pgtable.c 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
// SPDX-License-Identifier: GPL-2.0
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/hugetlb.h>
#include <asm/pgalloc.h>
#include <asm/tlb.h>
#include <asm/fixmap.h>
#include <asm/mtrr.h>

#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
EXPORT_SYMBOL(physical_mask);
#endif

#ifdef CONFIG_HIGHPTE
#define PGTABLE_HIGHMEM __GFP_HIGHMEM
#else
#define PGTABLE_HIGHMEM 0
#endif

#ifndef CONFIG_PARAVIRT
static inline
void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	tlb_remove_page(tlb, table);
}
#endif

gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;

pgtable_t pte_alloc_one(struct mm_struct *mm)
{
	return __pte_alloc_one(mm, __userpte_alloc_gfp);
}

static int __init setup_userpte(char *arg)
{
	if (!arg)
		return -EINVAL;

	/*
	 * "userpte=nohigh" disables allocation of user pagetables in
	 * high memory.
	 */
	if (strcmp(arg, "nohigh") == 0)
		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
	else
		return -EINVAL;
	return 0;
}
early_param("userpte", setup_userpte);

void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
{
	pgtable_pte_page_dtor(pte);
	paravirt_release_pte(page_to_pfn(pte));
	paravirt_tlb_remove_table(tlb, pte);
}

#if CONFIG_PGTABLE_LEVELS > 2
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
{
	struct page *page = virt_to_page(pmd);
	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
	/*
	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
	 * entries need a full cr3 reload to flush.
	 */
#ifdef CONFIG_X86_PAE
	tlb->need_flush_all = 1;
#endif
	pgtable_pmd_page_dtor(page);
	paravirt_tlb_remove_table(tlb, page);
}

#if CONFIG_PGTABLE_LEVELS > 3
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
{
	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
}

#if CONFIG_PGTABLE_LEVELS > 4
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
{
	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
}
#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
#endif	/* CONFIG_PGTABLE_LEVELS > 3 */
#endif	/* CONFIG_PGTABLE_LEVELS > 2 */

static inline void pgd_list_add(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_add(&page->lru, &pgd_list);
}

static inline void pgd_list_del(pgd_t *pgd)
{
	struct page *page = virt_to_page(pgd);

	list_del(&page->lru);
}

#define UNSHARED_PTRS_PER_PGD				\
	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
#define MAX_UNSHARED_PTRS_PER_PGD			\
	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)


static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
	virt_to_page(pgd)->pt_mm = mm;
}

struct mm_struct *pgd_page_get_mm(struct page *page)
{
	return page->pt_mm;
}

static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
{
	/* If the pgd points to a shared pagetable level (either the
	   ptes in non-PAE, or shared PMD in PAE), then just copy the
	   references from swapper_pg_dir. */
	if (CONFIG_PGTABLE_LEVELS == 2 ||
	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
	    CONFIG_PGTABLE_LEVELS >= 4) {
		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
				KERNEL_PGD_PTRS);
	}

	/* list required to sync kernel mapping updates */
	if (!SHARED_KERNEL_PMD) {
		pgd_set_mm(pgd, mm);
		pgd_list_add(pgd);
	}
}

static void pgd_dtor(pgd_t *pgd)
{
	if (SHARED_KERNEL_PMD)
		return;

	spin_lock(&pgd_lock);
	pgd_list_del(pgd);
	spin_unlock(&pgd_lock);
}

/*
 * List of all pgd's needed for non-PAE so it can invalidate entries
 * in both cached and uncached pgd's; not needed for PAE since the
 * kernel pmd is shared. If PAE were not to share the pmd a similar
 * tactic would be needed. This is essentially codepath-based locking
 * against pageattr.c; it is the unique case in which a valid change
 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
 * vmalloc faults work because attached pagetables are never freed.
 * -- nyc
 */

#ifdef CONFIG_X86_PAE
/*
 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
 * updating the top-level pagetable entries to guarantee the
 * processor notices the update.  Since this is expensive, and
 * all 4 top-level entries are used almost immediately in a
 * new process's life, we just pre-populate them here.
 *
 * Also, if we're in a paravirt environment where the kernel pmd is
 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
 * and initialize the kernel pmds here.
 */
#define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
#define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD

/*
 * We allocate separate PMDs for the kernel part of the user page-table
 * when PTI is enabled. We need them to map the per-process LDT into the
 * user-space page-table.
 */
#define PREALLOCATED_USER_PMDS	 (boot_cpu_has(X86_FEATURE_PTI) ? \
					KERNEL_PGD_PTRS : 0)
#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS

void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
{
	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);

	/* Note: almost everything apart from _PAGE_PRESENT is
	   reserved at the pmd (PDPT) level. */
	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));

	/*
	 * According to Intel App note "TLBs, Paging-Structure Caches,
	 * and Their Invalidation", April 2007, document 317080-001,
	 * section 8.1: in PAE mode we explicitly have to flush the
	 * TLB via cr3 if the top-level pgd is changed...
	 */
	flush_tlb_mm(mm);
}
#else  /* !CONFIG_X86_PAE */

/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS	0
#define MAX_PREALLOCATED_PMDS	0
#define PREALLOCATED_USER_PMDS	 0
#define MAX_PREALLOCATED_USER_PMDS 0
#endif	/* CONFIG_X86_PAE */

static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
{
	int i;

	for (i = 0; i < count; i++)
		if (pmds[i]) {
			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
			free_page((unsigned long)pmds[i]);
			mm_dec_nr_pmds(mm);
		}
}

static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
{
	int i;
	bool failed = false;
	gfp_t gfp = GFP_PGTABLE_USER;

	if (mm == &init_mm)
		gfp &= ~__GFP_ACCOUNT;

	for (i = 0; i < count; i++) {
		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
		if (!pmd)
			failed = true;
		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
			free_page((unsigned long)pmd);
			pmd = NULL;
			failed = true;
		}
		if (pmd)
			mm_inc_nr_pmds(mm);
		pmds[i] = pmd;
	}

	if (failed) {
		free_pmds(mm, pmds, count);
		return -ENOMEM;
	}

	return 0;
}

/*
 * Mop up any pmd pages which may still be attached to the pgd.
 * Normally they will be freed by munmap/exit_mmap, but any pmd we
 * preallocate which never got a corresponding vma will need to be
 * freed manually.
 */
static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
{
	pgd_t pgd = *pgdp;

	if (pgd_val(pgd) != 0) {
		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);

		pgd_clear(pgdp);

		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
		pmd_free(mm, pmd);
		mm_dec_nr_pmds(mm);
	}
}

static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
{
	int i;

	for (i = 0; i < PREALLOCATED_PMDS; i++)
		mop_up_one_pmd(mm, &pgdp[i]);

#ifdef CONFIG_PAGE_TABLE_ISOLATION

	if (!boot_cpu_has(X86_FEATURE_PTI))
		return;

	pgdp = kernel_to_user_pgdp(pgdp);

	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
#endif
}

static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
{
	p4d_t *p4d;
	pud_t *pud;
	int i;

	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
		return;

	p4d = p4d_offset(pgd, 0);
	pud = pud_offset(p4d, 0);

	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
		pmd_t *pmd = pmds[i];

		if (i >= KERNEL_PGD_BOUNDARY)
			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
			       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, pud, pmd);
	}
}

#ifdef CONFIG_PAGE_TABLE_ISOLATION
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
				     pgd_t *k_pgd, pmd_t *pmds[])
{
	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
	p4d_t *u_p4d;
	pud_t *u_pud;
	int i;

	u_p4d = p4d_offset(u_pgd, 0);
	u_pud = pud_offset(u_p4d, 0);

	s_pgd += KERNEL_PGD_BOUNDARY;
	u_pud += KERNEL_PGD_BOUNDARY;

	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
		pmd_t *pmd = pmds[i];

		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
		       sizeof(pmd_t) * PTRS_PER_PMD);

		pud_populate(mm, u_pud, pmd);
	}

}
#else
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
				     pgd_t *k_pgd, pmd_t *pmds[])
{
}
#endif
/*
 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
 * assumes that pgd should be in one page.
 *
 * But kernel with PAE paging that is not running as a Xen domain
 * only needs to allocate 32 bytes for pgd instead of one page.
 */
#ifdef CONFIG_X86_PAE

#include <linux/slab.h>

#define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
#define PGD_ALIGN	32

static struct kmem_cache *pgd_cache;

void __init pgtable_cache_init(void)
{
	/*
	 * When PAE kernel is running as a Xen domain, it does not use
	 * shared kernel pmd. And this requires a whole page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return;

	/*
	 * when PAE kernel is not running as a Xen domain, it uses
	 * shared kernel pmd. Shared kernel pmd does not require a whole
	 * page for pgd. We are able to just allocate a 32-byte for pgd.
	 * During boot time, we create a 32-byte slab for pgd table allocation.
	 */
	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
				      SLAB_PANIC, NULL);
}

static inline pgd_t *_pgd_alloc(void)
{
	/*
	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
	 * We allocate one page for pgd.
	 */
	if (!SHARED_KERNEL_PMD)
		return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
						 PGD_ALLOCATION_ORDER);

	/*
	 * Now PAE kernel is not running as a Xen domain. We can allocate
	 * a 32-byte slab for pgd to save memory space.
	 */
	return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
}

static inline void _pgd_free(pgd_t *pgd)
{
	if (!SHARED_KERNEL_PMD)
		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
	else
		kmem_cache_free(pgd_cache, pgd);
}
#else

static inline pgd_t *_pgd_alloc(void)
{
	return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
					 PGD_ALLOCATION_ORDER);
}

static inline void _pgd_free(pgd_t *pgd)
{
	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
}
#endif /* CONFIG_X86_PAE */

pgd_t *pgd_alloc(struct mm_struct *mm)
{
	pgd_t *pgd;
	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
	pmd_t *pmds[MAX_PREALLOCATED_PMDS];

	pgd = _pgd_alloc();

	if (pgd == NULL)
		goto out;

	mm->pgd = pgd;

	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
		goto out_free_pgd;

	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
		goto out_free_pmds;

	if (paravirt_pgd_alloc(mm) != 0)
		goto out_free_user_pmds;

	/*
	 * Make sure that pre-populating the pmds is atomic with
	 * respect to anything walking the pgd_list, so that they
	 * never see a partially populated pgd.
	 */
	spin_lock(&pgd_lock);

	pgd_ctor(mm, pgd);
	pgd_prepopulate_pmd(mm, pgd, pmds);
	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);

	spin_unlock(&pgd_lock);

	return pgd;

out_free_user_pmds:
	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
out_free_pmds:
	free_pmds(mm, pmds, PREALLOCATED_PMDS);
out_free_pgd:
	_pgd_free(pgd);
out:
	return NULL;
}

void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	pgd_mop_up_pmds(mm, pgd);
	pgd_dtor(pgd);
	paravirt_pgd_free(mm, pgd);
	_pgd_free(pgd);
}

/*
 * Used to set accessed or dirty bits in the page table entries
 * on other architectures. On x86, the accessed and dirty bits
 * are tracked by hardware. However, do_wp_page calls this function
 * to also make the pte writeable at the same time the dirty bit is
 * set. In that case we do actually need to write the PTE.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	int changed = !pte_same(*ptep, entry);

	if (changed && dirty)
		set_pte(ptep, entry);

	return changed;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pmd_t *pmdp,
			  pmd_t entry, int dirty)
{
	int changed = !pmd_same(*pmdp, entry);

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	if (changed && dirty) {
		set_pmd(pmdp, entry);
		/*
		 * We had a write-protection fault here and changed the pmd
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}

int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
			  pud_t *pudp, pud_t entry, int dirty)
{
	int changed = !pud_same(*pudp, entry);

	VM_BUG_ON(address & ~HPAGE_PUD_MASK);

	if (changed && dirty) {
		set_pud(pudp, entry);
		/*
		 * We had a write-protection fault here and changed the pud
		 * to to more permissive. No need to flush the TLB for that,
		 * #PF is architecturally guaranteed to do that and in the
		 * worst-case we'll generate a spurious fault.
		 */
	}

	return changed;
}
#endif

int ptep_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pte_t *ptep)
{
	int ret = 0;

	if (pte_young(*ptep))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *) &ptep->pte);

	return ret;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pmd_t *pmdp)
{
	int ret = 0;

	if (pmd_young(*pmdp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pmdp);

	return ret;
}
int pudp_test_and_clear_young(struct vm_area_struct *vma,
			      unsigned long addr, pud_t *pudp)
{
	int ret = 0;

	if (pud_young(*pudp))
		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
					 (unsigned long *)pudp);

	return ret;
}
#endif

int ptep_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pte_t *ptep)
{
	/*
	 * On x86 CPUs, clearing the accessed bit without a TLB flush
	 * doesn't cause data corruption. [ It could cause incorrect
	 * page aging and the (mistaken) reclaim of hot pages, but the
	 * chance of that should be relatively low. ]
	 *
	 * So as a performance optimization don't flush the TLB when
	 * clearing the accessed bit, it will eventually be flushed by
	 * a context switch or a VM operation anyway. [ In the rare
	 * event of it not getting flushed for a long time the delay
	 * shouldn't really matter because there's no real memory
	 * pressure for swapout to react to. ]
	 */
	return ptep_test_and_clear_young(vma, address, ptep);
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma,
			   unsigned long address, pmd_t *pmdp)
{
	int young;

	VM_BUG_ON(address & ~HPAGE_PMD_MASK);

	young = pmdp_test_and_clear_young(vma, address, pmdp);
	if (young)
		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);

	return young;
}
#endif

/**
 * reserve_top_address - reserves a hole in the top of kernel address space
 * @reserve - size of hole to reserve
 *
 * Can be used to relocate the fixmap area and poke a hole in the top
 * of kernel address space to make room for a hypervisor.
 */
void __init reserve_top_address(unsigned long reserve)
{
#ifdef CONFIG_X86_32
	BUG_ON(fixmaps_set > 0);
	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
#endif
}

int fixmaps_set;

void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
{
	unsigned long address = __fix_to_virt(idx);

#ifdef CONFIG_X86_64
       /*
	* Ensure that the static initial page tables are covering the
	* fixmap completely.
	*/
	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
#endif

	if (idx >= __end_of_fixed_addresses) {
		BUG();
		return;
	}
	set_pte_vaddr(address, pte);
	fixmaps_set++;
}

void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
		       phys_addr_t phys, pgprot_t flags)
{
	/* Sanitize 'prot' against any unsupported bits: */
	pgprot_val(flags) &= __default_kernel_pte_mask;

	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
}

#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
#ifdef CONFIG_X86_5LEVEL
/**
 * p4d_set_huge - setup kernel P4D mapping
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
{
	return 0;
}

/**
 * p4d_clear_huge - clear kernel P4D mapping when it is set
 *
 * No 512GB pages yet -- always return 0
 */
int p4d_clear_huge(p4d_t *p4d)
{
	return 0;
}
#endif

/**
 * pud_set_huge - setup kernel PUD mapping
 *
 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
 * function sets up a huge page only if any of the following conditions are met:
 *
 * - MTRRs are disabled, or
 *
 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
 *
 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
 *   has no effect on the requested PAT memory type.
 *
 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
 * page mapping attempt fails.
 *
 * Returns 1 on success and 0 on failure.
 */
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
{
	u8 mtrr, uniform;

	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK))
		return 0;

	/* Bail out if we are we on a populated non-leaf entry: */
	if (pud_present(*pud) && !pud_huge(*pud))
		return 0;

	set_pte((pte_t *)pud, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));

	return 1;
}

/**
 * pmd_set_huge - setup kernel PMD mapping
 *
 * See text over pud_set_huge() above.
 *
 * Returns 1 on success and 0 on failure.
 */
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
{
	u8 mtrr, uniform;

	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
	    (mtrr != MTRR_TYPE_WRBACK)) {
		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
			     __func__, addr, addr + PMD_SIZE);
		return 0;
	}

	/* Bail out if we are we on a populated non-leaf entry: */
	if (pmd_present(*pmd) && !pmd_huge(*pmd))
		return 0;

	set_pte((pte_t *)pmd, pfn_pte(
		(u64)addr >> PAGE_SHIFT,
		__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));

	return 1;
}

/**
 * pud_clear_huge - clear kernel PUD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PUD map is found).
 */
int pud_clear_huge(pud_t *pud)
{
	if (pud_large(*pud)) {
		pud_clear(pud);
		return 1;
	}

	return 0;
}

/**
 * pmd_clear_huge - clear kernel PMD mapping when it is set
 *
 * Returns 1 on success and 0 on failure (no PMD map is found).
 */
int pmd_clear_huge(pmd_t *pmd)
{
	if (pmd_large(*pmd)) {
		pmd_clear(pmd);
		return 1;
	}

	return 0;
}

/*
 * Until we support 512GB pages, skip them in the vmap area.
 */
int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
{
	return 0;
}

#ifdef CONFIG_X86_64
/**
 * pud_free_pmd_page - Clear pud entry and free pmd page.
 * @pud: Pointer to a PUD.
 * @addr: Virtual address associated with pud.
 *
 * Context: The pud range has been unmapped and TLB purged.
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 *
 * NOTE: Callers must allow a single page allocation.
 */
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
{
	pmd_t *pmd, *pmd_sv;
	pte_t *pte;
	int i;

	pmd = (pmd_t *)pud_page_vaddr(*pud);
	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
	if (!pmd_sv)
		return 0;

	for (i = 0; i < PTRS_PER_PMD; i++) {
		pmd_sv[i] = pmd[i];
		if (!pmd_none(pmd[i]))
			pmd_clear(&pmd[i]);
	}

	pud_clear(pud);

	/* INVLPG to clear all paging-structure caches */
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);

	for (i = 0; i < PTRS_PER_PMD; i++) {
		if (!pmd_none(pmd_sv[i])) {
			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
			free_page((unsigned long)pte);
		}
	}

	free_page((unsigned long)pmd_sv);

	pgtable_pmd_page_dtor(virt_to_page(pmd));
	free_page((unsigned long)pmd);

	return 1;
}

/**
 * pmd_free_pte_page - Clear pmd entry and free pte page.
 * @pmd: Pointer to a PMD.
 * @addr: Virtual address associated with pmd.
 *
 * Context: The pmd range has been unmapped and TLB purged.
 * Return: 1 if clearing the entry succeeded. 0 otherwise.
 */
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
	pte_t *pte;

	pte = (pte_t *)pmd_page_vaddr(*pmd);
	pmd_clear(pmd);

	/* INVLPG to clear all paging-structure caches */
	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);

	free_page((unsigned long)pte);

	return 1;
}

#else /* !CONFIG_X86_64 */

int pud_free_pmd_page(pud_t *pud, unsigned long addr)
{
	return pud_none(*pud);
}

/*
 * Disable free page handling on x86-PAE. This assures that ioremap()
 * does not update sync'd pmd entries. See vmalloc_sync_one().
 */
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
	return pmd_none(*pmd);
}

#endif /* CONFIG_X86_64 */
#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */