pageattr.c 33.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/*
 * Copyright 2002 Andi Kleen, SuSE Labs.
 * Thanks to Ben LaHaise for precious feedback.
 */
#include <linux/highmem.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/pfn.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/pci.h>

#include <asm/e820.h>
#include <asm/processor.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/uaccess.h>
#include <asm/pgalloc.h>
#include <asm/proto.h>
#include <asm/pat.h>

/*
 * The current flushing context - we pass it instead of 5 arguments:
 */
struct cpa_data {
	unsigned long	*vaddr;
	pgprot_t	mask_set;
	pgprot_t	mask_clr;
	int		numpages;
	int		flags;
	unsigned long	pfn;
	unsigned	force_split : 1;
	int		curpage;
	struct page	**pages;
};

/*
 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 * entries change the page attribute in parallel to some other cpu
 * splitting a large page entry along with changing the attribute.
 */
static DEFINE_SPINLOCK(cpa_lock);

#define CPA_FLUSHTLB 1
#define CPA_ARRAY 2
#define CPA_PAGES_ARRAY 4

#ifdef CONFIG_PROC_FS
static unsigned long direct_pages_count[PG_LEVEL_NUM];

void update_page_count(int level, unsigned long pages)
{
	/* Protect against CPA */
	spin_lock(&pgd_lock);
	direct_pages_count[level] += pages;
	spin_unlock(&pgd_lock);
}

static void split_page_count(int level)
{
	direct_pages_count[level]--;
	direct_pages_count[level - 1] += PTRS_PER_PTE;
}

void arch_report_meminfo(struct seq_file *m)
{
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
			direct_pages_count[PG_LEVEL_4K] << 2);
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
			direct_pages_count[PG_LEVEL_2M] << 11);
#else
	seq_printf(m, "DirectMap4M:    %8lu kB\n",
			direct_pages_count[PG_LEVEL_2M] << 12);
#endif
#ifdef CONFIG_X86_64
	if (direct_gbpages)
		seq_printf(m, "DirectMap1G:    %8lu kB\n",
			direct_pages_count[PG_LEVEL_1G] << 20);
#endif
}
#else
static inline void split_page_count(int level) { }
#endif

#ifdef CONFIG_X86_64

static inline unsigned long highmap_start_pfn(void)
{
	return __pa(_text) >> PAGE_SHIFT;
}

static inline unsigned long highmap_end_pfn(void)
{
	return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
}

#endif

#ifdef CONFIG_DEBUG_PAGEALLOC
# define debug_pagealloc 1
#else
# define debug_pagealloc 0
#endif

static inline int
within(unsigned long addr, unsigned long start, unsigned long end)
{
	return addr >= start && addr < end;
}

/*
 * Flushing functions
 */

/**
 * clflush_cache_range - flush a cache range with clflush
 * @addr:	virtual start address
 * @size:	number of bytes to flush
 *
 * clflush is an unordered instruction which needs fencing with mfence
 * to avoid ordering issues.
 */
void clflush_cache_range(void *vaddr, unsigned int size)
{
	void *vend = vaddr + size - 1;

	mb();

	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
		clflush(vaddr);
	/*
	 * Flush any possible final partial cacheline:
	 */
	clflush(vend);

	mb();
}
EXPORT_SYMBOL_GPL(clflush_cache_range);

static void __cpa_flush_all(void *arg)
{
	unsigned long cache = (unsigned long)arg;

	/*
	 * Flush all to work around Errata in early athlons regarding
	 * large page flushing.
	 */
	__flush_tlb_all();

	if (cache && boot_cpu_data.x86 >= 4)
		wbinvd();
}

static void cpa_flush_all(unsigned long cache)
{
	BUG_ON(irqs_disabled());

	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
}

static void __cpa_flush_range(void *arg)
{
	/*
	 * We could optimize that further and do individual per page
	 * tlb invalidates for a low number of pages. Caveat: we must
	 * flush the high aliases on 64bit as well.
	 */
	__flush_tlb_all();
}

static void cpa_flush_range(unsigned long start, int numpages, int cache)
{
	unsigned int i, level;
	unsigned long addr;

	BUG_ON(irqs_disabled());
	WARN_ON(PAGE_ALIGN(start) != start);

	on_each_cpu(__cpa_flush_range, NULL, 1);

	if (!cache)
		return;

	/*
	 * We only need to flush on one CPU,
	 * clflush is a MESI-coherent instruction that
	 * will cause all other CPUs to flush the same
	 * cachelines:
	 */
	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
		pte_t *pte = lookup_address(addr, &level);

		/*
		 * Only flush present addresses:
		 */
		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
			clflush_cache_range((void *) addr, PAGE_SIZE);
	}
}

static void cpa_flush_array(unsigned long *start, int numpages, int cache,
			    int in_flags, struct page **pages)
{
	unsigned int i, level;
	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */

	BUG_ON(irqs_disabled());

	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);

	if (!cache || do_wbinvd)
		return;

	/*
	 * We only need to flush on one CPU,
	 * clflush is a MESI-coherent instruction that
	 * will cause all other CPUs to flush the same
	 * cachelines:
	 */
	for (i = 0; i < numpages; i++) {
		unsigned long addr;
		pte_t *pte;

		if (in_flags & CPA_PAGES_ARRAY)
			addr = (unsigned long)page_address(pages[i]);
		else
			addr = start[i];

		pte = lookup_address(addr, &level);

		/*
		 * Only flush present addresses:
		 */
		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
			clflush_cache_range((void *)addr, PAGE_SIZE);
	}
}

/*
 * Certain areas of memory on x86 require very specific protection flags,
 * for example the BIOS area or kernel text. Callers don't always get this
 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 * checks and fixes these known static required protection bits.
 */
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
				   unsigned long pfn)
{
	pgprot_t forbidden = __pgprot(0);

	/*
	 * The BIOS area between 640k and 1Mb needs to be executable for
	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
	 */
#ifdef CONFIG_PCI_BIOS
	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
		pgprot_val(forbidden) |= _PAGE_NX;
#endif

	/*
	 * The kernel text needs to be executable for obvious reasons
	 * Does not cover __inittext since that is gone later on. On
	 * 64bit we do not enforce !NX on the low mapping
	 */
	if (within(address, (unsigned long)_text, (unsigned long)_etext))
		pgprot_val(forbidden) |= _PAGE_NX;

	/*
	 * The .rodata section needs to be read-only. Using the pfn
	 * catches all aliases.
	 */
	if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
		   __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
		pgprot_val(forbidden) |= _PAGE_RW;

#if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
	/*
	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
	 * kernel text mappings for the large page aligned text, rodata sections
	 * will be always read-only. For the kernel identity mappings covering
	 * the holes caused by this alignment can be anything that user asks.
	 *
	 * This will preserve the large page mappings for kernel text/data
	 * at no extra cost.
	 */
	if (kernel_set_to_readonly &&
	    within(address, (unsigned long)_text,
		   (unsigned long)__end_rodata_hpage_align)) {
		unsigned int level;

		/*
		 * Don't enforce the !RW mapping for the kernel text mapping,
		 * if the current mapping is already using small page mapping.
		 * No need to work hard to preserve large page mappings in this
		 * case.
		 *
		 * This also fixes the Linux Xen paravirt guest boot failure
		 * (because of unexpected read-only mappings for kernel identity
		 * mappings). In this paravirt guest case, the kernel text
		 * mapping and the kernel identity mapping share the same
		 * page-table pages. Thus we can't really use different
		 * protections for the kernel text and identity mappings. Also,
		 * these shared mappings are made of small page mappings.
		 * Thus this don't enforce !RW mapping for small page kernel
		 * text mapping logic will help Linux Xen parvirt guest boot
		 * as well.
		 */
		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
			pgprot_val(forbidden) |= _PAGE_RW;
	}
#endif

	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));

	return prot;
}

/*
 * Lookup the page table entry for a virtual address. Return a pointer
 * to the entry and the level of the mapping.
 *
 * Note: We return pud and pmd either when the entry is marked large
 * or when the present bit is not set. Otherwise we would return a
 * pointer to a nonexisting mapping.
 */
pte_t *lookup_address(unsigned long address, unsigned int *level)
{
	pgd_t *pgd = pgd_offset_k(address);
	pud_t *pud;
	pmd_t *pmd;

	*level = PG_LEVEL_NONE;

	if (pgd_none(*pgd))
		return NULL;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud))
		return NULL;

	*level = PG_LEVEL_1G;
	if (pud_large(*pud) || !pud_present(*pud))
		return (pte_t *)pud;

	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd))
		return NULL;

	*level = PG_LEVEL_2M;
	if (pmd_large(*pmd) || !pmd_present(*pmd))
		return (pte_t *)pmd;

	*level = PG_LEVEL_4K;

	return pte_offset_kernel(pmd, address);
}
EXPORT_SYMBOL_GPL(lookup_address);

/*
 * Set the new pmd in all the pgds we know about:
 */
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
{
	/* change init_mm */
	set_pte_atomic(kpte, pte);
#ifdef CONFIG_X86_32
	if (!SHARED_KERNEL_PMD) {
		struct page *page;

		list_for_each_entry(page, &pgd_list, lru) {
			pgd_t *pgd;
			pud_t *pud;
			pmd_t *pmd;

			pgd = (pgd_t *)page_address(page) + pgd_index(address);
			pud = pud_offset(pgd, address);
			pmd = pmd_offset(pud, address);
			set_pte_atomic((pte_t *)pmd, pte);
		}
	}
#endif
}

static int
try_preserve_large_page(pte_t *kpte, unsigned long address,
			struct cpa_data *cpa)
{
	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
	pte_t new_pte, old_pte, *tmp;
	pgprot_t old_prot, new_prot, req_prot;
	int i, do_split = 1;
	unsigned int level;

	if (cpa->force_split)
		return 1;

	spin_lock(&pgd_lock);
	/*
	 * Check for races, another CPU might have split this page
	 * up already:
	 */
	tmp = lookup_address(address, &level);
	if (tmp != kpte)
		goto out_unlock;

	switch (level) {
	case PG_LEVEL_2M:
		psize = PMD_PAGE_SIZE;
		pmask = PMD_PAGE_MASK;
		break;
#ifdef CONFIG_X86_64
	case PG_LEVEL_1G:
		psize = PUD_PAGE_SIZE;
		pmask = PUD_PAGE_MASK;
		break;
#endif
	default:
		do_split = -EINVAL;
		goto out_unlock;
	}

	/*
	 * Calculate the number of pages, which fit into this large
	 * page starting at address:
	 */
	nextpage_addr = (address + psize) & pmask;
	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
	if (numpages < cpa->numpages)
		cpa->numpages = numpages;

	/*
	 * We are safe now. Check whether the new pgprot is the same:
	 */
	old_pte = *kpte;
	old_prot = new_prot = req_prot = pte_pgprot(old_pte);

	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);

	/*
	 * old_pte points to the large page base address. So we need
	 * to add the offset of the virtual address:
	 */
	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
	cpa->pfn = pfn;

	new_prot = static_protections(req_prot, address, pfn);

	/*
	 * We need to check the full range, whether
	 * static_protection() requires a different pgprot for one of
	 * the pages in the range we try to preserve:
	 */
	addr = address & pmask;
	pfn = pte_pfn(old_pte);
	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);

		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
			goto out_unlock;
	}

	/*
	 * If there are no changes, return. maxpages has been updated
	 * above:
	 */
	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
		do_split = 0;
		goto out_unlock;
	}

	/*
	 * We need to change the attributes. Check, whether we can
	 * change the large page in one go. We request a split, when
	 * the address is not aligned and the number of pages is
	 * smaller than the number of pages in the large page. Note
	 * that we limited the number of possible pages already to
	 * the number of pages in the large page.
	 */
	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
		/*
		 * The address is aligned and the number of pages
		 * covers the full page.
		 */
		new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
		__set_pmd_pte(kpte, address, new_pte);
		cpa->flags |= CPA_FLUSHTLB;
		do_split = 0;
	}

out_unlock:
	spin_unlock(&pgd_lock);

	return do_split;
}

static int split_large_page(pte_t *kpte, unsigned long address)
{
	unsigned long pfn, pfninc = 1;
	unsigned int i, level;
	pte_t *pbase, *tmp;
	pgprot_t ref_prot;
	struct page *base;

	if (!debug_pagealloc)
		spin_unlock(&cpa_lock);
	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
	if (!debug_pagealloc)
		spin_lock(&cpa_lock);
	if (!base)
		return -ENOMEM;

	spin_lock(&pgd_lock);
	/*
	 * Check for races, another CPU might have split this page
	 * up for us already:
	 */
	tmp = lookup_address(address, &level);
	if (tmp != kpte)
		goto out_unlock;

	pbase = (pte_t *)page_address(base);
	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
	/*
	 * If we ever want to utilize the PAT bit, we need to
	 * update this function to make sure it's converted from
	 * bit 12 to bit 7 when we cross from the 2MB level to
	 * the 4K level:
	 */
	WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);

#ifdef CONFIG_X86_64
	if (level == PG_LEVEL_1G) {
		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
		pgprot_val(ref_prot) |= _PAGE_PSE;
	}
#endif

	/*
	 * Get the target pfn from the original entry:
	 */
	pfn = pte_pfn(*kpte);
	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));

	if (address >= (unsigned long)__va(0) &&
		address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
		split_page_count(level);

#ifdef CONFIG_X86_64
	if (address >= (unsigned long)__va(1UL<<32) &&
		address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
		split_page_count(level);
#endif

	/*
	 * Install the new, split up pagetable.
	 *
	 * We use the standard kernel pagetable protections for the new
	 * pagetable protections, the actual ptes set above control the
	 * primary protection behavior:
	 */
	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));

	/*
	 * Intel Atom errata AAH41 workaround.
	 *
	 * The real fix should be in hw or in a microcode update, but
	 * we also probabilistically try to reduce the window of having
	 * a large TLB mixed with 4K TLBs while instruction fetches are
	 * going on.
	 */
	__flush_tlb_all();

	base = NULL;

out_unlock:
	/*
	 * If we dropped out via the lookup_address check under
	 * pgd_lock then stick the page back into the pool:
	 */
	if (base)
		__free_page(base);
	spin_unlock(&pgd_lock);

	return 0;
}

static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
			       int primary)
{
	/*
	 * Ignore all non primary paths.
	 */
	if (!primary)
		return 0;

	/*
	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
	 * to have holes.
	 * Also set numpages to '1' indicating that we processed cpa req for
	 * one virtual address page and its pfn. TBD: numpages can be set based
	 * on the initial value and the level returned by lookup_address().
	 */
	if (within(vaddr, PAGE_OFFSET,
		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
		cpa->numpages = 1;
		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
		return 0;
	} else {
		WARN(1, KERN_WARNING "CPA: called for zero pte. "
			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
			*cpa->vaddr);

		return -EFAULT;
	}
}

static int __change_page_attr(struct cpa_data *cpa, int primary)
{
	unsigned long address;
	int do_split, err;
	unsigned int level;
	pte_t *kpte, old_pte;

	if (cpa->flags & CPA_PAGES_ARRAY) {
		struct page *page = cpa->pages[cpa->curpage];
		if (unlikely(PageHighMem(page)))
			return 0;
		address = (unsigned long)page_address(page);
	} else if (cpa->flags & CPA_ARRAY)
		address = cpa->vaddr[cpa->curpage];
	else
		address = *cpa->vaddr;
repeat:
	kpte = lookup_address(address, &level);
	if (!kpte)
		return __cpa_process_fault(cpa, address, primary);

	old_pte = *kpte;
	if (!pte_val(old_pte))
		return __cpa_process_fault(cpa, address, primary);

	if (level == PG_LEVEL_4K) {
		pte_t new_pte;
		pgprot_t new_prot = pte_pgprot(old_pte);
		unsigned long pfn = pte_pfn(old_pte);

		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);

		new_prot = static_protections(new_prot, address, pfn);

		/*
		 * We need to keep the pfn from the existing PTE,
		 * after all we're only going to change it's attributes
		 * not the memory it points to
		 */
		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
		cpa->pfn = pfn;
		/*
		 * Do we really change anything ?
		 */
		if (pte_val(old_pte) != pte_val(new_pte)) {
			set_pte_atomic(kpte, new_pte);
			cpa->flags |= CPA_FLUSHTLB;
		}
		cpa->numpages = 1;
		return 0;
	}

	/*
	 * Check, whether we can keep the large page intact
	 * and just change the pte:
	 */
	do_split = try_preserve_large_page(kpte, address, cpa);
	/*
	 * When the range fits into the existing large page,
	 * return. cp->numpages and cpa->tlbflush have been updated in
	 * try_large_page:
	 */
	if (do_split <= 0)
		return do_split;

	/*
	 * We have to split the large page:
	 */
	err = split_large_page(kpte, address);
	if (!err) {
		/*
	 	 * Do a global flush tlb after splitting the large page
	 	 * and before we do the actual change page attribute in the PTE.
	 	 *
	 	 * With out this, we violate the TLB application note, that says
	 	 * "The TLBs may contain both ordinary and large-page
		 *  translations for a 4-KByte range of linear addresses. This
		 *  may occur if software modifies the paging structures so that
		 *  the page size used for the address range changes. If the two
		 *  translations differ with respect to page frame or attributes
		 *  (e.g., permissions), processor behavior is undefined and may
		 *  be implementation-specific."
	 	 *
	 	 * We do this global tlb flush inside the cpa_lock, so that we
		 * don't allow any other cpu, with stale tlb entries change the
		 * page attribute in parallel, that also falls into the
		 * just split large page entry.
	 	 */
		flush_tlb_all();
		goto repeat;
	}

	return err;
}

static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);

static int cpa_process_alias(struct cpa_data *cpa)
{
	struct cpa_data alias_cpa;
	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
	unsigned long vaddr;
	int ret;

	if (cpa->pfn >= max_pfn_mapped)
		return 0;

#ifdef CONFIG_X86_64
	if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
		return 0;
#endif
	/*
	 * No need to redo, when the primary call touched the direct
	 * mapping already:
	 */
	if (cpa->flags & CPA_PAGES_ARRAY) {
		struct page *page = cpa->pages[cpa->curpage];
		if (unlikely(PageHighMem(page)))
			return 0;
		vaddr = (unsigned long)page_address(page);
	} else if (cpa->flags & CPA_ARRAY)
		vaddr = cpa->vaddr[cpa->curpage];
	else
		vaddr = *cpa->vaddr;

	if (!(within(vaddr, PAGE_OFFSET,
		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {

		alias_cpa = *cpa;
		alias_cpa.vaddr = &laddr;
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);

		ret = __change_page_attr_set_clr(&alias_cpa, 0);
		if (ret)
			return ret;
	}

#ifdef CONFIG_X86_64
	/*
	 * If the primary call didn't touch the high mapping already
	 * and the physical address is inside the kernel map, we need
	 * to touch the high mapped kernel as well:
	 */
	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
					       __START_KERNEL_map - phys_base;
		alias_cpa = *cpa;
		alias_cpa.vaddr = &temp_cpa_vaddr;
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);

		/*
		 * The high mapping range is imprecise, so ignore the
		 * return value.
		 */
		__change_page_attr_set_clr(&alias_cpa, 0);
	}
#endif

	return 0;
}

static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
{
	int ret, numpages = cpa->numpages;

	while (numpages) {
		/*
		 * Store the remaining nr of pages for the large page
		 * preservation check.
		 */
		cpa->numpages = numpages;
		/* for array changes, we can't use large page */
		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
			cpa->numpages = 1;

		if (!debug_pagealloc)
			spin_lock(&cpa_lock);
		ret = __change_page_attr(cpa, checkalias);
		if (!debug_pagealloc)
			spin_unlock(&cpa_lock);
		if (ret)
			return ret;

		if (checkalias) {
			ret = cpa_process_alias(cpa);
			if (ret)
				return ret;
		}

		/*
		 * Adjust the number of pages with the result of the
		 * CPA operation. Either a large page has been
		 * preserved or a single page update happened.
		 */
		BUG_ON(cpa->numpages > numpages);
		numpages -= cpa->numpages;
		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
			cpa->curpage++;
		else
			*cpa->vaddr += cpa->numpages * PAGE_SIZE;

	}
	return 0;
}

static inline int cache_attr(pgprot_t attr)
{
	return pgprot_val(attr) &
		(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
}

static int change_page_attr_set_clr(unsigned long *addr, int numpages,
				    pgprot_t mask_set, pgprot_t mask_clr,
				    int force_split, int in_flag,
				    struct page **pages)
{
	struct cpa_data cpa;
	int ret, cache, checkalias;
	unsigned long baddr = 0;

	/*
	 * Check, if we are requested to change a not supported
	 * feature:
	 */
	mask_set = canon_pgprot(mask_set);
	mask_clr = canon_pgprot(mask_clr);
	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
		return 0;

	/* Ensure we are PAGE_SIZE aligned */
	if (in_flag & CPA_ARRAY) {
		int i;
		for (i = 0; i < numpages; i++) {
			if (addr[i] & ~PAGE_MASK) {
				addr[i] &= PAGE_MASK;
				WARN_ON_ONCE(1);
			}
		}
	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
		/*
		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
		 * No need to cehck in that case
		 */
		if (*addr & ~PAGE_MASK) {
			*addr &= PAGE_MASK;
			/*
			 * People should not be passing in unaligned addresses:
			 */
			WARN_ON_ONCE(1);
		}
		/*
		 * Save address for cache flush. *addr is modified in the call
		 * to __change_page_attr_set_clr() below.
		 */
		baddr = *addr;
	}

	/* Must avoid aliasing mappings in the highmem code */
	kmap_flush_unused();

	vm_unmap_aliases();

	cpa.vaddr = addr;
	cpa.pages = pages;
	cpa.numpages = numpages;
	cpa.mask_set = mask_set;
	cpa.mask_clr = mask_clr;
	cpa.flags = 0;
	cpa.curpage = 0;
	cpa.force_split = force_split;

	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
		cpa.flags |= in_flag;

	/* No alias checking for _NX bit modifications */
	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;

	ret = __change_page_attr_set_clr(&cpa, checkalias);

	/*
	 * Check whether we really changed something:
	 */
	if (!(cpa.flags & CPA_FLUSHTLB))
		goto out;

	/*
	 * No need to flush, when we did not set any of the caching
	 * attributes:
	 */
	cache = cache_attr(mask_set);

	/*
	 * On success we use clflush, when the CPU supports it to
	 * avoid the wbindv. If the CPU does not support it and in the
	 * error case we fall back to cpa_flush_all (which uses
	 * wbindv):
	 */
	if (!ret && cpu_has_clflush) {
		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
			cpa_flush_array(addr, numpages, cache,
					cpa.flags, pages);
		} else
			cpa_flush_range(baddr, numpages, cache);
	} else
		cpa_flush_all(cache);

out:
	return ret;
}

static inline int change_page_attr_set(unsigned long *addr, int numpages,
				       pgprot_t mask, int array)
{
	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
		(array ? CPA_ARRAY : 0), NULL);
}

static inline int change_page_attr_clear(unsigned long *addr, int numpages,
					 pgprot_t mask, int array)
{
	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
		(array ? CPA_ARRAY : 0), NULL);
}

static inline int cpa_set_pages_array(struct page **pages, int numpages,
				       pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
		CPA_PAGES_ARRAY, pages);
}

static inline int cpa_clear_pages_array(struct page **pages, int numpages,
					 pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
		CPA_PAGES_ARRAY, pages);
}

int _set_memory_uc(unsigned long addr, int numpages)
{
	/*
	 * for now UC MINUS. see comments in ioremap_nocache()
	 */
	return change_page_attr_set(&addr, numpages,
				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
}

int set_memory_uc(unsigned long addr, int numpages)
{
	int ret;

	/*
	 * for now UC MINUS. see comments in ioremap_nocache()
	 */
	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
			    _PAGE_CACHE_UC_MINUS, NULL);
	if (ret)
		goto out_err;

	ret = _set_memory_uc(addr, numpages);
	if (ret)
		goto out_free;

	return 0;

out_free:
	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
out_err:
	return ret;
}
EXPORT_SYMBOL(set_memory_uc);

static int _set_memory_array(unsigned long *addr, int addrinarray,
		unsigned long new_type)
{
	int i, j;
	int ret;

	/*
	 * for now UC MINUS. see comments in ioremap_nocache()
	 */
	for (i = 0; i < addrinarray; i++) {
		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
					new_type, NULL);
		if (ret)
			goto out_free;
	}

	ret = change_page_attr_set(addr, addrinarray,
				    __pgprot(_PAGE_CACHE_UC_MINUS), 1);

	if (!ret && new_type == _PAGE_CACHE_WC)
		ret = change_page_attr_set_clr(addr, addrinarray,
					       __pgprot(_PAGE_CACHE_WC),
					       __pgprot(_PAGE_CACHE_MASK),
					       0, CPA_ARRAY, NULL);
	if (ret)
		goto out_free;

	return 0;

out_free:
	for (j = 0; j < i; j++)
		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);

	return ret;
}

int set_memory_array_uc(unsigned long *addr, int addrinarray)
{
	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
}
EXPORT_SYMBOL(set_memory_array_uc);

int set_memory_array_wc(unsigned long *addr, int addrinarray)
{
	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
}
EXPORT_SYMBOL(set_memory_array_wc);

int _set_memory_wc(unsigned long addr, int numpages)
{
	int ret;
	unsigned long addr_copy = addr;

	ret = change_page_attr_set(&addr, numpages,
				    __pgprot(_PAGE_CACHE_UC_MINUS), 0);
	if (!ret) {
		ret = change_page_attr_set_clr(&addr_copy, numpages,
					       __pgprot(_PAGE_CACHE_WC),
					       __pgprot(_PAGE_CACHE_MASK),
					       0, 0, NULL);
	}
	return ret;
}

int set_memory_wc(unsigned long addr, int numpages)
{
	int ret;

	if (!pat_enabled)
		return set_memory_uc(addr, numpages);

	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
		_PAGE_CACHE_WC, NULL);
	if (ret)
		goto out_err;

	ret = _set_memory_wc(addr, numpages);
	if (ret)
		goto out_free;

	return 0;

out_free:
	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
out_err:
	return ret;
}
EXPORT_SYMBOL(set_memory_wc);

int _set_memory_wb(unsigned long addr, int numpages)
{
	return change_page_attr_clear(&addr, numpages,
				      __pgprot(_PAGE_CACHE_MASK), 0);
}

int set_memory_wb(unsigned long addr, int numpages)
{
	int ret;

	ret = _set_memory_wb(addr, numpages);
	if (ret)
		return ret;

	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
	return 0;
}
EXPORT_SYMBOL(set_memory_wb);

int set_memory_array_wb(unsigned long *addr, int addrinarray)
{
	int i;
	int ret;

	ret = change_page_attr_clear(addr, addrinarray,
				      __pgprot(_PAGE_CACHE_MASK), 1);
	if (ret)
		return ret;

	for (i = 0; i < addrinarray; i++)
		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);

	return 0;
}
EXPORT_SYMBOL(set_memory_array_wb);

int set_memory_x(unsigned long addr, int numpages)
{
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
}
EXPORT_SYMBOL(set_memory_x);

int set_memory_nx(unsigned long addr, int numpages)
{
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
}
EXPORT_SYMBOL(set_memory_nx);

int set_memory_ro(unsigned long addr, int numpages)
{
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
}
EXPORT_SYMBOL_GPL(set_memory_ro);

int set_memory_rw(unsigned long addr, int numpages)
{
	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
}
EXPORT_SYMBOL_GPL(set_memory_rw);

int set_memory_np(unsigned long addr, int numpages)
{
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
}

int set_memory_4k(unsigned long addr, int numpages)
{
	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
					__pgprot(0), 1, 0, NULL);
}

int set_pages_uc(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_uc(addr, numpages);
}
EXPORT_SYMBOL(set_pages_uc);

static int _set_pages_array(struct page **pages, int addrinarray,
		unsigned long new_type)
{
	unsigned long start;
	unsigned long end;
	int i;
	int free_idx;
	int ret;

	for (i = 0; i < addrinarray; i++) {
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
		end = start + PAGE_SIZE;
		if (reserve_memtype(start, end, new_type, NULL))
			goto err_out;
	}

	ret = cpa_set_pages_array(pages, addrinarray,
			__pgprot(_PAGE_CACHE_UC_MINUS));
	if (!ret && new_type == _PAGE_CACHE_WC)
		ret = change_page_attr_set_clr(NULL, addrinarray,
					       __pgprot(_PAGE_CACHE_WC),
					       __pgprot(_PAGE_CACHE_MASK),
					       0, CPA_PAGES_ARRAY, pages);
	if (ret)
		goto err_out;
	return 0; /* Success */
err_out:
	free_idx = i;
	for (i = 0; i < free_idx; i++) {
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
		end = start + PAGE_SIZE;
		free_memtype(start, end);
	}
	return -EINVAL;
}

int set_pages_array_uc(struct page **pages, int addrinarray)
{
	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
}
EXPORT_SYMBOL(set_pages_array_uc);

int set_pages_array_wc(struct page **pages, int addrinarray)
{
	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
}
EXPORT_SYMBOL(set_pages_array_wc);

int set_pages_wb(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_wb(addr, numpages);
}
EXPORT_SYMBOL(set_pages_wb);

int set_pages_array_wb(struct page **pages, int addrinarray)
{
	int retval;
	unsigned long start;
	unsigned long end;
	int i;

	retval = cpa_clear_pages_array(pages, addrinarray,
			__pgprot(_PAGE_CACHE_MASK));
	if (retval)
		return retval;

	for (i = 0; i < addrinarray; i++) {
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
		end = start + PAGE_SIZE;
		free_memtype(start, end);
	}

	return 0;
}
EXPORT_SYMBOL(set_pages_array_wb);

int set_pages_x(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_x(addr, numpages);
}
EXPORT_SYMBOL(set_pages_x);

int set_pages_nx(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_nx(addr, numpages);
}
EXPORT_SYMBOL(set_pages_nx);

int set_pages_ro(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_ro(addr, numpages);
}

int set_pages_rw(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

	return set_memory_rw(addr, numpages);
}

#ifdef CONFIG_DEBUG_PAGEALLOC

static int __set_pages_p(struct page *page, int numpages)
{
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
				.numpages = numpages,
				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
				.mask_clr = __pgprot(0),
				.flags = 0};

	/*
	 * No alias checking needed for setting present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
}

static int __set_pages_np(struct page *page, int numpages)
{
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
				.numpages = numpages,
				.mask_set = __pgprot(0),
				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
				.flags = 0};

	/*
	 * No alias checking needed for setting not present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
}

void kernel_map_pages(struct page *page, int numpages, int enable)
{
	if (PageHighMem(page))
		return;
	if (!enable) {
		debug_check_no_locks_freed(page_address(page),
					   numpages * PAGE_SIZE);
	}

	/*
	 * The return value is ignored as the calls cannot fail.
	 * Large pages for identity mappings are not used at boot time
	 * and hence no memory allocations during large page split.
	 */
	if (enable)
		__set_pages_p(page, numpages);
	else
		__set_pages_np(page, numpages);

	/*
	 * We should perform an IPI and flush all tlbs,
	 * but that can deadlock->flush only current cpu:
	 */
	__flush_tlb_all();
}

#ifdef CONFIG_HIBERNATION

bool kernel_page_present(struct page *page)
{
	unsigned int level;
	pte_t *pte;

	if (PageHighMem(page))
		return false;

	pte = lookup_address((unsigned long)page_address(page), &level);
	return (pte_val(*pte) & _PAGE_PRESENT);
}

#endif /* CONFIG_HIBERNATION */

#endif /* CONFIG_DEBUG_PAGEALLOC */

/*
 * The testcases use internal knowledge of the implementation that shouldn't
 * be exposed to the rest of the kernel. Include these directly here.
 */
#ifdef CONFIG_CPA_DEBUG
#include "pageattr-test.c"
#endif