");
265 rc = -EIO; 265 rc = -EIO;
266 goto out; 266 goto out;
267 } 267 }
268 *cipher_code = data[i++]; 268 *cipher_code = data[i++];
269 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */ 269 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
270 session_key->decrypted_key_size = m_size - 3; 270 session_key->decrypted_key_size = m_size - 3;
271 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) { 271 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
272 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than " 272 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
273 "the maximum key size [%d]\n", 273 "the maximum key size [%d]\n",
274 session_key->decrypted_key_size, 274 session_key->decrypted_key_size,
275 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); 275 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
276 rc = -EIO; 276 rc = -EIO;
277 goto out; 277 goto out;
278 } 278 }
279 memcpy(session_key->decrypted_key, &data[i], 279 memcpy(session_key->decrypted_key, &data[i],
280 session_key->decrypted_key_size); 280 session_key->decrypted_key_size);
281 i += session_key->decrypted_key_size; 281 i += session_key->decrypted_key_size;
282 expected_checksum += (unsigned char)(data[i++]) << 8; 282 expected_checksum += (unsigned char)(data[i++]) << 8;
283 expected_checksum += (unsigned char)(data[i++]); 283 expected_checksum += (unsigned char)(data[i++]);
284 for (i = 0; i < session_key->decrypted_key_size; i++) 284 for (i = 0; i < session_key->decrypted_key_size; i++)
285 checksum += session_key->decrypted_key[i]; 285 checksum += session_key->decrypted_key[i];
286 if (expected_checksum != checksum) { 286 if (expected_checksum != checksum) {
287 ecryptfs_printk(KERN_ERR, "Invalid checksum for file " 287 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
288 "encryption key; expected [%x]; calculated " 288 "encryption key; expected [%x]; calculated "
289 "[%x]\n", expected_checksum, checksum); 289 "[%x]\n", expected_checksum, checksum);
290 rc = -EIO; 290 rc = -EIO;
291 } 291 }
292 out: 292 out:
293 return rc; 293 return rc;
294 } 294 }
295 295
296 296
297 static int 297 static int
298 write_tag_66_packet(char *signature, u8 cipher_code, 298 write_tag_66_packet(char *signature, u8 cipher_code,
299 struct ecryptfs_crypt_stat *crypt_stat, char **packet, 299 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
300 size_t *packet_len) 300 size_t *packet_len)
301 { 301 {
302 size_t i = 0; 302 size_t i = 0;
303 size_t j; 303 size_t j;
304 size_t data_len; 304 size_t data_len;
305 size_t checksum = 0; 305 size_t checksum = 0;
306 size_t packet_size_len; 306 size_t packet_size_len;
307 char *message; 307 char *message;
308 int rc; 308 int rc;
309 309
310 /* 310 /*
311 * ***** TAG 66 Packet Format ***** 311 * ***** TAG 66 Packet Format *****
312 * | Content Type | 1 byte | 312 * | Content Type | 1 byte |
313 * | Key Identifier Size | 1 or 2 bytes | 313 * | Key Identifier Size | 1 or 2 bytes |
314 * | Key Identifier | arbitrary | 314 * | Key Identifier | arbitrary |
315 * | File Encryption Key Size | 1 or 2 bytes | 315 * | File Encryption Key Size | 1 or 2 bytes |
316 * | File Encryption Key | arbitrary | 316 * | File Encryption Key | arbitrary |
317 */ 317 */
318 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size); 318 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
319 *packet = kmalloc(data_len, GFP_KERNEL); 319 *packet = kmalloc(data_len, GFP_KERNEL);
320 message = *packet; 320 message = *packet;
321 if (!message) { 321 if (!message) {
322 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); 322 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
323 rc = -ENOMEM; 323 rc = -ENOMEM;
324 goto out; 324 goto out;
325 } 325 }
326 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE; 326 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
327 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, 327 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
328 &packet_size_len); 328 &packet_size_len);
329 if (rc) { 329 if (rc) {
330 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " 330 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331 "header; cannot generate packet length\n"); 331 "header; cannot generate packet length\n");
332 goto out; 332 goto out;
333 } 333 }
334 i += packet_size_len; 334 i += packet_size_len;
335 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); 335 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
336 i += ECRYPTFS_SIG_SIZE_HEX; 336 i += ECRYPTFS_SIG_SIZE_HEX;
337 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */ 337 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
338 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3, 338 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
339 &packet_size_len); 339 &packet_size_len);
340 if (rc) { 340 if (rc) {
341 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " 341 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
342 "header; cannot generate packet length\n"); 342 "header; cannot generate packet length\n");
343 goto out; 343 goto out;
344 } 344 }
345 i += packet_size_len; 345 i += packet_size_len;
346 message[i++] = cipher_code; 346 message[i++] = cipher_code;
347 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size); 347 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
348 i += crypt_stat->key_size; 348 i += crypt_stat->key_size;
349 for (j = 0; j < crypt_stat->key_size; j++) 349 for (j = 0; j < crypt_stat->key_size; j++)
350 checksum += crypt_stat->key[j]; 350 checksum += crypt_stat->key[j];
351 message[i++] = (checksum / 256) % 256; 351 message[i++] = (checksum / 256) % 256;
352 message[i++] = (checksum % 256); 352 message[i++] = (checksum % 256);
353 *packet_len = i; 353 *packet_len = i;
354 out: 354 out:
355 return rc; 355 return rc;
356 } 356 }
357 357
358 static int 358 static int
359 parse_tag_67_packet(struct ecryptfs_key_record *key_rec, 359 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
360 struct ecryptfs_message *msg) 360 struct ecryptfs_message *msg)
361 { 361 {
362 size_t i = 0; 362 size_t i = 0;
363 char *data; 363 char *data;
364 size_t data_len; 364 size_t data_len;
365 size_t message_len; 365 size_t message_len;
366 int rc; 366 int rc;
367 367
368 /* 368 /*
369 * ***** TAG 65 Packet Format ***** 369 * ***** TAG 65 Packet Format *****
370 * | Content Type | 1 byte | 370 * | Content Type | 1 byte |
371 * | Status Indicator | 1 byte | 371 * | Status Indicator | 1 byte |
372 * | Encrypted File Encryption Key Size | 1 or 2 bytes | 372 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
373 * | Encrypted File Encryption Key | arbitrary | 373 * | Encrypted File Encryption Key | arbitrary |
374 */ 374 */
375 message_len = msg->data_len; 375 message_len = msg->data_len;
376 data = msg->data; 376 data = msg->data;
377 /* verify that everything through the encrypted FEK size is present */ 377 /* verify that everything through the encrypted FEK size is present */
378 if (message_len < 4) { 378 if (message_len < 4) {
379 rc = -EIO; 379 rc = -EIO;
380 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable " 380 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
381 "message length is [%d]\n", __func__, message_len, 4); 381 "message length is [%d]\n", __func__, message_len, 4);
382 goto out; 382 goto out;
383 } 383 }
384 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) { 384 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
385 rc = -EIO; 385 rc = -EIO;
386 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n", 386 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
387 __func__); 387 __func__);
388 goto out; 388 goto out;
389 } 389 }
390 if (data[i++]) { 390 if (data[i++]) {
391 rc = -EIO; 391 rc = -EIO;
392 printk(KERN_ERR "%s: Status indicator has non zero " 392 printk(KERN_ERR "%s: Status indicator has non zero "
393 "value [%d]\n", __func__, data[i-1]); 393 "value [%d]\n", __func__, data[i-1]);
394 394
395 goto out; 395 goto out;
396 } 396 }
397 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size, 397 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
398 &data_len); 398 &data_len);
399 if (rc) { 399 if (rc) {
400 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " 400 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
401 "rc = [%d]\n", rc); 401 "rc = [%d]\n", rc);
402 goto out; 402 goto out;
403 } 403 }
404 i += data_len; 404 i += data_len;
405 if (message_len < (i + key_rec->enc_key_size)) { 405 if (message_len < (i + key_rec->enc_key_size)) {
406 rc = -EIO; 406 rc = -EIO;
407 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n", 407 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
408 __func__, message_len, (i + key_rec->enc_key_size)); 408 __func__, message_len, (i + key_rec->enc_key_size));
409 goto out; 409 goto out;
410 } 410 }
411 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 411 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
412 rc = -EIO; 412 rc = -EIO;
413 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than " 413 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
414 "the maximum key size [%d]\n", __func__, 414 "the maximum key size [%d]\n", __func__,
415 key_rec->enc_key_size, 415 key_rec->enc_key_size,
416 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); 416 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
417 goto out; 417 goto out;
418 } 418 }
419 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size); 419 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
420 out: 420 out:
421 return rc; 421 return rc;
422 } 422 }
423 423
424 /** 424 /**
425 * ecryptfs_verify_version 425 * ecryptfs_verify_version
426 * @version: The version number to confirm 426 * @version: The version number to confirm
427 * 427 *
428 * Returns zero on good version; non-zero otherwise 428 * Returns zero on good version; non-zero otherwise
429 */ 429 */
430 static int ecryptfs_verify_version(u16 version) 430 static int ecryptfs_verify_version(u16 version)
431 { 431 {
432 int rc = 0; 432 int rc = 0;
433 unsigned char major; 433 unsigned char major;
434 unsigned char minor; 434 unsigned char minor;
435 435
436 major = ((version >> 8) & 0xFF); 436 major = ((version >> 8) & 0xFF);
437 minor = (version & 0xFF); 437 minor = (version & 0xFF);
438 if (major != ECRYPTFS_VERSION_MAJOR) { 438 if (major != ECRYPTFS_VERSION_MAJOR) {
439 ecryptfs_printk(KERN_ERR, "Major version number mismatch. " 439 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
440 "Expected [%d]; got [%d]\n", 440 "Expected [%d]; got [%d]\n",
441 ECRYPTFS_VERSION_MAJOR, major); 441 ECRYPTFS_VERSION_MAJOR, major);
442 rc = -EINVAL; 442 rc = -EINVAL;
443 goto out; 443 goto out;
444 } 444 }
445 if (minor != ECRYPTFS_VERSION_MINOR) { 445 if (minor != ECRYPTFS_VERSION_MINOR) {
446 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. " 446 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
447 "Expected [%d]; got [%d]\n", 447 "Expected [%d]; got [%d]\n",
448 ECRYPTFS_VERSION_MINOR, minor); 448 ECRYPTFS_VERSION_MINOR, minor);
449 rc = -EINVAL; 449 rc = -EINVAL;
450 goto out; 450 goto out;
451 } 451 }
452 out: 452 out:
453 return rc; 453 return rc;
454 } 454 }
455 455
456 /** 456 /**
457 * ecryptfs_verify_auth_tok_from_key 457 * ecryptfs_verify_auth_tok_from_key
458 * @auth_tok_key: key containing the authentication token 458 * @auth_tok_key: key containing the authentication token
459 * @auth_tok: authentication token 459 * @auth_tok: authentication token
460 * 460 *
461 * Returns zero on valid auth tok; -EINVAL otherwise 461 * Returns zero on valid auth tok; -EINVAL otherwise
462 */ 462 */
463 static int 463 static int
464 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key, 464 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
465 struct ecryptfs_auth_tok **auth_tok) 465 struct ecryptfs_auth_tok **auth_tok)
466 { 466 {
467 int rc = 0; 467 int rc = 0;
468 468
469 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key); 469 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
470 if (ecryptfs_verify_version((*auth_tok)->version)) { 470 if (ecryptfs_verify_version((*auth_tok)->version)) {
471 printk(KERN_ERR "Data structure version mismatch. Userspace " 471 printk(KERN_ERR "Data structure version mismatch. Userspace "
472 "tools must match eCryptfs kernel module with major " 472 "tools must match eCryptfs kernel module with major "
473 "version [%d] and minor version [%d]\n", 473 "version [%d] and minor version [%d]\n",
474 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR); 474 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
475 rc = -EINVAL; 475 rc = -EINVAL;
476 goto out; 476 goto out;
477 } 477 }
478 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD 478 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
479 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) { 479 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
480 printk(KERN_ERR "Invalid auth_tok structure " 480 printk(KERN_ERR "Invalid auth_tok structure "
481 "returned from key query\n"); 481 "returned from key query\n");
482 rc = -EINVAL; 482 rc = -EINVAL;
483 goto out; 483 goto out;
484 } 484 }
485 out: 485 out:
486 return rc; 486 return rc;
487 } 487 }
488 488
489 static int 489 static int
490 ecryptfs_find_global_auth_tok_for_sig( 490 ecryptfs_find_global_auth_tok_for_sig(
491 struct key **auth_tok_key, 491 struct key **auth_tok_key,
492 struct ecryptfs_auth_tok **auth_tok, 492 struct ecryptfs_auth_tok **auth_tok,
493 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig) 493 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
494 { 494 {
495 struct ecryptfs_global_auth_tok *walker; 495 struct ecryptfs_global_auth_tok *walker;
496 int rc = 0; 496 int rc = 0;
497 497
498 (*auth_tok_key) = NULL; 498 (*auth_tok_key) = NULL;
499 (*auth_tok) = NULL; 499 (*auth_tok) = NULL;
500 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 500 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
501 list_for_each_entry(walker, 501 list_for_each_entry(walker,
502 &mount_crypt_stat->global_auth_tok_list, 502 &mount_crypt_stat->global_auth_tok_list,
503 mount_crypt_stat_list) { 503 mount_crypt_stat_list) {
504 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX)) 504 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
505 continue; 505 continue;
506 506
507 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) { 507 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
508 rc = -EINVAL; 508 rc = -EINVAL;
509 goto out; 509 goto out;
510 } 510 }
511 511
512 rc = key_validate(walker->global_auth_tok_key); 512 rc = key_validate(walker->global_auth_tok_key);
513 if (rc) { 513 if (rc) {
514 if (rc == -EKEYEXPIRED) 514 if (rc == -EKEYEXPIRED)
515 goto out; 515 goto out;
516 goto out_invalid_auth_tok; 516 goto out_invalid_auth_tok;
517 } 517 }
518 518
519 down_write(&(walker->global_auth_tok_key->sem)); 519 down_write(&(walker->global_auth_tok_key->sem));
520 rc = ecryptfs_verify_auth_tok_from_key( 520 rc = ecryptfs_verify_auth_tok_from_key(
521 walker->global_auth_tok_key, auth_tok); 521 walker->global_auth_tok_key, auth_tok);
522 if (rc) 522 if (rc)
523 goto out_invalid_auth_tok_unlock; 523 goto out_invalid_auth_tok_unlock;
524 524
525 (*auth_tok_key) = walker->global_auth_tok_key; 525 (*auth_tok_key) = walker->global_auth_tok_key;
526 key_get(*auth_tok_key); 526 key_get(*auth_tok_key);
527 goto out; 527 goto out;
528 } 528 }
529 rc = -ENOENT; 529 rc = -ENOENT;
530 goto out; 530 goto out;
531 out_invalid_auth_tok_unlock: 531 out_invalid_auth_tok_unlock:
532 up_write(&(walker->global_auth_tok_key->sem)); 532 up_write(&(walker->global_auth_tok_key->sem));
533 out_invalid_auth_tok: 533 out_invalid_auth_tok:
534 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig); 534 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
535 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID; 535 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
536 key_put(walker->global_auth_tok_key); 536 key_put(walker->global_auth_tok_key);
537 walker->global_auth_tok_key = NULL; 537 walker->global_auth_tok_key = NULL;
538 out: 538 out:
539 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 539 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
540 return rc; 540 return rc;
541 } 541 }
542 542
543 /** 543 /**
544 * ecryptfs_find_auth_tok_for_sig 544 * ecryptfs_find_auth_tok_for_sig
545 * @auth_tok: Set to the matching auth_tok; NULL if not found 545 * @auth_tok: Set to the matching auth_tok; NULL if not found
546 * @crypt_stat: inode crypt_stat crypto context 546 * @crypt_stat: inode crypt_stat crypto context
547 * @sig: Sig of auth_tok to find 547 * @sig: Sig of auth_tok to find
548 * 548 *
549 * For now, this function simply looks at the registered auth_tok's 549 * For now, this function simply looks at the registered auth_tok's
550 * linked off the mount_crypt_stat, so all the auth_toks that can be 550 * linked off the mount_crypt_stat, so all the auth_toks that can be
551 * used must be registered at mount time. This function could 551 * used must be registered at mount time. This function could
552 * potentially try a lot harder to find auth_tok's (e.g., by calling 552 * potentially try a lot harder to find auth_tok's (e.g., by calling
553 * out to ecryptfsd to dynamically retrieve an auth_tok object) so 553 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
554 * that static registration of auth_tok's will no longer be necessary. 554 * that static registration of auth_tok's will no longer be necessary.
555 * 555 *
556 * Returns zero on no error; non-zero on error 556 * Returns zero on no error; non-zero on error
557 */ 557 */
558 static int 558 static int
559 ecryptfs_find_auth_tok_for_sig( 559 ecryptfs_find_auth_tok_for_sig(
560 struct key **auth_tok_key, 560 struct key **auth_tok_key,
561 struct ecryptfs_auth_tok **auth_tok, 561 struct ecryptfs_auth_tok **auth_tok,
562 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 562 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
563 char *sig) 563 char *sig)
564 { 564 {
565 int rc = 0; 565 int rc = 0;
566 566
567 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok, 567 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
568 mount_crypt_stat, sig); 568 mount_crypt_stat, sig);
569 if (rc == -ENOENT) { 569 if (rc == -ENOENT) {
570 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the 570 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
571 * mount_crypt_stat structure, we prevent to use auth toks that 571 * mount_crypt_stat structure, we prevent to use auth toks that
572 * are not inserted through the ecryptfs_add_global_auth_tok 572 * are not inserted through the ecryptfs_add_global_auth_tok
573 * function. 573 * function.
574 */ 574 */
575 if (mount_crypt_stat->flags 575 if (mount_crypt_stat->flags
576 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY) 576 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
577 return -EINVAL; 577 return -EINVAL;
578 578
579 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok, 579 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 sig); 580 sig);
581 } 581 }
582 return rc; 582 return rc;
583 } 583 }
584 584
585 /** 585 /**
586 * write_tag_70_packet can gobble a lot of stack space. We stuff most 586 * write_tag_70_packet can gobble a lot of stack space. We stuff most
587 * of the function's parameters in a kmalloc'd struct to help reduce 587 * of the function's parameters in a kmalloc'd struct to help reduce
588 * eCryptfs' overall stack usage. 588 * eCryptfs' overall stack usage.
589 */ 589 */
590 struct ecryptfs_write_tag_70_packet_silly_stack { 590 struct ecryptfs_write_tag_70_packet_silly_stack {
591 u8 cipher_code; 591 u8 cipher_code;
592 size_t max_packet_size; 592 size_t max_packet_size;
593 size_t packet_size_len; 593 size_t packet_size_len;
594 size_t block_aligned_filename_size; 594 size_t block_aligned_filename_size;
595 size_t block_size; 595 size_t block_size;
596 size_t i; 596 size_t i;
597 size_t j; 597 size_t j;
598 size_t num_rand_bytes; 598 size_t num_rand_bytes;
599 struct mutex *tfm_mutex; 599 struct mutex *tfm_mutex;
600 char *block_aligned_filename; 600 char *block_aligned_filename;
601 struct ecryptfs_auth_tok *auth_tok; 601 struct ecryptfs_auth_tok *auth_tok;
602 struct scatterlist src_sg[2]; 602 struct scatterlist src_sg[2];
603 struct scatterlist dst_sg[2]; 603 struct scatterlist dst_sg[2];
604 struct blkcipher_desc desc; 604 struct blkcipher_desc desc;
605 char iv[ECRYPTFS_MAX_IV_BYTES]; 605 char iv[ECRYPTFS_MAX_IV_BYTES];
606 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE]; 606 char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
607 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE]; 607 char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 struct hash_desc hash_desc; 608 struct hash_desc hash_desc;
609 struct scatterlist hash_sg; 609 struct scatterlist hash_sg;
610 }; 610 };
611 611
612 /** 612 /**
613 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK 613 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
614 * @filename: NULL-terminated filename string 614 * @filename: NULL-terminated filename string
615 * 615 *
616 * This is the simplest mechanism for achieving filename encryption in 616 * This is the simplest mechanism for achieving filename encryption in
617 * eCryptfs. It encrypts the given filename with the mount-wide 617 * eCryptfs. It encrypts the given filename with the mount-wide
618 * filename encryption key (FNEK) and stores it in a packet to @dest, 618 * filename encryption key (FNEK) and stores it in a packet to @dest,
619 * which the callee will encode and write directly into the dentry 619 * which the callee will encode and write directly into the dentry
620 * name. 620 * name.
621 */ 621 */
622 int 622 int
623 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes, 623 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
624 size_t *packet_size, 624 size_t *packet_size,
625 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 625 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
626 char *filename, size_t filename_size) 626 char *filename, size_t filename_size)
627 { 627 {
628 struct ecryptfs_write_tag_70_packet_silly_stack *s; 628 struct ecryptfs_write_tag_70_packet_silly_stack *s;
629 struct key *auth_tok_key = NULL; 629 struct key *auth_tok_key = NULL;
630 int rc = 0; 630 int rc = 0;
631 631
632 s = kmalloc(sizeof(*s), GFP_KERNEL); 632 s = kmalloc(sizeof(*s), GFP_KERNEL);
633 if (!s) { 633 if (!s) {
634 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc " 634 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
635 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s)); 635 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
636 rc = -ENOMEM; 636 rc = -ENOMEM;
637 goto out; 637 goto out;
638 } 638 }
639 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 639 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
640 (*packet_size) = 0; 640 (*packet_size) = 0;
641 rc = ecryptfs_find_auth_tok_for_sig( 641 rc = ecryptfs_find_auth_tok_for_sig(
642 &auth_tok_key, 642 &auth_tok_key,
643 &s->auth_tok, mount_crypt_stat, 643 &s->auth_tok, mount_crypt_stat,
644 mount_crypt_stat->global_default_fnek_sig); 644 mount_crypt_stat->global_default_fnek_sig);
645 if (rc) { 645 if (rc) {
646 printk(KERN_ERR "%s: Error attempting to find auth tok for " 646 printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 "fnek sig [%s]; rc = [%d]\n", __func__, 647 "fnek sig [%s]; rc = [%d]\n", __func__,
648 mount_crypt_stat->global_default_fnek_sig, rc); 648 mount_crypt_stat->global_default_fnek_sig, rc);
649 goto out; 649 goto out;
650 } 650 }
651 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name( 651 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 &s->desc.tfm, 652 &s->desc.tfm,
653 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name); 653 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 if (unlikely(rc)) { 654 if (unlikely(rc)) {
655 printk(KERN_ERR "Internal error whilst attempting to get " 655 printk(KERN_ERR "Internal error whilst attempting to get "
656 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 656 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 mount_crypt_stat->global_default_fn_cipher_name, rc); 657 mount_crypt_stat->global_default_fn_cipher_name, rc);
658 goto out; 658 goto out;
659 } 659 }
660 mutex_lock(s->tfm_mutex); 660 mutex_lock(s->tfm_mutex);
661 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm); 661 s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
662 /* Plus one for the \0 separator between the random prefix 662 /* Plus one for the \0 separator between the random prefix
663 * and the plaintext filename */ 663 * and the plaintext filename */
664 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1); 664 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size); 665 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 if ((s->block_aligned_filename_size % s->block_size) != 0) { 666 if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 s->num_rand_bytes += (s->block_size 667 s->num_rand_bytes += (s->block_size
668 - (s->block_aligned_filename_size 668 - (s->block_aligned_filename_size
669 % s->block_size)); 669 % s->block_size));
670 s->block_aligned_filename_size = (s->num_rand_bytes 670 s->block_aligned_filename_size = (s->num_rand_bytes
671 + filename_size); 671 + filename_size);
672 } 672 }
673 /* Octet 0: Tag 70 identifier 673 /* Octet 0: Tag 70 identifier
674 * Octets 1-N1: Tag 70 packet size (includes cipher identifier 674 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 * and block-aligned encrypted filename size) 675 * and block-aligned encrypted filename size)
676 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE) 676 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 * Octet N2-N3: Cipher identifier (1 octet) 677 * Octet N2-N3: Cipher identifier (1 octet)
678 * Octets N3-N4: Block-aligned encrypted filename 678 * Octets N3-N4: Block-aligned encrypted filename
679 * - Consists of a minimum number of random characters, a \0 679 * - Consists of a minimum number of random characters, a \0
680 * separator, and then the filename */ 680 * separator, and then the filename */
681 s->max_packet_size = (1 /* Tag 70 identifier */ 681 s->max_packet_size = (1 /* Tag 70 identifier */
682 + 3 /* Max Tag 70 packet size */ 682 + 3 /* Max Tag 70 packet size */
683 + ECRYPTFS_SIG_SIZE /* FNEK sig */ 683 + ECRYPTFS_SIG_SIZE /* FNEK sig */
684 + 1 /* Cipher identifier */ 684 + 1 /* Cipher identifier */
685 + s->block_aligned_filename_size); 685 + s->block_aligned_filename_size);
686 if (dest == NULL) { 686 if (dest == NULL) {
687 (*packet_size) = s->max_packet_size; 687 (*packet_size) = s->max_packet_size;
688 goto out_unlock; 688 goto out_unlock;
689 } 689 }
690 if (s->max_packet_size > (*remaining_bytes)) { 690 if (s->max_packet_size > (*remaining_bytes)) {
691 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only " 691 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
692 "[%zd] available\n", __func__, s->max_packet_size, 692 "[%zd] available\n", __func__, s->max_packet_size,
693 (*remaining_bytes)); 693 (*remaining_bytes));
694 rc = -EINVAL; 694 rc = -EINVAL;
695 goto out_unlock; 695 goto out_unlock;
696 } 696 }
697 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size, 697 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 GFP_KERNEL); 698 GFP_KERNEL);
699 if (!s->block_aligned_filename) { 699 if (!s->block_aligned_filename) {
700 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to " 700 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
701 "kzalloc [%zd] bytes\n", __func__, 701 "kzalloc [%zd] bytes\n", __func__,
702 s->block_aligned_filename_size); 702 s->block_aligned_filename_size);
703 rc = -ENOMEM; 703 rc = -ENOMEM;
704 goto out_unlock; 704 goto out_unlock;
705 } 705 }
706 s->i = 0; 706 s->i = 0;
707 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE; 707 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
708 rc = ecryptfs_write_packet_length(&dest[s->i], 708 rc = ecryptfs_write_packet_length(&dest[s->i],
709 (ECRYPTFS_SIG_SIZE 709 (ECRYPTFS_SIG_SIZE
710 + 1 /* Cipher code */ 710 + 1 /* Cipher code */
711 + s->block_aligned_filename_size), 711 + s->block_aligned_filename_size),
712 &s->packet_size_len); 712 &s->packet_size_len);
713 if (rc) { 713 if (rc) {
714 printk(KERN_ERR "%s: Error generating tag 70 packet " 714 printk(KERN_ERR "%s: Error generating tag 70 packet "
715 "header; cannot generate packet length; rc = [%d]\n", 715 "header; cannot generate packet length; rc = [%d]\n",
716 __func__, rc); 716 __func__, rc);
717 goto out_free_unlock; 717 goto out_free_unlock;
718 } 718 }
719 s->i += s->packet_size_len; 719 s->i += s->packet_size_len;
720 ecryptfs_from_hex(&dest[s->i], 720 ecryptfs_from_hex(&dest[s->i],
721 mount_crypt_stat->global_default_fnek_sig, 721 mount_crypt_stat->global_default_fnek_sig,
722 ECRYPTFS_SIG_SIZE); 722 ECRYPTFS_SIG_SIZE);
723 s->i += ECRYPTFS_SIG_SIZE; 723 s->i += ECRYPTFS_SIG_SIZE;
724 s->cipher_code = ecryptfs_code_for_cipher_string( 724 s->cipher_code = ecryptfs_code_for_cipher_string(
725 mount_crypt_stat->global_default_fn_cipher_name, 725 mount_crypt_stat->global_default_fn_cipher_name,
726 mount_crypt_stat->global_default_fn_cipher_key_bytes); 726 mount_crypt_stat->global_default_fn_cipher_key_bytes);
727 if (s->cipher_code == 0) { 727 if (s->cipher_code == 0) {
728 printk(KERN_WARNING "%s: Unable to generate code for " 728 printk(KERN_WARNING "%s: Unable to generate code for "
729 "cipher [%s] with key bytes [%zd]\n", __func__, 729 "cipher [%s] with key bytes [%zd]\n", __func__,
730 mount_crypt_stat->global_default_fn_cipher_name, 730 mount_crypt_stat->global_default_fn_cipher_name,
731 mount_crypt_stat->global_default_fn_cipher_key_bytes); 731 mount_crypt_stat->global_default_fn_cipher_key_bytes);
732 rc = -EINVAL; 732 rc = -EINVAL;
733 goto out_free_unlock; 733 goto out_free_unlock;
734 } 734 }
735 dest[s->i++] = s->cipher_code; 735 dest[s->i++] = s->cipher_code;
736 /* TODO: Support other key modules than passphrase for 736 /* TODO: Support other key modules than passphrase for
737 * filename encryption */ 737 * filename encryption */
738 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) { 738 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
739 rc = -EOPNOTSUPP; 739 rc = -EOPNOTSUPP;
740 printk(KERN_INFO "%s: Filename encryption only supports " 740 printk(KERN_INFO "%s: Filename encryption only supports "
741 "password tokens\n", __func__); 741 "password tokens\n", __func__);
742 goto out_free_unlock; 742 goto out_free_unlock;
743 } 743 }
744 sg_init_one( 744 sg_init_one(
745 &s->hash_sg, 745 &s->hash_sg,
746 (u8 *)s->auth_tok->token.password.session_key_encryption_key, 746 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
747 s->auth_tok->token.password.session_key_encryption_key_bytes); 747 s->auth_tok->token.password.session_key_encryption_key_bytes);
748 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 748 s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
749 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0, 749 s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
750 CRYPTO_ALG_ASYNC); 750 CRYPTO_ALG_ASYNC);
751 if (IS_ERR(s->hash_desc.tfm)) { 751 if (IS_ERR(s->hash_desc.tfm)) {
752 rc = PTR_ERR(s->hash_desc.tfm); 752 rc = PTR_ERR(s->hash_desc.tfm);
753 printk(KERN_ERR "%s: Error attempting to " 753 printk(KERN_ERR "%s: Error attempting to "
754 "allocate hash crypto context; rc = [%d]\n", 754 "allocate hash crypto context; rc = [%d]\n",
755 __func__, rc); 755 __func__, rc);
756 goto out_free_unlock; 756 goto out_free_unlock;
757 } 757 }
758 rc = crypto_hash_init(&s->hash_desc); 758 rc = crypto_hash_init(&s->hash_desc);
759 if (rc) { 759 if (rc) {
760 printk(KERN_ERR 760 printk(KERN_ERR
761 "%s: Error initializing crypto hash; rc = [%d]\n", 761 "%s: Error initializing crypto hash; rc = [%d]\n",
762 __func__, rc); 762 __func__, rc);
763 goto out_release_free_unlock; 763 goto out_release_free_unlock;
764 } 764 }
765 rc = crypto_hash_update( 765 rc = crypto_hash_update(
766 &s->hash_desc, &s->hash_sg, 766 &s->hash_desc, &s->hash_sg,
767 s->auth_tok->token.password.session_key_encryption_key_bytes); 767 s->auth_tok->token.password.session_key_encryption_key_bytes);
768 if (rc) { 768 if (rc) {
769 printk(KERN_ERR 769 printk(KERN_ERR
770 "%s: Error updating crypto hash; rc = [%d]\n", 770 "%s: Error updating crypto hash; rc = [%d]\n",
771 __func__, rc); 771 __func__, rc);
772 goto out_release_free_unlock; 772 goto out_release_free_unlock;
773 } 773 }
774 rc = crypto_hash_final(&s->hash_desc, s->hash); 774 rc = crypto_hash_final(&s->hash_desc, s->hash);
775 if (rc) { 775 if (rc) {
776 printk(KERN_ERR 776 printk(KERN_ERR
777 "%s: Error finalizing crypto hash; rc = [%d]\n", 777 "%s: Error finalizing crypto hash; rc = [%d]\n",
778 __func__, rc); 778 __func__, rc);
779 goto out_release_free_unlock; 779 goto out_release_free_unlock;
780 } 780 }
781 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) { 781 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
782 s->block_aligned_filename[s->j] = 782 s->block_aligned_filename[s->j] =
783 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)]; 783 s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
784 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE) 784 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
785 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) { 785 == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
786 sg_init_one(&s->hash_sg, (u8 *)s->hash, 786 sg_init_one(&s->hash_sg, (u8 *)s->hash,
787 ECRYPTFS_TAG_70_DIGEST_SIZE); 787 ECRYPTFS_TAG_70_DIGEST_SIZE);
788 rc = crypto_hash_init(&s->hash_desc); 788 rc = crypto_hash_init(&s->hash_desc);
789 if (rc) { 789 if (rc) {
790 printk(KERN_ERR 790 printk(KERN_ERR
791 "%s: Error initializing crypto hash; " 791 "%s: Error initializing crypto hash; "
792 "rc = [%d]\n", __func__, rc); 792 "rc = [%d]\n", __func__, rc);
793 goto out_release_free_unlock; 793 goto out_release_free_unlock;
794 } 794 }
795 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg, 795 rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
796 ECRYPTFS_TAG_70_DIGEST_SIZE); 796 ECRYPTFS_TAG_70_DIGEST_SIZE);
797 if (rc) { 797 if (rc) {
798 printk(KERN_ERR 798 printk(KERN_ERR
799 "%s: Error updating crypto hash; " 799 "%s: Error updating crypto hash; "
800 "rc = [%d]\n", __func__, rc); 800 "rc = [%d]\n", __func__, rc);
801 goto out_release_free_unlock; 801 goto out_release_free_unlock;
802 } 802 }
803 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash); 803 rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
804 if (rc) { 804 if (rc) {
805 printk(KERN_ERR 805 printk(KERN_ERR
806 "%s: Error finalizing crypto hash; " 806 "%s: Error finalizing crypto hash; "
807 "rc = [%d]\n", __func__, rc); 807 "rc = [%d]\n", __func__, rc);
808 goto out_release_free_unlock; 808 goto out_release_free_unlock;
809 } 809 }
810 memcpy(s->hash, s->tmp_hash, 810 memcpy(s->hash, s->tmp_hash,
811 ECRYPTFS_TAG_70_DIGEST_SIZE); 811 ECRYPTFS_TAG_70_DIGEST_SIZE);
812 } 812 }
813 if (s->block_aligned_filename[s->j] == '\0') 813 if (s->block_aligned_filename[s->j] == '\0')
814 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL; 814 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
815 } 815 }
816 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename, 816 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
817 filename_size); 817 filename_size);
818 rc = virt_to_scatterlist(s->block_aligned_filename, 818 rc = virt_to_scatterlist(s->block_aligned_filename,
819 s->block_aligned_filename_size, s->src_sg, 2); 819 s->block_aligned_filename_size, s->src_sg, 2);
820 if (rc < 1) { 820 if (rc < 1) {
821 printk(KERN_ERR "%s: Internal error whilst attempting to " 821 printk(KERN_ERR "%s: Internal error whilst attempting to "
822 "convert filename memory to scatterlist; rc = [%d]. " 822 "convert filename memory to scatterlist; rc = [%d]. "
823 "block_aligned_filename_size = [%zd]\n", __func__, rc, 823 "block_aligned_filename_size = [%zd]\n", __func__, rc,
824 s->block_aligned_filename_size); 824 s->block_aligned_filename_size);
825 goto out_release_free_unlock; 825 goto out_release_free_unlock;
826 } 826 }
827 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size, 827 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
828 s->dst_sg, 2); 828 s->dst_sg, 2);
829 if (rc < 1) { 829 if (rc < 1) {
830 printk(KERN_ERR "%s: Internal error whilst attempting to " 830 printk(KERN_ERR "%s: Internal error whilst attempting to "
831 "convert encrypted filename memory to scatterlist; " 831 "convert encrypted filename memory to scatterlist; "
832 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 832 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
833 __func__, rc, s->block_aligned_filename_size); 833 __func__, rc, s->block_aligned_filename_size);
834 goto out_release_free_unlock; 834 goto out_release_free_unlock;
835 } 835 }
836 /* The characters in the first block effectively do the job 836 /* The characters in the first block effectively do the job
837 * of the IV here, so we just use 0's for the IV. Note the 837 * of the IV here, so we just use 0's for the IV. Note the
838 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES 838 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
839 * >= ECRYPTFS_MAX_IV_BYTES. */ 839 * >= ECRYPTFS_MAX_IV_BYTES. */
840 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES); 840 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
841 s->desc.info = s->iv; 841 s->desc.info = s->iv;
842 rc = crypto_blkcipher_setkey( 842 rc = crypto_blkcipher_setkey(
843 s->desc.tfm, 843 s->desc.tfm,
844 s->auth_tok->token.password.session_key_encryption_key, 844 s->auth_tok->token.password.session_key_encryption_key,
845 mount_crypt_stat->global_default_fn_cipher_key_bytes); 845 mount_crypt_stat->global_default_fn_cipher_key_bytes);
846 if (rc < 0) { 846 if (rc < 0) {
847 printk(KERN_ERR "%s: Error setting key for crypto context; " 847 printk(KERN_ERR "%s: Error setting key for crypto context; "
848 "rc = [%d]. s->auth_tok->token.password.session_key_" 848 "rc = [%d]. s->auth_tok->token.password.session_key_"
849 "encryption_key = [0x%p]; mount_crypt_stat->" 849 "encryption_key = [0x%p]; mount_crypt_stat->"
850 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__, 850 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
851 rc, 851 rc,
852 s->auth_tok->token.password.session_key_encryption_key, 852 s->auth_tok->token.password.session_key_encryption_key,
853 mount_crypt_stat->global_default_fn_cipher_key_bytes); 853 mount_crypt_stat->global_default_fn_cipher_key_bytes);
854 goto out_release_free_unlock; 854 goto out_release_free_unlock;
855 } 855 }
856 rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg, 856 rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
857 s->block_aligned_filename_size); 857 s->block_aligned_filename_size);
858 if (rc) { 858 if (rc) {
859 printk(KERN_ERR "%s: Error attempting to encrypt filename; " 859 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
860 "rc = [%d]\n", __func__, rc); 860 "rc = [%d]\n", __func__, rc);
861 goto out_release_free_unlock; 861 goto out_release_free_unlock;
862 } 862 }
863 s->i += s->block_aligned_filename_size; 863 s->i += s->block_aligned_filename_size;
864 (*packet_size) = s->i; 864 (*packet_size) = s->i;
865 (*remaining_bytes) -= (*packet_size); 865 (*remaining_bytes) -= (*packet_size);
866 out_release_free_unlock: 866 out_release_free_unlock:
867 crypto_free_hash(s->hash_desc.tfm); 867 crypto_free_hash(s->hash_desc.tfm);
868 out_free_unlock: 868 out_free_unlock:
869 kzfree(s->block_aligned_filename); 869 kzfree(s->block_aligned_filename);
870 out_unlock: 870 out_unlock:
871 mutex_unlock(s->tfm_mutex); 871 mutex_unlock(s->tfm_mutex);
872 out: 872 out:
873 if (auth_tok_key) { 873 if (auth_tok_key) {
874 up_write(&(auth_tok_key->sem)); 874 up_write(&(auth_tok_key->sem));
875 key_put(auth_tok_key); 875 key_put(auth_tok_key);
876 } 876 }
877 kfree(s); 877 kfree(s);
878 return rc; 878 return rc;
879 } 879 }
880 880
881 struct ecryptfs_parse_tag_70_packet_silly_stack { 881 struct ecryptfs_parse_tag_70_packet_silly_stack {
882 u8 cipher_code; 882 u8 cipher_code;
883 size_t max_packet_size; 883 size_t max_packet_size;
884 size_t packet_size_len; 884 size_t packet_size_len;
885 size_t parsed_tag_70_packet_size; 885 size_t parsed_tag_70_packet_size;
886 size_t block_aligned_filename_size; 886 size_t block_aligned_filename_size;
887 size_t block_size; 887 size_t block_size;
888 size_t i; 888 size_t i;
889 struct mutex *tfm_mutex; 889 struct mutex *tfm_mutex;
890 char *decrypted_filename; 890 char *decrypted_filename;
891 struct ecryptfs_auth_tok *auth_tok; 891 struct ecryptfs_auth_tok *auth_tok;
892 struct scatterlist src_sg[2]; 892 struct scatterlist src_sg[2];
893 struct scatterlist dst_sg[2]; 893 struct scatterlist dst_sg[2];
894 struct blkcipher_desc desc; 894 struct blkcipher_desc desc;
895 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1]; 895 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
896 char iv[ECRYPTFS_MAX_IV_BYTES]; 896 char iv[ECRYPTFS_MAX_IV_BYTES];
897 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE]; 897 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
898 }; 898 };
899 899
900 /** 900 /**
901 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet 901 * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
902 * @filename: This function kmalloc's the memory for the filename 902 * @filename: This function kmalloc's the memory for the filename
903 * @filename_size: This function sets this to the amount of memory 903 * @filename_size: This function sets this to the amount of memory
904 * kmalloc'd for the filename 904 * kmalloc'd for the filename
905 * @packet_size: This function sets this to the the number of octets 905 * @packet_size: This function sets this to the the number of octets
906 * in the packet parsed 906 * in the packet parsed
907 * @mount_crypt_stat: The mount-wide cryptographic context 907 * @mount_crypt_stat: The mount-wide cryptographic context
908 * @data: The memory location containing the start of the tag 70 908 * @data: The memory location containing the start of the tag 70
909 * packet 909 * packet
910 * @max_packet_size: The maximum legal size of the packet to be parsed 910 * @max_packet_size: The maximum legal size of the packet to be parsed
911 * from @data 911 * from @data
912 * 912 *
913 * Returns zero on success; non-zero otherwise 913 * Returns zero on success; non-zero otherwise
914 */ 914 */
915 int 915 int
916 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size, 916 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
917 size_t *packet_size, 917 size_t *packet_size,
918 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 918 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
919 char *data, size_t max_packet_size) 919 char *data, size_t max_packet_size)
920 { 920 {
921 struct ecryptfs_parse_tag_70_packet_silly_stack *s; 921 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
922 struct key *auth_tok_key = NULL; 922 struct key *auth_tok_key = NULL;
923 int rc = 0; 923 int rc = 0;
924 924
925 (*packet_size) = 0; 925 (*packet_size) = 0;
926 (*filename_size) = 0; 926 (*filename_size) = 0;
927 (*filename) = NULL; 927 (*filename) = NULL;
928 s = kmalloc(sizeof(*s), GFP_KERNEL); 928 s = kmalloc(sizeof(*s), GFP_KERNEL);
929 if (!s) { 929 if (!s) {
930 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc " 930 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
931 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s)); 931 "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
932 rc = -ENOMEM; 932 rc = -ENOMEM;
933 goto out; 933 goto out;
934 } 934 }
935 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; 935 s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
936 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) { 936 if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
937 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be " 937 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
938 "at least [%d]\n", __func__, max_packet_size, 938 "at least [%d]\n", __func__, max_packet_size,
939 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)); 939 (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
940 rc = -EINVAL; 940 rc = -EINVAL;
941 goto out; 941 goto out;
942 } 942 }
943 /* Octet 0: Tag 70 identifier 943 /* Octet 0: Tag 70 identifier
944 * Octets 1-N1: Tag 70 packet size (includes cipher identifier 944 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
945 * and block-aligned encrypted filename size) 945 * and block-aligned encrypted filename size)
946 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE) 946 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
947 * Octet N2-N3: Cipher identifier (1 octet) 947 * Octet N2-N3: Cipher identifier (1 octet)
948 * Octets N3-N4: Block-aligned encrypted filename 948 * Octets N3-N4: Block-aligned encrypted filename
949 * - Consists of a minimum number of random numbers, a \0 949 * - Consists of a minimum number of random numbers, a \0
950 * separator, and then the filename */ 950 * separator, and then the filename */
951 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) { 951 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
952 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be " 952 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
953 "tag [0x%.2x]\n", __func__, 953 "tag [0x%.2x]\n", __func__,
954 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE); 954 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
955 rc = -EINVAL; 955 rc = -EINVAL;
956 goto out; 956 goto out;
957 } 957 }
958 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], 958 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
959 &s->parsed_tag_70_packet_size, 959 &s->parsed_tag_70_packet_size,
960 &s->packet_size_len); 960 &s->packet_size_len);
961 if (rc) { 961 if (rc) {
962 printk(KERN_WARNING "%s: Error parsing packet length; " 962 printk(KERN_WARNING "%s: Error parsing packet length; "
963 "rc = [%d]\n", __func__, rc); 963 "rc = [%d]\n", __func__, rc);
964 goto out; 964 goto out;
965 } 965 }
966 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size 966 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
967 - ECRYPTFS_SIG_SIZE - 1); 967 - ECRYPTFS_SIG_SIZE - 1);
968 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size) 968 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
969 > max_packet_size) { 969 > max_packet_size) {
970 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet " 970 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
971 "size is [%zd]\n", __func__, max_packet_size, 971 "size is [%zd]\n", __func__, max_packet_size,
972 (1 + s->packet_size_len + 1 972 (1 + s->packet_size_len + 1
973 + s->block_aligned_filename_size)); 973 + s->block_aligned_filename_size));
974 rc = -EINVAL; 974 rc = -EINVAL;
975 goto out; 975 goto out;
976 } 976 }
977 (*packet_size) += s->packet_size_len; 977 (*packet_size) += s->packet_size_len;
978 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)], 978 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
979 ECRYPTFS_SIG_SIZE); 979 ECRYPTFS_SIG_SIZE);
980 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 980 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
981 (*packet_size) += ECRYPTFS_SIG_SIZE; 981 (*packet_size) += ECRYPTFS_SIG_SIZE;
982 s->cipher_code = data[(*packet_size)++]; 982 s->cipher_code = data[(*packet_size)++];
983 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code); 983 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
984 if (rc) { 984 if (rc) {
985 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n", 985 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
986 __func__, s->cipher_code); 986 __func__, s->cipher_code);
987 goto out; 987 goto out;
988 } 988 }
989 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key, 989 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
990 &s->auth_tok, mount_crypt_stat, 990 &s->auth_tok, mount_crypt_stat,
991 s->fnek_sig_hex); 991 s->fnek_sig_hex);
992 if (rc) { 992 if (rc) {
993 printk(KERN_ERR "%s: Error attempting to find auth tok for " 993 printk(KERN_ERR "%s: Error attempting to find auth tok for "
994 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex, 994 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
995 rc); 995 rc);
996 goto out; 996 goto out;
997 } 997 }
998 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm, 998 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
999 &s->tfm_mutex, 999 &s->tfm_mutex,
1000 s->cipher_string); 1000 s->cipher_string);
1001 if (unlikely(rc)) { 1001 if (unlikely(rc)) {
1002 printk(KERN_ERR "Internal error whilst attempting to get " 1002 printk(KERN_ERR "Internal error whilst attempting to get "
1003 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 1003 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1004 s->cipher_string, rc); 1004 s->cipher_string, rc);
1005 goto out; 1005 goto out;
1006 } 1006 }
1007 mutex_lock(s->tfm_mutex); 1007 mutex_lock(s->tfm_mutex);
1008 rc = virt_to_scatterlist(&data[(*packet_size)], 1008 rc = virt_to_scatterlist(&data[(*packet_size)],
1009 s->block_aligned_filename_size, s->src_sg, 2); 1009 s->block_aligned_filename_size, s->src_sg, 2);
1010 if (rc < 1) { 1010 if (rc < 1) {
1011 printk(KERN_ERR "%s: Internal error whilst attempting to " 1011 printk(KERN_ERR "%s: Internal error whilst attempting to "
1012 "convert encrypted filename memory to scatterlist; " 1012 "convert encrypted filename memory to scatterlist; "
1013 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 1013 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1014 __func__, rc, s->block_aligned_filename_size); 1014 __func__, rc, s->block_aligned_filename_size);
1015 goto out_unlock; 1015 goto out_unlock;
1016 } 1016 }
1017 (*packet_size) += s->block_aligned_filename_size; 1017 (*packet_size) += s->block_aligned_filename_size;
1018 s->decrypted_filename = kmalloc(s->block_aligned_filename_size, 1018 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1019 GFP_KERNEL); 1019 GFP_KERNEL);
1020 if (!s->decrypted_filename) { 1020 if (!s->decrypted_filename) {
1021 printk(KERN_ERR "%s: Out of memory whilst attempting to " 1021 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1022 "kmalloc [%zd] bytes\n", __func__, 1022 "kmalloc [%zd] bytes\n", __func__,
1023 s->block_aligned_filename_size); 1023 s->block_aligned_filename_size);
1024 rc = -ENOMEM; 1024 rc = -ENOMEM;
1025 goto out_unlock; 1025 goto out_unlock;
1026 } 1026 }
1027 rc = virt_to_scatterlist(s->decrypted_filename, 1027 rc = virt_to_scatterlist(s->decrypted_filename,
1028 s->block_aligned_filename_size, s->dst_sg, 2); 1028 s->block_aligned_filename_size, s->dst_sg, 2);
1029 if (rc < 1) { 1029 if (rc < 1) {
1030 printk(KERN_ERR "%s: Internal error whilst attempting to " 1030 printk(KERN_ERR "%s: Internal error whilst attempting to "
1031 "convert decrypted filename memory to scatterlist; " 1031 "convert decrypted filename memory to scatterlist; "
1032 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 1032 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1033 __func__, rc, s->block_aligned_filename_size); 1033 __func__, rc, s->block_aligned_filename_size);
1034 goto out_free_unlock; 1034 goto out_free_unlock;
1035 } 1035 }
1036 /* The characters in the first block effectively do the job of 1036 /* The characters in the first block effectively do the job of
1037 * the IV here, so we just use 0's for the IV. Note the 1037 * the IV here, so we just use 0's for the IV. Note the
1038 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES 1038 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1039 * >= ECRYPTFS_MAX_IV_BYTES. */ 1039 * >= ECRYPTFS_MAX_IV_BYTES. */
1040 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES); 1040 memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1041 s->desc.info = s->iv; 1041 s->desc.info = s->iv;
1042 /* TODO: Support other key modules than passphrase for 1042 /* TODO: Support other key modules than passphrase for
1043 * filename encryption */ 1043 * filename encryption */
1044 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) { 1044 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1045 rc = -EOPNOTSUPP; 1045 rc = -EOPNOTSUPP;
1046 printk(KERN_INFO "%s: Filename encryption only supports " 1046 printk(KERN_INFO "%s: Filename encryption only supports "
1047 "password tokens\n", __func__); 1047 "password tokens\n", __func__);
1048 goto out_free_unlock; 1048 goto out_free_unlock;
1049 } 1049 }
1050 rc = crypto_blkcipher_setkey( 1050 rc = crypto_blkcipher_setkey(
1051 s->desc.tfm, 1051 s->desc.tfm,
1052 s->auth_tok->token.password.session_key_encryption_key, 1052 s->auth_tok->token.password.session_key_encryption_key,
1053 mount_crypt_stat->global_default_fn_cipher_key_bytes); 1053 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1054 if (rc < 0) { 1054 if (rc < 0) {
1055 printk(KERN_ERR "%s: Error setting key for crypto context; " 1055 printk(KERN_ERR "%s: Error setting key for crypto context; "
1056 "rc = [%d]. s->auth_tok->token.password.session_key_" 1056 "rc = [%d]. s->auth_tok->token.password.session_key_"
1057 "encryption_key = [0x%p]; mount_crypt_stat->" 1057 "encryption_key = [0x%p]; mount_crypt_stat->"
1058 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__, 1058 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1059 rc, 1059 rc,
1060 s->auth_tok->token.password.session_key_encryption_key, 1060 s->auth_tok->token.password.session_key_encryption_key,
1061 mount_crypt_stat->global_default_fn_cipher_key_bytes); 1061 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1062 goto out_free_unlock; 1062 goto out_free_unlock;
1063 } 1063 }
1064 rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg, 1064 rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1065 s->block_aligned_filename_size); 1065 s->block_aligned_filename_size);
1066 if (rc) { 1066 if (rc) {
1067 printk(KERN_ERR "%s: Error attempting to decrypt filename; " 1067 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1068 "rc = [%d]\n", __func__, rc); 1068 "rc = [%d]\n", __func__, rc);
1069 goto out_free_unlock; 1069 goto out_free_unlock;
1070 } 1070 }
1071 s->i = 0; 1071 s->i = 0;
1072 while (s->decrypted_filename[s->i] != '\0' 1072 while (s->decrypted_filename[s->i] != '\0'
1073 && s->i < s->block_aligned_filename_size) 1073 && s->i < s->block_aligned_filename_size)
1074 s->i++; 1074 s->i++;
1075 if (s->i == s->block_aligned_filename_size) { 1075 if (s->i == s->block_aligned_filename_size) {
1076 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not " 1076 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1077 "find valid separator between random characters and " 1077 "find valid separator between random characters and "
1078 "the filename\n", __func__); 1078 "the filename\n", __func__);
1079 rc = -EINVAL; 1079 rc = -EINVAL;
1080 goto out_free_unlock; 1080 goto out_free_unlock;
1081 } 1081 }
1082 s->i++; 1082 s->i++;
1083 (*filename_size) = (s->block_aligned_filename_size - s->i); 1083 (*filename_size) = (s->block_aligned_filename_size - s->i);
1084 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) { 1084 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1085 printk(KERN_WARNING "%s: Filename size is [%zd], which is " 1085 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1086 "invalid\n", __func__, (*filename_size)); 1086 "invalid\n", __func__, (*filename_size));
1087 rc = -EINVAL; 1087 rc = -EINVAL;
1088 goto out_free_unlock; 1088 goto out_free_unlock;
1089 } 1089 }
1090 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL); 1090 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1091 if (!(*filename)) { 1091 if (!(*filename)) {
1092 printk(KERN_ERR "%s: Out of memory whilst attempting to " 1092 printk(KERN_ERR "%s: Out of memory whilst attempting to "
1093 "kmalloc [%zd] bytes\n", __func__, 1093 "kmalloc [%zd] bytes\n", __func__,
1094 ((*filename_size) + 1)); 1094 ((*filename_size) + 1));
1095 rc = -ENOMEM; 1095 rc = -ENOMEM;
1096 goto out_free_unlock; 1096 goto out_free_unlock;
1097 } 1097 }
1098 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size)); 1098 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1099 (*filename)[(*filename_size)] = '\0'; 1099 (*filename)[(*filename_size)] = '\0';
1100 out_free_unlock: 1100 out_free_unlock:
1101 kfree(s->decrypted_filename); 1101 kfree(s->decrypted_filename);
1102 out_unlock: 1102 out_unlock:
1103 mutex_unlock(s->tfm_mutex); 1103 mutex_unlock(s->tfm_mutex);
1104 out: 1104 out:
1105 if (rc) { 1105 if (rc) {
1106 (*packet_size) = 0; 1106 (*packet_size) = 0;
1107 (*filename_size) = 0; 1107 (*filename_size) = 0;
1108 (*filename) = NULL; 1108 (*filename) = NULL;
1109 } 1109 }
1110 if (auth_tok_key) { 1110 if (auth_tok_key) {
1111 up_write(&(auth_tok_key->sem)); 1111 up_write(&(auth_tok_key->sem));
1112 key_put(auth_tok_key); 1112 key_put(auth_tok_key);
1113 } 1113 }
1114 kfree(s); 1114 kfree(s);
1115 return rc; 1115 return rc;
1116 } 1116 }
1117 1117
1118 static int 1118 static int
1119 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok) 1119 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1120 { 1120 {
1121 int rc = 0; 1121 int rc = 0;
1122 1122
1123 (*sig) = NULL; 1123 (*sig) = NULL;
1124 switch (auth_tok->token_type) { 1124 switch (auth_tok->token_type) {
1125 case ECRYPTFS_PASSWORD: 1125 case ECRYPTFS_PASSWORD:
1126 (*sig) = auth_tok->token.password.signature; 1126 (*sig) = auth_tok->token.password.signature;
1127 break; 1127 break;
1128 case ECRYPTFS_PRIVATE_KEY: 1128 case ECRYPTFS_PRIVATE_KEY:
1129 (*sig) = auth_tok->token.private_key.signature; 1129 (*sig) = auth_tok->token.private_key.signature;
1130 break; 1130 break;
1131 default: 1131 default:
1132 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n", 1132 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1133 auth_tok->token_type); 1133 auth_tok->token_type);
1134 rc = -EINVAL; 1134 rc = -EINVAL;
1135 } 1135 }
1136 return rc; 1136 return rc;
1137 } 1137 }
1138 1138
1139 /** 1139 /**
1140 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok. 1140 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1141 * @auth_tok: The key authentication token used to decrypt the session key 1141 * @auth_tok: The key authentication token used to decrypt the session key
1142 * @crypt_stat: The cryptographic context 1142 * @crypt_stat: The cryptographic context
1143 * 1143 *
1144 * Returns zero on success; non-zero error otherwise. 1144 * Returns zero on success; non-zero error otherwise.
1145 */ 1145 */
1146 static int 1146 static int
1147 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok, 1147 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1148 struct ecryptfs_crypt_stat *crypt_stat) 1148 struct ecryptfs_crypt_stat *crypt_stat)
1149 { 1149 {
1150 u8 cipher_code = 0; 1150 u8 cipher_code = 0;
1151 struct ecryptfs_msg_ctx *msg_ctx; 1151 struct ecryptfs_msg_ctx *msg_ctx;
1152 struct ecryptfs_message *msg = NULL; 1152 struct ecryptfs_message *msg = NULL;
1153 char *auth_tok_sig; 1153 char *auth_tok_sig;
1154 char *payload; 1154 char *payload;
1155 size_t payload_len; 1155 size_t payload_len;
1156 int rc; 1156 int rc;
1157 1157
1158 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok); 1158 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1159 if (rc) { 1159 if (rc) {
1160 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n", 1160 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1161 auth_tok->token_type); 1161 auth_tok->token_type);
1162 goto out; 1162 goto out;
1163 } 1163 }
1164 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key), 1164 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1165 &payload, &payload_len); 1165 &payload, &payload_len);
1166 if (rc) { 1166 if (rc) {
1167 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n"); 1167 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1168 goto out; 1168 goto out;
1169 } 1169 }
1170 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx); 1170 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1171 if (rc) { 1171 if (rc) {
1172 ecryptfs_printk(KERN_ERR, "Error sending message to " 1172 ecryptfs_printk(KERN_ERR, "Error sending message to "
1173 "ecryptfsd\n"); 1173 "ecryptfsd\n");
1174 goto out; 1174 goto out;
1175 } 1175 }
1176 rc = ecryptfs_wait_for_response(msg_ctx, &msg); 1176 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1177 if (rc) { 1177 if (rc) {
1178 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet " 1178 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1179 "from the user space daemon\n"); 1179 "from the user space daemon\n");
1180 rc = -EIO; 1180 rc = -EIO;
1181 goto out; 1181 goto out;
1182 } 1182 }
1183 rc = parse_tag_65_packet(&(auth_tok->session_key), 1183 rc = parse_tag_65_packet(&(auth_tok->session_key),
1184 &cipher_code, msg); 1184 &cipher_code, msg);
1185 if (rc) { 1185 if (rc) {
1186 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n", 1186 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1187 rc); 1187 rc);
1188 goto out; 1188 goto out;
1189 } 1189 }
1190 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1190 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1191 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, 1191 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1192 auth_tok->session_key.decrypted_key_size); 1192 auth_tok->session_key.decrypted_key_size);
1193 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size; 1193 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1194 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code); 1194 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1195 if (rc) { 1195 if (rc) {
1196 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n", 1196 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1197 cipher_code) 1197 cipher_code)
1198 goto out; 1198 goto out;
1199 } 1199 }
1200 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 1200 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1201 if (ecryptfs_verbosity > 0) { 1201 if (ecryptfs_verbosity > 0) {
1202 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); 1202 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1203 ecryptfs_dump_hex(crypt_stat->key, 1203 ecryptfs_dump_hex(crypt_stat->key,
1204 crypt_stat->key_size); 1204 crypt_stat->key_size);
1205 } 1205 }
1206 out: 1206 out:
1207 if (msg) 1207 if (msg)
1208 kfree(msg); 1208 kfree(msg);
1209 return rc; 1209 return rc;
1210 } 1210 }
1211 1211
1212 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head) 1212 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1213 { 1213 {
1214 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1214 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1215 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp; 1215 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1216 1216
1217 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp, 1217 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1218 auth_tok_list_head, list) { 1218 auth_tok_list_head, list) {
1219 list_del(&auth_tok_list_item->list); 1219 list_del(&auth_tok_list_item->list);
1220 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1220 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221 auth_tok_list_item); 1221 auth_tok_list_item);
1222 } 1222 }
1223 } 1223 }
1224 1224
1225 struct kmem_cache *ecryptfs_auth_tok_list_item_cache; 1225 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1226 1226
1227 /** 1227 /**
1228 * parse_tag_1_packet 1228 * parse_tag_1_packet
1229 * @crypt_stat: The cryptographic context to modify based on packet contents 1229 * @crypt_stat: The cryptographic context to modify based on packet contents
1230 * @data: The raw bytes of the packet. 1230 * @data: The raw bytes of the packet.
1231 * @auth_tok_list: eCryptfs parses packets into authentication tokens; 1231 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1232 * a new authentication token will be placed at the 1232 * a new authentication token will be placed at the
1233 * end of this list for this packet. 1233 * end of this list for this packet.
1234 * @new_auth_tok: Pointer to a pointer to memory that this function 1234 * @new_auth_tok: Pointer to a pointer to memory that this function
1235 * allocates; sets the memory address of the pointer to 1235 * allocates; sets the memory address of the pointer to
1236 * NULL on error. This object is added to the 1236 * NULL on error. This object is added to the
1237 * auth_tok_list. 1237 * auth_tok_list.
1238 * @packet_size: This function writes the size of the parsed packet 1238 * @packet_size: This function writes the size of the parsed packet
1239 * into this memory location; zero on error. 1239 * into this memory location; zero on error.
1240 * @max_packet_size: The maximum allowable packet size 1240 * @max_packet_size: The maximum allowable packet size
1241 * 1241 *
1242 * Returns zero on success; non-zero on error. 1242 * Returns zero on success; non-zero on error.
1243 */ 1243 */
1244 static int 1244 static int
1245 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat, 1245 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1246 unsigned char *data, struct list_head *auth_tok_list, 1246 unsigned char *data, struct list_head *auth_tok_list,
1247 struct ecryptfs_auth_tok **new_auth_tok, 1247 struct ecryptfs_auth_tok **new_auth_tok,
1248 size_t *packet_size, size_t max_packet_size) 1248 size_t *packet_size, size_t max_packet_size)
1249 { 1249 {
1250 size_t body_size; 1250 size_t body_size;
1251 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1251 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1252 size_t length_size; 1252 size_t length_size;
1253 int rc = 0; 1253 int rc = 0;
1254 1254
1255 (*packet_size) = 0; 1255 (*packet_size) = 0;
1256 (*new_auth_tok) = NULL; 1256 (*new_auth_tok) = NULL;
1257 /** 1257 /**
1258 * This format is inspired by OpenPGP; see RFC 2440 1258 * This format is inspired by OpenPGP; see RFC 2440
1259 * packet tag 1 1259 * packet tag 1
1260 * 1260 *
1261 * Tag 1 identifier (1 byte) 1261 * Tag 1 identifier (1 byte)
1262 * Max Tag 1 packet size (max 3 bytes) 1262 * Max Tag 1 packet size (max 3 bytes)
1263 * Version (1 byte) 1263 * Version (1 byte)
1264 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE) 1264 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1265 * Cipher identifier (1 byte) 1265 * Cipher identifier (1 byte)
1266 * Encrypted key size (arbitrary) 1266 * Encrypted key size (arbitrary)
1267 * 1267 *
1268 * 12 bytes minimum packet size 1268 * 12 bytes minimum packet size
1269 */ 1269 */
1270 if (unlikely(max_packet_size < 12)) { 1270 if (unlikely(max_packet_size < 12)) {
1271 printk(KERN_ERR "Invalid max packet size; must be >=12\n"); 1271 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1272 rc = -EINVAL; 1272 rc = -EINVAL;
1273 goto out; 1273 goto out;
1274 } 1274 }
1275 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) { 1275 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1276 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n", 1276 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1277 ECRYPTFS_TAG_1_PACKET_TYPE); 1277 ECRYPTFS_TAG_1_PACKET_TYPE);
1278 rc = -EINVAL; 1278 rc = -EINVAL;
1279 goto out; 1279 goto out;
1280 } 1280 }
1281 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or 1281 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1282 * at end of function upon failure */ 1282 * at end of function upon failure */
1283 auth_tok_list_item = 1283 auth_tok_list_item =
1284 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, 1284 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1285 GFP_KERNEL); 1285 GFP_KERNEL);
1286 if (!auth_tok_list_item) { 1286 if (!auth_tok_list_item) {
1287 printk(KERN_ERR "Unable to allocate memory\n"); 1287 printk(KERN_ERR "Unable to allocate memory\n");
1288 rc = -ENOMEM; 1288 rc = -ENOMEM;
1289 goto out; 1289 goto out;
1290 } 1290 }
1291 (*new_auth_tok) = &auth_tok_list_item->auth_tok; 1291 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1292 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1292 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1293 &length_size); 1293 &length_size);
1294 if (rc) { 1294 if (rc) {
1295 printk(KERN_WARNING "Error parsing packet length; " 1295 printk(KERN_WARNING "Error parsing packet length; "
1296 "rc = [%d]\n", rc); 1296 "rc = [%d]\n", rc);
1297 goto out_free; 1297 goto out_free;
1298 } 1298 }
1299 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) { 1299 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1300 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1300 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1301 rc = -EINVAL; 1301 rc = -EINVAL;
1302 goto out_free; 1302 goto out_free;
1303 } 1303 }
1304 (*packet_size) += length_size; 1304 (*packet_size) += length_size;
1305 if (unlikely((*packet_size) + body_size > max_packet_size)) { 1305 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1306 printk(KERN_WARNING "Packet size exceeds max\n"); 1306 printk(KERN_WARNING "Packet size exceeds max\n");
1307 rc = -EINVAL; 1307 rc = -EINVAL;
1308 goto out_free; 1308 goto out_free;
1309 } 1309 }
1310 if (unlikely(data[(*packet_size)++] != 0x03)) { 1310 if (unlikely(data[(*packet_size)++] != 0x03)) {
1311 printk(KERN_WARNING "Unknown version number [%d]\n", 1311 printk(KERN_WARNING "Unknown version number [%d]\n",
1312 data[(*packet_size) - 1]); 1312 data[(*packet_size) - 1]);
1313 rc = -EINVAL; 1313 rc = -EINVAL;
1314 goto out_free; 1314 goto out_free;
1315 } 1315 }
1316 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature, 1316 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1317 &data[(*packet_size)], ECRYPTFS_SIG_SIZE); 1317 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1318 *packet_size += ECRYPTFS_SIG_SIZE; 1318 *packet_size += ECRYPTFS_SIG_SIZE;
1319 /* This byte is skipped because the kernel does not need to 1319 /* This byte is skipped because the kernel does not need to
1320 * know which public key encryption algorithm was used */ 1320 * know which public key encryption algorithm was used */
1321 (*packet_size)++; 1321 (*packet_size)++;
1322 (*new_auth_tok)->session_key.encrypted_key_size = 1322 (*new_auth_tok)->session_key.encrypted_key_size =
1323 body_size - (ECRYPTFS_SIG_SIZE + 2); 1323 body_size - (ECRYPTFS_SIG_SIZE + 2);
1324 if ((*new_auth_tok)->session_key.encrypted_key_size 1324 if ((*new_auth_tok)->session_key.encrypted_key_size
1325 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 1325 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1326 printk(KERN_WARNING "Tag 1 packet contains key larger " 1326 printk(KERN_WARNING "Tag 1 packet contains key larger "
1327 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES"); 1327 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1328 rc = -EINVAL; 1328 rc = -EINVAL;
1329 goto out; 1329 goto out;
1330 } 1330 }
1331 memcpy((*new_auth_tok)->session_key.encrypted_key, 1331 memcpy((*new_auth_tok)->session_key.encrypted_key,
1332 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2))); 1332 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1333 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size; 1333 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1334 (*new_auth_tok)->session_key.flags &= 1334 (*new_auth_tok)->session_key.flags &=
1335 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1335 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1336 (*new_auth_tok)->session_key.flags |= 1336 (*new_auth_tok)->session_key.flags |=
1337 ECRYPTFS_CONTAINS_ENCRYPTED_KEY; 1337 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1338 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY; 1338 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1339 (*new_auth_tok)->flags = 0; 1339 (*new_auth_tok)->flags = 0;
1340 (*new_auth_tok)->session_key.flags &= 1340 (*new_auth_tok)->session_key.flags &=
1341 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); 1341 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1342 (*new_auth_tok)->session_key.flags &= 1342 (*new_auth_tok)->session_key.flags &=
1343 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); 1343 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1344 list_add(&auth_tok_list_item->list, auth_tok_list); 1344 list_add(&auth_tok_list_item->list, auth_tok_list);
1345 goto out; 1345 goto out;
1346 out_free: 1346 out_free:
1347 (*new_auth_tok) = NULL; 1347 (*new_auth_tok) = NULL;
1348 memset(auth_tok_list_item, 0, 1348 memset(auth_tok_list_item, 0,
1349 sizeof(struct ecryptfs_auth_tok_list_item)); 1349 sizeof(struct ecryptfs_auth_tok_list_item));
1350 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1350 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1351 auth_tok_list_item); 1351 auth_tok_list_item);
1352 out: 1352 out:
1353 if (rc) 1353 if (rc)
1354 (*packet_size) = 0; 1354 (*packet_size) = 0;
1355 return rc; 1355 return rc;
1356 } 1356 }
1357 1357
1358 /** 1358 /**
1359 * parse_tag_3_packet 1359 * parse_tag_3_packet
1360 * @crypt_stat: The cryptographic context to modify based on packet 1360 * @crypt_stat: The cryptographic context to modify based on packet
1361 * contents. 1361 * contents.
1362 * @data: The raw bytes of the packet. 1362 * @data: The raw bytes of the packet.
1363 * @auth_tok_list: eCryptfs parses packets into authentication tokens; 1363 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1364 * a new authentication token will be placed at the end 1364 * a new authentication token will be placed at the end
1365 * of this list for this packet. 1365 * of this list for this packet.
1366 * @new_auth_tok: Pointer to a pointer to memory that this function 1366 * @new_auth_tok: Pointer to a pointer to memory that this function
1367 * allocates; sets the memory address of the pointer to 1367 * allocates; sets the memory address of the pointer to
1368 * NULL on error. This object is added to the 1368 * NULL on error. This object is added to the
1369 * auth_tok_list. 1369 * auth_tok_list.
1370 * @packet_size: This function writes the size of the parsed packet 1370 * @packet_size: This function writes the size of the parsed packet
1371 * into this memory location; zero on error. 1371 * into this memory location; zero on error.
1372 * @max_packet_size: maximum number of bytes to parse 1372 * @max_packet_size: maximum number of bytes to parse
1373 * 1373 *
1374 * Returns zero on success; non-zero on error. 1374 * Returns zero on success; non-zero on error.
1375 */ 1375 */
1376 static int 1376 static int
1377 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, 1377 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1378 unsigned char *data, struct list_head *auth_tok_list, 1378 unsigned char *data, struct list_head *auth_tok_list,
1379 struct ecryptfs_auth_tok **new_auth_tok, 1379 struct ecryptfs_auth_tok **new_auth_tok,
1380 size_t *packet_size, size_t max_packet_size) 1380 size_t *packet_size, size_t max_packet_size)
1381 { 1381 {
1382 size_t body_size; 1382 size_t body_size;
1383 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1383 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1384 size_t length_size; 1384 size_t length_size;
1385 int rc = 0; 1385 int rc = 0;
1386 1386
1387 (*packet_size) = 0; 1387 (*packet_size) = 0;
1388 (*new_auth_tok) = NULL; 1388 (*new_auth_tok) = NULL;
1389 /** 1389 /**
1390 *This format is inspired by OpenPGP; see RFC 2440 1390 *This format is inspired by OpenPGP; see RFC 2440
1391 * packet tag 3 1391 * packet tag 3
1392 * 1392 *
1393 * Tag 3 identifier (1 byte) 1393 * Tag 3 identifier (1 byte)
1394 * Max Tag 3 packet size (max 3 bytes) 1394 * Max Tag 3 packet size (max 3 bytes)
1395 * Version (1 byte) 1395 * Version (1 byte)
1396 * Cipher code (1 byte) 1396 * Cipher code (1 byte)
1397 * S2K specifier (1 byte) 1397 * S2K specifier (1 byte)
1398 * Hash identifier (1 byte) 1398 * Hash identifier (1 byte)
1399 * Salt (ECRYPTFS_SALT_SIZE) 1399 * Salt (ECRYPTFS_SALT_SIZE)
1400 * Hash iterations (1 byte) 1400 * Hash iterations (1 byte)
1401 * Encrypted key (arbitrary) 1401 * Encrypted key (arbitrary)
1402 * 1402 *
1403 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size 1403 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1404 */ 1404 */
1405 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) { 1405 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1406 printk(KERN_ERR "Max packet size too large\n"); 1406 printk(KERN_ERR "Max packet size too large\n");
1407 rc = -EINVAL; 1407 rc = -EINVAL;
1408 goto out; 1408 goto out;
1409 } 1409 }
1410 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { 1410 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1411 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n", 1411 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1412 ECRYPTFS_TAG_3_PACKET_TYPE); 1412 ECRYPTFS_TAG_3_PACKET_TYPE);
1413 rc = -EINVAL; 1413 rc = -EINVAL;
1414 goto out; 1414 goto out;
1415 } 1415 }
1416 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or 1416 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1417 * at end of function upon failure */ 1417 * at end of function upon failure */
1418 auth_tok_list_item = 1418 auth_tok_list_item =
1419 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL); 1419 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1420 if (!auth_tok_list_item) { 1420 if (!auth_tok_list_item) {
1421 printk(KERN_ERR "Unable to allocate memory\n"); 1421 printk(KERN_ERR "Unable to allocate memory\n");
1422 rc = -ENOMEM; 1422 rc = -ENOMEM;
1423 goto out; 1423 goto out;
1424 } 1424 }
1425 (*new_auth_tok) = &auth_tok_list_item->auth_tok; 1425 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1426 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1426 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1427 &length_size); 1427 &length_size);
1428 if (rc) { 1428 if (rc) {
1429 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n", 1429 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1430 rc); 1430 rc);
1431 goto out_free; 1431 goto out_free;
1432 } 1432 }
1433 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) { 1433 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1434 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1434 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1435 rc = -EINVAL; 1435 rc = -EINVAL;
1436 goto out_free; 1436 goto out_free;
1437 } 1437 }
1438 (*packet_size) += length_size; 1438 (*packet_size) += length_size;
1439 if (unlikely((*packet_size) + body_size > max_packet_size)) { 1439 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1440 printk(KERN_ERR "Packet size exceeds max\n"); 1440 printk(KERN_ERR "Packet size exceeds max\n");
1441 rc = -EINVAL; 1441 rc = -EINVAL;
1442 goto out_free; 1442 goto out_free;
1443 } 1443 }
1444 (*new_auth_tok)->session_key.encrypted_key_size = 1444 (*new_auth_tok)->session_key.encrypted_key_size =
1445 (body_size - (ECRYPTFS_SALT_SIZE + 5)); 1445 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1446 if ((*new_auth_tok)->session_key.encrypted_key_size 1446 if ((*new_auth_tok)->session_key.encrypted_key_size
1447 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 1447 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1448 printk(KERN_WARNING "Tag 3 packet contains key larger " 1448 printk(KERN_WARNING "Tag 3 packet contains key larger "
1449 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n"); 1449 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1450 rc = -EINVAL; 1450 rc = -EINVAL;
1451 goto out_free; 1451 goto out_free;
1452 } 1452 }
1453 if (unlikely(data[(*packet_size)++] != 0x04)) { 1453 if (unlikely(data[(*packet_size)++] != 0x04)) {
1454 printk(KERN_WARNING "Unknown version number [%d]\n", 1454 printk(KERN_WARNING "Unknown version number [%d]\n",
1455 data[(*packet_size) - 1]); 1455 data[(*packet_size) - 1]);
1456 rc = -EINVAL; 1456 rc = -EINVAL;
1457 goto out_free; 1457 goto out_free;
1458 } 1458 }
1459 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, 1459 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1460 (u16)data[(*packet_size)]); 1460 (u16)data[(*packet_size)]);
1461 if (rc) 1461 if (rc)
1462 goto out_free; 1462 goto out_free;
1463 /* A little extra work to differentiate among the AES key 1463 /* A little extra work to differentiate among the AES key
1464 * sizes; see RFC2440 */ 1464 * sizes; see RFC2440 */
1465 switch(data[(*packet_size)++]) { 1465 switch(data[(*packet_size)++]) {
1466 case RFC2440_CIPHER_AES_192: 1466 case RFC2440_CIPHER_AES_192:
1467 crypt_stat->key_size = 24; 1467 crypt_stat->key_size = 24;
1468 break; 1468 break;
1469 default: 1469 default:
1470 crypt_stat->key_size = 1470 crypt_stat->key_size =
1471 (*new_auth_tok)->session_key.encrypted_key_size; 1471 (*new_auth_tok)->session_key.encrypted_key_size;
1472 } 1472 }
1473 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1473 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1474 if (rc) 1474 if (rc)
1475 goto out_free; 1475 goto out_free;
1476 if (unlikely(data[(*packet_size)++] != 0x03)) { 1476 if (unlikely(data[(*packet_size)++] != 0x03)) {
1477 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n"); 1477 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1478 rc = -ENOSYS; 1478 rc = -ENOSYS;
1479 goto out_free; 1479 goto out_free;
1480 } 1480 }
1481 /* TODO: finish the hash mapping */ 1481 /* TODO: finish the hash mapping */
1482 switch (data[(*packet_size)++]) { 1482 switch (data[(*packet_size)++]) {
1483 case 0x01: /* See RFC2440 for these numbers and their mappings */ 1483 case 0x01: /* See RFC2440 for these numbers and their mappings */
1484 /* Choose MD5 */ 1484 /* Choose MD5 */
1485 memcpy((*new_auth_tok)->token.password.salt, 1485 memcpy((*new_auth_tok)->token.password.salt,
1486 &data[(*packet_size)], ECRYPTFS_SALT_SIZE); 1486 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1487 (*packet_size) += ECRYPTFS_SALT_SIZE; 1487 (*packet_size) += ECRYPTFS_SALT_SIZE;
1488 /* This conversion was taken straight from RFC2440 */ 1488 /* This conversion was taken straight from RFC2440 */
1489 (*new_auth_tok)->token.password.hash_iterations = 1489 (*new_auth_tok)->token.password.hash_iterations =
1490 ((u32) 16 + (data[(*packet_size)] & 15)) 1490 ((u32) 16 + (data[(*packet_size)] & 15))
1491 << ((data[(*packet_size)] >> 4) + 6); 1491 << ((data[(*packet_size)] >> 4) + 6);
1492 (*packet_size)++; 1492 (*packet_size)++;
1493 /* Friendly reminder: 1493 /* Friendly reminder:
1494 * (*new_auth_tok)->session_key.encrypted_key_size = 1494 * (*new_auth_tok)->session_key.encrypted_key_size =
1495 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */ 1495 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1496 memcpy((*new_auth_tok)->session_key.encrypted_key, 1496 memcpy((*new_auth_tok)->session_key.encrypted_key,
1497 &data[(*packet_size)], 1497 &data[(*packet_size)],
1498 (*new_auth_tok)->session_key.encrypted_key_size); 1498 (*new_auth_tok)->session_key.encrypted_key_size);
1499 (*packet_size) += 1499 (*packet_size) +=
1500 (*new_auth_tok)->session_key.encrypted_key_size; 1500 (*new_auth_tok)->session_key.encrypted_key_size;
1501 (*new_auth_tok)->session_key.flags &= 1501 (*new_auth_tok)->session_key.flags &=
1502 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1502 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1503 (*new_auth_tok)->session_key.flags |= 1503 (*new_auth_tok)->session_key.flags |=
1504 ECRYPTFS_CONTAINS_ENCRYPTED_KEY; 1504 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1505 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */ 1505 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1506 break; 1506 break;
1507 default: 1507 default:
1508 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " 1508 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1509 "[%d]\n", data[(*packet_size) - 1]); 1509 "[%d]\n", data[(*packet_size) - 1]);
1510 rc = -ENOSYS; 1510 rc = -ENOSYS;
1511 goto out_free; 1511 goto out_free;
1512 } 1512 }
1513 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; 1513 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1514 /* TODO: Parametarize; we might actually want userspace to 1514 /* TODO: Parametarize; we might actually want userspace to
1515 * decrypt the session key. */ 1515 * decrypt the session key. */
1516 (*new_auth_tok)->session_key.flags &= 1516 (*new_auth_tok)->session_key.flags &=
1517 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); 1517 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1518 (*new_auth_tok)->session_key.flags &= 1518 (*new_auth_tok)->session_key.flags &=
1519 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); 1519 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1520 list_add(&auth_tok_list_item->list, auth_tok_list); 1520 list_add(&auth_tok_list_item->list, auth_tok_list);
1521 goto out; 1521 goto out;
1522 out_free: 1522 out_free:
1523 (*new_auth_tok) = NULL; 1523 (*new_auth_tok) = NULL;
1524 memset(auth_tok_list_item, 0, 1524 memset(auth_tok_list_item, 0,
1525 sizeof(struct ecryptfs_auth_tok_list_item)); 1525 sizeof(struct ecryptfs_auth_tok_list_item));
1526 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1526 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1527 auth_tok_list_item); 1527 auth_tok_list_item);
1528 out: 1528 out:
1529 if (rc) 1529 if (rc)
1530 (*packet_size) = 0; 1530 (*packet_size) = 0;
1531 return rc; 1531 return rc;
1532 } 1532 }
1533 1533
1534 /** 1534 /**
1535 * parse_tag_11_packet 1535 * parse_tag_11_packet
1536 * @data: The raw bytes of the packet 1536 * @data: The raw bytes of the packet
1537 * @contents: This function writes the data contents of the literal 1537 * @contents: This function writes the data contents of the literal
1538 * packet into this memory location 1538 * packet into this memory location
1539 * @max_contents_bytes: The maximum number of bytes that this function 1539 * @max_contents_bytes: The maximum number of bytes that this function
1540 * is allowed to write into contents 1540 * is allowed to write into contents
1541 * @tag_11_contents_size: This function writes the size of the parsed 1541 * @tag_11_contents_size: This function writes the size of the parsed
1542 * contents into this memory location; zero on 1542 * contents into this memory location; zero on
1543 * error 1543 * error
1544 * @packet_size: This function writes the size of the parsed packet 1544 * @packet_size: This function writes the size of the parsed packet
1545 * into this memory location; zero on error 1545 * into this memory location; zero on error
1546 * @max_packet_size: maximum number of bytes to parse 1546 * @max_packet_size: maximum number of bytes to parse
1547 * 1547 *
1548 * Returns zero on success; non-zero on error. 1548 * Returns zero on success; non-zero on error.
1549 */ 1549 */
1550 static int 1550 static int
1551 parse_tag_11_packet(unsigned char *data, unsigned char *contents, 1551 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1552 size_t max_contents_bytes, size_t *tag_11_contents_size, 1552 size_t max_contents_bytes, size_t *tag_11_contents_size,
1553 size_t *packet_size, size_t max_packet_size) 1553 size_t *packet_size, size_t max_packet_size)
1554 { 1554 {
1555 size_t body_size; 1555 size_t body_size;
1556 size_t length_size; 1556 size_t length_size;
1557 int rc = 0; 1557 int rc = 0;
1558 1558
1559 (*packet_size) = 0; 1559 (*packet_size) = 0;
1560 (*tag_11_contents_size) = 0; 1560 (*tag_11_contents_size) = 0;
1561 /* This format is inspired by OpenPGP; see RFC 2440 1561 /* This format is inspired by OpenPGP; see RFC 2440
1562 * packet tag 11 1562 * packet tag 11
1563 * 1563 *
1564 * Tag 11 identifier (1 byte) 1564 * Tag 11 identifier (1 byte)
1565 * Max Tag 11 packet size (max 3 bytes) 1565 * Max Tag 11 packet size (max 3 bytes)
1566 * Binary format specifier (1 byte) 1566 * Binary format specifier (1 byte)
1567 * Filename length (1 byte) 1567 * Filename length (1 byte)
1568 * Filename ("_CONSOLE") (8 bytes) 1568 * Filename ("_CONSOLE") (8 bytes)
1569 * Modification date (4 bytes) 1569 * Modification date (4 bytes)
1570 * Literal data (arbitrary) 1570 * Literal data (arbitrary)
1571 * 1571 *
1572 * We need at least 16 bytes of data for the packet to even be 1572 * We need at least 16 bytes of data for the packet to even be
1573 * valid. 1573 * valid.
1574 */ 1574 */
1575 if (max_packet_size < 16) { 1575 if (max_packet_size < 16) {
1576 printk(KERN_ERR "Maximum packet size too small\n"); 1576 printk(KERN_ERR "Maximum packet size too small\n");
1577 rc = -EINVAL; 1577 rc = -EINVAL;
1578 goto out; 1578 goto out;
1579 } 1579 }
1580 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) { 1580 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1581 printk(KERN_WARNING "Invalid tag 11 packet format\n"); 1581 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1582 rc = -EINVAL; 1582 rc = -EINVAL;
1583 goto out; 1583 goto out;
1584 } 1584 }
1585 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1585 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1586 &length_size); 1586 &length_size);
1587 if (rc) { 1587 if (rc) {
1588 printk(KERN_WARNING "Invalid tag 11 packet format\n"); 1588 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1589 goto out; 1589 goto out;
1590 } 1590 }
1591 if (body_size < 14) { 1591 if (body_size < 14) {
1592 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1592 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1593 rc = -EINVAL; 1593 rc = -EINVAL;
1594 goto out; 1594 goto out;
1595 } 1595 }
1596 (*packet_size) += length_size; 1596 (*packet_size) += length_size;
1597 (*tag_11_contents_size) = (body_size - 14); 1597 (*tag_11_contents_size) = (body_size - 14);
1598 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) { 1598 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1599 printk(KERN_ERR "Packet size exceeds max\n"); 1599 printk(KERN_ERR "Packet size exceeds max\n");
1600 rc = -EINVAL; 1600 rc = -EINVAL;
1601 goto out; 1601 goto out;
1602 } 1602 }
1603 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) { 1603 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1604 printk(KERN_ERR "Literal data section in tag 11 packet exceeds " 1604 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1605 "expected size\n"); 1605 "expected size\n");
1606 rc = -EINVAL; 1606 rc = -EINVAL;
1607 goto out; 1607 goto out;
1608 } 1608 }
1609 if (data[(*packet_size)++] != 0x62) { 1609 if (data[(*packet_size)++] != 0x62) {
1610 printk(KERN_WARNING "Unrecognizable packet\n"); 1610 printk(KERN_WARNING "Unrecognizable packet\n");
1611 rc = -EINVAL; 1611 rc = -EINVAL;
1612 goto out; 1612 goto out;
1613 } 1613 }
1614 if (data[(*packet_size)++] != 0x08) { 1614 if (data[(*packet_size)++] != 0x08) {
1615 printk(KERN_WARNING "Unrecognizable packet\n"); 1615 printk(KERN_WARNING "Unrecognizable packet\n");
1616 rc = -EINVAL; 1616 rc = -EINVAL;
1617 goto out; 1617 goto out;
1618 } 1618 }
1619 (*packet_size) += 12; /* Ignore filename and modification date */ 1619 (*packet_size) += 12; /* Ignore filename and modification date */
1620 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size)); 1620 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1621 (*packet_size) += (*tag_11_contents_size); 1621 (*packet_size) += (*tag_11_contents_size);
1622 out: 1622 out:
1623 if (rc) { 1623 if (rc) {
1624 (*packet_size) = 0; 1624 (*packet_size) = 0;
1625 (*tag_11_contents_size) = 0; 1625 (*tag_11_contents_size) = 0;
1626 } 1626 }
1627 return rc; 1627 return rc;
1628 } 1628 }
1629 1629
1630 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key, 1630 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1631 struct ecryptfs_auth_tok **auth_tok, 1631 struct ecryptfs_auth_tok **auth_tok,
1632 char *sig) 1632 char *sig)
1633 { 1633 {
1634 int rc = 0; 1634 int rc = 0;
1635 1635
1636 (*auth_tok_key) = request_key(&key_type_user, sig, NULL); 1636 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1637 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) { 1637 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1638 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig); 1638 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1639 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) { 1639 if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1640 printk(KERN_ERR "Could not find key with description: [%s]\n", 1640 printk(KERN_ERR "Could not find key with description: [%s]\n",
1641 sig); 1641 sig);
1642 rc = process_request_key_err(PTR_ERR(*auth_tok_key)); 1642 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1643 (*auth_tok_key) = NULL; 1643 (*auth_tok_key) = NULL;
1644 goto out; 1644 goto out;
1645 } 1645 }
1646 } 1646 }
1647 down_write(&(*auth_tok_key)->sem); 1647 down_write(&(*auth_tok_key)->sem);
1648 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok); 1648 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1649 if (rc) { 1649 if (rc) {
1650 up_write(&(*auth_tok_key)->sem); 1650 up_write(&(*auth_tok_key)->sem);
1651 key_put(*auth_tok_key); 1651 key_put(*auth_tok_key);
1652 (*auth_tok_key) = NULL; 1652 (*auth_tok_key) = NULL;
1653 goto out; 1653 goto out;
1654 } 1654 }
1655 out: 1655 out:
1656 return rc; 1656 return rc;
1657 } 1657 }
1658 1658
1659 /** 1659 /**
1660 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok. 1660 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1661 * @auth_tok: The passphrase authentication token to use to encrypt the FEK 1661 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1662 * @crypt_stat: The cryptographic context 1662 * @crypt_stat: The cryptographic context
1663 * 1663 *
1664 * Returns zero on success; non-zero error otherwise 1664 * Returns zero on success; non-zero error otherwise
1665 */ 1665 */
1666 static int 1666 static int
1667 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok, 1667 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1668 struct ecryptfs_crypt_stat *crypt_stat) 1668 struct ecryptfs_crypt_stat *crypt_stat)
1669 { 1669 {
1670 struct scatterlist dst_sg[2]; 1670 struct scatterlist dst_sg[2];
1671 struct scatterlist src_sg[2]; 1671 struct scatterlist src_sg[2];
1672 struct mutex *tfm_mutex; 1672 struct mutex *tfm_mutex;
1673 struct blkcipher_desc desc = { 1673 struct blkcipher_desc desc = {
1674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 1674 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1675 }; 1675 };
1676 int rc = 0; 1676 int rc = 0;
1677 1677
1678 if (unlikely(ecryptfs_verbosity > 0)) { 1678 if (unlikely(ecryptfs_verbosity > 0)) {
1679 ecryptfs_printk( 1679 ecryptfs_printk(
1680 KERN_DEBUG, "Session key encryption key (size [%d]):\n", 1680 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1681 auth_tok->token.password.session_key_encryption_key_bytes); 1681 auth_tok->token.password.session_key_encryption_key_bytes);
1682 ecryptfs_dump_hex( 1682 ecryptfs_dump_hex(
1683 auth_tok->token.password.session_key_encryption_key, 1683 auth_tok->token.password.session_key_encryption_key,
1684 auth_tok->token.password.session_key_encryption_key_bytes); 1684 auth_tok->token.password.session_key_encryption_key_bytes);
1685 } 1685 }
1686 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 1686 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1687 crypt_stat->cipher); 1687 crypt_stat->cipher);
1688 if (unlikely(rc)) { 1688 if (unlikely(rc)) {
1689 printk(KERN_ERR "Internal error whilst attempting to get " 1689 printk(KERN_ERR "Internal error whilst attempting to get "
1690 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 1690 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1691 crypt_stat->cipher, rc); 1691 crypt_stat->cipher, rc);
1692 goto out; 1692 goto out;
1693 } 1693 }
1694 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key, 1694 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1695 auth_tok->session_key.encrypted_key_size, 1695 auth_tok->session_key.encrypted_key_size,
1696 src_sg, 2); 1696 src_sg, 2);
1697 if (rc < 1 || rc > 2) { 1697 if (rc < 1 || rc > 2) {
1698 printk(KERN_ERR "Internal error whilst attempting to convert " 1698 printk(KERN_ERR "Internal error whilst attempting to convert "
1699 "auth_tok->session_key.encrypted_key to scatterlist; " 1699 "auth_tok->session_key.encrypted_key to scatterlist; "
1700 "expected rc = 1; got rc = [%d]. " 1700 "expected rc = 1; got rc = [%d]. "
1701 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc, 1701 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1702 auth_tok->session_key.encrypted_key_size); 1702 auth_tok->session_key.encrypted_key_size);
1703 goto out; 1703 goto out;
1704 } 1704 }
1705 auth_tok->session_key.decrypted_key_size = 1705 auth_tok->session_key.decrypted_key_size =
1706 auth_tok->session_key.encrypted_key_size; 1706 auth_tok->session_key.encrypted_key_size;
1707 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key, 1707 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1708 auth_tok->session_key.decrypted_key_size, 1708 auth_tok->session_key.decrypted_key_size,
1709 dst_sg, 2); 1709 dst_sg, 2);
1710 if (rc < 1 || rc > 2) { 1710 if (rc < 1 || rc > 2) {
1711 printk(KERN_ERR "Internal error whilst attempting to convert " 1711 printk(KERN_ERR "Internal error whilst attempting to convert "
1712 "auth_tok->session_key.decrypted_key to scatterlist; " 1712 "auth_tok->session_key.decrypted_key to scatterlist; "
1713 "expected rc = 1; got rc = [%d]\n", rc); 1713 "expected rc = 1; got rc = [%d]\n", rc);
1714 goto out; 1714 goto out;
1715 } 1715 }
1716 mutex_lock(tfm_mutex); 1716 mutex_lock(tfm_mutex);
1717 rc = crypto_blkcipher_setkey( 1717 rc = crypto_blkcipher_setkey(
1718 desc.tfm, auth_tok->token.password.session_key_encryption_key, 1718 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1719 crypt_stat->key_size); 1719 crypt_stat->key_size);
1720 if (unlikely(rc < 0)) { 1720 if (unlikely(rc < 0)) {
1721 mutex_unlock(tfm_mutex); 1721 mutex_unlock(tfm_mutex);
1722 printk(KERN_ERR "Error setting key for crypto context\n"); 1722 printk(KERN_ERR "Error setting key for crypto context\n");
1723 rc = -EINVAL; 1723 rc = -EINVAL;
1724 goto out; 1724 goto out;
1725 } 1725 }
1726 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg, 1726 rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1727 auth_tok->session_key.encrypted_key_size); 1727 auth_tok->session_key.encrypted_key_size);
1728 mutex_unlock(tfm_mutex); 1728 mutex_unlock(tfm_mutex);
1729 if (unlikely(rc)) { 1729 if (unlikely(rc)) {
1730 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc); 1730 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1731 goto out; 1731 goto out;
1732 } 1732 }
1733 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1733 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1734 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, 1734 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1735 auth_tok->session_key.decrypted_key_size); 1735 auth_tok->session_key.decrypted_key_size);
1736 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 1736 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1737 if (unlikely(ecryptfs_verbosity > 0)) { 1737 if (unlikely(ecryptfs_verbosity > 0)) {
1738 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n", 1738 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1739 crypt_stat->key_size); 1739 crypt_stat->key_size);
1740 ecryptfs_dump_hex(crypt_stat->key, 1740 ecryptfs_dump_hex(crypt_stat->key,
1741 crypt_stat->key_size); 1741 crypt_stat->key_size);
1742 } 1742 }
1743 out: 1743 out:
1744 return rc; 1744 return rc;
1745 } 1745 }
1746 1746
1747 /** 1747 /**
1748 * ecryptfs_parse_packet_set 1748 * ecryptfs_parse_packet_set
1749 * @crypt_stat: The cryptographic context 1749 * @crypt_stat: The cryptographic context
1750 * @src: Virtual address of region of memory containing the packets 1750 * @src: Virtual address of region of memory containing the packets
1751 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set 1751 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1752 * 1752 *
1753 * Get crypt_stat to have the file's session key if the requisite key 1753 * Get crypt_stat to have the file's session key if the requisite key
1754 * is available to decrypt the session key. 1754 * is available to decrypt the session key.
1755 * 1755 *
1756 * Returns Zero if a valid authentication token was retrieved and 1756 * Returns Zero if a valid authentication token was retrieved and
1757 * processed; negative value for file not encrypted or for error 1757 * processed; negative value for file not encrypted or for error
1758 * conditions. 1758 * conditions.
1759 */ 1759 */
1760 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat, 1760 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1761 unsigned char *src, 1761 unsigned char *src,
1762 struct dentry *ecryptfs_dentry) 1762 struct dentry *ecryptfs_dentry)
1763 { 1763 {
1764 size_t i = 0; 1764 size_t i = 0;
1765 size_t found_auth_tok; 1765 size_t found_auth_tok;
1766 size_t next_packet_is_auth_tok_packet; 1766 size_t next_packet_is_auth_tok_packet;
1767 struct list_head auth_tok_list; 1767 struct list_head auth_tok_list;
1768 struct ecryptfs_auth_tok *matching_auth_tok; 1768 struct ecryptfs_auth_tok *matching_auth_tok;
1769 struct ecryptfs_auth_tok *candidate_auth_tok; 1769 struct ecryptfs_auth_tok *candidate_auth_tok;
1770 char *candidate_auth_tok_sig; 1770 char *candidate_auth_tok_sig;
1771 size_t packet_size; 1771 size_t packet_size;
1772 struct ecryptfs_auth_tok *new_auth_tok; 1772 struct ecryptfs_auth_tok *new_auth_tok;
1773 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE]; 1773 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1774 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1774 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1775 size_t tag_11_contents_size; 1775 size_t tag_11_contents_size;
1776 size_t tag_11_packet_size; 1776 size_t tag_11_packet_size;
1777 struct key *auth_tok_key = NULL; 1777 struct key *auth_tok_key = NULL;
1778 int rc = 0; 1778 int rc = 0;
1779 1779
1780 INIT_LIST_HEAD(&auth_tok_list); 1780 INIT_LIST_HEAD(&auth_tok_list);
1781 /* Parse the header to find as many packets as we can; these will be 1781 /* Parse the header to find as many packets as we can; these will be
1782 * added the our &auth_tok_list */ 1782 * added the our &auth_tok_list */
1783 next_packet_is_auth_tok_packet = 1; 1783 next_packet_is_auth_tok_packet = 1;
1784 while (next_packet_is_auth_tok_packet) { 1784 while (next_packet_is_auth_tok_packet) {
1785 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i); 1785 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1786 1786
1787 switch (src[i]) { 1787 switch (src[i]) {
1788 case ECRYPTFS_TAG_3_PACKET_TYPE: 1788 case ECRYPTFS_TAG_3_PACKET_TYPE:
1789 rc = parse_tag_3_packet(crypt_stat, 1789 rc = parse_tag_3_packet(crypt_stat,
1790 (unsigned char *)&src[i], 1790 (unsigned char *)&src[i],
1791 &auth_tok_list, &new_auth_tok, 1791 &auth_tok_list, &new_auth_tok,
1792 &packet_size, max_packet_size); 1792 &packet_size, max_packet_size);
1793 if (rc) { 1793 if (rc) {
1794 ecryptfs_printk(KERN_ERR, "Error parsing " 1794 ecryptfs_printk(KERN_ERR, "Error parsing "
1795 "tag 3 packet\n"); 1795 "tag 3 packet\n");
1796 rc = -EIO; 1796 rc = -EIO;
1797 goto out_wipe_list; 1797 goto out_wipe_list;
1798 } 1798 }
1799 i += packet_size; 1799 i += packet_size;
1800 rc = parse_tag_11_packet((unsigned char *)&src[i], 1800 rc = parse_tag_11_packet((unsigned char *)&src[i],
1801 sig_tmp_space, 1801 sig_tmp_space,
1802 ECRYPTFS_SIG_SIZE, 1802 ECRYPTFS_SIG_SIZE,
1803 &tag_11_contents_size, 1803 &tag_11_contents_size,
1804 &tag_11_packet_size, 1804 &tag_11_packet_size,
1805 max_packet_size); 1805 max_packet_size);
1806 if (rc) { 1806 if (rc) {
1807 ecryptfs_printk(KERN_ERR, "No valid " 1807 ecryptfs_printk(KERN_ERR, "No valid "
1808 "(ecryptfs-specific) literal " 1808 "(ecryptfs-specific) literal "
1809 "packet containing " 1809 "packet containing "
1810 "authentication token " 1810 "authentication token "
1811 "signature found after " 1811 "signature found after "
1812 "tag 3 packet\n"); 1812 "tag 3 packet\n");
1813 rc = -EIO; 1813 rc = -EIO;
1814 goto out_wipe_list; 1814 goto out_wipe_list;
1815 } 1815 }
1816 i += tag_11_packet_size; 1816 i += tag_11_packet_size;
1817 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) { 1817 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1818 ecryptfs_printk(KERN_ERR, "Expected " 1818 ecryptfs_printk(KERN_ERR, "Expected "
1819 "signature of size [%d]; " 1819 "signature of size [%d]; "
1820 "read size [%zd]\n", 1820 "read size [%zd]\n",
1821 ECRYPTFS_SIG_SIZE, 1821 ECRYPTFS_SIG_SIZE,
1822 tag_11_contents_size); 1822 tag_11_contents_size);
1823 rc = -EIO; 1823 rc = -EIO;
1824 goto out_wipe_list; 1824 goto out_wipe_list;
1825 } 1825 }
1826 ecryptfs_to_hex(new_auth_tok->token.password.signature, 1826 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1827 sig_tmp_space, tag_11_contents_size); 1827 sig_tmp_space, tag_11_contents_size);
1828 new_auth_tok->token.password.signature[ 1828 new_auth_tok->token.password.signature[
1829 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0'; 1829 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1830 crypt_stat->flags |= ECRYPTFS_ENCRYPTED; 1830 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1831 break; 1831 break;
1832 case ECRYPTFS_TAG_1_PACKET_TYPE: 1832 case ECRYPTFS_TAG_1_PACKET_TYPE:
1833 rc = parse_tag_1_packet(crypt_stat, 1833 rc = parse_tag_1_packet(crypt_stat,
1834 (unsigned char *)&src[i], 1834 (unsigned char *)&src[i],
1835 &auth_tok_list, &new_auth_tok, 1835 &auth_tok_list, &new_auth_tok,
1836 &packet_size, max_packet_size); 1836 &packet_size, max_packet_size);
1837 if (rc) { 1837 if (rc) {
1838 ecryptfs_printk(KERN_ERR, "Error parsing " 1838 ecryptfs_printk(KERN_ERR, "Error parsing "
1839 "tag 1 packet\n"); 1839 "tag 1 packet\n");
1840 rc = -EIO; 1840 rc = -EIO;
1841 goto out_wipe_list; 1841 goto out_wipe_list;
1842 } 1842 }
1843 i += packet_size; 1843 i += packet_size;
1844 crypt_stat->flags |= ECRYPTFS_ENCRYPTED; 1844 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1845 break; 1845 break;
1846 case ECRYPTFS_TAG_11_PACKET_TYPE: 1846 case ECRYPTFS_TAG_11_PACKET_TYPE:
1847 ecryptfs_printk(KERN_WARNING, "Invalid packet set " 1847 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1848 "(Tag 11 not allowed by itself)\n"); 1848 "(Tag 11 not allowed by itself)\n");
1849 rc = -EIO; 1849 rc = -EIO;
1850 goto out_wipe_list; 1850 goto out_wipe_list;
1851 break; 1851 break;
1852 default: 1852 default:
1853 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] " 1853 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1854 "of the file header; hex value of " 1854 "of the file header; hex value of "
1855 "character is [0x%.2x]\n", i, src[i]); 1855 "character is [0x%.2x]\n", i, src[i]);
1856 next_packet_is_auth_tok_packet = 0; 1856 next_packet_is_auth_tok_packet = 0;
1857 } 1857 }
1858 } 1858 }
1859 if (list_empty(&auth_tok_list)) { 1859 if (list_empty(&auth_tok_list)) {
1860 printk(KERN_ERR "The lower file appears to be a non-encrypted " 1860 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1861 "eCryptfs file; this is not supported in this version " 1861 "eCryptfs file; this is not supported in this version "
1862 "of the eCryptfs kernel module\n"); 1862 "of the eCryptfs kernel module\n");
1863 rc = -EINVAL; 1863 rc = -EINVAL;
1864 goto out; 1864 goto out;
1865 } 1865 }
1866 /* auth_tok_list contains the set of authentication tokens 1866 /* auth_tok_list contains the set of authentication tokens
1867 * parsed from the metadata. We need to find a matching 1867 * parsed from the metadata. We need to find a matching
1868 * authentication token that has the secret component(s) 1868 * authentication token that has the secret component(s)
1869 * necessary to decrypt the EFEK in the auth_tok parsed from 1869 * necessary to decrypt the EFEK in the auth_tok parsed from
1870 * the metadata. There may be several potential matches, but 1870 * the metadata. There may be several potential matches, but
1871 * just one will be sufficient to decrypt to get the FEK. */ 1871 * just one will be sufficient to decrypt to get the FEK. */
1872 find_next_matching_auth_tok: 1872 find_next_matching_auth_tok:
1873 found_auth_tok = 0; 1873 found_auth_tok = 0;
1874 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) { 1874 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1875 candidate_auth_tok = &auth_tok_list_item->auth_tok; 1875 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1876 if (unlikely(ecryptfs_verbosity > 0)) { 1876 if (unlikely(ecryptfs_verbosity > 0)) {
1877 ecryptfs_printk(KERN_DEBUG, 1877 ecryptfs_printk(KERN_DEBUG,
1878 "Considering cadidate auth tok:\n"); 1878 "Considering cadidate auth tok:\n");
1879 ecryptfs_dump_auth_tok(candidate_auth_tok); 1879 ecryptfs_dump_auth_tok(candidate_auth_tok);
1880 } 1880 }
1881 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig, 1881 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1882 candidate_auth_tok); 1882 candidate_auth_tok);
1883 if (rc) { 1883 if (rc) {
1884 printk(KERN_ERR 1884 printk(KERN_ERR
1885 "Unrecognized candidate auth tok type: [%d]\n", 1885 "Unrecognized candidate auth tok type: [%d]\n",
1886 candidate_auth_tok->token_type); 1886 candidate_auth_tok->token_type);
1887 rc = -EINVAL; 1887 rc = -EINVAL;
1888 goto out_wipe_list; 1888 goto out_wipe_list;
1889 } 1889 }
1890 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key, 1890 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1891 &matching_auth_tok, 1891 &matching_auth_tok,
1892 crypt_stat->mount_crypt_stat, 1892 crypt_stat->mount_crypt_stat,
1893 candidate_auth_tok_sig); 1893 candidate_auth_tok_sig);
1894 if (!rc) { 1894 if (!rc) {
1895 found_auth_tok = 1; 1895 found_auth_tok = 1;
1896 goto found_matching_auth_tok; 1896 goto found_matching_auth_tok;
1897 } 1897 }
1898 } 1898 }
1899 if (!found_auth_tok) { 1899 if (!found_auth_tok) {
1900 ecryptfs_printk(KERN_ERR, "Could not find a usable " 1900 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1901 "authentication token\n"); 1901 "authentication token\n");
1902 rc = -EIO; 1902 rc = -EIO;
1903 goto out_wipe_list; 1903 goto out_wipe_list;
1904 } 1904 }
1905 found_matching_auth_tok: 1905 found_matching_auth_tok:
1906 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { 1906 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1907 memcpy(&(candidate_auth_tok->token.private_key), 1907 memcpy(&(candidate_auth_tok->token.private_key),
1908 &(matching_auth_tok->token.private_key), 1908 &(matching_auth_tok->token.private_key),
1909 sizeof(struct ecryptfs_private_key)); 1909 sizeof(struct ecryptfs_private_key));
1910 up_write(&(auth_tok_key->sem)); 1910 up_write(&(auth_tok_key->sem));
1911 key_put(auth_tok_key); 1911 key_put(auth_tok_key);
1912 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok, 1912 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1913 crypt_stat); 1913 crypt_stat);
1914 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) { 1914 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1915 memcpy(&(candidate_auth_tok->token.password), 1915 memcpy(&(candidate_auth_tok->token.password),
1916 &(matching_auth_tok->token.password), 1916 &(matching_auth_tok->token.password),
1917 sizeof(struct ecryptfs_password)); 1917 sizeof(struct ecryptfs_password));
1918 up_write(&(auth_tok_key->sem)); 1918 up_write(&(auth_tok_key->sem));
1919 key_put(auth_tok_key); 1919 key_put(auth_tok_key);
1920 rc = decrypt_passphrase_encrypted_session_key( 1920 rc = decrypt_passphrase_encrypted_session_key(
1921 candidate_auth_tok, crypt_stat); 1921 candidate_auth_tok, crypt_stat);
1922 } else { 1922 } else {
1923 up_write(&(auth_tok_key->sem)); 1923 up_write(&(auth_tok_key->sem));
1924 key_put(auth_tok_key); 1924 key_put(auth_tok_key);
1925 rc = -EINVAL; 1925 rc = -EINVAL;
1926 } 1926 }
1927 if (rc) { 1927 if (rc) {
1928 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp; 1928 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1929 1929
1930 ecryptfs_printk(KERN_WARNING, "Error decrypting the " 1930 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1931 "session key for authentication token with sig " 1931 "session key for authentication token with sig "
1932 "[%.*s]; rc = [%d]. Removing auth tok " 1932 "[%.*s]; rc = [%d]. Removing auth tok "
1933 "candidate from the list and searching for " 1933 "candidate from the list and searching for "
1934 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX, 1934 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1935 candidate_auth_tok_sig, rc); 1935 candidate_auth_tok_sig, rc);
1936 list_for_each_entry_safe(auth_tok_list_item, 1936 list_for_each_entry_safe(auth_tok_list_item,
1937 auth_tok_list_item_tmp, 1937 auth_tok_list_item_tmp,
1938 &auth_tok_list, list) { 1938 &auth_tok_list, list) {
1939 if (candidate_auth_tok 1939 if (candidate_auth_tok
1940 == &auth_tok_list_item->auth_tok) { 1940 == &auth_tok_list_item->auth_tok) {
1941 list_del(&auth_tok_list_item->list); 1941 list_del(&auth_tok_list_item->list);
1942 kmem_cache_free( 1942 kmem_cache_free(
1943 ecryptfs_auth_tok_list_item_cache, 1943 ecryptfs_auth_tok_list_item_cache,
1944 auth_tok_list_item); 1944 auth_tok_list_item);
1945 goto find_next_matching_auth_tok; 1945 goto find_next_matching_auth_tok;
1946 } 1946 }
1947 } 1947 }
1948 BUG(); 1948 BUG();
1949 } 1949 }
1950 rc = ecryptfs_compute_root_iv(crypt_stat); 1950 rc = ecryptfs_compute_root_iv(crypt_stat);
1951 if (rc) { 1951 if (rc) {
1952 ecryptfs_printk(KERN_ERR, "Error computing " 1952 ecryptfs_printk(KERN_ERR, "Error computing "
1953 "the root IV\n"); 1953 "the root IV\n");
1954 goto out_wipe_list; 1954 goto out_wipe_list;
1955 } 1955 }
1956 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1956 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1957 if (rc) { 1957 if (rc) {
1958 ecryptfs_printk(KERN_ERR, "Error initializing crypto " 1958 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1959 "context for cipher [%s]; rc = [%d]\n", 1959 "context for cipher [%s]; rc = [%d]\n",
1960 crypt_stat->cipher, rc); 1960 crypt_stat->cipher, rc);
1961 } 1961 }
1962 out_wipe_list: 1962 out_wipe_list:
1963 wipe_auth_tok_list(&auth_tok_list); 1963 wipe_auth_tok_list(&auth_tok_list);
1964 out: 1964 out:
1965 return rc; 1965 return rc;
1966 } 1966 }
1967 1967
1968 static int 1968 static int
1969 pki_encrypt_session_key(struct key *auth_tok_key, 1969 pki_encrypt_session_key(struct key *auth_tok_key,
1970 struct ecryptfs_auth_tok *auth_tok, 1970 struct ecryptfs_auth_tok *auth_tok,
1971 struct ecryptfs_crypt_stat *crypt_stat, 1971 struct ecryptfs_crypt_stat *crypt_stat,
1972 struct ecryptfs_key_record *key_rec) 1972 struct ecryptfs_key_record *key_rec)
1973 { 1973 {
1974 struct ecryptfs_msg_ctx *msg_ctx = NULL; 1974 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1975 char *payload = NULL; 1975 char *payload = NULL;
1976 size_t payload_len; 1976 size_t payload_len = 0;
1977 struct ecryptfs_message *msg; 1977 struct ecryptfs_message *msg;
1978 int rc; 1978 int rc;
1979 1979
1980 rc = write_tag_66_packet(auth_tok->token.private_key.signature, 1980 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1981 ecryptfs_code_for_cipher_string( 1981 ecryptfs_code_for_cipher_string(
1982 crypt_stat->cipher, 1982 crypt_stat->cipher,
1983 crypt_stat->key_size), 1983 crypt_stat->key_size),
1984 crypt_stat, &payload, &payload_len); 1984 crypt_stat, &payload, &payload_len);
1985 up_write(&(auth_tok_key->sem)); 1985 up_write(&(auth_tok_key->sem));
1986 key_put(auth_tok_key); 1986 key_put(auth_tok_key);
1987 if (rc) { 1987 if (rc) {
1988 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n"); 1988 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1989 goto out; 1989 goto out;
1990 } 1990 }
1991 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx); 1991 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1992 if (rc) { 1992 if (rc) {
1993 ecryptfs_printk(KERN_ERR, "Error sending message to " 1993 ecryptfs_printk(KERN_ERR, "Error sending message to "
1994 "ecryptfsd\n"); 1994 "ecryptfsd\n");
1995 goto out; 1995 goto out;
1996 } 1996 }
1997 rc = ecryptfs_wait_for_response(msg_ctx, &msg); 1997 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1998 if (rc) { 1998 if (rc) {
1999 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet " 1999 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2000 "from the user space daemon\n"); 2000 "from the user space daemon\n");
2001 rc = -EIO; 2001 rc = -EIO;
2002 goto out; 2002 goto out;
2003 } 2003 }
2004 rc = parse_tag_67_packet(key_rec, msg); 2004 rc = parse_tag_67_packet(key_rec, msg);
2005 if (rc) 2005 if (rc)
2006 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n"); 2006 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2007 kfree(msg); 2007 kfree(msg);
2008 out: 2008 out:
2009 kfree(payload); 2009 kfree(payload);
2010 return rc; 2010 return rc;
2011 } 2011 }
2012 /** 2012 /**
2013 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet 2013 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2014 * @dest: Buffer into which to write the packet 2014 * @dest: Buffer into which to write the packet
2015 * @remaining_bytes: Maximum number of bytes that can be writtn 2015 * @remaining_bytes: Maximum number of bytes that can be writtn
2016 * @auth_tok_key: The authentication token key to unlock and put when done with 2016 * @auth_tok_key: The authentication token key to unlock and put when done with
2017 * @auth_tok 2017 * @auth_tok
2018 * @auth_tok: The authentication token used for generating the tag 1 packet 2018 * @auth_tok: The authentication token used for generating the tag 1 packet
2019 * @crypt_stat: The cryptographic context 2019 * @crypt_stat: The cryptographic context
2020 * @key_rec: The key record struct for the tag 1 packet 2020 * @key_rec: The key record struct for the tag 1 packet
2021 * @packet_size: This function will write the number of bytes that end 2021 * @packet_size: This function will write the number of bytes that end
2022 * up constituting the packet; set to zero on error 2022 * up constituting the packet; set to zero on error
2023 * 2023 *
2024 * Returns zero on success; non-zero on error. 2024 * Returns zero on success; non-zero on error.
2025 */ 2025 */
2026 static int 2026 static int
2027 write_tag_1_packet(char *dest, size_t *remaining_bytes, 2027 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2028 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok, 2028 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2029 struct ecryptfs_crypt_stat *crypt_stat, 2029 struct ecryptfs_crypt_stat *crypt_stat,
2030 struct ecryptfs_key_record *key_rec, size_t *packet_size) 2030 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2031 { 2031 {
2032 size_t i; 2032 size_t i;
2033 size_t encrypted_session_key_valid = 0; 2033 size_t encrypted_session_key_valid = 0;
2034 size_t packet_size_length; 2034 size_t packet_size_length;
2035 size_t max_packet_size; 2035 size_t max_packet_size;
2036 int rc = 0; 2036 int rc = 0;
2037 2037
2038 (*packet_size) = 0; 2038 (*packet_size) = 0;
2039 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature, 2039 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2040 ECRYPTFS_SIG_SIZE); 2040 ECRYPTFS_SIG_SIZE);
2041 encrypted_session_key_valid = 0; 2041 encrypted_session_key_valid = 0;
2042 for (i = 0; i < crypt_stat->key_size; i++) 2042 for (i = 0; i < crypt_stat->key_size; i++)
2043 encrypted_session_key_valid |= 2043 encrypted_session_key_valid |=
2044 auth_tok->session_key.encrypted_key[i]; 2044 auth_tok->session_key.encrypted_key[i];
2045 if (encrypted_session_key_valid) { 2045 if (encrypted_session_key_valid) {
2046 memcpy(key_rec->enc_key, 2046 memcpy(key_rec->enc_key,
2047 auth_tok->session_key.encrypted_key, 2047 auth_tok->session_key.encrypted_key,
2048 auth_tok->session_key.encrypted_key_size); 2048 auth_tok->session_key.encrypted_key_size);
2049 up_write(&(auth_tok_key->sem)); 2049 up_write(&(auth_tok_key->sem));
2050 key_put(auth_tok_key); 2050 key_put(auth_tok_key);
2051 goto encrypted_session_key_set; 2051 goto encrypted_session_key_set;
2052 } 2052 }
2053 if (auth_tok->session_key.encrypted_key_size == 0) 2053 if (auth_tok->session_key.encrypted_key_size == 0)
2054 auth_tok->session_key.encrypted_key_size = 2054 auth_tok->session_key.encrypted_key_size =
2055 auth_tok->token.private_key.key_size; 2055 auth_tok->token.private_key.key_size;
2056 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat, 2056 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2057 key_rec); 2057 key_rec);
2058 if (rc) { 2058 if (rc) {
2059 printk(KERN_ERR "Failed to encrypt session key via a key " 2059 printk(KERN_ERR "Failed to encrypt session key via a key "
2060 "module; rc = [%d]\n", rc); 2060 "module; rc = [%d]\n", rc);
2061 goto out; 2061 goto out;
2062 } 2062 }
2063 if (ecryptfs_verbosity > 0) { 2063 if (ecryptfs_verbosity > 0) {
2064 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n"); 2064 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2065 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size); 2065 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2066 } 2066 }
2067 encrypted_session_key_set: 2067 encrypted_session_key_set:
2068 /* This format is inspired by OpenPGP; see RFC 2440 2068 /* This format is inspired by OpenPGP; see RFC 2440
2069 * packet tag 1 */ 2069 * packet tag 1 */
2070 max_packet_size = (1 /* Tag 1 identifier */ 2070 max_packet_size = (1 /* Tag 1 identifier */
2071 + 3 /* Max Tag 1 packet size */ 2071 + 3 /* Max Tag 1 packet size */
2072 + 1 /* Version */ 2072 + 1 /* Version */
2073 + ECRYPTFS_SIG_SIZE /* Key identifier */ 2073 + ECRYPTFS_SIG_SIZE /* Key identifier */
2074 + 1 /* Cipher identifier */ 2074 + 1 /* Cipher identifier */
2075 + key_rec->enc_key_size); /* Encrypted key size */ 2075 + key_rec->enc_key_size); /* Encrypted key size */
2076 if (max_packet_size > (*remaining_bytes)) { 2076 if (max_packet_size > (*remaining_bytes)) {
2077 printk(KERN_ERR "Packet length larger than maximum allowable; " 2077 printk(KERN_ERR "Packet length larger than maximum allowable; "
2078 "need up to [%td] bytes, but there are only [%td] " 2078 "need up to [%td] bytes, but there are only [%td] "
2079 "available\n", max_packet_size, (*remaining_bytes)); 2079 "available\n", max_packet_size, (*remaining_bytes));
2080 rc = -EINVAL; 2080 rc = -EINVAL;
2081 goto out; 2081 goto out;
2082 } 2082 }
2083 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE; 2083 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2084 rc = ecryptfs_write_packet_length(&dest[(*packet_size)], 2084 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2085 (max_packet_size - 4), 2085 (max_packet_size - 4),
2086 &packet_size_length); 2086 &packet_size_length);
2087 if (rc) { 2087 if (rc) {
2088 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet " 2088 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2089 "header; cannot generate packet length\n"); 2089 "header; cannot generate packet length\n");
2090 goto out; 2090 goto out;
2091 } 2091 }
2092 (*packet_size) += packet_size_length; 2092 (*packet_size) += packet_size_length;
2093 dest[(*packet_size)++] = 0x03; /* version 3 */ 2093 dest[(*packet_size)++] = 0x03; /* version 3 */
2094 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE); 2094 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2095 (*packet_size) += ECRYPTFS_SIG_SIZE; 2095 (*packet_size) += ECRYPTFS_SIG_SIZE;
2096 dest[(*packet_size)++] = RFC2440_CIPHER_RSA; 2096 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2097 memcpy(&dest[(*packet_size)], key_rec->enc_key, 2097 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2098 key_rec->enc_key_size); 2098 key_rec->enc_key_size);
2099 (*packet_size) += key_rec->enc_key_size; 2099 (*packet_size) += key_rec->enc_key_size;
2100 out: 2100 out:
2101 if (rc) 2101 if (rc)
2102 (*packet_size) = 0; 2102 (*packet_size) = 0;
2103 else 2103 else
2104 (*remaining_bytes) -= (*packet_size); 2104 (*remaining_bytes) -= (*packet_size);
2105 return rc; 2105 return rc;
2106 } 2106 }
2107 2107
2108 /** 2108 /**
2109 * write_tag_11_packet 2109 * write_tag_11_packet
2110 * @dest: Target into which Tag 11 packet is to be written 2110 * @dest: Target into which Tag 11 packet is to be written
2111 * @remaining_bytes: Maximum packet length 2111 * @remaining_bytes: Maximum packet length
2112 * @contents: Byte array of contents to copy in 2112 * @contents: Byte array of contents to copy in
2113 * @contents_length: Number of bytes in contents 2113 * @contents_length: Number of bytes in contents
2114 * @packet_length: Length of the Tag 11 packet written; zero on error 2114 * @packet_length: Length of the Tag 11 packet written; zero on error
2115 * 2115 *
2116 * Returns zero on success; non-zero on error. 2116 * Returns zero on success; non-zero on error.
2117 */ 2117 */
2118 static int 2118 static int
2119 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents, 2119 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2120 size_t contents_length, size_t *packet_length) 2120 size_t contents_length, size_t *packet_length)
2121 { 2121 {
2122 size_t packet_size_length; 2122 size_t packet_size_length;
2123 size_t max_packet_size; 2123 size_t max_packet_size;
2124 int rc = 0; 2124 int rc = 0;
2125 2125
2126 (*packet_length) = 0; 2126 (*packet_length) = 0;
2127 /* This format is inspired by OpenPGP; see RFC 2440 2127 /* This format is inspired by OpenPGP; see RFC 2440
2128 * packet tag 11 */ 2128 * packet tag 11 */
2129 max_packet_size = (1 /* Tag 11 identifier */ 2129 max_packet_size = (1 /* Tag 11 identifier */
2130 + 3 /* Max Tag 11 packet size */ 2130 + 3 /* Max Tag 11 packet size */
2131 + 1 /* Binary format specifier */ 2131 + 1 /* Binary format specifier */
2132 + 1 /* Filename length */ 2132 + 1 /* Filename length */
2133 + 8 /* Filename ("_CONSOLE") */ 2133 + 8 /* Filename ("_CONSOLE") */
2134 + 4 /* Modification date */ 2134 + 4 /* Modification date */
2135 + contents_length); /* Literal data */ 2135 + contents_length); /* Literal data */
2136 if (max_packet_size > (*remaining_bytes)) { 2136 if (max_packet_size > (*remaining_bytes)) {
2137 printk(KERN_ERR "Packet length larger than maximum allowable; " 2137 printk(KERN_ERR "Packet length larger than maximum allowable; "
2138 "need up to [%td] bytes, but there are only [%td] " 2138 "need up to [%td] bytes, but there are only [%td] "
2139 "available\n", max_packet_size, (*remaining_bytes)); 2139 "available\n", max_packet_size, (*remaining_bytes));
2140 rc = -EINVAL; 2140 rc = -EINVAL;
2141 goto out; 2141 goto out;
2142 } 2142 }
2143 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE; 2143 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2144 rc = ecryptfs_write_packet_length(&dest[(*packet_length)], 2144 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2145 (max_packet_size - 4), 2145 (max_packet_size - 4),
2146 &packet_size_length); 2146 &packet_size_length);
2147 if (rc) { 2147 if (rc) {
2148 printk(KERN_ERR "Error generating tag 11 packet header; cannot " 2148 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2149 "generate packet length. rc = [%d]\n", rc); 2149 "generate packet length. rc = [%d]\n", rc);
2150 goto out; 2150 goto out;
2151 } 2151 }
2152 (*packet_length) += packet_size_length; 2152 (*packet_length) += packet_size_length;
2153 dest[(*packet_length)++] = 0x62; /* binary data format specifier */ 2153 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2154 dest[(*packet_length)++] = 8; 2154 dest[(*packet_length)++] = 8;
2155 memcpy(&dest[(*packet_length)], "_CONSOLE", 8); 2155 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2156 (*packet_length) += 8; 2156 (*packet_length) += 8;
2157 memset(&dest[(*packet_length)], 0x00, 4); 2157 memset(&dest[(*packet_length)], 0x00, 4);
2158 (*packet_length) += 4; 2158 (*packet_length) += 4;
2159 memcpy(&dest[(*packet_length)], contents, contents_length); 2159 memcpy(&dest[(*packet_length)], contents, contents_length);
2160 (*packet_length) += contents_length; 2160 (*packet_length) += contents_length;
2161 out: 2161 out:
2162 if (rc) 2162 if (rc)
2163 (*packet_length) = 0; 2163 (*packet_length) = 0;
2164 else 2164 else
2165 (*remaining_bytes) -= (*packet_length); 2165 (*remaining_bytes) -= (*packet_length);
2166 return rc; 2166 return rc;
2167 } 2167 }
2168 2168
2169 /** 2169 /**
2170 * write_tag_3_packet 2170 * write_tag_3_packet
2171 * @dest: Buffer into which to write the packet 2171 * @dest: Buffer into which to write the packet
2172 * @remaining_bytes: Maximum number of bytes that can be written 2172 * @remaining_bytes: Maximum number of bytes that can be written
2173 * @auth_tok: Authentication token 2173 * @auth_tok: Authentication token
2174 * @crypt_stat: The cryptographic context 2174 * @crypt_stat: The cryptographic context
2175 * @key_rec: encrypted key 2175 * @key_rec: encrypted key
2176 * @packet_size: This function will write the number of bytes that end 2176 * @packet_size: This function will write the number of bytes that end
2177 * up constituting the packet; set to zero on error 2177 * up constituting the packet; set to zero on error
2178 * 2178 *
2179 * Returns zero on success; non-zero on error. 2179 * Returns zero on success; non-zero on error.
2180 */ 2180 */
2181 static int 2181 static int
2182 write_tag_3_packet(char *dest, size_t *remaining_bytes, 2182 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2183 struct ecryptfs_auth_tok *auth_tok, 2183 struct ecryptfs_auth_tok *auth_tok,
2184 struct ecryptfs_crypt_stat *crypt_stat, 2184 struct ecryptfs_crypt_stat *crypt_stat,
2185 struct ecryptfs_key_record *key_rec, size_t *packet_size) 2185 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2186 { 2186 {
2187 size_t i; 2187 size_t i;
2188 size_t encrypted_session_key_valid = 0; 2188 size_t encrypted_session_key_valid = 0;
2189 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES]; 2189 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2190 struct scatterlist dst_sg[2]; 2190 struct scatterlist dst_sg[2];
2191 struct scatterlist src_sg[2]; 2191 struct scatterlist src_sg[2];
2192 struct mutex *tfm_mutex = NULL; 2192 struct mutex *tfm_mutex = NULL;
2193 u8 cipher_code; 2193 u8 cipher_code;
2194 size_t packet_size_length; 2194 size_t packet_size_length;
2195 size_t max_packet_size; 2195 size_t max_packet_size;
2196 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2196 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2197 crypt_stat->mount_crypt_stat; 2197 crypt_stat->mount_crypt_stat;
2198 struct blkcipher_desc desc = { 2198 struct blkcipher_desc desc = {
2199 .tfm = NULL, 2199 .tfm = NULL,
2200 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 2200 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2201 }; 2201 };
2202 int rc = 0; 2202 int rc = 0;
2203 2203
2204 (*packet_size) = 0; 2204 (*packet_size) = 0;
2205 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature, 2205 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2206 ECRYPTFS_SIG_SIZE); 2206 ECRYPTFS_SIG_SIZE);
2207 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2207 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2208 crypt_stat->cipher); 2208 crypt_stat->cipher);
2209 if (unlikely(rc)) { 2209 if (unlikely(rc)) {
2210 printk(KERN_ERR "Internal error whilst attempting to get " 2210 printk(KERN_ERR "Internal error whilst attempting to get "
2211 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 2211 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2212 crypt_stat->cipher, rc); 2212 crypt_stat->cipher, rc);
2213 goto out; 2213 goto out;
2214 } 2214 }
2215 if (mount_crypt_stat->global_default_cipher_key_size == 0) { 2215 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2216 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm); 2216 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2217 2217
2218 printk(KERN_WARNING "No key size specified at mount; " 2218 printk(KERN_WARNING "No key size specified at mount; "
2219 "defaulting to [%d]\n", alg->max_keysize); 2219 "defaulting to [%d]\n", alg->max_keysize);
2220 mount_crypt_stat->global_default_cipher_key_size = 2220 mount_crypt_stat->global_default_cipher_key_size =
2221 alg->max_keysize; 2221 alg->max_keysize;
2222 } 2222 }
2223 if (crypt_stat->key_size == 0) 2223 if (crypt_stat->key_size == 0)
2224 crypt_stat->key_size = 2224 crypt_stat->key_size =
2225 mount_crypt_stat->global_default_cipher_key_size; 2225 mount_crypt_stat->global_default_cipher_key_size;
2226 if (auth_tok->session_key.encrypted_key_size == 0) 2226 if (auth_tok->session_key.encrypted_key_size == 0)
2227 auth_tok->session_key.encrypted_key_size = 2227 auth_tok->session_key.encrypted_key_size =
2228 crypt_stat->key_size; 2228 crypt_stat->key_size;
2229 if (crypt_stat->key_size == 24 2229 if (crypt_stat->key_size == 24
2230 && strcmp("aes", crypt_stat->cipher) == 0) { 2230 && strcmp("aes", crypt_stat->cipher) == 0) {
2231 memset((crypt_stat->key + 24), 0, 8); 2231 memset((crypt_stat->key + 24), 0, 8);
2232 auth_tok->session_key.encrypted_key_size = 32; 2232 auth_tok->session_key.encrypted_key_size = 32;
2233 } else 2233 } else
2234 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size; 2234 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2235 key_rec->enc_key_size = 2235 key_rec->enc_key_size =
2236 auth_tok->session_key.encrypted_key_size; 2236 auth_tok->session_key.encrypted_key_size;
2237 encrypted_session_key_valid = 0; 2237 encrypted_session_key_valid = 0;
2238 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++) 2238 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2239 encrypted_session_key_valid |= 2239 encrypted_session_key_valid |=
2240 auth_tok->session_key.encrypted_key[i]; 2240 auth_tok->session_key.encrypted_key[i];
2241 if (encrypted_session_key_valid) { 2241 if (encrypted_session_key_valid) {
2242 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; " 2242 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2243 "using auth_tok->session_key.encrypted_key, " 2243 "using auth_tok->session_key.encrypted_key, "
2244 "where key_rec->enc_key_size = [%zd]\n", 2244 "where key_rec->enc_key_size = [%zd]\n",
2245 key_rec->enc_key_size); 2245 key_rec->enc_key_size);
2246 memcpy(key_rec->enc_key, 2246 memcpy(key_rec->enc_key,
2247 auth_tok->session_key.encrypted_key, 2247 auth_tok->session_key.encrypted_key,
2248 key_rec->enc_key_size); 2248 key_rec->enc_key_size);
2249 goto encrypted_session_key_set; 2249 goto encrypted_session_key_set;
2250 } 2250 }
2251 if (auth_tok->token.password.flags & 2251 if (auth_tok->token.password.flags &
2252 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) { 2252 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2253 ecryptfs_printk(KERN_DEBUG, "Using previously generated " 2253 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2254 "session key encryption key of size [%d]\n", 2254 "session key encryption key of size [%d]\n",
2255 auth_tok->token.password. 2255 auth_tok->token.password.
2256 session_key_encryption_key_bytes); 2256 session_key_encryption_key_bytes);
2257 memcpy(session_key_encryption_key, 2257 memcpy(session_key_encryption_key,
2258 auth_tok->token.password.session_key_encryption_key, 2258 auth_tok->token.password.session_key_encryption_key,
2259 crypt_stat->key_size); 2259 crypt_stat->key_size);
2260 ecryptfs_printk(KERN_DEBUG, 2260 ecryptfs_printk(KERN_DEBUG,
2261 "Cached session key encryption key:\n"); 2261 "Cached session key encryption key:\n");
2262 if (ecryptfs_verbosity > 0) 2262 if (ecryptfs_verbosity > 0)
2263 ecryptfs_dump_hex(session_key_encryption_key, 16); 2263 ecryptfs_dump_hex(session_key_encryption_key, 16);
2264 } 2264 }
2265 if (unlikely(ecryptfs_verbosity > 0)) { 2265 if (unlikely(ecryptfs_verbosity > 0)) {
2266 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n"); 2266 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2267 ecryptfs_dump_hex(session_key_encryption_key, 16); 2267 ecryptfs_dump_hex(session_key_encryption_key, 16);
2268 } 2268 }
2269 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size, 2269 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2270 src_sg, 2); 2270 src_sg, 2);
2271 if (rc < 1 || rc > 2) { 2271 if (rc < 1 || rc > 2) {
2272 ecryptfs_printk(KERN_ERR, "Error generating scatterlist " 2272 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2273 "for crypt_stat session key; expected rc = 1; " 2273 "for crypt_stat session key; expected rc = 1; "
2274 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n", 2274 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2275 rc, key_rec->enc_key_size); 2275 rc, key_rec->enc_key_size);
2276 rc = -ENOMEM; 2276 rc = -ENOMEM;
2277 goto out; 2277 goto out;
2278 } 2278 }
2279 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size, 2279 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2280 dst_sg, 2); 2280 dst_sg, 2);
2281 if (rc < 1 || rc > 2) { 2281 if (rc < 1 || rc > 2) {
2282 ecryptfs_printk(KERN_ERR, "Error generating scatterlist " 2282 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2283 "for crypt_stat encrypted session key; " 2283 "for crypt_stat encrypted session key; "
2284 "expected rc = 1; got rc = [%d]. " 2284 "expected rc = 1; got rc = [%d]. "
2285 "key_rec->enc_key_size = [%zd]\n", rc, 2285 "key_rec->enc_key_size = [%zd]\n", rc,
2286 key_rec->enc_key_size); 2286 key_rec->enc_key_size);
2287 rc = -ENOMEM; 2287 rc = -ENOMEM;
2288 goto out; 2288 goto out;
2289 } 2289 }
2290 mutex_lock(tfm_mutex); 2290 mutex_lock(tfm_mutex);
2291 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key, 2291 rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2292 crypt_stat->key_size); 2292 crypt_stat->key_size);
2293 if (rc < 0) { 2293 if (rc < 0) {
2294 mutex_unlock(tfm_mutex); 2294 mutex_unlock(tfm_mutex);
2295 ecryptfs_printk(KERN_ERR, "Error setting key for crypto " 2295 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2296 "context; rc = [%d]\n", rc); 2296 "context; rc = [%d]\n", rc);
2297 goto out; 2297 goto out;
2298 } 2298 }
2299 rc = 0; 2299 rc = 0;
2300 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n", 2300 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2301 crypt_stat->key_size); 2301 crypt_stat->key_size);
2302 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg, 2302 rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2303 (*key_rec).enc_key_size); 2303 (*key_rec).enc_key_size);
2304 mutex_unlock(tfm_mutex); 2304 mutex_unlock(tfm_mutex);
2305 if (rc) { 2305 if (rc) {
2306 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc); 2306 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2307 goto out; 2307 goto out;
2308 } 2308 }
2309 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n"); 2309 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2310 if (ecryptfs_verbosity > 0) { 2310 if (ecryptfs_verbosity > 0) {
2311 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n", 2311 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2312 key_rec->enc_key_size); 2312 key_rec->enc_key_size);
2313 ecryptfs_dump_hex(key_rec->enc_key, 2313 ecryptfs_dump_hex(key_rec->enc_key,
2314 key_rec->enc_key_size); 2314 key_rec->enc_key_size);
2315 } 2315 }
2316 encrypted_session_key_set: 2316 encrypted_session_key_set:
2317 /* This format is inspired by OpenPGP; see RFC 2440 2317 /* This format is inspired by OpenPGP; see RFC 2440
2318 * packet tag 3 */ 2318 * packet tag 3 */
2319 max_packet_size = (1 /* Tag 3 identifier */ 2319 max_packet_size = (1 /* Tag 3 identifier */
2320 + 3 /* Max Tag 3 packet size */ 2320 + 3 /* Max Tag 3 packet size */
2321 + 1 /* Version */ 2321 + 1 /* Version */
2322 + 1 /* Cipher code */ 2322 + 1 /* Cipher code */
2323 + 1 /* S2K specifier */ 2323 + 1 /* S2K specifier */
2324 + 1 /* Hash identifier */ 2324 + 1 /* Hash identifier */
2325 + ECRYPTFS_SALT_SIZE /* Salt */ 2325 + ECRYPTFS_SALT_SIZE /* Salt */
2326 + 1 /* Hash iterations */ 2326 + 1 /* Hash iterations */
2327 + key_rec->enc_key_size); /* Encrypted key size */ 2327 + key_rec->enc_key_size); /* Encrypted key size */
2328 if (max_packet_size > (*remaining_bytes)) { 2328 if (max_packet_size > (*remaining_bytes)) {
2329 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but " 2329 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2330 "there are only [%td] available\n", max_packet_size, 2330 "there are only [%td] available\n", max_packet_size,
2331 (*remaining_bytes)); 2331 (*remaining_bytes));
2332 rc = -EINVAL; 2332 rc = -EINVAL;
2333 goto out; 2333 goto out;
2334 } 2334 }
2335 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE; 2335 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2336 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3) 2336 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2337 * to get the number of octets in the actual Tag 3 packet */ 2337 * to get the number of octets in the actual Tag 3 packet */
2338 rc = ecryptfs_write_packet_length(&dest[(*packet_size)], 2338 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2339 (max_packet_size - 4), 2339 (max_packet_size - 4),
2340 &packet_size_length); 2340 &packet_size_length);
2341 if (rc) { 2341 if (rc) {
2342 printk(KERN_ERR "Error generating tag 3 packet header; cannot " 2342 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2343 "generate packet length. rc = [%d]\n", rc); 2343 "generate packet length. rc = [%d]\n", rc);
2344 goto out; 2344 goto out;
2345 } 2345 }
2346 (*packet_size) += packet_size_length; 2346 (*packet_size) += packet_size_length;
2347 dest[(*packet_size)++] = 0x04; /* version 4 */ 2347 dest[(*packet_size)++] = 0x04; /* version 4 */
2348 /* TODO: Break from RFC2440 so that arbitrary ciphers can be 2348 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2349 * specified with strings */ 2349 * specified with strings */
2350 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher, 2350 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2351 crypt_stat->key_size); 2351 crypt_stat->key_size);
2352 if (cipher_code == 0) { 2352 if (cipher_code == 0) {
2353 ecryptfs_printk(KERN_WARNING, "Unable to generate code for " 2353 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2354 "cipher [%s]\n", crypt_stat->cipher); 2354 "cipher [%s]\n", crypt_stat->cipher);
2355 rc = -EINVAL; 2355 rc = -EINVAL;
2356 goto out; 2356 goto out;
2357 } 2357 }
2358 dest[(*packet_size)++] = cipher_code; 2358 dest[(*packet_size)++] = cipher_code;
2359 dest[(*packet_size)++] = 0x03; /* S2K */ 2359 dest[(*packet_size)++] = 0x03; /* S2K */
2360 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */ 2360 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2361 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt, 2361 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2362 ECRYPTFS_SALT_SIZE); 2362 ECRYPTFS_SALT_SIZE);
2363 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */ 2363 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2364 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */ 2364 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2365 memcpy(&dest[(*packet_size)], key_rec->enc_key, 2365 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2366 key_rec->enc_key_size); 2366 key_rec->enc_key_size);
2367 (*packet_size) += key_rec->enc_key_size; 2367 (*packet_size) += key_rec->enc_key_size;
2368 out: 2368 out:
2369 if (rc) 2369 if (rc)
2370 (*packet_size) = 0; 2370 (*packet_size) = 0;
2371 else 2371 else
2372 (*remaining_bytes) -= (*packet_size); 2372 (*remaining_bytes) -= (*packet_size);
2373 return rc; 2373 return rc;
2374 } 2374 }
2375 2375
2376 struct kmem_cache *ecryptfs_key_record_cache; 2376 struct kmem_cache *ecryptfs_key_record_cache;
2377 2377
2378 /** 2378 /**
2379 * ecryptfs_generate_key_packet_set 2379 * ecryptfs_generate_key_packet_set
2380 * @dest_base: Virtual address from which to write the key record set 2380 * @dest_base: Virtual address from which to write the key record set
2381 * @crypt_stat: The cryptographic context from which the 2381 * @crypt_stat: The cryptographic context from which the
2382 * authentication tokens will be retrieved 2382 * authentication tokens will be retrieved
2383 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat 2383 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2384 * for the global parameters 2384 * for the global parameters
2385 * @len: The amount written 2385 * @len: The amount written
2386 * @max: The maximum amount of data allowed to be written 2386 * @max: The maximum amount of data allowed to be written
2387 * 2387 *
2388 * Generates a key packet set and writes it to the virtual address 2388 * Generates a key packet set and writes it to the virtual address
2389 * passed in. 2389 * passed in.
2390 * 2390 *
2391 * Returns zero on success; non-zero on error. 2391 * Returns zero on success; non-zero on error.
2392 */ 2392 */
2393 int 2393 int
2394 ecryptfs_generate_key_packet_set(char *dest_base, 2394 ecryptfs_generate_key_packet_set(char *dest_base,
2395 struct ecryptfs_crypt_stat *crypt_stat, 2395 struct ecryptfs_crypt_stat *crypt_stat,
2396 struct dentry *ecryptfs_dentry, size_t *len, 2396 struct dentry *ecryptfs_dentry, size_t *len,
2397 size_t max) 2397 size_t max)
2398 { 2398 {
2399 struct ecryptfs_auth_tok *auth_tok; 2399 struct ecryptfs_auth_tok *auth_tok;
2400 struct key *auth_tok_key = NULL; 2400 struct key *auth_tok_key = NULL;
2401 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2401 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2402 &ecryptfs_superblock_to_private( 2402 &ecryptfs_superblock_to_private(
2403 ecryptfs_dentry->d_sb)->mount_crypt_stat; 2403 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2404 size_t written; 2404 size_t written;
2405 struct ecryptfs_key_record *key_rec; 2405 struct ecryptfs_key_record *key_rec;
2406 struct ecryptfs_key_sig *key_sig; 2406 struct ecryptfs_key_sig *key_sig;
2407 int rc = 0; 2407 int rc = 0;
2408 2408
2409 (*len) = 0; 2409 (*len) = 0;
2410 mutex_lock(&crypt_stat->keysig_list_mutex); 2410 mutex_lock(&crypt_stat->keysig_list_mutex);
2411 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL); 2411 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2412 if (!key_rec) { 2412 if (!key_rec) {
2413 rc = -ENOMEM; 2413 rc = -ENOMEM;
2414 goto out; 2414 goto out;
2415 } 2415 }
2416 list_for_each_entry(key_sig, &crypt_stat->keysig_list, 2416 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2417 crypt_stat_list) { 2417 crypt_stat_list) {
2418 memset(key_rec, 0, sizeof(*key_rec)); 2418 memset(key_rec, 0, sizeof(*key_rec));
2419 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key, 2419 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2420 &auth_tok, 2420 &auth_tok,
2421 mount_crypt_stat, 2421 mount_crypt_stat,
2422 key_sig->keysig); 2422 key_sig->keysig);
2423 if (rc) { 2423 if (rc) {
2424 printk(KERN_WARNING "Unable to retrieve auth tok with " 2424 printk(KERN_WARNING "Unable to retrieve auth tok with "
2425 "sig = [%s]\n", key_sig->keysig); 2425 "sig = [%s]\n", key_sig->keysig);
2426 rc = process_find_global_auth_tok_for_sig_err(rc); 2426 rc = process_find_global_auth_tok_for_sig_err(rc);
2427 goto out_free; 2427 goto out_free;
2428 } 2428 }
2429 if (auth_tok->token_type == ECRYPTFS_PASSWORD) { 2429 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2430 rc = write_tag_3_packet((dest_base + (*len)), 2430 rc = write_tag_3_packet((dest_base + (*len)),
2431 &max, auth_tok, 2431 &max, auth_tok,
2432 crypt_stat, key_rec, 2432 crypt_stat, key_rec,
2433 &written); 2433 &written);
2434 up_write(&(auth_tok_key->sem)); 2434 up_write(&(auth_tok_key->sem));
2435 key_put(auth_tok_key); 2435 key_put(auth_tok_key);
2436 if (rc) { 2436 if (rc) {
2437 ecryptfs_printk(KERN_WARNING, "Error " 2437 ecryptfs_printk(KERN_WARNING, "Error "
2438 "writing tag 3 packet\n"); 2438 "writing tag 3 packet\n");
2439 goto out_free; 2439 goto out_free;
2440 } 2440 }
2441 (*len) += written; 2441 (*len) += written;
2442 /* Write auth tok signature packet */ 2442 /* Write auth tok signature packet */
2443 rc = write_tag_11_packet((dest_base + (*len)), &max, 2443 rc = write_tag_11_packet((dest_base + (*len)), &max,
2444 key_rec->sig, 2444 key_rec->sig,
2445 ECRYPTFS_SIG_SIZE, &written); 2445 ECRYPTFS_SIG_SIZE, &written);
2446 if (rc) { 2446 if (rc) {
2447 ecryptfs_printk(KERN_ERR, "Error writing " 2447 ecryptfs_printk(KERN_ERR, "Error writing "
2448 "auth tok signature packet\n"); 2448 "auth tok signature packet\n");
2449 goto out_free; 2449 goto out_free;
2450 } 2450 }
2451 (*len) += written; 2451 (*len) += written;
2452 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { 2452 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2453 rc = write_tag_1_packet(dest_base + (*len), &max, 2453 rc = write_tag_1_packet(dest_base + (*len), &max,
2454 auth_tok_key, auth_tok, 2454 auth_tok_key, auth_tok,
2455 crypt_stat, key_rec, &written); 2455 crypt_stat, key_rec, &written);
2456 if (rc) { 2456 if (rc) {
2457 ecryptfs_printk(KERN_WARNING, "Error " 2457 ecryptfs_printk(KERN_WARNING, "Error "
2458 "writing tag 1 packet\n"); 2458 "writing tag 1 packet\n");
2459 goto out_free; 2459 goto out_free;
2460 } 2460 }
2461 (*len) += written; 2461 (*len) += written;
2462 } else { 2462 } else {
2463 up_write(&(auth_tok_key->sem)); 2463 up_write(&(auth_tok_key->sem));
2464 key_put(auth_tok_key); 2464 key_put(auth_tok_key);
2465 ecryptfs_printk(KERN_WARNING, "Unsupported " 2465 ecryptfs_printk(KERN_WARNING, "Unsupported "
2466 "authentication token type\n"); 2466 "authentication token type\n");
2467 rc = -EINVAL; 2467 rc = -EINVAL;
2468 goto out_free; 2468 goto out_free;
2469 } 2469 }
2470 } 2470 }
2471 if (likely(max > 0)) { 2471 if (likely(max > 0)) {
2472 dest_base[(*len)] = 0x00; 2472 dest_base[(*len)] = 0x00;
2473 } else { 2473 } else {
2474 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n"); 2474 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2475 rc = -EIO; 2475 rc = -EIO;
2476 } 2476 }
2477 out_free: 2477 out_free:
2478 kmem_cache_free(ecryptfs_key_record_cache, key_rec); 2478 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2479 out: 2479 out:
2480 if (rc) 2480 if (rc)
2481 (*len) = 0; 2481 (*len) = 0;
2482 mutex_unlock(&crypt_stat->keysig_list_mutex); 2482 mutex_unlock(&crypt_stat->keysig_list_mutex);
2483 return rc; 2483 return rc;
2484 } 2484 }
2485 2485
2486 struct kmem_cache *ecryptfs_key_sig_cache; 2486 struct kmem_cache *ecryptfs_key_sig_cache;
2487 2487
2488 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig) 2488 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2489 { 2489 {
2490 struct ecryptfs_key_sig *new_key_sig; 2490 struct ecryptfs_key_sig *new_key_sig;
2491 2491
2492 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL); 2492 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2493 if (!new_key_sig) { 2493 if (!new_key_sig) {
2494 printk(KERN_ERR 2494 printk(KERN_ERR
2495 "Error allocating from ecryptfs_key_sig_cache\n"); 2495 "Error allocating from ecryptfs_key_sig_cache\n");
2496 return -ENOMEM; 2496 return -ENOMEM;
2497 } 2497 }
2498 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX); 2498 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2499 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 2499 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2500 /* Caller must hold keysig_list_mutex */ 2500 /* Caller must hold keysig_list_mutex */
2501 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list); 2501 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2502 2502
2503 return 0; 2503 return 0;
2504 } 2504 }
2505 2505
2506 struct kmem_cache *ecryptfs_global_auth_tok_cache; 2506 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2507 2507
2508 int 2508 int
2509 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2509 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2510 char *sig, u32 global_auth_tok_flags) 2510 char *sig, u32 global_auth_tok_flags)
2511 { 2511 {
2512 struct ecryptfs_global_auth_tok *new_auth_tok; 2512 struct ecryptfs_global_auth_tok *new_auth_tok;
2513 int rc = 0; 2513 int rc = 0;
2514 2514
2515 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache, 2515 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2516 GFP_KERNEL); 2516 GFP_KERNEL);
2517 if (!new_auth_tok) { 2517 if (!new_auth_tok) {
2518 rc = -ENOMEM; 2518 rc = -ENOMEM;
2519 printk(KERN_ERR "Error allocating from " 2519 printk(KERN_ERR "Error allocating from "
2520 "ecryptfs_global_auth_tok_cache\n"); 2520 "ecryptfs_global_auth_tok_cache\n");
2521 goto out; 2521 goto out;
2522 } 2522 }
2523 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX); 2523 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2524 new_auth_tok->flags = global_auth_tok_flags; 2524 new_auth_tok->flags = global_auth_tok_flags;
2525 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 2525 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2526 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 2526 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2527 list_add(&new_auth_tok->mount_crypt_stat_list, 2527 list_add(&new_auth_tok->mount_crypt_stat_list,
2528 &mount_crypt_stat->global_auth_tok_list); 2528 &mount_crypt_stat->global_auth_tok_list);
2529 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 2529 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2530 out: 2530 out:
2531 return rc; 2531 return rc;
2532 } 2532 }
2533 2533
2534 2534
1 /** 1 /**
2 * eCryptfs: Linux filesystem encryption layer 2 * eCryptfs: Linux filesystem encryption layer
3 * 3 *
4 * Copyright (C) 1997-2003 Erez Zadok 4 * Copyright (C) 1997-2003 Erez Zadok
5 * Copyright (C) 2001-2003 Stony Brook University 5 * Copyright (C) 2001-2003 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp. 6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 * Tyler Hicks <tyhicks@ou.edu> 9 * Tyler Hicks <tyhicks@ou.edu>
10 * 10 *
11 * This program is free software; you can redistribute it and/or 11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as 12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 of the 13 * published by the Free Software Foundation; either version 2 of the
14 * License, or (at your option) any later version. 14 * License, or (at your option) any later version.
15 * 15 *
16 * This program is distributed in the hope that it will be useful, but 16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details. 19 * General Public License for more details.
20 * 20 *
21 * You should have received a copy of the GNU General Public License 21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software 22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24 * 02111-1307, USA. 24 * 02111-1307, USA.
25 */ 25 */
26 26
27 #include <linux/dcache.h> 27 #include <linux/dcache.h>
28 #include <linux/file.h> 28 #include <linux/file.h>
29 #include <linux/module.h> 29 #include <linux/module.h>
30 #include <linux/namei.h> 30 #include <linux/namei.h>
31 #include <linux/skbuff.h> 31 #include <linux/skbuff.h>
32 #include <linux/crypto.h> 32 #include <linux/crypto.h>
33 #include <linux/mount.h> 33 #include <linux/mount.h>
34 #include <linux/pagemap.h> 34 #include <linux/pagemap.h>
35 #include <linux/key.h> 35 #include <linux/key.h>
36 #include <linux/parser.h> 36 #include <linux/parser.h>
37 #include <linux/fs_stack.h> 37 #include <linux/fs_stack.h>
38 #include <linux/slab.h> 38 #include <linux/slab.h>
39 #include <linux/magic.h> 39 #include <linux/magic.h>
40 #include "ecryptfs_kernel.h" 40 #include "ecryptfs_kernel.h"
41 41
42 /** 42 /**
43 * Module parameter that defines the ecryptfs_verbosity level. 43 * Module parameter that defines the ecryptfs_verbosity level.
44 */ 44 */
45 int ecryptfs_verbosity = 0; 45 int ecryptfs_verbosity = 0;
46 46
47 module_param(ecryptfs_verbosity, int, 0); 47 module_param(ecryptfs_verbosity, int, 0);
48 MODULE_PARM_DESC(ecryptfs_verbosity, 48 MODULE_PARM_DESC(ecryptfs_verbosity,
49 "Initial verbosity level (0 or 1; defaults to " 49 "Initial verbosity level (0 or 1; defaults to "
50 "0, which is Quiet)"); 50 "0, which is Quiet)");
51 51
52 /** 52 /**
53 * Module parameter that defines the number of message buffer elements 53 * Module parameter that defines the number of message buffer elements
54 */ 54 */
55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS; 55 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
56 56
57 module_param(ecryptfs_message_buf_len, uint, 0); 57 module_param(ecryptfs_message_buf_len, uint, 0);
58 MODULE_PARM_DESC(ecryptfs_message_buf_len, 58 MODULE_PARM_DESC(ecryptfs_message_buf_len,
59 "Number of message buffer elements"); 59 "Number of message buffer elements");
60 60
61 /** 61 /**
62 * Module parameter that defines the maximum guaranteed amount of time to wait 62 * Module parameter that defines the maximum guaranteed amount of time to wait
63 * for a response from ecryptfsd. The actual sleep time will be, more than 63 * for a response from ecryptfsd. The actual sleep time will be, more than
64 * likely, a small amount greater than this specified value, but only less if 64 * likely, a small amount greater than this specified value, but only less if
65 * the message successfully arrives. 65 * the message successfully arrives.
66 */ 66 */
67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ; 67 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
68 68
69 module_param(ecryptfs_message_wait_timeout, long, 0); 69 module_param(ecryptfs_message_wait_timeout, long, 0);
70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout, 70 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
71 "Maximum number of seconds that an operation will " 71 "Maximum number of seconds that an operation will "
72 "sleep while waiting for a message response from " 72 "sleep while waiting for a message response from "
73 "userspace"); 73 "userspace");
74 74
75 /** 75 /**
76 * Module parameter that is an estimate of the maximum number of users 76 * Module parameter that is an estimate of the maximum number of users
77 * that will be concurrently using eCryptfs. Set this to the right 77 * that will be concurrently using eCryptfs. Set this to the right
78 * value to balance performance and memory use. 78 * value to balance performance and memory use.
79 */ 79 */
80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS; 80 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
81 81
82 module_param(ecryptfs_number_of_users, uint, 0); 82 module_param(ecryptfs_number_of_users, uint, 0);
83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of " 83 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
84 "concurrent users of eCryptfs"); 84 "concurrent users of eCryptfs");
85 85
86 void __ecryptfs_printk(const char *fmt, ...) 86 void __ecryptfs_printk(const char *fmt, ...)
87 { 87 {
88 va_list args; 88 va_list args;
89 va_start(args, fmt); 89 va_start(args, fmt);
90 if (fmt[1] == '7') { /* KERN_DEBUG */ 90 if (fmt[1] == '7') { /* KERN_DEBUG */
91 if (ecryptfs_verbosity >= 1) 91 if (ecryptfs_verbosity >= 1)
92 vprintk(fmt, args); 92 vprintk(fmt, args);
93 } else 93 } else
94 vprintk(fmt, args); 94 vprintk(fmt, args);
95 va_end(args); 95 va_end(args);
96 } 96 }
97 97
98 /** 98 /**
99 * ecryptfs_init_lower_file 99 * ecryptfs_init_lower_file
100 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with 100 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
101 * the lower dentry and the lower mount set 101 * the lower dentry and the lower mount set
102 * 102 *
103 * eCryptfs only ever keeps a single open file for every lower 103 * eCryptfs only ever keeps a single open file for every lower
104 * inode. All I/O operations to the lower inode occur through that 104 * inode. All I/O operations to the lower inode occur through that
105 * file. When the first eCryptfs dentry that interposes with the first 105 * file. When the first eCryptfs dentry that interposes with the first
106 * lower dentry for that inode is created, this function creates the 106 * lower dentry for that inode is created, this function creates the
107 * lower file struct and associates it with the eCryptfs 107 * lower file struct and associates it with the eCryptfs
108 * inode. When all eCryptfs files associated with the inode are released, the 108 * inode. When all eCryptfs files associated with the inode are released, the
109 * file is closed. 109 * file is closed.
110 * 110 *
111 * The lower file will be opened with read/write permissions, if 111 * The lower file will be opened with read/write permissions, if
112 * possible. Otherwise, it is opened read-only. 112 * possible. Otherwise, it is opened read-only.
113 * 113 *
114 * This function does nothing if a lower file is already 114 * This function does nothing if a lower file is already
115 * associated with the eCryptfs inode. 115 * associated with the eCryptfs inode.
116 * 116 *
117 * Returns zero on success; non-zero otherwise 117 * Returns zero on success; non-zero otherwise
118 */ 118 */
119 static int ecryptfs_init_lower_file(struct dentry *dentry, 119 static int ecryptfs_init_lower_file(struct dentry *dentry,
120 struct file **lower_file) 120 struct file **lower_file)
121 { 121 {
122 const struct cred *cred = current_cred(); 122 const struct cred *cred = current_cred();
123 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry); 123 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
124 struct vfsmount *lower_mnt = ecryptfs_dentry_to_lower_mnt(dentry); 124 struct vfsmount *lower_mnt = ecryptfs_dentry_to_lower_mnt(dentry);
125 int rc; 125 int rc;
126 126
127 rc = ecryptfs_privileged_open(lower_file, lower_dentry, lower_mnt, 127 rc = ecryptfs_privileged_open(lower_file, lower_dentry, lower_mnt,
128 cred); 128 cred);
129 if (rc) { 129 if (rc) {
130 printk(KERN_ERR "Error opening lower file " 130 printk(KERN_ERR "Error opening lower file "
131 "for lower_dentry [0x%p] and lower_mnt [0x%p]; " 131 "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
132 "rc = [%d]\n", lower_dentry, lower_mnt, rc); 132 "rc = [%d]\n", lower_dentry, lower_mnt, rc);
133 (*lower_file) = NULL; 133 (*lower_file) = NULL;
134 } 134 }
135 return rc; 135 return rc;
136 } 136 }
137 137
138 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode) 138 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
139 { 139 {
140 struct ecryptfs_inode_info *inode_info; 140 struct ecryptfs_inode_info *inode_info;
141 int count, rc = 0; 141 int count, rc = 0;
142 142
143 inode_info = ecryptfs_inode_to_private(inode); 143 inode_info = ecryptfs_inode_to_private(inode);
144 mutex_lock(&inode_info->lower_file_mutex); 144 mutex_lock(&inode_info->lower_file_mutex);
145 count = atomic_inc_return(&inode_info->lower_file_count); 145 count = atomic_inc_return(&inode_info->lower_file_count);
146 if (WARN_ON_ONCE(count < 1)) 146 if (WARN_ON_ONCE(count < 1))
147 rc = -EINVAL; 147 rc = -EINVAL;
148 else if (count == 1) { 148 else if (count == 1) {
149 rc = ecryptfs_init_lower_file(dentry, 149 rc = ecryptfs_init_lower_file(dentry,
150 &inode_info->lower_file); 150 &inode_info->lower_file);
151 if (rc) 151 if (rc)
152 atomic_set(&inode_info->lower_file_count, 0); 152 atomic_set(&inode_info->lower_file_count, 0);
153 } 153 }
154 mutex_unlock(&inode_info->lower_file_mutex); 154 mutex_unlock(&inode_info->lower_file_mutex);
155 return rc; 155 return rc;
156 } 156 }
157 157
158 void ecryptfs_put_lower_file(struct inode *inode) 158 void ecryptfs_put_lower_file(struct inode *inode)
159 { 159 {
160 struct ecryptfs_inode_info *inode_info; 160 struct ecryptfs_inode_info *inode_info;
161 161
162 inode_info = ecryptfs_inode_to_private(inode); 162 inode_info = ecryptfs_inode_to_private(inode);
163 if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count, 163 if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
164 &inode_info->lower_file_mutex)) { 164 &inode_info->lower_file_mutex)) {
165 fput(inode_info->lower_file); 165 fput(inode_info->lower_file);
166 inode_info->lower_file = NULL; 166 inode_info->lower_file = NULL;
167 mutex_unlock(&inode_info->lower_file_mutex); 167 mutex_unlock(&inode_info->lower_file_mutex);
168 } 168 }
169 } 169 }
170 170
171 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig, 171 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
172 ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher, 172 ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
173 ecryptfs_opt_ecryptfs_key_bytes, 173 ecryptfs_opt_ecryptfs_key_bytes,
174 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata, 174 ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
175 ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig, 175 ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
176 ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes, 176 ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
177 ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only, 177 ecryptfs_opt_unlink_sigs, ecryptfs_opt_mount_auth_tok_only,
178 ecryptfs_opt_check_dev_ruid,
178 ecryptfs_opt_err }; 179 ecryptfs_opt_err };
179 180
180 static const match_table_t tokens = { 181 static const match_table_t tokens = {
181 {ecryptfs_opt_sig, "sig=%s"}, 182 {ecryptfs_opt_sig, "sig=%s"},
182 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"}, 183 {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
183 {ecryptfs_opt_cipher, "cipher=%s"}, 184 {ecryptfs_opt_cipher, "cipher=%s"},
184 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"}, 185 {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
185 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"}, 186 {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
186 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"}, 187 {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
187 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"}, 188 {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
188 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"}, 189 {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
189 {ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"}, 190 {ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
190 {ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"}, 191 {ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
191 {ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"}, 192 {ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
192 {ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"}, 193 {ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
193 {ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"}, 194 {ecryptfs_opt_mount_auth_tok_only, "ecryptfs_mount_auth_tok_only"},
195 {ecryptfs_opt_check_dev_ruid, "ecryptfs_check_dev_ruid"},
194 {ecryptfs_opt_err, NULL} 196 {ecryptfs_opt_err, NULL}
195 }; 197 };
196 198
197 static int ecryptfs_init_global_auth_toks( 199 static int ecryptfs_init_global_auth_toks(
198 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
199 { 201 {
200 struct ecryptfs_global_auth_tok *global_auth_tok; 202 struct ecryptfs_global_auth_tok *global_auth_tok;
201 struct ecryptfs_auth_tok *auth_tok; 203 struct ecryptfs_auth_tok *auth_tok;
202 int rc = 0; 204 int rc = 0;
203 205
204 list_for_each_entry(global_auth_tok, 206 list_for_each_entry(global_auth_tok,
205 &mount_crypt_stat->global_auth_tok_list, 207 &mount_crypt_stat->global_auth_tok_list,
206 mount_crypt_stat_list) { 208 mount_crypt_stat_list) {
207 rc = ecryptfs_keyring_auth_tok_for_sig( 209 rc = ecryptfs_keyring_auth_tok_for_sig(
208 &global_auth_tok->global_auth_tok_key, &auth_tok, 210 &global_auth_tok->global_auth_tok_key, &auth_tok,
209 global_auth_tok->sig); 211 global_auth_tok->sig);
210 if (rc) { 212 if (rc) {
211 printk(KERN_ERR "Could not find valid key in user " 213 printk(KERN_ERR "Could not find valid key in user "
212 "session keyring for sig specified in mount " 214 "session keyring for sig specified in mount "
213 "option: [%s]\n", global_auth_tok->sig); 215 "option: [%s]\n", global_auth_tok->sig);
214 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID; 216 global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
215 goto out; 217 goto out;
216 } else { 218 } else {
217 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID; 219 global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
218 up_write(&(global_auth_tok->global_auth_tok_key)->sem); 220 up_write(&(global_auth_tok->global_auth_tok_key)->sem);
219 } 221 }
220 } 222 }
221 out: 223 out:
222 return rc; 224 return rc;
223 } 225 }
224 226
225 static void ecryptfs_init_mount_crypt_stat( 227 static void ecryptfs_init_mount_crypt_stat(
226 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 228 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
227 { 229 {
228 memset((void *)mount_crypt_stat, 0, 230 memset((void *)mount_crypt_stat, 0,
229 sizeof(struct ecryptfs_mount_crypt_stat)); 231 sizeof(struct ecryptfs_mount_crypt_stat));
230 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list); 232 INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
231 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex); 233 mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
232 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED; 234 mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
233 } 235 }
234 236
235 /** 237 /**
236 * ecryptfs_parse_options 238 * ecryptfs_parse_options
237 * @sb: The ecryptfs super block 239 * @sb: The ecryptfs super block
238 * @options: The options passed to the kernel 240 * @options: The options passed to the kernel
241 * @check_ruid: set to 1 if device uid should be checked against the ruid
239 * 242 *
240 * Parse mount options: 243 * Parse mount options:
241 * debug=N - ecryptfs_verbosity level for debug output 244 * debug=N - ecryptfs_verbosity level for debug output
242 * sig=XXX - description(signature) of the key to use 245 * sig=XXX - description(signature) of the key to use
243 * 246 *
244 * Returns the dentry object of the lower-level (lower/interposed) 247 * Returns the dentry object of the lower-level (lower/interposed)
245 * directory; We want to mount our stackable file system on top of 248 * directory; We want to mount our stackable file system on top of
246 * that lower directory. 249 * that lower directory.
247 * 250 *
248 * The signature of the key to use must be the description of a key 251 * The signature of the key to use must be the description of a key
249 * already in the keyring. Mounting will fail if the key can not be 252 * already in the keyring. Mounting will fail if the key can not be
250 * found. 253 * found.
251 * 254 *
252 * Returns zero on success; non-zero on error 255 * Returns zero on success; non-zero on error
253 */ 256 */
254 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options) 257 static int ecryptfs_parse_options(struct ecryptfs_sb_info *sbi, char *options,
258 uid_t *check_ruid)
255 { 259 {
256 char *p; 260 char *p;
257 int rc = 0; 261 int rc = 0;
258 int sig_set = 0; 262 int sig_set = 0;
259 int cipher_name_set = 0; 263 int cipher_name_set = 0;
260 int fn_cipher_name_set = 0; 264 int fn_cipher_name_set = 0;
261 int cipher_key_bytes; 265 int cipher_key_bytes;
262 int cipher_key_bytes_set = 0; 266 int cipher_key_bytes_set = 0;
263 int fn_cipher_key_bytes; 267 int fn_cipher_key_bytes;
264 int fn_cipher_key_bytes_set = 0; 268 int fn_cipher_key_bytes_set = 0;
265 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 269 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
266 &sbi->mount_crypt_stat; 270 &sbi->mount_crypt_stat;
267 substring_t args[MAX_OPT_ARGS]; 271 substring_t args[MAX_OPT_ARGS];
268 int token; 272 int token;
269 char *sig_src; 273 char *sig_src;
270 char *cipher_name_dst; 274 char *cipher_name_dst;
271 char *cipher_name_src; 275 char *cipher_name_src;
272 char *fn_cipher_name_dst; 276 char *fn_cipher_name_dst;
273 char *fn_cipher_name_src; 277 char *fn_cipher_name_src;
274 char *fnek_dst; 278 char *fnek_dst;
275 char *fnek_src; 279 char *fnek_src;
276 char *cipher_key_bytes_src; 280 char *cipher_key_bytes_src;
277 char *fn_cipher_key_bytes_src; 281 char *fn_cipher_key_bytes_src;
278 282
283 *check_ruid = 0;
284
279 if (!options) { 285 if (!options) {
280 rc = -EINVAL; 286 rc = -EINVAL;
281 goto out; 287 goto out;
282 } 288 }
283 ecryptfs_init_mount_crypt_stat(mount_crypt_stat); 289 ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
284 while ((p = strsep(&options, ",")) != NULL) { 290 while ((p = strsep(&options, ",")) != NULL) {
285 if (!*p) 291 if (!*p)
286 continue; 292 continue;
287 token = match_token(p, tokens, args); 293 token = match_token(p, tokens, args);
288 switch (token) { 294 switch (token) {
289 case ecryptfs_opt_sig: 295 case ecryptfs_opt_sig:
290 case ecryptfs_opt_ecryptfs_sig: 296 case ecryptfs_opt_ecryptfs_sig:
291 sig_src = args[0].from; 297 sig_src = args[0].from;
292 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat, 298 rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
293 sig_src, 0); 299 sig_src, 0);
294 if (rc) { 300 if (rc) {
295 printk(KERN_ERR "Error attempting to register " 301 printk(KERN_ERR "Error attempting to register "
296 "global sig; rc = [%d]\n", rc); 302 "global sig; rc = [%d]\n", rc);
297 goto out; 303 goto out;
298 } 304 }
299 sig_set = 1; 305 sig_set = 1;
300 break; 306 break;
301 case ecryptfs_opt_cipher: 307 case ecryptfs_opt_cipher:
302 case ecryptfs_opt_ecryptfs_cipher: 308 case ecryptfs_opt_ecryptfs_cipher:
303 cipher_name_src = args[0].from; 309 cipher_name_src = args[0].from;
304 cipher_name_dst = 310 cipher_name_dst =
305 mount_crypt_stat-> 311 mount_crypt_stat->
306 global_default_cipher_name; 312 global_default_cipher_name;
307 strncpy(cipher_name_dst, cipher_name_src, 313 strncpy(cipher_name_dst, cipher_name_src,
308 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 314 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
309 cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 315 cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
310 cipher_name_set = 1; 316 cipher_name_set = 1;
311 break; 317 break;
312 case ecryptfs_opt_ecryptfs_key_bytes: 318 case ecryptfs_opt_ecryptfs_key_bytes:
313 cipher_key_bytes_src = args[0].from; 319 cipher_key_bytes_src = args[0].from;
314 cipher_key_bytes = 320 cipher_key_bytes =
315 (int)simple_strtol(cipher_key_bytes_src, 321 (int)simple_strtol(cipher_key_bytes_src,
316 &cipher_key_bytes_src, 0); 322 &cipher_key_bytes_src, 0);
317 mount_crypt_stat->global_default_cipher_key_size = 323 mount_crypt_stat->global_default_cipher_key_size =
318 cipher_key_bytes; 324 cipher_key_bytes;
319 cipher_key_bytes_set = 1; 325 cipher_key_bytes_set = 1;
320 break; 326 break;
321 case ecryptfs_opt_passthrough: 327 case ecryptfs_opt_passthrough:
322 mount_crypt_stat->flags |= 328 mount_crypt_stat->flags |=
323 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED; 329 ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
324 break; 330 break;
325 case ecryptfs_opt_xattr_metadata: 331 case ecryptfs_opt_xattr_metadata:
326 mount_crypt_stat->flags |= 332 mount_crypt_stat->flags |=
327 ECRYPTFS_XATTR_METADATA_ENABLED; 333 ECRYPTFS_XATTR_METADATA_ENABLED;
328 break; 334 break;
329 case ecryptfs_opt_encrypted_view: 335 case ecryptfs_opt_encrypted_view:
330 mount_crypt_stat->flags |= 336 mount_crypt_stat->flags |=
331 ECRYPTFS_XATTR_METADATA_ENABLED; 337 ECRYPTFS_XATTR_METADATA_ENABLED;
332 mount_crypt_stat->flags |= 338 mount_crypt_stat->flags |=
333 ECRYPTFS_ENCRYPTED_VIEW_ENABLED; 339 ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
334 break; 340 break;
335 case ecryptfs_opt_fnek_sig: 341 case ecryptfs_opt_fnek_sig:
336 fnek_src = args[0].from; 342 fnek_src = args[0].from;
337 fnek_dst = 343 fnek_dst =
338 mount_crypt_stat->global_default_fnek_sig; 344 mount_crypt_stat->global_default_fnek_sig;
339 strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX); 345 strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
340 mount_crypt_stat->global_default_fnek_sig[ 346 mount_crypt_stat->global_default_fnek_sig[
341 ECRYPTFS_SIG_SIZE_HEX] = '\0'; 347 ECRYPTFS_SIG_SIZE_HEX] = '\0';
342 rc = ecryptfs_add_global_auth_tok( 348 rc = ecryptfs_add_global_auth_tok(
343 mount_crypt_stat, 349 mount_crypt_stat,
344 mount_crypt_stat->global_default_fnek_sig, 350 mount_crypt_stat->global_default_fnek_sig,
345 ECRYPTFS_AUTH_TOK_FNEK); 351 ECRYPTFS_AUTH_TOK_FNEK);
346 if (rc) { 352 if (rc) {
347 printk(KERN_ERR "Error attempting to register " 353 printk(KERN_ERR "Error attempting to register "
348 "global fnek sig [%s]; rc = [%d]\n", 354 "global fnek sig [%s]; rc = [%d]\n",
349 mount_crypt_stat->global_default_fnek_sig, 355 mount_crypt_stat->global_default_fnek_sig,
350 rc); 356 rc);
351 goto out; 357 goto out;
352 } 358 }
353 mount_crypt_stat->flags |= 359 mount_crypt_stat->flags |=
354 (ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES 360 (ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
355 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK); 361 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
356 break; 362 break;
357 case ecryptfs_opt_fn_cipher: 363 case ecryptfs_opt_fn_cipher:
358 fn_cipher_name_src = args[0].from; 364 fn_cipher_name_src = args[0].from;
359 fn_cipher_name_dst = 365 fn_cipher_name_dst =
360 mount_crypt_stat->global_default_fn_cipher_name; 366 mount_crypt_stat->global_default_fn_cipher_name;
361 strncpy(fn_cipher_name_dst, fn_cipher_name_src, 367 strncpy(fn_cipher_name_dst, fn_cipher_name_src,
362 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 368 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
363 mount_crypt_stat->global_default_fn_cipher_name[ 369 mount_crypt_stat->global_default_fn_cipher_name[
364 ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 370 ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
365 fn_cipher_name_set = 1; 371 fn_cipher_name_set = 1;
366 break; 372 break;
367 case ecryptfs_opt_fn_cipher_key_bytes: 373 case ecryptfs_opt_fn_cipher_key_bytes:
368 fn_cipher_key_bytes_src = args[0].from; 374 fn_cipher_key_bytes_src = args[0].from;
369 fn_cipher_key_bytes = 375 fn_cipher_key_bytes =
370 (int)simple_strtol(fn_cipher_key_bytes_src, 376 (int)simple_strtol(fn_cipher_key_bytes_src,
371 &fn_cipher_key_bytes_src, 0); 377 &fn_cipher_key_bytes_src, 0);
372 mount_crypt_stat->global_default_fn_cipher_key_bytes = 378 mount_crypt_stat->global_default_fn_cipher_key_bytes =
373 fn_cipher_key_bytes; 379 fn_cipher_key_bytes;
374 fn_cipher_key_bytes_set = 1; 380 fn_cipher_key_bytes_set = 1;
375 break; 381 break;
376 case ecryptfs_opt_unlink_sigs: 382 case ecryptfs_opt_unlink_sigs:
377 mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS; 383 mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
378 break; 384 break;
379 case ecryptfs_opt_mount_auth_tok_only: 385 case ecryptfs_opt_mount_auth_tok_only:
380 mount_crypt_stat->flags |= 386 mount_crypt_stat->flags |=
381 ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY; 387 ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
382 break; 388 break;
389 case ecryptfs_opt_check_dev_ruid:
390 *check_ruid = 1;
391 break;
383 case ecryptfs_opt_err: 392 case ecryptfs_opt_err:
384 default: 393 default:
385 printk(KERN_WARNING 394 printk(KERN_WARNING
386 "%s: eCryptfs: unrecognized option [%s]\n", 395 "%s: eCryptfs: unrecognized option [%s]\n",
387 __func__, p); 396 __func__, p);
388 } 397 }
389 } 398 }
390 if (!sig_set) { 399 if (!sig_set) {
391 rc = -EINVAL; 400 rc = -EINVAL;
392 ecryptfs_printk(KERN_ERR, "You must supply at least one valid " 401 ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
393 "auth tok signature as a mount " 402 "auth tok signature as a mount "
394 "parameter; see the eCryptfs README\n"); 403 "parameter; see the eCryptfs README\n");
395 goto out; 404 goto out;
396 } 405 }
397 if (!cipher_name_set) { 406 if (!cipher_name_set) {
398 int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER); 407 int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
399 408
400 BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE); 409 BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
401 strcpy(mount_crypt_stat->global_default_cipher_name, 410 strcpy(mount_crypt_stat->global_default_cipher_name,
402 ECRYPTFS_DEFAULT_CIPHER); 411 ECRYPTFS_DEFAULT_CIPHER);
403 } 412 }
404 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 413 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
405 && !fn_cipher_name_set) 414 && !fn_cipher_name_set)
406 strcpy(mount_crypt_stat->global_default_fn_cipher_name, 415 strcpy(mount_crypt_stat->global_default_fn_cipher_name,
407 mount_crypt_stat->global_default_cipher_name); 416 mount_crypt_stat->global_default_cipher_name);
408 if (!cipher_key_bytes_set) 417 if (!cipher_key_bytes_set)
409 mount_crypt_stat->global_default_cipher_key_size = 0; 418 mount_crypt_stat->global_default_cipher_key_size = 0;
410 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 419 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
411 && !fn_cipher_key_bytes_set) 420 && !fn_cipher_key_bytes_set)
412 mount_crypt_stat->global_default_fn_cipher_key_bytes = 421 mount_crypt_stat->global_default_fn_cipher_key_bytes =
413 mount_crypt_stat->global_default_cipher_key_size; 422 mount_crypt_stat->global_default_cipher_key_size;
414 mutex_lock(&key_tfm_list_mutex); 423 mutex_lock(&key_tfm_list_mutex);
415 if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name, 424 if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
416 NULL)) { 425 NULL)) {
417 rc = ecryptfs_add_new_key_tfm( 426 rc = ecryptfs_add_new_key_tfm(
418 NULL, mount_crypt_stat->global_default_cipher_name, 427 NULL, mount_crypt_stat->global_default_cipher_name,
419 mount_crypt_stat->global_default_cipher_key_size); 428 mount_crypt_stat->global_default_cipher_key_size);
420 if (rc) { 429 if (rc) {
421 printk(KERN_ERR "Error attempting to initialize " 430 printk(KERN_ERR "Error attempting to initialize "
422 "cipher with name = [%s] and key size = [%td]; " 431 "cipher with name = [%s] and key size = [%td]; "
423 "rc = [%d]\n", 432 "rc = [%d]\n",
424 mount_crypt_stat->global_default_cipher_name, 433 mount_crypt_stat->global_default_cipher_name,
425 mount_crypt_stat->global_default_cipher_key_size, 434 mount_crypt_stat->global_default_cipher_key_size,
426 rc); 435 rc);
427 rc = -EINVAL; 436 rc = -EINVAL;
428 mutex_unlock(&key_tfm_list_mutex); 437 mutex_unlock(&key_tfm_list_mutex);
429 goto out; 438 goto out;
430 } 439 }
431 } 440 }
432 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 441 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
433 && !ecryptfs_tfm_exists( 442 && !ecryptfs_tfm_exists(
434 mount_crypt_stat->global_default_fn_cipher_name, NULL)) { 443 mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
435 rc = ecryptfs_add_new_key_tfm( 444 rc = ecryptfs_add_new_key_tfm(
436 NULL, mount_crypt_stat->global_default_fn_cipher_name, 445 NULL, mount_crypt_stat->global_default_fn_cipher_name,
437 mount_crypt_stat->global_default_fn_cipher_key_bytes); 446 mount_crypt_stat->global_default_fn_cipher_key_bytes);
438 if (rc) { 447 if (rc) {
439 printk(KERN_ERR "Error attempting to initialize " 448 printk(KERN_ERR "Error attempting to initialize "
440 "cipher with name = [%s] and key size = [%td]; " 449 "cipher with name = [%s] and key size = [%td]; "
441 "rc = [%d]\n", 450 "rc = [%d]\n",
442 mount_crypt_stat->global_default_fn_cipher_name, 451 mount_crypt_stat->global_default_fn_cipher_name,
443 mount_crypt_stat->global_default_fn_cipher_key_bytes, 452 mount_crypt_stat->global_default_fn_cipher_key_bytes,
444 rc); 453 rc);
445 rc = -EINVAL; 454 rc = -EINVAL;
446 mutex_unlock(&key_tfm_list_mutex); 455 mutex_unlock(&key_tfm_list_mutex);
447 goto out; 456 goto out;
448 } 457 }
449 } 458 }
450 mutex_unlock(&key_tfm_list_mutex); 459 mutex_unlock(&key_tfm_list_mutex);
451 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat); 460 rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
452 if (rc) 461 if (rc)
453 printk(KERN_WARNING "One or more global auth toks could not " 462 printk(KERN_WARNING "One or more global auth toks could not "
454 "properly register; rc = [%d]\n", rc); 463 "properly register; rc = [%d]\n", rc);
455 out: 464 out:
456 return rc; 465 return rc;
457 } 466 }
458 467
459 struct kmem_cache *ecryptfs_sb_info_cache; 468 struct kmem_cache *ecryptfs_sb_info_cache;
460 static struct file_system_type ecryptfs_fs_type; 469 static struct file_system_type ecryptfs_fs_type;
461 470
462 /** 471 /**
463 * ecryptfs_get_sb 472 * ecryptfs_get_sb
464 * @fs_type 473 * @fs_type
465 * @flags 474 * @flags
466 * @dev_name: The path to mount over 475 * @dev_name: The path to mount over
467 * @raw_data: The options passed into the kernel 476 * @raw_data: The options passed into the kernel
468 */ 477 */
469 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags, 478 static struct dentry *ecryptfs_mount(struct file_system_type *fs_type, int flags,
470 const char *dev_name, void *raw_data) 479 const char *dev_name, void *raw_data)
471 { 480 {
472 struct super_block *s; 481 struct super_block *s;
473 struct ecryptfs_sb_info *sbi; 482 struct ecryptfs_sb_info *sbi;
474 struct ecryptfs_dentry_info *root_info; 483 struct ecryptfs_dentry_info *root_info;
475 const char *err = "Getting sb failed"; 484 const char *err = "Getting sb failed";
476 struct inode *inode; 485 struct inode *inode;
477 struct path path; 486 struct path path;
487 uid_t check_ruid;
478 int rc; 488 int rc;
479 489
480 sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL); 490 sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
481 if (!sbi) { 491 if (!sbi) {
482 rc = -ENOMEM; 492 rc = -ENOMEM;
483 goto out; 493 goto out;
484 } 494 }
485 495
486 rc = ecryptfs_parse_options(sbi, raw_data); 496 rc = ecryptfs_parse_options(sbi, raw_data, &check_ruid);
487 if (rc) { 497 if (rc) {
488 err = "Error parsing options"; 498 err = "Error parsing options";
489 goto out; 499 goto out;
490 } 500 }
491 501
492 s = sget(fs_type, NULL, set_anon_super, NULL); 502 s = sget(fs_type, NULL, set_anon_super, NULL);
493 if (IS_ERR(s)) { 503 if (IS_ERR(s)) {
494 rc = PTR_ERR(s); 504 rc = PTR_ERR(s);
495 goto out; 505 goto out;
496 } 506 }
497 507
498 s->s_flags = flags; 508 s->s_flags = flags;
499 rc = bdi_setup_and_register(&sbi->bdi, "ecryptfs", BDI_CAP_MAP_COPY); 509 rc = bdi_setup_and_register(&sbi->bdi, "ecryptfs", BDI_CAP_MAP_COPY);
500 if (rc) 510 if (rc)
501 goto out1; 511 goto out1;
502 512
503 ecryptfs_set_superblock_private(s, sbi); 513 ecryptfs_set_superblock_private(s, sbi);
504 s->s_bdi = &sbi->bdi; 514 s->s_bdi = &sbi->bdi;
505 515
506 /* ->kill_sb() will take care of sbi after that point */ 516 /* ->kill_sb() will take care of sbi after that point */
507 sbi = NULL; 517 sbi = NULL;
508 s->s_op = &ecryptfs_sops; 518 s->s_op = &ecryptfs_sops;
509 s->s_d_op = &ecryptfs_dops; 519 s->s_d_op = &ecryptfs_dops;
510 520
511 err = "Reading sb failed"; 521 err = "Reading sb failed";
512 rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path); 522 rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
513 if (rc) { 523 if (rc) {
514 ecryptfs_printk(KERN_WARNING, "kern_path() failed\n"); 524 ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
515 goto out1; 525 goto out1;
516 } 526 }
517 if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) { 527 if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
518 rc = -EINVAL; 528 rc = -EINVAL;
519 printk(KERN_ERR "Mount on filesystem of type " 529 printk(KERN_ERR "Mount on filesystem of type "
520 "eCryptfs explicitly disallowed due to " 530 "eCryptfs explicitly disallowed due to "
521 "known incompatibilities\n"); 531 "known incompatibilities\n");
522 goto out_free; 532 goto out_free;
523 } 533 }
534
535 if (check_ruid && path.dentry->d_inode->i_uid != current_uid()) {
536 rc = -EPERM;
537 printk(KERN_ERR "Mount of device (uid: %d) not owned by "
538 "requested user (uid: %d)\n",
539 path.dentry->d_inode->i_uid, current_uid());
540 goto out_free;
541 }
542
524 ecryptfs_set_superblock_lower(s, path.dentry->d_sb); 543 ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
525 s->s_maxbytes = path.dentry->d_sb->s_maxbytes; 544 s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
526 s->s_blocksize = path.dentry->d_sb->s_blocksize; 545 s->s_blocksize = path.dentry->d_sb->s_blocksize;
527 s->s_magic = ECRYPTFS_SUPER_MAGIC; 546 s->s_magic = ECRYPTFS_SUPER_MAGIC;
528 547
529 inode = ecryptfs_get_inode(path.dentry->d_inode, s); 548 inode = ecryptfs_get_inode(path.dentry->d_inode, s);
530 rc = PTR_ERR(inode); 549 rc = PTR_ERR(inode);
531 if (IS_ERR(inode)) 550 if (IS_ERR(inode))
532 goto out_free; 551 goto out_free;
533 552
534 s->s_root = d_alloc_root(inode); 553 s->s_root = d_alloc_root(inode);
535 if (!s->s_root) { 554 if (!s->s_root) {
536 iput(inode); 555 iput(inode);
537 rc = -ENOMEM; 556 rc = -ENOMEM;
538 goto out_free; 557 goto out_free;
539 } 558 }
540 559
541 rc = -ENOMEM; 560 rc = -ENOMEM;
542 root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL); 561 root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
543 if (!root_info) 562 if (!root_info)
544 goto out_free; 563 goto out_free;
545 564
546 /* ->kill_sb() will take care of root_info */ 565 /* ->kill_sb() will take care of root_info */
547 ecryptfs_set_dentry_private(s->s_root, root_info); 566 ecryptfs_set_dentry_private(s->s_root, root_info);
548 ecryptfs_set_dentry_lower(s->s_root, path.dentry); 567 ecryptfs_set_dentry_lower(s->s_root, path.dentry);
549 ecryptfs_set_dentry_lower_mnt(s->s_root, path.mnt); 568 ecryptfs_set_dentry_lower_mnt(s->s_root, path.mnt);
550 569
551 s->s_flags |= MS_ACTIVE; 570 s->s_flags |= MS_ACTIVE;
552 return dget(s->s_root); 571 return dget(s->s_root);
553 572
554 out_free: 573 out_free:
555 path_put(&path); 574 path_put(&path);
556 out1: 575 out1:
557 deactivate_locked_super(s); 576 deactivate_locked_super(s);
558 out: 577 out:
559 if (sbi) { 578 if (sbi) {
560 ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat); 579 ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
561 kmem_cache_free(ecryptfs_sb_info_cache, sbi); 580 kmem_cache_free(ecryptfs_sb_info_cache, sbi);
562 } 581 }
563 printk(KERN_ERR "%s; rc = [%d]\n", err, rc); 582 printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
564 return ERR_PTR(rc); 583 return ERR_PTR(rc);
565 } 584 }
566 585
567 /** 586 /**
568 * ecryptfs_kill_block_super 587 * ecryptfs_kill_block_super
569 * @sb: The ecryptfs super block 588 * @sb: The ecryptfs super block
570 * 589 *
571 * Used to bring the superblock down and free the private data. 590 * Used to bring the superblock down and free the private data.
572 */ 591 */
573 static void ecryptfs_kill_block_super(struct super_block *sb) 592 static void ecryptfs_kill_block_super(struct super_block *sb)
574 { 593 {
575 struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb); 594 struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
576 kill_anon_super(sb); 595 kill_anon_super(sb);
577 if (!sb_info) 596 if (!sb_info)
578 return; 597 return;
579 ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat); 598 ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
580 bdi_destroy(&sb_info->bdi); 599 bdi_destroy(&sb_info->bdi);
581 kmem_cache_free(ecryptfs_sb_info_cache, sb_info); 600 kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
582 } 601 }
583 602
584 static struct file_system_type ecryptfs_fs_type = { 603 static struct file_system_type ecryptfs_fs_type = {
585 .owner = THIS_MODULE, 604 .owner = THIS_MODULE,
586 .name = "ecryptfs", 605 .name = "ecryptfs",
587 .mount = ecryptfs_mount, 606 .mount = ecryptfs_mount,
588 .kill_sb = ecryptfs_kill_block_super, 607 .kill_sb = ecryptfs_kill_block_super,
589 .fs_flags = 0 608 .fs_flags = 0
590 }; 609 };
591 610
592 /** 611 /**
593 * inode_info_init_once 612 * inode_info_init_once
594 * 613 *
595 * Initializes the ecryptfs_inode_info_cache when it is created 614 * Initializes the ecryptfs_inode_info_cache when it is created
596 */ 615 */
597 static void 616 static void
598 inode_info_init_once(void *vptr) 617 inode_info_init_once(void *vptr)
599 { 618 {
600 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr; 619 struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
601 620
602 inode_init_once(&ei->vfs_inode); 621 inode_init_once(&ei->vfs_inode);
603 } 622 }
604 623
605 static struct ecryptfs_cache_info { 624 static struct ecryptfs_cache_info {
606 struct kmem_cache **cache; 625 struct kmem_cache **cache;
607 const char *name; 626 const char *name;
608 size_t size; 627 size_t size;
609 void (*ctor)(void *obj); 628 void (*ctor)(void *obj);
610 } ecryptfs_cache_infos[] = { 629 } ecryptfs_cache_infos[] = {
611 { 630 {
612 .cache = &ecryptfs_auth_tok_list_item_cache, 631 .cache = &ecryptfs_auth_tok_list_item_cache,
613 .name = "ecryptfs_auth_tok_list_item", 632 .name = "ecryptfs_auth_tok_list_item",
614 .size = sizeof(struct ecryptfs_auth_tok_list_item), 633 .size = sizeof(struct ecryptfs_auth_tok_list_item),
615 }, 634 },
616 { 635 {
617 .cache = &ecryptfs_file_info_cache, 636 .cache = &ecryptfs_file_info_cache,
618 .name = "ecryptfs_file_cache", 637 .name = "ecryptfs_file_cache",
619 .size = sizeof(struct ecryptfs_file_info), 638 .size = sizeof(struct ecryptfs_file_info),
620 }, 639 },
621 { 640 {
622 .cache = &ecryptfs_dentry_info_cache, 641 .cache = &ecryptfs_dentry_info_cache,
623 .name = "ecryptfs_dentry_info_cache", 642 .name = "ecryptfs_dentry_info_cache",
624 .size = sizeof(struct ecryptfs_dentry_info), 643 .size = sizeof(struct ecryptfs_dentry_info),
625 }, 644 },
626 { 645 {
627 .cache = &ecryptfs_inode_info_cache, 646 .cache = &ecryptfs_inode_info_cache,
628 .name = "ecryptfs_inode_cache", 647 .name = "ecryptfs_inode_cache",
629 .size = sizeof(struct ecryptfs_inode_info), 648 .size = sizeof(struct ecryptfs_inode_info),
630 .ctor = inode_info_init_once, 649 .ctor = inode_info_init_once,
631 }, 650 },
632 { 651 {
633 .cache = &ecryptfs_sb_info_cache, 652 .cache = &ecryptfs_sb_info_cache,
634 .name = "ecryptfs_sb_cache", 653 .name = "ecryptfs_sb_cache",
635 .size = sizeof(struct ecryptfs_sb_info), 654 .size = sizeof(struct ecryptfs_sb_info),
636 }, 655 },
637 { 656 {
638 .cache = &ecryptfs_header_cache, 657 .cache = &ecryptfs_header_cache,
639 .name = "ecryptfs_headers", 658 .name = "ecryptfs_headers",
640 .size = PAGE_CACHE_SIZE, 659 .size = PAGE_CACHE_SIZE,
641 }, 660 },
642 { 661 {
643 .cache = &ecryptfs_xattr_cache, 662 .cache = &ecryptfs_xattr_cache,
644 .name = "ecryptfs_xattr_cache", 663 .name = "ecryptfs_xattr_cache",
645 .size = PAGE_CACHE_SIZE, 664 .size = PAGE_CACHE_SIZE,
646 }, 665 },
647 { 666 {
648 .cache = &ecryptfs_key_record_cache, 667 .cache = &ecryptfs_key_record_cache,
649 .name = "ecryptfs_key_record_cache", 668 .name = "ecryptfs_key_record_cache",
650 .size = sizeof(struct ecryptfs_key_record), 669 .size = sizeof(struct ecryptfs_key_record),
651 }, 670 },
652 { 671 {
653 .cache = &ecryptfs_key_sig_cache, 672 .cache = &ecryptfs_key_sig_cache,
654 .name = "ecryptfs_key_sig_cache", 673 .name = "ecryptfs_key_sig_cache",
655 .size = sizeof(struct ecryptfs_key_sig), 674 .size = sizeof(struct ecryptfs_key_sig),
656 }, 675 },
657 { 676 {
658 .cache = &ecryptfs_global_auth_tok_cache, 677 .cache = &ecryptfs_global_auth_tok_cache,
659 .name = "ecryptfs_global_auth_tok_cache", 678 .name = "ecryptfs_global_auth_tok_cache",
660 .size = sizeof(struct ecryptfs_global_auth_tok), 679 .size = sizeof(struct ecryptfs_global_auth_tok),
661 }, 680 },
662 { 681 {
663 .cache = &ecryptfs_key_tfm_cache, 682 .cache = &ecryptfs_key_tfm_cache,
664 .name = "ecryptfs_key_tfm_cache", 683 .name = "ecryptfs_key_tfm_cache",
665 .size = sizeof(struct ecryptfs_key_tfm), 684 .size = sizeof(struct ecryptfs_key_tfm),
666 }, 685 },
667 { 686 {
668 .cache = &ecryptfs_open_req_cache, 687 .cache = &ecryptfs_open_req_cache,
669 .name = "ecryptfs_open_req_cache", 688 .name = "ecryptfs_open_req_cache",
670 .size = sizeof(struct ecryptfs_open_req), 689 .size = sizeof(struct ecryptfs_open_req),
671 }, 690 },
672 }; 691 };
673 692
674 static void ecryptfs_free_kmem_caches(void) 693 static void ecryptfs_free_kmem_caches(void)
675 { 694 {
676 int i; 695 int i;
677 696
678 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 697 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
679 struct ecryptfs_cache_info *info; 698 struct ecryptfs_cache_info *info;
680 699
681 info = &ecryptfs_cache_infos[i]; 700 info = &ecryptfs_cache_infos[i];
682 if (*(info->cache)) 701 if (*(info->cache))
683 kmem_cache_destroy(*(info->cache)); 702 kmem_cache_destroy(*(info->cache));
684 } 703 }
685 } 704 }
686 705
687 /** 706 /**
688 * ecryptfs_init_kmem_caches 707 * ecryptfs_init_kmem_caches
689 * 708 *
690 * Returns zero on success; non-zero otherwise 709 * Returns zero on success; non-zero otherwise
691 */ 710 */
692 static int ecryptfs_init_kmem_caches(void) 711 static int ecryptfs_init_kmem_caches(void)
693 { 712 {
694 int i; 713 int i;
695 714
696 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { 715 for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
697 struct ecryptfs_cache_info *info; 716 struct ecryptfs_cache_info *info;
698 717
699 info = &ecryptfs_cache_infos[i]; 718 info = &ecryptfs_cache_infos[i];
700 *(info->cache) = kmem_cache_create(info->name, info->size, 719 *(info->cache) = kmem_cache_create(info->name, info->size,
701 0, SLAB_HWCACHE_ALIGN, info->ctor); 720 0, SLAB_HWCACHE_ALIGN, info->ctor);
702 if (!*(info->cache)) { 721 if (!*(info->cache)) {
703 ecryptfs_free_kmem_caches(); 722 ecryptfs_free_kmem_caches();
704 ecryptfs_printk(KERN_WARNING, "%s: " 723 ecryptfs_printk(KERN_WARNING, "%s: "
705 "kmem_cache_create failed\n", 724 "kmem_cache_create failed\n",
706 info->name); 725 info->name);
707 return -ENOMEM; 726 return -ENOMEM;
708 } 727 }
709 } 728 }
710 return 0; 729 return 0;
711 } 730 }
712 731
713 static struct kobject *ecryptfs_kobj; 732 static struct kobject *ecryptfs_kobj;
714 733
715 static ssize_t version_show(struct kobject *kobj, 734 static ssize_t version_show(struct kobject *kobj,
716 struct kobj_attribute *attr, char *buff) 735 struct kobj_attribute *attr, char *buff)
717 { 736 {
718 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK); 737 return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
719 } 738 }
720 739
721 static struct kobj_attribute version_attr = __ATTR_RO(version); 740 static struct kobj_attribute version_attr = __ATTR_RO(version);
722 741
723 static struct attribute *attributes[] = { 742 static struct attribute *attributes[] = {
724 &version_attr.attr, 743 &version_attr.attr,
725 NULL, 744 NULL,
726 }; 745 };
727 746
728 static struct attribute_group attr_group = { 747 static struct attribute_group attr_group = {
729 .attrs = attributes, 748 .attrs = attributes,
730 }; 749 };
731 750
732 static int do_sysfs_registration(void) 751 static int do_sysfs_registration(void)
733 { 752 {
734 int rc; 753 int rc;
735 754
736 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj); 755 ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
737 if (!ecryptfs_kobj) { 756 if (!ecryptfs_kobj) {
738 printk(KERN_ERR "Unable to create ecryptfs kset\n"); 757 printk(KERN_ERR "Unable to create ecryptfs kset\n");
739 rc = -ENOMEM; 758 rc = -ENOMEM;
740 goto out; 759 goto out;
741 } 760 }
742 rc = sysfs_create_group(ecryptfs_kobj, &attr_group); 761 rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
743 if (rc) { 762 if (rc) {
744 printk(KERN_ERR 763 printk(KERN_ERR
745 "Unable to create ecryptfs version attributes\n"); 764 "Unable to create ecryptfs version attributes\n");
746 kobject_put(ecryptfs_kobj); 765 kobject_put(ecryptfs_kobj);
747 } 766 }
748 out: 767 out:
749 return rc; 768 return rc;
750 } 769 }
751 770
752 static void do_sysfs_unregistration(void) 771 static void do_sysfs_unregistration(void)
753 { 772 {
754 sysfs_remove_group(ecryptfs_kobj, &attr_group); 773 sysfs_remove_group(ecryptfs_kobj, &attr_group);
755 kobject_put(ecryptfs_kobj); 774 kobject_put(ecryptfs_kobj);
756 } 775 }
757 776
758 static int __init ecryptfs_init(void) 777 static int __init ecryptfs_init(void)
759 { 778 {
760 int rc; 779 int rc;
761 780
762 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) { 781 if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
763 rc = -EINVAL; 782 rc = -EINVAL;
764 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is " 783 ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
765 "larger than the host's page size, and so " 784 "larger than the host's page size, and so "
766 "eCryptfs cannot run on this system. The " 785 "eCryptfs cannot run on this system. The "
767 "default eCryptfs extent size is [%u] bytes; " 786 "default eCryptfs extent size is [%u] bytes; "
768 "the page size is [%lu] bytes.\n", 787 "the page size is [%lu] bytes.\n",
769 ECRYPTFS_DEFAULT_EXTENT_SIZE, 788 ECRYPTFS_DEFAULT_EXTENT_SIZE,
770 (unsigned long)PAGE_CACHE_SIZE); 789 (unsigned long)PAGE_CACHE_SIZE);
771 goto out; 790 goto out;
772 } 791 }
773 rc = ecryptfs_init_kmem_caches(); 792 rc = ecryptfs_init_kmem_caches();
774 if (rc) { 793 if (rc) {
775 printk(KERN_ERR 794 printk(KERN_ERR
776 "Failed to allocate one or more kmem_cache objects\n"); 795 "Failed to allocate one or more kmem_cache objects\n");
777 goto out; 796 goto out;
778 } 797 }
779 rc = register_filesystem(&ecryptfs_fs_type); 798 rc = register_filesystem(&ecryptfs_fs_type);
780 if (rc) { 799 if (rc) {
781 printk(KERN_ERR "Failed to register filesystem\n"); 800 printk(KERN_ERR "Failed to register filesystem\n");
782 goto out_free_kmem_caches; 801 goto out_free_kmem_caches;
783 } 802 }
784 rc = do_sysfs_registration(); 803 rc = do_sysfs_registration();
785 if (rc) { 804 if (rc) {
786 printk(KERN_ERR "sysfs registration failed\n"); 805 printk(KERN_ERR "sysfs registration failed\n");
787 goto out_unregister_filesystem; 806 goto out_unregister_filesystem;
788 } 807 }
789 rc = ecryptfs_init_kthread(); 808 rc = ecryptfs_init_kthread();
790 if (rc) { 809 if (rc) {
791 printk(KERN_ERR "%s: kthread initialization failed; " 810 printk(KERN_ERR "%s: kthread initialization failed; "
792 "rc = [%d]\n", __func__, rc); 811 "rc = [%d]\n", __func__, rc);
793 goto out_do_sysfs_unregistration; 812 goto out_do_sysfs_unregistration;
794 } 813 }
795 rc = ecryptfs_init_messaging(); 814 rc = ecryptfs_init_messaging();
796 if (rc) { 815 if (rc) {
797 printk(KERN_ERR "Failure occurred while attempting to " 816 printk(KERN_ERR "Failure occurred while attempting to "
798 "initialize the communications channel to " 817 "initialize the communications channel to "
799 "ecryptfsd\n"); 818 "ecryptfsd\n");
800 goto out_destroy_kthread; 819 goto out_destroy_kthread;
801 } 820 }
802 rc = ecryptfs_init_crypto(); 821 rc = ecryptfs_init_crypto();
803 if (rc) { 822 if (rc) {
804 printk(KERN_ERR "Failure whilst attempting to init crypto; " 823 printk(KERN_ERR "Failure whilst attempting to init crypto; "
805 "rc = [%d]\n", rc); 824 "rc = [%d]\n", rc);
806 goto out_release_messaging; 825 goto out_release_messaging;
807 } 826 }
808 if (ecryptfs_verbosity > 0) 827 if (ecryptfs_verbosity > 0)
809 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values " 828 printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
810 "will be written to the syslog!\n", ecryptfs_verbosity); 829 "will be written to the syslog!\n", ecryptfs_verbosity);
811 830
812 goto out; 831 goto out;
813 out_release_messaging: 832 out_release_messaging:
814 ecryptfs_release_messaging(); 833 ecryptfs_release_messaging();
815 out_destroy_kthread: 834 out_destroy_kthread:
816 ecryptfs_destroy_kthread(); 835 ecryptfs_destroy_kthread();
817 out_do_sysfs_unregistration: 836 out_do_sysfs_unregistration:
818 do_sysfs_unregistration(); 837 do_sysfs_unregistration();
819 out_unregister_filesystem: 838 out_unregister_filesystem:
820 unregister_filesystem(&ecryptfs_fs_type); 839 unregister_filesystem(&ecryptfs_fs_type);
821 out_free_kmem_caches: 840 out_free_kmem_caches:
822 ecryptfs_free_kmem_caches(); 841 ecryptfs_free_kmem_caches();
823 out: 842 out:
824 return rc; 843 return rc;
825 } 844 }
826 845
827 static void __exit ecryptfs_exit(void) 846 static void __exit ecryptfs_exit(void)
828 { 847 {
829 int rc; 848 int rc;
830 849
831 rc = ecryptfs_destroy_crypto(); 850 rc = ecryptfs_destroy_crypto();
832 if (rc) 851 if (rc)
833 printk(KERN_ERR "Failure whilst attempting to destroy crypto; " 852 printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
834 "rc = [%d]\n", rc); 853 "rc = [%d]\n", rc);
835 ecryptfs_release_messaging(); 854 ecryptfs_release_messaging();
836 ecryptfs_destroy_kthread(); 855 ecryptfs_destroy_kthread();
837 do_sysfs_unregistration(); 856 do_sysfs_unregistration();
838 unregister_filesystem(&ecryptfs_fs_type); 857 unregister_filesystem(&ecryptfs_fs_type);
839 ecryptfs_free_kmem_caches(); 858 ecryptfs_free_kmem_caches();
840 } 859 }
841 860
842 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>"); 861 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
843 MODULE_DESCRIPTION("eCryptfs"); 862 MODULE_DESCRIPTION("eCryptfs");
844 863
845 MODULE_LICENSE("GPL"); 864 MODULE_LICENSE("GPL");
846 865
847 module_init(ecryptfs_init) 866 module_init(ecryptfs_init)
848 module_exit(ecryptfs_exit) 867 module_exit(ecryptfs_exit)
849 868
fs/ecryptfs/read_write.c
1 /** 1 /**
2 * eCryptfs: Linux filesystem encryption layer 2 * eCryptfs: Linux filesystem encryption layer
3 * 3 *
4 * Copyright (C) 2007 International Business Machines Corp. 4 * Copyright (C) 2007 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 5 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
6 * 6 *
7 * This program is free software; you can redistribute it and/or 7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as 8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the 9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version. 10 * License, or (at your option) any later version.
11 * 11 *
12 * This program is distributed in the hope that it will be useful, but 12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details. 15 * General Public License for more details.
16 * 16 *
17 * You should have received a copy of the GNU General Public License 17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software 18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA. 20 * 02111-1307, USA.
21 */ 21 */
22 22
23 #include <linux/fs.h> 23 #include <linux/fs.h>
24 #include <linux/pagemap.h> 24 #include <linux/pagemap.h>
25 #include "ecryptfs_kernel.h" 25 #include "ecryptfs_kernel.h"
26 26
27 /** 27 /**
28 * ecryptfs_write_lower 28 * ecryptfs_write_lower
29 * @ecryptfs_inode: The eCryptfs inode 29 * @ecryptfs_inode: The eCryptfs inode
30 * @data: Data to write 30 * @data: Data to write
31 * @offset: Byte offset in the lower file to which to write the data 31 * @offset: Byte offset in the lower file to which to write the data
32 * @size: Number of bytes from @data to write at @offset in the lower 32 * @size: Number of bytes from @data to write at @offset in the lower
33 * file 33 * file
34 * 34 *
35 * Write data to the lower file. 35 * Write data to the lower file.
36 * 36 *
37 * Returns bytes written on success; less than zero on error 37 * Returns bytes written on success; less than zero on error
38 */ 38 */
39 int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data, 39 int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
40 loff_t offset, size_t size) 40 loff_t offset, size_t size)
41 { 41 {
42 struct ecryptfs_inode_info *inode_info; 42 struct file *lower_file;
43 mm_segment_t fs_save; 43 mm_segment_t fs_save;
44 ssize_t rc; 44 ssize_t rc;
45 45
46 inode_info = ecryptfs_inode_to_private(ecryptfs_inode); 46 lower_file = ecryptfs_inode_to_private(ecryptfs_inode)->lower_file;
47 BUG_ON(!inode_info->lower_file); 47 if (!lower_file)
48 return -EIO;
48 fs_save = get_fs(); 49 fs_save = get_fs();
49 set_fs(get_ds()); 50 set_fs(get_ds());
50 rc = vfs_write(inode_info->lower_file, data, size, &offset); 51 rc = vfs_write(lower_file, data, size, &offset);
51 set_fs(fs_save); 52 set_fs(fs_save);
52 mark_inode_dirty_sync(ecryptfs_inode); 53 mark_inode_dirty_sync(ecryptfs_inode);
53 return rc; 54 return rc;
54 } 55 }
55 56
56 /** 57 /**
57 * ecryptfs_write_lower_page_segment 58 * ecryptfs_write_lower_page_segment
58 * @ecryptfs_inode: The eCryptfs inode 59 * @ecryptfs_inode: The eCryptfs inode
59 * @page_for_lower: The page containing the data to be written to the 60 * @page_for_lower: The page containing the data to be written to the
60 * lower file 61 * lower file
61 * @offset_in_page: The offset in the @page_for_lower from which to 62 * @offset_in_page: The offset in the @page_for_lower from which to
62 * start writing the data 63 * start writing the data
63 * @size: The amount of data from @page_for_lower to write to the 64 * @size: The amount of data from @page_for_lower to write to the
64 * lower file 65 * lower file
65 * 66 *
66 * Determines the byte offset in the file for the given page and 67 * Determines the byte offset in the file for the given page and
67 * offset within the page, maps the page, and makes the call to write 68 * offset within the page, maps the page, and makes the call to write
68 * the contents of @page_for_lower to the lower inode. 69 * the contents of @page_for_lower to the lower inode.
69 * 70 *
70 * Returns zero on success; non-zero otherwise 71 * Returns zero on success; non-zero otherwise
71 */ 72 */
72 int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode, 73 int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
73 struct page *page_for_lower, 74 struct page *page_for_lower,
74 size_t offset_in_page, size_t size) 75 size_t offset_in_page, size_t size)
75 { 76 {
76 char *virt; 77 char *virt;
77 loff_t offset; 78 loff_t offset;
78 int rc; 79 int rc;
79 80
80 offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT) 81 offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT)
81 + offset_in_page); 82 + offset_in_page);
82 virt = kmap(page_for_lower); 83 virt = kmap(page_for_lower);
83 rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size); 84 rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
84 if (rc > 0) 85 if (rc > 0)
85 rc = 0; 86 rc = 0;
86 kunmap(page_for_lower); 87 kunmap(page_for_lower);
87 return rc; 88 return rc;
88 } 89 }
89 90
90 /** 91 /**
91 * ecryptfs_write 92 * ecryptfs_write
92 * @ecryptfs_inode: The eCryptfs file into which to write 93 * @ecryptfs_inode: The eCryptfs file into which to write
93 * @data: Virtual address where data to write is located 94 * @data: Virtual address where data to write is located
94 * @offset: Offset in the eCryptfs file at which to begin writing the 95 * @offset: Offset in the eCryptfs file at which to begin writing the
95 * data from @data 96 * data from @data
96 * @size: The number of bytes to write from @data 97 * @size: The number of bytes to write from @data
97 * 98 *
98 * Write an arbitrary amount of data to an arbitrary location in the 99 * Write an arbitrary amount of data to an arbitrary location in the
99 * eCryptfs inode page cache. This is done on a page-by-page, and then 100 * eCryptfs inode page cache. This is done on a page-by-page, and then
100 * by an extent-by-extent, basis; individual extents are encrypted and 101 * by an extent-by-extent, basis; individual extents are encrypted and
101 * written to the lower page cache (via VFS writes). This function 102 * written to the lower page cache (via VFS writes). This function
102 * takes care of all the address translation to locations in the lower 103 * takes care of all the address translation to locations in the lower
103 * filesystem; it also handles truncate events, writing out zeros 104 * filesystem; it also handles truncate events, writing out zeros
104 * where necessary. 105 * where necessary.
105 * 106 *
106 * Returns zero on success; non-zero otherwise 107 * Returns zero on success; non-zero otherwise
107 */ 108 */
108 int ecryptfs_write(struct inode *ecryptfs_inode, char *data, loff_t offset, 109 int ecryptfs_write(struct inode *ecryptfs_inode, char *data, loff_t offset,
109 size_t size) 110 size_t size)
110 { 111 {
111 struct page *ecryptfs_page; 112 struct page *ecryptfs_page;
112 struct ecryptfs_crypt_stat *crypt_stat; 113 struct ecryptfs_crypt_stat *crypt_stat;
113 char *ecryptfs_page_virt; 114 char *ecryptfs_page_virt;
114 loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode); 115 loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode);
115 loff_t data_offset = 0; 116 loff_t data_offset = 0;
116 loff_t pos; 117 loff_t pos;
117 int rc = 0; 118 int rc = 0;
118 119
119 crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 120 crypt_stat = &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
120 /* 121 /*
121 * if we are writing beyond current size, then start pos 122 * if we are writing beyond current size, then start pos
122 * at the current size - we'll fill in zeros from there. 123 * at the current size - we'll fill in zeros from there.
123 */ 124 */
124 if (offset > ecryptfs_file_size) 125 if (offset > ecryptfs_file_size)
125 pos = ecryptfs_file_size; 126 pos = ecryptfs_file_size;
126 else 127 else
127 pos = offset; 128 pos = offset;
128 while (pos < (offset + size)) { 129 while (pos < (offset + size)) {
129 pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT); 130 pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
130 size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK); 131 size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
131 size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page); 132 size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
132 size_t total_remaining_bytes = ((offset + size) - pos); 133 size_t total_remaining_bytes = ((offset + size) - pos);
133 134
134 if (num_bytes > total_remaining_bytes) 135 if (num_bytes > total_remaining_bytes)
135 num_bytes = total_remaining_bytes; 136 num_bytes = total_remaining_bytes;
136 if (pos < offset) { 137 if (pos < offset) {
137 /* remaining zeros to write, up to destination offset */ 138 /* remaining zeros to write, up to destination offset */
138 size_t total_remaining_zeros = (offset - pos); 139 size_t total_remaining_zeros = (offset - pos);
139 140
140 if (num_bytes > total_remaining_zeros) 141 if (num_bytes > total_remaining_zeros)
141 num_bytes = total_remaining_zeros; 142 num_bytes = total_remaining_zeros;
142 } 143 }
143 ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_inode, 144 ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_inode,
144 ecryptfs_page_idx); 145 ecryptfs_page_idx);
145 if (IS_ERR(ecryptfs_page)) { 146 if (IS_ERR(ecryptfs_page)) {
146 rc = PTR_ERR(ecryptfs_page); 147 rc = PTR_ERR(ecryptfs_page);
147 printk(KERN_ERR "%s: Error getting page at " 148 printk(KERN_ERR "%s: Error getting page at "
148 "index [%ld] from eCryptfs inode " 149 "index [%ld] from eCryptfs inode "
149 "mapping; rc = [%d]\n", __func__, 150 "mapping; rc = [%d]\n", __func__,
150 ecryptfs_page_idx, rc); 151 ecryptfs_page_idx, rc);
151 goto out; 152 goto out;
152 } 153 }
153 ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0); 154 ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
154 155
155 /* 156 /*
156 * pos: where we're now writing, offset: where the request was 157 * pos: where we're now writing, offset: where the request was
157 * If current pos is before request, we are filling zeros 158 * If current pos is before request, we are filling zeros
158 * If we are at or beyond request, we are writing the *data* 159 * If we are at or beyond request, we are writing the *data*
159 * If we're in a fresh page beyond eof, zero it in either case 160 * If we're in a fresh page beyond eof, zero it in either case
160 */ 161 */
161 if (pos < offset || !start_offset_in_page) { 162 if (pos < offset || !start_offset_in_page) {
162 /* We are extending past the previous end of the file. 163 /* We are extending past the previous end of the file.
163 * Fill in zero values to the end of the page */ 164 * Fill in zero values to the end of the page */
164 memset(((char *)ecryptfs_page_virt 165 memset(((char *)ecryptfs_page_virt
165 + start_offset_in_page), 0, 166 + start_offset_in_page), 0,
166 PAGE_CACHE_SIZE - start_offset_in_page); 167 PAGE_CACHE_SIZE - start_offset_in_page);
167 } 168 }
168 169
169 /* pos >= offset, we are now writing the data request */ 170 /* pos >= offset, we are now writing the data request */
170 if (pos >= offset) { 171 if (pos >= offset) {
171 memcpy(((char *)ecryptfs_page_virt 172 memcpy(((char *)ecryptfs_page_virt
172 + start_offset_in_page), 173 + start_offset_in_page),
173 (data + data_offset), num_bytes); 174 (data + data_offset), num_bytes);
174 data_offset += num_bytes; 175 data_offset += num_bytes;
175 } 176 }
176 kunmap_atomic(ecryptfs_page_virt, KM_USER0); 177 kunmap_atomic(ecryptfs_page_virt, KM_USER0);
177 flush_dcache_page(ecryptfs_page); 178 flush_dcache_page(ecryptfs_page);
178 SetPageUptodate(ecryptfs_page); 179 SetPageUptodate(ecryptfs_page);
179 unlock_page(ecryptfs_page); 180 unlock_page(ecryptfs_page);
180 if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) 181 if (crypt_stat->flags & ECRYPTFS_ENCRYPTED)
181 rc = ecryptfs_encrypt_page(ecryptfs_page); 182 rc = ecryptfs_encrypt_page(ecryptfs_page);
182 else 183 else
183 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, 184 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode,
184 ecryptfs_page, 185 ecryptfs_page,
185 start_offset_in_page, 186 start_offset_in_page,
186 data_offset); 187 data_offset);
187 page_cache_release(ecryptfs_page); 188 page_cache_release(ecryptfs_page);
188 if (rc) { 189 if (rc) {
189 printk(KERN_ERR "%s: Error encrypting " 190 printk(KERN_ERR "%s: Error encrypting "
190 "page; rc = [%d]\n", __func__, rc); 191 "page; rc = [%d]\n", __func__, rc);
191 goto out; 192 goto out;
192 } 193 }
193 pos += num_bytes; 194 pos += num_bytes;
194 } 195 }
195 if ((offset + size) > ecryptfs_file_size) { 196 if ((offset + size) > ecryptfs_file_size) {
196 i_size_write(ecryptfs_inode, (offset + size)); 197 i_size_write(ecryptfs_inode, (offset + size));
197 if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) { 198 if (crypt_stat->flags & ECRYPTFS_ENCRYPTED) {
198 rc = ecryptfs_write_inode_size_to_metadata( 199 rc = ecryptfs_write_inode_size_to_metadata(
199 ecryptfs_inode); 200 ecryptfs_inode);
200 if (rc) { 201 if (rc) {
201 printk(KERN_ERR "Problem with " 202 printk(KERN_ERR "Problem with "
202 "ecryptfs_write_inode_size_to_metadata; " 203 "ecryptfs_write_inode_size_to_metadata; "
203 "rc = [%d]\n", rc); 204 "rc = [%d]\n", rc);
204 goto out; 205 goto out;
205 } 206 }
206 } 207 }
207 } 208 }
208 out: 209 out:
209 return rc; 210 return rc;
210 } 211 }
211 212
212 /** 213 /**
213 * ecryptfs_read_lower 214 * ecryptfs_read_lower
214 * @data: The read data is stored here by this function 215 * @data: The read data is stored here by this function
215 * @offset: Byte offset in the lower file from which to read the data 216 * @offset: Byte offset in the lower file from which to read the data
216 * @size: Number of bytes to read from @offset of the lower file and 217 * @size: Number of bytes to read from @offset of the lower file and
217 * store into @data 218 * store into @data
218 * @ecryptfs_inode: The eCryptfs inode 219 * @ecryptfs_inode: The eCryptfs inode
219 * 220 *
220 * Read @size bytes of data at byte offset @offset from the lower 221 * Read @size bytes of data at byte offset @offset from the lower
221 * inode into memory location @data. 222 * inode into memory location @data.
222 * 223 *
223 * Returns bytes read on success; 0 on EOF; less than zero on error 224 * Returns bytes read on success; 0 on EOF; less than zero on error
224 */ 225 */
225 int ecryptfs_read_lower(char *data, loff_t offset, size_t size, 226 int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
226 struct inode *ecryptfs_inode) 227 struct inode *ecryptfs_inode)
227 { 228 {
228 struct ecryptfs_inode_info *inode_info = 229 struct file *lower_file;
229 ecryptfs_inode_to_private(ecryptfs_inode);
230 mm_segment_t fs_save; 230 mm_segment_t fs_save;
231 ssize_t rc; 231 ssize_t rc;
232 232
233 BUG_ON(!inode_info->lower_file); 233 lower_file = ecryptfs_inode_to_private(ecryptfs_inode)->lower_file;
234 if (!lower_file)
235 return -EIO;
234 fs_save = get_fs(); 236 fs_save = get_fs();
235 set_fs(get_ds()); 237 set_fs(get_ds());
236 rc = vfs_read(inode_info->lower_file, data, size, &offset); 238 rc = vfs_read(lower_file, data, size, &offset);
237 set_fs(fs_save); 239 set_fs(fs_save);
238 return rc; 240 return rc;
239 } 241 }
240 242
241 /** 243 /**
242 * ecryptfs_read_lower_page_segment 244 * ecryptfs_read_lower_page_segment
243 * @page_for_ecryptfs: The page into which data for eCryptfs will be 245 * @page_for_ecryptfs: The page into which data for eCryptfs will be
244 * written 246 * written
245 * @offset_in_page: Offset in @page_for_ecryptfs from which to start 247 * @offset_in_page: Offset in @page_for_ecryptfs from which to start
246 * writing 248 * writing
247 * @size: The number of bytes to write into @page_for_ecryptfs 249 * @size: The number of bytes to write into @page_for_ecryptfs
248 * @ecryptfs_inode: The eCryptfs inode 250 * @ecryptfs_inode: The eCryptfs inode
249 * 251 *
250 * Determines the byte offset in the file for the given page and 252 * Determines the byte offset in the file for the given page and
251 * offset within the page, maps the page, and makes the call to read 253 * offset within the page, maps the page, and makes the call to read
252 * the contents of @page_for_ecryptfs from the lower inode. 254 * the contents of @page_for_ecryptfs from the lower inode.
253 * 255 *
254 * Returns zero on success; non-zero otherwise 256 * Returns zero on success; non-zero otherwise
255 */ 257 */
256 int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs, 258 int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
257 pgoff_t page_index, 259 pgoff_t page_index,
258 size_t offset_in_page, size_t size, 260 size_t offset_in_page, size_t size,
259 struct inode *ecryptfs_inode) 261 struct inode *ecryptfs_inode)
260 { 262 {
261 char *virt; 263 char *virt;
262 loff_t offset; 264 loff_t offset;
263 int rc; 265 int rc;
264 266
265 offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page); 267 offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page);
266 virt = kmap(page_for_ecryptfs); 268 virt = kmap(page_for_ecryptfs);
267 rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode); 269 rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
268 if (rc > 0) 270 if (rc > 0)
269 rc = 0; 271 rc = 0;
270 kunmap(page_for_ecryptfs); 272 kunmap(page_for_ecryptfs);
271 flush_dcache_page(page_for_ecryptfs); 273 flush_dcache_page(page_for_ecryptfs);
272 return rc; 274 return rc;
273 } 275 }
274 276
275 #if 0 277 #if 0
276 /** 278 /**
277 * ecryptfs_read 279 * ecryptfs_read
278 * @data: The virtual address into which to write the data read (and 280 * @data: The virtual address into which to write the data read (and
279 * possibly decrypted) from the lower file 281 * possibly decrypted) from the lower file
280 * @offset: The offset in the decrypted view of the file from which to 282 * @offset: The offset in the decrypted view of the file from which to
281 * read into @data 283 * read into @data
282 * @size: The number of bytes to read into @data 284 * @size: The number of bytes to read into @data
283 * @ecryptfs_file: The eCryptfs file from which to read 285 * @ecryptfs_file: The eCryptfs file from which to read
284 * 286 *
285 * Read an arbitrary amount of data from an arbitrary location in the 287 * Read an arbitrary amount of data from an arbitrary location in the
286 * eCryptfs page cache. This is done on an extent-by-extent basis; 288 * eCryptfs page cache. This is done on an extent-by-extent basis;
287 * individual extents are decrypted and read from the lower page 289 * individual extents are decrypted and read from the lower page
288 * cache (via VFS reads). This function takes care of all the 290 * cache (via VFS reads). This function takes care of all the
289 * address translation to locations in the lower filesystem. 291 * address translation to locations in the lower filesystem.
290 * 292 *
291 * Returns zero on success; non-zero otherwise 293 * Returns zero on success; non-zero otherwise
292 */ 294 */
293 int ecryptfs_read(char *data, loff_t offset, size_t size, 295 int ecryptfs_read(char *data, loff_t offset, size_t size,
294 struct file *ecryptfs_file) 296 struct file *ecryptfs_file)
295 { 297 {
296 struct inode *ecryptfs_inode = ecryptfs_file->f_dentry->d_inode; 298 struct inode *ecryptfs_inode = ecryptfs_file->f_dentry->d_inode;
297 struct page *ecryptfs_page; 299 struct page *ecryptfs_page;
298 char *ecryptfs_page_virt; 300 char *ecryptfs_page_virt;
299 loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode); 301 loff_t ecryptfs_file_size = i_size_read(ecryptfs_inode);
300 loff_t data_offset = 0; 302 loff_t data_offset = 0;
301 loff_t pos; 303 loff_t pos;
302 int rc = 0; 304 int rc = 0;
303 305
304 if ((offset + size) > ecryptfs_file_size) { 306 if ((offset + size) > ecryptfs_file_size) {
305 rc = -EINVAL; 307 rc = -EINVAL;
306 printk(KERN_ERR "%s: Attempt to read data past the end of the " 308 printk(KERN_ERR "%s: Attempt to read data past the end of the "
307 "file; offset = [%lld]; size = [%td]; " 309 "file; offset = [%lld]; size = [%td]; "
308 "ecryptfs_file_size = [%lld]\n", 310 "ecryptfs_file_size = [%lld]\n",
309 __func__, offset, size, ecryptfs_file_size); 311 __func__, offset, size, ecryptfs_file_size);
310 goto out; 312 goto out;
311 } 313 }
312 pos = offset; 314 pos = offset;
313 while (pos < (offset + size)) { 315 while (pos < (offset + size)) {
314 pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT); 316 pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
315 size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK); 317 size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
316 size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page); 318 size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
317 size_t total_remaining_bytes = ((offset + size) - pos); 319 size_t total_remaining_bytes = ((offset + size) - pos);
318 320
319 if (num_bytes > total_remaining_bytes) 321 if (num_bytes > total_remaining_bytes)
320 num_bytes = total_remaining_bytes; 322 num_bytes = total_remaining_bytes;
321 ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_inode, 323 ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_inode,
322 ecryptfs_page_idx); 324 ecryptfs_page_idx);
323 if (IS_ERR(ecryptfs_page)) { 325 if (IS_ERR(ecryptfs_page)) {
324 rc = PTR_ERR(ecryptfs_page); 326 rc = PTR_ERR(ecryptfs_page);
325 printk(KERN_ERR "%s: Error getting page at " 327 printk(KERN_ERR "%s: Error getting page at "
326 "index [%ld] from eCryptfs inode " 328 "index [%ld] from eCryptfs inode "
327 "mapping; rc = [%d]\n", __func__, 329 "mapping; rc = [%d]\n", __func__,
328 ecryptfs_page_idx, rc); 330 ecryptfs_page_idx, rc);
329 goto out; 331 goto out;
330 } 332 }
331 ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0); 333 ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
332 memcpy((data + data_offset), 334 memcpy((data + data_offset),
333 ((char *)ecryptfs_page_virt + start_offset_in_page), 335 ((char *)ecryptfs_page_virt + start_offset_in_page),
334 num_bytes); 336 num_bytes);
335 kunmap_atomic(ecryptfs_page_virt, KM_USER0); 337 kunmap_atomic(ecryptfs_page_virt, KM_USER0);
336 flush_dcache_page(ecryptfs_page); 338 flush_dcache_page(ecryptfs_page);
337 SetPageUptodate(ecryptfs_page); 339 SetPageUptodate(ecryptfs_page);
338 unlock_page(ecryptfs_page); 340 unlock_page(ecryptfs_page);
339 page_cache_release(ecryptfs_page); 341 page_cache_release(ecryptfs_page);
340 pos += num_bytes; 342 pos += num_bytes;
341 data_offset += num_bytes; 343 data_offset += num_bytes;
342 } 344 }
343 out: 345 out:
344 return rc; 346 return rc;
345 } 347 }
346 #endif /* 0 */ 348 #endif /* 0 */