cpm1.c 18.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/*
 * General Purpose functions for the global management of the
 * Communication Processor Module.
 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
 *
 * In addition to the individual control of the communication
 * channels, there are a few functions that globally affect the
 * communication processor.
 *
 * Buffer descriptors must be allocated from the dual ported memory
 * space.  The allocator for that is here.  When the communication
 * process is reset, we reclaim the memory available.  There is
 * currently no deallocator for this memory.
 * The amount of space available is platform dependent.  On the
 * MBX, the EPPC software loads additional microcode into the
 * communication processor, and uses some of the DP ram for this
 * purpose.  Current, the first 512 bytes and the last 256 bytes of
 * memory are used.  Right now I am conservative and only use the
 * memory that can never be used for microcode.  If there are
 * applications that require more DP ram, we can expand the boundaries
 * but then we have to be careful of any downloaded microcode.
 */
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/8xx_immap.h>
#include <asm/cpm1.h>
#include <asm/io.h>
#include <asm/tlbflush.h>
#include <asm/rheap.h>
#include <asm/prom.h>
#include <asm/cpm.h>

#include <asm/fs_pd.h>

#ifdef CONFIG_8xx_GPIO
#include <linux/of_gpio.h>
#endif

#define CPM_MAP_SIZE    (0x4000)

cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
immap_t __iomem *mpc8xx_immr;
static cpic8xx_t __iomem *cpic_reg;

static struct irq_host *cpm_pic_host;

static void cpm_mask_irq(struct irq_data *d)
{
	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);

	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
}

static void cpm_unmask_irq(struct irq_data *d)
{
	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);

	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
}

static void cpm_end_irq(struct irq_data *d)
{
	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);

	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
}

static struct irq_chip cpm_pic = {
	.name = "CPM PIC",
	.irq_mask = cpm_mask_irq,
	.irq_unmask = cpm_unmask_irq,
	.irq_eoi = cpm_end_irq,
};

int cpm_get_irq(void)
{
	int cpm_vec;

	/* Get the vector by setting the ACK bit and then reading
	 * the register.
	 */
	out_be16(&cpic_reg->cpic_civr, 1);
	cpm_vec = in_be16(&cpic_reg->cpic_civr);
	cpm_vec >>= 11;

	return irq_linear_revmap(cpm_pic_host, cpm_vec);
}

static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
			  irq_hw_number_t hw)
{
	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);

	irq_set_status_flags(virq, IRQ_LEVEL);
	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
	return 0;
}

/* The CPM can generate the error interrupt when there is a race condition
 * between generating and masking interrupts.  All we have to do is ACK it
 * and return.  This is a no-op function so we don't need any special
 * tests in the interrupt handler.
 */
static irqreturn_t cpm_error_interrupt(int irq, void *dev)
{
	return IRQ_HANDLED;
}

static struct irqaction cpm_error_irqaction = {
	.handler = cpm_error_interrupt,
	.name = "error",
};

static struct irq_host_ops cpm_pic_host_ops = {
	.map = cpm_pic_host_map,
};

unsigned int cpm_pic_init(void)
{
	struct device_node *np = NULL;
	struct resource res;
	unsigned int sirq = NO_IRQ, hwirq, eirq;
	int ret;

	pr_debug("cpm_pic_init\n");

	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
	if (np == NULL)
		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
	if (np == NULL) {
		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
		return sirq;
	}

	ret = of_address_to_resource(np, 0, &res);
	if (ret)
		goto end;

	cpic_reg = ioremap(res.start, resource_size(&res));
	if (cpic_reg == NULL)
		goto end;

	sirq = irq_of_parse_and_map(np, 0);
	if (sirq == NO_IRQ)
		goto end;

	/* Initialize the CPM interrupt controller. */
	hwirq = (unsigned int)virq_to_hw(sirq);
	out_be32(&cpic_reg->cpic_cicr,
	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
		((hwirq/2) << 13) | CICR_HP_MASK);

	out_be32(&cpic_reg->cpic_cimr, 0);

	cpm_pic_host = irq_alloc_host(np, IRQ_HOST_MAP_LINEAR,
				      64, &cpm_pic_host_ops, 64);
	if (cpm_pic_host == NULL) {
		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
		sirq = NO_IRQ;
		goto end;
	}

	/* Install our own error handler. */
	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
	if (np == NULL)
		np = of_find_node_by_type(NULL, "cpm");
	if (np == NULL) {
		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
		goto end;
	}

	eirq = irq_of_parse_and_map(np, 0);
	if (eirq == NO_IRQ)
		goto end;

	if (setup_irq(eirq, &cpm_error_irqaction))
		printk(KERN_ERR "Could not allocate CPM error IRQ!");

	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);

end:
	of_node_put(np);
	return sirq;
}

void __init cpm_reset(void)
{
	sysconf8xx_t __iomem *siu_conf;

	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
	if (!mpc8xx_immr) {
		printk(KERN_CRIT "Could not map IMMR\n");
		return;
	}

	cpmp = &mpc8xx_immr->im_cpm;

#ifndef CONFIG_PPC_EARLY_DEBUG_CPM
	/* Perform a reset.
	*/
	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);

	/* Wait for it.
	*/
	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
#endif

#ifdef CONFIG_UCODE_PATCH
	cpm_load_patch(cpmp);
#endif

	/* Set SDMA Bus Request priority 5.
	 * On 860T, this also enables FEC priority 6.  I am not sure
	 * this is what we really want for some applications, but the
	 * manual recommends it.
	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
	 */
	siu_conf = immr_map(im_siu_conf);
	out_be32(&siu_conf->sc_sdcr, 1);
	immr_unmap(siu_conf);

	cpm_muram_init();
}

static DEFINE_SPINLOCK(cmd_lock);

#define MAX_CR_CMD_LOOPS        10000

int cpm_command(u32 command, u8 opcode)
{
	int i, ret;
	unsigned long flags;

	if (command & 0xffffff0f)
		return -EINVAL;

	spin_lock_irqsave(&cmd_lock, flags);

	ret = 0;
	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
			goto out;

	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
	ret = -EIO;
out:
	spin_unlock_irqrestore(&cmd_lock, flags);
	return ret;
}
EXPORT_SYMBOL(cpm_command);

/* Set a baud rate generator.  This needs lots of work.  There are
 * four BRGs, any of which can be wired to any channel.
 * The internal baud rate clock is the system clock divided by 16.
 * This assumes the baudrate is 16x oversampled by the uart.
 */
#define BRG_INT_CLK		(get_brgfreq())
#define BRG_UART_CLK		(BRG_INT_CLK/16)
#define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)

void
cpm_setbrg(uint brg, uint rate)
{
	u32 __iomem *bp;

	/* This is good enough to get SMCs running.....
	*/
	bp = &cpmp->cp_brgc1;
	bp += brg;
	/* The BRG has a 12-bit counter.  For really slow baud rates (or
	 * really fast processors), we may have to further divide by 16.
	 */
	if (((BRG_UART_CLK / rate) - 1) < 4096)
		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
	else
		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
			      CPM_BRG_EN | CPM_BRG_DIV16);
}

struct cpm_ioport16 {
	__be16 dir, par, odr_sor, dat, intr;
	__be16 res[3];
};

struct cpm_ioport32b {
	__be32 dir, par, odr, dat;
};

struct cpm_ioport32e {
	__be32 dir, par, sor, odr, dat;
};

static void cpm1_set_pin32(int port, int pin, int flags)
{
	struct cpm_ioport32e __iomem *iop;
	pin = 1 << (31 - pin);

	if (port == CPM_PORTB)
		iop = (struct cpm_ioport32e __iomem *)
		      &mpc8xx_immr->im_cpm.cp_pbdir;
	else
		iop = (struct cpm_ioport32e __iomem *)
		      &mpc8xx_immr->im_cpm.cp_pedir;

	if (flags & CPM_PIN_OUTPUT)
		setbits32(&iop->dir, pin);
	else
		clrbits32(&iop->dir, pin);

	if (!(flags & CPM_PIN_GPIO))
		setbits32(&iop->par, pin);
	else
		clrbits32(&iop->par, pin);

	if (port == CPM_PORTB) {
		if (flags & CPM_PIN_OPENDRAIN)
			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
		else
			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
	}

	if (port == CPM_PORTE) {
		if (flags & CPM_PIN_SECONDARY)
			setbits32(&iop->sor, pin);
		else
			clrbits32(&iop->sor, pin);

		if (flags & CPM_PIN_OPENDRAIN)
			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
		else
			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
	}
}

static void cpm1_set_pin16(int port, int pin, int flags)
{
	struct cpm_ioport16 __iomem *iop =
		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;

	pin = 1 << (15 - pin);

	if (port != 0)
		iop += port - 1;

	if (flags & CPM_PIN_OUTPUT)
		setbits16(&iop->dir, pin);
	else
		clrbits16(&iop->dir, pin);

	if (!(flags & CPM_PIN_GPIO))
		setbits16(&iop->par, pin);
	else
		clrbits16(&iop->par, pin);

	if (port == CPM_PORTA) {
		if (flags & CPM_PIN_OPENDRAIN)
			setbits16(&iop->odr_sor, pin);
		else
			clrbits16(&iop->odr_sor, pin);
	}
	if (port == CPM_PORTC) {
		if (flags & CPM_PIN_SECONDARY)
			setbits16(&iop->odr_sor, pin);
		else
			clrbits16(&iop->odr_sor, pin);
	}
}

void cpm1_set_pin(enum cpm_port port, int pin, int flags)
{
	if (port == CPM_PORTB || port == CPM_PORTE)
		cpm1_set_pin32(port, pin, flags);
	else
		cpm1_set_pin16(port, pin, flags);
}

int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
{
	int shift;
	int i, bits = 0;
	u32 __iomem *reg;
	u32 mask = 7;

	u8 clk_map[][3] = {
		{CPM_CLK_SCC1, CPM_BRG1, 0},
		{CPM_CLK_SCC1, CPM_BRG2, 1},
		{CPM_CLK_SCC1, CPM_BRG3, 2},
		{CPM_CLK_SCC1, CPM_BRG4, 3},
		{CPM_CLK_SCC1, CPM_CLK1, 4},
		{CPM_CLK_SCC1, CPM_CLK2, 5},
		{CPM_CLK_SCC1, CPM_CLK3, 6},
		{CPM_CLK_SCC1, CPM_CLK4, 7},

		{CPM_CLK_SCC2, CPM_BRG1, 0},
		{CPM_CLK_SCC2, CPM_BRG2, 1},
		{CPM_CLK_SCC2, CPM_BRG3, 2},
		{CPM_CLK_SCC2, CPM_BRG4, 3},
		{CPM_CLK_SCC2, CPM_CLK1, 4},
		{CPM_CLK_SCC2, CPM_CLK2, 5},
		{CPM_CLK_SCC2, CPM_CLK3, 6},
		{CPM_CLK_SCC2, CPM_CLK4, 7},

		{CPM_CLK_SCC3, CPM_BRG1, 0},
		{CPM_CLK_SCC3, CPM_BRG2, 1},
		{CPM_CLK_SCC3, CPM_BRG3, 2},
		{CPM_CLK_SCC3, CPM_BRG4, 3},
		{CPM_CLK_SCC3, CPM_CLK5, 4},
		{CPM_CLK_SCC3, CPM_CLK6, 5},
		{CPM_CLK_SCC3, CPM_CLK7, 6},
		{CPM_CLK_SCC3, CPM_CLK8, 7},

		{CPM_CLK_SCC4, CPM_BRG1, 0},
		{CPM_CLK_SCC4, CPM_BRG2, 1},
		{CPM_CLK_SCC4, CPM_BRG3, 2},
		{CPM_CLK_SCC4, CPM_BRG4, 3},
		{CPM_CLK_SCC4, CPM_CLK5, 4},
		{CPM_CLK_SCC4, CPM_CLK6, 5},
		{CPM_CLK_SCC4, CPM_CLK7, 6},
		{CPM_CLK_SCC4, CPM_CLK8, 7},

		{CPM_CLK_SMC1, CPM_BRG1, 0},
		{CPM_CLK_SMC1, CPM_BRG2, 1},
		{CPM_CLK_SMC1, CPM_BRG3, 2},
		{CPM_CLK_SMC1, CPM_BRG4, 3},
		{CPM_CLK_SMC1, CPM_CLK1, 4},
		{CPM_CLK_SMC1, CPM_CLK2, 5},
		{CPM_CLK_SMC1, CPM_CLK3, 6},
		{CPM_CLK_SMC1, CPM_CLK4, 7},

		{CPM_CLK_SMC2, CPM_BRG1, 0},
		{CPM_CLK_SMC2, CPM_BRG2, 1},
		{CPM_CLK_SMC2, CPM_BRG3, 2},
		{CPM_CLK_SMC2, CPM_BRG4, 3},
		{CPM_CLK_SMC2, CPM_CLK5, 4},
		{CPM_CLK_SMC2, CPM_CLK6, 5},
		{CPM_CLK_SMC2, CPM_CLK7, 6},
		{CPM_CLK_SMC2, CPM_CLK8, 7},
	};

	switch (target) {
	case CPM_CLK_SCC1:
		reg = &mpc8xx_immr->im_cpm.cp_sicr;
		shift = 0;
		break;

	case CPM_CLK_SCC2:
		reg = &mpc8xx_immr->im_cpm.cp_sicr;
		shift = 8;
		break;

	case CPM_CLK_SCC3:
		reg = &mpc8xx_immr->im_cpm.cp_sicr;
		shift = 16;
		break;

	case CPM_CLK_SCC4:
		reg = &mpc8xx_immr->im_cpm.cp_sicr;
		shift = 24;
		break;

	case CPM_CLK_SMC1:
		reg = &mpc8xx_immr->im_cpm.cp_simode;
		shift = 12;
		break;

	case CPM_CLK_SMC2:
		reg = &mpc8xx_immr->im_cpm.cp_simode;
		shift = 28;
		break;

	default:
		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
			bits = clk_map[i][2];
			break;
		}
	}

	if (i == ARRAY_SIZE(clk_map)) {
		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
		return -EINVAL;
	}

	bits <<= shift;
	mask <<= shift;

	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
		if (mode == CPM_CLK_RTX) {
			bits |= bits << 3;
			mask |= mask << 3;
		} else if (mode == CPM_CLK_RX) {
			bits <<= 3;
			mask <<= 3;
		}
	}

	out_be32(reg, (in_be32(reg) & ~mask) | bits);

	return 0;
}

/*
 * GPIO LIB API implementation
 */
#ifdef CONFIG_8xx_GPIO

struct cpm1_gpio16_chip {
	struct of_mm_gpio_chip mm_gc;
	spinlock_t lock;

	/* shadowed data register to clear/set bits safely */
	u16 cpdata;
};

static inline struct cpm1_gpio16_chip *
to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
{
	return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
}

static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
{
	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
	struct cpm_ioport16 __iomem *iop = mm_gc->regs;

	cpm1_gc->cpdata = in_be16(&iop->dat);
}

static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
	u16 pin_mask;

	pin_mask = 1 << (15 - gpio);

	return !!(in_be16(&iop->dat) & pin_mask);
}

static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
	int value)
{
	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
	struct cpm_ioport16 __iomem *iop = mm_gc->regs;

	if (value)
		cpm1_gc->cpdata |= pin_mask;
	else
		cpm1_gc->cpdata &= ~pin_mask;

	out_be16(&iop->dat, cpm1_gc->cpdata);
}

static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
	unsigned long flags;
	u16 pin_mask = 1 << (15 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	__cpm1_gpio16_set(mm_gc, pin_mask, value);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
}

static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
	unsigned long flags;
	u16 pin_mask = 1 << (15 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	setbits16(&iop->dir, pin_mask);
	__cpm1_gpio16_set(mm_gc, pin_mask, val);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);

	return 0;
}

static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
	unsigned long flags;
	u16 pin_mask = 1 << (15 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	clrbits16(&iop->dir, pin_mask);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);

	return 0;
}

int cpm1_gpiochip_add16(struct device_node *np)
{
	struct cpm1_gpio16_chip *cpm1_gc;
	struct of_mm_gpio_chip *mm_gc;
	struct gpio_chip *gc;

	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
	if (!cpm1_gc)
		return -ENOMEM;

	spin_lock_init(&cpm1_gc->lock);

	mm_gc = &cpm1_gc->mm_gc;
	gc = &mm_gc->gc;

	mm_gc->save_regs = cpm1_gpio16_save_regs;
	gc->ngpio = 16;
	gc->direction_input = cpm1_gpio16_dir_in;
	gc->direction_output = cpm1_gpio16_dir_out;
	gc->get = cpm1_gpio16_get;
	gc->set = cpm1_gpio16_set;

	return of_mm_gpiochip_add(np, mm_gc);
}

struct cpm1_gpio32_chip {
	struct of_mm_gpio_chip mm_gc;
	spinlock_t lock;

	/* shadowed data register to clear/set bits safely */
	u32 cpdata;
};

static inline struct cpm1_gpio32_chip *
to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
{
	return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
}

static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
{
	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
	struct cpm_ioport32b __iomem *iop = mm_gc->regs;

	cpm1_gc->cpdata = in_be32(&iop->dat);
}

static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
	u32 pin_mask;

	pin_mask = 1 << (31 - gpio);

	return !!(in_be32(&iop->dat) & pin_mask);
}

static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
	int value)
{
	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
	struct cpm_ioport32b __iomem *iop = mm_gc->regs;

	if (value)
		cpm1_gc->cpdata |= pin_mask;
	else
		cpm1_gc->cpdata &= ~pin_mask;

	out_be32(&iop->dat, cpm1_gc->cpdata);
}

static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	__cpm1_gpio32_set(mm_gc, pin_mask, value);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
}

static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	setbits32(&iop->dir, pin_mask);
	__cpm1_gpio32_set(mm_gc, pin_mask, val);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);

	return 0;
}

static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
{
	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
	struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
	unsigned long flags;
	u32 pin_mask = 1 << (31 - gpio);

	spin_lock_irqsave(&cpm1_gc->lock, flags);

	clrbits32(&iop->dir, pin_mask);

	spin_unlock_irqrestore(&cpm1_gc->lock, flags);

	return 0;
}

int cpm1_gpiochip_add32(struct device_node *np)
{
	struct cpm1_gpio32_chip *cpm1_gc;
	struct of_mm_gpio_chip *mm_gc;
	struct gpio_chip *gc;

	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
	if (!cpm1_gc)
		return -ENOMEM;

	spin_lock_init(&cpm1_gc->lock);

	mm_gc = &cpm1_gc->mm_gc;
	gc = &mm_gc->gc;

	mm_gc->save_regs = cpm1_gpio32_save_regs;
	gc->ngpio = 32;
	gc->direction_input = cpm1_gpio32_dir_in;
	gc->direction_output = cpm1_gpio32_dir_out;
	gc->get = cpm1_gpio32_get;
	gc->set = cpm1_gpio32_set;

	return of_mm_gpiochip_add(np, mm_gc);
}

static int cpm_init_par_io(void)
{
	struct device_node *np;

	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
		cpm1_gpiochip_add16(np);

	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
		cpm1_gpiochip_add32(np);

	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
		cpm1_gpiochip_add16(np);

	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
		cpm1_gpiochip_add16(np);

	/* Port E uses CPM2 layout */
	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
		cpm2_gpiochip_add32(np);
	return 0;
}
arch_initcall(cpm_init_par_io);

#endif /* CONFIG_8xx_GPIO */