radix-tree.h 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Copyright (C) 2001 Momchil Velikov
 * Portions Copyright (C) 2001 Christoph Hellwig
 * Copyright (C) 2006 Nick Piggin
 * Copyright (C) 2012 Konstantin Khlebnikov
 */
#ifndef _LINUX_RADIX_TREE_H
#define _LINUX_RADIX_TREE_H

#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/percpu.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/xarray.h>
#include <linux/local_lock.h>

/* Keep unconverted code working */
#define radix_tree_root		xarray
#define radix_tree_node		xa_node

struct radix_tree_preload {
	local_lock_t lock;
	unsigned nr;
	/* nodes->parent points to next preallocated node */
	struct radix_tree_node *nodes;
};
DECLARE_PER_CPU(struct radix_tree_preload, radix_tree_preloads);

/*
 * The bottom two bits of the slot determine how the remaining bits in the
 * slot are interpreted:
 *
 * 00 - data pointer
 * 10 - internal entry
 * x1 - value entry
 *
 * The internal entry may be a pointer to the next level in the tree, a
 * sibling entry, or an indicator that the entry in this slot has been moved
 * to another location in the tree and the lookup should be restarted.  While
 * NULL fits the 'data pointer' pattern, it means that there is no entry in
 * the tree for this index (no matter what level of the tree it is found at).
 * This means that storing a NULL entry in the tree is the same as deleting
 * the entry from the tree.
 */
#define RADIX_TREE_ENTRY_MASK		3UL
#define RADIX_TREE_INTERNAL_NODE	2UL

static inline bool radix_tree_is_internal_node(void *ptr)
{
	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
				RADIX_TREE_INTERNAL_NODE;
}

/*** radix-tree API starts here ***/

#define RADIX_TREE_MAP_SHIFT	XA_CHUNK_SHIFT
#define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
#define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)

#define RADIX_TREE_MAX_TAGS	XA_MAX_MARKS
#define RADIX_TREE_TAG_LONGS	XA_MARK_LONGS

#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
					  RADIX_TREE_MAP_SHIFT))

/* The IDR tag is stored in the low bits of xa_flags */
#define ROOT_IS_IDR	((__force gfp_t)4)
/* The top bits of xa_flags are used to store the root tags */
#define ROOT_TAG_SHIFT	(__GFP_BITS_SHIFT)

#define RADIX_TREE_INIT(name, mask)	XARRAY_INIT(name, mask)

#define RADIX_TREE(name, mask) \
	struct radix_tree_root name = RADIX_TREE_INIT(name, mask)

#define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask)

static inline bool radix_tree_empty(const struct radix_tree_root *root)
{
	return root->xa_head == NULL;
}

/**
 * struct radix_tree_iter - radix tree iterator state
 *
 * @index:	index of current slot
 * @next_index:	one beyond the last index for this chunk
 * @tags:	bit-mask for tag-iterating
 * @node:	node that contains current slot
 *
 * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
 * subinterval of slots contained within one radix tree leaf node.  It is
 * described by a pointer to its first slot and a struct radix_tree_iter
 * which holds the chunk's position in the tree and its size.  For tagged
 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
 * radix tree tag.
 */
struct radix_tree_iter {
	unsigned long	index;
	unsigned long	next_index;
	unsigned long	tags;
	struct radix_tree_node *node;
};

/**
 * Radix-tree synchronization
 *
 * The radix-tree API requires that users provide all synchronisation (with
 * specific exceptions, noted below).
 *
 * Synchronization of access to the data items being stored in the tree, and
 * management of their lifetimes must be completely managed by API users.
 *
 * For API usage, in general,
 * - any function _modifying_ the tree or tags (inserting or deleting
 *   items, setting or clearing tags) must exclude other modifications, and
 *   exclude any functions reading the tree.
 * - any function _reading_ the tree or tags (looking up items or tags,
 *   gang lookups) must exclude modifications to the tree, but may occur
 *   concurrently with other readers.
 *
 * The notable exceptions to this rule are the following functions:
 * __radix_tree_lookup
 * radix_tree_lookup
 * radix_tree_lookup_slot
 * radix_tree_tag_get
 * radix_tree_gang_lookup
 * radix_tree_gang_lookup_tag
 * radix_tree_gang_lookup_tag_slot
 * radix_tree_tagged
 *
 * The first 7 functions are able to be called locklessly, using RCU. The
 * caller must ensure calls to these functions are made within rcu_read_lock()
 * regions. Other readers (lock-free or otherwise) and modifications may be
 * running concurrently.
 *
 * It is still required that the caller manage the synchronization and lifetimes
 * of the items. So if RCU lock-free lookups are used, typically this would mean
 * that the items have their own locks, or are amenable to lock-free access; and
 * that the items are freed by RCU (or only freed after having been deleted from
 * the radix tree *and* a synchronize_rcu() grace period).
 *
 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
 * access to data items when inserting into or looking up from the radix tree)
 *
 * Note that the value returned by radix_tree_tag_get() may not be relied upon
 * if only the RCU read lock is held.  Functions to set/clear tags and to
 * delete nodes running concurrently with it may affect its result such that
 * two consecutive reads in the same locked section may return different
 * values.  If reliability is required, modification functions must also be
 * excluded from concurrency.
 *
 * radix_tree_tagged is able to be called without locking or RCU.
 */

/**
 * radix_tree_deref_slot - dereference a slot
 * @slot: slot pointer, returned by radix_tree_lookup_slot
 *
 * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
 * locked across slot lookup and dereference. Not required if write lock is
 * held (ie. items cannot be concurrently inserted).
 *
 * radix_tree_deref_retry must be used to confirm validity of the pointer if
 * only the read lock is held.
 *
 * Return: entry stored in that slot.
 */
static inline void *radix_tree_deref_slot(void __rcu **slot)
{
	return rcu_dereference(*slot);
}

/**
 * radix_tree_deref_slot_protected - dereference a slot with tree lock held
 * @slot: slot pointer, returned by radix_tree_lookup_slot
 *
 * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
 * lock but it must hold the tree lock to prevent parallel updates.
 *
 * Return: entry stored in that slot.
 */
static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
							spinlock_t *treelock)
{
	return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
}

/**
 * radix_tree_deref_retry	- check radix_tree_deref_slot
 * @arg:	pointer returned by radix_tree_deref_slot
 * Returns:	0 if retry is not required, otherwise retry is required
 *
 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
 */
static inline int radix_tree_deref_retry(void *arg)
{
	return unlikely(radix_tree_is_internal_node(arg));
}

/**
 * radix_tree_exception	- radix_tree_deref_slot returned either exception?
 * @arg:	value returned by radix_tree_deref_slot
 * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
 */
static inline int radix_tree_exception(void *arg)
{
	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
}

int radix_tree_insert(struct radix_tree_root *, unsigned long index,
			void *);
void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
			  struct radix_tree_node **nodep, void __rcu ***slotp);
void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
					unsigned long index);
void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
			  void __rcu **slot, void *entry);
void radix_tree_iter_replace(struct radix_tree_root *,
		const struct radix_tree_iter *, void __rcu **slot, void *entry);
void radix_tree_replace_slot(struct radix_tree_root *,
			     void __rcu **slot, void *entry);
void radix_tree_iter_delete(struct radix_tree_root *,
			struct radix_tree_iter *iter, void __rcu **slot);
void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
void *radix_tree_delete(struct radix_tree_root *, unsigned long);
unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
			void **results, unsigned long first_index,
			unsigned int max_items);
int radix_tree_preload(gfp_t gfp_mask);
int radix_tree_maybe_preload(gfp_t gfp_mask);
void radix_tree_init(void);
void *radix_tree_tag_set(struct radix_tree_root *,
			unsigned long index, unsigned int tag);
void *radix_tree_tag_clear(struct radix_tree_root *,
			unsigned long index, unsigned int tag);
int radix_tree_tag_get(const struct radix_tree_root *,
			unsigned long index, unsigned int tag);
void radix_tree_iter_tag_clear(struct radix_tree_root *,
		const struct radix_tree_iter *iter, unsigned int tag);
unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
		void **results, unsigned long first_index,
		unsigned int max_items, unsigned int tag);
unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
		void __rcu ***results, unsigned long first_index,
		unsigned int max_items, unsigned int tag);
int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);

static inline void radix_tree_preload_end(void)
{
	local_unlock(&radix_tree_preloads.lock);
}

void __rcu **idr_get_free(struct radix_tree_root *root,
			      struct radix_tree_iter *iter, gfp_t gfp,
			      unsigned long max);

enum {
	RADIX_TREE_ITER_TAG_MASK = 0x0f,	/* tag index in lower nybble */
	RADIX_TREE_ITER_TAGGED   = 0x10,	/* lookup tagged slots */
	RADIX_TREE_ITER_CONTIG   = 0x20,	/* stop at first hole */
};

/**
 * radix_tree_iter_init - initialize radix tree iterator
 *
 * @iter:	pointer to iterator state
 * @start:	iteration starting index
 * Returns:	NULL
 */
static __always_inline void __rcu **
radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
{
	/*
	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
	 * in the case of a successful tagged chunk lookup.  If the lookup was
	 * unsuccessful or non-tagged then nobody cares about ->tags.
	 *
	 * Set index to zero to bypass next_index overflow protection.
	 * See the comment in radix_tree_next_chunk() for details.
	 */
	iter->index = 0;
	iter->next_index = start;
	return NULL;
}

/**
 * radix_tree_next_chunk - find next chunk of slots for iteration
 *
 * @root:	radix tree root
 * @iter:	iterator state
 * @flags:	RADIX_TREE_ITER_* flags and tag index
 * Returns:	pointer to chunk first slot, or NULL if there no more left
 *
 * This function looks up the next chunk in the radix tree starting from
 * @iter->next_index.  It returns a pointer to the chunk's first slot.
 * Also it fills @iter with data about chunk: position in the tree (index),
 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
 */
void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
			     struct radix_tree_iter *iter, unsigned flags);

/**
 * radix_tree_iter_lookup - look up an index in the radix tree
 * @root: radix tree root
 * @iter: iterator state
 * @index: key to look up
 *
 * If @index is present in the radix tree, this function returns the slot
 * containing it and updates @iter to describe the entry.  If @index is not
 * present, it returns NULL.
 */
static inline void __rcu **
radix_tree_iter_lookup(const struct radix_tree_root *root,
			struct radix_tree_iter *iter, unsigned long index)
{
	radix_tree_iter_init(iter, index);
	return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
}

/**
 * radix_tree_iter_retry - retry this chunk of the iteration
 * @iter:	iterator state
 *
 * If we iterate over a tree protected only by the RCU lock, a race
 * against deletion or creation may result in seeing a slot for which
 * radix_tree_deref_retry() returns true.  If so, call this function
 * and continue the iteration.
 */
static inline __must_check
void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
{
	iter->next_index = iter->index;
	iter->tags = 0;
	return NULL;
}

static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
{
	return iter->index + slots;
}

/**
 * radix_tree_iter_resume - resume iterating when the chunk may be invalid
 * @slot: pointer to current slot
 * @iter: iterator state
 * Returns: New slot pointer
 *
 * If the iterator needs to release then reacquire a lock, the chunk may
 * have been invalidated by an insertion or deletion.  Call this function
 * before releasing the lock to continue the iteration from the next index.
 */
void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
					struct radix_tree_iter *iter);

/**
 * radix_tree_chunk_size - get current chunk size
 *
 * @iter:	pointer to radix tree iterator
 * Returns:	current chunk size
 */
static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter *iter)
{
	return iter->next_index - iter->index;
}

/**
 * radix_tree_next_slot - find next slot in chunk
 *
 * @slot:	pointer to current slot
 * @iter:	pointer to iterator state
 * @flags:	RADIX_TREE_ITER_*, should be constant
 * Returns:	pointer to next slot, or NULL if there no more left
 *
 * This function updates @iter->index in the case of a successful lookup.
 * For tagged lookup it also eats @iter->tags.
 *
 * There are several cases where 'slot' can be passed in as NULL to this
 * function.  These cases result from the use of radix_tree_iter_resume() or
 * radix_tree_iter_retry().  In these cases we don't end up dereferencing
 * 'slot' because either:
 * a) we are doing tagged iteration and iter->tags has been set to 0, or
 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
 *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
 */
static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
				struct radix_tree_iter *iter, unsigned flags)
{
	if (flags & RADIX_TREE_ITER_TAGGED) {
		iter->tags >>= 1;
		if (unlikely(!iter->tags))
			return NULL;
		if (likely(iter->tags & 1ul)) {
			iter->index = __radix_tree_iter_add(iter, 1);
			slot++;
			goto found;
		}
		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
			unsigned offset = __ffs(iter->tags);

			iter->tags >>= offset++;
			iter->index = __radix_tree_iter_add(iter, offset);
			slot += offset;
			goto found;
		}
	} else {
		long count = radix_tree_chunk_size(iter);

		while (--count > 0) {
			slot++;
			iter->index = __radix_tree_iter_add(iter, 1);

			if (likely(*slot))
				goto found;
			if (flags & RADIX_TREE_ITER_CONTIG) {
				/* forbid switching to the next chunk */
				iter->next_index = 0;
				break;
			}
		}
	}
	return NULL;

 found:
	return slot;
}

/**
 * radix_tree_for_each_slot - iterate over non-empty slots
 *
 * @slot:	the void** variable for pointer to slot
 * @root:	the struct radix_tree_root pointer
 * @iter:	the struct radix_tree_iter pointer
 * @start:	iteration starting index
 *
 * @slot points to radix tree slot, @iter->index contains its index.
 */
#define radix_tree_for_each_slot(slot, root, iter, start)		\
	for (slot = radix_tree_iter_init(iter, start) ;			\
	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
	     slot = radix_tree_next_slot(slot, iter, 0))

/**
 * radix_tree_for_each_tagged - iterate over tagged slots
 *
 * @slot:	the void** variable for pointer to slot
 * @root:	the struct radix_tree_root pointer
 * @iter:	the struct radix_tree_iter pointer
 * @start:	iteration starting index
 * @tag:	tag index
 *
 * @slot points to radix tree slot, @iter->index contains its index.
 */
#define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
	for (slot = radix_tree_iter_init(iter, start) ;			\
	     slot || (slot = radix_tree_next_chunk(root, iter,		\
			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
	     slot = radix_tree_next_slot(slot, iter,			\
				RADIX_TREE_ITER_TAGGED | tag))

#endif /* _LINUX_RADIX_TREE_H */