tegra194-cpufreq.c 11.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
 */

#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>

#include <asm/smp_plat.h>

#include <soc/tegra/bpmp.h>
#include <soc/tegra/bpmp-abi.h>

#define KHZ                     1000
#define REF_CLK_MHZ             408 /* 408 MHz */
#define US_DELAY                500
#define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
#define MAX_CNT                 ~0U

/* cpufreq transisition latency */
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */

enum cluster {
	CLUSTER0,
	CLUSTER1,
	CLUSTER2,
	CLUSTER3,
	MAX_CLUSTERS,
};

struct tegra194_cpufreq_data {
	void __iomem *regs;
	size_t num_clusters;
	struct cpufreq_frequency_table **tables;
};

struct tegra_cpu_ctr {
	u32 cpu;
	u32 coreclk_cnt, last_coreclk_cnt;
	u32 refclk_cnt, last_refclk_cnt;
};

struct read_counters_work {
	struct work_struct work;
	struct tegra_cpu_ctr c;
};

static struct workqueue_struct *read_counters_wq;

static void get_cpu_cluster(void *cluster)
{
	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;

	*((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}

/*
 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
 * The register provides frequency feedback information to
 * determine the average actual frequency a core has run at over
 * a period of time.
 *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
 *	[63:32] Core clock counter: counts on every core clock cycle
 *			where the core is architecturally clocking
 */
static u64 read_freq_feedback(void)
{
	u64 val = 0;

	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );

	return val;
}

static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
				   *nltbl, u16 ndiv)
{
	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
}

static void tegra_read_counters(struct work_struct *work)
{
	struct read_counters_work *read_counters_work;
	struct tegra_cpu_ctr *c;
	u64 val;

	/*
	 * ref_clk_counter(32 bit counter) runs on constant clk,
	 * pll_p(408MHz).
	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
	 *              = 10526880 usec = 10.527 sec to overflow
	 *
	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
	 * freq of cluster. Assuming max cluster clock ~2000MHz,
	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
	 *              = ~2.147 sec to overflow
	 */
	read_counters_work = container_of(work, struct read_counters_work,
					  work);
	c = &read_counters_work->c;

	val = read_freq_feedback();
	c->last_refclk_cnt = lower_32_bits(val);
	c->last_coreclk_cnt = upper_32_bits(val);
	udelay(US_DELAY);
	val = read_freq_feedback();
	c->refclk_cnt = lower_32_bits(val);
	c->coreclk_cnt = upper_32_bits(val);
}

/*
 * Return instantaneous cpu speed
 * Instantaneous freq is calculated as -
 * -Takes sample on every query of getting the freq.
 *	- Read core and ref clock counters;
 *	- Delay for X us
 *	- Read above cycle counters again
 *	- Calculates freq by subtracting current and previous counters
 *	  divided by the delay time or eqv. of ref_clk_counter in delta time
 *	- Return Kcycles/second, freq in KHz
 *
 *	delta time period = x sec
 *			  = delta ref_clk_counter / (408 * 10^6) sec
 *	freq in Hz = cycles/sec
 *		   = (delta cycles / x sec
 *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
 *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
 *
 * @cpu - logical cpu whose freq to be updated
 * Returns freq in KHz on success, 0 if cpu is offline
 */
static unsigned int tegra194_calculate_speed(u32 cpu)
{
	struct read_counters_work read_counters_work;
	struct tegra_cpu_ctr c;
	u32 delta_refcnt;
	u32 delta_ccnt;
	u32 rate_mhz;

	/*
	 * udelay() is required to reconstruct cpu frequency over an
	 * observation window. Using workqueue to call udelay() with
	 * interrupts enabled.
	 */
	read_counters_work.c.cpu = cpu;
	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
	flush_work(&read_counters_work.work);
	c = read_counters_work.c;

	if (c.coreclk_cnt < c.last_coreclk_cnt)
		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
	else
		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
	if (!delta_ccnt)
		return 0;

	/* ref clock is 32 bits */
	if (c.refclk_cnt < c.last_refclk_cnt)
		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
	else
		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
	if (!delta_refcnt) {
		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
		return 0;
	}
	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;

	return (rate_mhz * KHZ); /* in KHz */
}

static void get_cpu_ndiv(void *ndiv)
{
	u64 ndiv_val;

	asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );

	*(u64 *)ndiv = ndiv_val;
}

static void set_cpu_ndiv(void *data)
{
	struct cpufreq_frequency_table *tbl = data;
	u64 ndiv_val = (u64)tbl->driver_data;

	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
}

static unsigned int tegra194_get_speed(u32 cpu)
{
	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
	struct cpufreq_frequency_table *pos;
	unsigned int rate;
	u64 ndiv;
	int ret;
	u32 cl;

	smp_call_function_single(cpu, get_cpu_cluster, &cl, true);

	/* reconstruct actual cpu freq using counters */
	rate = tegra194_calculate_speed(cpu);

	/* get last written ndiv value */
	ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true);
	if (WARN_ON_ONCE(ret))
		return rate;

	/*
	 * If the reconstructed frequency has acceptable delta from
	 * the last written value, then return freq corresponding
	 * to the last written ndiv value from freq_table. This is
	 * done to return consistent value.
	 */
	cpufreq_for_each_valid_entry(pos, data->tables[cl]) {
		if (pos->driver_data != ndiv)
			continue;

		if (abs(pos->frequency - rate) > 115200) {
			pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
				cpu, rate, pos->frequency, ndiv);
		} else {
			rate = pos->frequency;
		}
		break;
	}
	return rate;
}

static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
{
	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
	u32 cpu;
	u32 cl;

	smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true);

	if (cl >= data->num_clusters)
		return -EINVAL;

	/* set same policy for all cpus in a cluster */
	for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
		cpumask_set_cpu(cpu, policy->cpus);

	policy->freq_table = data->tables[cl];
	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;

	return 0;
}

static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
				       unsigned int index)
{
	struct cpufreq_frequency_table *tbl = policy->freq_table + index;

	/*
	 * Each core writes frequency in per core register. Then both cores
	 * in a cluster run at same frequency which is the maximum frequency
	 * request out of the values requested by both cores in that cluster.
	 */
	on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);

	return 0;
}

static struct cpufreq_driver tegra194_cpufreq_driver = {
	.name = "tegra194",
	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
	.verify = cpufreq_generic_frequency_table_verify,
	.target_index = tegra194_cpufreq_set_target,
	.get = tegra194_get_speed,
	.init = tegra194_cpufreq_init,
	.attr = cpufreq_generic_attr,
};

static void tegra194_cpufreq_free_resources(void)
{
	destroy_workqueue(read_counters_wq);
}

static struct cpufreq_frequency_table *
init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
		unsigned int cluster_id)
{
	struct cpufreq_frequency_table *freq_table;
	struct mrq_cpu_ndiv_limits_response resp;
	unsigned int num_freqs, ndiv, delta_ndiv;
	struct mrq_cpu_ndiv_limits_request req;
	struct tegra_bpmp_message msg;
	u16 freq_table_step_size;
	int err, index;

	memset(&req, 0, sizeof(req));
	req.cluster_id = cluster_id;

	memset(&msg, 0, sizeof(msg));
	msg.mrq = MRQ_CPU_NDIV_LIMITS;
	msg.tx.data = &req;
	msg.tx.size = sizeof(req);
	msg.rx.data = &resp;
	msg.rx.size = sizeof(resp);

	err = tegra_bpmp_transfer(bpmp, &msg);
	if (err)
		return ERR_PTR(err);

	/*
	 * Make sure frequency table step is a multiple of mdiv to match
	 * vhint table granularity.
	 */
	freq_table_step_size = resp.mdiv *
			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);

	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
		cluster_id, freq_table_step_size);

	delta_ndiv = resp.ndiv_max - resp.ndiv_min;

	if (unlikely(delta_ndiv == 0)) {
		num_freqs = 1;
	} else {
		/* We store both ndiv_min and ndiv_max hence the +1 */
		num_freqs = delta_ndiv / freq_table_step_size + 1;
	}

	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;

	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
				  sizeof(*freq_table), GFP_KERNEL);
	if (!freq_table)
		return ERR_PTR(-ENOMEM);

	for (index = 0, ndiv = resp.ndiv_min;
			ndiv < resp.ndiv_max;
			index++, ndiv += freq_table_step_size) {
		freq_table[index].driver_data = ndiv;
		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
	}

	freq_table[index].driver_data = resp.ndiv_max;
	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
	freq_table[index].frequency = CPUFREQ_TABLE_END;

	return freq_table;
}

static int tegra194_cpufreq_probe(struct platform_device *pdev)
{
	struct tegra194_cpufreq_data *data;
	struct tegra_bpmp *bpmp;
	int err, i;

	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->num_clusters = MAX_CLUSTERS;
	data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
				    sizeof(*data->tables), GFP_KERNEL);
	if (!data->tables)
		return -ENOMEM;

	platform_set_drvdata(pdev, data);

	bpmp = tegra_bpmp_get(&pdev->dev);
	if (IS_ERR(bpmp))
		return PTR_ERR(bpmp);

	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
	if (!read_counters_wq) {
		dev_err(&pdev->dev, "fail to create_workqueue\n");
		err = -EINVAL;
		goto put_bpmp;
	}

	for (i = 0; i < data->num_clusters; i++) {
		data->tables[i] = init_freq_table(pdev, bpmp, i);
		if (IS_ERR(data->tables[i])) {
			err = PTR_ERR(data->tables[i]);
			goto err_free_res;
		}
	}

	tegra194_cpufreq_driver.driver_data = data;

	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
	if (!err)
		goto put_bpmp;

err_free_res:
	tegra194_cpufreq_free_resources();
put_bpmp:
	tegra_bpmp_put(bpmp);
	return err;
}

static int tegra194_cpufreq_remove(struct platform_device *pdev)
{
	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
	tegra194_cpufreq_free_resources();

	return 0;
}

static const struct of_device_id tegra194_cpufreq_of_match[] = {
	{ .compatible = "nvidia,tegra194-ccplex", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);

static struct platform_driver tegra194_ccplex_driver = {
	.driver = {
		.name = "tegra194-cpufreq",
		.of_match_table = tegra194_cpufreq_of_match,
	},
	.probe = tegra194_cpufreq_probe,
	.remove = tegra194_cpufreq_remove,
};
module_platform_driver(tegra194_ccplex_driver);

MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
MODULE_LICENSE("GPL v2");