intel_color.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 */

#include "intel_drv.h"

#define CTM_COEFF_SIGN	(1ULL << 63)

#define CTM_COEFF_1_0	(1ULL << 32)
#define CTM_COEFF_2_0	(CTM_COEFF_1_0 << 1)
#define CTM_COEFF_4_0	(CTM_COEFF_2_0 << 1)
#define CTM_COEFF_8_0	(CTM_COEFF_4_0 << 1)
#define CTM_COEFF_0_5	(CTM_COEFF_1_0 >> 1)
#define CTM_COEFF_0_25	(CTM_COEFF_0_5 >> 1)
#define CTM_COEFF_0_125	(CTM_COEFF_0_25 >> 1)

#define CTM_COEFF_LIMITED_RANGE ((235ULL - 16ULL) * CTM_COEFF_1_0 / 255)

#define CTM_COEFF_NEGATIVE(coeff)	(((coeff) & CTM_COEFF_SIGN) != 0)
#define CTM_COEFF_ABS(coeff)		((coeff) & (CTM_COEFF_SIGN - 1))

#define LEGACY_LUT_LENGTH		(sizeof(struct drm_color_lut) * 256)

/* Post offset values for RGB->YCBCR conversion */
#define POSTOFF_RGB_TO_YUV_HI 0x800
#define POSTOFF_RGB_TO_YUV_ME 0x100
#define POSTOFF_RGB_TO_YUV_LO 0x800

/*
 * These values are direct register values specified in the Bspec,
 * for RGB->YUV conversion matrix (colorspace BT709)
 */
#define CSC_RGB_TO_YUV_RU_GU 0x2ba809d8
#define CSC_RGB_TO_YUV_BU 0x37e80000
#define CSC_RGB_TO_YUV_RY_GY 0x1e089cc0
#define CSC_RGB_TO_YUV_BY 0xb5280000
#define CSC_RGB_TO_YUV_RV_GV 0xbce89ad8
#define CSC_RGB_TO_YUV_BV 0x1e080000

/*
 * Extract the CSC coefficient from a CTM coefficient (in U32.32 fixed point
 * format). This macro takes the coefficient we want transformed and the
 * number of fractional bits.
 *
 * We only have a 9 bits precision window which slides depending on the value
 * of the CTM coefficient and we write the value from bit 3. We also round the
 * value.
 */
#define I9XX_CSC_COEFF_FP(coeff, fbits)	\
	(clamp_val(((coeff) >> (32 - (fbits) - 3)) + 4, 0, 0xfff) & 0xff8)

#define I9XX_CSC_COEFF_LIMITED_RANGE	\
	I9XX_CSC_COEFF_FP(CTM_COEFF_LIMITED_RANGE, 9)
#define I9XX_CSC_COEFF_1_0		\
	((7 << 12) | I9XX_CSC_COEFF_FP(CTM_COEFF_1_0, 8))

static bool crtc_state_is_legacy_gamma(struct drm_crtc_state *state)
{
	return !state->degamma_lut &&
		!state->ctm &&
		state->gamma_lut &&
		state->gamma_lut->length == LEGACY_LUT_LENGTH;
}

/*
 * When using limited range, multiply the matrix given by userspace by
 * the matrix that we would use for the limited range. We do the
 * multiplication in U2.30 format.
 */
static void ctm_mult_by_limited(uint64_t *result, int64_t *input)
{
	int i;

	for (i = 0; i < 9; i++)
		result[i] = 0;

	for (i = 0; i < 3; i++) {
		int64_t user_coeff = input[i * 3 + i];
		uint64_t limited_coeff = CTM_COEFF_LIMITED_RANGE >> 2;
		uint64_t abs_coeff = clamp_val(CTM_COEFF_ABS(user_coeff),
					       0,
					       CTM_COEFF_4_0 - 1) >> 2;

		result[i * 3 + i] = (limited_coeff * abs_coeff) >> 27;
		if (CTM_COEFF_NEGATIVE(user_coeff))
			result[i * 3 + i] |= CTM_COEFF_SIGN;
	}
}

static void i9xx_load_ycbcr_conversion_matrix(struct intel_crtc *intel_crtc)
{
	int pipe = intel_crtc->pipe;
	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);

	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);

	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), CSC_RGB_TO_YUV_RU_GU);
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), CSC_RGB_TO_YUV_BU);

	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), CSC_RGB_TO_YUV_RY_GY);
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), CSC_RGB_TO_YUV_BY);

	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), CSC_RGB_TO_YUV_RV_GV);
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), CSC_RGB_TO_YUV_BV);

	I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), POSTOFF_RGB_TO_YUV_HI);
	I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), POSTOFF_RGB_TO_YUV_ME);
	I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), POSTOFF_RGB_TO_YUV_LO);
	I915_WRITE(PIPE_CSC_MODE(pipe), 0);
}

/* Set up the pipe CSC unit. */
static void i9xx_load_csc_matrix(struct drm_crtc_state *crtc_state)
{
	struct drm_crtc *crtc = crtc_state->crtc;
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i, pipe = intel_crtc->pipe;
	uint16_t coeffs[9] = { 0, };
	struct intel_crtc_state *intel_crtc_state = to_intel_crtc_state(crtc_state);

	if (intel_crtc_state->ycbcr420) {
		i9xx_load_ycbcr_conversion_matrix(intel_crtc);
		return;
	} else if (crtc_state->ctm) {
		struct drm_color_ctm *ctm =
			(struct drm_color_ctm *)crtc_state->ctm->data;
		uint64_t input[9] = { 0, };

		if (intel_crtc_state->limited_color_range) {
			ctm_mult_by_limited(input, ctm->matrix);
		} else {
			for (i = 0; i < ARRAY_SIZE(input); i++)
				input[i] = ctm->matrix[i];
		}

		/*
		 * Convert fixed point S31.32 input to format supported by the
		 * hardware.
		 */
		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
			uint64_t abs_coeff = ((1ULL << 63) - 1) & input[i];

			/*
			 * Clamp input value to min/max supported by
			 * hardware.
			 */
			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_4_0 - 1);

			/* sign bit */
			if (CTM_COEFF_NEGATIVE(input[i]))
				coeffs[i] |= 1 << 15;

			if (abs_coeff < CTM_COEFF_0_125)
				coeffs[i] |= (3 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 12);
			else if (abs_coeff < CTM_COEFF_0_25)
				coeffs[i] |= (2 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 11);
			else if (abs_coeff < CTM_COEFF_0_5)
				coeffs[i] |= (1 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 10);
			else if (abs_coeff < CTM_COEFF_1_0)
				coeffs[i] |= I9XX_CSC_COEFF_FP(abs_coeff, 9);
			else if (abs_coeff < CTM_COEFF_2_0)
				coeffs[i] |= (7 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 8);
			else
				coeffs[i] |= (6 << 12) |
					I9XX_CSC_COEFF_FP(abs_coeff, 7);
		}
	} else {
		/*
		 * Load an identity matrix if no coefficients are provided.
		 *
		 * TODO: Check what kind of values actually come out of the
		 * pipe with these coeff/postoff values and adjust to get the
		 * best accuracy. Perhaps we even need to take the bpc value
		 * into consideration.
		 */
		for (i = 0; i < 3; i++) {
			if (intel_crtc_state->limited_color_range)
				coeffs[i * 3 + i] =
					I9XX_CSC_COEFF_LIMITED_RANGE;
			else
				coeffs[i * 3 + i] = I9XX_CSC_COEFF_1_0;
		}
	}

	I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeffs[0] << 16 | coeffs[1]);
	I915_WRITE(PIPE_CSC_COEFF_BY(pipe), coeffs[2] << 16);

	I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeffs[3] << 16 | coeffs[4]);
	I915_WRITE(PIPE_CSC_COEFF_BU(pipe), coeffs[5] << 16);

	I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), coeffs[6] << 16 | coeffs[7]);
	I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeffs[8] << 16);

	I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
	I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);

	if (INTEL_GEN(dev_priv) > 6) {
		uint16_t postoff = 0;

		if (intel_crtc_state->limited_color_range)
			postoff = (16 * (1 << 12) / 255) & 0x1fff;

		I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
		I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
		I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);

		I915_WRITE(PIPE_CSC_MODE(pipe), 0);
	} else {
		uint32_t mode = CSC_MODE_YUV_TO_RGB;

		if (intel_crtc_state->limited_color_range)
			mode |= CSC_BLACK_SCREEN_OFFSET;

		I915_WRITE(PIPE_CSC_MODE(pipe), mode);
	}
}

/*
 * Set up the pipe CSC unit on CherryView.
 */
static void cherryview_load_csc_matrix(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	int pipe = to_intel_crtc(crtc)->pipe;
	uint32_t mode;

	if (state->ctm) {
		struct drm_color_ctm *ctm =
			(struct drm_color_ctm *) state->ctm->data;
		uint16_t coeffs[9] = { 0, };
		int i;

		for (i = 0; i < ARRAY_SIZE(coeffs); i++) {
			uint64_t abs_coeff =
				((1ULL << 63) - 1) & ctm->matrix[i];

			/* Round coefficient. */
			abs_coeff += 1 << (32 - 13);
			/* Clamp to hardware limits. */
			abs_coeff = clamp_val(abs_coeff, 0, CTM_COEFF_8_0 - 1);

			/* Write coefficients in S3.12 format. */
			if (ctm->matrix[i] & (1ULL << 63))
				coeffs[i] = 1 << 15;
			coeffs[i] |= ((abs_coeff >> 32) & 7) << 12;
			coeffs[i] |= (abs_coeff >> 20) & 0xfff;
		}

		I915_WRITE(CGM_PIPE_CSC_COEFF01(pipe),
			   coeffs[1] << 16 | coeffs[0]);
		I915_WRITE(CGM_PIPE_CSC_COEFF23(pipe),
			   coeffs[3] << 16 | coeffs[2]);
		I915_WRITE(CGM_PIPE_CSC_COEFF45(pipe),
			   coeffs[5] << 16 | coeffs[4]);
		I915_WRITE(CGM_PIPE_CSC_COEFF67(pipe),
			   coeffs[7] << 16 | coeffs[6]);
		I915_WRITE(CGM_PIPE_CSC_COEFF8(pipe), coeffs[8]);
	}

	mode = (state->ctm ? CGM_PIPE_MODE_CSC : 0);
	if (!crtc_state_is_legacy_gamma(state)) {
		mode |= (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
			(state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0);
	}
	I915_WRITE(CGM_PIPE_MODE(pipe), mode);
}

void intel_color_set_csc(struct drm_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc_state->crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);

	if (dev_priv->display.load_csc_matrix)
		dev_priv->display.load_csc_matrix(crtc_state);
}

/* Loads the legacy palette/gamma unit for the CRTC. */
static void i9xx_load_luts_internal(struct drm_crtc *crtc,
				    struct drm_property_blob *blob,
				    struct intel_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	int i;

	if (HAS_GMCH_DISPLAY(dev_priv)) {
		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
			assert_dsi_pll_enabled(dev_priv);
		else
			assert_pll_enabled(dev_priv, pipe);
	}

	if (blob) {
		struct drm_color_lut *lut = (struct drm_color_lut *) blob->data;
		for (i = 0; i < 256; i++) {
			uint32_t word =
				(drm_color_lut_extract(lut[i].red, 8) << 16) |
				(drm_color_lut_extract(lut[i].green, 8) << 8) |
				drm_color_lut_extract(lut[i].blue, 8);

			if (HAS_GMCH_DISPLAY(dev_priv))
				I915_WRITE(PALETTE(pipe, i), word);
			else
				I915_WRITE(LGC_PALETTE(pipe, i), word);
		}
	} else {
		for (i = 0; i < 256; i++) {
			uint32_t word = (i << 16) | (i << 8) | i;

			if (HAS_GMCH_DISPLAY(dev_priv))
				I915_WRITE(PALETTE(pipe, i), word);
			else
				I915_WRITE(LGC_PALETTE(pipe, i), word);
		}
	}
}

static void i9xx_load_luts(struct drm_crtc_state *crtc_state)
{
	i9xx_load_luts_internal(crtc_state->crtc, crtc_state->gamma_lut,
				to_intel_crtc_state(crtc_state));
}

/* Loads the legacy palette/gamma unit for the CRTC on Haswell. */
static void haswell_load_luts(struct drm_crtc_state *crtc_state)
{
	struct drm_crtc *crtc = crtc_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *intel_crtc_state =
		to_intel_crtc_state(crtc_state);
	bool reenable_ips = false;

	/*
	 * Workaround : Do not read or write the pipe palette/gamma data while
	 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
	 */
	if (IS_HASWELL(dev_priv) && intel_crtc_state->ips_enabled &&
	    (intel_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)) {
		hsw_disable_ips(intel_crtc);
		reenable_ips = true;
	}

	intel_crtc_state->gamma_mode = GAMMA_MODE_MODE_8BIT;
	I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);

	i9xx_load_luts(crtc_state);

	if (reenable_ips)
		hsw_enable_ips(intel_crtc);
}

static void bdw_load_degamma_lut(struct drm_crtc_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
	uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;

	I915_WRITE(PREC_PAL_INDEX(pipe),
		   PAL_PREC_SPLIT_MODE | PAL_PREC_AUTO_INCREMENT);

	if (state->degamma_lut) {
		struct drm_color_lut *lut =
			(struct drm_color_lut *) state->degamma_lut->data;

		for (i = 0; i < lut_size; i++) {
			uint32_t word =
			drm_color_lut_extract(lut[i].red, 10) << 20 |
			drm_color_lut_extract(lut[i].green, 10) << 10 |
			drm_color_lut_extract(lut[i].blue, 10);

			I915_WRITE(PREC_PAL_DATA(pipe), word);
		}
	} else {
		for (i = 0; i < lut_size; i++) {
			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);

			I915_WRITE(PREC_PAL_DATA(pipe),
				   (v << 20) | (v << 10) | v);
		}
	}
}

static void bdw_load_gamma_lut(struct drm_crtc_state *state, u32 offset)
{
	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
	uint32_t i, lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;

	WARN_ON(offset & ~PAL_PREC_INDEX_VALUE_MASK);

	I915_WRITE(PREC_PAL_INDEX(pipe),
		   (offset ? PAL_PREC_SPLIT_MODE : 0) |
		   PAL_PREC_AUTO_INCREMENT |
		   offset);

	if (state->gamma_lut) {
		struct drm_color_lut *lut =
			(struct drm_color_lut *) state->gamma_lut->data;

		for (i = 0; i < lut_size; i++) {
			uint32_t word =
			(drm_color_lut_extract(lut[i].red, 10) << 20) |
			(drm_color_lut_extract(lut[i].green, 10) << 10) |
			drm_color_lut_extract(lut[i].blue, 10);

			I915_WRITE(PREC_PAL_DATA(pipe), word);
		}

		/* Program the max register to clamp values > 1.0. */
		i = lut_size - 1;
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0),
			   drm_color_lut_extract(lut[i].red, 16));
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1),
			   drm_color_lut_extract(lut[i].green, 16));
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2),
			   drm_color_lut_extract(lut[i].blue, 16));
	} else {
		for (i = 0; i < lut_size; i++) {
			uint32_t v = (i * ((1 << 10) - 1)) / (lut_size - 1);

			I915_WRITE(PREC_PAL_DATA(pipe),
				   (v << 20) | (v << 10) | v);
		}

		I915_WRITE(PREC_PAL_GC_MAX(pipe, 0), (1 << 16) - 1);
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 1), (1 << 16) - 1);
		I915_WRITE(PREC_PAL_GC_MAX(pipe, 2), (1 << 16) - 1);
	}
}

/* Loads the palette/gamma unit for the CRTC on Broadwell+. */
static void broadwell_load_luts(struct drm_crtc_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
	struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;

	if (crtc_state_is_legacy_gamma(state)) {
		haswell_load_luts(state);
		return;
	}

	bdw_load_degamma_lut(state);
	bdw_load_gamma_lut(state,
			   INTEL_INFO(dev_priv)->color.degamma_lut_size);

	intel_state->gamma_mode = GAMMA_MODE_MODE_SPLIT;
	I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_SPLIT);
	POSTING_READ(GAMMA_MODE(pipe));

	/*
	 * Reset the index, otherwise it prevents the legacy palette to be
	 * written properly.
	 */
	I915_WRITE(PREC_PAL_INDEX(pipe), 0);
}

static void glk_load_degamma_lut(struct drm_crtc_state *state)
{
	struct drm_i915_private *dev_priv = to_i915(state->crtc->dev);
	enum pipe pipe = to_intel_crtc(state->crtc)->pipe;
	const uint32_t lut_size = 33;
	uint32_t i;

	/*
	 * When setting the auto-increment bit, the hardware seems to
	 * ignore the index bits, so we need to reset it to index 0
	 * separately.
	 */
	I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), 0);
	I915_WRITE(PRE_CSC_GAMC_INDEX(pipe), PRE_CSC_GAMC_AUTO_INCREMENT);

	/*
	 *  FIXME: The pipe degamma table in geminilake doesn't support
	 *  different values per channel, so this just loads a linear table.
	 */
	for (i = 0; i < lut_size; i++) {
		uint32_t v = (i * (1 << 16)) / (lut_size - 1);

		I915_WRITE(PRE_CSC_GAMC_DATA(pipe), v);
	}

	/* Clamp values > 1.0. */
	while (i++ < 35)
		I915_WRITE(PRE_CSC_GAMC_DATA(pipe), (1 << 16));
}

static void glk_load_luts(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc_state *intel_state = to_intel_crtc_state(state);
	enum pipe pipe = to_intel_crtc(crtc)->pipe;

	glk_load_degamma_lut(state);

	if (crtc_state_is_legacy_gamma(state)) {
		haswell_load_luts(state);
		return;
	}

	bdw_load_gamma_lut(state, 0);

	intel_state->gamma_mode = GAMMA_MODE_MODE_10BIT;
	I915_WRITE(GAMMA_MODE(pipe), GAMMA_MODE_MODE_10BIT);
	POSTING_READ(GAMMA_MODE(pipe));
}

/* Loads the palette/gamma unit for the CRTC on CherryView. */
static void cherryview_load_luts(struct drm_crtc_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	enum pipe pipe = to_intel_crtc(crtc)->pipe;
	struct drm_color_lut *lut;
	uint32_t i, lut_size;
	uint32_t word0, word1;

	if (crtc_state_is_legacy_gamma(state)) {
		/* Turn off degamma/gamma on CGM block. */
		I915_WRITE(CGM_PIPE_MODE(pipe),
			   (state->ctm ? CGM_PIPE_MODE_CSC : 0));
		i9xx_load_luts_internal(crtc, state->gamma_lut,
					to_intel_crtc_state(state));
		return;
	}

	if (state->degamma_lut) {
		lut = (struct drm_color_lut *) state->degamma_lut->data;
		lut_size = INTEL_INFO(dev_priv)->color.degamma_lut_size;
		for (i = 0; i < lut_size; i++) {
			/* Write LUT in U0.14 format. */
			word0 =
			(drm_color_lut_extract(lut[i].green, 14) << 16) |
			drm_color_lut_extract(lut[i].blue, 14);
			word1 = drm_color_lut_extract(lut[i].red, 14);

			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 0), word0);
			I915_WRITE(CGM_PIPE_DEGAMMA(pipe, i, 1), word1);
		}
	}

	if (state->gamma_lut) {
		lut = (struct drm_color_lut *) state->gamma_lut->data;
		lut_size = INTEL_INFO(dev_priv)->color.gamma_lut_size;
		for (i = 0; i < lut_size; i++) {
			/* Write LUT in U0.10 format. */
			word0 =
			(drm_color_lut_extract(lut[i].green, 10) << 16) |
			drm_color_lut_extract(lut[i].blue, 10);
			word1 = drm_color_lut_extract(lut[i].red, 10);

			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 0), word0);
			I915_WRITE(CGM_PIPE_GAMMA(pipe, i, 1), word1);
		}
	}

	I915_WRITE(CGM_PIPE_MODE(pipe),
		   (state->ctm ? CGM_PIPE_MODE_CSC : 0) |
		   (state->degamma_lut ? CGM_PIPE_MODE_DEGAMMA : 0) |
		   (state->gamma_lut ? CGM_PIPE_MODE_GAMMA : 0));

	/*
	 * Also program a linear LUT in the legacy block (behind the
	 * CGM block).
	 */
	i9xx_load_luts_internal(crtc, NULL, to_intel_crtc_state(state));
}

void intel_color_load_luts(struct drm_crtc_state *crtc_state)
{
	struct drm_device *dev = crtc_state->crtc->dev;
	struct drm_i915_private *dev_priv = to_i915(dev);

	dev_priv->display.load_luts(crtc_state);
}

int intel_color_check(struct drm_crtc *crtc,
		      struct drm_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	size_t gamma_length, degamma_length;

	degamma_length = INTEL_INFO(dev_priv)->color.degamma_lut_size *
		sizeof(struct drm_color_lut);
	gamma_length = INTEL_INFO(dev_priv)->color.gamma_lut_size *
		sizeof(struct drm_color_lut);

	/*
	 * We allow both degamma & gamma luts at the right size or
	 * NULL.
	 */
	if ((!crtc_state->degamma_lut ||
	     crtc_state->degamma_lut->length == degamma_length) &&
	    (!crtc_state->gamma_lut ||
	     crtc_state->gamma_lut->length == gamma_length))
		return 0;

	/*
	 * We also allow no degamma lut/ctm and a gamma lut at the legacy
	 * size (256 entries).
	 */
	if (crtc_state_is_legacy_gamma(crtc_state))
		return 0;

	return -EINVAL;
}

void intel_color_init(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);

	drm_mode_crtc_set_gamma_size(crtc, 256);

	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->display.load_csc_matrix = cherryview_load_csc_matrix;
		dev_priv->display.load_luts = cherryview_load_luts;
	} else if (IS_HASWELL(dev_priv)) {
		dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
		dev_priv->display.load_luts = haswell_load_luts;
	} else if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv) ||
		   IS_BROXTON(dev_priv)) {
		dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
		dev_priv->display.load_luts = broadwell_load_luts;
	} else if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
		dev_priv->display.load_csc_matrix = i9xx_load_csc_matrix;
		dev_priv->display.load_luts = glk_load_luts;
	} else {
		dev_priv->display.load_luts = i9xx_load_luts;
	}

	/* Enable color management support when we have degamma & gamma LUTs. */
	if (INTEL_INFO(dev_priv)->color.degamma_lut_size != 0 &&
	    INTEL_INFO(dev_priv)->color.gamma_lut_size != 0)
		drm_crtc_enable_color_mgmt(crtc,
					   INTEL_INFO(dev_priv)->color.degamma_lut_size,
					   true,
					   INTEL_INFO(dev_priv)->color.gamma_lut_size);
}