dfl-fme-main.c 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for FPGA Management Engine (FME)
 *
 * Copyright (C) 2017-2018 Intel Corporation, Inc.
 *
 * Authors:
 *   Kang Luwei <luwei.kang@intel.com>
 *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
 *   Joseph Grecco <joe.grecco@intel.com>
 *   Enno Luebbers <enno.luebbers@intel.com>
 *   Tim Whisonant <tim.whisonant@intel.com>
 *   Ananda Ravuri <ananda.ravuri@intel.com>
 *   Henry Mitchel <henry.mitchel@intel.com>
 */

#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/fpga-dfl.h>

#include "dfl.h"
#include "dfl-fme.h"

static ssize_t ports_num_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return scnprintf(buf, PAGE_SIZE, "%u\n",
			 (unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
}
static DEVICE_ATTR_RO(ports_num);

/*
 * Bitstream (static FPGA region) identifier number. It contains the
 * detailed version and other information of this static FPGA region.
 */
static ssize_t bitstream_id_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_BITSTREAM_ID);

	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_id);

/*
 * Bitstream (static FPGA region) meta data. It contains the synthesis
 * date, seed and other information of this static FPGA region.
 */
static ssize_t bitstream_metadata_show(struct device *dev,
				       struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_BITSTREAM_MD);

	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
}
static DEVICE_ATTR_RO(bitstream_metadata);

static ssize_t cache_size_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
}
static DEVICE_ATTR_RO(cache_size);

static ssize_t fabric_version_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
}
static DEVICE_ATTR_RO(fabric_version);

static ssize_t socket_id_show(struct device *dev,
			      struct device_attribute *attr, char *buf)
{
	void __iomem *base;
	u64 v;

	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);

	v = readq(base + FME_HDR_CAP);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
}
static DEVICE_ATTR_RO(socket_id);

static struct attribute *fme_hdr_attrs[] = {
	&dev_attr_ports_num.attr,
	&dev_attr_bitstream_id.attr,
	&dev_attr_bitstream_metadata.attr,
	&dev_attr_cache_size.attr,
	&dev_attr_fabric_version.attr,
	&dev_attr_socket_id.attr,
	NULL,
};

static const struct attribute_group fme_hdr_group = {
	.attrs = fme_hdr_attrs,
};

static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata,
				       unsigned long arg)
{
	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
	int port_id;

	if (get_user(port_id, (int __user *)arg))
		return -EFAULT;

	return dfl_fpga_cdev_release_port(cdev, port_id);
}

static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata,
				      unsigned long arg)
{
	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
	int port_id;

	if (get_user(port_id, (int __user *)arg))
		return -EFAULT;

	return dfl_fpga_cdev_assign_port(cdev, port_id);
}

static long fme_hdr_ioctl(struct platform_device *pdev,
			  struct dfl_feature *feature,
			  unsigned int cmd, unsigned long arg)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);

	switch (cmd) {
	case DFL_FPGA_FME_PORT_RELEASE:
		return fme_hdr_ioctl_release_port(pdata, arg);
	case DFL_FPGA_FME_PORT_ASSIGN:
		return fme_hdr_ioctl_assign_port(pdata, arg);
	}

	return -ENODEV;
}

static const struct dfl_feature_id fme_hdr_id_table[] = {
	{.id = FME_FEATURE_ID_HEADER,},
	{0,}
};

static const struct dfl_feature_ops fme_hdr_ops = {
	.ioctl = fme_hdr_ioctl,
};

#define FME_THERM_THRESHOLD	0x8
#define TEMP_THRESHOLD1		GENMASK_ULL(6, 0)
#define TEMP_THRESHOLD1_EN	BIT_ULL(7)
#define TEMP_THRESHOLD2		GENMASK_ULL(14, 8)
#define TEMP_THRESHOLD2_EN	BIT_ULL(15)
#define TRIP_THRESHOLD		GENMASK_ULL(30, 24)
#define TEMP_THRESHOLD1_STATUS	BIT_ULL(32)		/* threshold1 reached */
#define TEMP_THRESHOLD2_STATUS	BIT_ULL(33)		/* threshold2 reached */
/* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
#define TEMP_THRESHOLD1_POLICY	BIT_ULL(44)

#define FME_THERM_RDSENSOR_FMT1	0x10
#define FPGA_TEMPERATURE	GENMASK_ULL(6, 0)

#define FME_THERM_CAP		0x20
#define THERM_NO_THROTTLE	BIT_ULL(0)

#define MD_PRE_DEG

static bool fme_thermal_throttle_support(void __iomem *base)
{
	u64 v = readq(base + FME_THERM_CAP);

	return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
}

static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
					   enum hwmon_sensor_types type,
					   u32 attr, int channel)
{
	const struct dfl_feature *feature = drvdata;

	/* temperature is always supported, and check hardware cap for others */
	if (attr == hwmon_temp_input)
		return 0444;

	return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
}

static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			      u32 attr, int channel, long *val)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	switch (attr) {
	case hwmon_temp_input:
		v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
		*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * 1000);
		break;
	case hwmon_temp_max:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * 1000);
		break;
	case hwmon_temp_crit:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * 1000);
		break;
	case hwmon_temp_emergency:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * 1000);
		break;
	case hwmon_temp_max_alarm:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
		break;
	case hwmon_temp_crit_alarm:
		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
		*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static const struct hwmon_ops thermal_hwmon_ops = {
	.is_visible = thermal_hwmon_attrs_visible,
	.read = thermal_hwmon_read,
};

static const struct hwmon_channel_info *thermal_hwmon_info[] = {
	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
				 HWMON_T_MAX   | HWMON_T_MAX_ALARM |
				 HWMON_T_CRIT  | HWMON_T_CRIT_ALARM),
	NULL
};

static const struct hwmon_chip_info thermal_hwmon_chip_info = {
	.ops = &thermal_hwmon_ops,
	.info = thermal_hwmon_info,
};

static ssize_t temp1_max_policy_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	v = readq(feature->ioaddr + FME_THERM_THRESHOLD);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
}

static DEVICE_ATTR_RO(temp1_max_policy);

static struct attribute *thermal_extra_attrs[] = {
	&dev_attr_temp1_max_policy.attr,
	NULL,
};

static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
					   struct attribute *attr, int index)
{
	struct device *dev = kobj_to_dev(kobj);
	struct dfl_feature *feature = dev_get_drvdata(dev);

	return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
}

static const struct attribute_group thermal_extra_group = {
	.attrs		= thermal_extra_attrs,
	.is_visible	= thermal_extra_attrs_visible,
};
__ATTRIBUTE_GROUPS(thermal_extra);

static int fme_thermal_mgmt_init(struct platform_device *pdev,
				 struct dfl_feature *feature)
{
	struct device *hwmon;

	/*
	 * create hwmon to allow userspace monitoring temperature and other
	 * threshold information.
	 *
	 * temp1_input      -> FPGA device temperature
	 * temp1_max        -> hardware threshold 1 -> 50% or 90% throttling
	 * temp1_crit       -> hardware threshold 2 -> 100% throttling
	 * temp1_emergency  -> hardware trip_threshold to shutdown FPGA
	 * temp1_max_alarm  -> hardware threshold 1 alarm
	 * temp1_crit_alarm -> hardware threshold 2 alarm
	 *
	 * create device specific sysfs interfaces, e.g. read temp1_max_policy
	 * to understand the actual hardware throttling action (50% vs 90%).
	 *
	 * If hardware doesn't support automatic throttling per thresholds,
	 * then all above sysfs interfaces are not visible except temp1_input
	 * for temperature.
	 */
	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
						     "dfl_fme_thermal", feature,
						     &thermal_hwmon_chip_info,
						     thermal_extra_groups);
	if (IS_ERR(hwmon)) {
		dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
		return PTR_ERR(hwmon);
	}

	return 0;
}

static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
	{.id = FME_FEATURE_ID_THERMAL_MGMT,},
	{0,}
};

static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
	.init = fme_thermal_mgmt_init,
};

#define FME_PWR_STATUS		0x8
#define FME_LATENCY_TOLERANCE	BIT_ULL(18)
#define PWR_CONSUMED		GENMASK_ULL(17, 0)

#define FME_PWR_THRESHOLD	0x10
#define PWR_THRESHOLD1		GENMASK_ULL(6, 0)	/* in Watts */
#define PWR_THRESHOLD2		GENMASK_ULL(14, 8)	/* in Watts */
#define PWR_THRESHOLD_MAX	0x7f			/* in Watts */
#define PWR_THRESHOLD1_STATUS	BIT_ULL(16)
#define PWR_THRESHOLD2_STATUS	BIT_ULL(17)

#define FME_PWR_XEON_LIMIT	0x18
#define XEON_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
#define XEON_PWR_EN		BIT_ULL(15)
#define FME_PWR_FPGA_LIMIT	0x20
#define FPGA_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
#define FPGA_PWR_EN		BIT_ULL(15)

static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
			    u32 attr, int channel, long *val)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	switch (attr) {
	case hwmon_power_input:
		v = readq(feature->ioaddr + FME_PWR_STATUS);
		*val = (long)(FIELD_GET(PWR_CONSUMED, v) * 1000000);
		break;
	case hwmon_power_max:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * 1000000);
		break;
	case hwmon_power_crit:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * 1000000);
		break;
	case hwmon_power_max_alarm:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
		break;
	case hwmon_power_crit_alarm:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
		break;
	default:
		return -EOPNOTSUPP;
	}

	return 0;
}

static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
			     u32 attr, int channel, long val)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent);
	struct dfl_feature *feature = dev_get_drvdata(dev);
	int ret = 0;
	u64 v;

	val = clamp_val(val / 1000000, 0, PWR_THRESHOLD_MAX);

	mutex_lock(&pdata->lock);

	switch (attr) {
	case hwmon_power_max:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		v &= ~PWR_THRESHOLD1;
		v |= FIELD_PREP(PWR_THRESHOLD1, val);
		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
		break;
	case hwmon_power_crit:
		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
		v &= ~PWR_THRESHOLD2;
		v |= FIELD_PREP(PWR_THRESHOLD2, val);
		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&pdata->lock);

	return ret;
}

static umode_t power_hwmon_attrs_visible(const void *drvdata,
					 enum hwmon_sensor_types type,
					 u32 attr, int channel)
{
	switch (attr) {
	case hwmon_power_input:
	case hwmon_power_max_alarm:
	case hwmon_power_crit_alarm:
		return 0444;
	case hwmon_power_max:
	case hwmon_power_crit:
		return 0644;
	}

	return 0;
}

static const struct hwmon_ops power_hwmon_ops = {
	.is_visible = power_hwmon_attrs_visible,
	.read = power_hwmon_read,
	.write = power_hwmon_write,
};

static const struct hwmon_channel_info *power_hwmon_info[] = {
	HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
				  HWMON_P_MAX   | HWMON_P_MAX_ALARM |
				  HWMON_P_CRIT  | HWMON_P_CRIT_ALARM),
	NULL
};

static const struct hwmon_chip_info power_hwmon_chip_info = {
	.ops = &power_hwmon_ops,
	.info = power_hwmon_info,
};

static ssize_t power1_xeon_limit_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u16 xeon_limit = 0;
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);

	if (FIELD_GET(XEON_PWR_EN, v))
		xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);

	return sprintf(buf, "%u\n", xeon_limit * 100000);
}

static ssize_t power1_fpga_limit_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u16 fpga_limit = 0;
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);

	if (FIELD_GET(FPGA_PWR_EN, v))
		fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);

	return sprintf(buf, "%u\n", fpga_limit * 100000);
}

static ssize_t power1_ltr_show(struct device *dev,
			       struct device_attribute *attr, char *buf)
{
	struct dfl_feature *feature = dev_get_drvdata(dev);
	u64 v;

	v = readq(feature->ioaddr + FME_PWR_STATUS);

	return sprintf(buf, "%u\n",
		       (unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
}

static DEVICE_ATTR_RO(power1_xeon_limit);
static DEVICE_ATTR_RO(power1_fpga_limit);
static DEVICE_ATTR_RO(power1_ltr);

static struct attribute *power_extra_attrs[] = {
	&dev_attr_power1_xeon_limit.attr,
	&dev_attr_power1_fpga_limit.attr,
	&dev_attr_power1_ltr.attr,
	NULL
};

ATTRIBUTE_GROUPS(power_extra);

static int fme_power_mgmt_init(struct platform_device *pdev,
			       struct dfl_feature *feature)
{
	struct device *hwmon;

	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
						     "dfl_fme_power", feature,
						     &power_hwmon_chip_info,
						     power_extra_groups);
	if (IS_ERR(hwmon)) {
		dev_err(&pdev->dev, "Fail to register power hwmon\n");
		return PTR_ERR(hwmon);
	}

	return 0;
}

static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
	{.id = FME_FEATURE_ID_POWER_MGMT,},
	{0,}
};

static const struct dfl_feature_ops fme_power_mgmt_ops = {
	.init = fme_power_mgmt_init,
};

static struct dfl_feature_driver fme_feature_drvs[] = {
	{
		.id_table = fme_hdr_id_table,
		.ops = &fme_hdr_ops,
	},
	{
		.id_table = fme_pr_mgmt_id_table,
		.ops = &fme_pr_mgmt_ops,
	},
	{
		.id_table = fme_global_err_id_table,
		.ops = &fme_global_err_ops,
	},
	{
		.id_table = fme_thermal_mgmt_id_table,
		.ops = &fme_thermal_mgmt_ops,
	},
	{
		.id_table = fme_power_mgmt_id_table,
		.ops = &fme_power_mgmt_ops,
	},
	{
		.id_table = fme_perf_id_table,
		.ops = &fme_perf_ops,
	},
	{
		.ops = NULL,
	},
};

static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata,
				      unsigned long arg)
{
	/* No extension support for now */
	return 0;
}

static int fme_open(struct inode *inode, struct file *filp)
{
	struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode);
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev);
	int ret;

	if (WARN_ON(!pdata))
		return -ENODEV;

	mutex_lock(&pdata->lock);
	ret = dfl_feature_dev_use_begin(pdata, filp->f_flags & O_EXCL);
	if (!ret) {
		dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
			dfl_feature_dev_use_count(pdata));
		filp->private_data = pdata;
	}
	mutex_unlock(&pdata->lock);

	return ret;
}

static int fme_release(struct inode *inode, struct file *filp)
{
	struct dfl_feature_platform_data *pdata = filp->private_data;
	struct platform_device *pdev = pdata->dev;
	struct dfl_feature *feature;

	dev_dbg(&pdev->dev, "Device File Release\n");

	mutex_lock(&pdata->lock);
	dfl_feature_dev_use_end(pdata);

	if (!dfl_feature_dev_use_count(pdata))
		dfl_fpga_dev_for_each_feature(pdata, feature)
			dfl_fpga_set_irq_triggers(feature, 0,
						  feature->nr_irqs, NULL);
	mutex_unlock(&pdata->lock);

	return 0;
}

static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	struct dfl_feature_platform_data *pdata = filp->private_data;
	struct platform_device *pdev = pdata->dev;
	struct dfl_feature *f;
	long ret;

	dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);

	switch (cmd) {
	case DFL_FPGA_GET_API_VERSION:
		return DFL_FPGA_API_VERSION;
	case DFL_FPGA_CHECK_EXTENSION:
		return fme_ioctl_check_extension(pdata, arg);
	default:
		/*
		 * Let sub-feature's ioctl function to handle the cmd.
		 * Sub-feature's ioctl returns -ENODEV when cmd is not
		 * handled in this sub feature, and returns 0 or other
		 * error code if cmd is handled.
		 */
		dfl_fpga_dev_for_each_feature(pdata, f) {
			if (f->ops && f->ops->ioctl) {
				ret = f->ops->ioctl(pdev, f, cmd, arg);
				if (ret != -ENODEV)
					return ret;
			}
		}
	}

	return -EINVAL;
}

static int fme_dev_init(struct platform_device *pdev)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
	struct dfl_fme *fme;

	fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
	if (!fme)
		return -ENOMEM;

	fme->pdata = pdata;

	mutex_lock(&pdata->lock);
	dfl_fpga_pdata_set_private(pdata, fme);
	mutex_unlock(&pdata->lock);

	return 0;
}

static void fme_dev_destroy(struct platform_device *pdev)
{
	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);

	mutex_lock(&pdata->lock);
	dfl_fpga_pdata_set_private(pdata, NULL);
	mutex_unlock(&pdata->lock);
}

static const struct file_operations fme_fops = {
	.owner		= THIS_MODULE,
	.open		= fme_open,
	.release	= fme_release,
	.unlocked_ioctl = fme_ioctl,
};

static int fme_probe(struct platform_device *pdev)
{
	int ret;

	ret = fme_dev_init(pdev);
	if (ret)
		goto exit;

	ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
	if (ret)
		goto dev_destroy;

	ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
	if (ret)
		goto feature_uinit;

	return 0;

feature_uinit:
	dfl_fpga_dev_feature_uinit(pdev);
dev_destroy:
	fme_dev_destroy(pdev);
exit:
	return ret;
}

static int fme_remove(struct platform_device *pdev)
{
	dfl_fpga_dev_ops_unregister(pdev);
	dfl_fpga_dev_feature_uinit(pdev);
	fme_dev_destroy(pdev);

	return 0;
}

static const struct attribute_group *fme_dev_groups[] = {
	&fme_hdr_group,
	&fme_global_err_group,
	NULL
};

static struct platform_driver fme_driver = {
	.driver	= {
		.name       = DFL_FPGA_FEATURE_DEV_FME,
		.dev_groups = fme_dev_groups,
	},
	.probe   = fme_probe,
	.remove  = fme_remove,
};

module_platform_driver(fme_driver);

MODULE_DESCRIPTION("FPGA Management Engine driver");
MODULE_AUTHOR("Intel Corporation");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:dfl-fme");