fse_compress.c 24.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
/*
 * FSE : Finite State Entropy encoder
 * Copyright (C) 2013-2015, Yann Collet.
 *
 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * This program is free software; you can redistribute it and/or modify it under
 * the terms of the GNU General Public License version 2 as published by the
 * Free Software Foundation. This program is dual-licensed; you may select
 * either version 2 of the GNU General Public License ("GPL") or BSD license
 * ("BSD").
 *
 * You can contact the author at :
 * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
 */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#define FORCE_INLINE static __always_inline

/* **************************************************************
*  Includes
****************************************************************/
#include "bitstream.h"
#include "fse.h"
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/string.h> /* memcpy, memset */

/* **************************************************************
*  Error Management
****************************************************************/
#define FSE_STATIC_ASSERT(c)                                   \
	{                                                      \
		enum { FSE_static_assert = 1 / (int)(!!(c)) }; \
	} /* use only *after* variable declarations */

/* **************************************************************
*  Templates
****************************************************************/
/*
  designed to be included
  for type-specific functions (template emulation in C)
  Objective is to write these functions only once, for improved maintenance
*/

/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
#error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
#error "FSE_FUNCTION_TYPE must be defined"
#endif

/* Function names */
#define FSE_CAT(X, Y) X##Y
#define FSE_FUNCTION_NAME(X, Y) FSE_CAT(X, Y)
#define FSE_TYPE_NAME(X, Y) FSE_CAT(X, Y)

/* Function templates */

/* FSE_buildCTable_wksp() :
 * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
 * wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
 * workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
 */
size_t FSE_buildCTable_wksp(FSE_CTable *ct, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void *workspace, size_t workspaceSize)
{
	U32 const tableSize = 1 << tableLog;
	U32 const tableMask = tableSize - 1;
	void *const ptr = ct;
	U16 *const tableU16 = ((U16 *)ptr) + 2;
	void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableLog ? tableSize >> 1 : 1);
	FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT);
	U32 const step = FSE_TABLESTEP(tableSize);
	U32 highThreshold = tableSize - 1;

	U32 *cumul;
	FSE_FUNCTION_TYPE *tableSymbol;
	size_t spaceUsed32 = 0;

	cumul = (U32 *)workspace + spaceUsed32;
	spaceUsed32 += FSE_MAX_SYMBOL_VALUE + 2;
	tableSymbol = (FSE_FUNCTION_TYPE *)((U32 *)workspace + spaceUsed32);
	spaceUsed32 += ALIGN(sizeof(FSE_FUNCTION_TYPE) * ((size_t)1 << tableLog), sizeof(U32)) >> 2;

	if ((spaceUsed32 << 2) > workspaceSize)
		return ERROR(tableLog_tooLarge);
	workspace = (U32 *)workspace + spaceUsed32;
	workspaceSize -= (spaceUsed32 << 2);

	/* CTable header */
	tableU16[-2] = (U16)tableLog;
	tableU16[-1] = (U16)maxSymbolValue;

	/* For explanations on how to distribute symbol values over the table :
	*  http://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */

	/* symbol start positions */
	{
		U32 u;
		cumul[0] = 0;
		for (u = 1; u <= maxSymbolValue + 1; u++) {
			if (normalizedCounter[u - 1] == -1) { /* Low proba symbol */
				cumul[u] = cumul[u - 1] + 1;
				tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u - 1);
			} else {
				cumul[u] = cumul[u - 1] + normalizedCounter[u - 1];
			}
		}
		cumul[maxSymbolValue + 1] = tableSize + 1;
	}

	/* Spread symbols */
	{
		U32 position = 0;
		U32 symbol;
		for (symbol = 0; symbol <= maxSymbolValue; symbol++) {
			int nbOccurences;
			for (nbOccurences = 0; nbOccurences < normalizedCounter[symbol]; nbOccurences++) {
				tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
				position = (position + step) & tableMask;
				while (position > highThreshold)
					position = (position + step) & tableMask; /* Low proba area */
			}
		}

		if (position != 0)
			return ERROR(GENERIC); /* Must have gone through all positions */
	}

	/* Build table */
	{
		U32 u;
		for (u = 0; u < tableSize; u++) {
			FSE_FUNCTION_TYPE s = tableSymbol[u];	/* note : static analyzer may not understand tableSymbol is properly initialized */
			tableU16[cumul[s]++] = (U16)(tableSize + u); /* TableU16 : sorted by symbol order; gives next state value */
		}
	}

	/* Build Symbol Transformation Table */
	{
		unsigned total = 0;
		unsigned s;
		for (s = 0; s <= maxSymbolValue; s++) {
			switch (normalizedCounter[s]) {
			case 0: break;

			case -1:
			case 1:
				symbolTT[s].deltaNbBits = (tableLog << 16) - (1 << tableLog);
				symbolTT[s].deltaFindState = total - 1;
				total++;
				break;
			default: {
				U32 const maxBitsOut = tableLog - BIT_highbit32(normalizedCounter[s] - 1);
				U32 const minStatePlus = normalizedCounter[s] << maxBitsOut;
				symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
				symbolTT[s].deltaFindState = total - normalizedCounter[s];
				total += normalizedCounter[s];
			}
			}
		}
	}

	return 0;
}

/*-**************************************************************
*  FSE NCount encoding-decoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
	size_t const maxHeaderSize = (((maxSymbolValue + 1) * tableLog) >> 3) + 3;
	return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}

static size_t FSE_writeNCount_generic(void *header, size_t headerBufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
				      unsigned writeIsSafe)
{
	BYTE *const ostart = (BYTE *)header;
	BYTE *out = ostart;
	BYTE *const oend = ostart + headerBufferSize;
	int nbBits;
	const int tableSize = 1 << tableLog;
	int remaining;
	int threshold;
	U32 bitStream;
	int bitCount;
	unsigned charnum = 0;
	int previous0 = 0;

	bitStream = 0;
	bitCount = 0;
	/* Table Size */
	bitStream += (tableLog - FSE_MIN_TABLELOG) << bitCount;
	bitCount += 4;

	/* Init */
	remaining = tableSize + 1; /* +1 for extra accuracy */
	threshold = tableSize;
	nbBits = tableLog + 1;

	while (remaining > 1) { /* stops at 1 */
		if (previous0) {
			unsigned start = charnum;
			while (!normalizedCounter[charnum])
				charnum++;
			while (charnum >= start + 24) {
				start += 24;
				bitStream += 0xFFFFU << bitCount;
				if ((!writeIsSafe) && (out > oend - 2))
					return ERROR(dstSize_tooSmall); /* Buffer overflow */
				out[0] = (BYTE)bitStream;
				out[1] = (BYTE)(bitStream >> 8);
				out += 2;
				bitStream >>= 16;
			}
			while (charnum >= start + 3) {
				start += 3;
				bitStream += 3 << bitCount;
				bitCount += 2;
			}
			bitStream += (charnum - start) << bitCount;
			bitCount += 2;
			if (bitCount > 16) {
				if ((!writeIsSafe) && (out > oend - 2))
					return ERROR(dstSize_tooSmall); /* Buffer overflow */
				out[0] = (BYTE)bitStream;
				out[1] = (BYTE)(bitStream >> 8);
				out += 2;
				bitStream >>= 16;
				bitCount -= 16;
			}
		}
		{
			int count = normalizedCounter[charnum++];
			int const max = (2 * threshold - 1) - remaining;
			remaining -= count < 0 ? -count : count;
			count++; /* +1 for extra accuracy */
			if (count >= threshold)
				count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
			bitStream += count << bitCount;
			bitCount += nbBits;
			bitCount -= (count < max);
			previous0 = (count == 1);
			if (remaining < 1)
				return ERROR(GENERIC);
			while (remaining < threshold)
				nbBits--, threshold >>= 1;
		}
		if (bitCount > 16) {
			if ((!writeIsSafe) && (out > oend - 2))
				return ERROR(dstSize_tooSmall); /* Buffer overflow */
			out[0] = (BYTE)bitStream;
			out[1] = (BYTE)(bitStream >> 8);
			out += 2;
			bitStream >>= 16;
			bitCount -= 16;
		}
	}

	/* flush remaining bitStream */
	if ((!writeIsSafe) && (out > oend - 2))
		return ERROR(dstSize_tooSmall); /* Buffer overflow */
	out[0] = (BYTE)bitStream;
	out[1] = (BYTE)(bitStream >> 8);
	out += (bitCount + 7) / 8;

	if (charnum > maxSymbolValue + 1)
		return ERROR(GENERIC);

	return (out - ostart);
}

size_t FSE_writeNCount(void *buffer, size_t bufferSize, const short *normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
	if (tableLog > FSE_MAX_TABLELOG)
		return ERROR(tableLog_tooLarge); /* Unsupported */
	if (tableLog < FSE_MIN_TABLELOG)
		return ERROR(GENERIC); /* Unsupported */

	if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
		return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);

	return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1);
}

/*-**************************************************************
*  Counting histogram
****************************************************************/
/*! FSE_count_simple
	This function counts byte values within `src`, and store the histogram into table `count`.
	It doesn't use any additional memory.
	But this function is unsafe : it doesn't check that all values within `src` can fit into `count`.
	For this reason, prefer using a table `count` with 256 elements.
	@return : count of most numerous element
*/
size_t FSE_count_simple(unsigned *count, unsigned *maxSymbolValuePtr, const void *src, size_t srcSize)
{
	const BYTE *ip = (const BYTE *)src;
	const BYTE *const end = ip + srcSize;
	unsigned maxSymbolValue = *maxSymbolValuePtr;
	unsigned max = 0;

	memset(count, 0, (maxSymbolValue + 1) * sizeof(*count));
	if (srcSize == 0) {
		*maxSymbolValuePtr = 0;
		return 0;
	}

	while (ip < end)
		count[*ip++]++;

	while (!count[maxSymbolValue])
		maxSymbolValue--;
	*maxSymbolValuePtr = maxSymbolValue;

	{
		U32 s;
		for (s = 0; s <= maxSymbolValue; s++)
			if (count[s] > max)
				max = count[s];
	}

	return (size_t)max;
}

/* FSE_count_parallel_wksp() :
 * Same as FSE_count_parallel(), but using an externally provided scratch buffer.
 * `workSpace` size must be a minimum of `1024 * sizeof(unsigned)`` */
static size_t FSE_count_parallel_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned checkMax,
				      unsigned *const workSpace)
{
	const BYTE *ip = (const BYTE *)source;
	const BYTE *const iend = ip + sourceSize;
	unsigned maxSymbolValue = *maxSymbolValuePtr;
	unsigned max = 0;
	U32 *const Counting1 = workSpace;
	U32 *const Counting2 = Counting1 + 256;
	U32 *const Counting3 = Counting2 + 256;
	U32 *const Counting4 = Counting3 + 256;

	memset(Counting1, 0, 4 * 256 * sizeof(unsigned));

	/* safety checks */
	if (!sourceSize) {
		memset(count, 0, maxSymbolValue + 1);
		*maxSymbolValuePtr = 0;
		return 0;
	}
	if (!maxSymbolValue)
		maxSymbolValue = 255; /* 0 == default */

	/* by stripes of 16 bytes */
	{
		U32 cached = ZSTD_read32(ip);
		ip += 4;
		while (ip < iend - 15) {
			U32 c = cached;
			cached = ZSTD_read32(ip);
			ip += 4;
			Counting1[(BYTE)c]++;
			Counting2[(BYTE)(c >> 8)]++;
			Counting3[(BYTE)(c >> 16)]++;
			Counting4[c >> 24]++;
			c = cached;
			cached = ZSTD_read32(ip);
			ip += 4;
			Counting1[(BYTE)c]++;
			Counting2[(BYTE)(c >> 8)]++;
			Counting3[(BYTE)(c >> 16)]++;
			Counting4[c >> 24]++;
			c = cached;
			cached = ZSTD_read32(ip);
			ip += 4;
			Counting1[(BYTE)c]++;
			Counting2[(BYTE)(c >> 8)]++;
			Counting3[(BYTE)(c >> 16)]++;
			Counting4[c >> 24]++;
			c = cached;
			cached = ZSTD_read32(ip);
			ip += 4;
			Counting1[(BYTE)c]++;
			Counting2[(BYTE)(c >> 8)]++;
			Counting3[(BYTE)(c >> 16)]++;
			Counting4[c >> 24]++;
		}
		ip -= 4;
	}

	/* finish last symbols */
	while (ip < iend)
		Counting1[*ip++]++;

	if (checkMax) { /* verify stats will fit into destination table */
		U32 s;
		for (s = 255; s > maxSymbolValue; s--) {
			Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
			if (Counting1[s])
				return ERROR(maxSymbolValue_tooSmall);
		}
	}

	{
		U32 s;
		for (s = 0; s <= maxSymbolValue; s++) {
			count[s] = Counting1[s] + Counting2[s] + Counting3[s] + Counting4[s];
			if (count[s] > max)
				max = count[s];
		}
	}

	while (!count[maxSymbolValue])
		maxSymbolValue--;
	*maxSymbolValuePtr = maxSymbolValue;
	return (size_t)max;
}

/* FSE_countFast_wksp() :
 * Same as FSE_countFast(), but using an externally provided scratch buffer.
 * `workSpace` size must be table of >= `1024` unsigned */
size_t FSE_countFast_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace)
{
	if (sourceSize < 1500)
		return FSE_count_simple(count, maxSymbolValuePtr, source, sourceSize);
	return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 0, workSpace);
}

/* FSE_count_wksp() :
 * Same as FSE_count(), but using an externally provided scratch buffer.
 * `workSpace` size must be table of >= `1024` unsigned */
size_t FSE_count_wksp(unsigned *count, unsigned *maxSymbolValuePtr, const void *source, size_t sourceSize, unsigned *workSpace)
{
	if (*maxSymbolValuePtr < 255)
		return FSE_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, 1, workSpace);
	*maxSymbolValuePtr = 255;
	return FSE_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace);
}

/*-**************************************************************
*  FSE Compression Code
****************************************************************/
/*! FSE_sizeof_CTable() :
	FSE_CTable is a variable size structure which contains :
	`U16 tableLog;`
	`U16 maxSymbolValue;`
	`U16 nextStateNumber[1 << tableLog];`                         // This size is variable
	`FSE_symbolCompressionTransform symbolTT[maxSymbolValue+1];`  // This size is variable
Allocation is manual (C standard does not support variable-size structures).
*/
size_t FSE_sizeof_CTable(unsigned maxSymbolValue, unsigned tableLog)
{
	if (tableLog > FSE_MAX_TABLELOG)
		return ERROR(tableLog_tooLarge);
	return FSE_CTABLE_SIZE_U32(tableLog, maxSymbolValue) * sizeof(U32);
}

/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
	U32 minBitsSrc = BIT_highbit32((U32)(srcSize - 1)) + 1;
	U32 minBitsSymbols = BIT_highbit32(maxSymbolValue) + 2;
	U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
	return minBits;
}

unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
	U32 maxBitsSrc = BIT_highbit32((U32)(srcSize - 1)) - minus;
	U32 tableLog = maxTableLog;
	U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
	if (tableLog == 0)
		tableLog = FSE_DEFAULT_TABLELOG;
	if (maxBitsSrc < tableLog)
		tableLog = maxBitsSrc; /* Accuracy can be reduced */
	if (minBits > tableLog)
		tableLog = minBits; /* Need a minimum to safely represent all symbol values */
	if (tableLog < FSE_MIN_TABLELOG)
		tableLog = FSE_MIN_TABLELOG;
	if (tableLog > FSE_MAX_TABLELOG)
		tableLog = FSE_MAX_TABLELOG;
	return tableLog;
}

unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
	return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}

/* Secondary normalization method.
   To be used when primary method fails. */

static size_t FSE_normalizeM2(short *norm, U32 tableLog, const unsigned *count, size_t total, U32 maxSymbolValue)
{
	short const NOT_YET_ASSIGNED = -2;
	U32 s;
	U32 distributed = 0;
	U32 ToDistribute;

	/* Init */
	U32 const lowThreshold = (U32)(total >> tableLog);
	U32 lowOne = (U32)((total * 3) >> (tableLog + 1));

	for (s = 0; s <= maxSymbolValue; s++) {
		if (count[s] == 0) {
			norm[s] = 0;
			continue;
		}
		if (count[s] <= lowThreshold) {
			norm[s] = -1;
			distributed++;
			total -= count[s];
			continue;
		}
		if (count[s] <= lowOne) {
			norm[s] = 1;
			distributed++;
			total -= count[s];
			continue;
		}

		norm[s] = NOT_YET_ASSIGNED;
	}
	ToDistribute = (1 << tableLog) - distributed;

	if ((total / ToDistribute) > lowOne) {
		/* risk of rounding to zero */
		lowOne = (U32)((total * 3) / (ToDistribute * 2));
		for (s = 0; s <= maxSymbolValue; s++) {
			if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
				norm[s] = 1;
				distributed++;
				total -= count[s];
				continue;
			}
		}
		ToDistribute = (1 << tableLog) - distributed;
	}

	if (distributed == maxSymbolValue + 1) {
		/* all values are pretty poor;
		   probably incompressible data (should have already been detected);
		   find max, then give all remaining points to max */
		U32 maxV = 0, maxC = 0;
		for (s = 0; s <= maxSymbolValue; s++)
			if (count[s] > maxC)
				maxV = s, maxC = count[s];
		norm[maxV] += (short)ToDistribute;
		return 0;
	}

	if (total == 0) {
		/* all of the symbols were low enough for the lowOne or lowThreshold */
		for (s = 0; ToDistribute > 0; s = (s + 1) % (maxSymbolValue + 1))
			if (norm[s] > 0)
				ToDistribute--, norm[s]++;
		return 0;
	}

	{
		U64 const vStepLog = 62 - tableLog;
		U64 const mid = (1ULL << (vStepLog - 1)) - 1;
		U64 const rStep = div_u64((((U64)1 << vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
		U64 tmpTotal = mid;
		for (s = 0; s <= maxSymbolValue; s++) {
			if (norm[s] == NOT_YET_ASSIGNED) {
				U64 const end = tmpTotal + (count[s] * rStep);
				U32 const sStart = (U32)(tmpTotal >> vStepLog);
				U32 const sEnd = (U32)(end >> vStepLog);
				U32 const weight = sEnd - sStart;
				if (weight < 1)
					return ERROR(GENERIC);
				norm[s] = (short)weight;
				tmpTotal = end;
			}
		}
	}

	return 0;
}

size_t FSE_normalizeCount(short *normalizedCounter, unsigned tableLog, const unsigned *count, size_t total, unsigned maxSymbolValue)
{
	/* Sanity checks */
	if (tableLog == 0)
		tableLog = FSE_DEFAULT_TABLELOG;
	if (tableLog < FSE_MIN_TABLELOG)
		return ERROR(GENERIC); /* Unsupported size */
	if (tableLog > FSE_MAX_TABLELOG)
		return ERROR(tableLog_tooLarge); /* Unsupported size */
	if (tableLog < FSE_minTableLog(total, maxSymbolValue))
		return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */

	{
		U32 const rtbTable[] = {0, 473195, 504333, 520860, 550000, 700000, 750000, 830000};
		U64 const scale = 62 - tableLog;
		U64 const step = div_u64((U64)1 << 62, (U32)total); /* <== here, one division ! */
		U64 const vStep = 1ULL << (scale - 20);
		int stillToDistribute = 1 << tableLog;
		unsigned s;
		unsigned largest = 0;
		short largestP = 0;
		U32 lowThreshold = (U32)(total >> tableLog);

		for (s = 0; s <= maxSymbolValue; s++) {
			if (count[s] == total)
				return 0; /* rle special case */
			if (count[s] == 0) {
				normalizedCounter[s] = 0;
				continue;
			}
			if (count[s] <= lowThreshold) {
				normalizedCounter[s] = -1;
				stillToDistribute--;
			} else {
				short proba = (short)((count[s] * step) >> scale);
				if (proba < 8) {
					U64 restToBeat = vStep * rtbTable[proba];
					proba += (count[s] * step) - ((U64)proba << scale) > restToBeat;
				}
				if (proba > largestP)
					largestP = proba, largest = s;
				normalizedCounter[s] = proba;
				stillToDistribute -= proba;
			}
		}
		if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
			/* corner case, need another normalization method */
			size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue);
			if (FSE_isError(errorCode))
				return errorCode;
		} else
			normalizedCounter[largest] += (short)stillToDistribute;
	}

	return tableLog;
}

/* fake FSE_CTable, for raw (uncompressed) input */
size_t FSE_buildCTable_raw(FSE_CTable *ct, unsigned nbBits)
{
	const unsigned tableSize = 1 << nbBits;
	const unsigned tableMask = tableSize - 1;
	const unsigned maxSymbolValue = tableMask;
	void *const ptr = ct;
	U16 *const tableU16 = ((U16 *)ptr) + 2;
	void *const FSCT = ((U32 *)ptr) + 1 /* header */ + (tableSize >> 1); /* assumption : tableLog >= 1 */
	FSE_symbolCompressionTransform *const symbolTT = (FSE_symbolCompressionTransform *)(FSCT);
	unsigned s;

	/* Sanity checks */
	if (nbBits < 1)
		return ERROR(GENERIC); /* min size */

	/* header */
	tableU16[-2] = (U16)nbBits;
	tableU16[-1] = (U16)maxSymbolValue;

	/* Build table */
	for (s = 0; s < tableSize; s++)
		tableU16[s] = (U16)(tableSize + s);

	/* Build Symbol Transformation Table */
	{
		const U32 deltaNbBits = (nbBits << 16) - (1 << nbBits);
		for (s = 0; s <= maxSymbolValue; s++) {
			symbolTT[s].deltaNbBits = deltaNbBits;
			symbolTT[s].deltaFindState = s - 1;
		}
	}

	return 0;
}

/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle(FSE_CTable *ct, BYTE symbolValue)
{
	void *ptr = ct;
	U16 *tableU16 = ((U16 *)ptr) + 2;
	void *FSCTptr = (U32 *)ptr + 2;
	FSE_symbolCompressionTransform *symbolTT = (FSE_symbolCompressionTransform *)FSCTptr;

	/* header */
	tableU16[-2] = (U16)0;
	tableU16[-1] = (U16)symbolValue;

	/* Build table */
	tableU16[0] = 0;
	tableU16[1] = 0; /* just in case */

	/* Build Symbol Transformation Table */
	symbolTT[symbolValue].deltaNbBits = 0;
	symbolTT[symbolValue].deltaFindState = 0;

	return 0;
}

static size_t FSE_compress_usingCTable_generic(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct, const unsigned fast)
{
	const BYTE *const istart = (const BYTE *)src;
	const BYTE *const iend = istart + srcSize;
	const BYTE *ip = iend;

	BIT_CStream_t bitC;
	FSE_CState_t CState1, CState2;

	/* init */
	if (srcSize <= 2)
		return 0;
	{
		size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
		if (FSE_isError(initError))
			return 0; /* not enough space available to write a bitstream */
	}

#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))

	if (srcSize & 1) {
		FSE_initCState2(&CState1, ct, *--ip);
		FSE_initCState2(&CState2, ct, *--ip);
		FSE_encodeSymbol(&bitC, &CState1, *--ip);
		FSE_FLUSHBITS(&bitC);
	} else {
		FSE_initCState2(&CState2, ct, *--ip);
		FSE_initCState2(&CState1, ct, *--ip);
	}

	/* join to mod 4 */
	srcSize -= 2;
	if ((sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) && (srcSize & 2)) { /* test bit 2 */
		FSE_encodeSymbol(&bitC, &CState2, *--ip);
		FSE_encodeSymbol(&bitC, &CState1, *--ip);
		FSE_FLUSHBITS(&bitC);
	}

	/* 2 or 4 encoding per loop */
	while (ip > istart) {

		FSE_encodeSymbol(&bitC, &CState2, *--ip);

		if (sizeof(bitC.bitContainer) * 8 < FSE_MAX_TABLELOG * 2 + 7) /* this test must be static */
			FSE_FLUSHBITS(&bitC);

		FSE_encodeSymbol(&bitC, &CState1, *--ip);

		if (sizeof(bitC.bitContainer) * 8 > FSE_MAX_TABLELOG * 4 + 7) { /* this test must be static */
			FSE_encodeSymbol(&bitC, &CState2, *--ip);
			FSE_encodeSymbol(&bitC, &CState1, *--ip);
		}

		FSE_FLUSHBITS(&bitC);
	}

	FSE_flushCState(&bitC, &CState2);
	FSE_flushCState(&bitC, &CState1);
	return BIT_closeCStream(&bitC);
}

size_t FSE_compress_usingCTable(void *dst, size_t dstSize, const void *src, size_t srcSize, const FSE_CTable *ct)
{
	unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));

	if (fast)
		return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
	else
		return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}

size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }