huf_decompress.c 32.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Huffman decoder, part of New Generation Entropy library
 * Copyright (C) 2013-2016, Yann Collet.
 *
 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * This program is free software; you can redistribute it and/or modify it under
 * the terms of the GNU General Public License version 2 as published by the
 * Free Software Foundation. This program is dual-licensed; you may select
 * either version 2 of the GNU General Public License ("GPL") or BSD license
 * ("BSD").
 *
 * You can contact the author at :
 * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
 */

/* **************************************************************
*  Compiler specifics
****************************************************************/
#define FORCE_INLINE static __always_inline

/* **************************************************************
*  Dependencies
****************************************************************/
#include "bitstream.h" /* BIT_* */
#include "fse.h"       /* header compression */
#include "huf.h"
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/string.h> /* memcpy, memset */

/* **************************************************************
*  Error Management
****************************************************************/
#define HUF_STATIC_ASSERT(c)                                   \
	{                                                      \
		enum { HUF_static_assert = 1 / (int)(!!(c)) }; \
	} /* use only *after* variable declarations */

/*-***************************/
/*  generic DTableDesc       */
/*-***************************/

typedef struct {
	BYTE maxTableLog;
	BYTE tableType;
	BYTE tableLog;
	BYTE reserved;
} DTableDesc;

static DTableDesc HUF_getDTableDesc(const HUF_DTable *table)
{
	DTableDesc dtd;
	memcpy(&dtd, table, sizeof(dtd));
	return dtd;
}

/*-***************************/
/*  single-symbol decoding   */
/*-***************************/

typedef struct {
	BYTE byte;
	BYTE nbBits;
} HUF_DEltX2; /* single-symbol decoding */

size_t HUF_readDTableX2_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
{
	U32 tableLog = 0;
	U32 nbSymbols = 0;
	size_t iSize;
	void *const dtPtr = DTable + 1;
	HUF_DEltX2 *const dt = (HUF_DEltX2 *)dtPtr;

	U32 *rankVal;
	BYTE *huffWeight;
	size_t spaceUsed32 = 0;

	rankVal = (U32 *)workspace + spaceUsed32;
	spaceUsed32 += HUF_TABLELOG_ABSOLUTEMAX + 1;
	huffWeight = (BYTE *)((U32 *)workspace + spaceUsed32);
	spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;

	if ((spaceUsed32 << 2) > workspaceSize)
		return ERROR(tableLog_tooLarge);
	workspace = (U32 *)workspace + spaceUsed32;
	workspaceSize -= (spaceUsed32 << 2);

	HUF_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
	/* memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */

	iSize = HUF_readStats_wksp(huffWeight, HUF_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize);
	if (HUF_isError(iSize))
		return iSize;

	/* Table header */
	{
		DTableDesc dtd = HUF_getDTableDesc(DTable);
		if (tableLog > (U32)(dtd.maxTableLog + 1))
			return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
		dtd.tableType = 0;
		dtd.tableLog = (BYTE)tableLog;
		memcpy(DTable, &dtd, sizeof(dtd));
	}

	/* Calculate starting value for each rank */
	{
		U32 n, nextRankStart = 0;
		for (n = 1; n < tableLog + 1; n++) {
			U32 const curr = nextRankStart;
			nextRankStart += (rankVal[n] << (n - 1));
			rankVal[n] = curr;
		}
	}

	/* fill DTable */
	{
		U32 n;
		for (n = 0; n < nbSymbols; n++) {
			U32 const w = huffWeight[n];
			U32 const length = (1 << w) >> 1;
			U32 u;
			HUF_DEltX2 D;
			D.byte = (BYTE)n;
			D.nbBits = (BYTE)(tableLog + 1 - w);
			for (u = rankVal[w]; u < rankVal[w] + length; u++)
				dt[u] = D;
			rankVal[w] += length;
		}
	}

	return iSize;
}

static BYTE HUF_decodeSymbolX2(BIT_DStream_t *Dstream, const HUF_DEltX2 *dt, const U32 dtLog)
{
	size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
	BYTE const c = dt[val].byte;
	BIT_skipBits(Dstream, dt[val].nbBits);
	return c;
}

#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr)         \
	if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \
	HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
	if (ZSTD_64bits())                     \
	HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)

FORCE_INLINE size_t HUF_decodeStreamX2(BYTE *p, BIT_DStream_t *const bitDPtr, BYTE *const pEnd, const HUF_DEltX2 *const dt, const U32 dtLog)
{
	BYTE *const pStart = p;

	/* up to 4 symbols at a time */
	while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd - 4)) {
		HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
		HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
		HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
		HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
	}

	/* closer to the end */
	while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
		HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

	/* no more data to retrieve from bitstream, hence no need to reload */
	while (p < pEnd)
		HUF_DECODE_SYMBOLX2_0(p, bitDPtr);

	return pEnd - pStart;
}

static size_t HUF_decompress1X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	BYTE *op = (BYTE *)dst;
	BYTE *const oend = op + dstSize;
	const void *dtPtr = DTable + 1;
	const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr;
	BIT_DStream_t bitD;
	DTableDesc const dtd = HUF_getDTableDesc(DTable);
	U32 const dtLog = dtd.tableLog;

	{
		size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
		if (HUF_isError(errorCode))
			return errorCode;
	}

	HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);

	/* check */
	if (!BIT_endOfDStream(&bitD))
		return ERROR(corruption_detected);

	return dstSize;
}

size_t HUF_decompress1X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc dtd = HUF_getDTableDesc(DTable);
	if (dtd.tableType != 0)
		return ERROR(GENERIC);
	return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}

size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	const BYTE *ip = (const BYTE *)cSrc;

	size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize);
	if (HUF_isError(hSize))
		return hSize;
	if (hSize >= cSrcSize)
		return ERROR(srcSize_wrong);
	ip += hSize;
	cSrcSize -= hSize;

	return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx);
}

static size_t HUF_decompress4X2_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	/* Check */
	if (cSrcSize < 10)
		return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */

	{
		const BYTE *const istart = (const BYTE *)cSrc;
		BYTE *const ostart = (BYTE *)dst;
		BYTE *const oend = ostart + dstSize;
		const void *const dtPtr = DTable + 1;
		const HUF_DEltX2 *const dt = (const HUF_DEltX2 *)dtPtr;

		/* Init */
		BIT_DStream_t bitD1;
		BIT_DStream_t bitD2;
		BIT_DStream_t bitD3;
		BIT_DStream_t bitD4;
		size_t const length1 = ZSTD_readLE16(istart);
		size_t const length2 = ZSTD_readLE16(istart + 2);
		size_t const length3 = ZSTD_readLE16(istart + 4);
		size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
		const BYTE *const istart1 = istart + 6; /* jumpTable */
		const BYTE *const istart2 = istart1 + length1;
		const BYTE *const istart3 = istart2 + length2;
		const BYTE *const istart4 = istart3 + length3;
		const size_t segmentSize = (dstSize + 3) / 4;
		BYTE *const opStart2 = ostart + segmentSize;
		BYTE *const opStart3 = opStart2 + segmentSize;
		BYTE *const opStart4 = opStart3 + segmentSize;
		BYTE *op1 = ostart;
		BYTE *op2 = opStart2;
		BYTE *op3 = opStart3;
		BYTE *op4 = opStart4;
		U32 endSignal;
		DTableDesc const dtd = HUF_getDTableDesc(DTable);
		U32 const dtLog = dtd.tableLog;

		if (length4 > cSrcSize)
			return ERROR(corruption_detected); /* overflow */
		{
			size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
			if (HUF_isError(errorCode))
				return errorCode;
		}

		/* 16-32 symbols per loop (4-8 symbols per stream) */
		endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
		for (; (endSignal == BIT_DStream_unfinished) && (op4 < (oend - 7));) {
			HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
			HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
			HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
			HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
			HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
			HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
			HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
			HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
			HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
			HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
			HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
			HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
			HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
			HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
			HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
			HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
			endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
		}

		/* check corruption */
		if (op1 > opStart2)
			return ERROR(corruption_detected);
		if (op2 > opStart3)
			return ERROR(corruption_detected);
		if (op3 > opStart4)
			return ERROR(corruption_detected);
		/* note : op4 supposed already verified within main loop */

		/* finish bitStreams one by one */
		HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
		HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
		HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
		HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);

		/* check */
		endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
		if (!endSignal)
			return ERROR(corruption_detected);

		/* decoded size */
		return dstSize;
	}
}

size_t HUF_decompress4X2_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc dtd = HUF_getDTableDesc(DTable);
	if (dtd.tableType != 0)
		return ERROR(GENERIC);
	return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}

size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	const BYTE *ip = (const BYTE *)cSrc;

	size_t const hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize);
	if (HUF_isError(hSize))
		return hSize;
	if (hSize >= cSrcSize)
		return ERROR(srcSize_wrong);
	ip += hSize;
	cSrcSize -= hSize;

	return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
}

/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct {
	U16 sequence;
	BYTE nbBits;
	BYTE length;
} HUF_DEltX4; /* double-symbols decoding */

typedef struct {
	BYTE symbol;
	BYTE weight;
} sortedSymbol_t;

/* HUF_fillDTableX4Level2() :
 * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
static void HUF_fillDTableX4Level2(HUF_DEltX4 *DTable, U32 sizeLog, const U32 consumed, const U32 *rankValOrigin, const int minWeight,
				   const sortedSymbol_t *sortedSymbols, const U32 sortedListSize, U32 nbBitsBaseline, U16 baseSeq)
{
	HUF_DEltX4 DElt;
	U32 rankVal[HUF_TABLELOG_MAX + 1];

	/* get pre-calculated rankVal */
	memcpy(rankVal, rankValOrigin, sizeof(rankVal));

	/* fill skipped values */
	if (minWeight > 1) {
		U32 i, skipSize = rankVal[minWeight];
		ZSTD_writeLE16(&(DElt.sequence), baseSeq);
		DElt.nbBits = (BYTE)(consumed);
		DElt.length = 1;
		for (i = 0; i < skipSize; i++)
			DTable[i] = DElt;
	}

	/* fill DTable */
	{
		U32 s;
		for (s = 0; s < sortedListSize; s++) { /* note : sortedSymbols already skipped */
			const U32 symbol = sortedSymbols[s].symbol;
			const U32 weight = sortedSymbols[s].weight;
			const U32 nbBits = nbBitsBaseline - weight;
			const U32 length = 1 << (sizeLog - nbBits);
			const U32 start = rankVal[weight];
			U32 i = start;
			const U32 end = start + length;

			ZSTD_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
			DElt.nbBits = (BYTE)(nbBits + consumed);
			DElt.length = 2;
			do {
				DTable[i++] = DElt;
			} while (i < end); /* since length >= 1 */

			rankVal[weight] += length;
		}
	}
}

typedef U32 rankVal_t[HUF_TABLELOG_MAX][HUF_TABLELOG_MAX + 1];
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];

static void HUF_fillDTableX4(HUF_DEltX4 *DTable, const U32 targetLog, const sortedSymbol_t *sortedList, const U32 sortedListSize, const U32 *rankStart,
			     rankVal_t rankValOrigin, const U32 maxWeight, const U32 nbBitsBaseline)
{
	U32 rankVal[HUF_TABLELOG_MAX + 1];
	const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
	const U32 minBits = nbBitsBaseline - maxWeight;
	U32 s;

	memcpy(rankVal, rankValOrigin, sizeof(rankVal));

	/* fill DTable */
	for (s = 0; s < sortedListSize; s++) {
		const U16 symbol = sortedList[s].symbol;
		const U32 weight = sortedList[s].weight;
		const U32 nbBits = nbBitsBaseline - weight;
		const U32 start = rankVal[weight];
		const U32 length = 1 << (targetLog - nbBits);

		if (targetLog - nbBits >= minBits) { /* enough room for a second symbol */
			U32 sortedRank;
			int minWeight = nbBits + scaleLog;
			if (minWeight < 1)
				minWeight = 1;
			sortedRank = rankStart[minWeight];
			HUF_fillDTableX4Level2(DTable + start, targetLog - nbBits, nbBits, rankValOrigin[nbBits], minWeight, sortedList + sortedRank,
					       sortedListSize - sortedRank, nbBitsBaseline, symbol);
		} else {
			HUF_DEltX4 DElt;
			ZSTD_writeLE16(&(DElt.sequence), symbol);
			DElt.nbBits = (BYTE)(nbBits);
			DElt.length = 1;
			{
				U32 const end = start + length;
				U32 u;
				for (u = start; u < end; u++)
					DTable[u] = DElt;
			}
		}
		rankVal[weight] += length;
	}
}

size_t HUF_readDTableX4_wksp(HUF_DTable *DTable, const void *src, size_t srcSize, void *workspace, size_t workspaceSize)
{
	U32 tableLog, maxW, sizeOfSort, nbSymbols;
	DTableDesc dtd = HUF_getDTableDesc(DTable);
	U32 const maxTableLog = dtd.maxTableLog;
	size_t iSize;
	void *dtPtr = DTable + 1; /* force compiler to avoid strict-aliasing */
	HUF_DEltX4 *const dt = (HUF_DEltX4 *)dtPtr;
	U32 *rankStart;

	rankValCol_t *rankVal;
	U32 *rankStats;
	U32 *rankStart0;
	sortedSymbol_t *sortedSymbol;
	BYTE *weightList;
	size_t spaceUsed32 = 0;

	HUF_STATIC_ASSERT((sizeof(rankValCol_t) & 3) == 0);

	rankVal = (rankValCol_t *)((U32 *)workspace + spaceUsed32);
	spaceUsed32 += (sizeof(rankValCol_t) * HUF_TABLELOG_MAX) >> 2;
	rankStats = (U32 *)workspace + spaceUsed32;
	spaceUsed32 += HUF_TABLELOG_MAX + 1;
	rankStart0 = (U32 *)workspace + spaceUsed32;
	spaceUsed32 += HUF_TABLELOG_MAX + 2;
	sortedSymbol = (sortedSymbol_t *)((U32 *)workspace + spaceUsed32);
	spaceUsed32 += ALIGN(sizeof(sortedSymbol_t) * (HUF_SYMBOLVALUE_MAX + 1), sizeof(U32)) >> 2;
	weightList = (BYTE *)((U32 *)workspace + spaceUsed32);
	spaceUsed32 += ALIGN(HUF_SYMBOLVALUE_MAX + 1, sizeof(U32)) >> 2;

	if ((spaceUsed32 << 2) > workspaceSize)
		return ERROR(tableLog_tooLarge);
	workspace = (U32 *)workspace + spaceUsed32;
	workspaceSize -= (spaceUsed32 << 2);

	rankStart = rankStart0 + 1;
	memset(rankStats, 0, sizeof(U32) * (2 * HUF_TABLELOG_MAX + 2 + 1));

	HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
	if (maxTableLog > HUF_TABLELOG_MAX)
		return ERROR(tableLog_tooLarge);
	/* memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */

	iSize = HUF_readStats_wksp(weightList, HUF_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize, workspace, workspaceSize);
	if (HUF_isError(iSize))
		return iSize;

	/* check result */
	if (tableLog > maxTableLog)
		return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */

	/* find maxWeight */
	for (maxW = tableLog; rankStats[maxW] == 0; maxW--) {
	} /* necessarily finds a solution before 0 */

	/* Get start index of each weight */
	{
		U32 w, nextRankStart = 0;
		for (w = 1; w < maxW + 1; w++) {
			U32 curr = nextRankStart;
			nextRankStart += rankStats[w];
			rankStart[w] = curr;
		}
		rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
		sizeOfSort = nextRankStart;
	}

	/* sort symbols by weight */
	{
		U32 s;
		for (s = 0; s < nbSymbols; s++) {
			U32 const w = weightList[s];
			U32 const r = rankStart[w]++;
			sortedSymbol[r].symbol = (BYTE)s;
			sortedSymbol[r].weight = (BYTE)w;
		}
		rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
	}

	/* Build rankVal */
	{
		U32 *const rankVal0 = rankVal[0];
		{
			int const rescale = (maxTableLog - tableLog) - 1; /* tableLog <= maxTableLog */
			U32 nextRankVal = 0;
			U32 w;
			for (w = 1; w < maxW + 1; w++) {
				U32 curr = nextRankVal;
				nextRankVal += rankStats[w] << (w + rescale);
				rankVal0[w] = curr;
			}
		}
		{
			U32 const minBits = tableLog + 1 - maxW;
			U32 consumed;
			for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
				U32 *const rankValPtr = rankVal[consumed];
				U32 w;
				for (w = 1; w < maxW + 1; w++) {
					rankValPtr[w] = rankVal0[w] >> consumed;
				}
			}
		}
	}

	HUF_fillDTableX4(dt, maxTableLog, sortedSymbol, sizeOfSort, rankStart0, rankVal, maxW, tableLog + 1);

	dtd.tableLog = (BYTE)maxTableLog;
	dtd.tableType = 1;
	memcpy(DTable, &dtd, sizeof(dtd));
	return iSize;
}

static U32 HUF_decodeSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog)
{
	size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
	memcpy(op, dt + val, 2);
	BIT_skipBits(DStream, dt[val].nbBits);
	return dt[val].length;
}

static U32 HUF_decodeLastSymbolX4(void *op, BIT_DStream_t *DStream, const HUF_DEltX4 *dt, const U32 dtLog)
{
	size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
	memcpy(op, dt + val, 1);
	if (dt[val].length == 1)
		BIT_skipBits(DStream, dt[val].nbBits);
	else {
		if (DStream->bitsConsumed < (sizeof(DStream->bitContainer) * 8)) {
			BIT_skipBits(DStream, dt[val].nbBits);
			if (DStream->bitsConsumed > (sizeof(DStream->bitContainer) * 8))
				/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
				DStream->bitsConsumed = (sizeof(DStream->bitContainer) * 8);
		}
	}
	return 1;
}

#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr)         \
	if (ZSTD_64bits() || (HUF_TABLELOG_MAX <= 12)) \
	ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
	if (ZSTD_64bits())                     \
	ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)

FORCE_INLINE size_t HUF_decodeStreamX4(BYTE *p, BIT_DStream_t *bitDPtr, BYTE *const pEnd, const HUF_DEltX4 *const dt, const U32 dtLog)
{
	BYTE *const pStart = p;

	/* up to 8 symbols at a time */
	while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd - (sizeof(bitDPtr->bitContainer) - 1))) {
		HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
		HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
		HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
		HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
	}

	/* closer to end : up to 2 symbols at a time */
	while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd - 2))
		HUF_DECODE_SYMBOLX4_0(p, bitDPtr);

	while (p <= pEnd - 2)
		HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */

	if (p < pEnd)
		p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);

	return p - pStart;
}

static size_t HUF_decompress1X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	BIT_DStream_t bitD;

	/* Init */
	{
		size_t const errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
		if (HUF_isError(errorCode))
			return errorCode;
	}

	/* decode */
	{
		BYTE *const ostart = (BYTE *)dst;
		BYTE *const oend = ostart + dstSize;
		const void *const dtPtr = DTable + 1; /* force compiler to not use strict-aliasing */
		const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr;
		DTableDesc const dtd = HUF_getDTableDesc(DTable);
		HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog);
	}

	/* check */
	if (!BIT_endOfDStream(&bitD))
		return ERROR(corruption_detected);

	/* decoded size */
	return dstSize;
}

size_t HUF_decompress1X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc dtd = HUF_getDTableDesc(DTable);
	if (dtd.tableType != 1)
		return ERROR(GENERIC);
	return HUF_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}

size_t HUF_decompress1X4_DCtx_wksp(HUF_DTable *DCtx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	const BYTE *ip = (const BYTE *)cSrc;

	size_t const hSize = HUF_readDTableX4_wksp(DCtx, cSrc, cSrcSize, workspace, workspaceSize);
	if (HUF_isError(hSize))
		return hSize;
	if (hSize >= cSrcSize)
		return ERROR(srcSize_wrong);
	ip += hSize;
	cSrcSize -= hSize;

	return HUF_decompress1X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx);
}

static size_t HUF_decompress4X4_usingDTable_internal(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	if (cSrcSize < 10)
		return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */

	{
		const BYTE *const istart = (const BYTE *)cSrc;
		BYTE *const ostart = (BYTE *)dst;
		BYTE *const oend = ostart + dstSize;
		const void *const dtPtr = DTable + 1;
		const HUF_DEltX4 *const dt = (const HUF_DEltX4 *)dtPtr;

		/* Init */
		BIT_DStream_t bitD1;
		BIT_DStream_t bitD2;
		BIT_DStream_t bitD3;
		BIT_DStream_t bitD4;
		size_t const length1 = ZSTD_readLE16(istart);
		size_t const length2 = ZSTD_readLE16(istart + 2);
		size_t const length3 = ZSTD_readLE16(istart + 4);
		size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
		const BYTE *const istart1 = istart + 6; /* jumpTable */
		const BYTE *const istart2 = istart1 + length1;
		const BYTE *const istart3 = istart2 + length2;
		const BYTE *const istart4 = istart3 + length3;
		size_t const segmentSize = (dstSize + 3) / 4;
		BYTE *const opStart2 = ostart + segmentSize;
		BYTE *const opStart3 = opStart2 + segmentSize;
		BYTE *const opStart4 = opStart3 + segmentSize;
		BYTE *op1 = ostart;
		BYTE *op2 = opStart2;
		BYTE *op3 = opStart3;
		BYTE *op4 = opStart4;
		U32 endSignal;
		DTableDesc const dtd = HUF_getDTableDesc(DTable);
		U32 const dtLog = dtd.tableLog;

		if (length4 > cSrcSize)
			return ERROR(corruption_detected); /* overflow */
		{
			size_t const errorCode = BIT_initDStream(&bitD1, istart1, length1);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD2, istart2, length2);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD3, istart3, length3);
			if (HUF_isError(errorCode))
				return errorCode;
		}
		{
			size_t const errorCode = BIT_initDStream(&bitD4, istart4, length4);
			if (HUF_isError(errorCode))
				return errorCode;
		}

		/* 16-32 symbols per loop (4-8 symbols per stream) */
		endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
		for (; (endSignal == BIT_DStream_unfinished) & (op4 < (oend - (sizeof(bitD4.bitContainer) - 1)));) {
			HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
			HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
			HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
			HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
			HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
			HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
			HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
			HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
			HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
			HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
			HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
			HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
			HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
			HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
			HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
			HUF_DECODE_SYMBOLX4_0(op4, &bitD4);

			endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
		}

		/* check corruption */
		if (op1 > opStart2)
			return ERROR(corruption_detected);
		if (op2 > opStart3)
			return ERROR(corruption_detected);
		if (op3 > opStart4)
			return ERROR(corruption_detected);
		/* note : op4 already verified within main loop */

		/* finish bitStreams one by one */
		HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
		HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
		HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
		HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);

		/* check */
		{
			U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
			if (!endCheck)
				return ERROR(corruption_detected);
		}

		/* decoded size */
		return dstSize;
	}
}

size_t HUF_decompress4X4_usingDTable(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc dtd = HUF_getDTableDesc(DTable);
	if (dtd.tableType != 1)
		return ERROR(GENERIC);
	return HUF_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable);
}

size_t HUF_decompress4X4_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	const BYTE *ip = (const BYTE *)cSrc;

	size_t hSize = HUF_readDTableX4_wksp(dctx, cSrc, cSrcSize, workspace, workspaceSize);
	if (HUF_isError(hSize))
		return hSize;
	if (hSize >= cSrcSize)
		return ERROR(srcSize_wrong);
	ip += hSize;
	cSrcSize -= hSize;

	return HUF_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx);
}

/* ********************************/
/* Generic decompression selector */
/* ********************************/

size_t HUF_decompress1X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc const dtd = HUF_getDTableDesc(DTable);
	return dtd.tableType ? HUF_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable)
			     : HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}

size_t HUF_decompress4X_usingDTable(void *dst, size_t maxDstSize, const void *cSrc, size_t cSrcSize, const HUF_DTable *DTable)
{
	DTableDesc const dtd = HUF_getDTableDesc(DTable);
	return dtd.tableType ? HUF_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable)
			     : HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable);
}

typedef struct {
	U32 tableTime;
	U32 decode256Time;
} algo_time_t;
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = {
    /* single, double, quad */
    {{0, 0}, {1, 1}, {2, 2}},		     /* Q==0 : impossible */
    {{0, 0}, {1, 1}, {2, 2}},		     /* Q==1 : impossible */
    {{38, 130}, {1313, 74}, {2151, 38}},     /* Q == 2 : 12-18% */
    {{448, 128}, {1353, 74}, {2238, 41}},    /* Q == 3 : 18-25% */
    {{556, 128}, {1353, 74}, {2238, 47}},    /* Q == 4 : 25-32% */
    {{714, 128}, {1418, 74}, {2436, 53}},    /* Q == 5 : 32-38% */
    {{883, 128}, {1437, 74}, {2464, 61}},    /* Q == 6 : 38-44% */
    {{897, 128}, {1515, 75}, {2622, 68}},    /* Q == 7 : 44-50% */
    {{926, 128}, {1613, 75}, {2730, 75}},    /* Q == 8 : 50-56% */
    {{947, 128}, {1729, 77}, {3359, 77}},    /* Q == 9 : 56-62% */
    {{1107, 128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
    {{1177, 128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
    {{1242, 128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
    {{1349, 128}, {2644, 106}, {5260, 106}}, /* Q ==13 : 81-87% */
    {{1455, 128}, {2422, 124}, {4174, 124}}, /* Q ==14 : 87-93% */
    {{722, 128}, {1891, 145}, {1936, 146}},  /* Q ==15 : 93-99% */
};

/** HUF_selectDecoder() :
*   Tells which decoder is likely to decode faster,
*   based on a set of pre-determined metrics.
*   @return : 0==HUF_decompress4X2, 1==HUF_decompress4X4 .
*   Assumption : 0 < cSrcSize < dstSize <= 128 KB */
U32 HUF_selectDecoder(size_t dstSize, size_t cSrcSize)
{
	/* decoder timing evaluation */
	U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
	U32 const D256 = (U32)(dstSize >> 8);
	U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
	U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
	DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */

	return DTime1 < DTime0;
}

typedef size_t (*decompressionAlgo)(void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize);

size_t HUF_decompress4X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	/* validation checks */
	if (dstSize == 0)
		return ERROR(dstSize_tooSmall);
	if (cSrcSize > dstSize)
		return ERROR(corruption_detected); /* invalid */
	if (cSrcSize == dstSize) {
		memcpy(dst, cSrc, dstSize);
		return dstSize;
	} /* not compressed */
	if (cSrcSize == 1) {
		memset(dst, *(const BYTE *)cSrc, dstSize);
		return dstSize;
	} /* RLE */

	{
		U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
		return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
			      : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
	}
}

size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	/* validation checks */
	if (dstSize == 0)
		return ERROR(dstSize_tooSmall);
	if ((cSrcSize >= dstSize) || (cSrcSize <= 1))
		return ERROR(corruption_detected); /* invalid */

	{
		U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
		return algoNb ? HUF_decompress4X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
			      : HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
	}
}

size_t HUF_decompress1X_DCtx_wksp(HUF_DTable *dctx, void *dst, size_t dstSize, const void *cSrc, size_t cSrcSize, void *workspace, size_t workspaceSize)
{
	/* validation checks */
	if (dstSize == 0)
		return ERROR(dstSize_tooSmall);
	if (cSrcSize > dstSize)
		return ERROR(corruption_detected); /* invalid */
	if (cSrcSize == dstSize) {
		memcpy(dst, cSrc, dstSize);
		return dstSize;
	} /* not compressed */
	if (cSrcSize == 1) {
		memset(dst, *(const BYTE *)cSrc, dstSize);
		return dstSize;
	} /* RLE */

	{
		U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
		return algoNb ? HUF_decompress1X4_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize)
			      : HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workspace, workspaceSize);
	}
}