workqueue.c 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/*
 * linux/kernel/workqueue.c
 *
 * Generic mechanism for defining kernel helper threads for running
 * arbitrary tasks in process context.
 *
 * Started by Ingo Molnar, Copyright (C) 2002
 *
 * Derived from the taskqueue/keventd code by:
 *
 *   David Woodhouse <dwmw2@infradead.org>
 *   Andrew Morton <andrewm@uow.edu.au>
 *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
 *   Theodore Ts'o <tytso@mit.edu>
 *
 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
#include <linux/kthread.h>
#include <linux/hardirq.h>
#include <linux/mempolicy.h>
#include <linux/freezer.h>
#include <linux/kallsyms.h>
#include <linux/debug_locks.h>

/*
 * The per-CPU workqueue (if single thread, we always use the first
 * possible cpu).
 */
struct cpu_workqueue_struct {

	spinlock_t lock;

	struct list_head worklist;
	wait_queue_head_t more_work;
	struct work_struct *current_work;

	struct workqueue_struct *wq;
	struct task_struct *thread;

	int run_depth;		/* Detect run_workqueue() recursion depth */
} ____cacheline_aligned;

/*
 * The externally visible workqueue abstraction is an array of
 * per-CPU workqueues:
 */
struct workqueue_struct {
	struct cpu_workqueue_struct *cpu_wq;
	struct list_head list;
	const char *name;
	int singlethread;
	int freezeable;		/* Freeze threads during suspend */
};

/* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
   threads to each one as cpus come/go. */
static DEFINE_MUTEX(workqueue_mutex);
static LIST_HEAD(workqueues);

static int singlethread_cpu __read_mostly;
static cpumask_t cpu_singlethread_map __read_mostly;
/*
 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
 * which comes in between can't use for_each_online_cpu(). We could
 * use cpu_possible_map, the cpumask below is more a documentation
 * than optimization.
 */
static cpumask_t cpu_populated_map __read_mostly;

/* If it's single threaded, it isn't in the list of workqueues. */
static inline int is_single_threaded(struct workqueue_struct *wq)
{
	return wq->singlethread;
}

static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
{
	return is_single_threaded(wq)
		? &cpu_singlethread_map : &cpu_populated_map;
}

static
struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
{
	if (unlikely(is_single_threaded(wq)))
		cpu = singlethread_cpu;
	return per_cpu_ptr(wq->cpu_wq, cpu);
}

/*
 * Set the workqueue on which a work item is to be run
 * - Must *only* be called if the pending flag is set
 */
static inline void set_wq_data(struct work_struct *work,
				struct cpu_workqueue_struct *cwq)
{
	unsigned long new;

	BUG_ON(!work_pending(work));

	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
	atomic_long_set(&work->data, new);
}

static inline
struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
{
	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
}

static void insert_work(struct cpu_workqueue_struct *cwq,
				struct work_struct *work, int tail)
{
	set_wq_data(work, cwq);
	/*
	 * Ensure that we get the right work->data if we see the
	 * result of list_add() below, see try_to_grab_pending().
	 */
	smp_wmb();
	if (tail)
		list_add_tail(&work->entry, &cwq->worklist);
	else
		list_add(&work->entry, &cwq->worklist);
	wake_up(&cwq->more_work);
}

/* Preempt must be disabled. */
static void __queue_work(struct cpu_workqueue_struct *cwq,
			 struct work_struct *work)
{
	unsigned long flags;

	spin_lock_irqsave(&cwq->lock, flags);
	insert_work(cwq, work, 1);
	spin_unlock_irqrestore(&cwq->lock, flags);
}

/**
 * queue_work - queue work on a workqueue
 * @wq: workqueue to use
 * @work: work to queue
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 *
 * We queue the work to the CPU it was submitted, but there is no
 * guarantee that it will be processed by that CPU.
 */
int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
{
	int ret = 0;

	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
		BUG_ON(!list_empty(&work->entry));
		__queue_work(wq_per_cpu(wq, get_cpu()), work);
		put_cpu();
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_work);

void delayed_work_timer_fn(unsigned long __data)
{
	struct delayed_work *dwork = (struct delayed_work *)__data;
	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
	struct workqueue_struct *wq = cwq->wq;

	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
}

/**
 * queue_delayed_work - queue work on a workqueue after delay
 * @wq: workqueue to use
 * @dwork: delayable work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 */
int fastcall queue_delayed_work(struct workqueue_struct *wq,
			struct delayed_work *dwork, unsigned long delay)
{
	timer_stats_timer_set_start_info(&dwork->timer);
	if (delay == 0)
		return queue_work(wq, &dwork->work);

	return queue_delayed_work_on(-1, wq, dwork, delay);
}
EXPORT_SYMBOL_GPL(queue_delayed_work);

/**
 * queue_delayed_work_on - queue work on specific CPU after delay
 * @cpu: CPU number to execute work on
 * @wq: workqueue to use
 * @dwork: work to queue
 * @delay: number of jiffies to wait before queueing
 *
 * Returns 0 if @work was already on a queue, non-zero otherwise.
 */
int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
			struct delayed_work *dwork, unsigned long delay)
{
	int ret = 0;
	struct timer_list *timer = &dwork->timer;
	struct work_struct *work = &dwork->work;

	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
		BUG_ON(timer_pending(timer));
		BUG_ON(!list_empty(&work->entry));

		/* This stores cwq for the moment, for the timer_fn */
		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
		timer->expires = jiffies + delay;
		timer->data = (unsigned long)dwork;
		timer->function = delayed_work_timer_fn;

		if (unlikely(cpu >= 0))
			add_timer_on(timer, cpu);
		else
			add_timer(timer);
		ret = 1;
	}
	return ret;
}
EXPORT_SYMBOL_GPL(queue_delayed_work_on);

static void run_workqueue(struct cpu_workqueue_struct *cwq)
{
	spin_lock_irq(&cwq->lock);
	cwq->run_depth++;
	if (cwq->run_depth > 3) {
		/* morton gets to eat his hat */
		printk("%s: recursion depth exceeded: %d\n",
			__FUNCTION__, cwq->run_depth);
		dump_stack();
	}
	while (!list_empty(&cwq->worklist)) {
		struct work_struct *work = list_entry(cwq->worklist.next,
						struct work_struct, entry);
		work_func_t f = work->func;

		cwq->current_work = work;
		list_del_init(cwq->worklist.next);
		spin_unlock_irq(&cwq->lock);

		BUG_ON(get_wq_data(work) != cwq);
		work_clear_pending(work);
		f(work);

		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
					"%s/0x%08x/%d\n",
					current->comm, preempt_count(),
				       	current->pid);
			printk(KERN_ERR "    last function: ");
			print_symbol("%s\n", (unsigned long)f);
			debug_show_held_locks(current);
			dump_stack();
		}

		spin_lock_irq(&cwq->lock);
		cwq->current_work = NULL;
	}
	cwq->run_depth--;
	spin_unlock_irq(&cwq->lock);
}

static int worker_thread(void *__cwq)
{
	struct cpu_workqueue_struct *cwq = __cwq;
	DEFINE_WAIT(wait);

	if (cwq->wq->freezeable)
		set_freezable();

	set_user_nice(current, -5);

	for (;;) {
		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
		if (!freezing(current) &&
		    !kthread_should_stop() &&
		    list_empty(&cwq->worklist))
			schedule();
		finish_wait(&cwq->more_work, &wait);

		try_to_freeze();

		if (kthread_should_stop())
			break;

		run_workqueue(cwq);
	}

	return 0;
}

struct wq_barrier {
	struct work_struct	work;
	struct completion	done;
};

static void wq_barrier_func(struct work_struct *work)
{
	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
	complete(&barr->done);
}

static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
					struct wq_barrier *barr, int tail)
{
	INIT_WORK(&barr->work, wq_barrier_func);
	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));

	init_completion(&barr->done);

	insert_work(cwq, &barr->work, tail);
}

static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
{
	int active;

	if (cwq->thread == current) {
		/*
		 * Probably keventd trying to flush its own queue. So simply run
		 * it by hand rather than deadlocking.
		 */
		run_workqueue(cwq);
		active = 1;
	} else {
		struct wq_barrier barr;

		active = 0;
		spin_lock_irq(&cwq->lock);
		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
			insert_wq_barrier(cwq, &barr, 1);
			active = 1;
		}
		spin_unlock_irq(&cwq->lock);

		if (active)
			wait_for_completion(&barr.done);
	}

	return active;
}

/**
 * flush_workqueue - ensure that any scheduled work has run to completion.
 * @wq: workqueue to flush
 *
 * Forces execution of the workqueue and blocks until its completion.
 * This is typically used in driver shutdown handlers.
 *
 * We sleep until all works which were queued on entry have been handled,
 * but we are not livelocked by new incoming ones.
 *
 * This function used to run the workqueues itself.  Now we just wait for the
 * helper threads to do it.
 */
void fastcall flush_workqueue(struct workqueue_struct *wq)
{
	const cpumask_t *cpu_map = wq_cpu_map(wq);
	int cpu;

	might_sleep();
	for_each_cpu_mask(cpu, *cpu_map)
		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
}
EXPORT_SYMBOL_GPL(flush_workqueue);

/*
 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
 * so this work can't be re-armed in any way.
 */
static int try_to_grab_pending(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq;
	int ret = -1;

	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
		return 0;

	/*
	 * The queueing is in progress, or it is already queued. Try to
	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
	 */

	cwq = get_wq_data(work);
	if (!cwq)
		return ret;

	spin_lock_irq(&cwq->lock);
	if (!list_empty(&work->entry)) {
		/*
		 * This work is queued, but perhaps we locked the wrong cwq.
		 * In that case we must see the new value after rmb(), see
		 * insert_work()->wmb().
		 */
		smp_rmb();
		if (cwq == get_wq_data(work)) {
			list_del_init(&work->entry);
			ret = 1;
		}
	}
	spin_unlock_irq(&cwq->lock);

	return ret;
}

static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
				struct work_struct *work)
{
	struct wq_barrier barr;
	int running = 0;

	spin_lock_irq(&cwq->lock);
	if (unlikely(cwq->current_work == work)) {
		insert_wq_barrier(cwq, &barr, 0);
		running = 1;
	}
	spin_unlock_irq(&cwq->lock);

	if (unlikely(running))
		wait_for_completion(&barr.done);
}

static void wait_on_work(struct work_struct *work)
{
	struct cpu_workqueue_struct *cwq;
	struct workqueue_struct *wq;
	const cpumask_t *cpu_map;
	int cpu;

	might_sleep();

	cwq = get_wq_data(work);
	if (!cwq)
		return;

	wq = cwq->wq;
	cpu_map = wq_cpu_map(wq);

	for_each_cpu_mask(cpu, *cpu_map)
		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
}

static int __cancel_work_timer(struct work_struct *work,
				struct timer_list* timer)
{
	int ret;

	do {
		ret = (timer && likely(del_timer(timer)));
		if (!ret)
			ret = try_to_grab_pending(work);
		wait_on_work(work);
	} while (unlikely(ret < 0));

	work_clear_pending(work);
	return ret;
}

/**
 * cancel_work_sync - block until a work_struct's callback has terminated
 * @work: the work which is to be flushed
 *
 * Returns true if @work was pending.
 *
 * cancel_work_sync() will cancel the work if it is queued. If the work's
 * callback appears to be running, cancel_work_sync() will block until it
 * has completed.
 *
 * It is possible to use this function if the work re-queues itself. It can
 * cancel the work even if it migrates to another workqueue, however in that
 * case it only guarantees that work->func() has completed on the last queued
 * workqueue.
 *
 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
 * pending, otherwise it goes into a busy-wait loop until the timer expires.
 *
 * The caller must ensure that workqueue_struct on which this work was last
 * queued can't be destroyed before this function returns.
 */
int cancel_work_sync(struct work_struct *work)
{
	return __cancel_work_timer(work, NULL);
}
EXPORT_SYMBOL_GPL(cancel_work_sync);

/**
 * cancel_delayed_work_sync - reliably kill off a delayed work.
 * @dwork: the delayed work struct
 *
 * Returns true if @dwork was pending.
 *
 * It is possible to use this function if @dwork rearms itself via queue_work()
 * or queue_delayed_work(). See also the comment for cancel_work_sync().
 */
int cancel_delayed_work_sync(struct delayed_work *dwork)
{
	return __cancel_work_timer(&dwork->work, &dwork->timer);
}
EXPORT_SYMBOL(cancel_delayed_work_sync);

static struct workqueue_struct *keventd_wq __read_mostly;

/**
 * schedule_work - put work task in global workqueue
 * @work: job to be done
 *
 * This puts a job in the kernel-global workqueue.
 */
int fastcall schedule_work(struct work_struct *work)
{
	return queue_work(keventd_wq, work);
}
EXPORT_SYMBOL(schedule_work);

/**
 * schedule_delayed_work - put work task in global workqueue after delay
 * @dwork: job to be done
 * @delay: number of jiffies to wait or 0 for immediate execution
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue.
 */
int fastcall schedule_delayed_work(struct delayed_work *dwork,
					unsigned long delay)
{
	timer_stats_timer_set_start_info(&dwork->timer);
	return queue_delayed_work(keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work);

/**
 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
 * @cpu: cpu to use
 * @dwork: job to be done
 * @delay: number of jiffies to wait
 *
 * After waiting for a given time this puts a job in the kernel-global
 * workqueue on the specified CPU.
 */
int schedule_delayed_work_on(int cpu,
			struct delayed_work *dwork, unsigned long delay)
{
	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
}
EXPORT_SYMBOL(schedule_delayed_work_on);

/**
 * schedule_on_each_cpu - call a function on each online CPU from keventd
 * @func: the function to call
 *
 * Returns zero on success.
 * Returns -ve errno on failure.
 *
 * Appears to be racy against CPU hotplug.
 *
 * schedule_on_each_cpu() is very slow.
 */
int schedule_on_each_cpu(work_func_t func)
{
	int cpu;
	struct work_struct *works;

	works = alloc_percpu(struct work_struct);
	if (!works)
		return -ENOMEM;

	preempt_disable();		/* CPU hotplug */
	for_each_online_cpu(cpu) {
		struct work_struct *work = per_cpu_ptr(works, cpu);

		INIT_WORK(work, func);
		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
	}
	preempt_enable();
	flush_workqueue(keventd_wq);
	free_percpu(works);
	return 0;
}

void flush_scheduled_work(void)
{
	flush_workqueue(keventd_wq);
}
EXPORT_SYMBOL(flush_scheduled_work);

/**
 * execute_in_process_context - reliably execute the routine with user context
 * @fn:		the function to execute
 * @ew:		guaranteed storage for the execute work structure (must
 *		be available when the work executes)
 *
 * Executes the function immediately if process context is available,
 * otherwise schedules the function for delayed execution.
 *
 * Returns:	0 - function was executed
 *		1 - function was scheduled for execution
 */
int execute_in_process_context(work_func_t fn, struct execute_work *ew)
{
	if (!in_interrupt()) {
		fn(&ew->work);
		return 0;
	}

	INIT_WORK(&ew->work, fn);
	schedule_work(&ew->work);

	return 1;
}
EXPORT_SYMBOL_GPL(execute_in_process_context);

int keventd_up(void)
{
	return keventd_wq != NULL;
}

int current_is_keventd(void)
{
	struct cpu_workqueue_struct *cwq;
	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
	int ret = 0;

	BUG_ON(!keventd_wq);

	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
	if (current == cwq->thread)
		ret = 1;

	return ret;

}

static struct cpu_workqueue_struct *
init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
{
	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);

	cwq->wq = wq;
	spin_lock_init(&cwq->lock);
	INIT_LIST_HEAD(&cwq->worklist);
	init_waitqueue_head(&cwq->more_work);

	return cwq;
}

static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
	struct workqueue_struct *wq = cwq->wq;
	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
	struct task_struct *p;

	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
	/*
	 * Nobody can add the work_struct to this cwq,
	 *	if (caller is __create_workqueue)
	 *		nobody should see this wq
	 *	else // caller is CPU_UP_PREPARE
	 *		cpu is not on cpu_online_map
	 * so we can abort safely.
	 */
	if (IS_ERR(p))
		return PTR_ERR(p);

	cwq->thread = p;

	return 0;
}

static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
	struct task_struct *p = cwq->thread;

	if (p != NULL) {
		if (cpu >= 0)
			kthread_bind(p, cpu);
		wake_up_process(p);
	}
}

struct workqueue_struct *__create_workqueue(const char *name,
					    int singlethread, int freezeable)
{
	struct workqueue_struct *wq;
	struct cpu_workqueue_struct *cwq;
	int err = 0, cpu;

	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
	if (!wq)
		return NULL;

	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
	if (!wq->cpu_wq) {
		kfree(wq);
		return NULL;
	}

	wq->name = name;
	wq->singlethread = singlethread;
	wq->freezeable = freezeable;
	INIT_LIST_HEAD(&wq->list);

	if (singlethread) {
		cwq = init_cpu_workqueue(wq, singlethread_cpu);
		err = create_workqueue_thread(cwq, singlethread_cpu);
		start_workqueue_thread(cwq, -1);
	} else {
		mutex_lock(&workqueue_mutex);
		list_add(&wq->list, &workqueues);

		for_each_possible_cpu(cpu) {
			cwq = init_cpu_workqueue(wq, cpu);
			if (err || !cpu_online(cpu))
				continue;
			err = create_workqueue_thread(cwq, cpu);
			start_workqueue_thread(cwq, cpu);
		}
		mutex_unlock(&workqueue_mutex);
	}

	if (err) {
		destroy_workqueue(wq);
		wq = NULL;
	}
	return wq;
}
EXPORT_SYMBOL_GPL(__create_workqueue);

static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
{
	/*
	 * Our caller is either destroy_workqueue() or CPU_DEAD,
	 * workqueue_mutex protects cwq->thread
	 */
	if (cwq->thread == NULL)
		return;

	flush_cpu_workqueue(cwq);
	/*
	 * If the caller is CPU_DEAD and cwq->worklist was not empty,
	 * a concurrent flush_workqueue() can insert a barrier after us.
	 * However, in that case run_workqueue() won't return and check
	 * kthread_should_stop() until it flushes all work_struct's.
	 * When ->worklist becomes empty it is safe to exit because no
	 * more work_structs can be queued on this cwq: flush_workqueue
	 * checks list_empty(), and a "normal" queue_work() can't use
	 * a dead CPU.
	 */
	kthread_stop(cwq->thread);
	cwq->thread = NULL;
}

/**
 * destroy_workqueue - safely terminate a workqueue
 * @wq: target workqueue
 *
 * Safely destroy a workqueue. All work currently pending will be done first.
 */
void destroy_workqueue(struct workqueue_struct *wq)
{
	const cpumask_t *cpu_map = wq_cpu_map(wq);
	struct cpu_workqueue_struct *cwq;
	int cpu;

	mutex_lock(&workqueue_mutex);
	list_del(&wq->list);
	mutex_unlock(&workqueue_mutex);

	for_each_cpu_mask(cpu, *cpu_map) {
		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
		cleanup_workqueue_thread(cwq, cpu);
	}

	free_percpu(wq->cpu_wq);
	kfree(wq);
}
EXPORT_SYMBOL_GPL(destroy_workqueue);

static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
						unsigned long action,
						void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;
	struct cpu_workqueue_struct *cwq;
	struct workqueue_struct *wq;

	action &= ~CPU_TASKS_FROZEN;

	switch (action) {
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&workqueue_mutex);
		return NOTIFY_OK;

	case CPU_LOCK_RELEASE:
		mutex_unlock(&workqueue_mutex);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
		cpu_set(cpu, cpu_populated_map);
	}

	list_for_each_entry(wq, &workqueues, list) {
		cwq = per_cpu_ptr(wq->cpu_wq, cpu);

		switch (action) {
		case CPU_UP_PREPARE:
			if (!create_workqueue_thread(cwq, cpu))
				break;
			printk(KERN_ERR "workqueue for %i failed\n", cpu);
			return NOTIFY_BAD;

		case CPU_ONLINE:
			start_workqueue_thread(cwq, cpu);
			break;

		case CPU_UP_CANCELED:
			start_workqueue_thread(cwq, -1);
		case CPU_DEAD:
			cleanup_workqueue_thread(cwq, cpu);
			break;
		}
	}

	return NOTIFY_OK;
}

void __init init_workqueues(void)
{
	cpu_populated_map = cpu_online_map;
	singlethread_cpu = first_cpu(cpu_possible_map);
	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
	hotcpu_notifier(workqueue_cpu_callback, 0);
	keventd_wq = create_workqueue("events");
	BUG_ON(!keventd_wq);
}