rcuscale.c 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
// SPDX-License-Identifier: GPL-2.0+
/*
 * Read-Copy Update module-based scalability-test facility
 *
 * Copyright (C) IBM Corporation, 2015
 *
 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
 */

#define pr_fmt(fmt) fmt

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <uapi/linux/sched/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/freezer.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <linux/torture.h>
#include <linux/vmalloc.h>

#include "rcu.h"

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");

#define SCALE_FLAG "-scale:"
#define SCALEOUT_STRING(s) \
	pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
#define VERBOSE_SCALEOUT_STRING(s) \
	do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
#define VERBOSE_SCALEOUT_ERRSTRING(s) \
	do { if (verbose) pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s); } while (0)

/*
 * The intended use cases for the nreaders and nwriters module parameters
 * are as follows:
 *
 * 1.	Specify only the nr_cpus kernel boot parameter.  This will
 *	set both nreaders and nwriters to the value specified by
 *	nr_cpus for a mixed reader/writer test.
 *
 * 2.	Specify the nr_cpus kernel boot parameter, but set
 *	rcuscale.nreaders to zero.  This will set nwriters to the
 *	value specified by nr_cpus for an update-only test.
 *
 * 3.	Specify the nr_cpus kernel boot parameter, but set
 *	rcuscale.nwriters to zero.  This will set nreaders to the
 *	value specified by nr_cpus for a read-only test.
 *
 * Various other use cases may of course be specified.
 *
 * Note that this test's readers are intended only as a test load for
 * the writers.  The reader scalability statistics will be overly
 * pessimistic due to the per-critical-section interrupt disabling,
 * test-end checks, and the pair of calls through pointers.
 */

#ifdef MODULE
# define RCUSCALE_SHUTDOWN 0
#else
# define RCUSCALE_SHUTDOWN 1
#endif

torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
torture_param(int, nreaders, -1, "Number of RCU reader threads");
torture_param(int, nwriters, -1, "Number of RCU updater threads");
torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
	      "Shutdown at end of scalability tests.");
torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");

static char *scale_type = "rcu";
module_param(scale_type, charp, 0444);
MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");

static int nrealreaders;
static int nrealwriters;
static struct task_struct **writer_tasks;
static struct task_struct **reader_tasks;
static struct task_struct *shutdown_task;

static u64 **writer_durations;
static int *writer_n_durations;
static atomic_t n_rcu_scale_reader_started;
static atomic_t n_rcu_scale_writer_started;
static atomic_t n_rcu_scale_writer_finished;
static wait_queue_head_t shutdown_wq;
static u64 t_rcu_scale_writer_started;
static u64 t_rcu_scale_writer_finished;
static unsigned long b_rcu_gp_test_started;
static unsigned long b_rcu_gp_test_finished;
static DEFINE_PER_CPU(atomic_t, n_async_inflight);

#define MAX_MEAS 10000
#define MIN_MEAS 100

/*
 * Operations vector for selecting different types of tests.
 */

struct rcu_scale_ops {
	int ptype;
	void (*init)(void);
	void (*cleanup)(void);
	int (*readlock)(void);
	void (*readunlock)(int idx);
	unsigned long (*get_gp_seq)(void);
	unsigned long (*gp_diff)(unsigned long new, unsigned long old);
	unsigned long (*exp_completed)(void);
	void (*async)(struct rcu_head *head, rcu_callback_t func);
	void (*gp_barrier)(void);
	void (*sync)(void);
	void (*exp_sync)(void);
	const char *name;
};

static struct rcu_scale_ops *cur_ops;

/*
 * Definitions for rcu scalability testing.
 */

static int rcu_scale_read_lock(void) __acquires(RCU)
{
	rcu_read_lock();
	return 0;
}

static void rcu_scale_read_unlock(int idx) __releases(RCU)
{
	rcu_read_unlock();
}

static unsigned long __maybe_unused rcu_no_completed(void)
{
	return 0;
}

static void rcu_sync_scale_init(void)
{
}

static struct rcu_scale_ops rcu_ops = {
	.ptype		= RCU_FLAVOR,
	.init		= rcu_sync_scale_init,
	.readlock	= rcu_scale_read_lock,
	.readunlock	= rcu_scale_read_unlock,
	.get_gp_seq	= rcu_get_gp_seq,
	.gp_diff	= rcu_seq_diff,
	.exp_completed	= rcu_exp_batches_completed,
	.async		= call_rcu,
	.gp_barrier	= rcu_barrier,
	.sync		= synchronize_rcu,
	.exp_sync	= synchronize_rcu_expedited,
	.name		= "rcu"
};

/*
 * Definitions for srcu scalability testing.
 */

DEFINE_STATIC_SRCU(srcu_ctl_scale);
static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;

static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
{
	return srcu_read_lock(srcu_ctlp);
}

static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
{
	srcu_read_unlock(srcu_ctlp, idx);
}

static unsigned long srcu_scale_completed(void)
{
	return srcu_batches_completed(srcu_ctlp);
}

static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
{
	call_srcu(srcu_ctlp, head, func);
}

static void srcu_rcu_barrier(void)
{
	srcu_barrier(srcu_ctlp);
}

static void srcu_scale_synchronize(void)
{
	synchronize_srcu(srcu_ctlp);
}

static void srcu_scale_synchronize_expedited(void)
{
	synchronize_srcu_expedited(srcu_ctlp);
}

static struct rcu_scale_ops srcu_ops = {
	.ptype		= SRCU_FLAVOR,
	.init		= rcu_sync_scale_init,
	.readlock	= srcu_scale_read_lock,
	.readunlock	= srcu_scale_read_unlock,
	.get_gp_seq	= srcu_scale_completed,
	.gp_diff	= rcu_seq_diff,
	.exp_completed	= srcu_scale_completed,
	.async		= srcu_call_rcu,
	.gp_barrier	= srcu_rcu_barrier,
	.sync		= srcu_scale_synchronize,
	.exp_sync	= srcu_scale_synchronize_expedited,
	.name		= "srcu"
};

static struct srcu_struct srcud;

static void srcu_sync_scale_init(void)
{
	srcu_ctlp = &srcud;
	init_srcu_struct(srcu_ctlp);
}

static void srcu_sync_scale_cleanup(void)
{
	cleanup_srcu_struct(srcu_ctlp);
}

static struct rcu_scale_ops srcud_ops = {
	.ptype		= SRCU_FLAVOR,
	.init		= srcu_sync_scale_init,
	.cleanup	= srcu_sync_scale_cleanup,
	.readlock	= srcu_scale_read_lock,
	.readunlock	= srcu_scale_read_unlock,
	.get_gp_seq	= srcu_scale_completed,
	.gp_diff	= rcu_seq_diff,
	.exp_completed	= srcu_scale_completed,
	.async		= srcu_call_rcu,
	.gp_barrier	= srcu_rcu_barrier,
	.sync		= srcu_scale_synchronize,
	.exp_sync	= srcu_scale_synchronize_expedited,
	.name		= "srcud"
};

/*
 * Definitions for RCU-tasks scalability testing.
 */

static int tasks_scale_read_lock(void)
{
	return 0;
}

static void tasks_scale_read_unlock(int idx)
{
}

static struct rcu_scale_ops tasks_ops = {
	.ptype		= RCU_TASKS_FLAVOR,
	.init		= rcu_sync_scale_init,
	.readlock	= tasks_scale_read_lock,
	.readunlock	= tasks_scale_read_unlock,
	.get_gp_seq	= rcu_no_completed,
	.gp_diff	= rcu_seq_diff,
	.async		= call_rcu_tasks,
	.gp_barrier	= rcu_barrier_tasks,
	.sync		= synchronize_rcu_tasks,
	.exp_sync	= synchronize_rcu_tasks,
	.name		= "tasks"
};

static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
{
	if (!cur_ops->gp_diff)
		return new - old;
	return cur_ops->gp_diff(new, old);
}

/*
 * If scalability tests complete, wait for shutdown to commence.
 */
static void rcu_scale_wait_shutdown(void)
{
	cond_resched_tasks_rcu_qs();
	if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
		return;
	while (!torture_must_stop())
		schedule_timeout_uninterruptible(1);
}

/*
 * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
 * critical section, minimizing update-side interference.  However, the
 * point of this test is not to evaluate reader scalability, but instead
 * to serve as a test load for update-side scalability testing.
 */
static int
rcu_scale_reader(void *arg)
{
	unsigned long flags;
	int idx;
	long me = (long)arg;

	VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
	set_user_nice(current, MAX_NICE);
	atomic_inc(&n_rcu_scale_reader_started);

	do {
		local_irq_save(flags);
		idx = cur_ops->readlock();
		cur_ops->readunlock(idx);
		local_irq_restore(flags);
		rcu_scale_wait_shutdown();
	} while (!torture_must_stop());
	torture_kthread_stopping("rcu_scale_reader");
	return 0;
}

/*
 * Callback function for asynchronous grace periods from rcu_scale_writer().
 */
static void rcu_scale_async_cb(struct rcu_head *rhp)
{
	atomic_dec(this_cpu_ptr(&n_async_inflight));
	kfree(rhp);
}

/*
 * RCU scale writer kthread.  Repeatedly does a grace period.
 */
static int
rcu_scale_writer(void *arg)
{
	int i = 0;
	int i_max;
	long me = (long)arg;
	struct rcu_head *rhp = NULL;
	bool started = false, done = false, alldone = false;
	u64 t;
	u64 *wdp;
	u64 *wdpp = writer_durations[me];

	VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
	WARN_ON(!wdpp);
	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
	sched_set_fifo_low(current);

	if (holdoff)
		schedule_timeout_uninterruptible(holdoff * HZ);

	/*
	 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
	 * so that RCU is not always expedited for normal GP tests.
	 * The system_state test is approximate, but works well in practice.
	 */
	while (!gp_exp && system_state != SYSTEM_RUNNING)
		schedule_timeout_uninterruptible(1);

	t = ktime_get_mono_fast_ns();
	if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
		t_rcu_scale_writer_started = t;
		if (gp_exp) {
			b_rcu_gp_test_started =
				cur_ops->exp_completed() / 2;
		} else {
			b_rcu_gp_test_started = cur_ops->get_gp_seq();
		}
	}

	do {
		if (writer_holdoff)
			udelay(writer_holdoff);
		wdp = &wdpp[i];
		*wdp = ktime_get_mono_fast_ns();
		if (gp_async) {
retry:
			if (!rhp)
				rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
			if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
				atomic_inc(this_cpu_ptr(&n_async_inflight));
				cur_ops->async(rhp, rcu_scale_async_cb);
				rhp = NULL;
			} else if (!kthread_should_stop()) {
				cur_ops->gp_barrier();
				goto retry;
			} else {
				kfree(rhp); /* Because we are stopping. */
			}
		} else if (gp_exp) {
			cur_ops->exp_sync();
		} else {
			cur_ops->sync();
		}
		t = ktime_get_mono_fast_ns();
		*wdp = t - *wdp;
		i_max = i;
		if (!started &&
		    atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
			started = true;
		if (!done && i >= MIN_MEAS) {
			done = true;
			sched_set_normal(current, 0);
			pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
				 scale_type, SCALE_FLAG, me, MIN_MEAS);
			if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
			    nrealwriters) {
				schedule_timeout_interruptible(10);
				rcu_ftrace_dump(DUMP_ALL);
				SCALEOUT_STRING("Test complete");
				t_rcu_scale_writer_finished = t;
				if (gp_exp) {
					b_rcu_gp_test_finished =
						cur_ops->exp_completed() / 2;
				} else {
					b_rcu_gp_test_finished =
						cur_ops->get_gp_seq();
				}
				if (shutdown) {
					smp_mb(); /* Assign before wake. */
					wake_up(&shutdown_wq);
				}
			}
		}
		if (done && !alldone &&
		    atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
			alldone = true;
		if (started && !alldone && i < MAX_MEAS - 1)
			i++;
		rcu_scale_wait_shutdown();
	} while (!torture_must_stop());
	if (gp_async) {
		cur_ops->gp_barrier();
	}
	writer_n_durations[me] = i_max;
	torture_kthread_stopping("rcu_scale_writer");
	return 0;
}

static void
rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
{
	pr_alert("%s" SCALE_FLAG
		 "--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
		 scale_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
}

static void
rcu_scale_cleanup(void)
{
	int i;
	int j;
	int ngps = 0;
	u64 *wdp;
	u64 *wdpp;

	/*
	 * Would like warning at start, but everything is expedited
	 * during the mid-boot phase, so have to wait till the end.
	 */
	if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
		VERBOSE_SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
	if (rcu_gp_is_normal() && gp_exp)
		VERBOSE_SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
	if (gp_exp && gp_async)
		VERBOSE_SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");

	if (torture_cleanup_begin())
		return;
	if (!cur_ops) {
		torture_cleanup_end();
		return;
	}

	if (reader_tasks) {
		for (i = 0; i < nrealreaders; i++)
			torture_stop_kthread(rcu_scale_reader,
					     reader_tasks[i]);
		kfree(reader_tasks);
	}

	if (writer_tasks) {
		for (i = 0; i < nrealwriters; i++) {
			torture_stop_kthread(rcu_scale_writer,
					     writer_tasks[i]);
			if (!writer_n_durations)
				continue;
			j = writer_n_durations[i];
			pr_alert("%s%s writer %d gps: %d\n",
				 scale_type, SCALE_FLAG, i, j);
			ngps += j;
		}
		pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
			 scale_type, SCALE_FLAG,
			 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
			 t_rcu_scale_writer_finished -
			 t_rcu_scale_writer_started,
			 ngps,
			 rcuscale_seq_diff(b_rcu_gp_test_finished,
					   b_rcu_gp_test_started));
		for (i = 0; i < nrealwriters; i++) {
			if (!writer_durations)
				break;
			if (!writer_n_durations)
				continue;
			wdpp = writer_durations[i];
			if (!wdpp)
				continue;
			for (j = 0; j <= writer_n_durations[i]; j++) {
				wdp = &wdpp[j];
				pr_alert("%s%s %4d writer-duration: %5d %llu\n",
					scale_type, SCALE_FLAG,
					i, j, *wdp);
				if (j % 100 == 0)
					schedule_timeout_uninterruptible(1);
			}
			kfree(writer_durations[i]);
		}
		kfree(writer_tasks);
		kfree(writer_durations);
		kfree(writer_n_durations);
	}

	/* Do torture-type-specific cleanup operations.  */
	if (cur_ops->cleanup != NULL)
		cur_ops->cleanup();

	torture_cleanup_end();
}

/*
 * Return the number if non-negative.  If -1, the number of CPUs.
 * If less than -1, that much less than the number of CPUs, but
 * at least one.
 */
static int compute_real(int n)
{
	int nr;

	if (n >= 0) {
		nr = n;
	} else {
		nr = num_online_cpus() + 1 + n;
		if (nr <= 0)
			nr = 1;
	}
	return nr;
}

/*
 * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
 * down system.
 */
static int
rcu_scale_shutdown(void *arg)
{
	wait_event(shutdown_wq,
		   atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
	smp_mb(); /* Wake before output. */
	rcu_scale_cleanup();
	kernel_power_off();
	return -EINVAL;
}

/*
 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
 * of iterations and measure total time and number of GP for all iterations to complete.
 */

torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");

static struct task_struct **kfree_reader_tasks;
static int kfree_nrealthreads;
static atomic_t n_kfree_scale_thread_started;
static atomic_t n_kfree_scale_thread_ended;

struct kfree_obj {
	char kfree_obj[8];
	struct rcu_head rh;
};

static int
kfree_scale_thread(void *arg)
{
	int i, loop = 0;
	long me = (long)arg;
	struct kfree_obj *alloc_ptr;
	u64 start_time, end_time;
	long long mem_begin, mem_during = 0;

	VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
	set_user_nice(current, MAX_NICE);

	start_time = ktime_get_mono_fast_ns();

	if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
		if (gp_exp)
			b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
		else
			b_rcu_gp_test_started = cur_ops->get_gp_seq();
	}

	do {
		if (!mem_during) {
			mem_during = mem_begin = si_mem_available();
		} else if (loop % (kfree_loops / 4) == 0) {
			mem_during = (mem_during + si_mem_available()) / 2;
		}

		for (i = 0; i < kfree_alloc_num; i++) {
			alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
			if (!alloc_ptr)
				return -ENOMEM;

			kfree_rcu(alloc_ptr, rh);
		}

		cond_resched();
	} while (!torture_must_stop() && ++loop < kfree_loops);

	if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
		end_time = ktime_get_mono_fast_ns();

		if (gp_exp)
			b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
		else
			b_rcu_gp_test_finished = cur_ops->get_gp_seq();

		pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
		       (unsigned long long)(end_time - start_time), kfree_loops,
		       rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
		       (mem_begin - mem_during) >> (20 - PAGE_SHIFT));

		if (shutdown) {
			smp_mb(); /* Assign before wake. */
			wake_up(&shutdown_wq);
		}
	}

	torture_kthread_stopping("kfree_scale_thread");
	return 0;
}

static void
kfree_scale_cleanup(void)
{
	int i;

	if (torture_cleanup_begin())
		return;

	if (kfree_reader_tasks) {
		for (i = 0; i < kfree_nrealthreads; i++)
			torture_stop_kthread(kfree_scale_thread,
					     kfree_reader_tasks[i]);
		kfree(kfree_reader_tasks);
	}

	torture_cleanup_end();
}

/*
 * shutdown kthread.  Just waits to be awakened, then shuts down system.
 */
static int
kfree_scale_shutdown(void *arg)
{
	wait_event(shutdown_wq,
		   atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);

	smp_mb(); /* Wake before output. */

	kfree_scale_cleanup();
	kernel_power_off();
	return -EINVAL;
}

static int __init
kfree_scale_init(void)
{
	long i;
	int firsterr = 0;

	kfree_nrealthreads = compute_real(kfree_nthreads);
	/* Start up the kthreads. */
	if (shutdown) {
		init_waitqueue_head(&shutdown_wq);
		firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
						  shutdown_task);
		if (firsterr)
			goto unwind;
		schedule_timeout_uninterruptible(1);
	}

	pr_alert("kfree object size=%zu\n", kfree_mult * sizeof(struct kfree_obj));

	kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
			       GFP_KERNEL);
	if (kfree_reader_tasks == NULL) {
		firsterr = -ENOMEM;
		goto unwind;
	}

	for (i = 0; i < kfree_nrealthreads; i++) {
		firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
						  kfree_reader_tasks[i]);
		if (firsterr)
			goto unwind;
	}

	while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
		schedule_timeout_uninterruptible(1);

	torture_init_end();
	return 0;

unwind:
	torture_init_end();
	kfree_scale_cleanup();
	return firsterr;
}

static int __init
rcu_scale_init(void)
{
	long i;
	int firsterr = 0;
	static struct rcu_scale_ops *scale_ops[] = {
		&rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops,
	};

	if (!torture_init_begin(scale_type, verbose))
		return -EBUSY;

	/* Process args and announce that the scalability'er is on the job. */
	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
		cur_ops = scale_ops[i];
		if (strcmp(scale_type, cur_ops->name) == 0)
			break;
	}
	if (i == ARRAY_SIZE(scale_ops)) {
		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
		pr_alert("rcu-scale types:");
		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
			pr_cont(" %s", scale_ops[i]->name);
		pr_cont("\n");
		WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
		firsterr = -EINVAL;
		cur_ops = NULL;
		goto unwind;
	}
	if (cur_ops->init)
		cur_ops->init();

	if (kfree_rcu_test)
		return kfree_scale_init();

	nrealwriters = compute_real(nwriters);
	nrealreaders = compute_real(nreaders);
	atomic_set(&n_rcu_scale_reader_started, 0);
	atomic_set(&n_rcu_scale_writer_started, 0);
	atomic_set(&n_rcu_scale_writer_finished, 0);
	rcu_scale_print_module_parms(cur_ops, "Start of test");

	/* Start up the kthreads. */

	if (shutdown) {
		init_waitqueue_head(&shutdown_wq);
		firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
						  shutdown_task);
		if (firsterr)
			goto unwind;
		schedule_timeout_uninterruptible(1);
	}
	reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
			       GFP_KERNEL);
	if (reader_tasks == NULL) {
		VERBOSE_SCALEOUT_ERRSTRING("out of memory");
		firsterr = -ENOMEM;
		goto unwind;
	}
	for (i = 0; i < nrealreaders; i++) {
		firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
						  reader_tasks[i]);
		if (firsterr)
			goto unwind;
	}
	while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
		schedule_timeout_uninterruptible(1);
	writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
			       GFP_KERNEL);
	writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
				   GFP_KERNEL);
	writer_n_durations =
		kcalloc(nrealwriters, sizeof(*writer_n_durations),
			GFP_KERNEL);
	if (!writer_tasks || !writer_durations || !writer_n_durations) {
		VERBOSE_SCALEOUT_ERRSTRING("out of memory");
		firsterr = -ENOMEM;
		goto unwind;
	}
	for (i = 0; i < nrealwriters; i++) {
		writer_durations[i] =
			kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
				GFP_KERNEL);
		if (!writer_durations[i]) {
			firsterr = -ENOMEM;
			goto unwind;
		}
		firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
						  writer_tasks[i]);
		if (firsterr)
			goto unwind;
	}
	torture_init_end();
	return 0;

unwind:
	torture_init_end();
	rcu_scale_cleanup();
	return firsterr;
}

module_init(rcu_scale_init);
module_exit(rcu_scale_cleanup);