lrw.c 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/* LRW: as defined by Cyril Guyot in
 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 *
 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based on ecb.c
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */
/* This implementation is checked against the test vectors in the above
 * document and by a test vector provided by Ken Buchanan at
 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 *
 * The test vectors are included in the testing module tcrypt.[ch] */

#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
#include <crypto/lrw.h>

#define LRW_BUFFER_SIZE 128u

struct priv {
	struct crypto_skcipher *child;
	struct lrw_table_ctx table;
};

struct rctx {
	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];

	be128 t;

	be128 *ext;

	struct scatterlist srcbuf[2];
	struct scatterlist dstbuf[2];
	struct scatterlist *src;
	struct scatterlist *dst;

	unsigned int left;

	struct skcipher_request subreq;
};

static inline void setbit128_bbe(void *b, int bit)
{
	__set_bit(bit ^ (0x80 -
#ifdef __BIG_ENDIAN
			 BITS_PER_LONG
#else
			 BITS_PER_BYTE
#endif
			), b);
}

int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
{
	be128 tmp = { 0 };
	int i;

	if (ctx->table)
		gf128mul_free_64k(ctx->table);

	/* initialize multiplication table for Key2 */
	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
	if (!ctx->table)
		return -ENOMEM;

	/* initialize optimization table */
	for (i = 0; i < 128; i++) {
		setbit128_bbe(&tmp, i);
		ctx->mulinc[i] = tmp;
		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(lrw_init_table);

void lrw_free_table(struct lrw_table_ctx *ctx)
{
	if (ctx->table)
		gf128mul_free_64k(ctx->table);
}
EXPORT_SYMBOL_GPL(lrw_free_table);

static int setkey(struct crypto_skcipher *parent, const u8 *key,
		  unsigned int keylen)
{
	struct priv *ctx = crypto_skcipher_ctx(parent);
	struct crypto_skcipher *child = ctx->child;
	int err, bsize = LRW_BLOCK_SIZE;
	const u8 *tweak = key + keylen - bsize;

	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
					 CRYPTO_TFM_REQ_MASK);
	err = crypto_skcipher_setkey(child, key, keylen - bsize);
	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
					  CRYPTO_TFM_RES_MASK);
	if (err)
		return err;

	return lrw_init_table(&ctx->table, tweak);
}

static inline void inc(be128 *iv)
{
	be64_add_cpu(&iv->b, 1);
	if (!iv->b)
		be64_add_cpu(&iv->a, 1);
}

/* this returns the number of consequative 1 bits starting
 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
static inline int get_index128(be128 *block)
{
	int x;
	__be32 *p = (__be32 *) block;

	for (p += 3, x = 0; x < 128; p--, x += 32) {
		u32 val = be32_to_cpup(p);

		if (!~val)
			continue;

		return x + ffz(val);
	}

	/*
	 * If we get here, then x == 128 and we are incrementing the counter
	 * from all ones to all zeros. This means we must return index 127, i.e.
	 * the one corresponding to key2*{ 1,...,1 }.
	 */
	return 127;
}

static int post_crypt(struct skcipher_request *req)
{
	struct rctx *rctx = skcipher_request_ctx(req);
	be128 *buf = rctx->ext ?: rctx->buf;
	struct skcipher_request *subreq;
	const int bs = LRW_BLOCK_SIZE;
	struct skcipher_walk w;
	struct scatterlist *sg;
	unsigned offset;
	int err;

	subreq = &rctx->subreq;
	err = skcipher_walk_virt(&w, subreq, false);

	while (w.nbytes) {
		unsigned int avail = w.nbytes;
		be128 *wdst;

		wdst = w.dst.virt.addr;

		do {
			be128_xor(wdst, buf++, wdst);
			wdst++;
		} while ((avail -= bs) >= bs);

		err = skcipher_walk_done(&w, avail);
	}

	rctx->left -= subreq->cryptlen;

	if (err || !rctx->left)
		goto out;

	rctx->dst = rctx->dstbuf;

	scatterwalk_done(&w.out, 0, 1);
	sg = w.out.sg;
	offset = w.out.offset;

	if (rctx->dst != sg) {
		rctx->dst[0] = *sg;
		sg_unmark_end(rctx->dst);
		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
	}
	rctx->dst[0].length -= offset - sg->offset;
	rctx->dst[0].offset = offset;

out:
	return err;
}

static int pre_crypt(struct skcipher_request *req)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct rctx *rctx = skcipher_request_ctx(req);
	struct priv *ctx = crypto_skcipher_ctx(tfm);
	be128 *buf = rctx->ext ?: rctx->buf;
	struct skcipher_request *subreq;
	const int bs = LRW_BLOCK_SIZE;
	struct skcipher_walk w;
	struct scatterlist *sg;
	unsigned cryptlen;
	unsigned offset;
	be128 *iv;
	bool more;
	int err;

	subreq = &rctx->subreq;
	skcipher_request_set_tfm(subreq, tfm);

	cryptlen = subreq->cryptlen;
	more = rctx->left > cryptlen;
	if (!more)
		cryptlen = rctx->left;

	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
				   cryptlen, req->iv);

	err = skcipher_walk_virt(&w, subreq, false);
	iv = w.iv;

	while (w.nbytes) {
		unsigned int avail = w.nbytes;
		be128 *wsrc;
		be128 *wdst;

		wsrc = w.src.virt.addr;
		wdst = w.dst.virt.addr;

		do {
			*buf++ = rctx->t;
			be128_xor(wdst++, &rctx->t, wsrc++);

			/* T <- I*Key2, using the optimization
			 * discussed in the specification */
			be128_xor(&rctx->t, &rctx->t,
				  &ctx->table.mulinc[get_index128(iv)]);
			inc(iv);
		} while ((avail -= bs) >= bs);

		err = skcipher_walk_done(&w, avail);
	}

	skcipher_request_set_tfm(subreq, ctx->child);
	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
				   cryptlen, NULL);

	if (err || !more)
		goto out;

	rctx->src = rctx->srcbuf;

	scatterwalk_done(&w.in, 0, 1);
	sg = w.in.sg;
	offset = w.in.offset;

	if (rctx->src != sg) {
		rctx->src[0] = *sg;
		sg_unmark_end(rctx->src);
		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
	}
	rctx->src[0].length -= offset - sg->offset;
	rctx->src[0].offset = offset;

out:
	return err;
}

static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
{
	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq;
	gfp_t gfp;

	subreq = &rctx->subreq;
	skcipher_request_set_callback(subreq, req->base.flags, done, req);

	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
							   GFP_ATOMIC;
	rctx->ext = NULL;

	subreq->cryptlen = LRW_BUFFER_SIZE;
	if (req->cryptlen > LRW_BUFFER_SIZE) {
		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);

		rctx->ext = kmalloc(n, gfp);
		if (rctx->ext)
			subreq->cryptlen = n;
	}

	rctx->src = req->src;
	rctx->dst = req->dst;
	rctx->left = req->cryptlen;

	/* calculate first value of T */
	memcpy(&rctx->t, req->iv, sizeof(rctx->t));

	/* T <- I*Key2 */
	gf128mul_64k_bbe(&rctx->t, ctx->table.table);

	return 0;
}

static void exit_crypt(struct skcipher_request *req)
{
	struct rctx *rctx = skcipher_request_ctx(req);

	rctx->left = 0;

	if (rctx->ext)
		kzfree(rctx->ext);
}

static int do_encrypt(struct skcipher_request *req, int err)
{
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq;

	subreq = &rctx->subreq;

	while (!err && rctx->left) {
		err = pre_crypt(req) ?:
		      crypto_skcipher_encrypt(subreq) ?:
		      post_crypt(req);

		if (err == -EINPROGRESS ||
		    (err == -EBUSY &&
		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return err;
	}

	exit_crypt(req);
	return err;
}

static void encrypt_done(struct crypto_async_request *areq, int err)
{
	struct skcipher_request *req = areq->data;
	struct skcipher_request *subreq;
	struct rctx *rctx;

	rctx = skcipher_request_ctx(req);

	if (err == -EINPROGRESS) {
		if (rctx->left != req->cryptlen)
			return;
		goto out;
	}

	subreq = &rctx->subreq;
	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;

	err = do_encrypt(req, err ?: post_crypt(req));
	if (rctx->left)
		return;

out:
	skcipher_request_complete(req, err);
}

static int encrypt(struct skcipher_request *req)
{
	return do_encrypt(req, init_crypt(req, encrypt_done));
}

static int do_decrypt(struct skcipher_request *req, int err)
{
	struct rctx *rctx = skcipher_request_ctx(req);
	struct skcipher_request *subreq;

	subreq = &rctx->subreq;

	while (!err && rctx->left) {
		err = pre_crypt(req) ?:
		      crypto_skcipher_decrypt(subreq) ?:
		      post_crypt(req);

		if (err == -EINPROGRESS ||
		    (err == -EBUSY &&
		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
			return err;
	}

	exit_crypt(req);
	return err;
}

static void decrypt_done(struct crypto_async_request *areq, int err)
{
	struct skcipher_request *req = areq->data;
	struct skcipher_request *subreq;
	struct rctx *rctx;

	rctx = skcipher_request_ctx(req);

	if (err == -EINPROGRESS) {
		if (rctx->left != req->cryptlen)
			return;
		goto out;
	}

	subreq = &rctx->subreq;
	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;

	err = do_decrypt(req, err ?: post_crypt(req));
	if (rctx->left)
		return;

out:
	skcipher_request_complete(req, err);
}

static int decrypt(struct skcipher_request *req)
{
	return do_decrypt(req, init_crypt(req, decrypt_done));
}

int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
	      struct scatterlist *ssrc, unsigned int nbytes,
	      struct lrw_crypt_req *req)
{
	const unsigned int bsize = LRW_BLOCK_SIZE;
	const unsigned int max_blks = req->tbuflen / bsize;
	struct lrw_table_ctx *ctx = req->table_ctx;
	struct blkcipher_walk walk;
	unsigned int nblocks;
	be128 *iv, *src, *dst, *t;
	be128 *t_buf = req->tbuf;
	int err, i;

	BUG_ON(max_blks < 1);

	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);

	err = blkcipher_walk_virt(desc, &walk);
	nbytes = walk.nbytes;
	if (!nbytes)
		return err;

	nblocks = min(walk.nbytes / bsize, max_blks);
	src = (be128 *)walk.src.virt.addr;
	dst = (be128 *)walk.dst.virt.addr;

	/* calculate first value of T */
	iv = (be128 *)walk.iv;
	t_buf[0] = *iv;

	/* T <- I*Key2 */
	gf128mul_64k_bbe(&t_buf[0], ctx->table);

	i = 0;
	goto first;

	for (;;) {
		do {
			for (i = 0; i < nblocks; i++) {
				/* T <- I*Key2, using the optimization
				 * discussed in the specification */
				be128_xor(&t_buf[i], t,
						&ctx->mulinc[get_index128(iv)]);
				inc(iv);
first:
				t = &t_buf[i];

				/* PP <- T xor P */
				be128_xor(dst + i, t, src + i);
			}

			/* CC <- E(Key2,PP) */
			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
				      nblocks * bsize);

			/* C <- T xor CC */
			for (i = 0; i < nblocks; i++)
				be128_xor(dst + i, dst + i, &t_buf[i]);

			src += nblocks;
			dst += nblocks;
			nbytes -= nblocks * bsize;
			nblocks = min(nbytes / bsize, max_blks);
		} while (nblocks > 0);

		err = blkcipher_walk_done(desc, &walk, nbytes);
		nbytes = walk.nbytes;
		if (!nbytes)
			break;

		nblocks = min(nbytes / bsize, max_blks);
		src = (be128 *)walk.src.virt.addr;
		dst = (be128 *)walk.dst.virt.addr;
	}

	return err;
}
EXPORT_SYMBOL_GPL(lrw_crypt);

static int init_tfm(struct crypto_skcipher *tfm)
{
	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
	struct priv *ctx = crypto_skcipher_ctx(tfm);
	struct crypto_skcipher *cipher;

	cipher = crypto_spawn_skcipher(spawn);
	if (IS_ERR(cipher))
		return PTR_ERR(cipher);

	ctx->child = cipher;

	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
					 sizeof(struct rctx));

	return 0;
}

static void exit_tfm(struct crypto_skcipher *tfm)
{
	struct priv *ctx = crypto_skcipher_ctx(tfm);

	lrw_free_table(&ctx->table);
	crypto_free_skcipher(ctx->child);
}

static void free(struct skcipher_instance *inst)
{
	crypto_drop_skcipher(skcipher_instance_ctx(inst));
	kfree(inst);
}

static int create(struct crypto_template *tmpl, struct rtattr **tb)
{
	struct crypto_skcipher_spawn *spawn;
	struct skcipher_instance *inst;
	struct crypto_attr_type *algt;
	struct skcipher_alg *alg;
	const char *cipher_name;
	char ecb_name[CRYPTO_MAX_ALG_NAME];
	int err;

	algt = crypto_get_attr_type(tb);
	if (IS_ERR(algt))
		return PTR_ERR(algt);

	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
		return -EINVAL;

	cipher_name = crypto_attr_alg_name(tb[1]);
	if (IS_ERR(cipher_name))
		return PTR_ERR(cipher_name);

	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
	if (!inst)
		return -ENOMEM;

	spawn = skcipher_instance_ctx(inst);

	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
	err = crypto_grab_skcipher(spawn, cipher_name, 0,
				   crypto_requires_sync(algt->type,
							algt->mask));
	if (err == -ENOENT) {
		err = -ENAMETOOLONG;
		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
			goto err_free_inst;

		err = crypto_grab_skcipher(spawn, ecb_name, 0,
					   crypto_requires_sync(algt->type,
								algt->mask));
	}

	if (err)
		goto err_free_inst;

	alg = crypto_skcipher_spawn_alg(spawn);

	err = -EINVAL;
	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
		goto err_drop_spawn;

	if (crypto_skcipher_alg_ivsize(alg))
		goto err_drop_spawn;

	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
				  &alg->base);
	if (err)
		goto err_drop_spawn;

	err = -EINVAL;
	cipher_name = alg->base.cra_name;

	/* Alas we screwed up the naming so we have to mangle the
	 * cipher name.
	 */
	if (!strncmp(cipher_name, "ecb(", 4)) {
		unsigned len;

		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
		if (len < 2 || len >= sizeof(ecb_name))
			goto err_drop_spawn;

		if (ecb_name[len - 1] != ')')
			goto err_drop_spawn;

		ecb_name[len - 1] = 0;

		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
			err = -ENAMETOOLONG;
			goto err_drop_spawn;
		}
	}

	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
	inst->alg.base.cra_priority = alg->base.cra_priority;
	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
				       (__alignof__(u64) - 1);

	inst->alg.ivsize = LRW_BLOCK_SIZE;
	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
				LRW_BLOCK_SIZE;
	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
				LRW_BLOCK_SIZE;

	inst->alg.base.cra_ctxsize = sizeof(struct priv);

	inst->alg.init = init_tfm;
	inst->alg.exit = exit_tfm;

	inst->alg.setkey = setkey;
	inst->alg.encrypt = encrypt;
	inst->alg.decrypt = decrypt;

	inst->free = free;

	err = skcipher_register_instance(tmpl, inst);
	if (err)
		goto err_drop_spawn;

out:
	return err;

err_drop_spawn:
	crypto_drop_skcipher(spawn);
err_free_inst:
	kfree(inst);
	goto out;
}

static struct crypto_template crypto_tmpl = {
	.name = "lrw",
	.create = create,
	.module = THIS_MODULE,
};

static int __init crypto_module_init(void)
{
	return crypto_register_template(&crypto_tmpl);
}

static void __exit crypto_module_exit(void)
{
	crypto_unregister_template(&crypto_tmpl);
}

module_init(crypto_module_init);
module_exit(crypto_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");
MODULE_ALIAS_CRYPTO("lrw");