timesync.c 37.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * TimeSync API driver.
 *
 * Copyright 2016 Google Inc.
 * Copyright 2016 Linaro Ltd.
 *
 * Released under the GPLv2 only.
 */
#include <linux/debugfs.h>
#include <linux/hrtimer.h>
#include "greybus.h"
#include "timesync.h"
#include "greybus_trace.h"

/*
 * Minimum inter-strobe value of one millisecond is chosen because it
 * just-about fits the common definition of a jiffy.
 *
 * Maximum value OTOH is constrained by the number of bits the SVC can fit
 * into a 16 bit up-counter. The SVC configures the timer in microseconds
 * so the maximum allowable value is 65535 microseconds. We clip that value
 * to 10000 microseconds for the sake of using nice round base 10 numbers
 * and since right-now there's no imaginable use-case requiring anything
 * other than a one millisecond inter-strobe time, let alone something
 * higher than ten milliseconds.
 */
#define GB_TIMESYNC_STROBE_DELAY_US		1000
#define GB_TIMESYNC_DEFAULT_OFFSET_US		1000

/* Work queue timers long, short and SVC strobe timeout */
#define GB_TIMESYNC_DELAYED_WORK_LONG		msecs_to_jiffies(10)
#define GB_TIMESYNC_DELAYED_WORK_SHORT		msecs_to_jiffies(1)
#define GB_TIMESYNC_MAX_WAIT_SVC		msecs_to_jiffies(5000)
#define GB_TIMESYNC_KTIME_UPDATE		msecs_to_jiffies(1000)
#define GB_TIMESYNC_MAX_KTIME_CONVERSION	15

/* Maximum number of times we'll retry a failed synchronous sync */
#define GB_TIMESYNC_MAX_RETRIES			5

/* Reported nanoseconds/femtoseconds per clock */
static u64 gb_timesync_ns_per_clock;
static u64 gb_timesync_fs_per_clock;

/* Maximum difference we will accept converting FrameTime to ktime */
static u32 gb_timesync_max_ktime_diff;

/* Reported clock rate */
static unsigned long gb_timesync_clock_rate;

/* Workqueue */
static void gb_timesync_worker(struct work_struct *work);

/* List of SVCs with one FrameTime per SVC */
static LIST_HEAD(gb_timesync_svc_list);

/* Synchronize parallel contexts accessing a valid timesync_svc pointer */
static DEFINE_MUTEX(gb_timesync_svc_list_mutex);

/* Structure to convert from FrameTime to timespec/ktime */
struct gb_timesync_frame_time_data {
	u64 frame_time;
	struct timespec ts;
};

struct gb_timesync_svc {
	struct list_head list;
	struct list_head interface_list;
	struct gb_svc *svc;
	struct gb_timesync_host_device *timesync_hd;

	spinlock_t spinlock;	/* Per SVC spinlock to sync with ISR */
	struct mutex mutex;	/* Per SVC mutex for regular synchronization */

	struct dentry *frame_time_dentry;
	struct dentry *frame_ktime_dentry;
	struct workqueue_struct *work_queue;
	wait_queue_head_t wait_queue;
	struct delayed_work delayed_work;
	struct timer_list ktime_timer;

	/* The current local FrameTime */
	u64 frame_time_offset;
	struct gb_timesync_frame_time_data strobe_data[GB_TIMESYNC_MAX_STROBES];
	struct gb_timesync_frame_time_data ktime_data;

	/* The SVC FrameTime and relative AP FrameTime @ last TIMESYNC_PING */
	u64 svc_ping_frame_time;
	u64 ap_ping_frame_time;

	/* Transitory settings */
	u32 strobe_mask;
	bool offset_down;
	bool print_ping;
	bool capture_ping;
	int strobe;

	/* Current state */
	int state;
};

struct gb_timesync_host_device {
	struct list_head list;
	struct gb_host_device *hd;
	u64 ping_frame_time;
};

struct gb_timesync_interface {
	struct list_head list;
	struct gb_interface *interface;
	u64 ping_frame_time;
};

enum gb_timesync_state {
	GB_TIMESYNC_STATE_INVALID		= 0,
	GB_TIMESYNC_STATE_INACTIVE		= 1,
	GB_TIMESYNC_STATE_INIT			= 2,
	GB_TIMESYNC_STATE_WAIT_SVC		= 3,
	GB_TIMESYNC_STATE_AUTHORITATIVE		= 4,
	GB_TIMESYNC_STATE_PING			= 5,
	GB_TIMESYNC_STATE_ACTIVE		= 6,
};

static void gb_timesync_ktime_timer_fn(unsigned long data);

static u64 gb_timesync_adjust_count(struct gb_timesync_svc *timesync_svc,
				    u64 counts)
{
	if (timesync_svc->offset_down)
		return counts - timesync_svc->frame_time_offset;
	else
		return counts + timesync_svc->frame_time_offset;
}

/*
 * This function provides the authoritative FrameTime to a calling function. It
 * is designed to be lockless and should remain that way the caller is assumed
 * to be state-aware.
 */
static u64 __gb_timesync_get_frame_time(struct gb_timesync_svc *timesync_svc)
{
	u64 clocks = gb_timesync_platform_get_counter();

	return gb_timesync_adjust_count(timesync_svc, clocks);
}

static void gb_timesync_schedule_svc_timeout(struct gb_timesync_svc
					     *timesync_svc)
{
	queue_delayed_work(timesync_svc->work_queue,
			   &timesync_svc->delayed_work,
			   GB_TIMESYNC_MAX_WAIT_SVC);
}

static void gb_timesync_set_state(struct gb_timesync_svc *timesync_svc,
				  int state)
{
	switch (state) {
	case GB_TIMESYNC_STATE_INVALID:
		timesync_svc->state = state;
		wake_up(&timesync_svc->wait_queue);
		break;
	case GB_TIMESYNC_STATE_INACTIVE:
		timesync_svc->state = state;
		wake_up(&timesync_svc->wait_queue);
		break;
	case GB_TIMESYNC_STATE_INIT:
		if (timesync_svc->state != GB_TIMESYNC_STATE_INVALID) {
			timesync_svc->strobe = 0;
			timesync_svc->frame_time_offset = 0;
			timesync_svc->state = state;
			cancel_delayed_work(&timesync_svc->delayed_work);
			queue_delayed_work(timesync_svc->work_queue,
					   &timesync_svc->delayed_work,
					   GB_TIMESYNC_DELAYED_WORK_LONG);
		}
		break;
	case GB_TIMESYNC_STATE_WAIT_SVC:
		if (timesync_svc->state == GB_TIMESYNC_STATE_INIT)
			timesync_svc->state = state;
		break;
	case GB_TIMESYNC_STATE_AUTHORITATIVE:
		if (timesync_svc->state == GB_TIMESYNC_STATE_WAIT_SVC) {
			timesync_svc->state = state;
			cancel_delayed_work(&timesync_svc->delayed_work);
			queue_delayed_work(timesync_svc->work_queue,
					   &timesync_svc->delayed_work, 0);
		}
		break;
	case GB_TIMESYNC_STATE_PING:
		if (timesync_svc->state == GB_TIMESYNC_STATE_ACTIVE) {
			timesync_svc->state = state;
			queue_delayed_work(timesync_svc->work_queue,
					   &timesync_svc->delayed_work,
					   GB_TIMESYNC_DELAYED_WORK_SHORT);
		}
		break;
	case GB_TIMESYNC_STATE_ACTIVE:
		if (timesync_svc->state == GB_TIMESYNC_STATE_AUTHORITATIVE ||
		    timesync_svc->state == GB_TIMESYNC_STATE_PING) {
			timesync_svc->state = state;
			wake_up(&timesync_svc->wait_queue);
		}
		break;
	}

	if (WARN_ON(timesync_svc->state != state)) {
		pr_err("Invalid state transition %d=>%d\n",
		       timesync_svc->state, state);
	}
}

static void gb_timesync_set_state_atomic(struct gb_timesync_svc *timesync_svc,
					 int state)
{
	unsigned long flags;

	spin_lock_irqsave(&timesync_svc->spinlock, flags);
	gb_timesync_set_state(timesync_svc, state);
	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
}

static u64 gb_timesync_diff(u64 x, u64 y)
{
	if (x > y)
		return x - y;
	else
		return y - x;
}

static void gb_timesync_adjust_to_svc(struct gb_timesync_svc *svc,
				      u64 svc_frame_time, u64 ap_frame_time)
{
	if (svc_frame_time > ap_frame_time) {
		svc->frame_time_offset = svc_frame_time - ap_frame_time;
		svc->offset_down = false;
	} else {
		svc->frame_time_offset = ap_frame_time - svc_frame_time;
		svc->offset_down = true;
	}
}

/*
 * Associate a FrameTime with a ktime timestamp represented as struct timespec
 * Requires the calling context to hold timesync_svc->mutex
 */
static void gb_timesync_store_ktime(struct gb_timesync_svc *timesync_svc,
				    struct timespec ts, u64 frame_time)
{
	timesync_svc->ktime_data.ts = ts;
	timesync_svc->ktime_data.frame_time = frame_time;
}

/*
 * Find the two pulses that best-match our expected inter-strobe gap and
 * then calculate the difference between the SVC time at the second pulse
 * to the local time at the second pulse.
 */
static void gb_timesync_collate_frame_time(struct gb_timesync_svc *timesync_svc,
					   u64 *frame_time)
{
	int i = 0;
	u64 delta, ap_frame_time;
	u64 strobe_delay_ns = GB_TIMESYNC_STROBE_DELAY_US * NSEC_PER_USEC;
	u64 least = 0;

	for (i = 1; i < GB_TIMESYNC_MAX_STROBES; i++) {
		delta = timesync_svc->strobe_data[i].frame_time -
			timesync_svc->strobe_data[i - 1].frame_time;
		delta *= gb_timesync_ns_per_clock;
		delta = gb_timesync_diff(delta, strobe_delay_ns);

		if (!least || delta < least) {
			least = delta;
			gb_timesync_adjust_to_svc(timesync_svc, frame_time[i],
						  timesync_svc->strobe_data[i].frame_time);

			ap_frame_time = timesync_svc->strobe_data[i].frame_time;
			ap_frame_time = gb_timesync_adjust_count(timesync_svc,
								 ap_frame_time);
			gb_timesync_store_ktime(timesync_svc,
						timesync_svc->strobe_data[i].ts,
						ap_frame_time);

			pr_debug("adjust %s local %llu svc %llu delta %llu\n",
				 timesync_svc->offset_down ? "down" : "up",
				 timesync_svc->strobe_data[i].frame_time,
				 frame_time[i], delta);
		}
	}
}

static void gb_timesync_teardown(struct gb_timesync_svc *timesync_svc)
{
	struct gb_timesync_interface *timesync_interface;
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_interface *interface;
	struct gb_host_device *hd;
	int ret;

	list_for_each_entry(timesync_interface,
			    &timesync_svc->interface_list, list) {
		interface = timesync_interface->interface;
		ret = gb_interface_timesync_disable(interface);
		if (ret) {
			dev_err(&interface->dev,
				"interface timesync_disable %d\n", ret);
		}
	}

	hd = timesync_svc->timesync_hd->hd;
	ret = hd->driver->timesync_disable(hd);
	if (ret < 0) {
		dev_err(&hd->dev, "host timesync_disable %d\n",
			ret);
	}

	gb_svc_timesync_wake_pins_release(svc);
	gb_svc_timesync_disable(svc);
	gb_timesync_platform_unlock_bus();

	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_INACTIVE);
}

static void gb_timesync_platform_lock_bus_fail(struct gb_timesync_svc
						*timesync_svc, int ret)
{
	if (ret == -EAGAIN) {
		gb_timesync_set_state(timesync_svc, timesync_svc->state);
	} else {
		pr_err("Failed to lock timesync bus %d\n", ret);
		gb_timesync_set_state(timesync_svc, GB_TIMESYNC_STATE_INACTIVE);
	}
}

static void gb_timesync_enable(struct gb_timesync_svc *timesync_svc)
{
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_host_device *hd;
	struct gb_timesync_interface *timesync_interface;
	struct gb_interface *interface;
	u64 init_frame_time;
	unsigned long clock_rate = gb_timesync_clock_rate;
	int ret;

	/*
	 * Get access to the wake pins in the AP and SVC
	 * Release these pins either in gb_timesync_teardown() or in
	 * gb_timesync_authoritative()
	 */
	ret = gb_timesync_platform_lock_bus(timesync_svc);
	if (ret < 0) {
		gb_timesync_platform_lock_bus_fail(timesync_svc, ret);
		return;
	}
	ret = gb_svc_timesync_wake_pins_acquire(svc, timesync_svc->strobe_mask);
	if (ret) {
		dev_err(&svc->dev,
			"gb_svc_timesync_wake_pins_acquire %d\n", ret);
		gb_timesync_teardown(timesync_svc);
		return;
	}

	/* Choose an initial time in the future */
	init_frame_time = __gb_timesync_get_frame_time(timesync_svc) + 100000UL;

	/* Send enable command to all relevant participants */
	list_for_each_entry(timesync_interface, &timesync_svc->interface_list,
			    list) {
		interface = timesync_interface->interface;
		ret = gb_interface_timesync_enable(interface,
						   GB_TIMESYNC_MAX_STROBES,
						   init_frame_time,
						   GB_TIMESYNC_STROBE_DELAY_US,
						   clock_rate);
		if (ret) {
			dev_err(&interface->dev,
				"interface timesync_enable %d\n", ret);
		}
	}

	hd = timesync_svc->timesync_hd->hd;
	ret = hd->driver->timesync_enable(hd, GB_TIMESYNC_MAX_STROBES,
					  init_frame_time,
					  GB_TIMESYNC_STROBE_DELAY_US,
					  clock_rate);
	if (ret < 0) {
		dev_err(&hd->dev, "host timesync_enable %d\n",
			ret);
	}

	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_WAIT_SVC);
	ret = gb_svc_timesync_enable(svc, GB_TIMESYNC_MAX_STROBES,
				     init_frame_time,
				     GB_TIMESYNC_STROBE_DELAY_US,
				     clock_rate);
	if (ret) {
		dev_err(&svc->dev,
			"gb_svc_timesync_enable %d\n", ret);
		gb_timesync_teardown(timesync_svc);
		return;
	}

	/* Schedule a timeout waiting for SVC to complete strobing */
	gb_timesync_schedule_svc_timeout(timesync_svc);
}

static void gb_timesync_authoritative(struct gb_timesync_svc *timesync_svc)
{
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_host_device *hd;
	struct gb_timesync_interface *timesync_interface;
	struct gb_interface *interface;
	u64 svc_frame_time[GB_TIMESYNC_MAX_STROBES];
	int ret;

	/* Get authoritative time from SVC and adjust local clock */
	ret = gb_svc_timesync_authoritative(svc, svc_frame_time);
	if (ret) {
		dev_err(&svc->dev,
			"gb_svc_timesync_authoritative %d\n", ret);
		gb_timesync_teardown(timesync_svc);
		return;
	}
	gb_timesync_collate_frame_time(timesync_svc, svc_frame_time);

	/* Transmit authoritative time to downstream slaves */
	hd = timesync_svc->timesync_hd->hd;
	ret = hd->driver->timesync_authoritative(hd, svc_frame_time);
	if (ret < 0)
		dev_err(&hd->dev, "host timesync_authoritative %d\n", ret);

	list_for_each_entry(timesync_interface,
			    &timesync_svc->interface_list, list) {
		interface = timesync_interface->interface;
		ret = gb_interface_timesync_authoritative(
						interface,
						svc_frame_time);
		if (ret) {
			dev_err(&interface->dev,
				"interface timesync_authoritative %d\n", ret);
		}
	}

	/* Release wake pins */
	gb_svc_timesync_wake_pins_release(svc);
	gb_timesync_platform_unlock_bus();

	/* Transition to state ACTIVE */
	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_ACTIVE);

	/* Schedule a ping to verify the synchronized system time */
	timesync_svc->print_ping = true;
	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_PING);
}

static int __gb_timesync_get_status(struct gb_timesync_svc *timesync_svc)
{
	int ret = -EINVAL;

	switch (timesync_svc->state) {
	case GB_TIMESYNC_STATE_INVALID:
	case GB_TIMESYNC_STATE_INACTIVE:
		ret = -ENODEV;
		break;
	case GB_TIMESYNC_STATE_INIT:
	case GB_TIMESYNC_STATE_WAIT_SVC:
	case GB_TIMESYNC_STATE_AUTHORITATIVE:
		ret = -EAGAIN;
		break;
	case GB_TIMESYNC_STATE_PING:
	case GB_TIMESYNC_STATE_ACTIVE:
		ret = 0;
		break;
	}
	return ret;
}

/*
 * This routine takes a FrameTime and derives the difference with-respect
 * to a reference FrameTime/ktime pair. It then returns the calculated
 * ktime based on the difference between the supplied FrameTime and
 * the reference FrameTime.
 *
 * The time difference is calculated to six decimal places. Taking 19.2MHz
 * as an example this means we have 52.083333~ nanoseconds per clock or
 * 52083333~ femtoseconds per clock.
 *
 * Naively taking the count difference and converting to
 * seconds/nanoseconds would quickly see the 0.0833 component produce
 * noticeable errors. For example a time difference of one second would
 * loose 19200000 * 0.08333x nanoseconds or 1.59 seconds.
 *
 * In contrast calculating in femtoseconds the same example of 19200000 *
 * 0.000000083333x nanoseconds per count of error is just 1.59 nanoseconds!
 *
 * Continuing the example of 19.2 MHz we cap the maximum error difference
 * at a worst-case 0.3 microseconds over a potential calculation window of
 * abount 15 seconds, meaning you can convert a FrameTime that is <= 15
 * seconds older/younger than the reference time with a maximum error of
 * 0.2385 useconds. Note 19.2MHz is an example frequency not a requirement.
 */
static int gb_timesync_to_timespec(struct gb_timesync_svc *timesync_svc,
				   u64 frame_time, struct timespec *ts)
{
	unsigned long flags;
	u64 delta_fs, counts, sec, nsec;
	bool add;
	int ret = 0;

	memset(ts, 0x00, sizeof(*ts));
	mutex_lock(&timesync_svc->mutex);
	spin_lock_irqsave(&timesync_svc->spinlock, flags);

	ret = __gb_timesync_get_status(timesync_svc);
	if (ret)
		goto done;

	/* Support calculating ktime upwards or downwards from the reference */
	if (frame_time < timesync_svc->ktime_data.frame_time) {
		add = false;
		counts = timesync_svc->ktime_data.frame_time - frame_time;
	} else {
		add = true;
		counts = frame_time - timesync_svc->ktime_data.frame_time;
	}

	/* Enforce the .23 of a usecond boundary @ 19.2MHz */
	if (counts > gb_timesync_max_ktime_diff) {
		ret = -EINVAL;
		goto done;
	}

	/* Determine the time difference in femtoseconds */
	delta_fs = counts * gb_timesync_fs_per_clock;

	/* Convert to seconds */
	sec = delta_fs;
	do_div(sec, NSEC_PER_SEC);
	do_div(sec, 1000000UL);

	/* Get the nanosecond remainder */
	nsec = do_div(delta_fs, sec);
	do_div(nsec, 1000000UL);

	if (add) {
		/* Add the calculated offset - overflow nanoseconds upwards */
		ts->tv_sec = timesync_svc->ktime_data.ts.tv_sec + sec;
		ts->tv_nsec = timesync_svc->ktime_data.ts.tv_nsec + nsec;
		if (ts->tv_nsec >= NSEC_PER_SEC) {
			ts->tv_sec++;
			ts->tv_nsec -= NSEC_PER_SEC;
		}
	} else {
		/* Subtract the difference over/underflow as necessary */
		if (nsec > timesync_svc->ktime_data.ts.tv_nsec) {
			sec++;
			nsec = nsec + timesync_svc->ktime_data.ts.tv_nsec;
			nsec = do_div(nsec, NSEC_PER_SEC);
		} else {
			nsec = timesync_svc->ktime_data.ts.tv_nsec - nsec;
		}
		/* Cannot return a negative second value */
		if (sec > timesync_svc->ktime_data.ts.tv_sec) {
			ret = -EINVAL;
			goto done;
		}
		ts->tv_sec = timesync_svc->ktime_data.ts.tv_sec - sec;
		ts->tv_nsec = nsec;
	}
done:
	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
	mutex_unlock(&timesync_svc->mutex);
	return ret;
}

static size_t gb_timesync_log_frame_time(struct gb_timesync_svc *timesync_svc,
					 char *buf, size_t buflen)
{
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_host_device *hd;
	struct gb_timesync_interface *timesync_interface;
	struct gb_interface *interface;
	unsigned int len;
	size_t off;

	/* AP/SVC */
	off = snprintf(buf, buflen, "%s frametime: ap=%llu %s=%llu ",
		       greybus_bus_type.name,
		       timesync_svc->ap_ping_frame_time, dev_name(&svc->dev),
		       timesync_svc->svc_ping_frame_time);
	len = buflen - off;

	/* APB/GPB */
	if (len < buflen) {
		hd = timesync_svc->timesync_hd->hd;
		off += snprintf(&buf[off], len, "%s=%llu ", dev_name(&hd->dev),
				timesync_svc->timesync_hd->ping_frame_time);
		len = buflen - off;
	}

	list_for_each_entry(timesync_interface,
			    &timesync_svc->interface_list, list) {
		if (len < buflen) {
			interface = timesync_interface->interface;
			off += snprintf(&buf[off], len, "%s=%llu ",
					dev_name(&interface->dev),
					timesync_interface->ping_frame_time);
			len = buflen - off;
		}
	}
	if (len < buflen)
		off += snprintf(&buf[off], len, "\n");
	return off;
}

static size_t gb_timesync_log_frame_ktime(struct gb_timesync_svc *timesync_svc,
					  char *buf, size_t buflen)
{
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_host_device *hd;
	struct gb_timesync_interface *timesync_interface;
	struct gb_interface *interface;
	struct timespec ts;
	unsigned int len;
	size_t off;

	/* AP */
	gb_timesync_to_timespec(timesync_svc, timesync_svc->ap_ping_frame_time,
				&ts);
	off = snprintf(buf, buflen, "%s frametime: ap=%lu.%lu ",
		       greybus_bus_type.name, ts.tv_sec, ts.tv_nsec);
	len = buflen - off;
	if (len >= buflen)
		goto done;

	/* SVC */
	gb_timesync_to_timespec(timesync_svc, timesync_svc->svc_ping_frame_time,
				&ts);
	off += snprintf(&buf[off], len, "%s=%lu.%lu ", dev_name(&svc->dev),
			ts.tv_sec, ts.tv_nsec);
	len = buflen - off;
	if (len >= buflen)
		goto done;

	/* APB/GPB */
	hd = timesync_svc->timesync_hd->hd;
	gb_timesync_to_timespec(timesync_svc,
				timesync_svc->timesync_hd->ping_frame_time,
				&ts);
	off += snprintf(&buf[off], len, "%s=%lu.%lu ",
			dev_name(&hd->dev),
			ts.tv_sec, ts.tv_nsec);
	len = buflen - off;
	if (len >= buflen)
		goto done;

	list_for_each_entry(timesync_interface,
			    &timesync_svc->interface_list, list) {
		interface = timesync_interface->interface;
		gb_timesync_to_timespec(timesync_svc,
					timesync_interface->ping_frame_time,
					&ts);
		off += snprintf(&buf[off], len, "%s=%lu.%lu ",
				dev_name(&interface->dev),
				ts.tv_sec, ts.tv_nsec);
		len = buflen - off;
		if (len >= buflen)
			goto done;
	}
	off += snprintf(&buf[off], len, "\n");
done:
	return off;
}

/*
 * Send an SVC initiated wake 'ping' to each TimeSync participant.
 * Get the FrameTime from each participant associated with the wake
 * ping.
 */
static void gb_timesync_ping(struct gb_timesync_svc *timesync_svc)
{
	struct gb_svc *svc = timesync_svc->svc;
	struct gb_host_device *hd;
	struct gb_timesync_interface *timesync_interface;
	struct gb_control *control;
	u64 *ping_frame_time;
	int ret;

	/* Get access to the wake pins in the AP and SVC */
	ret = gb_timesync_platform_lock_bus(timesync_svc);
	if (ret < 0) {
		gb_timesync_platform_lock_bus_fail(timesync_svc, ret);
		return;
	}
	ret = gb_svc_timesync_wake_pins_acquire(svc, timesync_svc->strobe_mask);
	if (ret) {
		dev_err(&svc->dev,
			"gb_svc_timesync_wake_pins_acquire %d\n", ret);
		gb_timesync_teardown(timesync_svc);
		return;
	}

	/* Have SVC generate a timesync ping */
	timesync_svc->capture_ping = true;
	timesync_svc->svc_ping_frame_time = 0;
	ret = gb_svc_timesync_ping(svc, &timesync_svc->svc_ping_frame_time);
	timesync_svc->capture_ping = false;
	if (ret) {
		dev_err(&svc->dev,
			"gb_svc_timesync_ping %d\n", ret);
		gb_timesync_teardown(timesync_svc);
		return;
	}

	/* Get the ping FrameTime from each APB/GPB */
	hd = timesync_svc->timesync_hd->hd;
	timesync_svc->timesync_hd->ping_frame_time = 0;
	ret = hd->driver->timesync_get_last_event(hd,
		&timesync_svc->timesync_hd->ping_frame_time);
	if (ret)
		dev_err(&hd->dev, "host timesync_get_last_event %d\n", ret);

	list_for_each_entry(timesync_interface,
			    &timesync_svc->interface_list, list) {
		control = timesync_interface->interface->control;
		timesync_interface->ping_frame_time = 0;
		ping_frame_time = &timesync_interface->ping_frame_time;
		ret = gb_control_timesync_get_last_event(control,
							 ping_frame_time);
		if (ret) {
			dev_err(&timesync_interface->interface->dev,
				"gb_control_timesync_get_last_event %d\n", ret);
		}
	}

	/* Ping success - move to timesync active */
	gb_svc_timesync_wake_pins_release(svc);
	gb_timesync_platform_unlock_bus();
	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_ACTIVE);
}

static void gb_timesync_log_ping_time(struct gb_timesync_svc *timesync_svc)
{
	char *buf;

	if (!timesync_svc->print_ping)
		return;

	buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (buf) {
		gb_timesync_log_frame_time(timesync_svc, buf, PAGE_SIZE);
		dev_dbg(&timesync_svc->svc->dev, "%s", buf);
		kfree(buf);
	}
}

/*
 * Perform the actual work of scheduled TimeSync logic.
 */
static void gb_timesync_worker(struct work_struct *work)
{
	struct delayed_work *delayed_work = to_delayed_work(work);
	struct gb_timesync_svc *timesync_svc =
		container_of(delayed_work, struct gb_timesync_svc, delayed_work);

	mutex_lock(&timesync_svc->mutex);

	switch (timesync_svc->state) {
	case GB_TIMESYNC_STATE_INIT:
		gb_timesync_enable(timesync_svc);
		break;

	case GB_TIMESYNC_STATE_WAIT_SVC:
		dev_err(&timesync_svc->svc->dev,
			"timeout SVC strobe completion %d/%d\n",
			timesync_svc->strobe, GB_TIMESYNC_MAX_STROBES);
		gb_timesync_teardown(timesync_svc);
		break;

	case GB_TIMESYNC_STATE_AUTHORITATIVE:
		gb_timesync_authoritative(timesync_svc);
		break;

	case GB_TIMESYNC_STATE_PING:
		gb_timesync_ping(timesync_svc);
		gb_timesync_log_ping_time(timesync_svc);
		break;

	default:
		pr_err("Invalid state %d for delayed work\n",
		       timesync_svc->state);
		break;
	}

	mutex_unlock(&timesync_svc->mutex);
}

/*
 * Schedule a new TimeSync INIT or PING operation serialized w/r to
 * gb_timesync_worker().
 */
static int gb_timesync_schedule(struct gb_timesync_svc *timesync_svc, int state)
{
	int ret = 0;

	if (state != GB_TIMESYNC_STATE_INIT && state != GB_TIMESYNC_STATE_PING)
		return -EINVAL;

	mutex_lock(&timesync_svc->mutex);
	if (timesync_svc->state !=  GB_TIMESYNC_STATE_INVALID) {
		gb_timesync_set_state_atomic(timesync_svc, state);
	} else {
		ret = -ENODEV;
	}
	mutex_unlock(&timesync_svc->mutex);
	return ret;
}

static int __gb_timesync_schedule_synchronous(
	struct gb_timesync_svc *timesync_svc, int state)
{
	unsigned long flags;
	int ret;

	ret = gb_timesync_schedule(timesync_svc, state);
	if (ret)
		return ret;

	ret = wait_event_interruptible(timesync_svc->wait_queue,
			(timesync_svc->state == GB_TIMESYNC_STATE_ACTIVE ||
			 timesync_svc->state == GB_TIMESYNC_STATE_INACTIVE ||
			 timesync_svc->state == GB_TIMESYNC_STATE_INVALID));
	if (ret)
		return ret;

	mutex_lock(&timesync_svc->mutex);
	spin_lock_irqsave(&timesync_svc->spinlock, flags);

	ret = __gb_timesync_get_status(timesync_svc);

	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
	mutex_unlock(&timesync_svc->mutex);

	return ret;
}

static struct gb_timesync_svc *gb_timesync_find_timesync_svc(
	struct gb_host_device *hd)
{
	struct gb_timesync_svc *timesync_svc;

	list_for_each_entry(timesync_svc, &gb_timesync_svc_list, list) {
		if (timesync_svc->svc == hd->svc)
			return timesync_svc;
	}
	return NULL;
}

static struct gb_timesync_interface *gb_timesync_find_timesync_interface(
	struct gb_timesync_svc *timesync_svc,
	struct gb_interface *interface)
{
	struct gb_timesync_interface *timesync_interface;

	list_for_each_entry(timesync_interface, &timesync_svc->interface_list, list) {
		if (timesync_interface->interface == interface)
			return timesync_interface;
	}
	return NULL;
}

int gb_timesync_schedule_synchronous(struct gb_interface *interface)
{
	int ret;
	struct gb_timesync_svc *timesync_svc;
	int retries;

	if (!(interface->features & GREYBUS_INTERFACE_FEATURE_TIMESYNC))
		return 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	for (retries = 0; retries < GB_TIMESYNC_MAX_RETRIES; retries++) {
		timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
		if (!timesync_svc) {
			ret = -ENODEV;
			goto done;
		}

		ret = __gb_timesync_schedule_synchronous(timesync_svc,
						 GB_TIMESYNC_STATE_INIT);
		if (!ret)
			break;
	}
	if (ret && retries == GB_TIMESYNC_MAX_RETRIES)
		ret = -ETIMEDOUT;
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_schedule_synchronous);

void gb_timesync_schedule_asynchronous(struct gb_interface *interface)
{
	struct gb_timesync_svc *timesync_svc;

	if (!(interface->features & GREYBUS_INTERFACE_FEATURE_TIMESYNC))
		return;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
	if (!timesync_svc)
		goto done;

	gb_timesync_schedule(timesync_svc, GB_TIMESYNC_STATE_INIT);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return;
}
EXPORT_SYMBOL_GPL(gb_timesync_schedule_asynchronous);

static ssize_t gb_timesync_ping_read(struct file *file, char __user *ubuf,
				     size_t len, loff_t *offset, bool ktime)
{
	struct gb_timesync_svc *timesync_svc = file->f_inode->i_private;
	char *buf;
	ssize_t ret = 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	mutex_lock(&timesync_svc->mutex);
	if (list_empty(&timesync_svc->interface_list))
		ret = -ENODEV;
	timesync_svc->print_ping = false;
	mutex_unlock(&timesync_svc->mutex);
	if (ret)
		goto done;

	ret = __gb_timesync_schedule_synchronous(timesync_svc,
						 GB_TIMESYNC_STATE_PING);
	if (ret)
		goto done;

	buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf) {
		ret = -ENOMEM;
		goto done;
	}

	if (ktime)
		ret = gb_timesync_log_frame_ktime(timesync_svc, buf, PAGE_SIZE);
	else
		ret = gb_timesync_log_frame_time(timesync_svc, buf, PAGE_SIZE);
	if (ret > 0)
		ret = simple_read_from_buffer(ubuf, len, offset, buf, ret);
	kfree(buf);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}

static ssize_t gb_timesync_ping_read_frame_time(struct file *file,
						char __user *buf,
						size_t len, loff_t *offset)
{
	return gb_timesync_ping_read(file, buf, len, offset, false);
}

static ssize_t gb_timesync_ping_read_frame_ktime(struct file *file,
						 char __user *buf,
						 size_t len, loff_t *offset)
{
	return gb_timesync_ping_read(file, buf, len, offset, true);
}

static const struct file_operations gb_timesync_debugfs_frame_time_ops = {
	.read		= gb_timesync_ping_read_frame_time,
};

static const struct file_operations gb_timesync_debugfs_frame_ktime_ops = {
	.read		= gb_timesync_ping_read_frame_ktime,
};

static int gb_timesync_hd_add(struct gb_timesync_svc *timesync_svc,
			      struct gb_host_device *hd)
{
	struct gb_timesync_host_device *timesync_hd;

	timesync_hd = kzalloc(sizeof(*timesync_hd), GFP_KERNEL);
	if (!timesync_hd)
		return -ENOMEM;

	WARN_ON(timesync_svc->timesync_hd);
	timesync_hd->hd = hd;
	timesync_svc->timesync_hd = timesync_hd;

	return 0;
}

static void gb_timesync_hd_remove(struct gb_timesync_svc *timesync_svc,
				  struct gb_host_device *hd)
{
	if (timesync_svc->timesync_hd->hd == hd) {
		kfree(timesync_svc->timesync_hd);
		timesync_svc->timesync_hd = NULL;
		return;
	}
	WARN_ON(1);
}

int gb_timesync_svc_add(struct gb_svc *svc)
{
	struct gb_timesync_svc *timesync_svc;
	int ret;

	timesync_svc = kzalloc(sizeof(*timesync_svc), GFP_KERNEL);
	if (!timesync_svc)
		return -ENOMEM;

	timesync_svc->work_queue =
		create_singlethread_workqueue("gb-timesync-work_queue");

	if (!timesync_svc->work_queue) {
		kfree(timesync_svc);
		return -ENOMEM;
	}

	mutex_lock(&gb_timesync_svc_list_mutex);
	INIT_LIST_HEAD(&timesync_svc->interface_list);
	INIT_DELAYED_WORK(&timesync_svc->delayed_work, gb_timesync_worker);
	mutex_init(&timesync_svc->mutex);
	spin_lock_init(&timesync_svc->spinlock);
	init_waitqueue_head(&timesync_svc->wait_queue);

	timesync_svc->svc = svc;
	timesync_svc->frame_time_offset = 0;
	timesync_svc->capture_ping = false;
	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_INACTIVE);

	timesync_svc->frame_time_dentry =
		debugfs_create_file("frame-time", S_IRUGO, svc->debugfs_dentry,
				    timesync_svc,
				    &gb_timesync_debugfs_frame_time_ops);
	timesync_svc->frame_ktime_dentry =
		debugfs_create_file("frame-ktime", S_IRUGO, svc->debugfs_dentry,
				    timesync_svc,
				    &gb_timesync_debugfs_frame_ktime_ops);

	list_add(&timesync_svc->list, &gb_timesync_svc_list);
	ret = gb_timesync_hd_add(timesync_svc, svc->hd);
	if (ret) {
		list_del(&timesync_svc->list);
		debugfs_remove(timesync_svc->frame_ktime_dentry);
		debugfs_remove(timesync_svc->frame_time_dentry);
		destroy_workqueue(timesync_svc->work_queue);
		kfree(timesync_svc);
		goto done;
	}

	init_timer(&timesync_svc->ktime_timer);
	timesync_svc->ktime_timer.function = gb_timesync_ktime_timer_fn;
	timesync_svc->ktime_timer.expires = jiffies + GB_TIMESYNC_KTIME_UPDATE;
	timesync_svc->ktime_timer.data = (unsigned long)timesync_svc;
	add_timer(&timesync_svc->ktime_timer);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_svc_add);

void gb_timesync_svc_remove(struct gb_svc *svc)
{
	struct gb_timesync_svc *timesync_svc;
	struct gb_timesync_interface *timesync_interface;
	struct gb_timesync_interface *next;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(svc->hd);
	if (!timesync_svc)
		goto done;

	cancel_delayed_work_sync(&timesync_svc->delayed_work);

	mutex_lock(&timesync_svc->mutex);

	gb_timesync_set_state_atomic(timesync_svc, GB_TIMESYNC_STATE_INVALID);
	del_timer_sync(&timesync_svc->ktime_timer);
	gb_timesync_teardown(timesync_svc);

	gb_timesync_hd_remove(timesync_svc, svc->hd);
	list_for_each_entry_safe(timesync_interface, next,
				 &timesync_svc->interface_list, list) {
		list_del(&timesync_interface->list);
		kfree(timesync_interface);
	}
	debugfs_remove(timesync_svc->frame_ktime_dentry);
	debugfs_remove(timesync_svc->frame_time_dentry);
	destroy_workqueue(timesync_svc->work_queue);
	list_del(&timesync_svc->list);

	mutex_unlock(&timesync_svc->mutex);

	kfree(timesync_svc);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
}
EXPORT_SYMBOL_GPL(gb_timesync_svc_remove);

/*
 * Add a Greybus Interface to the set of TimeSync Interfaces.
 */
int gb_timesync_interface_add(struct gb_interface *interface)
{
	struct gb_timesync_svc *timesync_svc;
	struct gb_timesync_interface *timesync_interface;
	int ret = 0;

	if (!(interface->features & GREYBUS_INTERFACE_FEATURE_TIMESYNC))
		return 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
	if (!timesync_svc) {
		ret = -ENODEV;
		goto done;
	}

	timesync_interface = kzalloc(sizeof(*timesync_interface), GFP_KERNEL);
	if (!timesync_interface) {
		ret = -ENOMEM;
		goto done;
	}

	mutex_lock(&timesync_svc->mutex);
	timesync_interface->interface = interface;
	list_add(&timesync_interface->list, &timesync_svc->interface_list);
	timesync_svc->strobe_mask |= 1 << interface->interface_id;
	mutex_unlock(&timesync_svc->mutex);

done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_interface_add);

/*
 * Remove a Greybus Interface from the set of TimeSync Interfaces.
 */
void gb_timesync_interface_remove(struct gb_interface *interface)
{
	struct gb_timesync_svc *timesync_svc;
	struct gb_timesync_interface *timesync_interface;

	if (!(interface->features & GREYBUS_INTERFACE_FEATURE_TIMESYNC))
		return;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
	if (!timesync_svc)
		goto done;

	timesync_interface = gb_timesync_find_timesync_interface(timesync_svc,
								 interface);
	if (!timesync_interface)
		goto done;

	mutex_lock(&timesync_svc->mutex);
	timesync_svc->strobe_mask &= ~(1 << interface->interface_id);
	list_del(&timesync_interface->list);
	kfree(timesync_interface);
	mutex_unlock(&timesync_svc->mutex);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
}
EXPORT_SYMBOL_GPL(gb_timesync_interface_remove);

/*
 * Give the authoritative FrameTime to the calling function. Returns zero if we
 * are not in GB_TIMESYNC_STATE_ACTIVE.
 */
static u64 gb_timesync_get_frame_time(struct gb_timesync_svc *timesync_svc)
{
	unsigned long flags;
	u64 ret;

	spin_lock_irqsave(&timesync_svc->spinlock, flags);
	if (timesync_svc->state == GB_TIMESYNC_STATE_ACTIVE)
		ret = __gb_timesync_get_frame_time(timesync_svc);
	else
		ret = 0;
	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
	return ret;
}

u64 gb_timesync_get_frame_time_by_interface(struct gb_interface *interface)
{
	struct gb_timesync_svc *timesync_svc;
	u64 ret = 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
	if (!timesync_svc)
		goto done;

	ret = gb_timesync_get_frame_time(timesync_svc);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_get_frame_time_by_interface);

u64 gb_timesync_get_frame_time_by_svc(struct gb_svc *svc)
{
	struct gb_timesync_svc *timesync_svc;
	u64 ret = 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(svc->hd);
	if (!timesync_svc)
		goto done;

	ret = gb_timesync_get_frame_time(timesync_svc);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_get_frame_time_by_svc);

/* Incrementally updates the conversion base from FrameTime to ktime */
static void gb_timesync_ktime_timer_fn(unsigned long data)
{
	struct gb_timesync_svc *timesync_svc =
		(struct gb_timesync_svc *)data;
	unsigned long flags;
	u64 frame_time;
	struct timespec ts;

	spin_lock_irqsave(&timesync_svc->spinlock, flags);

	if (timesync_svc->state != GB_TIMESYNC_STATE_ACTIVE)
		goto done;

	ktime_get_ts(&ts);
	frame_time = __gb_timesync_get_frame_time(timesync_svc);
	gb_timesync_store_ktime(timesync_svc, ts, frame_time);

done:
	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
	mod_timer(&timesync_svc->ktime_timer,
		  jiffies + GB_TIMESYNC_KTIME_UPDATE);
}

int gb_timesync_to_timespec_by_svc(struct gb_svc *svc, u64 frame_time,
				   struct timespec *ts)
{
	struct gb_timesync_svc *timesync_svc;
	int ret = 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(svc->hd);
	if (!timesync_svc) {
		ret = -ENODEV;
		goto done;
	}
	ret = gb_timesync_to_timespec(timesync_svc, frame_time, ts);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_to_timespec_by_svc);

int gb_timesync_to_timespec_by_interface(struct gb_interface *interface,
					 u64 frame_time, struct timespec *ts)
{
	struct gb_timesync_svc *timesync_svc;
	int ret = 0;

	mutex_lock(&gb_timesync_svc_list_mutex);
	timesync_svc = gb_timesync_find_timesync_svc(interface->hd);
	if (!timesync_svc) {
		ret = -ENODEV;
		goto done;
	}

	ret = gb_timesync_to_timespec(timesync_svc, frame_time, ts);
done:
	mutex_unlock(&gb_timesync_svc_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(gb_timesync_to_timespec_by_interface);

void gb_timesync_irq(struct gb_timesync_svc *timesync_svc)
{
	unsigned long flags;
	u64 strobe_time;
	bool strobe_is_ping = true;
	struct timespec ts;

	ktime_get_ts(&ts);
	strobe_time = __gb_timesync_get_frame_time(timesync_svc);

	spin_lock_irqsave(&timesync_svc->spinlock, flags);

	if (timesync_svc->state == GB_TIMESYNC_STATE_PING) {
		if (!timesync_svc->capture_ping)
			goto done_nolog;
		timesync_svc->ap_ping_frame_time = strobe_time;
		goto done_log;
	} else if (timesync_svc->state != GB_TIMESYNC_STATE_WAIT_SVC) {
		goto done_nolog;
	}

	timesync_svc->strobe_data[timesync_svc->strobe].frame_time = strobe_time;
	timesync_svc->strobe_data[timesync_svc->strobe].ts = ts;

	if (++timesync_svc->strobe == GB_TIMESYNC_MAX_STROBES) {
		gb_timesync_set_state(timesync_svc,
				      GB_TIMESYNC_STATE_AUTHORITATIVE);
	}
	strobe_is_ping = false;
done_log:
	trace_gb_timesync_irq(strobe_is_ping, timesync_svc->strobe,
			      GB_TIMESYNC_MAX_STROBES, strobe_time);
done_nolog:
	spin_unlock_irqrestore(&timesync_svc->spinlock, flags);
}
EXPORT_SYMBOL(gb_timesync_irq);

int __init gb_timesync_init(void)
{
	int ret = 0;

	ret = gb_timesync_platform_init();
	if (ret) {
		pr_err("timesync platform init fail!\n");
		return ret;
	}

	gb_timesync_clock_rate = gb_timesync_platform_get_clock_rate();

	/* Calculate nanoseconds and femtoseconds per clock */
	gb_timesync_fs_per_clock = FSEC_PER_SEC;
	do_div(gb_timesync_fs_per_clock, gb_timesync_clock_rate);
	gb_timesync_ns_per_clock = NSEC_PER_SEC;
	do_div(gb_timesync_ns_per_clock, gb_timesync_clock_rate);

	/* Calculate the maximum number of clocks we will convert to ktime */
	gb_timesync_max_ktime_diff =
		GB_TIMESYNC_MAX_KTIME_CONVERSION * gb_timesync_clock_rate;

	pr_info("Time-Sync @ %lu Hz max ktime conversion +/- %d seconds\n",
		gb_timesync_clock_rate, GB_TIMESYNC_MAX_KTIME_CONVERSION);
	return 0;
}

void gb_timesync_exit(void)
{
	gb_timesync_platform_exit();
}