spi-fsi.c 14.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
// SPDX-License-Identifier: GPL-2.0-or-later
// Copyright (C) IBM Corporation 2020

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/fsi.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/spi/spi.h>

#define FSI_ENGID_SPI			0x23
#define FSI_MBOX_ROOT_CTRL_8		0x2860
#define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX	 0xf0000000

#define FSI2SPI_DATA0			0x00
#define FSI2SPI_DATA1			0x04
#define FSI2SPI_CMD			0x08
#define  FSI2SPI_CMD_WRITE		 BIT(31)
#define FSI2SPI_RESET			0x18
#define FSI2SPI_STATUS			0x1c
#define  FSI2SPI_STATUS_ANY_ERROR	 BIT(31)
#define FSI2SPI_IRQ			0x20

#define SPI_FSI_BASE			0x70000
#define SPI_FSI_INIT_TIMEOUT_MS		1000
#define SPI_FSI_MAX_XFR_SIZE		2048
#define SPI_FSI_MAX_XFR_SIZE_RESTRICTED	32

#define SPI_FSI_ERROR			0x0
#define SPI_FSI_COUNTER_CFG		0x1
#define  SPI_FSI_COUNTER_CFG_LOOPS(x)	 (((u64)(x) & 0xffULL) << 32)
#define  SPI_FSI_COUNTER_CFG_N2_RX	 BIT_ULL(8)
#define  SPI_FSI_COUNTER_CFG_N2_TX	 BIT_ULL(9)
#define  SPI_FSI_COUNTER_CFG_N2_IMPLICIT BIT_ULL(10)
#define  SPI_FSI_COUNTER_CFG_N2_RELOAD	 BIT_ULL(11)
#define SPI_FSI_CFG1			0x2
#define SPI_FSI_CLOCK_CFG		0x3
#define  SPI_FSI_CLOCK_CFG_MM_ENABLE	 BIT_ULL(32)
#define  SPI_FSI_CLOCK_CFG_ECC_DISABLE	 (BIT_ULL(35) | BIT_ULL(33))
#define  SPI_FSI_CLOCK_CFG_RESET1	 (BIT_ULL(36) | BIT_ULL(38))
#define  SPI_FSI_CLOCK_CFG_RESET2	 (BIT_ULL(37) | BIT_ULL(39))
#define  SPI_FSI_CLOCK_CFG_MODE		 (BIT_ULL(41) | BIT_ULL(42))
#define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL	 GENMASK_ULL(51, 44)
#define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL	  BIT_ULL(51)
#define  SPI_FSI_CLOCK_CFG_SCK_DIV	 GENMASK_ULL(63, 52)
#define SPI_FSI_MMAP			0x4
#define SPI_FSI_DATA_TX			0x5
#define SPI_FSI_DATA_RX			0x6
#define SPI_FSI_SEQUENCE		0x7
#define  SPI_FSI_SEQUENCE_STOP		 0x00
#define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)	 (0x10 | ((x) & 0xf))
#define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)	 (0x30 | ((x) & 0xf))
#define  SPI_FSI_SEQUENCE_SHIFT_IN(x)	 (0x40 | ((x) & 0xf))
#define  SPI_FSI_SEQUENCE_COPY_DATA_TX	 0xc0
#define  SPI_FSI_SEQUENCE_BRANCH(x)	 (0xe0 | ((x) & 0xf))
#define SPI_FSI_STATUS			0x8
#define  SPI_FSI_STATUS_ERROR		 \
	(GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
#define  SPI_FSI_STATUS_SEQ_STATE	 GENMASK_ULL(55, 48)
#define   SPI_FSI_STATUS_SEQ_STATE_IDLE	  BIT_ULL(48)
#define  SPI_FSI_STATUS_TDR_UNDERRUN	 BIT_ULL(57)
#define  SPI_FSI_STATUS_TDR_OVERRUN	 BIT_ULL(58)
#define  SPI_FSI_STATUS_TDR_FULL	 BIT_ULL(59)
#define  SPI_FSI_STATUS_RDR_UNDERRUN	 BIT_ULL(61)
#define  SPI_FSI_STATUS_RDR_OVERRUN	 BIT_ULL(62)
#define  SPI_FSI_STATUS_RDR_FULL	 BIT_ULL(63)
#define  SPI_FSI_STATUS_ANY_ERROR	 \
	(SPI_FSI_STATUS_ERROR | \
	 SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
	 SPI_FSI_STATUS_RDR_OVERRUN)
#define SPI_FSI_PORT_CTRL		0x9

struct fsi_spi {
	struct device *dev;	/* SPI controller device */
	struct fsi_device *fsi;	/* FSI2SPI CFAM engine device */
	u32 base;
	size_t max_xfr_size;
	bool restricted;
};

struct fsi_spi_sequence {
	int bit;
	u64 data;
};

static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
{
	int rc;
	u32 root_ctrl_8;
	__be32 root_ctrl_8_be;

	rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
			    sizeof(root_ctrl_8_be));
	if (rc)
		return rc;

	root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
	dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
	if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
	     FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
		return 0;

	return -ENOLINK;
}

static int fsi_spi_check_status(struct fsi_spi *ctx)
{
	int rc;
	u32 sts;
	__be32 sts_be;

	rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
			     sizeof(sts_be));
	if (rc)
		return rc;

	sts = be32_to_cpu(sts_be);
	if (sts & FSI2SPI_STATUS_ANY_ERROR) {
		dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
		return -EIO;
	}

	return 0;
}

static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
{
	int rc;
	__be32 cmd_be;
	__be32 data_be;
	u32 cmd = offset + ctx->base;

	*value = 0ULL;

	if (cmd & FSI2SPI_CMD_WRITE)
		return -EINVAL;

	cmd_be = cpu_to_be32(cmd);
	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
	if (rc)
		return rc;

	rc = fsi_spi_check_status(ctx);
	if (rc)
		return rc;

	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
			     sizeof(data_be));
	if (rc)
		return rc;

	*value |= (u64)be32_to_cpu(data_be) << 32;

	rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
			     sizeof(data_be));
	if (rc)
		return rc;

	*value |= (u64)be32_to_cpu(data_be);
	dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);

	return 0;
}

static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
{
	int rc;
	__be32 cmd_be;
	__be32 data_be;
	u32 cmd = offset + ctx->base;

	if (cmd & FSI2SPI_CMD_WRITE)
		return -EINVAL;

	dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);

	data_be = cpu_to_be32(upper_32_bits(value));
	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
			      sizeof(data_be));
	if (rc)
		return rc;

	data_be = cpu_to_be32(lower_32_bits(value));
	rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
			      sizeof(data_be));
	if (rc)
		return rc;

	cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
	rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
	if (rc)
		return rc;

	return fsi_spi_check_status(ctx);
}

static int fsi_spi_data_in(u64 in, u8 *rx, int len)
{
	int i;
	int num_bytes = min(len, 8);

	for (i = 0; i < num_bytes; ++i)
		rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));

	return num_bytes;
}

static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
{
	int i;
	int num_bytes = min(len, 8);
	u8 *out_bytes = (u8 *)out;

	/* Unused bytes of the tx data should be 0. */
	*out = 0ULL;

	for (i = 0; i < num_bytes; ++i)
		out_bytes[8 - (i + 1)] = tx[i];

	return num_bytes;
}

static int fsi_spi_reset(struct fsi_spi *ctx)
{
	int rc;

	dev_dbg(ctx->dev, "Resetting SPI controller.\n");

	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
			       SPI_FSI_CLOCK_CFG_RESET1);
	if (rc)
		return rc;

	rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
			       SPI_FSI_CLOCK_CFG_RESET2);
	if (rc)
		return rc;

	return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
}

static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
{
	/*
	 * Add the next byte of instruction to the 8-byte sequence register.
	 * Then decrement the counter so that the next instruction will go in
	 * the right place. Return the index of the slot we just filled in the
	 * sequence register.
	 */
	seq->data |= (u64)val << seq->bit;
	seq->bit -= 8;

	return ((64 - seq->bit) / 8) - 2;
}

static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
{
	seq->bit = 56;
	seq->data = 0ULL;
}

static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
				     struct fsi_spi_sequence *seq,
				     struct spi_transfer *transfer)
{
	bool docfg = false;
	int loops;
	int idx;
	int rc;
	u8 val = 0;
	u8 len = min(transfer->len, 8U);
	u8 rem = transfer->len % len;
	u64 cfg = 0ULL;

	loops = transfer->len / len;

	if (transfer->tx_buf) {
		val = SPI_FSI_SEQUENCE_SHIFT_OUT(len);
		idx = fsi_spi_sequence_add(seq, val);

		if (rem)
			rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
	} else if (transfer->rx_buf) {
		val = SPI_FSI_SEQUENCE_SHIFT_IN(len);
		idx = fsi_spi_sequence_add(seq, val);

		if (rem)
			rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
	} else {
		return -EINVAL;
	}

	if (ctx->restricted) {
		const int eidx = rem ? 5 : 6;

		while (loops > 1 && idx <= eidx) {
			idx = fsi_spi_sequence_add(seq, val);
			loops--;
			docfg = true;
		}

		if (loops > 1) {
			dev_warn(ctx->dev, "No sequencer slots; aborting.\n");
			return -EINVAL;
		}
	}

	if (loops > 1) {
		fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
		docfg = true;
	}

	if (docfg) {
		cfg = SPI_FSI_COUNTER_CFG_LOOPS(loops - 1);
		if (transfer->rx_buf)
			cfg |= SPI_FSI_COUNTER_CFG_N2_RX |
				SPI_FSI_COUNTER_CFG_N2_TX |
				SPI_FSI_COUNTER_CFG_N2_IMPLICIT |
				SPI_FSI_COUNTER_CFG_N2_RELOAD;

		rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, cfg);
		if (rc)
			return rc;
	} else {
		fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
	}

	if (rem)
		fsi_spi_sequence_add(seq, rem);

	return 0;
}

static int fsi_spi_transfer_data(struct fsi_spi *ctx,
				 struct spi_transfer *transfer)
{
	int rc = 0;
	u64 status = 0ULL;
	u64 cfg = 0ULL;

	if (transfer->tx_buf) {
		int nb;
		int sent = 0;
		u64 out = 0ULL;
		const u8 *tx = transfer->tx_buf;

		while (transfer->len > sent) {
			nb = fsi_spi_data_out(&out, &tx[sent],
					      (int)transfer->len - sent);

			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
			if (rc)
				return rc;

			do {
				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
						      &status);
				if (rc)
					return rc;

				if (status & SPI_FSI_STATUS_ANY_ERROR) {
					rc = fsi_spi_reset(ctx);
					if (rc)
						return rc;

					return -EREMOTEIO;
				}
			} while (status & SPI_FSI_STATUS_TDR_FULL);

			sent += nb;
		}
	} else if (transfer->rx_buf) {
		int recv = 0;
		u64 in = 0ULL;
		u8 *rx = transfer->rx_buf;

		rc = fsi_spi_read_reg(ctx, SPI_FSI_COUNTER_CFG, &cfg);
		if (rc)
			return rc;

		if (cfg & SPI_FSI_COUNTER_CFG_N2_IMPLICIT) {
			rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, 0);
			if (rc)
				return rc;
		}

		while (transfer->len > recv) {
			do {
				rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
						      &status);
				if (rc)
					return rc;

				if (status & SPI_FSI_STATUS_ANY_ERROR) {
					rc = fsi_spi_reset(ctx);
					if (rc)
						return rc;

					return -EREMOTEIO;
				}
			} while (!(status & SPI_FSI_STATUS_RDR_FULL));

			rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
			if (rc)
				return rc;

			recv += fsi_spi_data_in(in, &rx[recv],
						(int)transfer->len - recv);
		}
	}

	return 0;
}

static int fsi_spi_transfer_init(struct fsi_spi *ctx)
{
	int rc;
	bool reset = false;
	unsigned long end;
	u64 seq_state;
	u64 clock_cfg = 0ULL;
	u64 status = 0ULL;
	u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
		SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
		FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);

	end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
	do {
		if (time_after(jiffies, end))
			return -ETIMEDOUT;

		rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
		if (rc)
			return rc;

		seq_state = status & SPI_FSI_STATUS_SEQ_STATE;

		if (status & (SPI_FSI_STATUS_ANY_ERROR |
			      SPI_FSI_STATUS_TDR_FULL |
			      SPI_FSI_STATUS_RDR_FULL)) {
			if (reset)
				return -EIO;

			rc = fsi_spi_reset(ctx);
			if (rc)
				return rc;

			reset = true;
			continue;
		}
	} while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));

	rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
	if (rc)
		return rc;

	if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
			  SPI_FSI_CLOCK_CFG_ECC_DISABLE |
			  SPI_FSI_CLOCK_CFG_MODE |
			  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
			  SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
		rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
				       wanted_clock_cfg);

	return rc;
}

static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
					struct spi_message *mesg)
{
	int rc;
	u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
	struct spi_transfer *transfer;
	struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);

	rc = fsi_spi_check_mux(ctx->fsi, ctx->dev);
	if (rc)
		goto error;

	list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
		struct fsi_spi_sequence seq;
		struct spi_transfer *next = NULL;

		/* Sequencer must do shift out (tx) first. */
		if (!transfer->tx_buf ||
		    transfer->len > (ctx->max_xfr_size + 8)) {
			rc = -EINVAL;
			goto error;
		}

		dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);

		rc = fsi_spi_transfer_init(ctx);
		if (rc < 0)
			goto error;

		fsi_spi_sequence_init(&seq);
		fsi_spi_sequence_add(&seq, seq_slave);

		rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
		if (rc)
			goto error;

		if (!list_is_last(&transfer->transfer_list,
				  &mesg->transfers)) {
			next = list_next_entry(transfer, transfer_list);

			/* Sequencer can only do shift in (rx) after tx. */
			if (next->rx_buf) {
				if (next->len > ctx->max_xfr_size) {
					rc = -EINVAL;
					goto error;
				}

				dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
					next->len);

				rc = fsi_spi_sequence_transfer(ctx, &seq,
							       next);
				if (rc)
					goto error;
			} else {
				next = NULL;
			}
		}

		fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));

		rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
		if (rc)
			goto error;

		rc = fsi_spi_transfer_data(ctx, transfer);
		if (rc)
			goto error;

		if (next) {
			rc = fsi_spi_transfer_data(ctx, next);
			if (rc)
				goto error;

			transfer = next;
		}
	}

error:
	mesg->status = rc;
	spi_finalize_current_message(ctlr);

	return rc;
}

static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
{
	struct fsi_spi *ctx = spi_controller_get_devdata(spi->controller);

	return ctx->max_xfr_size;
}

static int fsi_spi_probe(struct device *dev)
{
	int rc;
	struct device_node *np;
	int num_controllers_registered = 0;
	struct fsi_device *fsi = to_fsi_dev(dev);

	rc = fsi_spi_check_mux(fsi, dev);
	if (rc)
		return -ENODEV;

	for_each_available_child_of_node(dev->of_node, np) {
		u32 base;
		struct fsi_spi *ctx;
		struct spi_controller *ctlr;

		if (of_property_read_u32(np, "reg", &base))
			continue;

		ctlr = spi_alloc_master(dev, sizeof(*ctx));
		if (!ctlr)
			break;

		ctlr->dev.of_node = np;
		ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
		ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
		ctlr->max_transfer_size = fsi_spi_max_transfer_size;
		ctlr->transfer_one_message = fsi_spi_transfer_one_message;

		ctx = spi_controller_get_devdata(ctlr);
		ctx->dev = &ctlr->dev;
		ctx->fsi = fsi;
		ctx->base = base + SPI_FSI_BASE;

		if (of_device_is_compatible(np, "ibm,fsi2spi-restricted")) {
			ctx->restricted = true;
			ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE_RESTRICTED;
		} else {
			ctx->restricted = false;
			ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE;
		}

		rc = devm_spi_register_controller(dev, ctlr);
		if (rc)
			spi_controller_put(ctlr);
		else
			num_controllers_registered++;
	}

	if (!num_controllers_registered)
		return -ENODEV;

	return 0;
}

static const struct fsi_device_id fsi_spi_ids[] = {
	{ FSI_ENGID_SPI, FSI_VERSION_ANY },
	{ }
};
MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);

static struct fsi_driver fsi_spi_driver = {
	.id_table = fsi_spi_ids,
	.drv = {
		.name = "spi-fsi",
		.bus = &fsi_bus_type,
		.probe = fsi_spi_probe,
	},
};
module_fsi_driver(fsi_spi_driver);

MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
MODULE_DESCRIPTION("FSI attached SPI controller");
MODULE_LICENSE("GPL");