sha1_ssse3_asm.S 11.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * This is a SIMD SHA-1 implementation. It requires the Intel(R) Supplemental
 * SSE3 instruction set extensions introduced in Intel Core Microarchitecture
 * processors. CPUs supporting Intel(R) AVX extensions will get an additional
 * boost.
 *
 * This work was inspired by the vectorized implementation of Dean Gaudet.
 * Additional information on it can be found at:
 *    http://www.arctic.org/~dean/crypto/sha1.html
 *
 * It was improved upon with more efficient vectorization of the message
 * scheduling. This implementation has also been optimized for all current and
 * several future generations of Intel CPUs.
 *
 * See this article for more information about the implementation details:
 *   http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/
 *
 * Copyright (C) 2010, Intel Corp.
 *   Authors: Maxim Locktyukhin <maxim.locktyukhin@intel.com>
 *            Ronen Zohar <ronen.zohar@intel.com>
 *
 * Converted to AT&T syntax and adapted for inclusion in the Linux kernel:
 *   Author: Mathias Krause <minipli@googlemail.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#define CTX	%rdi	// arg1
#define BUF	%rsi	// arg2
#define CNT	%rdx	// arg3

#define REG_A	%ecx
#define REG_B	%esi
#define REG_C	%edi
#define REG_D	%ebp
#define REG_E	%edx

#define REG_T1	%eax
#define REG_T2	%ebx

#define K_BASE		%r8
#define HASH_PTR	%r9
#define BUFFER_PTR	%r10
#define BUFFER_END	%r11

#define W_TMP1	%xmm0
#define W_TMP2	%xmm9

#define W0	%xmm1
#define W4	%xmm2
#define W8	%xmm3
#define W12	%xmm4
#define W16	%xmm5
#define W20	%xmm6
#define W24	%xmm7
#define W28	%xmm8

#define XMM_SHUFB_BSWAP	%xmm10

/* we keep window of 64 w[i]+K pre-calculated values in a circular buffer */
#define WK(t)	(((t) & 15) * 4)(%rsp)
#define W_PRECALC_AHEAD	16

/*
 * This macro implements the SHA-1 function's body for single 64-byte block
 * param: function's name
 */
.macro SHA1_VECTOR_ASM  name
	.global	\name
	.type	\name, @function
	.align 32
\name:
	push	%rbx
	push	%rbp
	push	%r12

	mov	%rsp, %r12
	sub	$64, %rsp		# allocate workspace
	and	$~15, %rsp		# align stack

	mov	CTX, HASH_PTR
	mov	BUF, BUFFER_PTR

	shl	$6, CNT			# multiply by 64
	add	BUF, CNT
	mov	CNT, BUFFER_END

	lea	K_XMM_AR(%rip), K_BASE
	xmm_mov	BSWAP_SHUFB_CTL(%rip), XMM_SHUFB_BSWAP

	SHA1_PIPELINED_MAIN_BODY

	# cleanup workspace
	mov	$8, %ecx
	mov	%rsp, %rdi
	xor	%rax, %rax
	rep stosq

	mov	%r12, %rsp		# deallocate workspace

	pop	%r12
	pop	%rbp
	pop	%rbx
	ret

	.size	\name, .-\name
.endm

/*
 * This macro implements 80 rounds of SHA-1 for one 64-byte block
 */
.macro SHA1_PIPELINED_MAIN_BODY
	INIT_REGALLOC

	mov	  (HASH_PTR), A
	mov	 4(HASH_PTR), B
	mov	 8(HASH_PTR), C
	mov	12(HASH_PTR), D
	mov	16(HASH_PTR), E

  .set i, 0
  .rept W_PRECALC_AHEAD
	W_PRECALC i
    .set i, (i+1)
  .endr

.align 4
1:
	RR F1,A,B,C,D,E,0
	RR F1,D,E,A,B,C,2
	RR F1,B,C,D,E,A,4
	RR F1,E,A,B,C,D,6
	RR F1,C,D,E,A,B,8

	RR F1,A,B,C,D,E,10
	RR F1,D,E,A,B,C,12
	RR F1,B,C,D,E,A,14
	RR F1,E,A,B,C,D,16
	RR F1,C,D,E,A,B,18

	RR F2,A,B,C,D,E,20
	RR F2,D,E,A,B,C,22
	RR F2,B,C,D,E,A,24
	RR F2,E,A,B,C,D,26
	RR F2,C,D,E,A,B,28

	RR F2,A,B,C,D,E,30
	RR F2,D,E,A,B,C,32
	RR F2,B,C,D,E,A,34
	RR F2,E,A,B,C,D,36
	RR F2,C,D,E,A,B,38

	RR F3,A,B,C,D,E,40
	RR F3,D,E,A,B,C,42
	RR F3,B,C,D,E,A,44
	RR F3,E,A,B,C,D,46
	RR F3,C,D,E,A,B,48

	RR F3,A,B,C,D,E,50
	RR F3,D,E,A,B,C,52
	RR F3,B,C,D,E,A,54
	RR F3,E,A,B,C,D,56
	RR F3,C,D,E,A,B,58

	add	$64, BUFFER_PTR		# move to the next 64-byte block
	cmp	BUFFER_END, BUFFER_PTR	# if the current is the last one use
	cmovae	K_BASE, BUFFER_PTR	# dummy source to avoid buffer overrun

	RR F4,A,B,C,D,E,60
	RR F4,D,E,A,B,C,62
	RR F4,B,C,D,E,A,64
	RR F4,E,A,B,C,D,66
	RR F4,C,D,E,A,B,68

	RR F4,A,B,C,D,E,70
	RR F4,D,E,A,B,C,72
	RR F4,B,C,D,E,A,74
	RR F4,E,A,B,C,D,76
	RR F4,C,D,E,A,B,78

	UPDATE_HASH   (HASH_PTR), A
	UPDATE_HASH  4(HASH_PTR), B
	UPDATE_HASH  8(HASH_PTR), C
	UPDATE_HASH 12(HASH_PTR), D
	UPDATE_HASH 16(HASH_PTR), E

	RESTORE_RENAMED_REGS
	cmp	K_BASE, BUFFER_PTR	# K_BASE means, we reached the end
	jne	1b
.endm

.macro INIT_REGALLOC
  .set A, REG_A
  .set B, REG_B
  .set C, REG_C
  .set D, REG_D
  .set E, REG_E
  .set T1, REG_T1
  .set T2, REG_T2
.endm

.macro RESTORE_RENAMED_REGS
	# order is important (REG_C is where it should be)
	mov	B, REG_B
	mov	D, REG_D
	mov	A, REG_A
	mov	E, REG_E
.endm

.macro SWAP_REG_NAMES  a, b
  .set _T, \a
  .set \a, \b
  .set \b, _T
.endm

.macro F1  b, c, d
	mov	\c, T1
	SWAP_REG_NAMES \c, T1
	xor	\d, T1
	and	\b, T1
	xor	\d, T1
.endm

.macro F2  b, c, d
	mov	\d, T1
	SWAP_REG_NAMES \d, T1
	xor	\c, T1
	xor	\b, T1
.endm

.macro F3  b, c ,d
	mov	\c, T1
	SWAP_REG_NAMES \c, T1
	mov	\b, T2
	or	\b, T1
	and	\c, T2
	and	\d, T1
	or	T2, T1
.endm

.macro F4  b, c, d
	F2 \b, \c, \d
.endm

.macro UPDATE_HASH  hash, val
	add	\hash, \val
	mov	\val, \hash
.endm

/*
 * RR does two rounds of SHA-1 back to back with W[] pre-calc
 *   t1 = F(b, c, d);   e += w(i)
 *   e += t1;           b <<= 30;   d  += w(i+1);
 *   t1 = F(a, b, c);
 *   d += t1;           a <<= 5;
 *   e += a;
 *   t1 = e;            a >>= 7;
 *   t1 <<= 5;
 *   d += t1;
 */
.macro RR  F, a, b, c, d, e, round
	add	WK(\round), \e
	\F   \b, \c, \d		# t1 = F(b, c, d);
	W_PRECALC (\round + W_PRECALC_AHEAD)
	rol	$30, \b
	add	T1, \e
	add	WK(\round + 1), \d

	\F   \a, \b, \c
	W_PRECALC (\round + W_PRECALC_AHEAD + 1)
	rol	$5, \a
	add	\a, \e
	add	T1, \d
	ror	$7, \a		# (a <<r 5) >>r 7) => a <<r 30)

	mov	\e, T1
	SWAP_REG_NAMES \e, T1

	rol	$5, T1
	add	T1, \d

	# write:  \a, \b
	# rotate: \a<=\d, \b<=\e, \c<=\a, \d<=\b, \e<=\c
.endm

.macro W_PRECALC  r
  .set i, \r

  .if (i < 20)
    .set K_XMM, 0
  .elseif (i < 40)
    .set K_XMM, 16
  .elseif (i < 60)
    .set K_XMM, 32
  .elseif (i < 80)
    .set K_XMM, 48
  .endif

  .if ((i < 16) || ((i >= 80) && (i < (80 + W_PRECALC_AHEAD))))
    .set i, ((\r) % 80)	    # pre-compute for the next iteration
    .if (i == 0)
	W_PRECALC_RESET
    .endif
	W_PRECALC_00_15
  .elseif (i<32)
	W_PRECALC_16_31
  .elseif (i < 80)   // rounds 32-79
	W_PRECALC_32_79
  .endif
.endm

.macro W_PRECALC_RESET
  .set W,          W0
  .set W_minus_04, W4
  .set W_minus_08, W8
  .set W_minus_12, W12
  .set W_minus_16, W16
  .set W_minus_20, W20
  .set W_minus_24, W24
  .set W_minus_28, W28
  .set W_minus_32, W
.endm

.macro W_PRECALC_ROTATE
  .set W_minus_32, W_minus_28
  .set W_minus_28, W_minus_24
  .set W_minus_24, W_minus_20
  .set W_minus_20, W_minus_16
  .set W_minus_16, W_minus_12
  .set W_minus_12, W_minus_08
  .set W_minus_08, W_minus_04
  .set W_minus_04, W
  .set W,          W_minus_32
.endm

.macro W_PRECALC_SSSE3

.macro W_PRECALC_00_15
	W_PRECALC_00_15_SSSE3
.endm
.macro W_PRECALC_16_31
	W_PRECALC_16_31_SSSE3
.endm
.macro W_PRECALC_32_79
	W_PRECALC_32_79_SSSE3
.endm

/* message scheduling pre-compute for rounds 0-15 */
.macro W_PRECALC_00_15_SSSE3
  .if ((i & 3) == 0)
	movdqu	(i*4)(BUFFER_PTR), W_TMP1
  .elseif ((i & 3) == 1)
	pshufb	XMM_SHUFB_BSWAP, W_TMP1
	movdqa	W_TMP1, W
  .elseif ((i & 3) == 2)
	paddd	(K_BASE), W_TMP1
  .elseif ((i & 3) == 3)
	movdqa  W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

/* message scheduling pre-compute for rounds 16-31
 *
 * - calculating last 32 w[i] values in 8 XMM registers
 * - pre-calculate K+w[i] values and store to mem, for later load by ALU add
 *   instruction
 *
 * some "heavy-lifting" vectorization for rounds 16-31 due to w[i]->w[i-3]
 * dependency, but improves for 32-79
 */
.macro W_PRECALC_16_31_SSSE3
  # blended scheduling of vector and scalar instruction streams, one 4-wide
  # vector iteration / 4 scalar rounds
  .if ((i & 3) == 0)
	movdqa	W_minus_12, W
	palignr	$8, W_minus_16, W	# w[i-14]
	movdqa	W_minus_04, W_TMP1
	psrldq	$4, W_TMP1		# w[i-3]
	pxor	W_minus_08, W
  .elseif ((i & 3) == 1)
	pxor	W_minus_16, W_TMP1
	pxor	W_TMP1, W
	movdqa	W, W_TMP2
	movdqa	W, W_TMP1
	pslldq	$12, W_TMP2
  .elseif ((i & 3) == 2)
	psrld	$31, W
	pslld	$1, W_TMP1
	por	W, W_TMP1
	movdqa	W_TMP2, W
	psrld	$30, W_TMP2
	pslld	$2, W
  .elseif ((i & 3) == 3)
	pxor	W, W_TMP1
	pxor	W_TMP2, W_TMP1
	movdqa	W_TMP1, W
	paddd	K_XMM(K_BASE), W_TMP1
	movdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

/* message scheduling pre-compute for rounds 32-79
 *
 * in SHA-1 specification: w[i] = (w[i-3] ^ w[i-8]  ^ w[i-14] ^ w[i-16]) rol 1
 * instead we do equal:    w[i] = (w[i-6] ^ w[i-16] ^ w[i-28] ^ w[i-32]) rol 2
 * allows more efficient vectorization since w[i]=>w[i-3] dependency is broken
 */
.macro W_PRECALC_32_79_SSSE3
  .if ((i & 3) == 0)
	movdqa	W_minus_04, W_TMP1
	pxor	W_minus_28, W		# W is W_minus_32 before xor
	palignr	$8, W_minus_08, W_TMP1
  .elseif ((i & 3) == 1)
	pxor	W_minus_16, W
	pxor	W_TMP1, W
	movdqa	W, W_TMP1
  .elseif ((i & 3) == 2)
	psrld	$30, W
	pslld	$2, W_TMP1
	por	W, W_TMP1
  .elseif ((i & 3) == 3)
	movdqa	W_TMP1, W
	paddd	K_XMM(K_BASE), W_TMP1
	movdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.endm		// W_PRECALC_SSSE3


#define K1	0x5a827999
#define K2	0x6ed9eba1
#define K3	0x8f1bbcdc
#define K4	0xca62c1d6

.section .rodata
.align 16

K_XMM_AR:
	.long K1, K1, K1, K1
	.long K2, K2, K2, K2
	.long K3, K3, K3, K3
	.long K4, K4, K4, K4

BSWAP_SHUFB_CTL:
	.long 0x00010203
	.long 0x04050607
	.long 0x08090a0b
	.long 0x0c0d0e0f


.section .text

W_PRECALC_SSSE3
.macro xmm_mov a, b
	movdqu	\a,\b
.endm

/* SSSE3 optimized implementation:
 *  extern "C" void sha1_transform_ssse3(u32 *digest, const char *data, u32 *ws,
 *                                       unsigned int rounds);
 */
SHA1_VECTOR_ASM     sha1_transform_ssse3

#ifdef SHA1_ENABLE_AVX_SUPPORT

.macro W_PRECALC_AVX

.purgem W_PRECALC_00_15
.macro  W_PRECALC_00_15
    W_PRECALC_00_15_AVX
.endm
.purgem W_PRECALC_16_31
.macro  W_PRECALC_16_31
    W_PRECALC_16_31_AVX
.endm
.purgem W_PRECALC_32_79
.macro  W_PRECALC_32_79
    W_PRECALC_32_79_AVX
.endm

.macro W_PRECALC_00_15_AVX
  .if ((i & 3) == 0)
	vmovdqu	(i*4)(BUFFER_PTR), W_TMP1
  .elseif ((i & 3) == 1)
	vpshufb	XMM_SHUFB_BSWAP, W_TMP1, W
  .elseif ((i & 3) == 2)
	vpaddd	(K_BASE), W, W_TMP1
  .elseif ((i & 3) == 3)
	vmovdqa	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.macro W_PRECALC_16_31_AVX
  .if ((i & 3) == 0)
	vpalignr $8, W_minus_16, W_minus_12, W	# w[i-14]
	vpsrldq	$4, W_minus_04, W_TMP1		# w[i-3]
	vpxor	W_minus_08, W, W
	vpxor	W_minus_16, W_TMP1, W_TMP1
  .elseif ((i & 3) == 1)
	vpxor	W_TMP1, W, W
	vpslldq	$12, W, W_TMP2
	vpslld	$1, W, W_TMP1
  .elseif ((i & 3) == 2)
	vpsrld	$31, W, W
	vpor	W, W_TMP1, W_TMP1
	vpslld	$2, W_TMP2, W
	vpsrld	$30, W_TMP2, W_TMP2
  .elseif ((i & 3) == 3)
	vpxor	W, W_TMP1, W_TMP1
	vpxor	W_TMP2, W_TMP1, W
	vpaddd	K_XMM(K_BASE), W, W_TMP1
	vmovdqu	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.macro W_PRECALC_32_79_AVX
  .if ((i & 3) == 0)
	vpalignr $8, W_minus_08, W_minus_04, W_TMP1
	vpxor	W_minus_28, W, W		# W is W_minus_32 before xor
  .elseif ((i & 3) == 1)
	vpxor	W_minus_16, W_TMP1, W_TMP1
	vpxor	W_TMP1, W, W
  .elseif ((i & 3) == 2)
	vpslld	$2, W, W_TMP1
	vpsrld	$30, W, W
	vpor	W, W_TMP1, W
  .elseif ((i & 3) == 3)
	vpaddd	K_XMM(K_BASE), W, W_TMP1
	vmovdqu	W_TMP1, WK(i&~3)
	W_PRECALC_ROTATE
  .endif
.endm

.endm    // W_PRECALC_AVX

W_PRECALC_AVX
.purgem xmm_mov
.macro xmm_mov a, b
	vmovdqu	\a,\b
.endm


/* AVX optimized implementation:
 *  extern "C" void sha1_transform_avx(u32 *digest, const char *data, u32 *ws,
 *                                     unsigned int rounds);
 */
SHA1_VECTOR_ASM     sha1_transform_avx

#endif