cpu.c 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/* CPU control.
 * (C) 2001, 2002, 2003, 2004 Rusty Russell
 *
 * This code is licenced under the GPL.
 */
#include <linux/proc_fs.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/unistd.h>
#include <linux/cpu.h>
#include <linux/oom.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <linux/bug.h>
#include <linux/kthread.h>
#include <linux/stop_machine.h>
#include <linux/mutex.h>
#include <linux/gfp.h>
#include <linux/suspend.h>

#include "smpboot.h"

#ifdef CONFIG_SMP
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
static DEFINE_MUTEX(cpu_add_remove_lock);

/*
 * The following two API's must be used when attempting
 * to serialize the updates to cpu_online_mask, cpu_present_mask.
 */
void cpu_maps_update_begin(void)
{
	mutex_lock(&cpu_add_remove_lock);
}

void cpu_maps_update_done(void)
{
	mutex_unlock(&cpu_add_remove_lock);
}

static RAW_NOTIFIER_HEAD(cpu_chain);

/* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 * Should always be manipulated under cpu_add_remove_lock
 */
static int cpu_hotplug_disabled;

#ifdef CONFIG_HOTPLUG_CPU

static struct {
	struct task_struct *active_writer;
	struct mutex lock; /* Synchronizes accesses to refcount, */
	/*
	 * Also blocks the new readers during
	 * an ongoing cpu hotplug operation.
	 */
	int refcount;
} cpu_hotplug = {
	.active_writer = NULL,
	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
	.refcount = 0,
};

void get_online_cpus(void)
{
	might_sleep();
	if (cpu_hotplug.active_writer == current)
		return;
	mutex_lock(&cpu_hotplug.lock);
	cpu_hotplug.refcount++;
	mutex_unlock(&cpu_hotplug.lock);

}
EXPORT_SYMBOL_GPL(get_online_cpus);

void put_online_cpus(void)
{
	if (cpu_hotplug.active_writer == current)
		return;
	mutex_lock(&cpu_hotplug.lock);
	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
		wake_up_process(cpu_hotplug.active_writer);
	mutex_unlock(&cpu_hotplug.lock);

}
EXPORT_SYMBOL_GPL(put_online_cpus);

/*
 * This ensures that the hotplug operation can begin only when the
 * refcount goes to zero.
 *
 * Note that during a cpu-hotplug operation, the new readers, if any,
 * will be blocked by the cpu_hotplug.lock
 *
 * Since cpu_hotplug_begin() is always called after invoking
 * cpu_maps_update_begin(), we can be sure that only one writer is active.
 *
 * Note that theoretically, there is a possibility of a livelock:
 * - Refcount goes to zero, last reader wakes up the sleeping
 *   writer.
 * - Last reader unlocks the cpu_hotplug.lock.
 * - A new reader arrives at this moment, bumps up the refcount.
 * - The writer acquires the cpu_hotplug.lock finds the refcount
 *   non zero and goes to sleep again.
 *
 * However, this is very difficult to achieve in practice since
 * get_online_cpus() not an api which is called all that often.
 *
 */
static void cpu_hotplug_begin(void)
{
	cpu_hotplug.active_writer = current;

	for (;;) {
		mutex_lock(&cpu_hotplug.lock);
		if (likely(!cpu_hotplug.refcount))
			break;
		__set_current_state(TASK_UNINTERRUPTIBLE);
		mutex_unlock(&cpu_hotplug.lock);
		schedule();
	}
}

static void cpu_hotplug_done(void)
{
	cpu_hotplug.active_writer = NULL;
	mutex_unlock(&cpu_hotplug.lock);
}

#else /* #if CONFIG_HOTPLUG_CPU */
static void cpu_hotplug_begin(void) {}
static void cpu_hotplug_done(void) {}
#endif	/* #else #if CONFIG_HOTPLUG_CPU */

/* Need to know about CPUs going up/down? */
int __ref register_cpu_notifier(struct notifier_block *nb)
{
	int ret;
	cpu_maps_update_begin();
	ret = raw_notifier_chain_register(&cpu_chain, nb);
	cpu_maps_update_done();
	return ret;
}

static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
			int *nr_calls)
{
	int ret;

	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
					nr_calls);

	return notifier_to_errno(ret);
}

static int cpu_notify(unsigned long val, void *v)
{
	return __cpu_notify(val, v, -1, NULL);
}

#ifdef CONFIG_HOTPLUG_CPU

static void cpu_notify_nofail(unsigned long val, void *v)
{
	BUG_ON(cpu_notify(val, v));
}
EXPORT_SYMBOL(register_cpu_notifier);

void __ref unregister_cpu_notifier(struct notifier_block *nb)
{
	cpu_maps_update_begin();
	raw_notifier_chain_unregister(&cpu_chain, nb);
	cpu_maps_update_done();
}
EXPORT_SYMBOL(unregister_cpu_notifier);

/**
 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 * @cpu: a CPU id
 *
 * This function walks all processes, finds a valid mm struct for each one and
 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 * trivial, there are various non-obvious corner cases, which this function
 * tries to solve in a safe manner.
 *
 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 * be called only for an already offlined CPU.
 */
void clear_tasks_mm_cpumask(int cpu)
{
	struct task_struct *p;

	/*
	 * This function is called after the cpu is taken down and marked
	 * offline, so its not like new tasks will ever get this cpu set in
	 * their mm mask. -- Peter Zijlstra
	 * Thus, we may use rcu_read_lock() here, instead of grabbing
	 * full-fledged tasklist_lock.
	 */
	WARN_ON(cpu_online(cpu));
	rcu_read_lock();
	for_each_process(p) {
		struct task_struct *t;

		/*
		 * Main thread might exit, but other threads may still have
		 * a valid mm. Find one.
		 */
		t = find_lock_task_mm(p);
		if (!t)
			continue;
		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
		task_unlock(t);
	}
	rcu_read_unlock();
}

static inline void check_for_tasks(int cpu)
{
	struct task_struct *p;

	write_lock_irq(&tasklist_lock);
	for_each_process(p) {
		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
		    (p->utime || p->stime))
			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
				"(state = %ld, flags = %x)\n",
				p->comm, task_pid_nr(p), cpu,
				p->state, p->flags);
	}
	write_unlock_irq(&tasklist_lock);
}

struct take_cpu_down_param {
	unsigned long mod;
	void *hcpu;
};

/* Take this CPU down. */
static int __ref take_cpu_down(void *_param)
{
	struct take_cpu_down_param *param = _param;
	int err;

	/* Ensure this CPU doesn't handle any more interrupts. */
	err = __cpu_disable();
	if (err < 0)
		return err;

	cpu_notify(CPU_DYING | param->mod, param->hcpu);
	return 0;
}

/* Requires cpu_add_remove_lock to be held */
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
{
	int err, nr_calls = 0;
	void *hcpu = (void *)(long)cpu;
	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
	struct take_cpu_down_param tcd_param = {
		.mod = mod,
		.hcpu = hcpu,
	};

	if (num_online_cpus() == 1)
		return -EBUSY;

	if (!cpu_online(cpu))
		return -EINVAL;

	cpu_hotplug_begin();

	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
	if (err) {
		nr_calls--;
		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
		printk("%s: attempt to take down CPU %u failed\n",
				__func__, cpu);
		goto out_release;
	}
	smpboot_park_threads(cpu);

	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
	if (err) {
		/* CPU didn't die: tell everyone.  Can't complain. */
		smpboot_unpark_threads(cpu);
		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
		goto out_release;
	}
	BUG_ON(cpu_online(cpu));

	/*
	 * The migration_call() CPU_DYING callback will have removed all
	 * runnable tasks from the cpu, there's only the idle task left now
	 * that the migration thread is done doing the stop_machine thing.
	 *
	 * Wait for the stop thread to go away.
	 */
	while (!idle_cpu(cpu))
		cpu_relax();

	/* This actually kills the CPU. */
	__cpu_die(cpu);

	/* CPU is completely dead: tell everyone.  Too late to complain. */
	cpu_notify_nofail(CPU_DEAD | mod, hcpu);

	check_for_tasks(cpu);

out_release:
	cpu_hotplug_done();
	if (!err)
		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
	return err;
}

int __ref cpu_down(unsigned int cpu)
{
	int err;

	cpu_maps_update_begin();

	if (cpu_hotplug_disabled) {
		err = -EBUSY;
		goto out;
	}

	err = _cpu_down(cpu, 0);

out:
	cpu_maps_update_done();
	return err;
}
EXPORT_SYMBOL(cpu_down);
#endif /*CONFIG_HOTPLUG_CPU*/

/* Requires cpu_add_remove_lock to be held */
static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
{
	int ret, nr_calls = 0;
	void *hcpu = (void *)(long)cpu;
	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
	struct task_struct *idle;

	if (cpu_online(cpu) || !cpu_present(cpu))
		return -EINVAL;

	cpu_hotplug_begin();

	idle = idle_thread_get(cpu);
	if (IS_ERR(idle)) {
		ret = PTR_ERR(idle);
		goto out;
	}

	ret = smpboot_create_threads(cpu);
	if (ret)
		goto out;

	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
	if (ret) {
		nr_calls--;
		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
				__func__, cpu);
		goto out_notify;
	}

	/* Arch-specific enabling code. */
	ret = __cpu_up(cpu, idle);
	if (ret != 0)
		goto out_notify;
	BUG_ON(!cpu_online(cpu));

	/* Wake the per cpu threads */
	smpboot_unpark_threads(cpu);

	/* Now call notifier in preparation. */
	cpu_notify(CPU_ONLINE | mod, hcpu);

out_notify:
	if (ret != 0)
		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
out:
	cpu_hotplug_done();

	return ret;
}

int __cpuinit cpu_up(unsigned int cpu)
{
	int err = 0;

#ifdef	CONFIG_MEMORY_HOTPLUG
	int nid;
	pg_data_t	*pgdat;
#endif

	if (!cpu_possible(cpu)) {
		printk(KERN_ERR "can't online cpu %d because it is not "
			"configured as may-hotadd at boot time\n", cpu);
#if defined(CONFIG_IA64)
		printk(KERN_ERR "please check additional_cpus= boot "
				"parameter\n");
#endif
		return -EINVAL;
	}

#ifdef	CONFIG_MEMORY_HOTPLUG
	nid = cpu_to_node(cpu);
	if (!node_online(nid)) {
		err = mem_online_node(nid);
		if (err)
			return err;
	}

	pgdat = NODE_DATA(nid);
	if (!pgdat) {
		printk(KERN_ERR
			"Can't online cpu %d due to NULL pgdat\n", cpu);
		return -ENOMEM;
	}

	if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
		mutex_lock(&zonelists_mutex);
		build_all_zonelists(NULL, NULL);
		mutex_unlock(&zonelists_mutex);
	}
#endif

	cpu_maps_update_begin();

	if (cpu_hotplug_disabled) {
		err = -EBUSY;
		goto out;
	}

	err = _cpu_up(cpu, 0);

out:
	cpu_maps_update_done();
	return err;
}
EXPORT_SYMBOL_GPL(cpu_up);

#ifdef CONFIG_PM_SLEEP_SMP
static cpumask_var_t frozen_cpus;

int disable_nonboot_cpus(void)
{
	int cpu, first_cpu, error = 0;

	cpu_maps_update_begin();
	first_cpu = cpumask_first(cpu_online_mask);
	/*
	 * We take down all of the non-boot CPUs in one shot to avoid races
	 * with the userspace trying to use the CPU hotplug at the same time
	 */
	cpumask_clear(frozen_cpus);

	printk("Disabling non-boot CPUs ...\n");
	for_each_online_cpu(cpu) {
		if (cpu == first_cpu)
			continue;
		error = _cpu_down(cpu, 1);
		if (!error)
			cpumask_set_cpu(cpu, frozen_cpus);
		else {
			printk(KERN_ERR "Error taking CPU%d down: %d\n",
				cpu, error);
			break;
		}
	}

	if (!error) {
		BUG_ON(num_online_cpus() > 1);
		/* Make sure the CPUs won't be enabled by someone else */
		cpu_hotplug_disabled = 1;
	} else {
		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
	}
	cpu_maps_update_done();
	return error;
}

void __weak arch_enable_nonboot_cpus_begin(void)
{
}

void __weak arch_enable_nonboot_cpus_end(void)
{
}

void __ref enable_nonboot_cpus(void)
{
	int cpu, error;

	/* Allow everyone to use the CPU hotplug again */
	cpu_maps_update_begin();
	cpu_hotplug_disabled = 0;
	if (cpumask_empty(frozen_cpus))
		goto out;

	printk(KERN_INFO "Enabling non-boot CPUs ...\n");

	arch_enable_nonboot_cpus_begin();

	for_each_cpu(cpu, frozen_cpus) {
		error = _cpu_up(cpu, 1);
		if (!error) {
			printk(KERN_INFO "CPU%d is up\n", cpu);
			continue;
		}
		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
	}

	arch_enable_nonboot_cpus_end();

	cpumask_clear(frozen_cpus);
out:
	cpu_maps_update_done();
}

static int __init alloc_frozen_cpus(void)
{
	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
		return -ENOMEM;
	return 0;
}
core_initcall(alloc_frozen_cpus);

/*
 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
 * to continue until any currently running CPU hotplug operation gets
 * completed.
 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
 * CPU hotplug path and released only after it is complete. Thus, we
 * (and hence the freezer) will block here until any currently running CPU
 * hotplug operation gets completed.
 */
void cpu_hotplug_disable_before_freeze(void)
{
	cpu_maps_update_begin();
	cpu_hotplug_disabled = 1;
	cpu_maps_update_done();
}


/*
 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
 * disabled while beginning to freeze tasks).
 */
void cpu_hotplug_enable_after_thaw(void)
{
	cpu_maps_update_begin();
	cpu_hotplug_disabled = 0;
	cpu_maps_update_done();
}

/*
 * When callbacks for CPU hotplug notifications are being executed, we must
 * ensure that the state of the system with respect to the tasks being frozen
 * or not, as reported by the notification, remains unchanged *throughout the
 * duration* of the execution of the callbacks.
 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
 *
 * This synchronization is implemented by mutually excluding regular CPU
 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
 * Hibernate notifications.
 */
static int
cpu_hotplug_pm_callback(struct notifier_block *nb,
			unsigned long action, void *ptr)
{
	switch (action) {

	case PM_SUSPEND_PREPARE:
	case PM_HIBERNATION_PREPARE:
		cpu_hotplug_disable_before_freeze();
		break;

	case PM_POST_SUSPEND:
	case PM_POST_HIBERNATION:
		cpu_hotplug_enable_after_thaw();
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}


static int __init cpu_hotplug_pm_sync_init(void)
{
	pm_notifier(cpu_hotplug_pm_callback, 0);
	return 0;
}
core_initcall(cpu_hotplug_pm_sync_init);

#endif /* CONFIG_PM_SLEEP_SMP */

/**
 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
 * @cpu: cpu that just started
 *
 * This function calls the cpu_chain notifiers with CPU_STARTING.
 * It must be called by the arch code on the new cpu, before the new cpu
 * enables interrupts and before the "boot" cpu returns from __cpu_up().
 */
void __cpuinit notify_cpu_starting(unsigned int cpu)
{
	unsigned long val = CPU_STARTING;

#ifdef CONFIG_PM_SLEEP_SMP
	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
		val = CPU_STARTING_FROZEN;
#endif /* CONFIG_PM_SLEEP_SMP */
	cpu_notify(val, (void *)(long)cpu);
}

#endif /* CONFIG_SMP */

/*
 * cpu_bit_bitmap[] is a special, "compressed" data structure that
 * represents all NR_CPUS bits binary values of 1<<nr.
 *
 * It is used by cpumask_of() to get a constant address to a CPU
 * mask value that has a single bit set only.
 */

/* cpu_bit_bitmap[0] is empty - so we can back into it */
#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)

const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {

	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
#if BITS_PER_LONG > 32
	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
#endif
};
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);

const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
EXPORT_SYMBOL(cpu_all_bits);

#ifdef CONFIG_INIT_ALL_POSSIBLE
static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
	= CPU_BITS_ALL;
#else
static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
#endif
const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
EXPORT_SYMBOL(cpu_possible_mask);

static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
EXPORT_SYMBOL(cpu_online_mask);

static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
EXPORT_SYMBOL(cpu_present_mask);

static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
EXPORT_SYMBOL(cpu_active_mask);

void set_cpu_possible(unsigned int cpu, bool possible)
{
	if (possible)
		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
	else
		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
}

void set_cpu_present(unsigned int cpu, bool present)
{
	if (present)
		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
	else
		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
}

void set_cpu_online(unsigned int cpu, bool online)
{
	if (online)
		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
	else
		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
}

void set_cpu_active(unsigned int cpu, bool active)
{
	if (active)
		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
	else
		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
}

void init_cpu_present(const struct cpumask *src)
{
	cpumask_copy(to_cpumask(cpu_present_bits), src);
}

void init_cpu_possible(const struct cpumask *src)
{
	cpumask_copy(to_cpumask(cpu_possible_bits), src);
}

void init_cpu_online(const struct cpumask *src)
{
	cpumask_copy(to_cpumask(cpu_online_bits), src);
}