rxrpc.c 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
// SPDX-License-Identifier: GPL-2.0-or-later
/* Maintain an RxRPC server socket to do AFS communications through
 *
 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 */

#include <linux/slab.h>
#include <linux/sched/signal.h>

#include <net/sock.h>
#include <net/af_rxrpc.h>
#include "internal.h"
#include "afs_cm.h"
#include "protocol_yfs.h"

struct workqueue_struct *afs_async_calls;

static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_process_async_call(struct work_struct *);
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
static int afs_deliver_cm_op_id(struct afs_call *);

/* asynchronous incoming call initial processing */
static const struct afs_call_type afs_RXCMxxxx = {
	.name		= "CB.xxxx",
	.deliver	= afs_deliver_cm_op_id,
};

/*
 * open an RxRPC socket and bind it to be a server for callback notifications
 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
 */
int afs_open_socket(struct afs_net *net)
{
	struct sockaddr_rxrpc srx;
	struct socket *socket;
	int ret;

	_enter("");

	ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
	if (ret < 0)
		goto error_1;

	socket->sk->sk_allocation = GFP_NOFS;

	/* bind the callback manager's address to make this a server socket */
	memset(&srx, 0, sizeof(srx));
	srx.srx_family			= AF_RXRPC;
	srx.srx_service			= CM_SERVICE;
	srx.transport_type		= SOCK_DGRAM;
	srx.transport_len		= sizeof(srx.transport.sin6);
	srx.transport.sin6.sin6_family	= AF_INET6;
	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);

	ret = rxrpc_sock_set_min_security_level(socket->sk,
						RXRPC_SECURITY_ENCRYPT);
	if (ret < 0)
		goto error_2;

	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
	if (ret == -EADDRINUSE) {
		srx.transport.sin6.sin6_port = 0;
		ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
	}
	if (ret < 0)
		goto error_2;

	srx.srx_service = YFS_CM_SERVICE;
	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
	if (ret < 0)
		goto error_2;

	/* Ideally, we'd turn on service upgrade here, but we can't because
	 * OpenAFS is buggy and leaks the userStatus field from packet to
	 * packet and between FS packets and CB packets - so if we try to do an
	 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
	 * it sends back to us.
	 */

	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
					   afs_rx_discard_new_call);

	ret = kernel_listen(socket, INT_MAX);
	if (ret < 0)
		goto error_2;

	net->socket = socket;
	afs_charge_preallocation(&net->charge_preallocation_work);
	_leave(" = 0");
	return 0;

error_2:
	sock_release(socket);
error_1:
	_leave(" = %d", ret);
	return ret;
}

/*
 * close the RxRPC socket AFS was using
 */
void afs_close_socket(struct afs_net *net)
{
	_enter("");

	kernel_listen(net->socket, 0);
	flush_workqueue(afs_async_calls);

	if (net->spare_incoming_call) {
		afs_put_call(net->spare_incoming_call);
		net->spare_incoming_call = NULL;
	}

	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
	wait_var_event(&net->nr_outstanding_calls,
		       !atomic_read(&net->nr_outstanding_calls));
	_debug("no outstanding calls");

	kernel_sock_shutdown(net->socket, SHUT_RDWR);
	flush_workqueue(afs_async_calls);
	sock_release(net->socket);

	_debug("dework");
	_leave("");
}

/*
 * Allocate a call.
 */
static struct afs_call *afs_alloc_call(struct afs_net *net,
				       const struct afs_call_type *type,
				       gfp_t gfp)
{
	struct afs_call *call;
	int o;

	call = kzalloc(sizeof(*call), gfp);
	if (!call)
		return NULL;

	call->type = type;
	call->net = net;
	call->debug_id = atomic_inc_return(&rxrpc_debug_id);
	atomic_set(&call->usage, 1);
	INIT_WORK(&call->async_work, afs_process_async_call);
	init_waitqueue_head(&call->waitq);
	spin_lock_init(&call->state_lock);
	call->iter = &call->def_iter;

	o = atomic_inc_return(&net->nr_outstanding_calls);
	trace_afs_call(call, afs_call_trace_alloc, 1, o,
		       __builtin_return_address(0));
	return call;
}

/*
 * Dispose of a reference on a call.
 */
void afs_put_call(struct afs_call *call)
{
	struct afs_net *net = call->net;
	int n = atomic_dec_return(&call->usage);
	int o = atomic_read(&net->nr_outstanding_calls);

	trace_afs_call(call, afs_call_trace_put, n, o,
		       __builtin_return_address(0));

	ASSERTCMP(n, >=, 0);
	if (n == 0) {
		ASSERT(!work_pending(&call->async_work));
		ASSERT(call->type->name != NULL);

		if (call->rxcall) {
			rxrpc_kernel_end_call(net->socket, call->rxcall);
			call->rxcall = NULL;
		}
		if (call->type->destructor)
			call->type->destructor(call);

		afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
		afs_put_addrlist(call->alist);
		kfree(call->request);

		trace_afs_call(call, afs_call_trace_free, 0, o,
			       __builtin_return_address(0));
		kfree(call);

		o = atomic_dec_return(&net->nr_outstanding_calls);
		if (o == 0)
			wake_up_var(&net->nr_outstanding_calls);
	}
}

static struct afs_call *afs_get_call(struct afs_call *call,
				     enum afs_call_trace why)
{
	int u = atomic_inc_return(&call->usage);

	trace_afs_call(call, why, u,
		       atomic_read(&call->net->nr_outstanding_calls),
		       __builtin_return_address(0));
	return call;
}

/*
 * Queue the call for actual work.
 */
static void afs_queue_call_work(struct afs_call *call)
{
	if (call->type->work) {
		INIT_WORK(&call->work, call->type->work);

		afs_get_call(call, afs_call_trace_work);
		if (!queue_work(afs_wq, &call->work))
			afs_put_call(call);
	}
}

/*
 * allocate a call with flat request and reply buffers
 */
struct afs_call *afs_alloc_flat_call(struct afs_net *net,
				     const struct afs_call_type *type,
				     size_t request_size, size_t reply_max)
{
	struct afs_call *call;

	call = afs_alloc_call(net, type, GFP_NOFS);
	if (!call)
		goto nomem_call;

	if (request_size) {
		call->request_size = request_size;
		call->request = kmalloc(request_size, GFP_NOFS);
		if (!call->request)
			goto nomem_free;
	}

	if (reply_max) {
		call->reply_max = reply_max;
		call->buffer = kmalloc(reply_max, GFP_NOFS);
		if (!call->buffer)
			goto nomem_free;
	}

	afs_extract_to_buf(call, call->reply_max);
	call->operation_ID = type->op;
	init_waitqueue_head(&call->waitq);
	return call;

nomem_free:
	afs_put_call(call);
nomem_call:
	return NULL;
}

/*
 * clean up a call with flat buffer
 */
void afs_flat_call_destructor(struct afs_call *call)
{
	_enter("");

	kfree(call->request);
	call->request = NULL;
	kfree(call->buffer);
	call->buffer = NULL;
}

#define AFS_BVEC_MAX 8

/*
 * Load the given bvec with the next few pages.
 */
static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
			  unsigned offset)
{
	struct afs_operation *op = call->op;
	struct page *pages[AFS_BVEC_MAX];
	unsigned int nr, n, i, to, bytes = 0;

	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
	n = find_get_pages_contig(op->store.mapping, first, nr, pages);
	ASSERTCMP(n, ==, nr);

	msg->msg_flags |= MSG_MORE;
	for (i = 0; i < nr; i++) {
		to = PAGE_SIZE;
		if (first + i >= last) {
			to = op->store.last_to;
			msg->msg_flags &= ~MSG_MORE;
		}
		bv[i].bv_page = pages[i];
		bv[i].bv_len = to - offset;
		bv[i].bv_offset = offset;
		bytes += to - offset;
		offset = 0;
	}

	iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
}

/*
 * Advance the AFS call state when the RxRPC call ends the transmit phase.
 */
static void afs_notify_end_request_tx(struct sock *sock,
				      struct rxrpc_call *rxcall,
				      unsigned long call_user_ID)
{
	struct afs_call *call = (struct afs_call *)call_user_ID;

	afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
}

/*
 * attach the data from a bunch of pages on an inode to a call
 */
static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
{
	struct afs_operation *op = call->op;
	struct bio_vec bv[AFS_BVEC_MAX];
	unsigned int bytes, nr, loop, offset;
	pgoff_t first = op->store.first, last = op->store.last;
	int ret;

	offset = op->store.first_offset;
	op->store.first_offset = 0;

	do {
		afs_load_bvec(call, msg, bv, first, last, offset);
		trace_afs_send_pages(call, msg, first, last, offset);

		offset = 0;
		bytes = msg->msg_iter.count;
		nr = msg->msg_iter.nr_segs;

		ret = rxrpc_kernel_send_data(op->net->socket, call->rxcall, msg,
					     bytes, afs_notify_end_request_tx);
		for (loop = 0; loop < nr; loop++)
			put_page(bv[loop].bv_page);
		if (ret < 0)
			break;

		first += nr;
	} while (first <= last);

	trace_afs_sent_pages(call, op->store.first, last, first, ret);
	return ret;
}

/*
 * Initiate a call and synchronously queue up the parameters for dispatch.  Any
 * error is stored into the call struct, which the caller must check for.
 */
void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
{
	struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
	struct rxrpc_call *rxcall;
	struct msghdr msg;
	struct kvec iov[1];
	s64 tx_total_len;
	int ret;

	_enter(",{%pISp},", &srx->transport);

	ASSERT(call->type != NULL);
	ASSERT(call->type->name != NULL);

	_debug("____MAKE %p{%s,%x} [%d]____",
	       call, call->type->name, key_serial(call->key),
	       atomic_read(&call->net->nr_outstanding_calls));

	call->addr_ix = ac->index;
	call->alist = afs_get_addrlist(ac->alist);

	/* Work out the length we're going to transmit.  This is awkward for
	 * calls such as FS.StoreData where there's an extra injection of data
	 * after the initial fixed part.
	 */
	tx_total_len = call->request_size;
	if (call->send_pages) {
		struct afs_operation *op = call->op;

		if (op->store.last == op->store.first) {
			tx_total_len += op->store.last_to - op->store.first_offset;
		} else {
			/* It looks mathematically like you should be able to
			 * combine the following lines with the ones above, but
			 * unsigned arithmetic is fun when it wraps...
			 */
			tx_total_len += PAGE_SIZE - op->store.first_offset;
			tx_total_len += op->store.last_to;
			tx_total_len += (op->store.last - op->store.first - 1) * PAGE_SIZE;
		}
	}

	/* If the call is going to be asynchronous, we need an extra ref for
	 * the call to hold itself so the caller need not hang on to its ref.
	 */
	if (call->async) {
		afs_get_call(call, afs_call_trace_get);
		call->drop_ref = true;
	}

	/* create a call */
	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
					 (unsigned long)call,
					 tx_total_len, gfp,
					 (call->async ?
					  afs_wake_up_async_call :
					  afs_wake_up_call_waiter),
					 call->upgrade,
					 (call->intr ? RXRPC_PREINTERRUPTIBLE :
					  RXRPC_UNINTERRUPTIBLE),
					 call->debug_id);
	if (IS_ERR(rxcall)) {
		ret = PTR_ERR(rxcall);
		call->error = ret;
		goto error_kill_call;
	}

	call->rxcall = rxcall;

	if (call->max_lifespan)
		rxrpc_kernel_set_max_life(call->net->socket, rxcall,
					  call->max_lifespan);

	/* send the request */
	iov[0].iov_base	= call->request;
	iov[0].iov_len	= call->request_size;

	msg.msg_name		= NULL;
	msg.msg_namelen		= 0;
	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
	msg.msg_control		= NULL;
	msg.msg_controllen	= 0;
	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);

	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
				     &msg, call->request_size,
				     afs_notify_end_request_tx);
	if (ret < 0)
		goto error_do_abort;

	if (call->send_pages) {
		ret = afs_send_pages(call, &msg);
		if (ret < 0)
			goto error_do_abort;
	}

	/* Note that at this point, we may have received the reply or an abort
	 * - and an asynchronous call may already have completed.
	 *
	 * afs_wait_for_call_to_complete(call, ac)
	 * must be called to synchronously clean up.
	 */
	return;

error_do_abort:
	if (ret != -ECONNABORTED) {
		rxrpc_kernel_abort_call(call->net->socket, rxcall,
					RX_USER_ABORT, ret, "KSD");
	} else {
		iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
		rxrpc_kernel_recv_data(call->net->socket, rxcall,
				       &msg.msg_iter, false,
				       &call->abort_code, &call->service_id);
		ac->abort_code = call->abort_code;
		ac->responded = true;
	}
	call->error = ret;
	trace_afs_call_done(call);
error_kill_call:
	if (call->type->done)
		call->type->done(call);

	/* We need to dispose of the extra ref we grabbed for an async call.
	 * The call, however, might be queued on afs_async_calls and we need to
	 * make sure we don't get any more notifications that might requeue it.
	 */
	if (call->rxcall) {
		rxrpc_kernel_end_call(call->net->socket, call->rxcall);
		call->rxcall = NULL;
	}
	if (call->async) {
		if (cancel_work_sync(&call->async_work))
			afs_put_call(call);
		afs_put_call(call);
	}

	ac->error = ret;
	call->state = AFS_CALL_COMPLETE;
	_leave(" = %d", ret);
}

/*
 * deliver messages to a call
 */
static void afs_deliver_to_call(struct afs_call *call)
{
	enum afs_call_state state;
	u32 abort_code, remote_abort = 0;
	int ret;

	_enter("%s", call->type->name);

	while (state = READ_ONCE(call->state),
	       state == AFS_CALL_CL_AWAIT_REPLY ||
	       state == AFS_CALL_SV_AWAIT_OP_ID ||
	       state == AFS_CALL_SV_AWAIT_REQUEST ||
	       state == AFS_CALL_SV_AWAIT_ACK
	       ) {
		if (state == AFS_CALL_SV_AWAIT_ACK) {
			iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
			ret = rxrpc_kernel_recv_data(call->net->socket,
						     call->rxcall, &call->def_iter,
						     false, &remote_abort,
						     &call->service_id);
			trace_afs_receive_data(call, &call->def_iter, false, ret);

			if (ret == -EINPROGRESS || ret == -EAGAIN)
				return;
			if (ret < 0 || ret == 1) {
				if (ret == 1)
					ret = 0;
				goto call_complete;
			}
			return;
		}

		if (!call->have_reply_time &&
		    rxrpc_kernel_get_reply_time(call->net->socket,
						call->rxcall,
						&call->reply_time))
			call->have_reply_time = true;

		ret = call->type->deliver(call);
		state = READ_ONCE(call->state);
		if (ret == 0 && call->unmarshalling_error)
			ret = -EBADMSG;
		switch (ret) {
		case 0:
			afs_queue_call_work(call);
			if (state == AFS_CALL_CL_PROC_REPLY) {
				if (call->op)
					set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
						&call->op->server->flags);
				goto call_complete;
			}
			ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
			goto done;
		case -EINPROGRESS:
		case -EAGAIN:
			goto out;
		case -ECONNABORTED:
			ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
			goto done;
		case -ENOTSUPP:
			abort_code = RXGEN_OPCODE;
			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
						abort_code, ret, "KIV");
			goto local_abort;
		case -EIO:
			pr_err("kAFS: Call %u in bad state %u\n",
			       call->debug_id, state);
			fallthrough;
		case -ENODATA:
		case -EBADMSG:
		case -EMSGSIZE:
			abort_code = RXGEN_CC_UNMARSHAL;
			if (state != AFS_CALL_CL_AWAIT_REPLY)
				abort_code = RXGEN_SS_UNMARSHAL;
			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
						abort_code, ret, "KUM");
			goto local_abort;
		default:
			abort_code = RX_USER_ABORT;
			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
						abort_code, ret, "KER");
			goto local_abort;
		}
	}

done:
	if (call->type->done)
		call->type->done(call);
out:
	_leave("");
	return;

local_abort:
	abort_code = 0;
call_complete:
	afs_set_call_complete(call, ret, remote_abort);
	state = AFS_CALL_COMPLETE;
	goto done;
}

/*
 * Wait synchronously for a call to complete and clean up the call struct.
 */
long afs_wait_for_call_to_complete(struct afs_call *call,
				   struct afs_addr_cursor *ac)
{
	long ret;
	bool rxrpc_complete = false;

	DECLARE_WAITQUEUE(myself, current);

	_enter("");

	ret = call->error;
	if (ret < 0)
		goto out;

	add_wait_queue(&call->waitq, &myself);
	for (;;) {
		set_current_state(TASK_UNINTERRUPTIBLE);

		/* deliver any messages that are in the queue */
		if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
		    call->need_attention) {
			call->need_attention = false;
			__set_current_state(TASK_RUNNING);
			afs_deliver_to_call(call);
			continue;
		}

		if (afs_check_call_state(call, AFS_CALL_COMPLETE))
			break;

		if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
			/* rxrpc terminated the call. */
			rxrpc_complete = true;
			break;
		}

		schedule();
	}

	remove_wait_queue(&call->waitq, &myself);
	__set_current_state(TASK_RUNNING);

	if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
		if (rxrpc_complete) {
			afs_set_call_complete(call, call->error, call->abort_code);
		} else {
			/* Kill off the call if it's still live. */
			_debug("call interrupted");
			if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
						    RX_USER_ABORT, -EINTR, "KWI"))
				afs_set_call_complete(call, -EINTR, 0);
		}
	}

	spin_lock_bh(&call->state_lock);
	ac->abort_code = call->abort_code;
	ac->error = call->error;
	spin_unlock_bh(&call->state_lock);

	ret = ac->error;
	switch (ret) {
	case 0:
		ret = call->ret0;
		call->ret0 = 0;

		fallthrough;
	case -ECONNABORTED:
		ac->responded = true;
		break;
	}

out:
	_debug("call complete");
	afs_put_call(call);
	_leave(" = %p", (void *)ret);
	return ret;
}

/*
 * wake up a waiting call
 */
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
				    unsigned long call_user_ID)
{
	struct afs_call *call = (struct afs_call *)call_user_ID;

	call->need_attention = true;
	wake_up(&call->waitq);
}

/*
 * wake up an asynchronous call
 */
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
				   unsigned long call_user_ID)
{
	struct afs_call *call = (struct afs_call *)call_user_ID;
	int u;

	trace_afs_notify_call(rxcall, call);
	call->need_attention = true;

	u = atomic_fetch_add_unless(&call->usage, 1, 0);
	if (u != 0) {
		trace_afs_call(call, afs_call_trace_wake, u + 1,
			       atomic_read(&call->net->nr_outstanding_calls),
			       __builtin_return_address(0));

		if (!queue_work(afs_async_calls, &call->async_work))
			afs_put_call(call);
	}
}

/*
 * Perform I/O processing on an asynchronous call.  The work item carries a ref
 * to the call struct that we either need to release or to pass on.
 */
static void afs_process_async_call(struct work_struct *work)
{
	struct afs_call *call = container_of(work, struct afs_call, async_work);

	_enter("");

	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
		call->need_attention = false;
		afs_deliver_to_call(call);
	}

	afs_put_call(call);
	_leave("");
}

static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
{
	struct afs_call *call = (struct afs_call *)user_call_ID;

	call->rxcall = rxcall;
}

/*
 * Charge the incoming call preallocation.
 */
void afs_charge_preallocation(struct work_struct *work)
{
	struct afs_net *net =
		container_of(work, struct afs_net, charge_preallocation_work);
	struct afs_call *call = net->spare_incoming_call;

	for (;;) {
		if (!call) {
			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
			if (!call)
				break;

			call->drop_ref = true;
			call->async = true;
			call->state = AFS_CALL_SV_AWAIT_OP_ID;
			init_waitqueue_head(&call->waitq);
			afs_extract_to_tmp(call);
		}

		if (rxrpc_kernel_charge_accept(net->socket,
					       afs_wake_up_async_call,
					       afs_rx_attach,
					       (unsigned long)call,
					       GFP_KERNEL,
					       call->debug_id) < 0)
			break;
		call = NULL;
	}
	net->spare_incoming_call = call;
}

/*
 * Discard a preallocated call when a socket is shut down.
 */
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
				    unsigned long user_call_ID)
{
	struct afs_call *call = (struct afs_call *)user_call_ID;

	call->rxcall = NULL;
	afs_put_call(call);
}

/*
 * Notification of an incoming call.
 */
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
			    unsigned long user_call_ID)
{
	struct afs_net *net = afs_sock2net(sk);

	queue_work(afs_wq, &net->charge_preallocation_work);
}

/*
 * Grab the operation ID from an incoming cache manager call.  The socket
 * buffer is discarded on error or if we don't yet have sufficient data.
 */
static int afs_deliver_cm_op_id(struct afs_call *call)
{
	int ret;

	_enter("{%zu}", iov_iter_count(call->iter));

	/* the operation ID forms the first four bytes of the request data */
	ret = afs_extract_data(call, true);
	if (ret < 0)
		return ret;

	call->operation_ID = ntohl(call->tmp);
	afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);

	/* ask the cache manager to route the call (it'll change the call type
	 * if successful) */
	if (!afs_cm_incoming_call(call))
		return -ENOTSUPP;

	trace_afs_cb_call(call);

	/* pass responsibility for the remainer of this message off to the
	 * cache manager op */
	return call->type->deliver(call);
}

/*
 * Advance the AFS call state when an RxRPC service call ends the transmit
 * phase.
 */
static void afs_notify_end_reply_tx(struct sock *sock,
				    struct rxrpc_call *rxcall,
				    unsigned long call_user_ID)
{
	struct afs_call *call = (struct afs_call *)call_user_ID;

	afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
}

/*
 * send an empty reply
 */
void afs_send_empty_reply(struct afs_call *call)
{
	struct afs_net *net = call->net;
	struct msghdr msg;

	_enter("");

	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);

	msg.msg_name		= NULL;
	msg.msg_namelen		= 0;
	iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
	msg.msg_control		= NULL;
	msg.msg_controllen	= 0;
	msg.msg_flags		= 0;

	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
				       afs_notify_end_reply_tx)) {
	case 0:
		_leave(" [replied]");
		return;

	case -ENOMEM:
		_debug("oom");
		rxrpc_kernel_abort_call(net->socket, call->rxcall,
					RX_USER_ABORT, -ENOMEM, "KOO");
		fallthrough;
	default:
		_leave(" [error]");
		return;
	}
}

/*
 * send a simple reply
 */
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
{
	struct afs_net *net = call->net;
	struct msghdr msg;
	struct kvec iov[1];
	int n;

	_enter("");

	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);

	iov[0].iov_base		= (void *) buf;
	iov[0].iov_len		= len;
	msg.msg_name		= NULL;
	msg.msg_namelen		= 0;
	iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
	msg.msg_control		= NULL;
	msg.msg_controllen	= 0;
	msg.msg_flags		= 0;

	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
				   afs_notify_end_reply_tx);
	if (n >= 0) {
		/* Success */
		_leave(" [replied]");
		return;
	}

	if (n == -ENOMEM) {
		_debug("oom");
		rxrpc_kernel_abort_call(net->socket, call->rxcall,
					RX_USER_ABORT, -ENOMEM, "KOO");
	}
	_leave(" [error]");
}

/*
 * Extract a piece of data from the received data socket buffers.
 */
int afs_extract_data(struct afs_call *call, bool want_more)
{
	struct afs_net *net = call->net;
	struct iov_iter *iter = call->iter;
	enum afs_call_state state;
	u32 remote_abort = 0;
	int ret;

	_enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);

	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
				     want_more, &remote_abort,
				     &call->service_id);
	if (ret == 0 || ret == -EAGAIN)
		return ret;

	state = READ_ONCE(call->state);
	if (ret == 1) {
		switch (state) {
		case AFS_CALL_CL_AWAIT_REPLY:
			afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
			break;
		case AFS_CALL_SV_AWAIT_REQUEST:
			afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
			break;
		case AFS_CALL_COMPLETE:
			kdebug("prem complete %d", call->error);
			return afs_io_error(call, afs_io_error_extract);
		default:
			break;
		}
		return 0;
	}

	afs_set_call_complete(call, ret, remote_abort);
	return ret;
}

/*
 * Log protocol error production.
 */
noinline int afs_protocol_error(struct afs_call *call,
				enum afs_eproto_cause cause)
{
	trace_afs_protocol_error(call, cause);
	if (call)
		call->unmarshalling_error = true;
	return -EBADMSG;
}