stm32-adc.c 52.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/*
 * This file is part of STM32 ADC driver
 *
 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
 *
 * License type: GPLv2
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/timer/stm32-lptim-trigger.h>
#include <linux/iio/timer/stm32-timer-trigger.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>

#include "stm32-adc-core.h"

/* STM32F4 - Registers for each ADC instance */
#define STM32F4_ADC_SR			0x00
#define STM32F4_ADC_CR1			0x04
#define STM32F4_ADC_CR2			0x08
#define STM32F4_ADC_SMPR1		0x0C
#define STM32F4_ADC_SMPR2		0x10
#define STM32F4_ADC_HTR			0x24
#define STM32F4_ADC_LTR			0x28
#define STM32F4_ADC_SQR1		0x2C
#define STM32F4_ADC_SQR2		0x30
#define STM32F4_ADC_SQR3		0x34
#define STM32F4_ADC_JSQR		0x38
#define STM32F4_ADC_JDR1		0x3C
#define STM32F4_ADC_JDR2		0x40
#define STM32F4_ADC_JDR3		0x44
#define STM32F4_ADC_JDR4		0x48
#define STM32F4_ADC_DR			0x4C

/* STM32F4_ADC_SR - bit fields */
#define STM32F4_STRT			BIT(4)
#define STM32F4_EOC			BIT(1)

/* STM32F4_ADC_CR1 - bit fields */
#define STM32F4_RES_SHIFT		24
#define STM32F4_RES_MASK		GENMASK(25, 24)
#define STM32F4_SCAN			BIT(8)
#define STM32F4_EOCIE			BIT(5)

/* STM32F4_ADC_CR2 - bit fields */
#define STM32F4_SWSTART			BIT(30)
#define STM32F4_EXTEN_SHIFT		28
#define STM32F4_EXTEN_MASK		GENMASK(29, 28)
#define STM32F4_EXTSEL_SHIFT		24
#define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
#define STM32F4_EOCS			BIT(10)
#define STM32F4_DDS			BIT(9)
#define STM32F4_DMA			BIT(8)
#define STM32F4_ADON			BIT(0)

/* STM32H7 - Registers for each ADC instance */
#define STM32H7_ADC_ISR			0x00
#define STM32H7_ADC_IER			0x04
#define STM32H7_ADC_CR			0x08
#define STM32H7_ADC_CFGR		0x0C
#define STM32H7_ADC_SMPR1		0x14
#define STM32H7_ADC_SMPR2		0x18
#define STM32H7_ADC_PCSEL		0x1C
#define STM32H7_ADC_SQR1		0x30
#define STM32H7_ADC_SQR2		0x34
#define STM32H7_ADC_SQR3		0x38
#define STM32H7_ADC_SQR4		0x3C
#define STM32H7_ADC_DR			0x40
#define STM32H7_ADC_CALFACT		0xC4
#define STM32H7_ADC_CALFACT2		0xC8

/* STM32H7_ADC_ISR - bit fields */
#define STM32H7_EOC			BIT(2)
#define STM32H7_ADRDY			BIT(0)

/* STM32H7_ADC_IER - bit fields */
#define STM32H7_EOCIE			STM32H7_EOC

/* STM32H7_ADC_CR - bit fields */
#define STM32H7_ADCAL			BIT(31)
#define STM32H7_ADCALDIF		BIT(30)
#define STM32H7_DEEPPWD			BIT(29)
#define STM32H7_ADVREGEN		BIT(28)
#define STM32H7_LINCALRDYW6		BIT(27)
#define STM32H7_LINCALRDYW5		BIT(26)
#define STM32H7_LINCALRDYW4		BIT(25)
#define STM32H7_LINCALRDYW3		BIT(24)
#define STM32H7_LINCALRDYW2		BIT(23)
#define STM32H7_LINCALRDYW1		BIT(22)
#define STM32H7_ADCALLIN		BIT(16)
#define STM32H7_BOOST			BIT(8)
#define STM32H7_ADSTP			BIT(4)
#define STM32H7_ADSTART			BIT(2)
#define STM32H7_ADDIS			BIT(1)
#define STM32H7_ADEN			BIT(0)

/* STM32H7_ADC_CFGR bit fields */
#define STM32H7_EXTEN_SHIFT		10
#define STM32H7_EXTEN_MASK		GENMASK(11, 10)
#define STM32H7_EXTSEL_SHIFT		5
#define STM32H7_EXTSEL_MASK		GENMASK(9, 5)
#define STM32H7_RES_SHIFT		2
#define STM32H7_RES_MASK		GENMASK(4, 2)
#define STM32H7_DMNGT_SHIFT		0
#define STM32H7_DMNGT_MASK		GENMASK(1, 0)

enum stm32h7_adc_dmngt {
	STM32H7_DMNGT_DR_ONLY,		/* Regular data in DR only */
	STM32H7_DMNGT_DMA_ONESHOT,	/* DMA one shot mode */
	STM32H7_DMNGT_DFSDM,		/* DFSDM mode */
	STM32H7_DMNGT_DMA_CIRC,		/* DMA circular mode */
};

/* STM32H7_ADC_CALFACT - bit fields */
#define STM32H7_CALFACT_D_SHIFT		16
#define STM32H7_CALFACT_D_MASK		GENMASK(26, 16)
#define STM32H7_CALFACT_S_SHIFT		0
#define STM32H7_CALFACT_S_MASK		GENMASK(10, 0)

/* STM32H7_ADC_CALFACT2 - bit fields */
#define STM32H7_LINCALFACT_SHIFT	0
#define STM32H7_LINCALFACT_MASK		GENMASK(29, 0)

/* Number of linear calibration shadow registers / LINCALRDYW control bits */
#define STM32H7_LINCALFACT_NUM		6

/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
#define STM32H7_BOOST_CLKRATE		20000000UL

#define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
#define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
#define STM32_ADC_TIMEOUT_US		100000
#define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))

#define STM32_DMA_BUFFER_SIZE		PAGE_SIZE

/* External trigger enable */
enum stm32_adc_exten {
	STM32_EXTEN_SWTRIG,
	STM32_EXTEN_HWTRIG_RISING_EDGE,
	STM32_EXTEN_HWTRIG_FALLING_EDGE,
	STM32_EXTEN_HWTRIG_BOTH_EDGES,
};

/* extsel - trigger mux selection value */
enum stm32_adc_extsel {
	STM32_EXT0,
	STM32_EXT1,
	STM32_EXT2,
	STM32_EXT3,
	STM32_EXT4,
	STM32_EXT5,
	STM32_EXT6,
	STM32_EXT7,
	STM32_EXT8,
	STM32_EXT9,
	STM32_EXT10,
	STM32_EXT11,
	STM32_EXT12,
	STM32_EXT13,
	STM32_EXT14,
	STM32_EXT15,
	STM32_EXT16,
	STM32_EXT17,
	STM32_EXT18,
	STM32_EXT19,
	STM32_EXT20,
};

/**
 * struct stm32_adc_trig_info - ADC trigger info
 * @name:		name of the trigger, corresponding to its source
 * @extsel:		trigger selection
 */
struct stm32_adc_trig_info {
	const char *name;
	enum stm32_adc_extsel extsel;
};

/**
 * struct stm32_adc_calib - optional adc calibration data
 * @calfact_s: Calibration offset for single ended channels
 * @calfact_d: Calibration offset in differential
 * @lincalfact: Linearity calibration factor
 */
struct stm32_adc_calib {
	u32			calfact_s;
	u32			calfact_d;
	u32			lincalfact[STM32H7_LINCALFACT_NUM];
};

/**
 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 * @reg:		register offset
 * @mask:		bitfield mask
 * @shift:		left shift
 */
struct stm32_adc_regs {
	int reg;
	int mask;
	int shift;
};

/**
 * stm32_adc_regspec - stm32 registers definition, compatible dependent data
 * @dr:			data register offset
 * @ier_eoc:		interrupt enable register & eocie bitfield
 * @isr_eoc:		interrupt status register & eoc bitfield
 * @sqr:		reference to sequence registers array
 * @exten:		trigger control register & bitfield
 * @extsel:		trigger selection register & bitfield
 * @res:		resolution selection register & bitfield
 * @smpr:		smpr1 & smpr2 registers offset array
 * @smp_bits:		smpr1 & smpr2 index and bitfields
 */
struct stm32_adc_regspec {
	const u32 dr;
	const struct stm32_adc_regs ier_eoc;
	const struct stm32_adc_regs isr_eoc;
	const struct stm32_adc_regs *sqr;
	const struct stm32_adc_regs exten;
	const struct stm32_adc_regs extsel;
	const struct stm32_adc_regs res;
	const u32 smpr[2];
	const struct stm32_adc_regs *smp_bits;
};

struct stm32_adc;

/**
 * stm32_adc_cfg - stm32 compatible configuration data
 * @regs:		registers descriptions
 * @adc_info:		per instance input channels definitions
 * @trigs:		external trigger sources
 * @clk_required:	clock is required
 * @selfcalib:		optional routine for self-calibration
 * @prepare:		optional prepare routine (power-up, enable)
 * @start_conv:		routine to start conversions
 * @stop_conv:		routine to stop conversions
 * @unprepare:		optional unprepare routine (disable, power-down)
 * @smp_cycles:		programmable sampling time (ADC clock cycles)
 */
struct stm32_adc_cfg {
	const struct stm32_adc_regspec	*regs;
	const struct stm32_adc_info	*adc_info;
	struct stm32_adc_trig_info	*trigs;
	bool clk_required;
	int (*selfcalib)(struct stm32_adc *);
	int (*prepare)(struct stm32_adc *);
	void (*start_conv)(struct stm32_adc *, bool dma);
	void (*stop_conv)(struct stm32_adc *);
	void (*unprepare)(struct stm32_adc *);
	const unsigned int *smp_cycles;
};

/**
 * struct stm32_adc - private data of each ADC IIO instance
 * @common:		reference to ADC block common data
 * @offset:		ADC instance register offset in ADC block
 * @cfg:		compatible configuration data
 * @completion:		end of single conversion completion
 * @buffer:		data buffer
 * @clk:		clock for this adc instance
 * @irq:		interrupt for this adc instance
 * @lock:		spinlock
 * @bufi:		data buffer index
 * @num_conv:		expected number of scan conversions
 * @res:		data resolution (e.g. RES bitfield value)
 * @trigger_polarity:	external trigger polarity (e.g. exten)
 * @dma_chan:		dma channel
 * @rx_buf:		dma rx buffer cpu address
 * @rx_dma_buf:		dma rx buffer bus address
 * @rx_buf_sz:		dma rx buffer size
 * @pcsel		bitmask to preselect channels on some devices
 * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
 * @cal:		optional calibration data on some devices
 */
struct stm32_adc {
	struct stm32_adc_common	*common;
	u32			offset;
	const struct stm32_adc_cfg	*cfg;
	struct completion	completion;
	u16			buffer[STM32_ADC_MAX_SQ];
	struct clk		*clk;
	int			irq;
	spinlock_t		lock;		/* interrupt lock */
	unsigned int		bufi;
	unsigned int		num_conv;
	u32			res;
	u32			trigger_polarity;
	struct dma_chan		*dma_chan;
	u8			*rx_buf;
	dma_addr_t		rx_dma_buf;
	unsigned int		rx_buf_sz;
	u32			pcsel;
	u32			smpr_val[2];
	struct stm32_adc_calib	cal;
};

/**
 * struct stm32_adc_chan_spec - specification of stm32 adc channel
 * @type:	IIO channel type
 * @channel:	channel number (single ended)
 * @name:	channel name (single ended)
 */
struct stm32_adc_chan_spec {
	enum iio_chan_type	type;
	int			channel;
	const char		*name;
};

/**
 * struct stm32_adc_info - stm32 ADC, per instance config data
 * @channels:		Reference to stm32 channels spec
 * @max_channels:	Number of channels
 * @resolutions:	available resolutions
 * @num_res:		number of available resolutions
 */
struct stm32_adc_info {
	const struct stm32_adc_chan_spec *channels;
	int max_channels;
	const unsigned int *resolutions;
	const unsigned int num_res;
};

/*
 * Input definitions common for all instances:
 * stm32f4 can have up to 16 channels
 * stm32h7 can have up to 20 channels
 */
static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
	{ IIO_VOLTAGE, 0, "in0" },
	{ IIO_VOLTAGE, 1, "in1" },
	{ IIO_VOLTAGE, 2, "in2" },
	{ IIO_VOLTAGE, 3, "in3" },
	{ IIO_VOLTAGE, 4, "in4" },
	{ IIO_VOLTAGE, 5, "in5" },
	{ IIO_VOLTAGE, 6, "in6" },
	{ IIO_VOLTAGE, 7, "in7" },
	{ IIO_VOLTAGE, 8, "in8" },
	{ IIO_VOLTAGE, 9, "in9" },
	{ IIO_VOLTAGE, 10, "in10" },
	{ IIO_VOLTAGE, 11, "in11" },
	{ IIO_VOLTAGE, 12, "in12" },
	{ IIO_VOLTAGE, 13, "in13" },
	{ IIO_VOLTAGE, 14, "in14" },
	{ IIO_VOLTAGE, 15, "in15" },
	{ IIO_VOLTAGE, 16, "in16" },
	{ IIO_VOLTAGE, 17, "in17" },
	{ IIO_VOLTAGE, 18, "in18" },
	{ IIO_VOLTAGE, 19, "in19" },
};

static const unsigned int stm32f4_adc_resolutions[] = {
	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
	12, 10, 8, 6,
};

static const struct stm32_adc_info stm32f4_adc_info = {
	.channels = stm32_adc_channels,
	.max_channels = 16,
	.resolutions = stm32f4_adc_resolutions,
	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
};

static const unsigned int stm32h7_adc_resolutions[] = {
	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
	16, 14, 12, 10, 8,
};

static const struct stm32_adc_info stm32h7_adc_info = {
	.channels = stm32_adc_channels,
	.max_channels = 20,
	.resolutions = stm32h7_adc_resolutions,
	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
};

/**
 * stm32f4_sq - describe regular sequence registers
 * - L: sequence len (register & bit field)
 * - SQ1..SQ16: sequence entries (register & bit field)
 */
static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
	/* L: len bit field description to be kept as first element */
	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
};

/* STM32F4 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
	{ TIM1_CH1, STM32_EXT0 },
	{ TIM1_CH2, STM32_EXT1 },
	{ TIM1_CH3, STM32_EXT2 },
	{ TIM2_CH2, STM32_EXT3 },
	{ TIM2_CH3, STM32_EXT4 },
	{ TIM2_CH4, STM32_EXT5 },
	{ TIM2_TRGO, STM32_EXT6 },
	{ TIM3_CH1, STM32_EXT7 },
	{ TIM3_TRGO, STM32_EXT8 },
	{ TIM4_CH4, STM32_EXT9 },
	{ TIM5_CH1, STM32_EXT10 },
	{ TIM5_CH2, STM32_EXT11 },
	{ TIM5_CH3, STM32_EXT12 },
	{ TIM8_CH1, STM32_EXT13 },
	{ TIM8_TRGO, STM32_EXT14 },
	{}, /* sentinel */
};

/**
 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 * Sorted so it can be indexed by channel number.
 */
static const struct stm32_adc_regs stm32f4_smp_bits[] = {
	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
	{ 1, GENMASK(2, 0), 0 },
	{ 1, GENMASK(5, 3), 3 },
	{ 1, GENMASK(8, 6), 6 },
	{ 1, GENMASK(11, 9), 9 },
	{ 1, GENMASK(14, 12), 12 },
	{ 1, GENMASK(17, 15), 15 },
	{ 1, GENMASK(20, 18), 18 },
	{ 1, GENMASK(23, 21), 21 },
	{ 1, GENMASK(26, 24), 24 },
	{ 1, GENMASK(29, 27), 27 },
	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
	{ 0, GENMASK(2, 0), 0 },
	{ 0, GENMASK(5, 3), 3 },
	{ 0, GENMASK(8, 6), 6 },
	{ 0, GENMASK(11, 9), 9 },
	{ 0, GENMASK(14, 12), 12 },
	{ 0, GENMASK(17, 15), 15 },
	{ 0, GENMASK(20, 18), 18 },
	{ 0, GENMASK(23, 21), 21 },
	{ 0, GENMASK(26, 24), 24 },
};

/* STM32F4 programmable sampling time (ADC clock cycles) */
static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
	3, 15, 28, 56, 84, 112, 144, 480,
};

static const struct stm32_adc_regspec stm32f4_adc_regspec = {
	.dr = STM32F4_ADC_DR,
	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
	.sqr = stm32f4_sq,
	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
		    STM32F4_EXTSEL_SHIFT },
	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
	.smp_bits = stm32f4_smp_bits,
};

static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
	/* L: len bit field description to be kept as first element */
	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
};

/* STM32H7 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
	{ TIM1_CH1, STM32_EXT0 },
	{ TIM1_CH2, STM32_EXT1 },
	{ TIM1_CH3, STM32_EXT2 },
	{ TIM2_CH2, STM32_EXT3 },
	{ TIM3_TRGO, STM32_EXT4 },
	{ TIM4_CH4, STM32_EXT5 },
	{ TIM8_TRGO, STM32_EXT7 },
	{ TIM8_TRGO2, STM32_EXT8 },
	{ TIM1_TRGO, STM32_EXT9 },
	{ TIM1_TRGO2, STM32_EXT10 },
	{ TIM2_TRGO, STM32_EXT11 },
	{ TIM4_TRGO, STM32_EXT12 },
	{ TIM6_TRGO, STM32_EXT13 },
	{ TIM3_CH4, STM32_EXT15 },
	{ LPTIM1_OUT, STM32_EXT18 },
	{ LPTIM2_OUT, STM32_EXT19 },
	{ LPTIM3_OUT, STM32_EXT20 },
	{},
};

/**
 * stm32h7_smp_bits - describe sampling time register index & bit fields
 * Sorted so it can be indexed by channel number.
 */
static const struct stm32_adc_regs stm32h7_smp_bits[] = {
	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
	{ 0, GENMASK(2, 0), 0 },
	{ 0, GENMASK(5, 3), 3 },
	{ 0, GENMASK(8, 6), 6 },
	{ 0, GENMASK(11, 9), 9 },
	{ 0, GENMASK(14, 12), 12 },
	{ 0, GENMASK(17, 15), 15 },
	{ 0, GENMASK(20, 18), 18 },
	{ 0, GENMASK(23, 21), 21 },
	{ 0, GENMASK(26, 24), 24 },
	{ 0, GENMASK(29, 27), 27 },
	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
	{ 1, GENMASK(2, 0), 0 },
	{ 1, GENMASK(5, 3), 3 },
	{ 1, GENMASK(8, 6), 6 },
	{ 1, GENMASK(11, 9), 9 },
	{ 1, GENMASK(14, 12), 12 },
	{ 1, GENMASK(17, 15), 15 },
	{ 1, GENMASK(20, 18), 18 },
	{ 1, GENMASK(23, 21), 21 },
	{ 1, GENMASK(26, 24), 24 },
	{ 1, GENMASK(29, 27), 27 },
};

/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
	1, 2, 8, 16, 32, 64, 387, 810,
};

static const struct stm32_adc_regspec stm32h7_adc_regspec = {
	.dr = STM32H7_ADC_DR,
	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
	.sqr = stm32h7_sq,
	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
		    STM32H7_EXTSEL_SHIFT },
	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
	.smp_bits = stm32h7_smp_bits,
};

/**
 * STM32 ADC registers access routines
 * @adc: stm32 adc instance
 * @reg: reg offset in adc instance
 *
 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 * for adc1, adc2 and adc3.
 */
static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
{
	return readl_relaxed(adc->common->base + adc->offset + reg);
}

#define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)

#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
			   cond, sleep_us, timeout_us)

static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
{
	return readw_relaxed(adc->common->base + adc->offset + reg);
}

static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
{
	writel_relaxed(val, adc->common->base + adc->offset + reg);
}

static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
	unsigned long flags;

	spin_lock_irqsave(&adc->lock, flags);
	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
	spin_unlock_irqrestore(&adc->lock, flags);
}

static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
	unsigned long flags;

	spin_lock_irqsave(&adc->lock, flags);
	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
	spin_unlock_irqrestore(&adc->lock, flags);
}

/**
 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 * @adc: stm32 adc instance
 */
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
			   adc->cfg->regs->ier_eoc.mask);
};

/**
 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 * @adc: stm32 adc instance
 */
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
			   adc->cfg->regs->ier_eoc.mask);
}

static void stm32_adc_set_res(struct stm32_adc *adc)
{
	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
	u32 val;

	val = stm32_adc_readl(adc, res->reg);
	val = (val & ~res->mask) | (adc->res << res->shift);
	stm32_adc_writel(adc, res->reg, val);
}

/**
 * stm32f4_adc_start_conv() - Start conversions for regular channels.
 * @adc: stm32 adc instance
 * @dma: use dma to transfer conversion result
 *
 * Start conversions for regular channels.
 * Also take care of normal or DMA mode. Circular DMA may be used for regular
 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 */
static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
{
	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);

	if (dma)
		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
				   STM32F4_DMA | STM32F4_DDS);

	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);

	/* Wait for Power-up time (tSTAB from datasheet) */
	usleep_range(2, 3);

	/* Software start ? (e.g. trigger detection disabled ?) */
	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}

static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);

	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
}

static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
{
	enum stm32h7_adc_dmngt dmngt;
	unsigned long flags;
	u32 val;

	if (dma)
		dmngt = STM32H7_DMNGT_DMA_CIRC;
	else
		dmngt = STM32H7_DMNGT_DR_ONLY;

	spin_lock_irqsave(&adc->lock, flags);
	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
	spin_unlock_irqrestore(&adc->lock, flags);

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
}

static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);

	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & (STM32H7_ADSTART)),
					   100, STM32_ADC_TIMEOUT_US);
	if (ret)
		dev_warn(&indio_dev->dev, "stop failed\n");

	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
}

static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
{
	/* Exit deep power down, then enable ADC voltage regulator */
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);

	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);

	/* Wait for startup time */
	usleep_range(10, 20);
}

static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
{
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);

	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
}

static int stm32h7_adc_enable(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);

	/* Poll for ADRDY to be set (after adc startup time) */
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
					   val & STM32H7_ADRDY,
					   100, STM32_ADC_TIMEOUT_US);
	if (ret) {
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
	} else {
		/* Clear ADRDY by writing one */
		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
	}

	return ret;
}

static void stm32h7_adc_disable(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	/* Disable ADC and wait until it's effectively disabled */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADEN), 100,
					   STM32_ADC_TIMEOUT_US);
	if (ret)
		dev_warn(&indio_dev->dev, "Failed to disable\n");
}

/**
 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 * @adc: stm32 adc instance
 */
static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int i, ret;
	u32 lincalrdyw_mask, val;

	/* Enable adc so LINCALRDYW1..6 bits are writable */
	ret = stm32h7_adc_enable(adc);
	if (ret)
		return ret;

	/* Read linearity calibration */
	lincalrdyw_mask = STM32H7_LINCALRDYW6;
	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);

		/* Poll: wait calib data to be ready in CALFACT2 register */
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   !(val & lincalrdyw_mask),
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to read calfact\n");
			goto disable;
		}

		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;

		lincalrdyw_mask >>= 1;
	}

	/* Read offset calibration */
	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;

disable:
	stm32h7_adc_disable(adc);

	return ret;
}

/**
 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 * @adc: stm32 adc instance
 * Note: ADC must be enabled, with no on-going conversions.
 */
static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int i, ret;
	u32 lincalrdyw_mask, val;

	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);

	lincalrdyw_mask = STM32H7_LINCALRDYW6;
	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
		/*
		 * Write saved calibration data to shadow registers:
		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
		 * data write. Then poll to wait for complete transfer.
		 */
		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   val & lincalrdyw_mask,
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to write calfact\n");
			return ret;
		}

		/*
		 * Read back calibration data, has two effects:
		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
		 *   for next time calibration needs to be restored.
		 * - BTW, bit clear triggers a read, then check data has been
		 *   correctly written.
		 */
		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
						   !(val & lincalrdyw_mask),
						   100, STM32_ADC_TIMEOUT_US);
		if (ret) {
			dev_err(&indio_dev->dev, "Failed to read calfact\n");
			return ret;
		}
		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
			dev_err(&indio_dev->dev, "calfact not consistent\n");
			return -EIO;
		}

		lincalrdyw_mask >>= 1;
	}

	return 0;
}

/**
 * Fixed timeout value for ADC calibration.
 * worst cases:
 * - low clock frequency
 * - maximum prescalers
 * Calibration requires:
 * - 131,072 ADC clock cycle for the linear calibration
 * - 20 ADC clock cycle for the offset calibration
 *
 * Set to 100ms for now
 */
#define STM32H7_ADC_CALIB_TIMEOUT_US		100000

/**
 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
 * @adc: stm32 adc instance
 * Exit from power down, calibrate ADC, then return to power down.
 */
static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
{
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	int ret;
	u32 val;

	stm32h7_adc_exit_pwr_down(adc);

	/*
	 * Select calibration mode:
	 * - Offset calibration for single ended inputs
	 * - No linearity calibration (do it later, before reading it)
	 */
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);

	/* Start calibration, then wait for completion */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADCAL), 100,
					   STM32H7_ADC_CALIB_TIMEOUT_US);
	if (ret) {
		dev_err(&indio_dev->dev, "calibration failed\n");
		goto pwr_dwn;
	}

	/*
	 * Select calibration mode, then start calibration:
	 * - Offset calibration for differential input
	 * - Linearity calibration (needs to be done only once for single/diff)
	 *   will run simultaneously with offset calibration.
	 */
	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
					   !(val & STM32H7_ADCAL), 100,
					   STM32H7_ADC_CALIB_TIMEOUT_US);
	if (ret) {
		dev_err(&indio_dev->dev, "calibration failed\n");
		goto pwr_dwn;
	}

	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);

	/* Read calibration result for future reference */
	ret = stm32h7_adc_read_selfcalib(adc);

pwr_dwn:
	stm32h7_adc_enter_pwr_down(adc);

	return ret;
}

/**
 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 * @adc: stm32 adc instance
 * Leave power down mode.
 * Enable ADC.
 * Restore calibration data.
 * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
 */
static int stm32h7_adc_prepare(struct stm32_adc *adc)
{
	int ret;

	stm32h7_adc_exit_pwr_down(adc);

	ret = stm32h7_adc_enable(adc);
	if (ret)
		goto pwr_dwn;

	ret = stm32h7_adc_restore_selfcalib(adc);
	if (ret)
		goto disable;

	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);

	return 0;

disable:
	stm32h7_adc_disable(adc);
pwr_dwn:
	stm32h7_adc_enter_pwr_down(adc);

	return ret;
}

static void stm32h7_adc_unprepare(struct stm32_adc *adc)
{
	stm32h7_adc_disable(adc);
	stm32h7_adc_enter_pwr_down(adc);
}

/**
 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 * @indio_dev: IIO device
 * @scan_mask: channels to be converted
 *
 * Conversion sequence :
 * Apply sampling time settings for all channels.
 * Configure ADC scan sequence based on selected channels in scan_mask.
 * Add channels to SQR registers, from scan_mask LSB to MSB, then
 * program sequence len.
 */
static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
				   const unsigned long *scan_mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
	const struct iio_chan_spec *chan;
	u32 val, bit;
	int i = 0;

	/* Apply sampling time settings */
	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);

	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
		chan = indio_dev->channels + bit;
		/*
		 * Assign one channel per SQ entry in regular
		 * sequence, starting with SQ1.
		 */
		i++;
		if (i > STM32_ADC_MAX_SQ)
			return -EINVAL;

		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
			__func__, chan->channel, i);

		val = stm32_adc_readl(adc, sqr[i].reg);
		val &= ~sqr[i].mask;
		val |= chan->channel << sqr[i].shift;
		stm32_adc_writel(adc, sqr[i].reg, val);
	}

	if (!i)
		return -EINVAL;

	/* Sequence len */
	val = stm32_adc_readl(adc, sqr[0].reg);
	val &= ~sqr[0].mask;
	val |= ((i - 1) << sqr[0].shift);
	stm32_adc_writel(adc, sqr[0].reg, val);

	return 0;
}

/**
 * stm32_adc_get_trig_extsel() - Get external trigger selection
 * @trig: trigger
 *
 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
 */
static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
				     struct iio_trigger *trig)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int i;

	/* lookup triggers registered by stm32 timer trigger driver */
	for (i = 0; adc->cfg->trigs[i].name; i++) {
		/**
		 * Checking both stm32 timer trigger type and trig name
		 * should be safe against arbitrary trigger names.
		 */
		if ((is_stm32_timer_trigger(trig) ||
		     is_stm32_lptim_trigger(trig)) &&
		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
			return adc->cfg->trigs[i].extsel;
		}
	}

	return -EINVAL;
}

/**
 * stm32_adc_set_trig() - Set a regular trigger
 * @indio_dev: IIO device
 * @trig: IIO trigger
 *
 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
 * - if HW trigger enabled, set source & polarity
 */
static int stm32_adc_set_trig(struct iio_dev *indio_dev,
			      struct iio_trigger *trig)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
	unsigned long flags;
	int ret;

	if (trig) {
		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
		if (ret < 0)
			return ret;

		/* set trigger source and polarity (default to rising edge) */
		extsel = ret;
		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
	}

	spin_lock_irqsave(&adc->lock, flags);
	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
	val |= exten << adc->cfg->regs->exten.shift;
	val |= extsel << adc->cfg->regs->extsel.shift;
	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
	spin_unlock_irqrestore(&adc->lock, flags);

	return 0;
}

static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
				  const struct iio_chan_spec *chan,
				  unsigned int type)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	adc->trigger_polarity = type;

	return 0;
}

static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
				  const struct iio_chan_spec *chan)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	return adc->trigger_polarity;
}

static const char * const stm32_trig_pol_items[] = {
	"rising-edge", "falling-edge", "both-edges",
};

static const struct iio_enum stm32_adc_trig_pol = {
	.items = stm32_trig_pol_items,
	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
	.get = stm32_adc_get_trig_pol,
	.set = stm32_adc_set_trig_pol,
};

/**
 * stm32_adc_single_conv() - Performs a single conversion
 * @indio_dev: IIO device
 * @chan: IIO channel
 * @res: conversion result
 *
 * The function performs a single conversion on a given channel:
 * - Apply sampling time settings
 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
 * - Use SW trigger
 * - Start conversion, then wait for interrupt completion.
 */
static int stm32_adc_single_conv(struct iio_dev *indio_dev,
				 const struct iio_chan_spec *chan,
				 int *res)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_regspec *regs = adc->cfg->regs;
	long timeout;
	u32 val;
	int ret;

	reinit_completion(&adc->completion);

	adc->bufi = 0;

	if (adc->cfg->prepare) {
		ret = adc->cfg->prepare(adc);
		if (ret)
			return ret;
	}

	/* Apply sampling time settings */
	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);

	/* Program chan number in regular sequence (SQ1) */
	val = stm32_adc_readl(adc, regs->sqr[1].reg);
	val &= ~regs->sqr[1].mask;
	val |= chan->channel << regs->sqr[1].shift;
	stm32_adc_writel(adc, regs->sqr[1].reg, val);

	/* Set regular sequence len (0 for 1 conversion) */
	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);

	/* Trigger detection disabled (conversion can be launched in SW) */
	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);

	stm32_adc_conv_irq_enable(adc);

	adc->cfg->start_conv(adc, false);

	timeout = wait_for_completion_interruptible_timeout(
					&adc->completion, STM32_ADC_TIMEOUT);
	if (timeout == 0) {
		ret = -ETIMEDOUT;
	} else if (timeout < 0) {
		ret = timeout;
	} else {
		*res = adc->buffer[0];
		ret = IIO_VAL_INT;
	}

	adc->cfg->stop_conv(adc);

	stm32_adc_conv_irq_disable(adc);

	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static int stm32_adc_read_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int *val, int *val2, long mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		if (chan->type == IIO_VOLTAGE)
			ret = stm32_adc_single_conv(indio_dev, chan, val);
		else
			ret = -EINVAL;
		iio_device_release_direct_mode(indio_dev);
		return ret;

	case IIO_CHAN_INFO_SCALE:
		*val = adc->common->vref_mv;
		*val2 = chan->scan_type.realbits;
		return IIO_VAL_FRACTIONAL_LOG2;

	default:
		return -EINVAL;
	}
}

static irqreturn_t stm32_adc_isr(int irq, void *data)
{
	struct stm32_adc *adc = data;
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
	const struct stm32_adc_regspec *regs = adc->cfg->regs;
	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);

	if (status & regs->isr_eoc.mask) {
		/* Reading DR also clears EOC status flag */
		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
		if (iio_buffer_enabled(indio_dev)) {
			adc->bufi++;
			if (adc->bufi >= adc->num_conv) {
				stm32_adc_conv_irq_disable(adc);
				iio_trigger_poll(indio_dev->trig);
			}
		} else {
			complete(&adc->completion);
		}
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

/**
 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
 * @indio_dev: IIO device
 * @trig: new trigger
 *
 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
 * driver, -EINVAL otherwise.
 */
static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
				      struct iio_trigger *trig)
{
	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}

static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;

	/*
	 * dma cyclic transfers are used, buffer is split into two periods.
	 * There should be :
	 * - always one buffer (period) dma is working on
	 * - one buffer (period) driver can push with iio_trigger_poll().
	 */
	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);

	return 0;
}

static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
				      const unsigned long *scan_mask)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);

	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
	if (ret)
		return ret;

	return 0;
}

static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
			      const struct of_phandle_args *iiospec)
{
	int i;

	for (i = 0; i < indio_dev->num_channels; i++)
		if (indio_dev->channels[i].channel == iiospec->args[0])
			return i;

	return -EINVAL;
}

/**
 * stm32_adc_debugfs_reg_access - read or write register value
 *
 * To read a value from an ADC register:
 *   echo [ADC reg offset] > direct_reg_access
 *   cat direct_reg_access
 *
 * To write a value in a ADC register:
 *   echo [ADC_reg_offset] [value] > direct_reg_access
 */
static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
					unsigned reg, unsigned writeval,
					unsigned *readval)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	if (!readval)
		stm32_adc_writel(adc, reg, writeval);
	else
		*readval = stm32_adc_readl(adc, reg);

	return 0;
}

static const struct iio_info stm32_adc_iio_info = {
	.read_raw = stm32_adc_read_raw,
	.validate_trigger = stm32_adc_validate_trigger,
	.hwfifo_set_watermark = stm32_adc_set_watermark,
	.update_scan_mode = stm32_adc_update_scan_mode,
	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
	.of_xlate = stm32_adc_of_xlate,
	.driver_module = THIS_MODULE,
};

static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
{
	struct dma_tx_state state;
	enum dma_status status;

	status = dmaengine_tx_status(adc->dma_chan,
				     adc->dma_chan->cookie,
				     &state);
	if (status == DMA_IN_PROGRESS) {
		/* Residue is size in bytes from end of buffer */
		unsigned int i = adc->rx_buf_sz - state.residue;
		unsigned int size;

		/* Return available bytes */
		if (i >= adc->bufi)
			size = i - adc->bufi;
		else
			size = adc->rx_buf_sz + i - adc->bufi;

		return size;
	}

	return 0;
}

static void stm32_adc_dma_buffer_done(void *data)
{
	struct iio_dev *indio_dev = data;

	iio_trigger_poll_chained(indio_dev->trig);
}

static int stm32_adc_dma_start(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;
	int ret;

	if (!adc->dma_chan)
		return 0;

	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
		adc->rx_buf_sz, adc->rx_buf_sz / 2);

	/* Prepare a DMA cyclic transaction */
	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
					 adc->rx_dma_buf,
					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
					 DMA_DEV_TO_MEM,
					 DMA_PREP_INTERRUPT);
	if (!desc)
		return -EBUSY;

	desc->callback = stm32_adc_dma_buffer_done;
	desc->callback_param = indio_dev;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dmaengine_terminate_all(adc->dma_chan);
		return ret;
	}

	/* Issue pending DMA requests */
	dma_async_issue_pending(adc->dma_chan);

	return 0;
}

static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	if (adc->cfg->prepare) {
		ret = adc->cfg->prepare(adc);
		if (ret)
			return ret;
	}

	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't set trigger\n");
		goto err_unprepare;
	}

	ret = stm32_adc_dma_start(indio_dev);
	if (ret) {
		dev_err(&indio_dev->dev, "Can't start dma\n");
		goto err_clr_trig;
	}

	ret = iio_triggered_buffer_postenable(indio_dev);
	if (ret < 0)
		goto err_stop_dma;

	/* Reset adc buffer index */
	adc->bufi = 0;

	if (!adc->dma_chan)
		stm32_adc_conv_irq_enable(adc);

	adc->cfg->start_conv(adc, !!adc->dma_chan);

	return 0;

err_stop_dma:
	if (adc->dma_chan)
		dmaengine_terminate_all(adc->dma_chan);
err_clr_trig:
	stm32_adc_set_trig(indio_dev, NULL);
err_unprepare:
	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	int ret;

	adc->cfg->stop_conv(adc);
	if (!adc->dma_chan)
		stm32_adc_conv_irq_disable(adc);

	ret = iio_triggered_buffer_predisable(indio_dev);
	if (ret < 0)
		dev_err(&indio_dev->dev, "predisable failed\n");

	if (adc->dma_chan)
		dmaengine_terminate_all(adc->dma_chan);

	if (stm32_adc_set_trig(indio_dev, NULL))
		dev_err(&indio_dev->dev, "Can't clear trigger\n");

	if (adc->cfg->unprepare)
		adc->cfg->unprepare(adc);

	return ret;
}

static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
	.postenable = &stm32_adc_buffer_postenable,
	.predisable = &stm32_adc_buffer_predisable,
};

static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct stm32_adc *adc = iio_priv(indio_dev);

	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);

	if (!adc->dma_chan) {
		/* reset buffer index */
		adc->bufi = 0;
		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
						   pf->timestamp);
	} else {
		int residue = stm32_adc_dma_residue(adc);

		while (residue >= indio_dev->scan_bytes) {
			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];

			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
							   pf->timestamp);
			residue -= indio_dev->scan_bytes;
			adc->bufi += indio_dev->scan_bytes;
			if (adc->bufi >= adc->rx_buf_sz)
				adc->bufi = 0;
		}
	}

	iio_trigger_notify_done(indio_dev->trig);

	/* re-enable eoc irq */
	if (!adc->dma_chan)
		stm32_adc_conv_irq_enable(adc);

	return IRQ_HANDLED;
}

static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
	{
		.name = "trigger_polarity_available",
		.shared = IIO_SHARED_BY_ALL,
		.read = iio_enum_available_read,
		.private = (uintptr_t)&stm32_adc_trig_pol,
	},
	{},
};

static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
{
	struct device_node *node = indio_dev->dev.of_node;
	struct stm32_adc *adc = iio_priv(indio_dev);
	unsigned int i;
	u32 res;

	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
		res = adc->cfg->adc_info->resolutions[0];

	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
		if (res == adc->cfg->adc_info->resolutions[i])
			break;
	if (i >= adc->cfg->adc_info->num_res) {
		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
		return -EINVAL;
	}

	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
	adc->res = i;

	return 0;
}

static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
{
	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
	unsigned int smp, r = smpr->reg;

	/* Determine sampling time (ADC clock cycles) */
	period_ns = NSEC_PER_SEC / adc->common->rate;
	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
			break;
	if (smp > STM32_ADC_MAX_SMP)
		smp = STM32_ADC_MAX_SMP;

	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
}

static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
				    struct iio_chan_spec *chan,
				    const struct stm32_adc_chan_spec *channel,
				    int scan_index, u32 smp)
{
	struct stm32_adc *adc = iio_priv(indio_dev);

	chan->type = channel->type;
	chan->channel = channel->channel;
	chan->datasheet_name = channel->name;
	chan->scan_index = scan_index;
	chan->indexed = 1;
	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
	chan->scan_type.sign = 'u';
	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
	chan->scan_type.storagebits = 16;
	chan->ext_info = stm32_adc_ext_info;

	/* Prepare sampling time settings */
	stm32_adc_smpr_init(adc, chan->channel, smp);

	/* pre-build selected channels mask */
	adc->pcsel |= BIT(chan->channel);
}

static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
	struct device_node *node = indio_dev->dev.of_node;
	struct stm32_adc *adc = iio_priv(indio_dev);
	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
	struct property *prop;
	const __be32 *cur;
	struct iio_chan_spec *channels;
	int scan_index = 0, num_channels, ret;
	u32 val, smp = 0;

	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
	if (num_channels < 0 ||
	    num_channels > adc_info->max_channels) {
		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
		return num_channels < 0 ? num_channels : -EINVAL;
	}

	/* Optional sample time is provided either for each, or all channels */
	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
	if (ret > 1 && ret != num_channels) {
		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
		return -EINVAL;
	}

	channels = devm_kcalloc(&indio_dev->dev, num_channels,
				sizeof(struct iio_chan_spec), GFP_KERNEL);
	if (!channels)
		return -ENOMEM;

	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
		if (val >= adc_info->max_channels) {
			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
			return -EINVAL;
		}

		/*
		 * Using of_property_read_u32_index(), smp value will only be
		 * modified if valid u32 value can be decoded. This allows to
		 * get either no value, 1 shared value for all indexes, or one
		 * value per channel.
		 */
		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
					   scan_index, &smp);

		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
					&adc_info->channels[val],
					scan_index, smp);
		scan_index++;
	}

	indio_dev->num_channels = scan_index;
	indio_dev->channels = channels;

	return 0;
}

static int stm32_adc_dma_request(struct iio_dev *indio_dev)
{
	struct stm32_adc *adc = iio_priv(indio_dev);
	struct dma_slave_config config;
	int ret;

	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
	if (!adc->dma_chan)
		return 0;

	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
					 STM32_DMA_BUFFER_SIZE,
					 &adc->rx_dma_buf, GFP_KERNEL);
	if (!adc->rx_buf) {
		ret = -ENOMEM;
		goto err_release;
	}

	/* Configure DMA channel to read data register */
	memset(&config, 0, sizeof(config));
	config.src_addr = (dma_addr_t)adc->common->phys_base;
	config.src_addr += adc->offset + adc->cfg->regs->dr;
	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;

	ret = dmaengine_slave_config(adc->dma_chan, &config);
	if (ret)
		goto err_free;

	return 0;

err_free:
	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
			  adc->rx_buf, adc->rx_dma_buf);
err_release:
	dma_release_channel(adc->dma_chan);

	return ret;
}

static int stm32_adc_probe(struct platform_device *pdev)
{
	struct iio_dev *indio_dev;
	struct device *dev = &pdev->dev;
	struct stm32_adc *adc;
	int ret;

	if (!pdev->dev.of_node)
		return -ENODEV;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
	if (!indio_dev)
		return -ENOMEM;

	adc = iio_priv(indio_dev);
	adc->common = dev_get_drvdata(pdev->dev.parent);
	spin_lock_init(&adc->lock);
	init_completion(&adc->completion);
	adc->cfg = (const struct stm32_adc_cfg *)
		of_match_device(dev->driver->of_match_table, dev)->data;

	indio_dev->name = dev_name(&pdev->dev);
	indio_dev->dev.parent = &pdev->dev;
	indio_dev->dev.of_node = pdev->dev.of_node;
	indio_dev->info = &stm32_adc_iio_info;
	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;

	platform_set_drvdata(pdev, adc);

	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
	if (ret != 0) {
		dev_err(&pdev->dev, "missing reg property\n");
		return -EINVAL;
	}

	adc->irq = platform_get_irq(pdev, 0);
	if (adc->irq < 0) {
		dev_err(&pdev->dev, "failed to get irq\n");
		return adc->irq;
	}

	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
			       0, pdev->name, adc);
	if (ret) {
		dev_err(&pdev->dev, "failed to request IRQ\n");
		return ret;
	}

	adc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(adc->clk)) {
		ret = PTR_ERR(adc->clk);
		if (ret == -ENOENT && !adc->cfg->clk_required) {
			adc->clk = NULL;
		} else {
			dev_err(&pdev->dev, "Can't get clock\n");
			return ret;
		}
	}

	if (adc->clk) {
		ret = clk_prepare_enable(adc->clk);
		if (ret < 0) {
			dev_err(&pdev->dev, "clk enable failed\n");
			return ret;
		}
	}

	ret = stm32_adc_of_get_resolution(indio_dev);
	if (ret < 0)
		goto err_clk_disable;
	stm32_adc_set_res(adc);

	if (adc->cfg->selfcalib) {
		ret = adc->cfg->selfcalib(adc);
		if (ret)
			goto err_clk_disable;
	}

	ret = stm32_adc_chan_of_init(indio_dev);
	if (ret < 0)
		goto err_clk_disable;

	ret = stm32_adc_dma_request(indio_dev);
	if (ret < 0)
		goto err_clk_disable;

	ret = iio_triggered_buffer_setup(indio_dev,
					 &iio_pollfunc_store_time,
					 &stm32_adc_trigger_handler,
					 &stm32_adc_buffer_setup_ops);
	if (ret) {
		dev_err(&pdev->dev, "buffer setup failed\n");
		goto err_dma_disable;
	}

	ret = iio_device_register(indio_dev);
	if (ret) {
		dev_err(&pdev->dev, "iio dev register failed\n");
		goto err_buffer_cleanup;
	}

	return 0;

err_buffer_cleanup:
	iio_triggered_buffer_cleanup(indio_dev);

err_dma_disable:
	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  STM32_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->rx_dma_buf);
		dma_release_channel(adc->dma_chan);
	}
err_clk_disable:
	if (adc->clk)
		clk_disable_unprepare(adc->clk);

	return ret;
}

static int stm32_adc_remove(struct platform_device *pdev)
{
	struct stm32_adc *adc = platform_get_drvdata(pdev);
	struct iio_dev *indio_dev = iio_priv_to_dev(adc);

	iio_device_unregister(indio_dev);
	iio_triggered_buffer_cleanup(indio_dev);
	if (adc->dma_chan) {
		dma_free_coherent(adc->dma_chan->device->dev,
				  STM32_DMA_BUFFER_SIZE,
				  adc->rx_buf, adc->rx_dma_buf);
		dma_release_channel(adc->dma_chan);
	}
	if (adc->clk)
		clk_disable_unprepare(adc->clk);

	return 0;
}

static const struct stm32_adc_cfg stm32f4_adc_cfg = {
	.regs = &stm32f4_adc_regspec,
	.adc_info = &stm32f4_adc_info,
	.trigs = stm32f4_adc_trigs,
	.clk_required = true,
	.start_conv = stm32f4_adc_start_conv,
	.stop_conv = stm32f4_adc_stop_conv,
	.smp_cycles = stm32f4_adc_smp_cycles,
};

static const struct stm32_adc_cfg stm32h7_adc_cfg = {
	.regs = &stm32h7_adc_regspec,
	.adc_info = &stm32h7_adc_info,
	.trigs = stm32h7_adc_trigs,
	.selfcalib = stm32h7_adc_selfcalib,
	.start_conv = stm32h7_adc_start_conv,
	.stop_conv = stm32h7_adc_stop_conv,
	.prepare = stm32h7_adc_prepare,
	.unprepare = stm32h7_adc_unprepare,
	.smp_cycles = stm32h7_adc_smp_cycles,
};

static const struct of_device_id stm32_adc_of_match[] = {
	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
	{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);

static struct platform_driver stm32_adc_driver = {
	.probe = stm32_adc_probe,
	.remove = stm32_adc_remove,
	.driver = {
		.name = "stm32-adc",
		.of_match_table = stm32_adc_of_match,
	},
};
module_platform_driver(stm32_adc_driver);

MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc");