i2c-mxs.c 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/*
 * Freescale MXS I2C bus driver
 *
 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
 *
 * based on a (non-working) driver which was:
 *
 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/jiffies.h>
#include <linux/io.h>
#include <linux/stmp_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>

#define DRIVER_NAME "mxs-i2c"

#define MXS_I2C_CTRL0		(0x00)
#define MXS_I2C_CTRL0_SET	(0x04)
#define MXS_I2C_CTRL0_CLR	(0x08)

#define MXS_I2C_CTRL0_SFTRST			0x80000000
#define MXS_I2C_CTRL0_RUN			0x20000000
#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
#define MXS_I2C_CTRL0_DIRECTION			0x00010000
#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)

#define MXS_I2C_TIMING0		(0x10)
#define MXS_I2C_TIMING1		(0x20)
#define MXS_I2C_TIMING2		(0x30)

#define MXS_I2C_CTRL1		(0x40)
#define MXS_I2C_CTRL1_SET	(0x44)
#define MXS_I2C_CTRL1_CLR	(0x48)

#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01

#define MXS_I2C_STAT		(0x50)
#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
#define MXS_I2C_STAT_BUS_BUSY			0x00000800
#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400

#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)

#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)

#define MXS_I2C_DEBUG0_DMAREQ	0x80000000

#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_IRQ)


#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
				 MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION |	\
				 MXS_I2C_CTRL0_XFER_COUNT(1))

#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION)

#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
				 MXS_I2C_CTRL0_MASTER_MODE)

enum mxs_i2c_devtype {
	MXS_I2C_UNKNOWN = 0,
	MXS_I2C_V1,
	MXS_I2C_V2,
};

/**
 * struct mxs_i2c_dev - per device, private MXS-I2C data
 *
 * @dev: driver model device node
 * @dev_type: distinguish i.MX23/i.MX28 features
 * @regs: IO registers pointer
 * @cmd_complete: completion object for transaction wait
 * @cmd_err: error code for last transaction
 * @adapter: i2c subsystem adapter node
 */
struct mxs_i2c_dev {
	struct device *dev;
	enum mxs_i2c_devtype dev_type;
	void __iomem *regs;
	struct completion cmd_complete;
	int cmd_err;
	struct i2c_adapter adapter;

	uint32_t timing0;
	uint32_t timing1;
	uint32_t timing2;

	/* DMA support components */
	struct dma_chan			*dmach;
	uint32_t			pio_data[2];
	uint32_t			addr_data;
	struct scatterlist		sg_io[2];
	bool				dma_read;
};

static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
{
	int ret = stmp_reset_block(i2c->regs);
	if (ret)
		return ret;

	/*
	 * Configure timing for the I2C block. The I2C TIMING2 register has to
	 * be programmed with this particular magic number. The rest is derived
	 * from the XTAL speed and requested I2C speed.
	 *
	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
	 */
	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);

	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);

	return 0;
}

static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
{
	if (i2c->dma_read) {
		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
	} else {
		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
	}
}

static void mxs_i2c_dma_irq_callback(void *param)
{
	struct mxs_i2c_dev *i2c = param;

	complete(&i2c->cmd_complete);
	mxs_i2c_dma_finish(i2c);
}

static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct dma_async_tx_descriptor *desc;
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);

	if (msg->flags & I2C_M_RD) {
		i2c->dma_read = 1;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;

		/*
		 * SELECT command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto select_init_dma_fail;
		}

		/*
		 * READ command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[1],
					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_dma_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
					DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto read_init_dma_fail;
		}
	} else {
		i2c->dma_read = 0;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;

		/*
		 * WRITE command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto write_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_table(i2c->sg_io, 2);
		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto write_init_dma_fail;
		}
	}

	/*
	 * The last descriptor must have this callback,
	 * to finish the DMA transaction.
	 */
	desc->callback = mxs_i2c_dma_irq_callback;
	desc->callback_param = i2c;

	/* Start the transfer. */
	dmaengine_submit(desc);
	dma_async_issue_pending(i2c->dmach);
	return 0;

/* Read failpath. */
read_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
select_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
select_init_pio_fail:
	dmaengine_terminate_all(i2c->dmach);
	return -EINVAL;

/* Write failpath. */
write_init_dma_fail:
	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
write_init_pio_fail:
	dmaengine_terminate_all(i2c->dmach);
	return -EINVAL;
}

static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);

	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
		if (readl(i2c->regs + MXS_I2C_CTRL1) &
				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
			return -ENXIO;
		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;
		cond_resched();
	}

	return 0;
}

static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
{
	u32 state;

	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;

	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
		i2c->cmd_err = -ENXIO;
	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
			  MXS_I2C_CTRL1_SLAVE_IRQ))
		i2c->cmd_err = -EIO;

	return i2c->cmd_err;
}

static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
{
	u32 reg;

	writel(cmd, i2c->regs + MXS_I2C_CTRL0);

	/* readback makes sure the write is latched into hardware */
	reg = readl(i2c->regs + MXS_I2C_CTRL0);
	reg |= MXS_I2C_CTRL0_RUN;
	writel(reg, i2c->regs + MXS_I2C_CTRL0);
}

/*
 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
 * must be written during PIO mode operation. First, the CTRL0 register has
 * to be programmed with all the necessary bits but the RUN bit. Then the
 * payload has to be written into the DATA register. Finally, the transmission
 * is executed by setting the RUN bit in CTRL0.
 */
static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
					  u32 data)
{
	writel(cmd, i2c->regs + MXS_I2C_CTRL0);

	if (i2c->dev_type == MXS_I2C_V1)
		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);

	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
}

static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
	uint32_t addr_data = msg->addr << 1;
	uint32_t data = 0;
	int i, ret, xlen = 0, xmit = 0;
	uint32_t start;

	/* Mute IRQs coming from this block. */
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);

	/*
	 * MX23 idea:
	 * - Enable CTRL0::PIO_MODE (1 << 24)
	 * - Enable CTRL1::ACK_MODE (1 << 27)
	 *
	 * WARNING! The MX23 is broken in some way, even if it claims
	 * to support PIO, when we try to transfer any amount of data
	 * that is not aligned to 4 bytes, the DMA engine will have
	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
	 * transfer. This in turn will mess up the next transfer as
	 * the block it emit one byte write onto the bus terminated
	 * with a NAK+STOP. A possible workaround is to reset the IP
	 * block after every PIO transmission, which might just work.
	 *
	 * NOTE: The CTRL0::PIO_MODE description is important, since
	 * it outlines how the PIO mode is really supposed to work.
	 */
	if (msg->flags & I2C_M_RD) {
		/*
		 * PIO READ transfer:
		 *
		 * This transfer MUST be limited to 4 bytes maximum. It is not
		 * possible to transfer more than four bytes via PIO, since we
		 * can not in any way make sure we can read the data from the
		 * DATA register fast enough. Besides, the RX FIFO is only four
		 * bytes deep, thus we can only really read up to four bytes at
		 * time. Finally, there is no bit indicating us that new data
		 * arrived at the FIFO and can thus be fetched from the DATA
		 * register.
		 */
		BUG_ON(msg->len > 4);

		addr_data |= I2C_SMBUS_READ;

		/* SELECT command. */
		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
					      addr_data);

		ret = mxs_i2c_pio_wait_xfer_end(i2c);
		if (ret) {
			dev_dbg(i2c->dev,
				"PIO: Failed to send SELECT command!\n");
			goto cleanup;
		}

		/* READ command. */
		mxs_i2c_pio_trigger_cmd(i2c,
					MXS_CMD_I2C_READ | flags |
					MXS_I2C_CTRL0_XFER_COUNT(msg->len));

		ret = mxs_i2c_pio_wait_xfer_end(i2c);
		if (ret) {
			dev_dbg(i2c->dev,
				"PIO: Failed to send READ command!\n");
			goto cleanup;
		}

		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
		for (i = 0; i < msg->len; i++) {
			msg->buf[i] = data & 0xff;
			data >>= 8;
		}
	} else {
		/*
		 * PIO WRITE transfer:
		 *
		 * The code below implements clock stretching to circumvent
		 * the possibility of kernel not being able to supply data
		 * fast enough. It is possible to transfer arbitrary amount
		 * of data using PIO write.
		 */
		addr_data |= I2C_SMBUS_WRITE;

		/*
		 * The LSB of data buffer is the first byte blasted across
		 * the bus. Higher order bytes follow. Thus the following
		 * filling schematic.
		 */

		data = addr_data << 24;

		/* Start the transfer with START condition. */
		start = MXS_I2C_CTRL0_PRE_SEND_START;

		/* If the transfer is long, use clock stretching. */
		if (msg->len > 3)
			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;

		for (i = 0; i < msg->len; i++) {
			data >>= 8;
			data |= (msg->buf[i] << 24);

			xmit = 0;

			/* This is the last transfer of the message. */
			if (i + 1 == msg->len) {
				/* Add optional STOP flag. */
				start |= flags;
				/* Remove RETAIN_CLOCK bit. */
				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
				xmit = 1;
			}

			/* Four bytes are ready in the "data" variable. */
			if ((i & 3) == 2)
				xmit = 1;

			/* Nothing interesting happened, continue stuffing. */
			if (!xmit)
				continue;

			/*
			 * Compute the size of the transfer and shift the
			 * data accordingly.
			 *
			 * i = (4k + 0) .... xlen = 2
			 * i = (4k + 1) .... xlen = 3
			 * i = (4k + 2) .... xlen = 4
			 * i = (4k + 3) .... xlen = 1
			 */

			if ((i % 4) == 3)
				xlen = 1;
			else
				xlen = (i % 4) + 2;

			data >>= (4 - xlen) * 8;

			dev_dbg(i2c->dev,
				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
				xlen, i, msg->len,
				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");

			writel(MXS_I2C_DEBUG0_DMAREQ,
			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));

			mxs_i2c_pio_trigger_write_cmd(i2c,
				start | MXS_I2C_CTRL0_MASTER_MODE |
				MXS_I2C_CTRL0_DIRECTION |
				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);

			/* The START condition is sent only once. */
			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;

			/* Wait for the end of the transfer. */
			ret = mxs_i2c_pio_wait_xfer_end(i2c);
			if (ret) {
				dev_dbg(i2c->dev,
					"PIO: Failed to finish WRITE cmd!\n");
				break;
			}

			/* Check NAK here. */
			ret = readl(i2c->regs + MXS_I2C_STAT) &
				    MXS_I2C_STAT_GOT_A_NAK;
			if (ret) {
				ret = -ENXIO;
				goto cleanup;
			}
		}
	}

	/* make sure we capture any occurred error into cmd_err */
	ret = mxs_i2c_pio_check_error_state(i2c);

cleanup:
	/* Clear any dangling IRQs and re-enable interrupts. */
	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);

	/* Clear the PIO_MODE on i.MX23 */
	if (i2c->dev_type == MXS_I2C_V1)
		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);

	return ret;
}

/*
 * Low level master read/write transaction.
 */
static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
				int stop)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
	int ret;
	int flags;
	int use_pio = 0;
	unsigned long time_left;

	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;

	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
		msg->addr, msg->len, msg->flags, stop);

	if (msg->len == 0)
		return -EINVAL;

	/*
	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
	 * 4 bytes of length. The write transfer is not limited as it can use
	 * clock stretching to avoid FIFO underruns.
	 */
	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
		use_pio = 1;
	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
		use_pio = 1;

	i2c->cmd_err = 0;
	if (use_pio) {
		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
		/* No need to reset the block if NAK was received. */
		if (ret && (ret != -ENXIO))
			mxs_i2c_reset(i2c);
	} else {
		reinit_completion(&i2c->cmd_complete);
		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
		if (ret)
			return ret;

		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
						msecs_to_jiffies(1000));
		if (!time_left)
			goto timeout;

		ret = i2c->cmd_err;
	}

	if (ret == -ENXIO) {
		/*
		 * If the transfer fails with a NAK from the slave the
		 * controller halts until it gets told to return to idle state.
		 */
		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
		       i2c->regs + MXS_I2C_CTRL1_SET);
	}

	/*
	 * WARNING!
	 * The i.MX23 is strange. After each and every operation, it's I2C IP
	 * block must be reset, otherwise the IP block will misbehave. This can
	 * be observed on the bus by the block sending out one single byte onto
	 * the bus. In case such an error happens, bit 27 will be set in the
	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
	 * and is marked as "TBD" instead. To reset this bit to a correct state,
	 * reset the whole block. Since the block reset does not take long, do
	 * reset the block after every transfer to play safe.
	 */
	if (i2c->dev_type == MXS_I2C_V1)
		mxs_i2c_reset(i2c);

	dev_dbg(i2c->dev, "Done with err=%d\n", ret);

	return ret;

timeout:
	dev_dbg(i2c->dev, "Timeout!\n");
	mxs_i2c_dma_finish(i2c);
	ret = mxs_i2c_reset(i2c);
	if (ret)
		return ret;

	return -ETIMEDOUT;
}

static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
			int num)
{
	int i;
	int err;

	for (i = 0; i < num; i++) {
		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
		if (err)
			return err;
	}

	return num;
}

static u32 mxs_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
{
	struct mxs_i2c_dev *i2c = dev_id;
	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;

	if (!stat)
		return IRQ_NONE;

	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
		i2c->cmd_err = -ENXIO;
	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
		i2c->cmd_err = -EIO;

	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);

	return IRQ_HANDLED;
}

static const struct i2c_algorithm mxs_i2c_algo = {
	.master_xfer = mxs_i2c_xfer,
	.functionality = mxs_i2c_func,
};

static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
{
	/* The I2C block clock runs at 24MHz */
	const uint32_t clk = 24000000;
	uint32_t divider;
	uint16_t high_count, low_count, rcv_count, xmit_count;
	uint32_t bus_free, leadin;
	struct device *dev = i2c->dev;

	divider = DIV_ROUND_UP(clk, speed);

	if (divider < 25) {
		/*
		 * limit the divider, so that min(low_count, high_count)
		 * is >= 1
		 */
		divider = 25;
		dev_warn(dev,
			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
			speed / 1000, speed % 1000,
			clk / divider / 1000, clk / divider % 1000);
	} else if (divider > 1897) {
		/*
		 * limit the divider, so that max(low_count, high_count)
		 * cannot exceed 1023
		 */
		divider = 1897;
		dev_warn(dev,
			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
			speed / 1000, speed % 1000,
			clk / divider / 1000, clk / divider % 1000);
	}

	/*
	 * The I2C spec specifies the following timing data:
	 *                          standard mode  fast mode Bitfield name
	 * tLOW (SCL LOW period)     4700 ns        1300 ns
	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
	 * tSU;DAT (data setup time)  250 ns         100 ns
	 * tHD;STA (START hold time) 4000 ns         600 ns
	 * tBUF (bus free time)      4700 ns        1300 ns
	 *
	 * The hardware (of the i.MX28 at least) seems to add 2 additional
	 * clock cycles to the low_count and 7 cycles to the high_count.
	 * This is compensated for by subtracting the respective constants
	 * from the values written to the timing registers.
	 */
	if (speed > 100000) {
		/* fast mode */
		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
	} else {
		/* normal mode */
		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
	}
	rcv_count = high_count * 3 / 8;
	xmit_count = low_count * 3 / 8;

	dev_dbg(dev,
		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
		speed, clk / divider, divider, low_count, high_count,
		xmit_count, rcv_count, leadin, bus_free);

	low_count -= 2;
	high_count -= 7;
	i2c->timing0 = (high_count << 16) | rcv_count;
	i2c->timing1 = (low_count << 16) | xmit_count;
	i2c->timing2 = (bus_free << 16 | leadin);
}

static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
{
	uint32_t speed;
	struct device *dev = i2c->dev;
	struct device_node *node = dev->of_node;
	int ret;

	ret = of_property_read_u32(node, "clock-frequency", &speed);
	if (ret) {
		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
		speed = 100000;
	}

	mxs_i2c_derive_timing(i2c, speed);

	return 0;
}

static const struct platform_device_id mxs_i2c_devtype[] = {
	{
		.name = "imx23-i2c",
		.driver_data = MXS_I2C_V1,
	}, {
		.name = "imx28-i2c",
		.driver_data = MXS_I2C_V2,
	}, { /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);

static const struct of_device_id mxs_i2c_dt_ids[] = {
	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);

static int mxs_i2c_probe(struct platform_device *pdev)
{
	const struct of_device_id *of_id =
				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
	struct device *dev = &pdev->dev;
	struct mxs_i2c_dev *i2c;
	struct i2c_adapter *adap;
	struct resource *res;
	int err, irq;

	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	if (of_id) {
		const struct platform_device_id *device_id = of_id->data;
		i2c->dev_type = device_id->driver_data;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
	if (err)
		return err;

	i2c->dev = dev;

	init_completion(&i2c->cmd_complete);

	if (dev->of_node) {
		err = mxs_i2c_get_ofdata(i2c);
		if (err)
			return err;
	}

	/* Setup the DMA */
	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
	if (!i2c->dmach) {
		dev_err(dev, "Failed to request dma\n");
		return -ENODEV;
	}

	platform_set_drvdata(pdev, i2c);

	/* Do reset to enforce correct startup after pinmuxing */
	err = mxs_i2c_reset(i2c);
	if (err)
		return err;

	adap = &i2c->adapter;
	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
	adap->owner = THIS_MODULE;
	adap->algo = &mxs_i2c_algo;
	adap->dev.parent = dev;
	adap->nr = pdev->id;
	adap->dev.of_node = pdev->dev.of_node;
	i2c_set_adapdata(adap, i2c);
	err = i2c_add_numbered_adapter(adap);
	if (err) {
		writel(MXS_I2C_CTRL0_SFTRST,
				i2c->regs + MXS_I2C_CTRL0_SET);
		return err;
	}

	return 0;
}

static int mxs_i2c_remove(struct platform_device *pdev)
{
	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c->adapter);

	if (i2c->dmach)
		dma_release_channel(i2c->dmach);

	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);

	return 0;
}

static struct platform_driver mxs_i2c_driver = {
	.driver = {
		   .name = DRIVER_NAME,
		   .of_match_table = mxs_i2c_dt_ids,
		   },
	.probe = mxs_i2c_probe,
	.remove = mxs_i2c_remove,
};

static int __init mxs_i2c_init(void)
{
	return platform_driver_register(&mxs_i2c_driver);
}
subsys_initcall(mxs_i2c_init);

static void __exit mxs_i2c_exit(void)
{
	platform_driver_unregister(&mxs_i2c_driver);
}
module_exit(mxs_i2c_exit);

MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
MODULE_DESCRIPTION("MXS I2C Bus Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);