time.c 11.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
// SPDX-License-Identifier: GPL-2.0
/*
 *  linux/arch/alpha/kernel/time.c
 *
 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
 *
 * This file contains the clocksource time handling.
 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 * 1997-01-09    Adrian Sun
 *      use interval timer if CONFIG_RTC=y
 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
 *      fixed tick loss calculation in timer_interrupt
 *      (round system clock to nearest tick instead of truncating)
 *      fixed algorithm in time_init for getting time from CMOS clock
 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
 *	fixed algorithm in do_gettimeofday() for calculating the precise time
 *	from processor cycle counter (now taking lost_ticks into account)
 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
 */
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/bcd.h>
#include <linux/profile.h>
#include <linux/irq_work.h>

#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/hwrpb.h>

#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>

#include "proto.h"
#include "irq_impl.h"

DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);

unsigned long est_cycle_freq;

#ifdef CONFIG_IRQ_WORK

DEFINE_PER_CPU(u8, irq_work_pending);

#define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
#define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
#define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)

void arch_irq_work_raise(void)
{
	set_irq_work_pending_flag();
}

#else  /* CONFIG_IRQ_WORK */

#define test_irq_work_pending()      0
#define clear_irq_work_pending()

#endif /* CONFIG_IRQ_WORK */


static inline __u32 rpcc(void)
{
	return __builtin_alpha_rpcc();
}



/*
 * The RTC as a clock_event_device primitive.
 */

static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);

irqreturn_t
rtc_timer_interrupt(int irq, void *dev)
{
	int cpu = smp_processor_id();
	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);

	/* Don't run the hook for UNUSED or SHUTDOWN.  */
	if (likely(clockevent_state_periodic(ce)))
		ce->event_handler(ce);

	if (test_irq_work_pending()) {
		clear_irq_work_pending();
		irq_work_run();
	}

	return IRQ_HANDLED;
}

static int
rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
{
	/* This hook is for oneshot mode, which we don't support.  */
	return -EINVAL;
}

static void __init
init_rtc_clockevent(void)
{
	int cpu = smp_processor_id();
	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);

	*ce = (struct clock_event_device){
		.name = "rtc",
		.features = CLOCK_EVT_FEAT_PERIODIC,
		.rating = 100,
		.cpumask = cpumask_of(cpu),
		.set_next_event = rtc_ce_set_next_event,
	};

	clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
}


/*
 * The QEMU clock as a clocksource primitive.
 */

static u64
qemu_cs_read(struct clocksource *cs)
{
	return qemu_get_vmtime();
}

static struct clocksource qemu_cs = {
	.name                   = "qemu",
	.rating                 = 400,
	.read                   = qemu_cs_read,
	.mask                   = CLOCKSOURCE_MASK(64),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
	.max_idle_ns		= LONG_MAX
};


/*
 * The QEMU alarm as a clock_event_device primitive.
 */

static int qemu_ce_shutdown(struct clock_event_device *ce)
{
	/* The mode member of CE is updated for us in generic code.
	   Just make sure that the event is disabled.  */
	qemu_set_alarm_abs(0);
	return 0;
}

static int
qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
{
	qemu_set_alarm_rel(evt);
	return 0;
}

static irqreturn_t
qemu_timer_interrupt(int irq, void *dev)
{
	int cpu = smp_processor_id();
	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);

	ce->event_handler(ce);
	return IRQ_HANDLED;
}

static void __init
init_qemu_clockevent(void)
{
	int cpu = smp_processor_id();
	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);

	*ce = (struct clock_event_device){
		.name = "qemu",
		.features = CLOCK_EVT_FEAT_ONESHOT,
		.rating = 400,
		.cpumask = cpumask_of(cpu),
		.set_state_shutdown = qemu_ce_shutdown,
		.set_state_oneshot = qemu_ce_shutdown,
		.tick_resume = qemu_ce_shutdown,
		.set_next_event = qemu_ce_set_next_event,
	};

	clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
}


void __init
common_init_rtc(void)
{
	unsigned char x, sel = 0;

	/* Reset periodic interrupt frequency.  */
#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
	/* Test includes known working values on various platforms
	   where 0x26 is wrong; we refuse to change those. */
 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
		sel = RTC_REF_CLCK_32KHZ + 6;
	}
#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
#else
# error "Unknown HZ from arch/alpha/Kconfig"
#endif
	if (sel) {
		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
		       CONFIG_HZ, sel);
		CMOS_WRITE(sel, RTC_FREQ_SELECT);
 	}

	/* Turn on periodic interrupts.  */
	x = CMOS_READ(RTC_CONTROL);
	if (!(x & RTC_PIE)) {
		printk("Turning on RTC interrupts.\n");
		x |= RTC_PIE;
		x &= ~(RTC_AIE | RTC_UIE);
		CMOS_WRITE(x, RTC_CONTROL);
	}
	(void) CMOS_READ(RTC_INTR_FLAGS);

	outb(0x36, 0x43);	/* pit counter 0: system timer */
	outb(0x00, 0x40);
	outb(0x00, 0x40);

	outb(0xb6, 0x43);	/* pit counter 2: speaker */
	outb(0x31, 0x42);
	outb(0x13, 0x42);

	init_rtc_irq();
}


#ifndef CONFIG_ALPHA_WTINT
/*
 * The RPCC as a clocksource primitive.
 *
 * While we have free-running timecounters running on all CPUs, and we make
 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
 * with the wall clock, that initialization isn't kept up-to-date across
 * different time counters in SMP mode.  Therefore we can only use this
 * method when there's only one CPU enabled.
 *
 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
 * or stop altogether, while waiting for the interrupt.  Therefore we cannot
 * use this method when WTINT is in use.
 */

static u64 read_rpcc(struct clocksource *cs)
{
	return rpcc();
}

static struct clocksource clocksource_rpcc = {
	.name                   = "rpcc",
	.rating                 = 300,
	.read                   = read_rpcc,
	.mask                   = CLOCKSOURCE_MASK(32),
	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
};
#endif /* ALPHA_WTINT */


/* Validate a computed cycle counter result against the known bounds for
   the given processor core.  There's too much brokenness in the way of
   timing hardware for any one method to work everywhere.  :-(

   Return 0 if the result cannot be trusted, otherwise return the argument.  */

static unsigned long __init
validate_cc_value(unsigned long cc)
{
	static struct bounds {
		unsigned int min, max;
	} cpu_hz[] __initdata = {
		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
		[EV4_CPU]    = {  100000000,  300000000 },
		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
		[EV45_CPU]   = {  200000000,  300000000 },
		[EV5_CPU]    = {  250000000,  433000000 },
		[EV56_CPU]   = {  333000000,  667000000 },
		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
		[EV6_CPU]    = {  466000000,  600000000 },
		[EV67_CPU]   = {  600000000,  750000000 },
		[EV68AL_CPU] = {  750000000,  940000000 },
		[EV68CB_CPU] = { 1000000000, 1333333333 },
		/* None of the following are shipping as of 2001-11-01.  */
		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
	};

	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
	const unsigned int deviation = 10000000;

	struct percpu_struct *cpu;
	unsigned int index;

	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
	index = cpu->type & 0xffffffff;

	/* If index out of bounds, no way to validate.  */
	if (index >= ARRAY_SIZE(cpu_hz))
		return cc;

	/* If index contains no data, no way to validate.  */
	if (cpu_hz[index].max == 0)
		return cc;

	if (cc < cpu_hz[index].min - deviation
	    || cc > cpu_hz[index].max + deviation)
		return 0;

	return cc;
}


/*
 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 * arch/i386/time.c.
 */

#define CALIBRATE_LATCH	0xffff
#define TIMEOUT_COUNT	0x100000

static unsigned long __init
calibrate_cc_with_pit(void)
{
	int cc, count = 0;

	/* Set the Gate high, disable speaker */
	outb((inb(0x61) & ~0x02) | 0x01, 0x61);

	/*
	 * Now let's take care of CTC channel 2
	 *
	 * Set the Gate high, program CTC channel 2 for mode 0,
	 * (interrupt on terminal count mode), binary count,
	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
	 */
	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */

	cc = rpcc();
	do {
		count++;
	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
	cc = rpcc() - cc;

	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
	if (count <= 1 || count == TIMEOUT_COUNT)
		return 0;

	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
}

/* The Linux interpretation of the CMOS clock register contents:
   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
   RTC registers show the second which has precisely just started.
   Let's hope other operating systems interpret the RTC the same way.  */

static unsigned long __init
rpcc_after_update_in_progress(void)
{
	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);

	return rpcc();
}

void __init
time_init(void)
{
	unsigned int cc1, cc2;
	unsigned long cycle_freq, tolerance;
	long diff;

	if (alpha_using_qemu) {
		clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
		init_qemu_clockevent();

		timer_irqaction.handler = qemu_timer_interrupt;
		init_rtc_irq();
		return;
	}

	/* Calibrate CPU clock -- attempt #1.  */
	if (!est_cycle_freq)
		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());

	cc1 = rpcc();

	/* Calibrate CPU clock -- attempt #2.  */
	if (!est_cycle_freq) {
		cc1 = rpcc_after_update_in_progress();
		cc2 = rpcc_after_update_in_progress();
		est_cycle_freq = validate_cc_value(cc2 - cc1);
		cc1 = cc2;
	}

	cycle_freq = hwrpb->cycle_freq;
	if (est_cycle_freq) {
		/* If the given value is within 250 PPM of what we calculated,
		   accept it.  Otherwise, use what we found.  */
		tolerance = cycle_freq / 4000;
		diff = cycle_freq - est_cycle_freq;
		if (diff < 0)
			diff = -diff;
		if ((unsigned long)diff > tolerance) {
			cycle_freq = est_cycle_freq;
			printk("HWRPB cycle frequency bogus.  "
			       "Estimated %lu Hz\n", cycle_freq);
		} else {
			est_cycle_freq = 0;
		}
	} else if (! validate_cc_value (cycle_freq)) {
		printk("HWRPB cycle frequency bogus, "
		       "and unable to estimate a proper value!\n");
	}

	/* See above for restrictions on using clocksource_rpcc.  */
#ifndef CONFIG_ALPHA_WTINT
	if (hwrpb->nr_processors == 1)
		clocksource_register_hz(&clocksource_rpcc, cycle_freq);
#endif

	/* Startup the timer source. */
	alpha_mv.init_rtc();
	init_rtc_clockevent();
}

/* Initialize the clock_event_device for secondary cpus.  */
#ifdef CONFIG_SMP
void __init
init_clockevent(void)
{
	if (alpha_using_qemu)
		init_qemu_clockevent();
	else
		init_rtc_clockevent();
}
#endif