init.c 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/arch/parisc/mm/init.c
 *
 *  Copyright (C) 1995	Linus Torvalds
 *  Copyright 1999 SuSE GmbH
 *    changed by Philipp Rumpf
 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 *
 */


#include <linux/module.h>
#include <linux/mm.h>
#include <linux/memblock.h>
#include <linux/gfp.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/unistd.h>
#include <linux/nodemask.h>	/* for node_online_map */
#include <linux/pagemap.h>	/* for release_pages */
#include <linux/compat.h>

#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/pdc_chassis.h>
#include <asm/mmzone.h>
#include <asm/sections.h>
#include <asm/msgbuf.h>
#include <asm/sparsemem.h>

extern int  data_start;
extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */

#if CONFIG_PGTABLE_LEVELS == 3
/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 * guarantee that global objects will be laid out in memory in the same order
 * as the order of declaration, so put these in different sections and use
 * the linker script to order them. */
pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
#endif

pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));

static struct resource data_resource = {
	.name	= "Kernel data",
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};

static struct resource code_resource = {
	.name	= "Kernel code",
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};

static struct resource pdcdata_resource = {
	.name	= "PDC data (Page Zero)",
	.start	= 0,
	.end	= 0x9ff,
	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
};

static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;

/* The following array is initialized from the firmware specific
 * information retrieved in kernel/inventory.c.
 */

physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
int npmem_ranges __initdata;

#ifdef CONFIG_64BIT
#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
#else /* !CONFIG_64BIT */
#define MAX_MEM         (3584U*1024U*1024U)
#endif /* !CONFIG_64BIT */

static unsigned long mem_limit __read_mostly = MAX_MEM;

static void __init mem_limit_func(void)
{
	char *cp, *end;
	unsigned long limit;

	/* We need this before __setup() functions are called */

	limit = MAX_MEM;
	for (cp = boot_command_line; *cp; ) {
		if (memcmp(cp, "mem=", 4) == 0) {
			cp += 4;
			limit = memparse(cp, &end);
			if (end != cp)
				break;
			cp = end;
		} else {
			while (*cp != ' ' && *cp)
				++cp;
			while (*cp == ' ')
				++cp;
		}
	}

	if (limit < mem_limit)
		mem_limit = limit;
}

#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)

static void __init setup_bootmem(void)
{
	unsigned long mem_max;
#ifndef CONFIG_SPARSEMEM
	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
	int npmem_holes;
#endif
	int i, sysram_resource_count;

	disable_sr_hashing(); /* Turn off space register hashing */

	/*
	 * Sort the ranges. Since the number of ranges is typically
	 * small, and performance is not an issue here, just do
	 * a simple insertion sort.
	 */

	for (i = 1; i < npmem_ranges; i++) {
		int j;

		for (j = i; j > 0; j--) {
			physmem_range_t tmp;

			if (pmem_ranges[j-1].start_pfn <
			    pmem_ranges[j].start_pfn) {

				break;
			}
			tmp = pmem_ranges[j-1];
			pmem_ranges[j-1] = pmem_ranges[j];
			pmem_ranges[j] = tmp;
		}
	}

#ifndef CONFIG_SPARSEMEM
	/*
	 * Throw out ranges that are too far apart (controlled by
	 * MAX_GAP).
	 */

	for (i = 1; i < npmem_ranges; i++) {
		if (pmem_ranges[i].start_pfn -
			(pmem_ranges[i-1].start_pfn +
			 pmem_ranges[i-1].pages) > MAX_GAP) {
			npmem_ranges = i;
			printk("Large gap in memory detected (%ld pages). "
			       "Consider turning on CONFIG_SPARSEMEM\n",
			       pmem_ranges[i].start_pfn -
			       (pmem_ranges[i-1].start_pfn +
			        pmem_ranges[i-1].pages));
			break;
		}
	}
#endif

	/* Print the memory ranges */
	pr_info("Memory Ranges:\n");

	for (i = 0; i < npmem_ranges; i++) {
		struct resource *res = &sysram_resources[i];
		unsigned long start;
		unsigned long size;

		size = (pmem_ranges[i].pages << PAGE_SHIFT);
		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
			i, start, start + (size - 1), size >> 20);

		/* request memory resource */
		res->name = "System RAM";
		res->start = start;
		res->end = start + size - 1;
		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
		request_resource(&iomem_resource, res);
	}

	sysram_resource_count = npmem_ranges;

	/*
	 * For 32 bit kernels we limit the amount of memory we can
	 * support, in order to preserve enough kernel address space
	 * for other purposes. For 64 bit kernels we don't normally
	 * limit the memory, but this mechanism can be used to
	 * artificially limit the amount of memory (and it is written
	 * to work with multiple memory ranges).
	 */

	mem_limit_func();       /* check for "mem=" argument */

	mem_max = 0;
	for (i = 0; i < npmem_ranges; i++) {
		unsigned long rsize;

		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
		if ((mem_max + rsize) > mem_limit) {
			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
			if (mem_max == mem_limit)
				npmem_ranges = i;
			else {
				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
						       - (mem_max >> PAGE_SHIFT);
				npmem_ranges = i + 1;
				mem_max = mem_limit;
			}
			break;
		}
		mem_max += rsize;
	}

	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);

#ifndef CONFIG_SPARSEMEM
	/* Merge the ranges, keeping track of the holes */
	{
		unsigned long end_pfn;
		unsigned long hole_pages;

		npmem_holes = 0;
		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
		for (i = 1; i < npmem_ranges; i++) {

			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
			if (hole_pages) {
				pmem_holes[npmem_holes].start_pfn = end_pfn;
				pmem_holes[npmem_holes++].pages = hole_pages;
				end_pfn += hole_pages;
			}
			end_pfn += pmem_ranges[i].pages;
		}

		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
		npmem_ranges = 1;
	}
#endif

	/*
	 * Initialize and free the full range of memory in each range.
	 */

	max_pfn = 0;
	for (i = 0; i < npmem_ranges; i++) {
		unsigned long start_pfn;
		unsigned long npages;
		unsigned long start;
		unsigned long size;

		start_pfn = pmem_ranges[i].start_pfn;
		npages = pmem_ranges[i].pages;

		start = start_pfn << PAGE_SHIFT;
		size = npages << PAGE_SHIFT;

		/* add system RAM memblock */
		memblock_add(start, size);

		if ((start_pfn + npages) > max_pfn)
			max_pfn = start_pfn + npages;
	}

	/*
	 * We can't use memblock top-down allocations because we only
	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
	 * the assembly bootup code.
	 */
	memblock_set_bottom_up(true);

	/* IOMMU is always used to access "high mem" on those boxes
	 * that can support enough mem that a PCI device couldn't
	 * directly DMA to any physical addresses.
	 * ISA DMA support will need to revisit this.
	 */
	max_low_pfn = max_pfn;

	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */

#define PDC_CONSOLE_IO_IODC_SIZE 32768

	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
				PDC_CONSOLE_IO_IODC_SIZE));
	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));

#ifndef CONFIG_SPARSEMEM

	/* reserve the holes */

	for (i = 0; i < npmem_holes; i++) {
		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
				(pmem_holes[i].pages << PAGE_SHIFT));
	}
#endif

#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_start) {
		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
		if (__pa(initrd_start) < mem_max) {
			unsigned long initrd_reserve;

			if (__pa(initrd_end) > mem_max) {
				initrd_reserve = mem_max - __pa(initrd_start);
			} else {
				initrd_reserve = initrd_end - initrd_start;
			}
			initrd_below_start_ok = 1;
			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);

			memblock_reserve(__pa(initrd_start), initrd_reserve);
		}
	}
#endif

	data_resource.start =  virt_to_phys(&data_start);
	data_resource.end = virt_to_phys(_end) - 1;
	code_resource.start = virt_to_phys(_text);
	code_resource.end = virt_to_phys(&data_start)-1;

	/* We don't know which region the kernel will be in, so try
	 * all of them.
	 */
	for (i = 0; i < sysram_resource_count; i++) {
		struct resource *res = &sysram_resources[i];
		request_resource(res, &code_resource);
		request_resource(res, &data_resource);
	}
	request_resource(&sysram_resources[0], &pdcdata_resource);

	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
	pdc_pdt_init();

	memblock_allow_resize();
	memblock_dump_all();
}

static bool kernel_set_to_readonly;

static void __init map_pages(unsigned long start_vaddr,
			     unsigned long start_paddr, unsigned long size,
			     pgprot_t pgprot, int force)
{
	pmd_t *pmd;
	pte_t *pg_table;
	unsigned long end_paddr;
	unsigned long start_pmd;
	unsigned long start_pte;
	unsigned long tmp1;
	unsigned long tmp2;
	unsigned long address;
	unsigned long vaddr;
	unsigned long ro_start;
	unsigned long ro_end;
	unsigned long kernel_start, kernel_end;

	ro_start = __pa((unsigned long)_text);
	ro_end   = __pa((unsigned long)&data_start);
	kernel_start = __pa((unsigned long)&__init_begin);
	kernel_end  = __pa((unsigned long)&_end);

	end_paddr = start_paddr + size;

	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));

	address = start_paddr;
	vaddr = start_vaddr;
	while (address < end_paddr) {
		pgd_t *pgd = pgd_offset_k(vaddr);
		p4d_t *p4d = p4d_offset(pgd, vaddr);
		pud_t *pud = pud_offset(p4d, vaddr);

#if CONFIG_PGTABLE_LEVELS == 3
		if (pud_none(*pud)) {
			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
					     PAGE_SIZE << PMD_ORDER);
			if (!pmd)
				panic("pmd allocation failed.\n");
			pud_populate(NULL, pud, pmd);
		}
#endif

		pmd = pmd_offset(pud, vaddr);
		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
			if (pmd_none(*pmd)) {
				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
				if (!pg_table)
					panic("page table allocation failed\n");
				pmd_populate_kernel(NULL, pmd, pg_table);
			}

			pg_table = pte_offset_kernel(pmd, vaddr);
			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
				pte_t pte;
				pgprot_t prot;
				bool huge = false;

				if (force) {
					prot = pgprot;
				} else if (address < kernel_start || address >= kernel_end) {
					/* outside kernel memory */
					prot = PAGE_KERNEL;
				} else if (!kernel_set_to_readonly) {
					/* still initializing, allow writing to RO memory */
					prot = PAGE_KERNEL_RWX;
					huge = true;
				} else if (address >= ro_start) {
					/* Code (ro) and Data areas */
					prot = (address < ro_end) ?
						PAGE_KERNEL_EXEC : PAGE_KERNEL;
					huge = true;
				} else {
					prot = PAGE_KERNEL;
				}

				pte = __mk_pte(address, prot);
				if (huge)
					pte = pte_mkhuge(pte);

				if (address >= end_paddr)
					break;

				set_pte(pg_table, pte);

				address += PAGE_SIZE;
				vaddr += PAGE_SIZE;
			}
			start_pte = 0;

			if (address >= end_paddr)
			    break;
		}
		start_pmd = 0;
	}
}

void __init set_kernel_text_rw(int enable_read_write)
{
	unsigned long start = (unsigned long) __init_begin;
	unsigned long end   = (unsigned long) &data_start;

	map_pages(start, __pa(start), end-start,
		PAGE_KERNEL_RWX, enable_read_write ? 1:0);

	/* force the kernel to see the new page table entries */
	flush_cache_all();
	flush_tlb_all();
}

void __ref free_initmem(void)
{
	unsigned long init_begin = (unsigned long)__init_begin;
	unsigned long init_end = (unsigned long)__init_end;
	unsigned long kernel_end  = (unsigned long)&_end;

	/* Remap kernel text and data, but do not touch init section yet. */
	kernel_set_to_readonly = true;
	map_pages(init_end, __pa(init_end), kernel_end - init_end,
		  PAGE_KERNEL, 0);

	/* The init text pages are marked R-X.  We have to
	 * flush the icache and mark them RW-
	 *
	 * This is tricky, because map_pages is in the init section.
	 * Do a dummy remap of the data section first (the data
	 * section is already PAGE_KERNEL) to pull in the TLB entries
	 * for map_kernel */
	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
		  PAGE_KERNEL_RWX, 1);
	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
	 * map_pages */
	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
		  PAGE_KERNEL, 1);

	/* force the kernel to see the new TLB entries */
	__flush_tlb_range(0, init_begin, kernel_end);

	/* finally dump all the instructions which were cached, since the
	 * pages are no-longer executable */
	flush_icache_range(init_begin, init_end);
	
	free_initmem_default(POISON_FREE_INITMEM);

	/* set up a new led state on systems shipped LED State panel */
	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
}


#ifdef CONFIG_STRICT_KERNEL_RWX
void mark_rodata_ro(void)
{
	/* rodata memory was already mapped with KERNEL_RO access rights by
           pagetable_init() and map_pages(). No need to do additional stuff here */
	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;

	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
}
#endif


/*
 * Just an arbitrary offset to serve as a "hole" between mapping areas
 * (between top of physical memory and a potential pcxl dma mapping
 * area, and below the vmalloc mapping area).
 *
 * The current 32K value just means that there will be a 32K "hole"
 * between mapping areas. That means that  any out-of-bounds memory
 * accesses will hopefully be caught. The vmalloc() routines leaves
 * a hole of 4kB between each vmalloced area for the same reason.
 */

 /* Leave room for gateway page expansion */
#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
#error KERNEL_MAP_START is in gateway reserved region
#endif
#define MAP_START (KERNEL_MAP_START)

#define VM_MAP_OFFSET  (32*1024)
#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
				     & ~(VM_MAP_OFFSET-1)))

void *parisc_vmalloc_start __ro_after_init;
EXPORT_SYMBOL(parisc_vmalloc_start);

#ifdef CONFIG_PA11
unsigned long pcxl_dma_start __ro_after_init;
#endif

void __init mem_init(void)
{
	/* Do sanity checks on IPC (compat) structures */
	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
#ifndef CONFIG_64BIT
	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
#endif
#ifdef CONFIG_COMPAT
	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
#endif

	/* Do sanity checks on page table constants */
	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
			> BITS_PER_LONG);

	high_memory = __va((max_pfn << PAGE_SHIFT));
	set_max_mapnr(max_low_pfn);
	memblock_free_all();

#ifdef CONFIG_PA11
	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
						+ PCXL_DMA_MAP_SIZE);
	} else
#endif
		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);

	mem_init_print_info(NULL);

#if 0
	/*
	 * Do not expose the virtual kernel memory layout to userspace.
	 * But keep code for debugging purposes.
	 */
	printk("virtual kernel memory layout:\n"
	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",

	       (void*)VMALLOC_START, (void*)VMALLOC_END,
	       (VMALLOC_END - VMALLOC_START) >> 20,

	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
	       (unsigned long)(FIXMAP_SIZE / 1024),

	       __va(0), high_memory,
	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,

	       __init_begin, __init_end,
	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,

	       _etext, _edata,
	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,

	       _text, _etext,
	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
#endif
}

unsigned long *empty_zero_page __ro_after_init;
EXPORT_SYMBOL(empty_zero_page);

/*
 * pagetable_init() sets up the page tables
 *
 * Note that gateway_init() places the Linux gateway page at page 0.
 * Since gateway pages cannot be dereferenced this has the desirable
 * side effect of trapping those pesky NULL-reference errors in the
 * kernel.
 */
static void __init pagetable_init(void)
{
	int range;

	/* Map each physical memory range to its kernel vaddr */

	for (range = 0; range < npmem_ranges; range++) {
		unsigned long start_paddr;
		unsigned long end_paddr;
		unsigned long size;

		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
		size = pmem_ranges[range].pages << PAGE_SHIFT;
		end_paddr = start_paddr + size;

		map_pages((unsigned long)__va(start_paddr), start_paddr,
			  size, PAGE_KERNEL, 0);
	}

#ifdef CONFIG_BLK_DEV_INITRD
	if (initrd_end && initrd_end > mem_limit) {
		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
		map_pages(initrd_start, __pa(initrd_start),
			  initrd_end - initrd_start, PAGE_KERNEL, 0);
	}
#endif

	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
	if (!empty_zero_page)
		panic("zero page allocation failed.\n");

}

static void __init gateway_init(void)
{
	unsigned long linux_gateway_page_addr;
	/* FIXME: This is 'const' in order to trick the compiler
	   into not treating it as DP-relative data. */
	extern void * const linux_gateway_page;

	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;

	/*
	 * Setup Linux Gateway page.
	 *
	 * The Linux gateway page will reside in kernel space (on virtual
	 * page 0), so it doesn't need to be aliased into user space.
	 */

	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
		  PAGE_SIZE, PAGE_GATEWAY, 1);
}

static void __init parisc_bootmem_free(void)
{
	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };

	max_zone_pfn[0] = memblock_end_of_DRAM();

	free_area_init(max_zone_pfn);
}

void __init paging_init(void)
{
	setup_bootmem();
	pagetable_init();
	gateway_init();
	flush_cache_all_local(); /* start with known state */
	flush_tlb_all_local(NULL);

	sparse_init();
	parisc_bootmem_free();
}

#ifdef CONFIG_PA20

/*
 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 * limiting factor (space ids are 32 bits).
 */

#define NR_SPACE_IDS 262144

#else

/*
 * Currently we have a one-to-one relationship between space IDs and
 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 * support 15 bit protection IDs, so that is the limiting factor.
 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 * probably not worth the effort for a special case here.
 */

#define NR_SPACE_IDS 32768

#endif  /* !CONFIG_PA20 */

#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))

static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
static unsigned long dirty_space_id[SID_ARRAY_SIZE];
static unsigned long space_id_index;
static unsigned long free_space_ids = NR_SPACE_IDS - 1;
static unsigned long dirty_space_ids = 0;

static DEFINE_SPINLOCK(sid_lock);

unsigned long alloc_sid(void)
{
	unsigned long index;

	spin_lock(&sid_lock);

	if (free_space_ids == 0) {
		if (dirty_space_ids != 0) {
			spin_unlock(&sid_lock);
			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
			spin_lock(&sid_lock);
		}
		BUG_ON(free_space_ids == 0);
	}

	free_space_ids--;

	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
	space_id[BIT_WORD(index)] |= BIT_MASK(index);
	space_id_index = index;

	spin_unlock(&sid_lock);

	return index << SPACEID_SHIFT;
}

void free_sid(unsigned long spaceid)
{
	unsigned long index = spaceid >> SPACEID_SHIFT;
	unsigned long *dirty_space_offset, mask;

	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
	mask = BIT_MASK(index);

	spin_lock(&sid_lock);

	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */

	*dirty_space_offset |= mask;
	dirty_space_ids++;

	spin_unlock(&sid_lock);
}


#ifdef CONFIG_SMP
static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
{
	int i;

	/* NOTE: sid_lock must be held upon entry */

	*ndirtyptr = dirty_space_ids;
	if (dirty_space_ids != 0) {
	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
		dirty_array[i] = dirty_space_id[i];
		dirty_space_id[i] = 0;
	    }
	    dirty_space_ids = 0;
	}

	return;
}

static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
{
	int i;

	/* NOTE: sid_lock must be held upon entry */

	if (ndirty != 0) {
		for (i = 0; i < SID_ARRAY_SIZE; i++) {
			space_id[i] ^= dirty_array[i];
		}

		free_space_ids += ndirty;
		space_id_index = 0;
	}
}

#else /* CONFIG_SMP */

static void recycle_sids(void)
{
	int i;

	/* NOTE: sid_lock must be held upon entry */

	if (dirty_space_ids != 0) {
		for (i = 0; i < SID_ARRAY_SIZE; i++) {
			space_id[i] ^= dirty_space_id[i];
			dirty_space_id[i] = 0;
		}

		free_space_ids += dirty_space_ids;
		dirty_space_ids = 0;
		space_id_index = 0;
	}
}
#endif

/*
 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 * purged, we can safely reuse the space ids that were released but
 * not flushed from the tlb.
 */

#ifdef CONFIG_SMP

static unsigned long recycle_ndirty;
static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
static unsigned int recycle_inuse;

void flush_tlb_all(void)
{
	int do_recycle;

	__inc_irq_stat(irq_tlb_count);
	do_recycle = 0;
	spin_lock(&sid_lock);
	if (dirty_space_ids > RECYCLE_THRESHOLD) {
	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
	    recycle_inuse++;
	    do_recycle++;
	}
	spin_unlock(&sid_lock);
	on_each_cpu(flush_tlb_all_local, NULL, 1);
	if (do_recycle) {
	    spin_lock(&sid_lock);
	    recycle_sids(recycle_ndirty,recycle_dirty_array);
	    recycle_inuse = 0;
	    spin_unlock(&sid_lock);
	}
}
#else
void flush_tlb_all(void)
{
	__inc_irq_stat(irq_tlb_count);
	spin_lock(&sid_lock);
	flush_tlb_all_local(NULL);
	recycle_sids();
	spin_unlock(&sid_lock);
}
#endif